WO2013077089A1 - 炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
WO2013077089A1
WO2013077089A1 PCT/JP2012/075516 JP2012075516W WO2013077089A1 WO 2013077089 A1 WO2013077089 A1 WO 2013077089A1 JP 2012075516 W JP2012075516 W JP 2012075516W WO 2013077089 A1 WO2013077089 A1 WO 2013077089A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
semiconductor device
layer
etching
carbide layer
Prior art date
Application number
PCT/JP2012/075516
Other languages
English (en)
French (fr)
Inventor
増田 健良
智亮 畑山
Original Assignee
住友電気工業株式会社
国立大学法人奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 国立大学法人奈良先端科学技術大学院大学 filed Critical 住友電気工業株式会社
Priority to EP12851007.0A priority Critical patent/EP2784805A4/en
Priority to CN201280051730.3A priority patent/CN103890921A/zh
Publication of WO2013077089A1 publication Critical patent/WO2013077089A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/931Silicon carbide semiconductor

Definitions

  • the present invention relates to a method for manufacturing a silicon carbide semiconductor device, and more particularly to a method for manufacturing a silicon carbide semiconductor device including a silicon carbide layer having inclined side surfaces.
  • SiC silicon carbide
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the side wall of the gate trench is tapered. Specifically, a gate trench formed in the semiconductor layer by performing isotropic etching after partially removing the semiconductor layer made of silicon carbide by anisotropic etching using an etching mask having an opening pattern The side wall is tapered.
  • the side wall (side surface) of the gate trench is formed by isotropic etching as disclosed in this publication, it is difficult to make the surface orientation of the side surface sufficiently close to a specific crystal plane. It was. If the plane orientation of the side surface can be made close to a specific crystal plane, various advantages can be obtained. For example, if a crystal plane with a high electron mobility is selected, a MOSFET having a low on-resistance can be obtained by increasing the channel mobility.
  • the present invention has been made to solve the above-described problems, and the object thereof is to make the plane orientation of the side surface of the silicon carbide layer included in the silicon carbide semiconductor device closer to a specific crystal plane. It is to provide a method for manufacturing a silicon carbide semiconductor device.
  • a method for manufacturing a silicon carbide semiconductor device includes the following steps.
  • a silicon carbide layer having a main surface is formed on the substrate.
  • a mask is formed to cover a part of the main surface of the silicon carbide layer.
  • Thermal etching using a chlorine-based gas is performed on the main surface of the silicon carbide layer on which the mask is formed so that the side surface inclined with respect to the main surface is provided in the silicon carbide layer.
  • the step of performing thermal etching is performed in an atmosphere in which the partial pressure of the chlorine-based gas is 50% or less.
  • the thermal etching is performed in an atmosphere in which the partial pressure of the chlorine-based gas is 50% or less.
  • the quantity of the chlorine-type gas supplied to the surface to be etched is suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the surface orientation of the side surface formed in the silicon carbide layer by etching can be made closer to a specific crystal plane.
  • the step of performing the thermal etching is preferably performed under a reduced pressure atmosphere.
  • the quantity of the chlorine-type gas supplied to the surface to be etched is suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the surface orientation of the side surface formed in the silicon carbide layer by etching can be made closer to a specific crystal plane.
  • the step of performing the thermal etching is preferably performed at 1000 ° C. or higher.
  • the surface to be etched is chemically activated, and the amount of chlorine gas consumed by etching on this surface increases. Therefore, the amount of chlorine-based gas having etching ability existing on the surface to be etched can be suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the surface orientation of the side surface formed in the silicon carbide layer by etching can be made closer to a specific crystal plane.
  • a method for manufacturing a silicon carbide semiconductor device includes the following steps.
  • a silicon carbide layer having a main surface is formed on the substrate.
  • a mask is formed to cover a part of the main surface of the silicon carbide layer.
  • Thermal etching using a chlorine-based gas is performed on the main surface of the silicon carbide layer on which the mask is formed so that the side surface inclined with respect to the main surface is provided in the silicon carbide layer.
