WO2013088896A1 - 車体構造 - Google Patents

車体構造 Download PDF

Info

Publication number
WO2013088896A1
WO2013088896A1 PCT/JP2012/079472 JP2012079472W WO2013088896A1 WO 2013088896 A1 WO2013088896 A1 WO 2013088896A1 JP 2012079472 W JP2012079472 W JP 2012079472W WO 2013088896 A1 WO2013088896 A1 WO 2013088896A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
floor
floor panel
tunnel
load
Prior art date
Application number
PCT/JP2012/079472
Other languages
English (en)
French (fr)
Inventor
真康 吉田
後東 光繁
健樹 田中
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP12857598.2A priority Critical patent/EP2792526B1/en
Priority to BR112014014528-8A priority patent/BR112014014528B1/pt
Priority to JP2013549173A priority patent/JP5788994B2/ja
Priority to US14/365,190 priority patent/US9090160B2/en
Priority to CN201280061947.2A priority patent/CN103998273B/zh
Publication of WO2013088896A1 publication Critical patent/WO2013088896A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • B60K15/067Mounting of tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • B62D21/152Front or rear frames
    • B62D21/155Sub-frames or underguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • B62D25/2009Floors or bottom sub-units in connection with other superstructure subunits
    • B62D25/2045Floors or bottom sub-units in connection with other superstructure subunits the subunits being fire walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/06Connections between superstructure or understructure sub-units readily releasable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • B60K2015/0632Arrangement of tanks the fuel tank is arranged below the front seat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • B60K2015/0634Arrangement of tanks the fuel tank is arranged below the vehicle floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/01Reducing damages in case of crash, e.g. by improving battery protection

