JPWO2017158762A1 - 水素管理システムおよび統合水素管理装置 - Google Patents

水素管理システムおよび統合水素管理装置 Download PDF

Info

Publication number
JPWO2017158762A1
JPWO2017158762A1 JP2018505137A JP2018505137A JPWO2017158762A1 JP WO2017158762 A1 JPWO2017158762 A1 JP WO2017158762A1 JP 2018505137 A JP2018505137 A JP 2018505137A JP 2018505137 A JP2018505137 A JP 2018505137A JP WO2017158762 A1 JPWO2017158762 A1 JP WO2017158762A1
Authority
JP
Japan
Prior art keywords
hydrogen
filling
integrated
time
management system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018505137A
Other languages
English (en)
Other versions
JP6462951B2 (ja
Inventor
秋葉 剛史
剛史 秋葉
史之 山根
史之 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Publication of JPWO2017158762A1 publication Critical patent/JPWO2017158762A1/ja
Application granted granted Critical
Publication of JP6462951B2 publication Critical patent/JP6462951B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Health Care (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

実施形態の水素管理システムは、燃料電池車両に水素を充填するための水素ステーションを複数の事業所で共用する水素供給システムに適用される水素管理システムであって、各事業所の燃料電池車両の水素需要予測を生成する複数の水素管理手段と、前記複数の水素管理手段により生成された各事業所の燃料電池車両の水素需要予測および各事業所の燃料電池車両の水素の充填が可能な充填可能時間帯の情報に基づき、当該充填可能時間帯を複数の単位時間に分け、前記複数の単位時間の中から水素の充填を実施する充填実施時間を事業所間での重複が抑制されるように決定する演算を行い、当該演算により決定した各事業所の燃料電池車両の充填実施時間の情報を含む水素需要予測を生成する統合水素管理手段とを具備する。