  • the step of performing thermal etching is performed in a reduced pressure atmosphere.
  • the thermal etching is performed in a reduced pressure atmosphere.
  • the quantity of the chlorine-type gas supplied to the surface to be etched is suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the surface orientation of the side surface formed in the silicon carbide layer by etching can be made closer to a specific crystal plane.
  • the reduced pressure atmosphere has a pressure of 1/10 or less of atmospheric pressure. Therefore, the quantity of the chlorine-type gas supplied to the surface to be etched is sufficiently suppressed.
  • the step of performing the thermal etching is preferably performed in an atmosphere in which the partial pressure of the chlorine-based gas is 50% or less.
  • the quantity of the chlorine-type gas supplied to the surface to be etched is suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the surface orientation of the side surface formed in the silicon carbide layer by etching can be made closer to a specific crystal plane.
  • the step of performing the thermal etching is performed at 1000 ° C. or higher.
  • the surface to be etched is chemically activated, and the amount of chlorine gas consumed by etching on this surface increases. Therefore, the amount of chlorine-based gas having etching ability existing on the surface to be etched can be suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the surface orientation of the side surface formed in the silicon carbide layer by etching can be made closer to a specific crystal plane.
  • a method for manufacturing a silicon carbide semiconductor device includes the following steps.
  • a silicon carbide layer having a main surface is formed on the substrate.
  • a mask is formed to cover a part of the main surface of the silicon carbide layer.
  • Thermal etching using a chlorine-based gas is performed on the main surface of the silicon carbide layer on which the mask is formed so that the side surface inclined with respect to the main surface is provided in the silicon carbide layer.
  • the step of performing thermal etching is performed at 1000 ° C. or higher.
  • the thermal etching is performed at 1000 ° C. or higher.
  • the surface to be etched is chemically activated, and the amount of chlorine gas consumed by etching on this surface increases. Therefore, the amount of chlorine-based gas having etching ability existing on the surface to be etched can be suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the surface orientation of the side surface formed in the silicon carbide layer by etching can be made closer to a specific crystal plane.
  • the step of performing the thermal etching is performed in an atmosphere in which the partial pressure of the chlorine-based gas is 50% or less.
  • the quantity of the chlorine gas supplied to the surface to be etched is further suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the surface orientation of the side surface formed in the silicon carbide layer by etching can be made closer to a specific crystal plane.
  • the step of performing the thermal etching is performed in a reduced pressure atmosphere.
  • the quantity of the chlorine-type gas supplied to the surface to be etched is suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the surface orientation of the side surface formed in the silicon carbide layer by etching can be made closer to a specific crystal plane.
  • the method for manufacturing the silicon carbide semiconductor device further includes the following steps.
  • a gate insulating film is formed on the side surface of the silicon carbide layer.
  • a gate electrode facing the side surface of the silicon carbide layer is formed through the gate insulating film. Accordingly, a side surface having a plane orientation closer to a specific crystal plane can be used as a channel surface controlled by the gate electrode. Therefore, variation in channel mobility can be suppressed.
  • the specific crystal plane has high channel mobility, high channel mobility can be stably obtained.
  • the silicon carbide semiconductor device is a diode having a current path along the thickness direction of the silicon carbide layer between the main surface of the silicon carbide layer and the substrate.
  • the side surface is located between the main surface side corresponding to both ends of the diode and the substrate side. Therefore, the leakage current that passes through the surface of the silicon carbide layer passes on the side surface.
  • the side surface have a plane orientation closer to a specific crystal plane as described above, it is possible to stably suppress the ease of current flow on the side surface. As a result, the leakage current of the diode can be stably suppressed to a low value.
  • the specific crystal plane has a low interface state density, the leakage current can be stably suppressed.
  • the plane orientation of the side surface of the silicon carbide layer included in the silicon carbide semiconductor device can be made closer to a specific crystal plane.
  • FIG. 1 is a partial cross sectional view schematically showing a configuration of a silicon carbide semiconductor device in a first embodiment of the present invention.