Definitions

  • left and right front side frames are extended in the front-rear direction
  • a dashboard lower that divides the vehicle body in the front-rear direction is disposed
  • a floor panel is extended from the dashboard lower to the vehicle body rear
  • the dashboard lower and the floor panel The present invention relates to a vehicle body structure in which a tunnel portion bulges from the vehicle width center to the vehicle body upper side.
  • left and right front side frames extend in the front-rear direction
  • a dashboard lower that divides the vehicle in the front-rear direction
  • a floor panel extends from the dashboard lower to the rear of the vehicle.
  • a tunnel portion is bulged from the vehicle width direction center to the upper side of the vehicle body, and a fuel tank as an energy container is disposed below the floor panel and the tunnel portion (see, for example, Patent Document 1).
  • the fuel tank can be expanded in the vehicle width direction.
  • the front side frame is extended in the front-rear direction, the side frame extension and the floor extension are branched from the front side frame, the side frame extension is connected to the side sill, and the floor extension is connected to the floor frame.
  • Patent Document 2 Japanese Patent Document 2
  • the vehicle body structure includes a cabin (chamber) between the front axle and the rear axle, and a floor tunnel between the driver seat and the passenger seat.
  • a fuel tank is placed under the floor so that when viewed from above, the fuel tank overlaps the seat surface of the driver's seat and the passenger seat, and part of this fuel tank enters the floor tunnel.
  • the fuel tank is fixed to the subframe, and the subframe is attached to the lower vehicle body side of the vehicle body (see, for example, Patent Document 3).
  • the vehicle body structure is provided with left and right main frames in the front-rear direction of the vehicle body, floor panels on which a floor bending surface and a floor horizontal surface are formed, and a floor fixed to the upper surface of the main frame and the upper surface of the floor horizontal surface.
  • An upper member is provided, a floor lower member fixed to the lower surface of the main frame and the lower surface of the floor horizontal surface is provided, and a battery case as an energy container is disposed below the floor lower member (for example, Patent Documents) 4).
  • the fuel tank is expanded in the vehicle width direction to increase the fuel tank capacity.
  • further increase in the fuel tank capacity is desired in the vehicle body height direction.
  • the fuel tank is fixed to the subframe, and the subframe is attached to the lower vehicle body side of the vehicle body. At this time, the fuel tank is to be attached and detached efficiently.
  • An object of the present invention is to provide a vehicle body structure that can balance the increase in capacity of an energy container (fuel tank) and the lowering of a vehicle body (lower vehicle height) at a high level and promote the weight reduction of the vehicle body. It is in. Furthermore, the subject of this invention is providing the vehicle body structure which can distribute a load efficiently, can transmit a load to a vehicle body back, and can protect a passenger
  • a vehicle body structure which is located at the front of the vehicle body and extends in the front-rear direction of the vehicle body, and is located behind the left and right front side frames.
  • a dashboard lower that divides the vehicle body in the front-rear direction
  • a floor panel that extends in the vehicle width direction of the vehicle body and extends rearward from a lower portion of the dashboard lower, a vehicle width center of the dashboard lower
  • a tunnel part that bulges upward from the floor panel from the lower end to the rear part of the floor panel, and the floor panel is a bulge in which seats of the vehicle body are arranged on the left and right of the tunnel part.
  • a rear tunnel cross member extending in the vehicle width direction at a rear end of the bulging portion, and the vehicle body extends from the rear ends of the left and right front side frames to the dashboard.
  • Left and right floor extensions that are biased toward the tunnel portion along the lower surface of the board lower, and extend so as to be bridged between the left and right floor extensions and the rear tunnel cross member, and from the rear floor panel in the vehicle body vertical direction.
  • a floor frame having a predetermined distance; and an energy container disposed below the bulging portion and supported by the floor frame. The floor frame is detachably fixed to the vehicle body from below the vehicle body.
  • a vehicle body structure is provided.
  • the vehicle body is spanned between the left and right floor extensions, and the vehicle width along the lower surface of the tunnel portion in the vicinity of the joint portion between the dashboard lower and the floor panel.
  • a front tunnel cross member extending in a direction, and the floor panels bulge below the vehicle body at positions corresponding to the feet of passengers riding on the vehicle body before and after the vehicle body, and are disposed on the left and right sides of the tunnel part. It is divided into a front floor panel having a footrest portion and a rear floor panel having the bulge portion, and the front floor panel has higher strength than the rear floor panel.
  • each of the left and right floor extensions has a load transmitting portion formed by forming a concave cross section and the rear ends of the left and right vertical wall portions are closed inwardly
  • the floor frame includes a main body portion having a hat-shaped cross section and a lid portion that closes the main body portion, and a flange is bent downward from a front end of the main body portion to form a load receiving portion. When the is attached, the load transmitting portion and the load receiving portion are positioned so as to face each other.
  • the vehicle body is positioned rearward of the dashboard lower and is positioned outside the vehicle width from the left and right front side frames and extends in the front-rear direction of the vehicle body.
  • Left and right side sills, side sill extensions that are biased toward the side sill along the lower surface of the front floor panel from the rear ends of the left and right front side frames, and the left and right sides above the joint between the front floor panel and the rear floor panel A center tunnel cross member spanned between the side sills, and the front floor panel includes the footrest portion between the floor extension and the side sill extension.
  • the footrest portion has a substantially triangular reinforcing portion that further bulges below the vehicle body between the floor extension and the side sill extension.
  • the vehicle body structure can detachably fix the energy container supported by the floor frame from the lower side of the vehicle body, so that the working efficiency is greatly improved as compared with the conventional tank band fixing. To do. In particular, it is possible to cope with automatic mounting of energy containers by equipment machines.
  • the floor frame extends so as to bridge the left and right floor extensions and the rear tunnel cross member, it is possible to protect the occupant by preventing deformation of the floor panel and to protect the energy container from the collision load. Can do.
  • the collision load input from the left and right front side frames can be transmitted to the floor frame via the left and right floor extensions, the deformation of the floor panel can be prevented and the occupant can be protected.
  • the front floor panel since the front floor panel has high strength and the front tunnel cross member is provided in the vicinity of the joint between the dashboard lower and the floor panel between the left and right floor extensions, it is input to the front side frame.
  • the load is transmitted to the left and right floor extensions and the tunnel portion of the floor panel, a larger load can be received and the load on the floor frame can be reduced.
  • the front floor panel has high strength, so it is possible to transmit the load to the rear of the vehicle without deforming without concentrating the load due to surface dispersion during load input, thus protecting the feet of the passengers. it can. Since the front floor panel has high strength and the front tunnel cross member can carry a large load to the tunnel part, it is usually possible to eliminate the skeletal members that extend in the longitudinal direction of the vehicle body, which are necessary for securing rigidity, and are lightweight. Contribute to the realization.
  • the front floor panel has high strength, and a front tunnel cross member is provided between the left and right floor extensions in the vicinity of the joint between the dashboard lower and the floor panel.
  • a front tunnel cross member is provided between the left and right floor extensions in the vicinity of the joint between the dashboard lower and the floor panel.
  • the front floor panel has high strength and a front tunnel cross member is provided near the joint between the dashboard lower and the floor panel between the left and right floor extensions.
  • a front tunnel cross member is provided near the joint between the dashboard lower and the floor panel between the left and right floor extensions.
  • the load transmitting portion and the load receiving portion are positioned so as to face each other. Therefore, when a collision load is input to the vehicle body from the front, the front tunnel cross member As the load is reduced by the tunnel portion, appropriate load transmission can be realized even with a hollow cross-sectional hat shape.
  • the floor frame supporting the energy container is curved lower than the floor extension fixing position of the floor frame, an appropriate load transmission can be realized, so the vehicle body can be lowered (lower vehicle height) or the energy container Can be increased in capacity.
  • a high-strength footrest (front floor panel) is placed between the floor extension and the side sill extension, and the center tunnel cross member is placed above the joint between the front floor panel and the rear floor panel.
  • the load transmitted to the front floor panel with reduced load by being connected to the side sill is transmitted to the left and right side sills via the center tunnel cross member, and the floor frame receives further reduced load. Therefore, it can contribute to the lowering of the vehicle body (lower vehicle height).
  • the front floor panel can be The load can be transmitted to the rear of the vehicle body without being deformed, and the occupant's feet can be protected.
  • the reinforcement part since the reinforcement part was provided in the footrest part (front floor panel) between a floor extension and a side sill extension, it is connected to the left and right side sills, and the load is reduced in the front floor panel.
  • the floor frame can be made thick enough to receive the load with reduced burden, and the vehicle body can be lowered (low vehicle height). ).
  • the footrest (front floor panel) between the floor extension and the side sill extension is equipped with a reinforcing part, the front floor panel is deformed when a load is input due to the fact that it has a substantially triangular high rigidity body.
  • the load can be transmitted to the rear of the vehicle body without causing the occupant's feet to be protected.
  • FIG. 3 is a perspective view in which a fuel tank and a muffler are removed from a front portion of the vehicle body shown in FIG. 2.
  • FIG. 3 is an enlarged view of region 4 in FIG. 2.
  • FIG. 2 is a bottom view of the front part of the vehicle body shown in FIG. 1.
  • FIG. 6 is a cross-sectional view taken along line 6-6 in FIG.
  • FIG. 2 is an enlarged view around a front floor panel at the front of the vehicle body shown in FIG. 1.
  • FIG. 8 is an enlarged sectional view taken along line 8-8 in FIG.
  • FIG. 3 is a perspective view in which a fuel tank and a muffler are removed from a front portion of the vehicle body shown in FIG. 2.
  • FIG. 3 is an enlarged view of region 4 in FIG. 2.
  • FIG. 2 is a bottom view of the front part of the vehicle body shown in FIG. 1.
  • FIG. 6 is a cross-sectional view taken along line 6-6 in FIG.
  • FIG. 2 is an
  • FIG. 3 is an enlarged perspective view of a state in which a fuel tank and a muffler are removed from the front part of the vehicle body shown in FIG. 2.
  • FIG. 10 is an enlarged cross-sectional view taken along line 10-10 in FIG.
  • FIG. 10 is an enlarged cross-sectional view taken along line 11-11 in FIG.
  • FIG. 10 is an enlarged sectional view taken along line 12-12 of FIG.
  • FIG. 13 is a sectional view taken along line 13-13 in FIG. It is the enlarged view seen from the arrow 14 direction of FIG.
  • FIG. 2 is an enlarged view around the tunnel stiffener in the front part of the vehicle body shown in FIG. 1. It is the perspective view seen from another angle from the lower part of the front part of the vehicle body shown in FIG. FIG.
  • FIG. 17 is an enlarged cross-sectional view taken along line 17-17 in FIG.
  • FIG. 3 is an enlarged perspective view of the vicinity of a fuel tank from the front portion of the vehicle body shown in FIG. 2.
  • FIG. 3 is a perspective view of the front floor cross member and the periphery of the front portion of the vehicle body shown in FIG. 2 as viewed from above.
  • FIG. 3 is a perspective view showing the vicinity of a load transmitting portion and a load receiving portion at the front portion of the vehicle body shown in FIG. 2.
  • FIG. 21 is an enlarged sectional view taken along line 21-21 in FIG.
  • FIG. 3 is a perspective view showing the vicinity of a rear floor cross member at the front portion of the vehicle body shown in FIG. 2.
  • FIG. 3 is a perspective view of a floor frame at a front portion of the vehicle body shown in FIG. 2.
  • FIG. 3 is a perspective view showing a recess of a rear tunnel cross member at a front portion of the vehicle body shown in FIG. 2.
  • FIG. 20 is an enlarged sectional view taken along line 25-25 in FIG.
  • FIG. 20 is an enlarged sectional view taken along line 26-26 in FIG.
  • FIG. 3 is a cross-sectional view showing the vicinity of a fuel tank shown in FIG. 2.
  • FIG. 3 is a perspective view of the fuel tank shown in FIG. 2. It is a perspective view which shows the side sill of the front part of the vehicle body shown by FIG.
  • FIG. 30 is a cross-sectional view taken along line 30-30 of FIG. 29.
  • FIG. 3 is a top view illustrating load transmission of a front floor panel at a front portion of the vehicle body illustrated in FIG. 2.
  • FIG. 3 is a diagram illustrating load transmission in a tunnel portion at a front portion of the vehicle body illustrated in FIG. 2.
  • FIG. 3 is a perspective view illustrating a left side of a front floor panel at a front portion of the vehicle body illustrated in FIG. 2.
  • FIG. 3 is a perspective view showing a right side of a front floor panel at a front portion of the vehicle body shown in FIG. 2.
  • the vehicle 10 is a passenger car. As shown in FIGS. 1 to 3, a front engine room 13 and a vehicle compartment 12 positioned immediately behind the engine room 13 are formed inside the vehicle body 11. In the vehicle 10, a fuel tank 18 is mounted on the front half of the vehicle body 11, and a muffler 19 is disposed on the side of the fuel tank 18.
  • the fuel tank 18 is an example of an energy container that stores energy, and is hereinafter referred to as “energy container 18” as appropriate.
  • the vehicle body 11 is formed of a monocoque body, and is formed substantially symmetrically with respect to the vehicle body center that extends in the vehicle longitudinal direction through the center of the vehicle 10 in the vehicle width direction.
  • the front half of the vehicle body 11 includes a dashboard lower 21, left and right front side frames 22, 22, left and right side sills 23, 23, a floor panel 24, a tunnel portion 25, and left and right side frame extensions 26, 26.
  • Left and right floor extensions 27, 27, left and right side sill extensions 28, 28, left and right floor frames 31, 32, a front floor cross member 33, a center tunnel cross member 34, a rear floor cross member 35, and a front tunnel A cross member 57 and a rear tunnel cross member 58 are included. That is, the vehicle body structure is the structure of the front half of the vehicle body 11.
  • the floor panel 24 is divided into a front floor panel 45 and a rear floor panel 46. Since the front floor panel 45 is stronger than the rear floor panel 46, the burden on the tunnel frames 61, 61 can be reduced and the vertical width can be set thin, which affects the capacity of the fuel tank 18. The capacity can be increased with less.
  • the floor extensions 27, 27 extend from the rear ends 22 a, 22 a of the left and right front side frames 22, 22 along the lower surface 21 a of the dashboard lower 21.
  • the floor frames 31 and 32 are bridged over a rear tunnel cross member 58 behind the bulging portions 51 and 52 where the seats 47 and 48 of the vehicle body 11 are arranged on the floor panel 24.
  • the floor extensions 27 and 27 and the floor frames 31 and 32 support a fuel tank (energy container) 18 and detachably fix the fuel tank 18 from below the vehicle body.
  • the dashboard lower 21 is positioned behind the left and right front side frames 22 and 22 and divides the vehicle body 11 forward and backward. That is, it is a partition wall that partitions between the front engine room 13 and the rear vehicle compartment 12, and is formed in a substantially L shape in a side view.
  • the dashboard lower 21 is an integrated product comprising a vertical surface 37 that partitions the engine room 13 and the vehicle compartment 12 and a dashboard lower inclined surface 38 that extends rearward and downward from the lower end of the vertical surface 37. is there.
  • the dashboard lower 21 is bridged between the left and right front side frames 22 and 22 at a position corresponding to the front end 41a of the tunnel stiffener 41 and the tunnel stiffener 41 disposed so as to cover the front portion 25a of the tunnel portion 25. And a dashboard cross member 59 (see FIG. 14).
  • the left and right front side frames 22, 22 are located in the front part of the vehicle body 11 and extend in the front-rear direction of the vehicle body 11.
  • the floor panel 24 extends in the vehicle width direction of the vehicle body 11 and extends rearward from the lower portion of the dashboard lower 21.
  • the floor panel 24 has front and rear foot portions 43 and 44 that are swelled below the vehicle body 11 at positions corresponding to the feet of passengers riding on the vehicle body 11 before and after the vehicle body 11 and arranged on the left and right sides of the tunnel portion 25. It is divided into a floor panel 45 and a rear floor panel 46 disposed so as to extend in the vehicle width direction behind the front floor panel 45 (see FIG. 7).