Description

本発明の実施形態は、水素管理システムおよび統合水素管理装置に関する。
クリーンな次世代エネルギーとして水素が注目されており、この水素を燃料とする燃料電池(FC:Fuel Cell)車両が増加すると予想されている。例えば物流事業者が倉庫等で使うフォークリフトについても、これまで利用されてきたディーゼルエンジン方式やバッテリ方式のフォークリフトに代わり、燃料電池式フォークリフト(FCフォークリフト)が増加してくると予想されている。
特開2006−1797号公報 特許第5679920号公報 特許第5432292号公報
FCフォークリフト等の燃料電池車両に水素を供給する水素ステーションは、製造コストが非常に高いため、複数の事業所で水素ステーションを共有して使用する形態が考えられている。
しかしながら、複数の事業所で水素ステーションを共用する場合、燃料電池車両に水素の充填待ちが発生する可能性がある。例えば、水素の充填待ちの時間が長いと、燃料切れが生じたり、作業が滞ったりして、業務に支障をきたすことが考えられる。
本発明が解決しようとする課題は、複数の事業所で水素ステーションを共用する形態において水素充填待ちの発生を抑制することができる水素管理システムおよび統合水素管理装置を提供することにある。
実施形態の水素管理システムは、燃料電池車両に水素を充填するための水素ステーションを複数の事業所が共用する水素供給システムに適用される水素管理システムであって、各事業所の燃料電池車両の水素需要予測を生成する複数の水素管理手段と、前記複数の水素管理手段により生成された各事業所の燃料電池車両の水素需要予測および各事業所の燃料電池車両の水素の充填が可能な充填可能時間帯の情報に基づき、当該充填可能時間帯を複数の単位時間に分け、前記複数の単位時間の中から水素の充填を実施する充填実施時間を事業所間での重複が抑制されるように決定する演算を行い、当該演算により決定した各事業所の燃料電池車両の充填実施時間の情報を含む水素需要予測を生成する統合水素管理手段とを具備する。
第1の実施形態に係る水素供給システムの全体構成を示す図。 1台分の水素MMSの機能構成例を示すブロック図。 統合水素MMS60とその周辺との接続関係を示す図。 統合水素MMS60の機能構成を示すブロック図。 統合水素需要予測部63による主要な動作を示す図。 「充填可能性の評価値算出」の詳細な動作を示す図。 「事業所間での時間的整合性の評価値算出」の詳細な動作を示す図。 「充填間隔の評価値算出」の詳細な動作を示す図。 第2の実施形態における統合水素需要予測部63による評価値算出前のチェックの動作を示す図。 図9中のステップS106の「充填可能性のチェック」の詳細な動作を示す図。 図9中のステップS112の「事業所間での時間的整合性のチェック」の詳細な動作を示す図。 第1の実施形態と第3の実施形態との充填実施時間の候補の表現方法の違いを対比して示す図。 第5の実施形態における「事業所間での時間的整合性の評価値算出」の詳細な動作の前半を示す図。 第5の実施形態における「事業所間での時間的整合性の評価値算出」の詳細な動作の後半を示す図。 第6の実施形態における統合水素MMS60とその周辺との接続関係を示す図。 第7の実施形態における統合水素MMS60とその周辺との接続関係を示す図。 充填可能時間帯をオペレータが指定することを可能とする表示画面の例を示す図。 事業所優先度をオペレータが指定することを可能とする表示画面の例を示す図。 統合水素MMS60が水素MMS50A,50Bから受信するデータの例を示す図。 統合水素MMS60が水素EMS70及び移動式水素ステーション用運行管理システム30に送信するデータ、および、統合水素MMS60が移動式水素ステーション用運行管理システム30から受信するデータの例を示す図。 第10の実施形態における統合水素MMS60の構成を示す図。
(第1の実施形態)
図1は、第1の実施形態に係る水素供給システムの全体構成を示す図である。
[システム構成]
この水素供給システムは、発電設備10、水素製造装置11、水素タンク12、移動式水素ステーション20、移動式水素ステーション用運行管理システム(以下、「運行管理システム」)30、事業所AおよびBがそれぞれ所有するFCフォークリフト群41A,41B,および42A,42B、水素MMS(Mobility Management System)50A,50B、統合水素MMS60、水素EMS(Energy Management System)70等を含む。
発電設備10は、太陽光発電や風力発電など、自然エネルギーを利用した発電を行う。
水素製造装置11は、発電設備10により発電された電気と水から水電解によって水素を製造する。
水素タンク12は、水素製造装置11により製造された水素を貯蔵する。
移動式水素ステーション20は、水素製造装置11あるいは水素タンク12から水素を取り込んで貯蔵する水素貯蔵設備や、貯蔵した水素をFCフォークリフト等の燃料電池車両に充填するための充填設備(ディスペンサー等)を備えている。この移動式水素ステーション20は、複数の事業所A,Bで共用される。なお、本実施形態では水素ステーション20が移動式の水素ステーション(移動車両)である場合を例示するが、移動できない固定式の水素ステーション(定置型設備)に代えて実施してもよい。その場合、移動式水素ステーション用運行管理システム30の設置は不要となる。
上記移動式水素ステーション20は、移動式水素ステーション用運行管理システム30により運行が管理され、例えば事業所A用の充填エリアや事業所B用の充填エリアを巡回し、それぞれの充填エリアにおいて事業所Aで使用するFCフォークリフト群41A,41Bや、事業所Bで使用するFCフォークリフト群42A,42Bに水素を充填する。
移動式水素ステーション用運行管理システム30は、統合水素MMS60から提供される水素需要予測(例えば、時間帯毎の水素要求量の瞬時値を示す情報)を用いて、移動式水素ステーション20の稼働計画を立て、移動式水素ステーション20の日々の運行を管理する。
FCフォークリフト群41A,41B,42A,42Bは、各事業所で主に物流事業を運営するにあたり使用する燃料電池車両である。例えば、事業所Aでは複数のエリアにおいてFCフォークリフト群41A,41Bを使用し、事業所Bでは複数のエリアにおいてFCフォークリフト群42A,42Bを使用する。
水素MMS50A,50Bは、事業所毎に設けられる水素管理装置である。例えば、水素MMS50Aは事業所Aに対応して設けられ、水素MMS50Bは事業所Bに対応して設けられる。
水素MMS50Aは、水素需要予測(例えば、FCフォークリフト群41A,41Bの時間帯毎の水素需要予測量の積算値を示す情報)および補足情報(例えば、前日のFCフォークリフト群41A,41Bの残燃料量を示す情報)を生成する。同様に、水素需要予測(例えば、FCフォークリフト群42A,42Bの時間帯毎の水素需要予測量の積算値を示す情報)および補足情報(例えば、前日のFCフォークリフト群42A,42Bの残燃料量を示す情報)を生成する。水素需要予測は、例えば、WMS(Warehouse Management System)やASN(Advanced Shipping Notice)や気象予測、ディスペンサーから得られる情報を利用して得られる。
統合水素MMS60は、水素MMS50A,50Bからそれぞれ提供される水素需要予測(例えば、時間帯毎の水素需要予測量の積算値を示す情報)を統合して、新たな水素需要予測(例えば、時間帯毎の水素要求量の瞬時値を示す情報)を生成し、これを移動式水素ステーション用運行管理システム30や水素EMS70へ送信する。
水素EMS70は、太陽光発電や風力発電の発電可能量予測や、FCフォークリフトのディスペンサー以外に水素貯蔵設備から水素が供給される需要家の水素需要予測を行い、統合水素MMS60(あるいは水素MMS50A,50B)から得られる水素需要予測と合わせて、水素製造計画を立てる。
ここで、水素MMS50A,50Bの構成について説明する。水素MMS50A,50Bは、それぞれ図2に示す共通の機能構成を有する。
[水素MMS50A,50Bの構成]
図2は、1台分の水素MMS(例えば、水素MMS50A)の機能構成例を示すブロック図である。図2に示すように、水素MMS50Aは、UI(User Interface)50a,50c,50e、区分・ディスペンサー設定部50b、データベース50d,50f、予測実績表示部50g、予測結果修正部50h、24時間分予測部50i、再予測部50j、水素貯蔵要求量計算部50k、通信部50mを有する。UI50a,50c,50eは、1つのUIであってもよい。データベース50d,50fは1つの記憶装置で構成されてもよい。
水素MMS50Aでは、(1)WMS31や、オペレータが操作したUI50cから入力してDB50dに蓄積された過去データと、(2)ASN32、カレンダーデータ33、気象予測データ34、オペレータが操作したUI50eから入力してDB50fに蓄積された予測対象日データとに基づいて、24時間分予測部50iが24時間分の水素需要予測を行ない、その予測結果に基づいて水素貯蔵要求量計算部50kが水素貯蔵要求量を計算して、通信部50mから統合水素MMS60に通知する。
上記の通知後、統合水素MMS60から上記水素貯蔵要求量を反映した水素需要予測が水素EMS70に伝えられ、水素EMS70が水素製造計画を立案する。FCフォークリフトが実際に水素の充填を行なって完了したタイミングで、水素MMS50Aが再予測実施判断を行い、前述した水素需要予測の結果に対する水素充填の実績値の誤差が大きい場合は再予測部50jによる再予測を行う。この場合、再予測結果に基づいて水素貯蔵要求量計算部50kが水素貯蔵要求量を計算して、通信部50mから統合水素MMS60に通知する。この通知後、統合水素MMS60から上記水素貯蔵要求量を反映した水素需要予測が水素EMS70に伝えられ、水素EMS70が水素製造計画を再度立案する。
24時間分予測部50iによる水素需要予測は、各区分に対して行われる。各区分は、FCフォークリフトが担当する作業によって分けられ、水素需要予測のための単位として定義する。