  • FIG. 2 is a partial plan view schematically showing a configuration of a silicon carbide layer included in the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a first step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a second step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial plan view schematically showing a third step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a third step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a fourth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 10 is a partial plan view schematically showing a fifth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a fifth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a sixth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial perspective view schematically showing a sixth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a seventh step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 12 is a partial cross sectional view schematically showing an eighth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 12 is a partial cross sectional view schematically showing a ninth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1. It is a top view for demonstrating the rotational shift of a mask. It is a fragmentary top view which shows roughly the shape of the side surface of the silicon carbide layer in a comparative example.
  • FIG. 4 is a partial plan view schematically showing a shape of a side surface of a silicon carbide layer in the present embodiment.
  • the silicon carbide semiconductor device of the present embodiment is a vertical MOSFET 101 having a trench gate.
  • MOSFET 101 has a substrate 1 having n-type conductivity and a silicon carbide layer 19 formed epitaxially on main surface MS of substrate 1.
  • Silicon carbide layer 19 includes a breakdown voltage holding layer 2 having an n-type conductivity type, a p-type body layer 3, an n-type source contact layer 4, and a contact region 5 having a p-type conductivity type.
  • the substrate 1 is made of silicon carbide having a single crystal structure of either hexagonal system or cubic system.
  • the substrate 1 is provided with a main surface MS having an off angle within 5 degrees from the reference plane.
  • the reference plane is a ⁇ 000-1 ⁇ plane, and more preferably a (000-1) plane.
  • the reference plane is a ⁇ 111 ⁇ plane in the case of a cubic system.
  • the off angle is 0.5 degrees or more.
  • Silicon carbide layer 19 has a main surface TS that is substantially parallel to main surface MS of substrate 1.
  • the trench 6 has a side surface SS.
  • Trench 6 has a tapered shape that widens toward the opening, and therefore side surface SS is inclined with respect to main surface TS.
  • a portion of the side surface SS formed by the p-type body layer 3 constitutes a channel surface of the MOSFET 101.
  • the side surface SS has a specific crystal plane. Specifically, the side surface SS substantially includes any one of the ⁇ 0-33-8 ⁇ plane and the ⁇ 01-1-4 ⁇ plane in the case of the hexagonal system, and substantially in the case of the cubic system. Includes ⁇ 100 ⁇ planes.
  • the presence of the trench 6 corresponds to the existence of a mesa structure having the main surface TS as the top surface in a reverse view.
  • the shape of the top surface is hexagonal as shown in FIG. 2 in the case of hexagonal crystal and rectangular or square in the case of cubic crystal.
  • the semiconductor device also includes a gate insulating film 8, a gate electrode 9, an interlayer insulating film 10, a source electrode 12, a source wiring electrode 13, a drain electrode 14, and a back surface protective electrode 15.
  • the breakdown voltage holding layer 2 is formed on one main surface of the substrate 1.
  • a p-type body layer 3 is formed on the breakdown voltage holding layer 2.
  • An n-type source contact layer 4 is formed on the p-type body layer 3.
  • a p-type contact region 5 is formed so as to be surrounded by the n-type source contact layer 4.
  • a gate insulating film 8 is formed on the side surface SS and the bottom surface of the trench 6. This gate insulating film 8 extends to the upper surface of the n-type source contact layer 4.
  • a gate electrode 9 is formed on the gate insulating film 8 so as to fill the inside of the trench 6 (that is, so as to fill a space between adjacent mesa structures).
  • the upper surface of the gate electrode 9 has substantially the same height as the upper surface of the portion located on the upper surface of the n-type source contact layer 4 in the gate insulating film 8.
  • An interlayer insulating film 10 is formed so as to cover a portion of the gate insulating film 8 extending to the upper surface of the n-type source contact layer 4 and the gate electrode 9.
  • an opening 11 is formed so as to expose a part of the n-type source contact layer 4 and the p-type contact region 5.
  • a source electrode 12 is formed so as to fill the inside of the opening 11 and to be in contact with a part of the p-type contact region 5 and the n-type source contact layer 4.
  • Source wiring electrode 13 is formed to be in contact with the upper surface of source electrode 12 and to extend on the upper surface of interlayer insulating film 10.