  • the front floor panel 45 is stronger than the rear floor panel 46.
  • the rear floor panel 46 is set to be higher than the front floor panel 45 by a height S1 (see FIG. 8). This is because the space between the lower surface of the seats 47 and 48 and the rear floor panel 46 is narrowed, and the lower area of the rear floor panel 46 is used effectively. Specifically, the fuel tank 18 is disposed below the rear floor panel 46.
  • the floor panel 24 is a split floor panel including a front floor panel 45 and a rear floor panel 46. That is, in order to change the plate thickness, floor panels 45 and 46 are disposed and joined as separate members on the front and rear.
  • the floor panel 24 has bulging portions 51 and 52 for disposing the seats 47 and 48 of the vehicle body 11 on the left and right of the tunnel portion 25, and extends in the vehicle width direction at the rear ends 51a and 52a of the bulging portions 51 and 52.
  • the rear tunnel cross member 58 is provided (see FIGS. 2, 3, and 9). That is, the rear floor panel 46 has the bulging portions 51 and 52.
  • the tunnel portion 25 bulges upward from the floor panel 24 from the center and lower end of the dashboard lower 21 to the rear portion of the floor panel 24 (FIG. 1).
  • the left and right floor extensions 27, 27 are biased from the rear ends 22a, 22a of the left and right front side frames 22, 22 to the tunnel portion 25 side along the lower surface 21a of the dashboard lower 21 via the side frame extensions 26, 26. (FIGS. 2, 3, and 16).
  • the floor extension 27 includes a front floor extension 54 on the front side and a rear floor extension 55 on the rear side (FIG. 3). As shown in FIGS. 11, 20, and 21, the floor extension 27 has a concave shape in cross section, and the rear ends 86b and 86b of the left and right vertical wall portions 86 and 86 of the rear floor extension 55 are closed inwardly.
  • a transmission portion 83 is formed (specifically, the rear flange 87a is also included in the load transmission portion 83).
  • the front tunnel cross member 57 is spanned between the left and right floor extensions 27, 27, and is a tunnel near the joint 102 between the dashboard lower 21 and the floor panel 24. It extends in the vehicle width direction along the lower surface 25b of the portion 25. Specifically, the front tunnel cross member 57 extends in the vehicle width direction and is fixed by welding in the vicinity of the tunnel portion 25 of the joint portion 102 between the dashboard lower 21 and the front floor panel 45.
  • the front tunnel cross member 57 is disposed in the high-strength tunnel portion 25 of the floor panel 24, the front floor panel 45 and the tunnel portion 25 can be supported and reinforced, and from the tunnel portion 25 to the rear of the vehicle body. A load can be transmitted.
  • the front tunnel cross member 57 is formed in a convex shape upward along the tunnel portion 25. Since the front tunnel cross member 57 is welded along the dashboard lower 21 and the tunnel portion 25 of the front floor panel 45, the load from the dashboard cross member 59 at the front of the vehicle body can be received and transmitted to the tunnel portion 25. it can.
  • the front tunnel cross member 57 has both ends 57a and 57a welded to the floor extensions 27 and 27 extended in a fan shape. As a result, a large load can be transmitted, and strength that does not deform with respect to the load from the front is ensured.
  • the front tunnel cross member 57 is disposed at the front of the vehicle body as compared with the conventional structure, the load input to the front side frames 22, 22 is applied to the left and right floor frames 31, 32 (FIG. 2) and the floor panel.
  • the load input to the front side frames 22, 22 is applied to the left and right floor frames 31, 32 (FIG. 2) and the floor panel.
  • the front tunnel cross member 57 detachably fixes the floor frames 31, 32 from below, it contributes to securing the space of the front fixing portions 91a, 92a (FIG. 5) of the floor frames 31, 32. (See FIG. 18).
  • the floor panel since the floor panel has low strength in the conventional structure (see pamphlet of International Publication No. 2011/055695, etc.), it is reinforced by extending the front floor extension to the full footrest and placing the front tunnel cross member 57 at the rear. There was a need to do.
  • the front floor panel 45 has footrest portions 43 and 44 between the floor extensions 27 and 27 and the side sill extensions 28 and 28 (FIGS. 2 and 3).
  • the footrest portions 43 and 44 are substantially triangular reinforcing portions 43 a that bulge further below the vehicle body 11 between the floor extensions 27 and 27 and the side sill extensions 28 and 28. 44a (see also FIGS. 35 and 36). Since the left and right footrest portions 43, 44 (between the side sill extensions 28, 28 and the floor extensions 27, 27) are bulged substantially in a triangular shape, the reinforcement portions 43a, 44a are further bulged, thereby further protecting the feet of the passengers. In addition, the load can be transmitted to the rear of the vehicle body without being deformed without concentrating the load due to surface dispersion.
  • the left and right footrest portions 43, 44 are provided with a step H1 (FIG. 6) on the left and right sides by bulging one of the footrest portions 43, 44 upward.
  • the front fixing portions 91a and 92a of the floor frames 31 and 32 are displaced up and down, and the pipes 93a and 93b of the muffler 19 (FIG. 2) can be passed.
  • the level difference H1 is set so that there is no difference in the vertical axis (no moment is generated) so that the load is smoothly transmitted to the floor frames 31, 32. Since the height of the front floor panel 45 in the vertical direction of the vehicle body is changed, the pipes 93a and 93b of the muffler 19 can be realized without thinning the rear floor extension 55 and the floor frames 31 and 32.
  • the front floor panel 45 is provided with footrests 43 and 44 for passengers on the left and right.
  • the front floor panel 45 was a high-strength steel plate having a thickness of 1.2 t. Normally, the plate thickness is twice as large as 0.6t, so when the load is input, the load can be transmitted to the rear of the vehicle without deformation due to surface dispersion, and the feet of the occupant are protected. can do.
  • the fuel tank 18 disposed behind this can be protected.
  • the surface distribution of the load contributes to the weight reduction of the vehicle body 11 and the extension of the fuel tank 18 to the outside of the vehicle width (higher capacity / thinning).
  • the floor frames 31 and 32 exist below the fuel tank 18, but a large load is allowed to flow through the tunnel portion 25 (FIG. 2).
  • the plate thickness can be set to 1.0 t when it is usually 1.6 t, which contributes to reducing the burden on the floor frames 31 and 32 and reducing the weight.
  • the floor panel has low strength, so it is necessary to reinforce by extending the front floor extension to the full footrest and arranging the front tunnel member at the rear. there were.
  • a high-strength steel plate exists between the branch portions (branch portions) 49 between the side sill extension 28 and the floor extension 27. That is, since there is a high-strength steel plate extending between the front side frame 22 and the portion branched between the side sill 23 and the floor frame 31 (32) (between the side sill extension 28 and the front floor extension 54), A rigid body (including the surrounding portions of the reinforcing portions 43a and 44a) is formed, and a load can be transmitted from the center tunnel cross member 34 (FIG. 1) to the side sills 23 and 23 via the high-strength steel plate.
  • the rear floor panel 46 is formed with bulging portions 51 and 52 for disposing the seats 47 and 48 of the vehicle body 11 on the left and right of the tunnel portion 25, and the left and right tunnel frames 61 extending in the vehicle body longitudinal direction in the bulging portions 51 and 52. 61 (see FIG. 9) is provided, and the energy container 18 is disposed below the vehicle body 11 of the bulging portions 51 and 52 (see FIGS. 1 and 2).
  • the rear floor panel 46 is provided with seat support portions 62 and 62 that support the seats 47 and 48 of the vehicle body 11.
  • the energy container 18 includes concave portions 64 and 64 that are formed on the lower surface 18a and on which the floor frames 31 and 32 are hooked, a protruding portion 65 that is formed at the center in the vehicle width direction and bulges upward. And an inclined surface 66 that inclines so that the protruding portion 65 side faces upward at a position corresponding to the tunnel frames 61 and 61 outside the vehicle width of the protruding portion 65. Furthermore, the energy container 18 includes a fuel pump 108 that sends fuel to the inside, and is fixed to the floor frames 31 and 32 by tank bands 107 and 107. The energy container 18 is disposed below the vehicle body 11 in the bulging portions 51 and 52 (FIGS. 1 and 2) and supported by the floor frames 31 and 32.
  • the tunnel frame 61 includes an outer flange 67 along the rear floor panel 46, an outer vertical wall portion 68 depending downward from the outer flange 67, and an outer vertical wall portion 68 to the rear floor panel 46.
  • An inclined portion 69 that inclines toward the inner surface, a horizontal portion 71 extending inwardly of the vehicle width along the rear floor panel 46 from the inclined portion 69, and an inner vertical wall extending from the horizontal portion 71 along the inner wall 25c of the tunnel portion 25. Part 72.
  • the tunnel frame 61 has an inclined portion 69 that is inclined substantially parallel to the inclined surface 66 of the energy container 18. Further, as shown in FIGS. 15 to 17, the tunnel frame 61 is disposed on a substantially extended line L1 between the dashboard cross member 59 and the tunnel stiffener 41 when viewed from the vehicle width direction.
  • the upper end (inner vertical wall portion 72) of the tunnel frame 61 is joined to the inside of the tunnel portion 25 (the inner wall 25c of the tunnel portion 25). That is, the tunnel frame 61 reinforces the tunnel portion 25 and transmits the load from the front to the rear, thereby preventing the rear floor panel 46 from being deformed and protecting the passenger (FIG. 10).
  • a closed section 73 is formed together with the upper convex groove 46a formed in the rear floor panel 46, and the rear floor panel 46 is reinforced. Thereby, the load from the front can be transmitted to the rear, and the deformation of the rear floor panel 46 can be prevented. Further, there is an effect of preventing the rear floor panel 46 from being bent due to the occupant weight.
  • the rear ends 61b and 61b of the tunnel frames 61 and 61 are joined to the rear ends 51a and 52a of the bulging portions 51 and 52, respectively. That is, the tunnel portion 25 is reinforced, and the load from the front is transmitted to the rear rear tunnel cross member 58, thereby preventing the rear floor panel 46 from being deformed.
  • the tunnel frame 61 is formed in a concave shape extending in the longitudinal direction of the vehicle body by an outer vertical wall portion 68, an inclined portion 69, a horizontal portion 71, and an inner vertical wall portion 72. That is, the rear floor panel 46 is reinforced and the load from the front is transmitted to the rear rear tunnel cross member 58 (FIG. 3) to prevent the rear floor panel 46 from being deformed and to ensure an appropriate strength for the load in the front-rear direction. ing.
  • the material of the tunnel frame 61 is a high-tension steel plate (equivalent to JSC590R) having a thickness of 0.6 t.
  • the tunnel frame 61 receives the load from the front floor extension 54 via the front floor panel 45. As shown in FIG.
  • the tunnel frame 61 does not directly transmit the load transmitted from the front side frame to the tunnel frame as in the conventional structure (see, for example, International Publication No. 2011/055695 pamphlet).
  • the load transmitted through the side frame extension 26 as indicated by the arrow A1 is transmitted to the rear floor panel 46 through the front floor panel 45 and the center tunnel cross member 34 (see also FIG. 1). Is done.
  • the entire high-strength front floor panel 45 is pushed rearward as indicated by arrows A2 and A3, and deformation of the rear floor panel 46 can be prevented. Furthermore, with the above configuration, the load on the tunnel frame 61 (FIG. 10) itself is reduced, so that the vertical width of the vehicle body of the tunnel frame 61 can be reduced.
  • the load is reduced by increasing the strength of the front floor panel 45 and reducing the load transmission from the front floor extension 54 to the tunnel frame 61.
  • the tunnel frame F1 having the conventional structure.
  • the tilted full line M1 of the conventional structure indicated by the two-dot chain line can be shifted to the tilted full line M2 indicated by the solid line as indicated by the arrow B1.
  • the announced fuel supply amount fuel amount
  • the published value within the tank capacity can be increased without increasing the fuel tank 18 itself.
  • the tunnel frame 61 is disposed on the substantially extended line L ⁇ b> 1 of the ridge lines 42 and 42 of the tunnel stiffener 41 from the dashboard cross member 59 when viewed from the vehicle width direction. Is reduced. That is, as shown in FIG. 3, the load input to the dashboard cross member 59 from the front side frames 22 and 22 and the load input to the dashboard cross member 59 when the engine (not shown) retreats are applied to the floor panel.
  • the tunnel portion 25 can take on a larger load, and the load on the floor panel 24 and the tunnel frame 61 can be reduced.
  • the dashboard cross member 59 includes a cup-shaped joint cover 75 having an opening 75 a into which the steering shaft 77 is inserted, and a sub extending from the joint cover 75 to the opposite side (vehicle width center side). And a cross member 76.
  • the collision load can be distributed to the left and right, and even if there is an opening 75 a for inserting the steering shaft 77, an appropriate collision can be achieved. Realization of load absorption can be achieved.
  • the front end (upper end) 41a of the tunnel stiffener 41 is joined to the vehicle compartment 12 side continuously to the joining position of the dashboard cross member 59. Thereby, at the time of a frontal collision, it is possible to transmit the load input by the retraction of the front side frames 22 and 22 and the engine (not shown) to the high-strength tunnel portion 25, and the deformation of the floor panel 24 (FIG. 3). Can be prevented. As a result, the load applied to the tunnel portion 25 leads to the reduction of the load on the floor panel 24 and the tunnel frame 61.
  • the front floor cross member 33 is attached so as to cover the front portion of the fuel tank 18 with an L-shaped member laid between the floor frames 31 and 32. There is also a function of transmitting a load input to one of the floor frames 31 and 32 to the other.
  • the front floor cross member 33, the rear floor cross member 35, and the left and right floor frames 31, 32 form a high-strength rectangular shape (rectangular shape portion 78). This protects the occupant and the fuel tank 18 by preventing the rear floor panel 46 from being deformed. High rigidity due to the rectangular shape.
  • the rectangular portion 78 is fixed to the floor extensions 27 and 27 and the rear tunnel cross member 58 so as to be detachably attached from below (FIG. 18).
  • the front fixing portions 91a and 92a of the left and right floor frames 31 and 32 are fixed at two points (left and right positions) with bolts 79 and 79 from below.
  • the rear fixing portions 91b and 92b of the left and right floor frames 31 and 32 are fixed at two points from the bottom (front and rear positions) and one point from the rear to the front.
  • high-tensile steel plates high-strength steel plates, equivalent to JSC590R
  • the plate thickness of the left and right floor frames 31, 32 is 1.0t
  • the plate thickness of the front floor cross member 33 is 1.2t
  • the plate thickness of the rear floor cross member 35 is 3.2t.
  • the floor frames 31 and 32 extend so as to be bridged between the floor extension 27 (FIG. 3) and the rear tunnel cross member 58, and are separated from the rear floor panel 46 (FIG. 3) by a predetermined distance (FIG. 13).
  • Floor frames 31 and 32 are detachably fixed from below the vehicle body.
  • the front end of the left floor frame 31 is formed shorter than the front end of the right floor frame 32. Other portions are formed identically.
  • the left floor frame 31 will be described, and the description of the right floor frame 32 will be omitted.
  • the floor frame 31 (32) includes a main body 81 (FIG. 23) having a hat-like cross-sectional view and a lid 82 that closes the main body 81.
  • the main body 81 has a load receiving portion 84 formed by bending a flange (vertical flange) 88 a downward from a front end 81 a of the main body 81 and extending it forward.
  • the load receiving portion 84 is positioned so as to face the load transmitting portion 83 when the floor frame 31 (32) is fixed to the vehicle body 11.
  • a load transmitting portion 83 and a load receiving portion 84 as a contact surface are formed on the rear floor extension 55 and the floor frame 31, respectively, in order to transmit a rectangular (cross-beam shaped portion 78) (FIG. 2) high-strength steel plate load.
  • the horizontal flanges 86a, 86a are extended from the vertical wall portions 86, 86 and bent inward, and the rear flange 87a is extended from the lower wall (bottom wall) 87 and bent upward to transmit the load.
  • a portion 83 is formed behind the rear floor extension 55.
  • the upper surface 88 of the floor frame 31 that forms a closed section 74 that protrudes upward is bent downward to form a vertical flange 88a, and further bent forward to form a horizontal flange 88b.
  • a load receiving portion 84 is formed by the flange 88a and the horizontal flange 88b.
  • the front fixing portions 91a and 92a of the floor frames 31 and 32 are offset by a dimension D1 in the vehicle longitudinal direction on the left and right.
  • the step H1 is provided on the front floor panel 45 shown in FIG. 6 and the pipes 93a and 93b of the muffler 19 (FIG. 2) are arranged, it is possible to fix the plurality of bolts 79 from the lower side. It can cope with automatic loading of the tank 18.