各区分は、例えば倉庫などで作業を行う各エリアに相当し、各FCフォークリフトがそれぞれのエリアで専任の作業を行う。例えばディスペンサーが複数台あり、それぞれが離れた場所に設けられる場合、区分・ディスペンサー設定部50bは、オペレータがUI50aを操作することで入力した区分設定情報、および、ディスペンサーの場所を示す設定情報を得ると、これらの情報に基づいて、それぞれの区分を担当するFCフォークリフトが、どのディスペンサーに水素を充填しに行くかを設定するための、区分とディスペンサーとの対応付けを行なう。
また、予測実績表示部50gは、予測した充填水素量(積算)と、水素貯蔵要求量と「過去実績データの充填水素量(積算)とをグラフにて画面表示する。
予測結果修正部50hは、予測実績表示部50gに表示された、予測した充填水素量(積算)と水素貯蔵要求量を、オペレータによるUI50eに対する任意の修正のための操作により修正して、新たな需要予測結果として水素貯蔵要求量計算部50kに出力する。
次に、図3および図4を参照して、統合水素MMS60について説明する。
[統合水素MMS60の構成]
図3は、統合水素MMS60とその周辺との接続関係を示す図である。また、図4は、統合水素MMS60の機能構成を示すブロック図である。なお、図3、図4では、移動式の水素ステーションを用いる場合の例を示しているが、固定式水素ステーションを用いる場合は、移動式水素ステーション用運行管理システム30の設置や輸送情報の送受は不要となる。
本実施形態の水素供給システムでは、前述したように複数の事業所A,Bで水素ステーション20を共用するため、各物流事業所のFCフォークリフトは自由な時間に充填することができない。そのため、本実施形態では、各事業所のオペレータに、各事業所で使用するFCフォークリフト群の水素の充填が可能な充填可能時間帯を指定してもらった上で、その時間帯の中で各FCフォークリフトに対する水素の充填を行うように設定する。その際、事業所間で充填時間が重複する場合には、当該重複をできるだけ減らすための調整も行う。
図3に示すように、統合水素MMS60は、事業所Aの事業所システム80Aもしくはオペレータ端末81Aから事業所情報(例えば、事業所Aに関する基本情報やオペレータが指定した充填可能時間帯を示す情報など)を受信する。同様に、統合水素MMS60は、事業所Bの事業所システム80Bもしくはオペレータ端末81Bから事業所情報(例えば、事業所Bに関する基本情報やオペレータが指定した充填可能時間帯を示す情報など)を受信する。また、統合水素MMS60は、統合水素MMS60の保守管理会社のオペレータ端末81Zから事業所設定情報(例えば、事業所毎の水素充填の優先度を示す情報など)を受信する。
また、統合水素MMS60は、事業所Aの水素MMS50A,事業所Bの水素MMS50Bから、それぞれ、前述した水素需要予測および補足情報を受信する。
また、統合水素MMS60は、受信した各種の情報を用いて、新たな水素需要予測(例えば、時間帯毎の水素要求量の瞬時値を示す情報)を生成し、この新たな水素需要予測(以下、単に「水素要求量」と呼ぶ場合がある)を移動式水素ステーション用運行管理システム30や水素EMS70へ送信する。
特に、統合水素MMS60は、受信した水素需要予測および充填可能時間帯を示す情報に基づき、当該充填可能時間帯を複数の単位時間に分け、これら複数の単位時間の中から水素の充填を実施する充填実施時間を事業所間での重複が抑制されるように決定する演算を行い、当該演算により決定した各事業所のFCフォークリフト群の充填実施時間の情報を含む新たな水素需要予測を生成する。
また、統合水素MMS60は、移動式水素ステーション用運行管理システム30から輸送情報(例えば、各事業所用の充填エリア間の移動時間を示す情報や、各FCフォークリフトの搭載可能水素量を示す情報など)を受信し、受信した情報を必要に応じて前述した演算に適用する。
図4に示すように、統合水素MMS60は、事業所情報受信部61、水素需要予測受信部62、統合水素需要予測部63、統合水素需要送信部64、水素輸送情報受信部65、UI66などの各種の機能を備えている。
事業所情報受信部61は、事業所Aの水素MMS50A,事業所Bの水素MMS50Bからそれぞれ前述した水素需要予測および補足情報を受信する機能である。
水素需要予測受信部62は、各事業所の事業所システム80A,80Bやオペレータ端末81A,81B、81Zからそれぞれ前述した事業所情報や事業所設定情報を受信する機能である。
統合水素需要予測部63は、受信された各種の情報から前述した新たな水素需要予測を生成する機能である。
統合水素需要送信部64は、生成された新たな水素需要予測を移動式水素ステーション用運行管理システム30や水素EMS70へ送信する機能である。
水素輸送情報受信部65は、移動式水素ステーション用運行管理システム30から前述した輸送情報を受信する機能である。
UI66は、前述した充填可能時間帯や、事業所毎の水素充填の優先度などを、オペレータが指定することを可能とする画面を提供するユーザインタフェース機能である。
上記統合水素需要予測部63は、情報設定部91、演算処理部92、情報提供部93などの機能を含む。
情報設定部91は、各事業所のFCフォークリフト群の充填可能時間帯の中の充填実施時間の候補を所定のアルゴリズムに従って仮決定して所定の記憶領域に設定する機能を有する。設定する充填実施時間の候補は、例えば水素の充填を行うか否かを単位時間毎に示す2値の変数で表現する。
演算処理部92は、情報設定部91によりそれぞれ設定された事業所毎の充填実施時間の候補が所定の評価基準を満たさない場合には情報設定部91に別の候補を設定させる処理を繰り返し、前記評価基準を満たす場合に当該候補を充填実施時間として決定する機能を有する。
情報提供部93は、演算処理部92により決定された各事業所の燃料電池車両の充填実施時間の情報を含む水素需要予測を、統合水素需要送信部64を通じて移動式水素ステーション用運行管理システム30や水素EMS70に提供する機能を有する。
上記演算処理部92は、情報設定部91によりそれぞれ設定された事業所毎の充填実施時間の候補が前記評価基準を満たすか否かの判定を行うに際し、(1)充填可能性、(2)事業所間での時間的整合性、(3)充填間隔をそれぞれ示す第1の評価値、第2の評価値、第3の評価値を算出し、これらの評価値を前記評価基準に適用して判定を行う。
例えば、第1の評価値、第2の評価値、第3の評価値にそれぞれ所定の重み付けを掛けた上で、それぞれを加算して得られる値を総合評価値とする。この総合評価値が、所定の基準値を下回れば(あるいは上回れば)、情報設定部91によりそれぞれ設定された事業所毎の充填実施時間の候補は評価基準を満たしていると判定し、当該候補を充填実施時間として決定する。
第1の評価値は、例えば前日の残燃料だけでは、FCフォークリフト群の水素が無くなる時までに予測需要量の水素が充填されずにFCフォークリフト群の水素が不足する度合いを示す評価値とする。この評価値を使用することにより、FCフォークリフト群に燃料切れが発生することを防げる。
第2の評価値は、例えば事業所間で同時に充填が行われる事象が生じる度合いを示す評価値とする。この評価値を使用することにより、事業所間で同時に水素ステーションが使用されるという時間的不整合の発生を防げる。
第3の評価値は、例えば1つの事業所内で充填が行われる時間間隔が長引く度合いを示す評価値とする。この評価値は必須ではないが、この評価値を採用することにより、充填の行われない無駄な時間が発生することを低減できる。
以下の説明では、第1の評価値、第2の評価値、第3の評価値を、それぞれ、「充填可能性の評価値」、「事業所間での時間的不整合の評価値」、「充填間隔の評価値」と呼ぶ場合がある。
次に、図5を参照して、統合水素需要予測部63による主要な動作を説明する。
統合水素需要予測部63は、事業所毎に、FCフォークリフト群の充填可能時間帯の中の充填実施時間の候補を所定のアルゴリズムに従って仮決定する処理を行う。
統合水素需要予測部63は、各事業所を事業所番号n=1,2,…で識別し、最初に事業所番号n=1の事業所を対象にした処理を開始する(ステップS11)。
次に、統合水素需要予測部63は、対象の事業所nのFCフォークリフト群の前日の残燃料量をR(n)とし(ステップS12)、対象の事業所nの複数の充填可能時間帯をF(n,i)(i=1,2,…,I(n))とする(ステップS12)。なお、i=1,2,…,I(n)は、各充填可能時間帯を識別するための充填可能時間帯番号を表している。
次に、統合水素需要予測部63は、番号i=1の充填可能時間帯を対象にした処理を開始する(ステップS14)。
統合水素需要予測部63は、充填可能時間帯F(n,i)を例えば1分単位の単位時間に分割し、各単位時間の間に水素を充填するか否かを示す2値の変数G(n,i,j)(j=1,2,…,J(n,j))の値をランダムに決定する(ステップS15)。なお、j=1,2,…,J(n,j)は、各単位時間を識別するための単位時間番号を表している。こうした変数Gを用いた処理により、充填可能時間帯F(n,i)の中の充填実施時間の候補が仮決定される。
ここで、i=1,2,…,I(n)の全ての充填可能時間帯についての処理が完了していなければ(ステップS16のN)、次の番号の充填可能時間帯を対象にした処理を開始し(ステップS17)、ステップS15からの処理を繰り返す。
一方、i=1,2,…,I(n)の全ての充填可能時間帯についての処理が完了している場合(ステップS16のY)、全事業所についての処理が完了していなければ(ステップS18のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS19)、ステップS12からの処理を繰り返す。全事業所についての処理が完了していれば(ステップS18のY)、後で詳述する評価値(総合評価値)の算出を行う(ステップS20)。
ここで、算出された評価値が閾値以下でなければ(ステップS21のN)、ステップS11からの処理を繰り返す。算出された評価値が閾値以下であれば(ステップS21のY)、仮決定されていた各候補を充填実施時間として決定し、処理を終了する。
[評価値の算出]
次に、ステップS20の「評価値の算出」の詳細な動作を説明する。
まず、統合水素需要予測部63は、「充填可能性」の評価値を算出する。また、統合水素需要予測部63は、「事業所間での時間的整合性」の評価値を算出する。さらに、統合水素需要予測部63は、「充填間隔」の評価値を算出する。最後に、統合水素需要予測部63は、算出した「充填可能性」、「事業所間での時間的整合性」、「充填間隔」の各評価値に、それぞれ、重みW0、W1、W2を掛けた上で、それらを加算する。この加算処理により得られる値を、最終的な評価値(総合評価値)とする。