  • a drain electrode 14 is formed on the back surface of the substrate 1 opposite to the main surface on which the breakdown voltage holding layer 2 is formed.
  • the drain electrode 14 is an ohmic electrode.
  • a back surface protection electrode 15 is formed on the surface opposite to the surface facing the substrate 1.
  • Side surface SS (side wall of the mesa structure) of trench 6 is substantially a ⁇ 0-33-8 ⁇ plane when silicon carbide layer 19 has a hexagonal crystal structure.
  • the off angle with respect to the ⁇ 0-33-8 ⁇ plane in the ⁇ 1-100> direction is -3 ° or more and 3 ° or less, more preferably ⁇ 1 ° or more
  • the surface is 1 ° or less. Since such a side surface SS is a stable crystal surface, when used as a channel surface, a higher channel mobility can be obtained than when other crystal surfaces (for example, (0001) surface) are used.
  • the leakage current is reduced and a high breakdown voltage is obtained.
  • a substrate 1 made of silicon carbide is prepared.
  • the main surface MS of the substrate 1 is approximately ⁇ 000-1 ⁇ plane in the case of hexagonal system and approximately ⁇ 111 ⁇ plane in the case of cubic system.
  • silicon carbide layer 19 provided with main surface TS is formed on substrate 1.
  • silicon carbide layer 19 having n type conductivity is formed by epitaxial growth on main surface MS of substrate 1.
  • This epitaxial growth is carried out by a CVD (Chemical Vapor Deposition) method using, for example, a mixed gas of silane (SiH 4 ) and propane (C 3 H 8 ) as a source gas and using, for example, hydrogen gas (H 2 ) as a carrier gas. can do.
  • a CVD Chemical Vapor Deposition
  • SiH 4 silane
  • propane C 3 H 8
  • hydrogen gas H 2
  • nitrogen (N) or phosphorus (P) is preferably introduced as an impurity for imparting n-type to the silicon carbide layer 19.
  • the impurity concentration can be, for example, 5 ⁇ 10 15 cm ⁇ 3 or more and 5 ⁇ 10 16 cm ⁇ 3 or less.
  • the breakdown voltage holding layer 2, the p-type body layer 3, and the n-type source contact layer 4 are formed from the silicon carbide layer 19. Specifically, ion implantation is performed on the upper surface layer of silicon carbide layer 19 to form p-type body layer 3 and n-type source contact layer 4. Become. In ion implantation for forming p-type body layer 3, impurity ions for imparting p-type, such as aluminum (Al), are implanted. At this time, the depth of the region where the p-type body layer 3 is formed can be adjusted by adjusting the acceleration energy of the implanted ions.
  • the n-type source contact layer 4 is formed by ion-implanting impurity ions for imparting the n-type into the breakdown voltage holding layer 2 in which the p-type body layer 3 is formed.
  • impurity for imparting n-type for example, phosphorus (P) or the like can be used.
  • a mask 17 covering a part of main surface TS of silicon carbide layer 19 is formed.
  • an insulating film such as a silicon oxide film can be used.
  • the following steps can be used. That is, a silicon oxide film is formed on the upper surface of the n-type source contact layer 4 using a CVD method or the like. Then, a resist film (not shown) having a predetermined opening pattern is formed on the silicon oxide film by using a photolithography method. Using this resist film as a mask, the silicon oxide film is removed by etching. Thereafter, the resist film is removed. As a result, a mask 17 having an opening pattern is formed.
  • recess 16 having a side surface substantially perpendicular to main surface TS of silicon carbide layer 19 is formed.
  • the n-type source contact layer 4, the p-type body layer 3 and a part of the breakdown voltage holding layer 2 are etched using the mask 17.
  • the etching for example, reactive ion etching (RIE) or ion milling can be used.
  • ICP inductively coupled plasma
  • RIE reactive ion etching
  • ICP inductively coupled plasma
  • ICP-RIE using SF 6 or a mixed gas of SF 6 and O 2 as a reaction gas can be used.