  • the rear floor cross member 35 is formed in a concave shape in cross section (U-shape in cross section). As shown in FIGS. 2 and 3, the rear floor cross member 35 is a high-strength member that transmits a load from the floor frames 31 and 32 and flows it to the side sills 23 and 23, and is a rear tunnel cross member 58 having a concave shape in cross section. Since the rear floor cross member 35 is covered, the fuel pipes 94 and 95 (FIG. 28) passing through the inside of the rear tunnel cross member 58 and the center tunnel cross member 34 can be protected without being deformed when a load is input.
  • the floor frame 31 has a rear end flange 89 formed at the rear end so as to open rearward and outward, and is bonded and fixed to the front wall 35 a of the rear floor cross member 35.
  • the rear end of the floor frame 31 (rear end flange 89) is joined to the rear floor cross member 35 with the flanges opened outward and upward, so that the load from the floor frame 31 is transferred to the rear tunnel via the rear floor cross member 35. It can be transmitted to the cross member 58 (FIG. 3).
  • the ridgelines 97a and 97a of the recess 97 of the rear tunnel cross member 58 are made to coincide with the position corresponding to the floor frame rear end joining portion (rear end flange 89). That is, since the ridgelines 97a and 97a of the recess 97 are transmitted during load transmission, the load is more easily transmitted. Furthermore, there is also an effect of supporting the retreat of the entire rectangle (rectangular portion 78) due to the load.
  • the floor frame 31 is formed in a thin closed cross-section 74 by a main body portion 81 having a hat-shaped cross section and a lid portion 82 that covers the main body portion 81, and the rear end of the main body portion 81. Since the abutment surface (rear end flange 89) is formed on, the load can be transmitted appropriately even if it is bent downward.
  • the strength of the front floor panel 45 is increased and the load transmission is transmitted more to the side sills 23, 23 and the tunnel portion 25. Since the load transmission of the floor frame 31 can be reduced and the load is reduced, the floor frame 31 can be thinned. As a result, a low vehicle height vehicle in which the hip points 47a and 48a of the seats 47 and 48 are lowered can be realized.
  • the floor frame from the front floor extension 54 is obtained by increasing the strength of the front floor panel 45 and transmitting more load to the side sills 23, 23 and the tunnel portion 25.
  • the load transmission of 31 can be reduced, and the load received by the floor frame 31 can be reduced.
  • the floor frame 31 can be made thin, and the recess 64 of the fuel tank 18 can be formed shallower than the recess G1 of the conventional structure.
  • the fuel suckable line N2 of the present application can be lowered from the fuel suckable line N1 of the conventional structure to the lower side of the fuel tank 18 as indicated by an arrow J1.
  • the announced fuel supply amount (fuel amount) can be increased.
  • the left and right side sills 23, 23 are located behind the dashboard lower 21 and outside the vehicle width from the left and right front side frames 22, 22. 11 extends in the front-rear direction.
  • the side sill extensions 28 and 28 are biased from the rear ends 22a and 22a of the left and right front side frames 22 and 22 toward the side sills 23 and 23 along the lower surface 45a of the front floor panel 45.
  • an inclined surface 28a (FIGS. 29 and 30) is provided on the outer side surface of the side sill extension 28, and reinforcement is performed along the inclined surface 28a.
  • the bead 28b is formed.
  • the vertical position of the vehicle body on the side sill 212 of the floor panel (footrest portion) 213 is high. was possible.
  • the vertical position of the vehicle body on the side sill 23 of the floor panel 24 is low, but it is joined to the lower flange 23a of the side sill 23.
  • an inclined surface 28a is provided, and a bead 28b extending outwardly along the inclined surface 28a from the viewpoint of reinforcement and load transmission efficiency is provided to improve the strength, thereby realizing a low floor and appropriate load transmission. it can.
  • the center tunnel cross member 34 is bridged between the left and right side sills 23 and 23 above the joint portion 101 between the front floor panel 45 and the rear floor panel 46.
  • the center tunnel cross member 34 is an L-shaped member having a vertical wall 104 and a horizontal wall 105 in a side view.
  • the center tunnel cross member 34 extends in the vehicle width direction above the joint portion 101 between the front floor panel 45 and the rear floor panel 46.
  • the center tunnel cross member 34 bulges upward from the footrest portions 43 and 44 of the floor panel 24 to the hip points 47a and 48a of the seats 47 and 48, and covers the front ends of the bulge portions 51 and 52 from the front. Therefore, it has the effect of suppressing the bending moment applied to the rear by the load from the front floor panel 45.
  • the center tunnel cross member 34 reduces the load applied to the floor panel 24 by transmitting the collision load flowing from the dashboard cross member 59 to the tunnel portion 25 to the side sills 23 and 23.
  • the center tunnel cross member 34 prevents the side sills 23 and 23 from being broken at the time of a side collision or an offset collision.
  • the center tunnel cross member 34 reinforces the tunnel portion 25 as shown in FIG.
  • a load acts from the front floor panel 45 to the rear of the vehicle body as indicated by an arrow A1
  • it flows from the vertical wall 104 of the center tunnel cross member 34 to the horizontal wall 105 as indicated by an arrow A2 and flows to the rear floor panel 46 as indicated by an arrow A3.
  • no load acts on the fuel tank 18 disposed under the rear floor panel 46.
  • an appropriate load absorption mode is established by a combination of a member that absorbs a load with low strength and a member that transmits a load without being deformed with high strength.
  • a collision load acting from the front as indicated by an arrow a1 and a collision load from the front via the dashboard cross member 59 as indicated by arrows a2 and a3 are: It flows through the dashboard lower 21 as indicated by the arrow a4 and is transmitted to the high-strength side sills 23 and 23 via the side sill extensions 28 and 28 as indicated by the arrows b1 and b2.
  • the load indicated by the arrows b1 and b2 is the largest load.
  • the load that flows through the dashboard lower 21 as indicated by the arrow a4 between the front side frame 22, the front tunnel cross member 57, the tunnel portion 25 of the floor panel 24, and the rear tunnel cross member 58 is the front tunnel cross as indicated by the arrows a5 and a6. While flowing to the member 57, the load from the front floor extension 54 is transmitted to the tunnel frames 61 and 61 as indicated by arrows a7 and a8 via the front floor panel 45, and the arrow a9 is transmitted from the tunnel frames 61 and 61 to the rear tunnel cross member 58. , A10. This is also responsible for large loads.
  • the collision load from the front is transmitted from the front floor extension 54 to the floor frames 31 and 32 as indicated by arrows c7 and c8.
  • 23 and the tunnel portion 25 are responsible for a large proportion, reducing the burden, protecting the passenger without deforming the floor panel 24 and protecting the fuel tank 18 disposed below the rear floor panel 46.
  • Loads from the floor frames 31 and 32 flow to the rear tunnel cross member 58 through the rear floor cross member 35 as indicated by arrows c9 and c10.
  • the collision load from the front is applied to the footrests 43 and 44 of the front floor panel 45 from the front floor extension 54.
  • the surface-dispersed load is transmitted to the side sills 23 and 23 and the tunnel frames 61 and 61 via the center tunnel cross member 34 as indicated by arrows c5 and c6.
  • the burden is reduced, and the load is distributed by the high-strength front floor panel 45, so that the tunnel frames 61 and 61 and the floor frames 31 and 32 are thinned. be able to.
  • the collision load from the front is As shown by arrows d1 and d2, they are transmitted from the dashboard cross member 59 to the high-strength tunnel portion 25 and the rear tunnel cross member 58 as shown by arrows d3 and d4 through the tunnel stiffener 41 provided inside the vehicle. This is also responsible for large loads.
  • the vehicle body structure includes left and right front side frames 22, 22 that are located in the front portion of the vehicle body 11 and extend in the front-rear direction of the vehicle body 11, and left and right front side frames 22, 22.
  • a dashboard lower 21 that divides the vehicle body 11 forward and backward, a floor panel 24 that extends in the vehicle width direction of the vehicle body 11 and extends rearward from the lower portion of the dashboard lower 21, and a dashboard lower 21 and a tunnel portion 25 that bulges upward from the floor panel 24 from the vehicle width center and from the lower end to the rear portion of the floor panel 24.
  • the floor panel 24 has bulging portions 51 and 52 for disposing the seats 47 and 48 of the vehicle body 11 on the left and right of the tunnel portion 25, and extends in the vehicle width direction at the rear ends 51a and 52a of the bulging portions 51 and 52.
  • the rear tunnel cross member 58 is provided.
  • the vehicle body 11 includes left and right floor extensions 27, 27 that are biased from the rear ends 22 a, 22 a of the left and right front side frames 22, 22 along the lower surface 21 a of the dashboard lower 21 toward the tunnel portion 25, and floor extensions 27, 27.
  • floor tunnels 31 and 32 extending over the rear tunnel cross member 58 and having a predetermined distance from the rear floor panel 46 in the vertical direction of the vehicle body, and the bulging portions 51 and 52 are arranged below the vehicle body 11.
  • an energy container 18 supported by the floor frames 31 and 32.
  • Floor frames 31 and 32 are detachably fixed from below the vehicle body.
  • the energy container 18 supported by the floor frames 31 and 32 can be detachably fixed from the lower side of the vehicle body, the working efficiency is greatly improved as compared with the fixing by the conventional tank band. In particular, it is possible to cope with automatic attachment of the energy container 18 by the equipment machine.
  • the floor frames 31, 32 extend so as to bridge the left and right floor extensions 27, 27 and the rear tunnel cross member 58, the floor panel 24 can be prevented from being deformed to protect the occupant and the energy container 18 can be protected. Can be protected from impact loads. Further, since the collision load input from the left and right front side frames 22 and 22 can be transmitted to the floor frames 31 and 32 via the left and right floor extensions 27 and 27, the deformation of the floor panel 24 is prevented and the occupant is prevented. Can be protected.
  • the vehicle body 11 is stretched over the left and right floor extensions 27, 27, and the lower surface of the tunnel portion 25 in the vicinity of the joint portion 102 between the dashboard lower 21 and the floor panel 24.
  • a front tunnel cross member 57 extending in the vehicle width direction along 25b is provided.
  • the floor panel 24 has front and rear foot portions 43 and 44 that are swelled below the vehicle body 11 at positions corresponding to the feet of passengers riding on the vehicle body 11 before and after the vehicle body 11 and arranged on the left and right sides of the tunnel portion 25. It is divided into a floor panel 45 and a rear floor panel 46 having bulging portions 51 and 52.
  • the front floor panel 45 is stronger than the rear floor panel 46.
  • the front floor panel 45 has high strength and the front tunnel cross member 57 is provided between the left and right floor extensions 27, 27 in the vicinity of the joint 102 between the dashboard lower 21 and the floor panel 24, the front side frame 22,
  • the load input to 22 is transmitted to the left and right floor extensions 27, 27 and the tunnel portion 25 of the floor panel 24, a larger load can be received, and the burden on the floor frames 31, 32 can be reduced. .
  • the front floor panel 45 Since the front floor panel 45 has high strength, when the load is input, the load can be transmitted to the rear of the vehicle body without being concentrated without being concentrated due to surface dispersion, and the feet of the occupant can be protected. .
  • the front floor panel 45 has a high strength and the front tunnel cross member 57 can receive a large load from the tunnel portion 25, it is possible to eliminate the skeleton member that normally extends in the longitudinal direction of the vehicle body to ensure rigidity. Also contributes to weight reduction.
  • the front floor panel 45 Since the front floor panel 45 has high strength and the front tunnel cross member 57 is provided between the left and right floor extensions 27, 27 in the vicinity of the joint 102 between the dashboard lower 21 and the floor panel 24, the front side frames 22, 22 When the input load is transmitted to the left and right floor extensions 27, 27 and the tunnel portion 25 of the floor panel 24, a larger load can be received and the burden on the floor frames 31, 32 is reduced.
  • the thickness can be made sufficient to handle the load transmitted to the reduced front floor panel 45, which contributes to lowering the floor of the vehicle body 11 (lowering the vehicle height).
  • the front floor panel 45 Since the front floor panel 45 has high strength and the front tunnel cross member 57 is provided between the left and right floor extensions 27, 27 in the vicinity of the joint 102 between the dashboard lower 21 and the floor panel 24, the front side frames 22, 22 When the input load is transmitted to the left and right floor extensions 27, 27 and the tunnel portion 25 of the floor panel 24, a larger load can be received. Therefore, since the load on the floor frames 31 and 32 is reduced, the thickness can be made sufficient to handle the load transmitted to the front floor panel 45 in which the load is reduced, and the energy containers 18 of the floor frames 31 and 32 can be obtained. (The height of the recess 64 on the lower surface 18 of the energy container 18) is small, and the fuel pump 108 (see FIG. 26) in the center of the vehicle width cannot suck the fuel outside the recess 64. Since the substantial capacity does not decrease, the announced fuel supply amount (fuel amount) can be increased.
  • the floor extension 27 is formed in a concave cross section, and the rear ends 86b, 86b of the left and right vertical wall portions 86, 86 are closed inward, and the load transmission portion 83 is formed.
  • the floor frames 31 and 32 include a main body portion 81 having a hat-shaped cross section and a lid portion 82 that closes the main body portion 81.
  • a flange (vertical flange) 88a is bent downward from a front end 81a of the main body portion 81 and the front frame 81 When the floor frames 31 and 32 are fixed to the vehicle body 11, the load transmitting portion 83 and the load receiving portion 84 are positioned so as to face each other.
  • the load transmission portion 83 and the load receiving portion 84 are positioned so as to face each other, so that when a collision load is input to the vehicle body 11 from the front, the front tunnel cross Since the load is reduced by the member 57 and the tunnel portion 25, appropriate load transmission can be realized even in a hollow cross-sectional hat shape.
  • the vehicle body 11 is located behind the dashboard lower 21 and outside the vehicle width from the left and right front side frames 22, 22.
  • Left and right side sills 23, 23 extending in the front-rear direction, and side sill extensions biased from the rear ends 22 a, 22 a of the left and right front side frames 22, 22 toward the side sill 23, 23 along the lower surface 45 a of the front floor panel 45.
  • 28, 28, and a center tunnel cross member 34 spanning the left and right side sills 23, 23 above the joint portion 101 between the front floor panel 45 and the rear floor panel 46.
  • the front floor panel 45 includes footrests 43 and 44 between the floor extensions 27 and 27 and the side sill extensions 28 and 28.
  • High-strength footrests 43 and 44 are disposed between the floor extensions 27 and 27 and the side sill extensions 28 and 28, and above the joint portion 101 between the front floor panel 45 and the rear floor panel 46. Since the center tunnel cross member 34 is disposed, the load transmitted to the front floor panel 45, which is reduced in load by being connected to the left and right side sills 23, 23, is transmitted to the left and right side sills 23 via the center tunnel cross member 34. , 23. Furthermore, the floor frames 31 and 32 can be made thick enough to reduce the load, which contributes to lowering the floor of the vehicle body 11.
  • the vehicle body structure has a substantially triangular shape that bulges further below the vehicle body 11 between the floor extensions 27, 27 and the side sill extensions 28, 28 at the footrests 43, 44. It has the shape reinforcement parts 43a and 44a (refer also FIG. 5).
  • the footrest portions 43, 44 front floor panel 45
  • the reinforcing portions 43a, 44a they are connected to the left and right side sills 23, 23.
  • the load transmitted to the front floor panel 45 with reduced load is transmitted to the left and right side sills 23 and 23 via the center tunnel cross member 34.
  • the floor frames 31 and 32 can be made to have a thickness corresponding to the load with a reduced load, which contributes to a lower floor of the vehicle body 11.
  • the footrest portions 43 and 44 front floor panel 45 between the floor extensions 27 and 27 and the side sill extensions 28 and 28 are provided with the reinforcing portions 43a and 44a, a substantially triangular high-rigidity body is obtained.
  • the load when the load is input, the load can be transmitted to the rear of the vehicle body without deforming the front floor panel 45, and the feet of the occupant can be protected.
  • the vehicle 10 is a passenger car.
  • the present invention is not limited to this, and does not prevent the vehicle 10 from being adopted in other vehicles such as minivans and cargo vehicles.
  • the vehicle body structure according to the present invention is suitable for use in passenger cars such as sedans and wagons.
  • SYMBOLS 11 Vehicle body, 18 ... Energy container (fuel tank), 21 ... Dashboard lower, 21a ... Lower surface of dashboard lower, 22 ... Left and right front side frames, 22a ... Rear end of left and right front side frames, 23 ... Left and right Side sill, 24 ... floor panel, 25 ... tunnel, 27 ... left and right floor extension, 28 ... side sill extension, 31, 32 ... floor frame, 34 ... center tunnel cross member, 43, 44 ... footrest, 43a, 44a ... Reinforcement part of substantially triangular shape, 45 ... front floor panel, 45a ... lower surface of front floor panel, 46 ... rear floor panel, 47, 48 ... seat of vehicle body, 51, 52 ...