[充填可能性の評価値算出]
次に、図6を参照して、「充填可能性の評価値算出」の詳細な動作を説明する。
統合水素需要予測部63は、事業所毎に、FCフォークリフト群の水素が足りなくなる時までに予測需要量の水素が充填されるかどうかを調べ、充填されない場合のFCフォークリフト群の不足量の総量を評価値とする。
まず、統合水素需要予測部63は、充填可能性の評価値をEfとし、初期値としてEf=0を設定する(ステップS41)。
そして、統合水素需要予測部63は、事業所番号n=1の事業所を対象にした処理を開始する(ステップS42)。
統合水素需要予測部63は、1日を構成する24時間を1時間単位に分割して、各単位時間をt=1,2,…,24とし、初期値としてt=1を設定する(ステップS43)。
また、統合水素需要予測部63は、事業所番号nの事業所の評価値をEf(n)とし、初期値としてEf(n)=0を設定する(ステップS44)。
そして、統合水素需要予測部63は、対象の事業所nの時間tにおける水素需要予測(積算値)をP(n,t)とする(ステップS45)。
ここで、統合水素需要予測部63は、P(n,t)≧R(n)が成立するか否か、すなわち、対象の事業所nの時間tにおける水素需要予測(積算値)が前日の残燃料量以上であるか否かを判定する(ステップS46)。該当しない場合は(ステップS46のN)、水素の不足は発生しないものとみなし、不足量の演算を行うことなく、ステップS52へと進む。一方、該当する場合は(ステップS46のY)、不足量の演算を開始する。
まず、統合水素需要予測部63は、FCフォークリフト群が前日の残燃料量だけで不足し始める時間をT_lossとし(ステップS47)、時間T_lossから時間tまでの水素需要予測(積算値)の差分をΔPとし(ステップS48)、対象の事業所nが時間1からtまでに充填される水素量をDとする。
そして、統合水素需要予測部63は、ΔPがDよりも大きいか否かを判定する(ステップS50)。該当しない場合は(ステップS50のN)、水素の不足は発生しないものとみなし、ステップS52へと進む。一方、該当する場合は(ステップS50のY)、水素の不足が発生するものとみなし、現在の評価値Ef(n)に、不足量に相当する「ΔP−D」を加算する(ステップS51)
ここで、時間t=1,2,…,24の全てについての処理が完了していなければ(ステップS52のY)、次の時間を対象にした処理を開始し(ステップS53)、ステップS45からの処理を繰り返す。
一方、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS52のN)、対象の事業所nの重みWef(n)を設定し(ステップS54)、現在の評価値Efに、対象の事業所nの評価値Ef(n)に重みWef(n)を掛けた値を加算する(ステップS55)。
ここで、全事業所についての処理が完了していなければ(ステップS56のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS57)、ステップS43からの処理を繰り返す。全事業所についての処理が完了していれば(ステップS56のY)、充填可能性の評価値算出を終了する。
[事業所間での時間的整合性の評価値算出]
次に、図7を参照して、「事業所間での時間的整合性の評価値算出」の詳細な動作を説明する。
統合水素需要予測部63は、時間帯毎に、全事業所が同時に充填することが無いかどうかを調べ、重複している事業所数を評価値とする。
まず、統合水素需要予測部63は、時間的整合性の評価値をEtとし、初期値としてEt=0を設定し(ステップS61)、時間t=1を対象にした処理を開始する(ステップS62)。
また、統合水素需要予測部63は、時間tで充填が実施されるか否かを示すフラグをF_flagとし、初期値としてF_flagをfalse(充填が実施されない)に設定して(ステップS63)、事業所番号n=1の事業所についての処理を開始する(ステップS64)。
そして、統合水素需要予測部63は、事業所nのFCフォークリフト群が時間tにて充填されるか否かを判定する(ステップS65)。該当しない場合は(ステップS65のN)、ステップS69へと進む。
一方、事業所nのFCフォークリフト群が時間tにて充填される場合は(ステップS65のY)、フラグF_flagが「true」(充填が実施される)になっているか否かを判定する(ステップS66)。該当しない場合は(ステップS66のN)、ステップS68へと進み、フラグF_flagを「true」(充填が実施される)に設定する。一方、フラグF_flagが「true」(充填が実施される)になっている場合は、他の事業所FCフォークリフト群も時間tにて充填されるものとみなし、現在の評価値Etに1を加算する(ステップS67)。この場合、フラグF_flagは「true」のままとする(ステップS68)。
ここで、全事業所についての処理が完了していなければ(ステップS69のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS70)、ステップS65からの処理を繰り返す。全事業所についての処理が完了していれば(ステップS69のY)、ステップS71へ進む。
ここで、時間t=1,2,…,24の全てについての処理が完了していなければ(ステップS71のY)、次の時間を対象にした処理を開始し(ステップS72)、ステップS63からの処理を繰り返す。
一方、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS71のN)、事業所間での時間的整合性の評価値算出を終了する。
[充填間隔の評価値算出]
次に、図8を参照して、「充填間隔の評価値算出」の詳細な動作を説明する。
統合水素需要予測部63は、1つの事業所内で、前回充填が行われてから次に充填が行われるまでの時間間隔が長すぎることがないか否かを調べ、時間間隔の総計を評価値とする。
まず、統合水素需要予測部63は、充填間隔の評価値をEdとし、初期値としてEd=0を設定する(ステップS81)。
そして、統合水素需要予測部63は、事業所番号n=1の事業所を対象にした処理を開始する(ステップS82)。
統合水素需要予測部63は、事業所番号nの事業所の評価値をEd(n)とし、初期値としてEd(n)=0を設定する(ステップS83)
また、統合水素需要予測部63は、前回充填時間をtpとし、初期値としてtp=1を設定する(ステップS84)。
また、統合水素需要予測部63は、1日を構成する24時間を1時間単位に分割して、各単位時間をt=1,2,…,24とし、初期値としてt=1を設定する(ステップS85)。
そして、統合水素需要予測部63は、事業所nのFCフォークリフト群が時間tにて充填されるか否かを判定する(ステップS86)。該当しない場合は(ステップS86のN)、ステップS89へと進む。
一方、事業所nのFCフォークリフト群が時間tにて充填される場合は(ステップS86のY)、現在の評価値Ed(n)に、充填間隔に相当する「t−tp」を加算する(ステップS87)。
そして、統合水素需要予測部63は、前回充填時間tpを時間tとする(ステップS88)。
ここで、時間t=1,2,…,24の全てについての処理が完了していなければ(ステップS89のN)、次の時間を対象にした処理を開始し(ステップS90)、ステップS86からの処理を繰り返す。
一方、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS89のY)、対象の事業所nの重みWed(n)を設定し(ステップS91)、現在の評価値Edに、対象の事業所nの評価値Ed(n)に重みWed(n)を掛けた値を加算する(ステップS92)。
ここで、全事業所についての処理が完了していなければ(ステップS93のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS94)、ステップS83からの処理を繰り返す。全事業所についての処理が完了していれば(ステップS94のY)、充填間隔の評価値算出を終了する。
なお、上述した動作においては、最適な評価値を得るために、シミュレーテッドアニーリングやタブーサーチ、遺伝的アルゴリズムなどを利用してもよい。この場合、G(n,i,j)に設定する2値はランダムではなく、最適化処理の中でよい解を得た場合の値を保持しておき、その値を利用するようにしてもよい。また、評価終了の判定は、評価値が閾値以下、または規定回数の繰り返しの中で最小となるか、または評価値の変化率が閾値以下となった時、のいずれか、あるいはそれらの組み合わせで行うようにしてもよい。
第1の実施形態によれば、複数の事業所で水素ステーションを共用するに際し、燃料電池車両に水素の充填待ちが発生する事象の発生を抑え、燃料切れや作業が停滞の発生を抑え、業務に支障をきたす事態を防ぐことができる。
また、ランダムに設定された事業所毎の充填実施時間の候補が評価基準を満たすか否かの判定を行うに際し、充填可能性、事業所間での時間的整合性、充填間隔のそれぞれの評価値を算出し、それぞれに重みを掛けた上で、加算して得られる値を最終的な評価値として評価基準に適用して判定を行っているため、適切な充填量、適切な充填タイミングを実現でき、これにより事業所適切な水素要求量を提示することができる。
なお、本実施形態では複数の事業所が水素ステーションを共有する場合を例示したが、当該複数の事業所は、それぞれ事業者が異なる複数の事業所であってもよいし、同一事業者の複数の事業所であってもよい。
(第2の実施形態)
次に、第2の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。以下では、第1の実施形態と異なる部分について説明する。
水素供給システムの全体構成やMMS50A,50B、統合水素MMS60の構成については、既に説明した通りである。ただし、第2の実施形態は、統合水素MMS60の統合水素需要予測部63で行われる評価値の算出の手順が第1の実施形態とは異なる。
第1の実施形態では、「充填可能性の評価値算出」と「事業所間での時間的整合性の評価値算出」と「充填間隔の評価値算出」とを一連の演算処理の中で行ったのに対し、第2の実施形態では、評価値算出の前に「充填可能性のチェック」と「時間的整合性のチェック」を行い、それらのチェックを行った後に「充填間隔の評価値算出」を行う。