  • thermal etching is performed on main surface TS of silicon carbide layer 19 on which mask 17 is formed.
  • the thermal etching is etching performed by using a chemical reaction generated by supplying a process gas containing a reactive gas to a heated etching target.
  • a chlorine-based gas is used as the reactive gas, and chlorine gas is preferably used.
  • the thermal etching is preferably performed in an atmosphere in which the partial pressure of the chlorine-based gas is 50% or less.
  • the thermal etching is preferably performed in a reduced pressure atmosphere, and more preferably, the reduced pressure atmosphere has a pressure of 1/10 or less of atmospheric pressure.
  • Thermal etching is preferably performed under the condition that the temperature (heat treatment temperature) of substrate 1 provided with silicon carbide layer 19 is 1000 ° C. or higher.
  • a process gas a mixed gas of oxygen gas and chlorine gas is used as a reaction gas, and etching is performed at a heat treatment temperature of 700 ° C. or more and 1200 ° C. or less, for example.
  • the heat treatment temperature is preferably 700 ° C. or higher and 1200 ° C. or lower.
  • a quartz member can be used in an apparatus for heat treatment.
  • the upper limit of the temperature is more preferably 1100 ° C, still more preferably 1000 ° C.
  • the lower limit of the temperature is more preferably 800 ° C, and still more preferably 900 ° C.
  • the etching rate in the thermal etching process for forming the surface including the ⁇ 0-33-8 ⁇ plane, the ⁇ 01-1-4 ⁇ plane, or the ⁇ 100 ⁇ plane can be set to a sufficiently practical value. Therefore, the processing time of the process can be sufficiently shortened.
  • the inventors preferably set the ratio of the flow rate of oxygen to the flow rate of chlorine supplied in this thermal etching to be 0.1 or more and 2.0 or less, and more preferably the lower limit of this ratio is 0.25. .
  • a plane including the ⁇ 0-33-8 ⁇ plane, the ⁇ 01-1-4 ⁇ plane, or the ⁇ 100 ⁇ plane can be reliably formed.
  • the reaction gas may contain a carrier gas in addition to the above-described chlorine gas and oxygen gas.
  • a carrier gas for example, nitrogen (N 2 ) gas, argon gas, helium gas or the like can be used.
  • the etching rate of SiC is, for example, about 70 ⁇ m / hr.
  • SiO 2 silicon oxide
  • the crystal plane exposed at the side surface SS may be substantially a ⁇ 0-33-8 ⁇ plane. That is, in the etching under the conditions described above, the ⁇ 0-33-8 ⁇ plane that is the crystal plane with the slowest etching rate is self-formed as the side face SS of the trench 6. As a result, a structure as shown in FIG. 9 is obtained.
  • the crystal plane constituting the side surface SS may be a ⁇ 01-1-4 ⁇ plane. In the case of a cubic system, the crystal plane constituting the side surface SS may be a ⁇ 100 ⁇ plane.
  • the mask 17 (FIGS. 8 and 9) is removed by an arbitrary method such as etching.
  • contact region 5 and electric field relaxation region 7 are formed.
  • a resist film (not shown) having a predetermined pattern is formed by using a photolithography method so as to extend from the inside of the trench 6 to the upper surface of the n-type source contact layer 4. It is formed.
  • a resist film having an opening pattern formed at the bottom of the trench 6 and a part of the upper surface of the n-type source contact layer 4 is used.
  • an electric field relaxation region 7 is formed at the bottom of the trench 6 and a partial region of the n-type source contact layer 4 is formed. Then, a p-type contact region 5 is formed. Thereafter, the resist film is removed.
  • the planar shape of the trench 6 is a mesh shape in which the planar shape of the unit cell (the annular trench 6 surrounding one mesa structure) is a hexagonal shape.
  • the p-type contact region 5 is disposed substantially at the center of the upper surface of the mesa structure as shown in FIG.
  • the planar shape of the p-type contact region 5 is the same as the outer peripheral shape of the upper surface of the mesa structure, and is a hexagonal shape.