Abstract

 フロアパネル(24)は、車体(11)の座席(47,48)をトンネル部(25)の左右に配置した膨出部(51,52)と、膨出部(51,52)の後端(51a,52a)に車幅方向に延在するリアトンネルクロスメンバ(58)を備えている。車体(11)は、フロントサイドフレーム(22,22)からダッシュボードロア(21)に沿ってトンネル部(25)側に偏っている左右のフロアエクステンション(27,27)と、フロアエクステンション(27,27)とリアトンネルクロスメンバ(58)との間に架け渡されるように延在し、リアフロアパネル(46)から車体上下方向に所定の距離を有するフロアフレーム(31,32)と、膨出部(51,52)の下方に配設され、フロアフレーム(31,32)に支持されるエネルギー容器(18)と、を備えている。フロアフレーム(31,32)は、車体下方から車体(11)に着脱自在に固定される。

Description

車体構造
 本発明は、前後方向へ左右のフロントサイドフレームが延ばされ、車体を前後に区画するダッシュボードロアが配置され、ダッシュボードロアから車体後方へフロアパネルが延ばされ、ダッシュボードロア及びフロアパネルの車幅中央から車体上方へトンネル部が膨出された車体構造に関する。
 この種の車体構造には、前後方向へ左右のフロントサイドフレームが延び、車体を前後に区画するダッシュボードロアが配置され、ダッシュボードロアから車体後方へフロアパネルが延び、ダッシュボードロア及びフロアパネルの車幅方向中央から車体上方へトンネル部が膨出され、フロアパネル及びトンネル部の下方にエネルギー容器としての燃料タンクが配置されたものがある(例えば、特許文献1参照)。
 この特許文献1に開示された車体構造によれば、燃料タンクを車幅方向に拡げることが可能である。
 また、車体構造には、前後方向へフロントサイドフレームが延ばされ、フロントサイドフレームからサイドフレームエクステンション及びフロアエクステンションが分岐され、サイドフレームエクステンションがサイドシルに接続され、フロアエクステンションがフロアフレームに接続されたものがある(例えば、特許文献2参照)。
 この特許文献2に開示された車体構造によれば、フロントサイドフレームに作用する荷重を分散させることが可能である。
 車体構造には、前車軸と後車軸との間にキャビン(車室)を有し、運転席と助手席との間にフロアトンネルを有した車両において、運転席と助手席との下方でかつ床下に燃料タンクを配置し、車両を上から見たときに運転席の座面及び助手席の座面に対して燃料タンクが重なり合うように構成し、この燃料タンクの一部をフロアトンネルに入り込ませ、燃料タンクをサブフレームに固定し、このサブフレームを車体の下方車体側に取付けたものがある(例えば、特文献3参照)。
 この特許文献3に開示された車体構造によれば、運転席や助手席の下部スペースを有効利用することが可能である。
 さらに、車体構造には、車体の前後方向に左右のメインフレームが設けられ、フロア屈曲面及びフロア水平面が形成されるフロアパネルが設けられ、メインフレームの上面及びフロア水平面の上面に固定されるフロアアッパメンバが設けられ、メインフレームの下面及びフロア水平面の下面に固定されるフロアロアメンバが設けられ、フロアロアメンバの下方にエネルギー容器としてのバッテリケースが配置されたものがある(例えば、特許文献4参照)。
 この特許文献4に開示された車体構造によれば、フロア水平面の上面にフロアアッパメンバが設けられることで、フロア水平面の下面に設けられるフロアロアメンバの下方への突出を抑制することが可能である。
 特許文献1の車体構造では、燃料タンクを車幅方向に拡げて燃料タンクの高容量化を図っているものの、車体の高さ方向でもさらなる燃料タンクの高容量化が望まれる。
 特許文献2の車体構造では、さらに、フロントサイドフレームに作用する荷重を効率よく分散させたいものである。
 特許文献3の車体構造では、燃料タンクをサブフレームに固定し、このサブフレームを車体の下方車体側に取付けている。このときに、燃料タンクの着脱作業を効率的におこないたいものである。
 特許文献4の車体構造では、フロア水平面の上面にフロアアッパメンバが設けられることで、フロア水平面の下面に設けられるフロアロアメンバの下方への突出を抑制できるものの、床下スペースのさらなる有効利用が望まれる。
国際公開第2011/055695号パンフレット 特開2011-126422号公報 特許第3765947号公報 特開2011-121483号公報
 本発明の課題は、エネルギー容器(燃料タンク)の高容量化と車体の低床化(低車高化)とを高次元でバランスさせるとともに、車体の軽量化を促進できる車体構造を提供することにある。
 さらに、本発明の課題は、荷重を効率よく分散させ、荷重を車体後方に伝達させることができ、乗員の足元を保護することができる車体構造を提供することにある。
 さらにまた、本発明の課題は、燃料タンクを車体側に取付け若しくは取り外し性を配慮し、燃料タンクの着脱性の向上を図り、燃料タンクの取付作業効率化を図ることができる車体構造を提供することにある。
 さらに、本発明の課題は、上記エネルギー容器の高容量化、車体の低床化及び車体の軽量化を実現しつつも、適切な衝撃荷重吸収が可能な車体構造を提供することにある。
 請求項1に係る発明によれば、車体構造であって、車体の前部に位置して前記車体の前後方向へ延びている左右のフロントサイドフレームと、前記左右のフロントサイドフレームの後方に位置して前記車体を前後に区画するダッシュボードロアと、前記車体の車幅方向に延在して前記ダッシュボードロアの下部から後方へ延びているフロアパネルと、前記ダッシュボードロアの車幅中央かつ下端から前記フロアパネルの後部へ亘って前記フロアパネルから上方へ膨出したトンネル部と、を具備しており、前記フロアパネルは、前記車体の座席を前記トンネル部の左右に配置された膨出部と、前記膨出部の後端に車幅方向に延在するリアトンネルクロスメンバとを備え、前記車体は、前記左右のフロントサイドフレームの後端から前記ダッシュボードロアの下面に沿って前記トンネル部側に偏倚する左右のフロアエクステンションと、前記左右のフロアエクステンションと前記リアトンネルクロスメンバとの間に架け渡されるように延在し、リアフロアパネルから車体上下方向に所定の距離を有するフロアフレームと、前記膨出部の下方に配設され、前記フロアフレームに支持されるエネルギー容器とを備え、前記フロアフレームは、前記車体下方から前記車体着脱自在に固定されている車体構造が提供される。
 請求項2に係る発明では、好ましくは、前記車体は、前記左右のフロアエクステンション間に架け渡され、前記ダッシュボードロアと前記フロアパネルとの接合部近傍の前記トンネル部の下面に沿って車幅方向に延びるフロントトンネルクロスメンバを備え、前記フロアパネルは、前記車体の前後で、前記車体に搭乗した乗員の足元に対応する位置に前記車体の下方へ膨出して前記トンネル部の左右に配置される足置き部を有するフロントフロアパネルと、前記膨出部を有するリアフロアパネルと、に分割されてなり、前記フロントフロアパネルは、前記リアフロアパネルよりも高強度である。
 請求項3に係る発明では、好ましくは、前記左右のフロアエクステンションの各々は、断面凹状を形成して左右の縦壁部の後端が内方に閉じて形成された荷重伝達部を有し、前記フロアフレームは、断面ハット状の本体部と、前記本体部を閉塞する蓋部とからなり、前記本体部の前端からフランジを下方に折り曲げて荷重受け部を形成し、前記車体に前記フロアフレームが取り付けられる際、前記荷重伝達部と前記荷重受け部が対峙するように位置している。
 請求項4に係る発明では、好ましくは、前記車体は、前記ダッシュボードロアの後方に位置してかつ前記左右のフロントサイドフレームより車幅外方に位置して前記車体の前後方向へ延びている左右のサイドシルと、前記左右のフロントサイドフレームの後端から前記フロントフロアパネルの下面に沿って前記サイドシル側に偏倚するサイドシルエクステンションと、前記フロントフロアパネルと前記リアフロアパネルとの接合部上方に前記左右のサイドシル間に架け渡されたセンタトンネルクロスメンバとを備え、前記フロントフロアパネルは、前記フロアエクステンションと前記サイドシルエクステンションとの間に前記足置き部を有する。
 請求項5に係る発明では、好ましくは、前記足置き部は、前記フロアエクステンションと前記サイドシルエクステンションとの間にさらに前記車体の下方に膨出した略三角形状の補強部を有する。
 請求項1に係る発明では、車体構造は、フロアフレームに支持されたエネルギー容器を車体下方から着脱自在に固定することができるので、従来のタンクバンドによる固定に比して作業効率が大幅に向上する。特に、設備機械によるエネルギー容器の自動取付に対応することができる。
 さらに、左右のフロアエクステンションとリアトンネルクロスメンバを架け渡すようにフロアフレームが延在するので、フロアパネルの変形を防止して乗員を保護することができるとともに、エネルギー容器を衝突荷重から保護することができる。また、左右のフロントサイドフレームから入力された衝突荷重を左右のフロアエクステンションを介してフロアフレームに伝達させることができるので、フロアパネルの変形を防止して乗員を保護することができる。
 請求項2に係る発明では、フロントフロアパネルを高強度とし、左右のフロアエクステンション間にダッシュボードロアとフロアパネルとの接合部近傍にフロントトンネルクロスメンバを備えたので、フロントサイドフレームに入力された荷重を左右のフロアエクステンションとフロアパネルのトンネル部に伝達させる際、より大きな荷重を受けることができ、フロアフレームへの負担を軽減させることができる。
 さらに、フロントフロアパネルを高強度としたので、荷重入力の際、面分散により負荷を集中させることがなく変形させずに荷重を車体後方に伝達させることができ、乗員の足元を保護することができる。フロントフロアパネルを高強度とし、かつフロントトンネルクロスメンバがトンネル部により大きな荷重を受け持たせることができるので、通常、剛性確保に必要な車体前後方向に延びる骨格部材を撤廃することができ、軽量化にも貢献する。
 さらにまた、フロントフロアパネルを高強度とし、左右のフロアエクステンション間にダッシュボードロアとフロアパネルとの接合部近傍にフロントトンネルクロスメンバを備えたので、フロントサイドフレームに入力された荷重を左右のフロアエクステンションとフロアパネルのトンネル部に伝達させる際、より大きな荷重を受け持つことができ、フロアフレームへの負担が軽減されるので、負担が軽減されたフロントフロアパネルに伝達された荷重を受けるに足りる厚さとすることができ、車体の低床化(低車高化)に貢献する。
 さらに、フロントフロアパネルを高強度とし、左右のフロアエクステンション間にダッシュボードロアとフロアパネルとの接合部近傍にフロントトンネルクロスメンバを備えたので、フロントサイドフレームに入力された荷重を左右のフロアエクステンションとフロアパネルのトンネル部に伝達させる際、より大きな荷重に耐えることができ、フロアフレームへの負担が軽減されるので、負担が軽減されたフロントフロアパネルに伝達された荷重を受けるに足りる厚さとすることができ、フロアフレームのエネルギー容器への影響(エネルギー容器の下面にある凹部高さ)が少なく、車幅中央にある燃料ポンプが凹部より外方の燃料を吸引できず、エネルギー容器の実質的容量が減少してしまうことがないため、給油量(燃料量)を増大させることができる。
 請求項3に係る発明では、車体にフロアフレームが固定される際、荷重伝達部と荷重受け部が対峙するように位置するので、車体に前方から衝突荷重が入力された際、フロントトンネルクロスメンバとトンネル部によって負担が軽減されたことにより中空の断面ハット状としても適切な荷重伝達が実現できる。
 さらに、エネルギー容器を支持するフロアフレームを、フロアフレームのフロアエクステンション固定位置より低く湾曲させたとしても適切な荷重伝達を実現できるので、車体を低床化(低車高化)し、又はエネルギー容器を大容量化することが可能となる。
 請求項4に係る発明では、左右のフロントサイドフレームから入力された荷重をサイドシルエクステンションを介して左右のサイドシルに接続することで大きな荷重を受け持たせることができ、フロアパネルやフロアフレームへの負担を軽減させることができる。
 さらに、フロアエクステンションとサイドシルエクステンションとの間に高強度な足置き部(フロントフロアパネル)を配設し、フロントフロアパネルとリアフロアパネルとの接合部上方にセンタトンネルクロスメンバを配設したので、左右のサイドシルに接続されることで負担が軽減されたフロントフロアパネルに伝達された荷重がセンタトンネルクロスメンバを介して左右のサイドシルに伝達される結果、さらにフロアフレームを負担が軽減された荷重を受けるに足りる厚さとすることができ、車体の低床化(低車高化)に貢献する。
 さらにまた、フロアエクステンションとサイドシルエクステンションとの間に高強度な足置き部(フロントフロアパネル)を配設し、略三角形状の高剛性体を構成したことにより、荷重入力の際、フロントフロアパネルを変形させずに荷重を車体後方に伝達させることができ、乗員の足元を保護することができる。
 請求項5に係る発明では、フロアエクステンションとサイドシルエクステンションの間の足置き部(フロントフロアパネル)に補強部を備えたので、左右のサイドシルに接続されることで負担が軽減されたフロントフロアパネルに伝達された荷重がセンタトンネルクロスメンバを介して左右のサイドシルに伝達される結果、フロアフレームを負担が軽減された荷重を受けるに足りる厚さとすることができ、車体の低床化(低車高化)に貢献する。
 さらに、フロアエクステンションとサイドシルエクステンションの間の足置き部(フロントフロアパネル)に補強部を備えたので、さらに略三角形状の高剛性体となったことにより、荷重入力の際、フロントフロアパネルを変形させずに荷重を車体後方に伝達させることができ、乗員の足元を保護することができる。
本発明に係る車体の前部を示す斜視図である。 図1に示された車体の前部を下方から見た斜視図である。 図2に示された車体の前部から燃料タンク及びマフラーを外した斜視図である。 図2の領域4の拡大図である。 図1に示された車体前部の底面図である。 図5の6-6線に沿った断面図である。 図1に示された車体前部のフロントフロアパネル周辺の拡大図である。 図7の8-8線に沿った拡大断面図である。 図2に示された車体前部から燃料タンク及びマフラーを外した状態の拡大斜視図である。 図9の10-10線に沿った拡大断面図である。 図9の11-11線に沿った拡大断面図である。 図9の12-12線に沿った拡大断面図である。 図2の13-13線に沿った断面図である。 図2の矢印14方向から見た拡大図である。 図1に示された車体前部のトンネルスチフナ廻りの拡大図である。 図2に示された車体の前部の下方から別角度で見た斜視図である。 図16の17-17線に沿った拡大断面図である。 図2に示された車体の前部から燃料タンク周辺を拡大した斜視図である。 図2に示された車体の前部のフロントフロアクロスメンバ周辺を上方から見た斜視図である。 図2に示された車体の前部の荷重伝達部及び荷重受け部周辺を示す斜視図である。 図20の21-21線に沿った拡大断面図である。 図2に示された車体の前部のリアフロアクロスメンバ周辺を示す斜視図である。 図2に示された車体の前部のフロアフレームの斜視図である。 図2に示された車体の前部のリアトンネルクロスメンバの凹部を示す斜視図である。 図18の25-25線に沿った拡大断面図である。 図18の26-26線に沿った拡大断面図である。 図2に示された燃料タンク周辺を示す断面図である。 図2に示された燃料タンクの斜視図である。 図2に示された車体の前部のサイドシルを示す斜視図である。 図29の30-30線に沿った断面図である。 従来構造の車体の前部のサイドシルの断面図である。 図2に示された車体の前部の全体の荷重伝達を示す図である。 図2に示された車体の前部のフロントフロアパネルの荷重伝達が示された上面図である。 図2に示された車体の前部のトンネル部の荷重伝達が示された図である。 図2に示された車体の前部のフロントフロアパネルの左側が示された斜視図である。 図2に示された車体の前部のフロントフロアパネルの右側が示された斜視図である。
 以下、本発明の好ましい実施例について、添付した図面に基づいて詳細に説明する。
 図に示された本実施例による車両10は乗用車である。図1~図3に示すように、車体11の内側に、前部のエンジンルーム13と、該エンジンルーム13の真後ろに位置する車室12とが、形成されている。車両10は、車体11の前半部分に燃料タンク18を搭載し、燃料タンク18の側方にマフラー19が配置されている。燃料タンク18は、エネルギーを貯留するエネルギー容器の一例であり、以下、適宜「エネルギー容器18」と記載する。
 車体11は、モノコックボディからなり、車両10の車幅方向の中心を通って車体前後方向へ延びる車体中心に対し、略左右対称形に形成されている。
 車体11の前半部分は、ダッシュボードロア21と、左右のフロントサイドフレーム22,22と、左右のサイドシル23,23と、フロアパネル24と、トンネル部25と、左右のサイドフレームエクステンション26,26と、左右のフロアエクステンション27,27と、左右のサイドシルエクステンション28,28と、左右のフロアフレーム31,32と、フロントフロアクロスメンバ33と、センタトンネルクロスメンバ34と、リアフロアクロスメンバ35と、フロントトンネルクロスメンバ57と、リアトンネルクロスメンバ58とを含む。すなわち、車体構造は、車体11の前半部分の構造である。
 本実施例による車体構造では、フロアパネル24は、フロントフロアパネル45とリアフロアパネル46に分割されて形成されている。フロントフロアパネル45は、リアフロアパネル46より高強度であるので、トンネルフレーム61,61にかかる負担を軽減することができ上下幅を薄く設定することができるため、燃料タンク18の容量への影響を少なくして大容量化できる。
 フロアエクステンション27,27は、左右のフロントサイドフレーム22,22の後端22a,22aからダッシュボードロア21の下面21aに沿って延びている。フロアフレーム31,32は、フロアパネル24に車体11の座席47,48を配置する膨出部51,52の後方のリアトンネルクロスメンバ58に架け渡されている。このフロアエクステンション27,27およびフロアフレーム31,32は、燃料タンク(エネルギー容器)18を支持して、燃料タンク18を車体下方から着脱自在に固定している。
 ダッシュボードロア21は、左右のフロントサイドフレーム22,22の後方に位置して車体11を前後に区画する。つまり前のエンジンルーム13と後の車室12との間を仕切る隔壁であり、側面視略L字状に形成されている。
 詳しく述べると、該ダッシュボードロア21は、エンジンルーム13と車室12との間を仕切る垂直面37と、垂直面37の下端から後下方へ延びるダッシュボードロア傾斜面38とからなる一体品である。
 ダッシュボードロア21は、トンネル部25の前部25aを覆うように配設されるトンネルスチフナ41と、トンネルスチフナ41の前端41aに対応する位置に左右のフロントサイドフレーム22,22間に架け渡されたダッシュボードクロスメンバ59とを備える(図14参照)。
 左右のフロントサイドフレーム22,22は、車体11の前部に位置して車体11の前後方向へ延びている。
 フロアパネル24は、車体11の車幅方向に延在してダッシュボードロア21の下部から後方へ延びている。フロアパネル24は、車体11の前後で、車体11に搭乗した乗員の足元に対応する位置に車体11の下方へ膨出してトンネル部25の左右に配置される足置き部43,44を有するフロントフロアパネル45と、フロントフロアパネル45の車体後方に車幅方向に延在するように配設されるリアフロアパネル46とに分割されている(図7参照)。