より具体的には、統合水素需要予測部63は、充填可能時間帯の中の充填実施時間の候補が所定の評価基準を満たすか否かの判定を行うに際し、(1)FCフォークリフト群の水素が無くなる時までに予測需要量の水素が充填されずに水素が不足する事象が生じるか否かを判定し、該事象が生じないと判定した場合に、(2)事業所間で同時に充填が行われる事象が生じるか否かを判定し、該事象が生じないと判定した場合に、(3)「充填間隔の評価値算出」を行い、算出した評価値を評価基準に適用して判定を行う。
[評価値算出前のチェック]
次に、図9を参照して、第2の実施形態における統合水素需要予測部63による評価値算出前のチェックの動作を説明する。
最初に、統合水素需要予測部63は、図5で説明したステップS11〜S15の処理と同様の処理を行う(ステップS101〜S105)。
そして、統合水素需要予測部63は、後で詳述する「充填可能性のチェック」を実施する(ステップS106)。
ここで、統合水素需要予測部63は、「充填可能性のチェック」の結果が充填可能を示さない場合(ステップS107のN)、ステップS105の処理を繰り返す。
一方、「充填可能性のチェック」の結果が充填可能を示す場合(ステップS107のY)、統合水素需要予測部63は、図5で説明したステップS16〜S19の処理と同様の処理を行う(ステップS108〜S111)。
全事業所についての処理が完了していれば(ステップS110のY)、後で詳述する「事業所間での時間的整合性のチェック」を行う(ステップS20)。
ここで、時間的不整合があれば(ステップS113のY)、ステップS102からの処理を繰り返す。
一方、時間的不整合が無ければ(ステップS113のN)、後で詳述する評価値の算出を行う(ステップS112)。
ここで、算出された評価値が閾値以下でなければ(ステップS115のN)、ステップS101からの処理を繰り返す。算出された評価値が閾値以下であれば(ステップS115のY)、仮決定されていた各候補を充填実施時間として決定し、処理を終了する。
[充填可能性のチェック]
次に、図10を参照して、図9中のステップS106の「充填可能性のチェック」の詳細な動作を説明する。
最初に、統合水素需要予測部63は、1日を構成する24時間を1時間単位に分割して、各単位時間をt=1,2,…,24とし、初期値としてt=1を設定する(ステップS101)。
次に、統合水素需要予測部63は、図6で説明したステップS45〜S49の処理と同様の処理を行う(ステップS122〜S129)。
そして、統合水素需要予測部63は、ΔPがDよりも大きいか否かを判定する(ステップS130)。該当しない場合は(ステップS130のN)、ステップS124へと進む。
ここで、時間t=1,2,…,24の全てについての処理が完了していなければ(ステップS124のY)、次の時間を対象にした処理を開始し(ステップS125)、ステップS122からの処理を繰り返す。一方、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS124のN)、充填可能であると判定し(ステップS126)、充填可能性のチェックの処理を終了する。
また、ステップS130において、ΔPがDよりも大きいと判定した場合は(ステップS130のY)、充填不能であると判定し(ステップS131)、充填可能性のチェックの処理を終了する。
[事業所間での時間的整合性のチェック]
次に、図11を参照して、図9中のステップS112の「事業所間での時間的整合性のチェック」の詳細な動作を説明する。
統合水素需要予測部63は、図7で説明したステップS61〜S72の処理と同様の処理を行う(ステップS141〜S152)。ただし、ステップS151において、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS151のN)、評価値Etに応じて整合性あり又は整合性なしの判定を行う(ステップS153)。ここでは、Etが閾値を超えていれば整合性なしと判定し、超えていなければ整合性ありと判定する。
[評価値の算出]
次に、図9中のステップS114の「評価値の算出」の詳細な動作を説明する。
まず、統合水素需要予測部63は、「充填間隔」の評価値を算出する。最後に、統合水素需要予測部63は、算出した「充填間隔」の評価値を、最終的な評価値とする。
第2の実施形態によれば、評価値が低くなることが予想される場合には評価を実施しないため、計算時間の短縮が可能となる。
(第3の実施形態)
次に、第3の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
第3の実施形態は、第1の実施形態における統合水素MMS60の変形例を示すものである。第1の実施形態では、事業所毎の充填可能時間帯の中の充填実施時間を、水素の充填を行うか否かを単位時間毎に示す2値の変数で表現したのに対し、第3の実施形態では、その充填実施時間を、水素の充填開始時間と充填終了時間を示す変数で表現する。
図12に、第1の実施形態と第3の実施形態との充填実施時間の候補の表現方法の違いを対比して示す。図中、nは各事業所を識別するための事業所番号を表し、iは各充填可能時間帯を識別するための充填可能時間帯番号を表し、jは各単位時間を識別するための単位時間番号を表す。
図12(a)に示すように、第1の実施形態では、統合水素需要予測部63は、事業所毎の充填可能時間帯を例えば1分単位の単位時間に分割し、各単位時間の間に水素を充填するか否かを2値の変数で表現し、この情報に基づく水素需要予測(例えば、時間帯毎の水素要求量の瞬時値を示す情報)を生成するものであった。
これに対し、第2の実施形態では、統合水素需要予測部63は、図12(b)に示すように、事業所毎の充填可能時間帯を、充填の開始時間の変数Gstart(n,i)及び終了時間の変数Gend(n,i)で表現し、この情報に基づく水素需要予測(例えば、時間帯毎の水素要求量の瞬時値を示す情報)を生成する。
なお、最適な評価値を得るために、シミュレーテッドアニーリングやタブーサーチ、遺伝的アルゴリズムなどを利用してもよい。この場合、充填の開始時間と終了時間に設定する値はランダムではなく、最適化処理の中でよい解を得た場合の値を保持しておき、その値を利用するようにしてもよい。
第3の実施形態によれば、第1の実施形態に比べ、充填する/しないの変化を少なくすることができ、運用時の遅延に対する耐性を向上させ、また、移動式水素ステーション20の事業所間での頻繁な行き来を抑制することができる。
(第4の実施形態)
次に、第4の実施形態について説明する。なお、前述した第2の実施形態及び第3の実施形態と共通する部分の説明を省略する。
第3の実施形態は第1の実施形態における統合水素MMS60の変形例を示すものであった。これに対し、第4の実施形態は第2の実施形態における統合水素MMS60の変形例を示すものである。
すなわち、第2の実施形態では、統合水素需要予測部63は、事業所毎の充填可能時間帯の中の充填実施時間を、水素の充填を行うか否かを単位時間毎に示す2値の変数で表現したのに対し、第4の実施形態では、その充填実施時間を、水素の充填開始時間と充填終了時間を示す変数で表現する。第2の実施形態と第4の実施形態との具体的な違いは、図12で説明したのと同様となる。
第4の実施形態によれば、第3の実施形態に比べ、充填する/しないの変化を少なくすることができ、運用時の遅延に対する耐性を向上させ、また、移動式水素ステーション20の事業所間での頻繁な行き来を抑制することができる。
(第5の実施形態)
次に、第5の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
第1〜第4の実施形態では、事業所間の時間的整合性を確認するに際し、事業所間で充填が重複する時間をチェックするものであった(例えば図7を参照)。これに対し、第5の実施形態では、事業所間の時間的整合性を確認するに際し、事業所間で充填が重複する時間だけでなく、移動式水素ステーション20の移動時間も考慮する。
すなわち、第5の実施形態では、統合水素需要予測部63は、複数の単位時間の中から水素の充填を実施する充填実施時間を事業所間での重複が抑制されるように決定する演算を行うに際し、移動式水素ステーション20の移動時間を加味した演算を行う。
[事業所間での時間的整合性の評価値算出]
次に、図13A,図13Bを参照して、第5の実施形態における「事業所間での時間的整合性の評価値算出」の詳細な動作を説明する。
まず、図13Aに示すように、統合水素需要予測部63は、時間的整合性の評価値をEtとし、初期値としてEt=0を設定し(ステップS171)、時間t=1を対象にした処理を開始する(ステップS172)。
また、統合水素需要予測部63は、事業所番号n=1の事業所についての処理を開始する(ステップS173)。
まず、統合水素需要予測部63は、事業所mのFCフォークリフト群が最後に最後に充填された時間をLastT(m)とし、このLastT(m)の初期値として、移動式水素ステーション20が拠点から事業所mまで移動するのに必要な時間を設定する(ステップS174)。
ここで、全事業所についての処理が完了していなければ(ステップS175のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS176)、ステップS174の処理を繰り返す。全事業所についての処理が完了していれば(ステップS176のY)、図13BのステップS177へ進む。
統合水素需要予測部63は、時間tで充填が実施されるか否かを示すフラグF_flagをfalse(充填が実施されない)に設定し(ステップS177)、事業所番号n=1の事業所についての処理を開始する(ステップS178)。
そして、統合水素需要予測部63は、事業所nのFCフォークリフト群が時間tにて充填されるか否かを判定する(ステップS179)。該当しない場合は(ステップS179のN)、ステップS185へと進む。
一方、事業所nのFCフォークリフト群が時間tにて充填される場合は(ステップS179のY)、ステップS180に進む。
統合水素需要予測部63は、事業所n以外の事業所mに対して、「t−LastT(m)」が最小となる事業所(事業所n以外で最後に充填した事業所)をxとし(ステップS180)、事業所xから事業所nまでの移動時間をMove_Tとする(ステップS181)。