  • an activation annealing step for activating the impurities implanted by the above-described ion implantation is performed.
  • annealing is performed without forming a cap layer on the surface of the epitaxial layer made of silicon carbide (for example, on the side wall of the mesa structure).
  • the inventors do not deteriorate the surface properties of the above-described ⁇ 0-33-8 ⁇ plane even if the activation annealing treatment is performed without forming a protective film such as a cap layer on the surface. It was found that sufficient surface smoothness can be maintained.
  • the activation annealing step is directly performed by omitting the step of forming the protective film (cap layer) before the activation annealing treatment, which has been conventionally considered necessary.
  • the activation annealing step may be performed after the cap layer described above is formed.
  • the activation annealing treatment may be performed by providing a cap layer only on the upper surfaces of the n-type source contact layer 4 and the p-type contact region 5.
  • gate insulating film 8 is formed on side surface SS of silicon carbide layer 19. Specifically, gate insulating film 8 is formed so as to extend from the inside of trench 6 to the upper surfaces of n-type source contact layer 4 and p-type contact region 5.
  • gate insulating film 8 for example, an oxide film (silicon oxide film) obtained by thermally oxidizing silicon carbide layer 19 can be used.
  • gate electrode 9 is formed opposite to side surface SS of silicon carbide layer 19 with gate insulating film 8 interposed therebetween. Specifically, gate electrode 9 is formed on gate insulating film 8 so as to fill the inside of trench 6.
  • a method for forming the gate electrode 9 for example, the following method can be used. First, on the gate insulating film 8, a conductor film to be a gate electrode extending to the inside of the trench 6 and the region on the p-type contact region 5 is formed using a sputtering method or the like.
  • a material of the conductor film any material such as metal can be used as long as it is a conductive material.
  • the portion of the conductor film formed in a region other than the inside of the trench 6 is removed by using an arbitrary method such as etch back or CMP (Chemical Mechanical Polishing).
  • etch back or CMP (Chemical Mechanical Polishing).
  • CMP Chemical Mechanical Polishing
  • interlayer insulating film 10 is formed to cover the upper surface of gate electrode 9 and the upper surface of gate insulating film 8 exposed on p-type contact region 5. Any material can be used for the interlayer insulating film 10 as long as it is an insulating material. Then, a resist film (not shown) having a pattern is formed on the interlayer insulating film 10 by using a photolithography method. In the resist film, an opening pattern is formed in a region located on the p-type contact region 5. Then, using this resist film as a mask, interlayer insulating film 10 and gate insulating film 8 are partially removed by etching. As a result, an opening 11 (see FIG. 14) is formed in the interlayer insulating film 10 and the gate insulating film 8. At the bottom of the opening 11, the p-type contact region 5 and the n-type source contact layer 4 are partially exposed.
  • the source electrode 12 can be formed by the conductor film filled in the opening 11.
  • the source electrode 12 is an ohmic electrode in ohmic contact with the p-type contact region 5 and the n-type source contact layer 4.
  • the drain electrode 14 is formed on the back surface side of the substrate 1 (the surface side opposite to the main surface on which the breakdown voltage holding layer 2 is formed).
  • any material can be used as long as it can make ohmic contact with the substrate 1.
  • the source wiring electrode 13 that contacts the upper surface of the source electrode 12 and extends on the upper surface of the interlayer insulating film 10, and the back surface protection electrode 15 formed on the surface of the drain electrode 14. are formed using an arbitrary method such as a sputtering method. As a result, MOSFET 101 is obtained.
  • the thermal etching is performed in an atmosphere where the partial pressure of the chlorine-based gas is 50% or less.
  • the quantity of the chlorine-type gas supplied to the surface to be etched is suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the plane orientation of side surface SS formed on silicon carbide layer 19 by etching can be made closer to a specific crystal plane.
  • thermal etching is performed in a reduced pressure atmosphere.
  • the quantity of the chlorine-type gas supplied to the surface to be etched is suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the plane orientation of side surface SS formed on silicon carbide layer 19 by etching can be made closer to a specific crystal plane.