 フロントフロアパネル45は、リアフロアパネル46より高強度である。また、リアフロアパネル46は、フロントフロアパネル45よりも高さS1(図8参照)だけ高い設定がなされる。これは、座席47,48の下面とリアフロアパネル46との間隔を狭め、リアフロアパネル46の下方領域を有効利用するためである。具体的には、リアフロアパネル46下方には燃料タンク18が配置される。
 フロアパネル24は、フロントフロアパネル45とリアフロアパネル46との分割型フロアパネルである。すなわち、上記板厚を変更するため、フロントとリアに別部材としてフロアパネル45,46を配設し接合している。
 フロアパネル24は、車体11の座席47,48をトンネル部25の左右に配置する膨出部51,52を有するとともに、膨出部51,52の後端51a,52aに車幅方向に延在するリアトンネルクロスメンバ58を備える(図2、図3、図9参照)。すなわち、リアフロアパネル46は、膨出部51,52を有する。
 トンネル部25は、ダッシュボードロア21の車幅中央かつ下端からフロアパネル24の後部へ亘ってフロアパネル24から上方へ膨出する(図1)。
 左右のフロアエクステンション27,27は、左右のフロントサイドフレーム22,22の後端22a,22aからサイドフレームエクステンション26,26を介してダッシュボードロア21の下面21aに沿ってトンネル部25側に偏っている(図2、図3、図16)。
 フロアエクステンション27は、前側のフロントフロアエクステンション54と、後側のリアフロアエクステンション55とからなる(図3)。フロアエクステンション27は、図11、図20、図21に示すように、断面視凹状を形成してリアフロアエクステンション55の左右の縦壁部86,86の後端86b,86bが内方に閉じて荷重伝達部83が形成される(詳細には、後フランジ87aも荷重伝達部83に含まれる)。
 フロントトンネルクロスメンバ57は、図1~図5、図9に示されたように、左右のフロアエクステンション27,27に架け渡され、ダッシュボードロア21とフロアパネル24との接合部102近傍のトンネル部25の下面25bに沿って車幅方向に延びる。詳細には、フロントトンネルクロスメンバ57は、ダッシュボードロア21とフロントフロアパネル45の接合部102のトンネル部25近傍に車幅方向に延在して溶接固定される。
 フロントトンネルクロスメンバ57は、フロアパネル24のうち高強度のトンネル部25に配設されているので、フロントフロアパネル45やトンネル部25を支持補強することができるとともに、トンネル部25から車体後方に荷重を伝達させることができる。
 フロントトンネルクロスメンバ57は、トンネル部25に沿って上方に凸状に形成される。フロントトンネルクロスメンバ57は、ダッシュボードロア21とフロントフロアパネル45のトンネル部25に沿って溶接されるので、車体前部のダッシュボードクロスメンバ59からの荷重を受けトンネル部25に伝達させることができる。
 フロントトンネルクロスメンバ57は、フロアエクステンション27,27に溶接される両端部57a,57aが扇状に拡張されている。これにより、大きな荷重を伝達させることができるとともに前方からの荷重に対して変形しない強度を確保している。
 フロントトンネルクロスメンバ57は、従来構造に比して車体前部に配設されているので、フロントサイドフレーム22,22に入力された荷重を左右のフロアフレーム31,32(図2)とフロアパネル24のトンネル部25とに伝達させる際、より大きな荷重を受け持つことができ、フロアフレーム31,32への負担を軽減させることができる。
 さらに、フロントトンネルクロスメンバ57は、フロアフレーム31,32を下方から着脱自在に固定するので、フロアフレーム31,32の前方固定部91a,92a(図5)のスペースを確保するのに貢献している(図18参照)。
 なお、従来構造(国際公開第2011/055695号パンフレット等参照)ではフロアパネルが低強度であるため、フロントフロアエクステンションを足置き部一杯まで延ばし、フロントトンネルクロスメンバ57を後方に配置することで補強する必要があった。
 フロントフロアパネル45は、フロアエクステンション27,27とサイドシルエクステンション28,28との間に足置き部43,44を有する(図2、図3)。
 足置き部43,44は、図1~図3に示すように、フロアエクステンション27,27とサイドシルエクステンション28,28との間にさらに車体11の下方に膨出した略三角形状の補強部43a,44aを有する(図35、図36も参照)。左右の足置き部43,44(サイドシルエクステンション28,28とフロアエクステンション27,27の間)を下方に略三角状に補強部43a,44aを膨出させたので、より乗員の足元を保護することができるとともに、面分散により負荷を集中させることなく変形させずに荷重を車体後方に伝達することができる。
 また、左右の足置き部43,44は、足置き部43,44の一方を上方に膨出させて左右で段差H1(図6)を設けている。結果的に、フロアフレーム31,32の前方固定部91a,92aが上下にずれることとなり、マフラー19(図2)の配管93a,93bを通すことが可能となる。なお、フロアフレーム31,32に荷重がスムースに伝達されるように軸心の上下差が出ない(モーメントが生じない)程度の段差H1としている。フロントフロアパネル45の車体上下方向高さを変更したので、リアフロアエクステンション55やフロアフレーム31,32を薄くすることなくマフラー19の配管93a,93bを実現できる。
 フロントフロアパネル45には、左右に乗員の足置き部43,44が設けられている。フロントフロアパネル45は、板厚1.2tの高強度鋼板を使用した。通常、板厚0.6tのところ倍の厚さとしたので荷重入力の際、面分散により負荷を集中させることがなく変形させずに荷重を車体後方に伝達させることができ、乗員の足元を保護することができる。
 また、この後方に配置される燃料タンク18をも保護することができる。荷重を面分散することで、車体11の軽量化や燃料タンク18の車幅外方への延長(高容量化・薄型化)にも貢献する。
 本発明に係る車体構造では、図18、図25に示されているように、フロアフレーム31,32は燃料タンク18下に存在するが、トンネル部25(図2)に大きな荷重を流すようにし、板厚が通常1.6tのところ1.0tとすることが可能であり、フロアフレーム31,32への負担軽減とともに軽量化にも貢献している。
 なお、従来構造(国際公開第2011/055695号パンフレット等参照)ではフロアパネルが低強度であるため、フロントフロアエクステンションを足置き部一杯まで延ばしフロントトンネルメンバを後方に配置することで補強する必要があった。
 図5に示すように、フロントフロアパネル45では、サイドシルエクステンション28とフロアエクステンション27との分岐部(分岐部分)49の間に高強度鋼板が存在する。すなわち、フロントサイドフレーム22からサイドシル23とフロアフレーム31(32)に分岐される部分(サイドシルエクステンション28とフロントフロアエクステンション54の間)の間に亘る高強度鋼板が存在するので、略三角形状の高剛性体(補強部43a,44aの周囲部分も含む)を構成し高強度鋼板を介して車体後方、センタトンネルクロスメンバ34(図1)からサイドシル23,23に荷重を伝達することができる。
 リアフロアパネル46に、車体11の座席47,48をトンネル部25の左右に配置する膨出部51,52が形成され、膨出部51,52内に車体前後方向に延びる左右のトンネルフレーム61,61(図9参照)が設けられ、膨出部51,52の車体11の下方にエネルギー容器18が配設される(図1、図2参照)。リアフロアパネル46には、車体11の座席47,48を支持する座席支持部62,62が設けられる。
 図25~図28に示すように、エネルギー容器18は、下面18aに形成されフロアフレーム31,32が掛かる凹部64,64と、車幅方向中央に形成され上方に膨出した突出部65と、突出部65の車幅外方かつトンネルフレーム61,61に対応する位置に突出部65側が上方となるように傾斜する傾斜面66と、を有する。さらに、エネルギー容器18は、内部に燃料を送る燃料ポンプ108を備え、フロアフレーム31,32にタンクバンド107,107で固定される。エネルギー容器18は、膨出部51,52(図1、図2)の車体11の下方に配設され、フロアフレーム31,32に支持される。
 トンネルフレーム61は、図10、図12に示すように、リアフロアパネル46に沿った外フランジ67と、外フランジ67から下方に垂下した外縦壁部68と、外縦壁部68からリアフロアパネル46に傾斜して近づく傾斜部69と、傾斜部69からリアフロアパネル46に沿わせて車幅内方に延びた水平部71と、この水平部71からトンネル部25の内壁25cに沿った内縦壁部72と、からなる。
 すなわち、トンネルフレーム61は、エネルギー容器18の傾斜面66と略平行に傾斜する傾斜部69を有する。また、トンネルフレーム61は、図15~図17に示すように、車幅方向から見てダッシュボードクロスメンバ59とトンネルスチフナ41との略延長線L1上に配設される。
 トンネルフレーム61は、図12に示すように、上端(内縦壁部72)がトンネル部25内方(トンネル部25の内壁25c)に接合される。すなわち、トンネルフレーム61は、トンネル部25の補強をするとともに前方からの荷重を後方に伝達させることで、リアフロアパネル46の変形を防ぎ乗員を保護する(図10)。
 図10に示すように、リアフロアパネル46に形成された上方凸状溝46aとともに閉断面73が形成され、リアフロアパネル46を補強する。これにより、前方からの荷重を後方に伝達させることができ、リアフロアパネル46の変形を防ぐことができる。さらに、乗員重量によるリアフロアパネル46のたわみを防止する効果もある。
 図3に示すように、トンネルフレーム61,61の後端61b,61bは、膨出部51,52の後端51a,52aに接合される。すなわち、トンネル部25の補強をするとともに、前方からの荷重を後方のリアトンネルクロスメンバ58に伝達させることで、リアフロアパネル46の変形を防ぐ。
 図10に示すように、トンネルフレーム61は、外縦壁部68と、傾斜部69と、水平部71と、内縦壁部72とで車体前後方向に延びる凹形状に形成されている。すなわち、リアフロアパネル46の補強をするとともに前方からの荷重を後方のリアトンネルクロスメンバ58(図3)に伝達させることで、リアフロアパネル46の変形を防ぎ前後方向の荷重に適切な強度を確保している。トンネルフレーム61の材質は、高張力鋼板(JSC590R相当品)の板厚0.6tが使用されている。
 図32に示すように、トンネルフレーム61は、フロントフロアエクステンション54からの荷重がフロントフロアパネル45を介して伝達される。
 トンネルフレーム61は、従来構造(国際公開第2011/055695号パンフレット等参照)のように、フロントサイドフレームからフロントフロアエクステンションを伝達してきた荷重がダイレクトにトンネルフレームに伝達されるのではなく、図11に示すように、サイドフレームエクステンション26を矢印A1の如く伝達された荷重は、フロントフロアパネル45とセンタトンネルクロスメンバ34(図1も参照)を介して面分散された荷重がリアフロアパネル46に伝達される。
 この結果、高強度のフロントフロアパネル45全体が矢印A2,A3の如く後方に押される形となり、リアフロアパネル46の変形を防止することができる。さらに、上記構成により、トンネルフレーム61(図10)自体にかかる負荷が軽減されるので、トンネルフレーム61の車体上下幅を薄くすることができる。
 次に、図13に基づいてトンネルフレーム61と燃料タンク18との関係を説明する。ニ点鎖線で示す従来構造のトンネルフレームF1ように、トンネルフレームF1が下方に膨らんでいると、これを回避して低車高を実現するため燃料タンク上面の凹部が下方に延び、公表給油量(燃料量)が減少してしまう。
 本発明に係る車体構造では、図3に示すように、フロントフロアパネル45を高強度化し、トンネルフレーム61へのフロントフロアエクステンション54からの荷重伝達を減らすことで負荷を下げたため、トンネルフレーム61を、従来構造のトンネルフレームF1よりも薄くすることが可能となる。
 例えば、図13に示すように、給油時に車体が傾斜していると傾斜時満タンラインM1が従来構造のトンネルフレームF1に達した時点で不図示のフロートが排気弁を塞ぎ、それ以上給油ができなくなる。従って、燃料をフルに給油することはできない。傾斜面給油時の満タンセンサ(不図示)の正確な検知を妨げないように、トンネルフレーム61の下面を所定角度傾斜させることで、燃料タンク18の対応する位置に影響を与えないようにできる(陥没させずに済む)。これにより、ニ点鎖線で示された従来構造の傾斜時満タンラインM1を、実線で示す傾斜時満タンラインM2に矢印B1の如くシフトすることができる。この結果、公表給油量(燃料量)を増大させることができる。すなわち、燃料タンク18自体を大きくするのでなくタンク容量内での公表値を増加させることができる。
  図17に示すように、トンネルフレーム61は、車幅方向から見てダッシュボードクロスメンバ59からトンネルスチフナ41の稜線42,42の略延長線L1上に配設され、トンネルフレーム61への荷重負担の軽減が図られる。すなわち、図3に示すように、フロントサイドフレーム22,22からダッシュボードクロスメンバ59に入力された荷重や、エンジン(不図示)の後退によりダッシュボードクロスメンバ59に入力される荷重を、フロアパネル24のトンネル部25に伝達させる際、トンネル部25がより大きな荷重を受け持つことができ、フロアパネル24やトンネルフレーム61への荷重負担を軽減させることができる。
 図14、図15に示すように、ダッシュボードクロスメンバ59は、ステアリング軸77を挿入する開口75aを有するカップ状のジョイントカバー75と、ジョイントカバー75から反対側(車幅中央側)に延びるサブクロスメンバ76とから構成される。
 ダッシュボードクロスメンバ59は左右のフロントサイドフレーム22,22間に架け渡されているので、衝突荷重を左右に分散することができ、特にステアリング軸77を挿入する開口75aがあっても適切な衝突荷重吸収の実現をはかることができる。
 ダッシュボードクロスメンバ59接合位置に連続して車室12側にトンネルスチフナ41の前端(上端)41aが接合されている。これにより、正面衝突時、フロントサイドフレーム22,22やエンジン(不図示)の後退により入力された荷重を高強度のトンネル部25に伝達することができ、フロアパネル24(図3)の変形を防ぐことができる。ひいては、トンネル部25で荷重を負担することにより、フロアパネル24やトンネルフレーム61への負荷を軽減させることにつながる。
 図2、図19に示すように、フロントフロアクロスメンバ33は、フロアフレーム31,32間に架設されるL字状の部材で燃料タンク18の前部を覆うように取付けられる。フロアフレーム31,32の一方に入力された荷重を他方に伝達する機能もある。
 フロントフロアクロスメンバ33、リアフロアクロスメンバ35及び左右のフロアフレーム31,32で、高強度の矩形状(矩形形状部78)が構成される。これにより、リアフロアパネル46の変形を防ぐことで乗員を保護するとともに燃料タンク18を保護する。矩形形状なので剛性が高い。矩形形状部78は、下方から着脱自在に取付できるようにフロアエクステンション27,27及びリアトンネルクロスメンバ58に固定されている(図18)。
 図18に示すように、左右のフロアフレーム31,32の前方固定部91a,92aは、下方からボルト79,79で2点(左右位置)固定される。左右のフロアフレーム31,32の後方固定部91b,92bは、下方から2点(前後位置)及び後方から前方に1点固定される。フロントフロアクロスメンバ33、リアフロアクロスメンバ35及び左右のフロアフレーム31,32は、ともに高張力鋼板(高強度鋼板、JSC590R相当品)が使用される。左右のフロアフレーム31,32の板厚は1.0t、フロントフロアクロスメンバ33の板厚は1.2t、リアフロアクロスメンバ35の板厚は3.2tが使用される。
 すなわち、フロアフレーム31,32は、フロアエクステンション27(図3)とリアトンネルクロスメンバ58とに架け渡されるように延在し、リアフロアパネル46(図3)から車体上下方向に所定の距離(図13)を有する。フロアフレーム31,32は、車体下方から着脱自在に固定される。
 左のフロアフレーム31の前端は、右のフロアフレーム32の前端に比べて短く形成される。その他の部分は同一に形成されている。以下、左のフロアフレーム31について説明し、右のフロアフレーム32は、説明を省略する。
 図18~図24に示すように、フロアフレーム31(32)は、断面視ハット状の本体部81(図23)と、本体部81を閉塞する蓋部82と、からなる。図19、図21に示すように、本体部81は、本体部81の前端81aからフランジ(縦フランジ)88aを下方に折り曲げるとともにこれを前方に延ばして荷重受け部84が形成される。荷重受け部84は、車体11にフロアフレーム31(32)が固定される際、荷重伝達部83と対峙するように位置する。
 矩形状(井桁形状部78)(図2)の高強度鋼板荷重伝達のために、リアフロアエクステンション55及びフロアフレーム31に、それぞれ当て面としての荷重伝達部83及び荷重受け部84が形成される。詳細には、リアフロアエクステンション55後方に、縦壁部86,86から横フランジ86a,86aを延ばし互いに内方に折り曲げ、下壁(底壁)87から後フランジ87aを延ばし上方に折り曲げて、荷重伝達部83を形成する。
 図21に示すように、上方に凸となる閉断面74を形成するフロアフレーム31の上面88を下方に折り曲げて縦フランジ88aを形成し、さらに前方に折り曲げることで水平フランジ88bを形成し、縦フランジ88a及び水平フランジ88bで荷重受け部84を形成している。これにより、着脱可能な別部材としても互いに対峙しているので荷重伝達時に閉断面74が開かず、荷重伝達がスムースにされるようにしている。
 図18に示すように、フロアフレーム31,32の前方固定部91a,92aを、左右で車体前後方向に寸法D1だけオフセットしている。これにより、図6に示したフロントフロアパネル45に段差H1を設けてマフラー19(図2)の配管93a,93bを配置したとしても下方から複数のボルト79の固定を可能とし、特に設備による燃料タンク18の自動搭載に対応できる。
 図22に示すように、リアフロアクロスメンバ35は、断面視凹状(断面視U字状)に形成されている。図2、図3に示すように、リアフロアクロスメンバ35は、フロアフレーム31,32からの荷重を伝達しサイドシル23,23に流す高強度部材であるとともに、断面視凹状のリアトンネルクロスメンバ58でリアフロアクロスメンバ35を覆うので荷重入力時に変形せず、リアトンネルクロスメンバ58とセンタトンネルクロスメンバ34との内方を通る燃料配管94,95(図28)を保護することができる。
 図22に示すように、フロアフレーム31は、後端に後端フランジ89が外方及び上方に向けて後方開きに形成され、リアフロアクロスメンバ35の前壁35aに接合固定される。フロアフレーム31後端(後端フランジ89)は、フランジが外方及び上方に向けて開いてリアフロアクロスメンバ35に接合されるので、フロアフレーム31からの荷重をリアフロアクロスメンバ35を介してリアトンネルクロスメンバ58(図3)に伝達させることができる。