また、統合水素需要予測部63は、「Move_T−(t−LastT(m))」をPena_Tとする(ステップS182)、現在の評価値Etに、Pena_Tを加算する(ステップS183)。ただし、Pena_Tが0以下の値の場合は、Pena_Tの加算は行わない(Pena_T=0とする)。
例えば、Pena_Tが「t−LastT(m)」よりも大きいと、移動式水素ステーション20が事業所nの位置に時間tまでにたどり着けなくなるため、評価値Etを悪化させる(増加させる)。
次に、統合水素需要予測部63は、tにLastT(n)を設定する(ステップS184)。
ここで、全事業所についての処理が完了していなければ(ステップS185のN)、次の事業所番号の事業所を対象にした処理を開始し(ステップS186)、ステップS179からの処理を繰り返す。全事業所についての処理が完了していれば(ステップS185のY)、ステップS187へ進む。
ここで、時間t=1,2,…,24の全てについての処理が完了していなければ(ステップS187のY)、次の時間を対象にした処理を開始し(ステップS188)、ステップS177からの処理を繰り返す。
一方、時間t=1,2,…,24の全てについての処理が完了していれば(ステップS187のN)、評価値Etに応じて整合性あり又は整合性なしの判定を行う(ステップS189)。ここでは、Etが閾値を超えていれば整合性なしと判定し、超えていなければ整合性ありと判定する。
第5の実施形態によれば、第1〜第4の実施形態に比べ、移動式水素ステーション20の移動時間も加味したより精度の高い時間的整合性の評価を行うことができる。
(第6の実施形態)
次に、第6の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
第6の実施形態は、充填不可能な場合の条件再設定と再予測の具体例を提案するものである。
図14は、第6の実施形態における統合水素MMS60とその周辺との接続関係を示す図である。
第1〜第5の実施形態の構成では、充填可能時間帯に充填することが不可能な場合、充填待ちの時間が増大する場合が考えられる。そこで、第6の実施形態では、統合水素MMS60は、充填可能時間帯での充填が不可能な場合、移動式水素ステーション用運行管理システム30に対し、水素ステーション台数の増加要求R1を行ったり、オペレータ端末81A,81Bに対して充填可能時間帯の変更要求R2A,R2Bを行ったりする機能を備える。
また、統合水素MMS60は、移動式水素ステーション用運行管理システム30から、水素ステーション台数の更新の通知を受けた場合や、オペレータ端末81A,81Bから、充填可能性時間帯の更新の通知を受けた場合には、通知された情報を用いて水素需要予測の演算の再実行を行う機能を備える。
第6の実施形態によれば、充填待ちの発生をより効果的に抑制することができる。
(第7の実施形態)
次に、第7の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
第7の実施形態は、再予測要求を受けた場合の再予測の具体例を提案するものである。
図15は、第7の実施形態における統合水素MMS60とその周辺との接続関係を示す図である。
第7の実施形態では、統合水素MMS60は、水素EMS70もしくは移動式水素ステーション用運行管理システム30から再予測要求R11(例えば、再計画要求や条件設定)を受けた場合に、水素MMS50A,50Bに対して水素需要予測の演算の再実行の要求R12A,R12Bを行ってその結果を得ると共に、当該統合水素MMS60における水素需要予測の演算の再実行を行う機能を備える。
第7の実施形態によれば、外部の状態変化に対する柔軟性を向上させることができる。
(第8の実施形態)
次に、第8の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
第8の実施形態は、統合水素MMS60がUI66を通じてオペレータ端末81A,81に提供するオペレータの入力画面の具体例を提案するものである。
第8の実施形態では、統合水素MMS60は、事業所A,Bのそれぞれのオペレータがオペレータ端末81A,81Bにより事業所情報(充填可能時間帯など)を入力するための表示画面を提供する。
図16に、充填可能時間帯をオペレータが指定することを可能とする表示画面の例を示す。図16(a)は、各充填可能時間帯の開始時刻と終了時刻をそれぞれ指定する方式の表示画面101を例示するものである。また、図16(b)は、各充填可能時間帯の開始時刻から終了時刻までの範囲をそれぞれ指定する方式の表示画面102を例示するものである。
また、第8の実施形態では、統合水素MMS60は、統合水素MMS60の保守管理会社のオペレータがオペレータ端末81Zにより事業所設定情報(事業所優先度など)を入力するための表示画面を提供する。
図17に、事業所優先度(事業所毎の水素充填の優先度)をオペレータが指定することを可能とする表示画面の例を示す。
図17(a)は、各事業所を優先度の高い順に配置する方式の表示画面103を例示するものである。また、図17(b)は、各事業所に対して優先度を指定する方式の表示画面104を例示するものである。
第8の実施形態によれば、オペレータが情報を入力する際の手間を低減することができると共に、誤入力を防止することができる。
(第9の実施形態)
次に、第9の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
第9の実施形態は、統合水素MMS60が送受する水素需要予測等のデータの具体例を示すものである。
図18に、統合水素MMS60が水素MMS50A,50Bから受信するデータ(水素需要予測及び補足情報)の例を示す。図18の例では、水素需要予測として、時間帯毎の水素需要予測量の積算値を示す情報105が示されている。また、補足情報として、前日の残燃料の量を示す情報106が示されている。なお、通信方式は、統合水素MMS60が水素MMS50A,50Bからデータを直接受信する方式でもよいが、統合水素MMS内のデータベースまたは共有ファイルに対して各装置がアクセスする方式を採用してもよい。
また、図19に、統合水素MMS60が水素EMS70及び移動式水素ステーション用運行管理システム30に送信するデータ(水素需要予測)、および、統合水素MMS60が移動式水素ステーション用運行管理システム30から受信するデータ(輸送情報)の例を示す。図19の例では、水素需要予測として、時間帯毎の水素要求量の瞬時値を示す情報107が示されている。また、輸送情報として、移動元の事業所,移動先の事業所,事業所間の移動時間を含む情報108、および、車両ID,搭載可能水素量を含む情報109が示されている。なお、通信方式としては、統合水素MMS60が水素EMS70や移動式水素ステーション用運行管理システム30と直接送受信する方式でもよいが、統合水素MMS内のデータベースまたは共有ファイルに対して各装置がアクセスする方式を採用してもよい。
なお、図19では、水素ステーションが移動水素ステーションである場合を例示しているが、固定式水素ステーションを採用する場合、移動式水素ステーション用運行管理システム30や輸送情報を送受する処理は不要となる。
第9の実施形態によれば、データを簡潔にすることができると共に、データ通信をより効果的に行うことができる。
(第10の実施形態)
次に、第10の実施形態について説明する。なお、前述した第1の実施形態と共通する部分の説明を省略する。
第10の実施形態は、第1の実施形態における統合水素MMS60の変形例を示すものである。
第1の実施形態では、個々の水素MMS50A,50Bは,統合水素MMS60とは独立した装置であったが、第10の実施形態では、統合水素MMS60は、水素MMS50A,50Bの機能を備えるものとする。
図20は、第10の実施形態における統合水素MMS60の構成を示す図である。
図20に示すように、統合水素MMS60には、水素MMS機能50が備えられる。この水素MMS機能50は、前述の水素MMS50A,50Bの機能に相当する水素需要予測部51を有する。この水素需要予測部51は、事業所A,Bから水素消費量を示す情報を受信して、前述の水素MMS50A,50Bが生成する水素需要予測と同様の水素需要予測を生成して統合水素需要予測部63へ送る。
第10の実施形態によれば、複数の事業所が同時に水素MMSを導入する場合に、導入のコストを削減することができる。
以上詳述したように、少なくとも1つの実施形態によれば、複数の事業所で水素ステーションを共用する形態において水素充填待ちの発生を抑制することができる。
各実施形態に記載した手法は、計算機(コンピュータ)に実行させることができるプログラム(ソフトウエア手段)として、例えば磁気ディスク(フロッピー(登録商標)ディスク、ハードディスク等)、光ディスク(CD‐ROM、DVD、MO等)、半導体メモリ(ROM、RAM、フラッシュメモリ等)等の記録媒体に格納し、また通信媒体により伝送して頒布することもできる。なお、媒体側に格納されるプログラムには、計算機に実行させるソフトウエア手段(実行プログラムのみならずテーブルやデータ構造も含む)を計算機内に構成させる設定プログラムをも含む。本装置を実現する計算機は、記録媒体に記録されたプログラムを読み込み、また場合により設定プログラムによりソフトウエア手段を構築し、このソフトウエア手段によって動作が制御されることにより上述した処理を実行する。なお、本明細書でいう記録媒体は、頒布用に限らず、計算機内部あるいはネットワークを介して接続される機器に設けられた磁気ディスクや半導体メモリ等の記憶媒体を含むものである。
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10…発電設備、11…水素製造装置、12…水素タンク、20…水素ステーション、30…移動式水素ステーション用運行管理システム、41A,41B,42A,42B…FCフォークリフト群、50A,50B…水素MMS(Mobility Management System)、51…水素需要予測部、60…統合水素MMS(Mobility Management System)、70…水素EMS(Energy Management System)。

Claims (13)

  1. 燃料電池車両に水素を充填するための水素ステーションを複数の事業所で共用する水素供給システムに適用される水素管理システムであって、
    各事業所の燃料電池車両の水素需要予測を生成する複数の水素管理手段と、
    前記複数の水素管理手段により生成された各事業所の燃料電池車両の水素需要予測および各事業所の燃料電池車両の水素の充填が可能な充填可能時間帯の情報に基づき、当該充填可能時間帯を複数の単位時間に分け、前記複数の単位時間の中から水素の充填を実施する充填実施時間を事業所間での重複が抑制されるように決定する演算を行い、当該演算により決定した各事業所の燃料電池車両の充填実施時間の情報を含む水素需要予測を生成する統合水素管理手段と
    を具備する水素管理システム。
  2. 前記統合水素管理手段は、
    各事業所の燃料電池車両の充填可能時間帯の中の充填実施時間の候補を所定のアルゴリズムに従って仮決定して所定の記憶領域に設定する情報設定手段と、
    前記情報設定手段によりそれぞれ設定した充填実施時間の候補が所定の評価基準を満たさない場合には前記情報設定手段に別の候補を設定させる処理を繰り返し、前記評価基準を満たす場合に当該候補を充填実施時間として決定する演算処理手段と
    を有する請求項1に記載の水素管理システム。
  3. 前記演算処理手段は、事業所毎の充填実施時間の候補が前記評価基準を満たすか否かの判定を行うに際し、
    燃料電池車両の水素が無くなる時までに予測需要量の水素が充填されずに水素が不足する度合いを示す第1の評価値を算出し、
    事業所間で同時に充填が行われる事象が生じる度合いを示す第2の評価値を算出し、
    算出した前記第1の評価値と前記第2の評価値とを前記評価基準に適用して判定を行う
    請求項2に記載の水素管理システム。
  4. 前記演算処理手段は、候補が前記評価基準を満たすか否かの判定を行うに際し、
    さらに、1つの事業所内で充填が行われる時間間隔が長引く度合いを示す第3の評価値を算出し、
    算出した前記第1の評価値と前記第2の評価値と前記第3の評価値とを前記評価基準に適用して判定を行う
    請求項3に記載の水素管理システム。
  5. 前記演算処理手段は、候補が所定の評価基準を満たすか否かの判定を行うに際し、
    (1)燃料電池車両の水素が無くなる時までに予測需要量の水素が充填されずに水素が不足する事象が生じるか否かを判定し、該事象が生じないと判定した場合に、(2)事業所間で同時に充填が行われる事象が生じるか否かを判定し、該事象が生じないと判定した場合に、(3)1つの事業所内で充填が行われる時間間隔が長引く度合いを示す第3の評価値を算出し、算出した前記第3の評価値を前記評価基準に適用して判定を行う
    請求項2に記載の水素管理システム。
  6. 前記水素ステーションは、水素供給先へ移動する移動式水素ステーションである請求項1乃至5のいずれかに記載の水素管理システム。
  7. 前記統合水素管理手段は、
    水素需要予測として時間帯毎の水素要求量を示す情報を、前記移動式水素ステーションの運行を管理する運行管理システムに通知する
    請求項6に記載の水素管理システム。
  8. 前記統合水素管理手段は、
    充填実施時間を事業所間での重複が抑制されるように決定する演算を行うに際し、前記移動式水素ステーションの移動時間を加味した演算を行う
    請求項6又は7記載の水素管理システム。
  9. 前記統合水素管理手段は、
    充填可能時間帯での充填が不可能な場合、前記移動式水素ステーションの運行を管理する運行管理システムに対し、水素ステーション台数の増加要求を行い、オペレータ端末に対し、充填可能時間帯の変更要求を行い、前記運行管理システムから、水素ステーション台数の更新の通知を受けた場合、もしくはオペレータ端末から、充填可能性時間帯の更新の通知を受けた場合に、通知された情報を用いて前記演算を再実行する
    請求項6乃至8に記載の水素管理システム。
  10. 前記統合水素管理手段は、
    他の装置から再予測要求を受けた場合に、前記複数の水素管理手段に対して水素需要予測の演算の再実行を要求してその結果を得ると共に、当該統合水素管理手段における水素需要予測の演算の再実行を行う機能を備える
    請求項1乃至9のいずれか1項に記載の水素管理システム。
  11. 前記統合水素管理手段は、
    充填可能時間帯および事業所毎の水素充填の優先度の少なくとも一方をオペレータが指定することを可能とする画面を提供する
    請求項1乃至10のいずれか1項に記載の水素管理システム。
  12. 前記統合水素管理手段は、
    各水素管理手段から、水素需要予測として時間帯毎の水素需要予測量の積算値を示す情報を受信し、
    外部の装置へ、水素需要予測として時間帯毎の水素要求量の瞬時値を示す情報を送信する
    請求項1乃至11のいずれか1項に記載の水素管理システム。
  13. 水素を燃料電池車両に充填するための水素ステーションを複数の事業所で共用する水素供給システムに適用される統合水素管理装置であって、
    各事業所の燃料電池車両の水素需要予測を生成する複数の水素管理手段と、
    前記複数の水素管理手段により生成された各事業所の燃料電池車両の水素需要予測および各事業所の燃料電池車両の水素の充填が可能な充填可能時間帯の情報に基づき、当該充填可能時間帯を複数の単位時間に分け、前記複数の単位時間の中から水素の充填を実施する充填実施時間を事業所間での重複が抑制されるように決定する演算を行い、当該演算により決定した各事業所の燃料電池車両の充填実施時間の情報を含む水素需要予測を生成する統合水素管理手段と
    を具備する統合水素管理装置。
JP2018505137A 2016-03-16 2016-03-16 水素管理システムおよび統合水素管理装置 Active JP6462951B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058337 WO2017158762A1 (ja) 2016-03-16 2016-03-16 水素管理システムおよび統合水素管理装置