 図24に示すように、フロアフレーム後端接合部位(後端フランジ89)に対応する位置に、リアトンネルクロスメンバ58の凹部97の稜線97a,97aを合致させている。すなわち、荷重伝達時に凹部97の稜線97a,97aを伝わるのでより荷重が伝達しやすい。さらに、荷重による矩形全体(矩形形状部78)の後退を支持する効果もある。
 図21、図22に示すように、フロアフレーム31は、断面ハット状の本体部81と、この本体部81に被せる蓋部82とで薄形閉断面74に形成し、本体部81の後端に当て面(後端フランジ89)を形成したので、下方に湾曲させても適切な荷重伝達が可能となる。
 本発明に係る車体構造では、図1、図2に示すように、フロントフロアパネル45を高強度化し荷重伝達をサイドシル23,23とトンネル部25により多く伝達させることで、フロントフロアエクステンション54からのフロアフレーム31の荷重伝達を減らすことができ、負荷を下げたため、薄くすることが可能となる。この結果、座席47,48のヒップポイント47a,48aを下げた低車高車を実現することができる。
 フロアフレームと燃料タンクとの関係において、従来構造(特許3765947号公報等参照)では荷重伝達を考慮されておらず、フロアフレームを高強度とすべく上方に拡げると、車高を一定に保つためには燃料タンクの下面に形成された凹部が上方に深く形成される。これにより、車幅中央の突出部にある燃料ポンプがこの凹部より外方の燃料を吸引できず、公表給油量(燃料量)が減少してしまう。
 本発明に係る車体構造では、図2に示すように、フロントフロアパネル45を高強度化し、荷重伝達をサイドシル23,23とトンネル部25により多く伝達させることで、フロントフロアエクステンション54からのフロアフレーム31の荷重伝達を減らすことができ、フロアフレーム31の受ける負荷を下げることができる。この結果、図27に示すように、フロアフレーム31を薄くすることが可能となり、燃料タンク18の凹部64を従来構造の凹部G1よりも浅く形成できる。これにより、本願の燃料吸引可能ラインN2を従来構造の燃料吸引可能ラインN1から矢印J1のように燃料タンク18の下方に下げることができる。この結果、公表給油量(燃料量)を増加させることができる。
 図2、図29、図30に示すように、左右のサイドシル23,23は、ダッシュボードロア21の後方に位置してかつ左右のフロントサイドフレーム22,22より車幅外方に位置して車体11の前後方向へ延びている。
 サイドシルエクステンション28,28は、左右のフロントサイドフレーム22,22の後端22a,22aからフロントフロアパネル45の下面45aに沿ってサイドシル23,23側に偏っている。
 サイドシル23とサイドシルエクステンション28との関係において、本発明に係る車体構造では、サイドシルエクステンション28の車幅外側面に傾斜面28a(図29、図30)が設けられ、この傾斜面28aに沿って補強のビード28bが形成される。
 図31に示すように、従来構造(国際公開第2011/055695号パンフレット等参照)の車体211では、フロアパネル(足置き部)213のサイドシル212における車体上下位置が高いため、下方にサイドシルエクステンション214の配置が可能であった。
 すなわち、サイドシルエクステンション28では、図2、図29、図30に示すように、フロアパネル24(足置き部43,44)のサイドシル23における車体上下位置が低いが、サイドシル23の下部フランジ23aに接合できるよう側端に傾斜面28aを備え、補強と荷重伝達効率の観点から傾斜面28aに沿って外方に延びるビード28bを備え強度を向上させたので、低床化と適切な荷重伝達が実現できる。
 センタトンネルクロスメンバ34は、図1、図7、図8に示されたように、フロントフロアパネル45とリアフロアパネル46との接合部101上方にて左右のサイドシル23,23に架け渡される。センタトンネルクロスメンバ34は、縦壁104と横壁105とを備える側面視L字状の部材である。
 センタトンネルクロスメンバ34は、フロントフロアパネル45とリアフロアパネル46の接合部101上方に車幅方向に延在する。
 センタトンネルクロスメンバ34は、フロアパネル24の足置き部43,44から後方は座席47,48のヒップポイント47a,48aまで上方に膨出しており、膨出部51,52前端に前方から覆いかぶさっているため、フロントフロアパネル45からの荷重で後方にかかる曲げモーメントを抑制する効果を持つ。
 センタトンネルクロスメンバ34は、ダッシュボードクロスメンバ59からトンネル部25に流れる衝突荷重をサイドシル23,23に伝達することでフロアパネル24にかかる荷重を軽減する。センタトンネルクロスメンバ34は、側面衝突やオフセット衝突時にサイドシル23,23が折れるのを防止する。
 センタトンネルクロスメンバ34は、図11に示すように、トンネル部25を補強する。フロントフロアパネル45から矢印A1の如く車体後方へ荷重が作用する場合には、矢印A2の如くセンタトンネルクロスメンバ34の縦壁104から横壁105に流れ、矢印A3の如くリアフロアパネル46に流れることができる。これにより、リアフロアパネル46の下に配置した燃料タンク18に荷重が作用しない。
 図32~図34において、車体11の下部における荷重伝達の流れを説明する。矢印の太さは荷重伝達量の大きさの目安である。衝突荷重吸収メカニズムの基本として、低強度として荷重を吸収する部材と、高強度として変形させず荷重を伝達させる部材との組み合わせにより適切な荷重吸収モードを成立させている。
 図32に示すように、フロントサイドフレーム22およびサイドシル23間において、矢印a1の如く前方から作用した衝突荷重、及び矢印a2,a3の如くダッシュボードクロスメンバ59を経由した前方からの衝突荷重は、矢印a4の如くダッシュボードロア21を流れるとともに、矢印b1,b2の如くサイドシルエクステンション28,28を介して高強度のサイドシル23,23に伝達される。この矢印b1,b2で示された荷重がもっとも大きな荷重となる。
 フロントサイドフレーム22、フロントトンネルクロスメンバ57、フロアパネル24のトンネル部25、リアトンネルクロスメンバ58間において、矢印a4の如くダッシュボードロア21を流れた荷重は、矢印a5,a6の如くフロントトンネルクロスメンバ57に流れるとともに、フロントフロアエクステンション54からの荷重がフロントフロアパネル45を介して矢印a7,a8の如くトンネルフレーム61,61に伝達され、トンネルフレーム61,61からリアトンネルクロスメンバ58に矢印a9,a10の如く伝達される。これも大きな荷重を受け持つ。
 フロントフロアエクステンション54、リアフロアエクステンション55、フロアフレーム31(32)間において、前方からの衝突荷重は、矢印c7,c8の如くフロントフロアエクステンション54からフロアフレーム31,32にも伝達されるが、サイドシル23,23とトンネル部25で大きな割合を受け持つため負担が軽減され、フロアパネル24を変形させずに乗員を保護できるとともにリアフロアパネル46下方に配設される燃料タンク18を守ることができる。フロアフレーム31,32からの荷重は、矢印c9,c10の如くリアフロアクロスメンバ35を介してリアトンネルクロスメンバ58に流れる。
 図32及び図33に示すように、フロントフロアエクステンション54、フロントフロアパネル45、センタトンネルクロスメンバ34において、前方からの衝突荷重はフロントフロアエクステンション54からフロントフロアパネル45の足置き部43,44にも矢印c1~c4の如く伝達され、面分散された荷重が矢印c5,c6の如くセンタトンネルクロスメンバ34を介してサイドシル23,23やトンネルフレーム61,61に伝達される。サイドシル23,23とトンネル部25で大きな割合を受け持つため負担が軽減され、高強度のフロントフロアパネル45で荷重が面分散されるため、トンネルフレーム61,61やフロアフレーム31,32を薄型化することができる。
 図34に示すように、フロントサイドフレーム22又はエンジン(不図示)、ダッシュボードクロスメンバ59、トンネルスチフナ41、フロアパネル24のトンネル部25、リアトンネルクロスメンバ58間において、前方からの衝突荷重は、矢印d1,d2の如くダッシュボードクロスメンバ59からその車内側に設けられるトンネルスチフナ41を介して、矢印d3,d4の如く高強度のトンネル部25及びリアトンネルクロスメンバ58に伝達される。これも大きな荷重を受け持つ。
 車体構造は、図1~図3に示すように、車体11の前部に位置して車体11の前後方向へ延びている左右のフロントサイドフレーム22,22と、左右のフロントサイドフレーム22,22の後方に位置して車体11を前後に区画するダッシュボードロア21と、車体11の車幅方向に延在してダッシュボードロア21の下部から後方へ延びているフロアパネル24と、ダッシュボードロア21の車幅中央かつ下端からフロアパネル24の後部へ亘ってフロアパネル24から上方へ膨出したトンネル部25とを備える。
 フロアパネル24は、車体11の座席47,48をトンネル部25の左右に配置する膨出部51,52を有するとともに、膨出部51,52の後端51a,52aに車幅方向に延在するリアトンネルクロスメンバ58を備えている。車体11は、左右のフロントサイドフレーム22,22の後端22a,22aからダッシュボードロア21の下面21aに沿ってトンネル部25側に偏倚する左右のフロアエクステンション27,27と、フロアエクステンション27,27とリアトンネルクロスメンバ58とに架け渡されるように延在し、リアフロアパネル46から車体上下方向に所定の距離を有するフロアフレーム31,32と、膨出部51,52の車体11の下方に配設され、フロアフレーム31,32に支持されるエネルギー容器18とを備える。フロアフレーム31,32は、車体下方から着脱自在に固定される。
 すなわち、フロアフレーム31,32に支持されたエネルギー容器18を車体下方から着脱自在に固定することができるので、従来のタンクバンドによる固定に比して作業効率が大幅に向上する。特に、設備機械によるエネルギー容器18の自動取付に対応することができる。
 左右のフロアエクステンション27,27とリアトンネルクロスメンバ58を架け渡すようにフロアフレーム31,32が延在するので、フロアパネル24の変形を防止して乗員を保護することができるとともに、エネルギー容器18を衝突荷重から保護することができる。また、左右のフロントサイドフレーム22,22から入力された衝突荷重を左右のフロアエクステンション27,27を介してフロアフレーム31,32に伝達させることができるので、フロアパネル24の変形を防止して乗員を保護することができる。
 車体構造では、図1~図3に示すように、車体11は、左右のフロアエクステンション27,27に架け渡され、ダッシュボードロア21とフロアパネル24との接合部102近傍のトンネル部25の下面25bに沿って車幅方向に延びるフロントトンネルクロスメンバ57を備えている。フロアパネル24は、車体11の前後で、車体11に搭乗した乗員の足元に対応する位置に車体11の下方へ膨出してトンネル部25の左右に配置される足置き部43,44を有するフロントフロアパネル45と、膨出部51,52を有するリアフロアパネル46とに分割されている。フロントフロアパネル45は、リアフロアパネル46より高強度である。
 すなわち、フロントフロアパネル45を高強度とし、左右のフロアエクステンション27,27間にダッシュボードロア21とフロアパネル24との接合部102近傍にフロントトンネルクロスメンバ57を備えたので、フロントサイドフレーム22,22に入力された荷重を左右のフロアエクステンション27,27とフロアパネル24のトンネル部25に伝達させる際、より大きな荷重を受けることができ、フロアフレーム31,32への負担を軽減させることができる。
 フロントフロアパネル45を高強度としたので、荷重入力の際、面分散により負荷を集中させることがなく変形させずに荷重を車体後方に伝達させることができ、乗員の足元を保護することができる。
 フロントフロアパネル45を高強度とし、かつフロントトンネルクロスメンバ57がトンネル部25により大きな荷重を受けられるようにしたので、通常、剛性確保に必要な車体前後方向に延びる骨格部材を撤廃することができ、軽量化にも貢献する。
 フロントフロアパネル45を高強度とし、左右のフロアエクステンション27,27間にダッシュボードロア21とフロアパネル24との接合部102近傍にフロントトンネルクロスメンバ57を備えたので、フロントサイドフレーム22,22に入力された荷重を左右のフロアエクステンション27,27とフロアパネル24のトンネル部25に伝達させる際、より大きな荷重を受けることができ、フロアフレーム31,32への負担が軽減されるので、負担が軽減されたフロントフロアパネル45に伝達された荷重を受け持つに足りる厚さとすることができ、車体11の低床化(低車高化)に貢献する。
 フロントフロアパネル45を高強度とし、左右のフロアエクステンション27,27間にダッシュボードロア21とフロアパネル24との接合部102近傍にフロントトンネルクロスメンバ57を備えたので、フロントサイドフレーム22,22に入力された荷重を左右のフロアエクステンション27,27とフロアパネル24のトンネル部25に伝達させる際、より大きな荷重を受けることができる。従って、フロアフレーム31,32への負担が軽減されるので、負担が軽減されたフロントフロアパネル45に伝達された荷重を受け持つに足りる厚さとすることができ、フロアフレーム31,32のエネルギー容器18への影響(エネルギー容器18の下面18にある凹部64高さ)が少なく、車幅中央にある燃料ポンプ108(図26参照)が凹部64より外方の燃料を吸引できず、エネルギー容器18の実質的容量が減少してしまうことがないため、公表給油量(燃料量)を増大させることができる。
 車体構造では、図19~図21に示されたように、フロアエクステンション27に、断面凹状に形成されて左右の縦壁部86,86の後端86b,86bが内方に閉じて荷重伝達部83が形成される。フロアフレーム31,32は、断面ハット状の本体部81と、本体部81を閉塞する蓋部82とからなり、本体部81の前端81aからフランジ(縦フランジ)88aを下方に折り曲げるとともにこれを前方に延ばして荷重受け部84を形成し、車体11にフロアフレーム31,32が固定される際、荷重伝達部83と荷重受け部84が対峙するように位置する。
 すなわち、車体11にフロアフレーム31,32が固定される際、荷重伝達部83と荷重受け部84が対峙するように位置するので、車体11に前方から衝突荷重が入力された際、フロントトンネルクロスメンバ57とトンネル部25によって負担が軽減されることにより中空の断面ハット状としても適切な荷重伝達が実現できる。
 エネルギー容器18(図2参照)を支持するフロアフレーム31,32を、フロアフレーム31,32のフロアエクステンション27固定位置より低く湾曲させたとしても適切な荷重伝達を実現できるので、車体11を低床化し、又はエネルギー容器18を大容量化することが可能となる。
 車体構造では、図1~図3に示されたように、車体11は、ダッシュボードロア21の後方に位置してかつ左右のフロントサイドフレーム22,22より車幅外方に位置して車体11の前後方向へ延びている左右のサイドシル23,23と、左右のフロントサイドフレーム22,22の後端22a,22aからフロントフロアパネル45の下面45aに沿ってサイドシル23,23側に偏ったサイドシルエクステンション28,28と、フロントフロアパネル45とリアフロアパネル46との接合部101上方に左右のサイドシル23,23に架け渡されたセンタトンネルクロスメンバ34とを備えている。フロントフロアパネル45は、フロアエクステンション27,27とサイドシルエクステンション28,28との間に足置き部43,44を有する。
 すなわち、左右のフロントサイドフレーム22,22から入力された荷重をサイドシルエクステンション28,28を介して左右のサイドシル23,23に接続することで大きな荷重を受け持たせることができ、フロアパネル24やフロアフレーム31,32への負担を軽減させることができる。
 フロアエクステンション27,27とサイドシルエクステンション28,28との間に高強度な足置き部43,44(フロントフロアパネル45)を配設し、フロントフロアパネル45とリアフロアパネル46との接合部101上方にセンタトンネルクロスメンバ34を配設したので、左右のサイドシル23,23に接続されることで負担が軽減されたフロントフロアパネル45に伝達された荷重がセンタトンネルクロスメンバ34を介して左右のサイドシル23,23に伝達される。さらにフロアフレーム31,32を負担が軽減された荷重に足りる厚さとすることができ、車体11の低床化に貢献する。
 フロアエクステンション27,27とサイドシルエクステンション28,28との間に高強度な足置き部43,44(フロントフロアパネル45)を配設し、略三角形状の高剛性体を構成したことにより、荷重入力の際、フロントフロアパネル45を変形させずに荷重を車体後方に伝達させることができ、乗員の足元を保護することができる。
 車体構造は、図1~図3に示されたように、足置き部43,44に、フロアエクステンション27,27とサイドシルエクステンション28,28との間にさらに車体11の下方に膨出した略三角形状の補強部43a,44aを有する(図5も参照)。
 すなわち、フロアエクステンション27,27とサイドシルエクステンション28,28の間の足置き部43,44(フロントフロアパネル45)に補強部43a,44aを備えたので、左右のサイドシル23,23に接続されることで負担が軽減されたフロントフロアパネル45に伝達された荷重がセンタトンネルクロスメンバ34を介して左右のサイドシル23,23に伝達される。その結果、フロアフレーム31,32を負担が軽減された荷重に対応した厚さとすることができ、車体11の低床化に貢献する。
 また、フロアエクステンション27,27とサイドシルエクステンション28,28の間の足置き部43,44(フロントフロアパネル45)に補強部43a,44aを備えたので、さらに略三角形状の高剛性体となったことにより、荷重入力の際、フロントフロアパネル45を変形させずに荷重を車体後方に伝達させることができ、乗員の足元を保護することができる。
 本発明に係る車体構造は、図1に示すように、車両10は乗用車であったが、これに限るものではなく、ミニバンや貨物車両等の他の車両に採用することを妨げるものではない。
 本発明に係る車体構造は、セダンやワゴンなどの乗用車に採用するのに好適である。
 11…車体、18…エネルギー容器(燃料タンク)、21…ダッシュボードロア、21a…ダッシュボードロアの下面、22…左右のフロントサイドフレーム、22a…左右のフロントサイドフレームの後端、23…左右のサイドシル、24…フロアパネル、25…トンネル部、27…左右のフロアエクステンション、28…サイドシルエクステンション、31,32…フロアフレーム、34…センタトンネルクロスメンバ、43,44…足置き部、43a,44a…略三角形状の補強部、45…フロントフロアパネル、45a…フロントフロアパネルの下面、46…リアフロアパネル、47,48…車体の座席、51,52…膨出部、51a,52a…膨出部の後端、57…フロントトンネルクロスメンバ、58…リアトンネルクロスメンバ、81…フロアフレームの本体部、81a…本体部の前端、82…フロアフレームの蓋部、83…荷重伝達部、84…荷重受け部、86…フロアエクステンションの左右の縦壁部、86b,86b…縦壁部の後端、88a…フランジ(縦フランジ)、101…フロントフロアパネルとリアフロアパネルとの接合部、102…ダッシュボードロアとフロアパネルとの接合部。