Publications (2)

Publication Number Publication Date
JPWO2017158762A1 true JPWO2017158762A1 (ja) 2018-08-09
JP6462951B2 JP6462951B2 (ja) 2019-01-30

Family

ID=59850250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018505137A Active JP6462951B2 (ja) 2016-03-16 2016-03-16 水素管理システムおよび統合水素管理装置

Country Status (2)

Country Link
JP (1) JP6462951B2 (ja)
WO (1) WO2017158762A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018006783U1 (de) * 2017-09-25 2022-12-20 Asahi Kasei Kabushiki Kaisha Planungsvorrichtung für die Wasserstoffproduktion und Programm
CN109064656B (zh) * 2018-08-16 2020-09-11 黄竹磬 基于氢燃料电池车储能发电收益的管理系统
WO2020121447A1 (ja) * 2018-12-12 2020-06-18 東芝エネルギーシステムズ株式会社 水素システムの制御装置、および水素システムの制御方法
JP7177854B2 (ja) * 2018-12-12 2022-11-24 東芝エネルギーシステムズ株式会社 水素エネルギー制御システムおよび水素エネルギー制御システムの制御方法
DK180560B1 (en) 2019-01-18 2021-06-23 Nel Hydrogen As Large-scale hydrogen refueling station
CN114667408B (zh) * 2019-11-18 2023-12-15 杰富意钢铁株式会社 供氢系统
DE102020200691A1 (de) * 2020-01-22 2021-07-22 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betanken eines Wasserstofftanks eines Kraftfahrzeuges mit einem Brennstoffzellenantrieb und Kraftfahrzeug
CN112856213B (zh) * 2021-01-19 2022-12-30 湖北和远气体股份有限公司 一种瓶装气工厂pims系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544389A (ja) * 1999-05-12 2002-12-24 スチュアート エナーヂ システムズ コーポレーシヨン エネルギー分配ネットワーク
JP2003130295A (ja) * 2001-10-25 2003-05-08 Honda Motor Co Ltd 水素スタンド充填管理装置、車載端末装置、水素スタンド、水素スタンド充填管理方法、及び車載端末装置用プログラム
JP2005350299A (ja) * 2004-06-10 2005-12-22 Hitachi Ltd 水素燃料製造システム,水素燃料製造方法および水素燃料製造プログラム
JP2006001797A (ja) * 2004-06-17 2006-01-05 Toho Gas Co Ltd 水素製造装置の運転制御装置
JP2009221045A (ja) * 2008-03-14 2009-10-01 Honda Motor Co Ltd 発電及び水素製造システム
JP2013015156A (ja) * 2011-06-30 2013-01-24 Kobe Steel Ltd 水素ステーション
JP2013015933A (ja) * 2011-07-01 2013-01-24 Mitsubishi Electric Corp 車両予約管理装置、車両予約管理システム、車両予約管理装置の車両予約管理方法および車両予約管理プログラム
WO2013099549A1 (ja) * 2011-12-27 2013-07-04 三菱電機株式会社 エネルギーマネジメントシステム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544389A (ja) * 1999-05-12 2002-12-24 スチュアート エナーヂ システムズ コーポレーシヨン エネルギー分配ネットワーク
JP2003130295A (ja) * 2001-10-25 2003-05-08 Honda Motor Co Ltd 水素スタンド充填管理装置、車載端末装置、水素スタンド、水素スタンド充填管理方法、及び車載端末装置用プログラム
JP2005350299A (ja) * 2004-06-10 2005-12-22 Hitachi Ltd 水素燃料製造システム,水素燃料製造方法および水素燃料製造プログラム
JP2006001797A (ja) * 2004-06-17 2006-01-05 Toho Gas Co Ltd 水素製造装置の運転制御装置
JP2009221045A (ja) * 2008-03-14 2009-10-01 Honda Motor Co Ltd 発電及び水素製造システム
JP2013015156A (ja) * 2011-06-30 2013-01-24 Kobe Steel Ltd 水素ステーション
JP2013015933A (ja) * 2011-07-01 2013-01-24 Mitsubishi Electric Corp 車両予約管理装置、車両予約管理システム、車両予約管理装置の車両予約管理方法および車両予約管理プログラム
WO2013099549A1 (ja) * 2011-12-27 2013-07-04 三菱電機株式会社 エネルギーマネジメントシステム

Also Published As

Publication number Publication date
WO2017158762A1 (ja) 2017-09-21
JP6462951B2 (ja) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6462951B2 (ja) 水素管理システムおよび統合水素管理装置
An et al. Battery-swapping facility planning for electric buses with local charging systems
Infante et al. Optimal recourse strategy for battery swapping stations considering electric vehicle uncertainty
James et al. Autonomous vehicle logistic system: Joint routing and charging strategy
Wu et al. Online EV charge scheduling based on time-of-use pricing and peak load minimization: Properties and efficient algorithms
Mak et al. Infrastructure planning for electric vehicles with battery swapping
CN108334991B (zh) 一种电动汽车充电站规划方法及系统
US9620959B2 (en) Enhanced grid reliability through predictive analysis and dynamic action for stable power distribution
James Two-stage request scheduling for autonomous vehicle logistic system
Zhang et al. A bi-level optimization framework for charging station design problem considering heterogeneous charging modes
Li-ying et al. Multiple charging station location-routing problem with time window of electric vehicle.
JP6441542B2 (ja) 水素管理システムおよび水素管理方法
Erol-Kantarci et al. Quality of service in plug-in electric vehicle charging infrastructure
Al-Hanahi et al. An optimal charging solution for commercial electric vehicles
Mirheli et al. Hierarchical optimization of charging infrastructure design and facility utilization
Xiong et al. Modeling and simulation for effectiveness evaluation of dynamic discrete military supply chain networks
Rahmani-Andebili et al. Optimal incentive plans for plug-in electric vehicles
Li et al. Dynamic charging scheduling for electric vehicles considering real-time traffic flow
Murakami Formulation and algorithms for route planning problem of plug-in hybrid electric vehicles
Iacobucci et al. Cascaded model predictive control for shared autonomous electric vehicles systems with V2G capabilities
Shen et al. Integrated optimization of electric vehicles charging location and allocation for valet charging service
AU2014201562B2 (en) Enhanced grid reliability through predictive analysis and dynamic action for stable power distribution
Goncearuc et al. The barriers to widespread adoption of vehicle-to-grid: A comprehensive review
Jindal et al. Sustainable smart energy cyber-physical system: Can electric vehicles suffice its needs?
Javed et al. Fog paradigm for local energy management systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181227

R150 Certificate of patent or registration of utility model

Ref document number: 6462951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150