Claims (5)

  1.  車体構造であって、
     車体の前部に位置して前記車体の前後方向へ延びている左右のフロントサイドフレームと、
     前記左右のフロントサイドフレームの後方に位置して前記車体を前後に区画するダッシュボードロアと、
     前記車体の車幅方向に延在して前記ダッシュボードロアの下部から後方へ延びているフロアパネルと、
     前記ダッシュボードロアの車幅中央かつ下端から前記フロアパネルの後部へ亘って前記フロアパネルから上方へ膨出したトンネル部と、
    を具備しており、
     前記フロアパネルは、
     前記車体の座席を前記トンネル部の左右に配置された膨出部と、
     前記膨出部の後端に車幅方向に延在するリアトンネルクロスメンバと、を備え、
     前記車体は、
     前記左右のフロントサイドフレームの後端から前記ダッシュボードロアの下面に沿って前記トンネル部側に偏倚する左右のフロアエクステンションと、
     前記左右のフロアエクステンションと前記リアトンネルクロスメンバとの間に架け渡されるように延在し、リアフロアパネルから車体上下方向に所定の距離を有するフロアフレームと、
     前記膨出部の下方に配設され、前記フロアフレームに支持されるエネルギー容器と、を備え、
     前記フロアフレームは、前記車体下方から前記車体着脱自在に固定されていることを特徴とする車体構造。
  2.  前記車体は、前記左右のフロアエクステンション間に架け渡され、前記ダッシュボードロアと前記フロアパネルとの接合部近傍の前記トンネル部の下面に沿って車幅方向に延びるフロントトンネルクロスメンバを備え、
     前記フロアパネルは、前記車体の前後で、前記車体に搭乗した乗員の足元に対応する位置に前記車体の下方へ膨出して前記トンネル部の左右に配置される足置き部を有するフロントフロアパネルと、前記膨出部を有するリアフロアパネルと、に分割されてなり、
     前記フロントフロアパネルは、前記リアフロアパネルよりも高強度である、請求項1に記載の車体構造。
  3.  前記左右のフロアエクステンションの各々は、断面凹状を形成して左右の縦壁部の後端が内方に閉じて形成された荷重伝達部を有し、
     前記フロアフレームは、断面ハット状の本体部と、前記本体部を閉塞する蓋部とからなり、前記本体部の前端からフランジを下方に折り曲げて荷重受け部を形成し、前記車体に前記フロアフレームが取り付けられる際、前記荷重伝達部と前記荷重受け部が対峙するように位置している、請求項1に記載の車体構造。
  4.  前記車体は、
     前記ダッシュボードロアの後方に位置してかつ前記左右のフロントサイドフレームより車幅外方に位置して前記車体の前後方向へ延びている左右のサイドシルと、
     前記左右のフロントサイドフレームの後端から前記フロントフロアパネルの下面に沿って前記サイドシル側に偏倚するサイドシルエクステンションと、
     前記フロントフロアパネルと前記リアフロアパネルとの接合部上方に前記左右のサイドシル間に架け渡されたセンタトンネルクロスメンバと、を備え、
     前記フロントフロアパネルは、前記フロアエクステンションと前記サイドシルエクステンションとの間に前記足置き部を有する、請求項2に記載の車体構造。
  5.  前記足置き部は、前記フロアエクステンションと前記サイドシルエクステンションとの間にさらに前記車体の下方に膨出した略三角形状の補強部を有する、請求項4に記載の車体構造。
PCT/JP2012/079472 2011-12-15 2012-11-14 車体構造 WO2013088896A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12857598.2A EP2792526B1 (en) 2011-12-15 2012-11-14 Vehicle body structure
BR112014014528-8A BR112014014528B1 (pt) 2011-12-15 2012-11-14 Estrutura de corpo de veículo
JP2013549173A JP5788994B2 (ja) 2011-12-15 2012-11-14 車体構造
US14/365,190 US9090160B2 (en) 2011-12-15 2012-11-14 Vehicle body structure
CN201280061947.2A CN103998273B (zh) 2011-12-15 2012-11-14 车身构造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-274423 2011-12-15
JP2011274423 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013088896A1 true WO2013088896A1 (ja) 2013-06-20

Family

ID=48612351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079472 WO2013088896A1 (ja) 2011-12-15 2012-11-14 車体構造

Country Status (6)

Country Link
US (1) US9090160B2 (ja)
EP (1) EP2792526B1 (ja)
JP (1) JP5788994B2 (ja)
CN (1) CN103998273B (ja)
BR (1) BR112014014528B1 (ja)
WO (1) WO2013088896A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193342A (ja) * 2014-03-31 2015-11-05 ダイハツ工業株式会社 自動車のフロア構造
EP3140178A1 (fr) * 2014-05-07 2017-03-15 Renault S.A.S. Tablier avant pour vehicule automobile
JP2017105339A (ja) * 2015-12-10 2017-06-15 トヨタ自動車株式会社 ハイブリッド自動車の車両下部構造
CN104553717B (zh) * 2013-10-23 2017-10-13 本田技研工业株式会社 电动车辆
US11387503B2 (en) * 2018-12-26 2022-07-12 Mazda Motor Corporation Battery mounting device
CN115071831A (zh) * 2021-03-15 2022-09-20 本田技研工业株式会社 车身后部结构

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013103729A1 (de) * 2013-04-15 2014-10-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Tunnelanordnung für eine Bodengruppe einer Fahrzeugkarosserie sowie eine Bodengruppe
KR20160055631A (ko) * 2014-11-10 2016-05-18 현대자동차주식회사 차체보강구조
FR3039103B1 (fr) * 2015-07-23 2019-02-01 Renault S.A.S Ensemble de reservoirs pour vehicule automobile.
RU2681512C1 (ru) * 2016-02-05 2019-03-06 Ниппон Стил Энд Сумитомо Метал Корпорейшн Конструкция передней части транспортного средства
JP6235637B2 (ja) * 2016-02-29 2017-11-22 本田技研工業株式会社 自動車の車体構造
KR102506842B1 (ko) * 2016-11-17 2023-03-08 현대자동차주식회사 차체의 배터리 지지구조
JP6397534B1 (ja) * 2017-04-25 2018-09-26 本田技研工業株式会社 車体フロア構造
KR20180129084A (ko) * 2017-05-25 2018-12-05 현대자동차주식회사 충돌흡수 구조를 갖는 일체형 사이드 멤버
JP6555621B2 (ja) * 2017-06-13 2019-08-07 本田技研工業株式会社 車体下部構造
US10556624B2 (en) * 2017-06-16 2020-02-11 Ford Global Technologies, Llc Vehicle underbody component protection assembly
CN110406594A (zh) * 2018-04-26 2019-11-05 重庆金康新能源汽车有限公司 车架及汽车
JP7059878B2 (ja) * 2018-10-03 2022-04-26 トヨタ自動車株式会社 車両後部構造
JP7247853B2 (ja) * 2019-10-16 2023-03-29 マツダ株式会社 車体構造
KR20220031326A (ko) * 2020-09-04 2022-03-11 현대자동차주식회사 차량용 차체
FR3122361A1 (fr) * 2021-04-29 2022-11-04 Psa Automobiles Sa Dispositif de protection des véhicules automobiles hybrides contre les chocs
CN113306629B (zh) * 2021-06-03 2023-01-31 江铃汽车股份有限公司 一种多传力路径纵梁及燃油箱保护结构
JP2023122982A (ja) * 2022-02-24 2023-09-05 マツダ株式会社 車体前部構造

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000085382A (ja) * 1998-07-13 2000-03-28 Honda Motor Co Ltd 車両用燃料タンクの配置構造
JP2001219873A (ja) * 2000-02-10 2001-08-14 Toyota Auto Body Co Ltd 車両の車体下部構造
JP2008230460A (ja) * 2007-03-22 2008-10-02 Mazda Motor Corp 車両の下部車体構造
WO2011055695A1 (ja) 2009-11-05 2011-05-12 本田技研工業株式会社 車体構造
JP2011121483A (ja) 2009-12-11 2011-06-23 Mitsubishi Motors Corp 車両用バッテリユニットの取付構造
JP2011126422A (ja) 2009-12-17 2011-06-30 Honda Motor Co Ltd 車体前部構造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3319975A (en) * 1965-06-28 1967-05-16 Clyde H Carlson Palletized truck body with center spine
JPH05201356A (ja) * 1992-01-24 1993-08-10 Honda Motor Co Ltd 電気自動車の車体構造
WO2001064500A1 (de) * 2000-02-29 2001-09-07 Efa Holding Ag Lastkraftwagen mit einem fahrzeugrahmen
JP3786093B2 (ja) * 2003-02-07 2006-06-14 日産自動車株式会社 車体前部構造
JP4178479B2 (ja) * 2006-04-19 2008-11-12 本田技研工業株式会社 燃料タンクの支持構造
JP4875558B2 (ja) 2007-07-12 2012-02-15 本田技研工業株式会社 車体フレーム構造
JP4695176B2 (ja) * 2008-11-25 2011-06-08 本田技研工業株式会社 車体前部構造
DE102009042513A1 (de) * 2009-09-22 2011-03-24 GM Global Technology Operations, Inc., Detroit Fahrzeug mit Energiespeicherbereich
DE102010018093A1 (de) * 2010-04-24 2011-10-27 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Tankmodul für ein Kraftfahrzeug

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000085382A (ja) * 1998-07-13 2000-03-28 Honda Motor Co Ltd 車両用燃料タンクの配置構造
JP3765947B2 (ja) 1998-07-13 2006-04-12 本田技研工業株式会社 車両用燃料タンクの配置構造
JP2001219873A (ja) * 2000-02-10 2001-08-14 Toyota Auto Body Co Ltd 車両の車体下部構造
JP2008230460A (ja) * 2007-03-22 2008-10-02 Mazda Motor Corp 車両の下部車体構造
WO2011055695A1 (ja) 2009-11-05 2011-05-12 本田技研工業株式会社 車体構造
JP2011121483A (ja) 2009-12-11 2011-06-23 Mitsubishi Motors Corp 車両用バッテリユニットの取付構造
JP2011126422A (ja) 2009-12-17 2011-06-30 Honda Motor Co Ltd 車体前部構造

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104553717B (zh) * 2013-10-23 2017-10-13 本田技研工业株式会社 电动车辆
JP2015193342A (ja) * 2014-03-31 2015-11-05 ダイハツ工業株式会社 自動車のフロア構造
EP3140178A1 (fr) * 2014-05-07 2017-03-15 Renault S.A.S. Tablier avant pour vehicule automobile
EP3140178B1 (fr) * 2014-05-07 2021-10-20 Renault S.A.S. Tablier avant pour vehicule automobile
JP2017105339A (ja) * 2015-12-10 2017-06-15 トヨタ自動車株式会社 ハイブリッド自動車の車両下部構造
US9963031B2 (en) 2015-12-10 2018-05-08 Toyota Jidosha Kabushiki Kaisha Vehicle lower portion structure for a hybrid vehicle
US11387503B2 (en) * 2018-12-26 2022-07-12 Mazda Motor Corporation Battery mounting device
CN115071831A (zh) * 2021-03-15 2022-09-20 本田技研工业株式会社 车身后部结构
US11884326B2 (en) 2021-03-15 2024-01-30 Honda Motor Co., Ltd. Vehicle body rear structure

Also Published As

Publication number Publication date
BR112014014528A2 (pt) 2017-06-13
CN103998273A (zh) 2014-08-20
JPWO2013088896A1 (ja) 2015-04-27
US20140333056A1 (en) 2014-11-13
BR112014014528B1 (pt) 2022-02-01
EP2792526A1 (en) 2014-10-22
JP5788994B2 (ja) 2015-10-07
EP2792526B1 (en) 2016-07-13
CN103998273B (zh) 2017-05-17
EP2792526A4 (en) 2015-06-03
US9090160B2 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
JP5788994B2 (ja) 車体構造
JP5738163B2 (ja) 車体構造
US10889334B2 (en) Vehicle rear structure
EP2447099B1 (en) Hybrid vehicle structure
US8668248B2 (en) Vehicle body structure
JP3976198B2 (ja) 車体前部構造
EP2740651B1 (en) Vehicle body lateral structure
US7748774B2 (en) Vehicle body structure
US9714052B2 (en) Rear vehicle-body structure of automotive vehicle
US20200231221A1 (en) Rear vehicle-body structure of vehicle
CN107097858B (zh) 车身结构
JP2012006507A (ja) 車両の後部車体構造
US10836435B2 (en) Vehicle rear structure
JP2010173359A (ja) 車両用マウント構造
JP2007083754A (ja) 車両の後部車体構造
JP2021059174A (ja) 車両の下部車体構造
US20230271582A1 (en) Vehicle front structure
CN209814124U (zh) 车辆驾驶室的顶盖骨架以及车辆运输车
JP7402905B2 (ja) 車体後部構造
JP7102089B2 (ja) キャブオーバ車の前部構造
JP7268475B2 (ja) 車両の下部車体構造
JP2007076485A (ja) 車両の補機配設構造
JP2017178027A (ja) 車両の車体後部構造
JPH11255155A (ja) 車両の後部車体構造
JP2008068735A (ja) 車両の下部車体構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549173

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14365190

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012857598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012857598

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014014528

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014014528

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140613