  • the reduced pressure atmosphere has a pressure of 1/10 or less of atmospheric pressure. Thereby, the quantity of the chlorine-type gas supplied to the surface to be etched is sufficiently suppressed.
  • thermal etching is performed at 1000 ° C. or higher.
  • the surface to be etched is chemically activated, and the amount of chlorine gas consumed by etching on this surface increases. Therefore, the amount of chlorine-based gas having etching ability existing on the surface to be etched can be suppressed.
  • the progress of etching in a portion having high chemical stability is suppressed, and the etching in a portion having low chemical stability mainly proceeds. Therefore, the plane orientation of side surface SS formed on silicon carbide layer 19 by etching can be made closer to a specific crystal plane.
  • the gate insulating film 8 is formed on the side surface SS of the silicon carbide layer 19, and the gate electrode 9 facing the side surface SS of the silicon carbide layer 19 is formed via the gate insulating film 8.
  • the side surface SS having a plane orientation closer to a specific crystal plane can be used as a channel surface controlled by the gate electrode 9. Therefore, variation in channel mobility can be suppressed.
  • the specific crystal plane has high channel mobility, high channel mobility can be stably obtained.
  • the shape of mask 17 is preferably a hexagon. This hexagonal arrangement may deviate from the ideal arrangement 17i to the arrangement 17r as indicated by the arrows in the figure. In this case, if the thermal etching conditions of the present embodiment are used, the desired side surface SS can be obtained even if there is a certain amount of deviation because the specific crystal plane is more likely to be self-formed.
  • FIG. 16 shows a case where inappropriate thermal etching conditions are used (in the case of a comparative example) in which etching proceeds not only in a portion having low chemical stability but also in a portion having high chemical stability.
  • the side surface SSz with poor linearity in plan view is likely to be formed.
  • a specific crystal plane is self-formed, so that a side surface SS with high linearity in a plan view can be formed as shown in FIG. 18 and 19 show micrographs of the silicon carbide layers in the comparative example and the example, respectively.
  • a V-shaped trench may be provided like the trench 6V (FIG. 20) of the MOSFET 101v.
  • the MOSFET can be further integrated.
  • PiN diode 102 as the silicon carbide semiconductor device of the present embodiment has substrate 1 and a silicon carbide layer having n ⁇ epitaxial layer 42 and p + semiconductor layer 43.
  • the substrate 1 has n-type conductivity.
  • N ⁇ epitaxial layer 42 has n-type conductivity, and has an impurity concentration lower than that of substrate 1.
  • the p + semiconductor layer 43 is provided on the n ⁇ epitaxial layer 42.
  • a mesa structure 44 having a main surface TS as a top surface and a side surface SS is formed.
  • the silicon carbide layer has a surface made of the n ⁇ epitaxial layer 42 so as to surround the mesa structure 44, and a guard ring 45 is provided on this surface. Guard ring 45 has p-type conductivity.
  • the side surface SS is constituted by a specific crystal plane (for example, ⁇ 03-3-8 ⁇ plane). That is, the mesa structure 44 has six planes equivalent to the specific crystal plane ( ⁇ 03-3-8 ⁇ plane) described above.
  • PiN diode 102 has a current path along the thickness direction (longitudinal direction in the figure) of the silicon carbide layer between main surface TS of the silicon carbide layer and substrate 1.
  • the side surface SS is located between the main surface TS side corresponding to both ends of the PiN diode 102 and the substrate 1 side. Therefore, the leak current passing through the surface of the silicon carbide layer passes on side surface SS. Since the side surface SS has a plane orientation closer to a specific crystal plane as described above, the ease of current flow on the side surface SS can be stably suppressed. Thereby, the leakage current of the diode 102 can be stably suppressed to a low value. In addition, since the specific crystal plane has a low interface state density, the leakage current can be stably suppressed.
  • a substrate 1 is prepared.
  • the substrate 1 for example, a substrate made of silicon carbide having a crystal type of hexagonal crystal can be used.
  • An n ⁇ epitaxial layer 42 is formed on the main surface of substrate 1 using an epitaxial growth method. By implanting impurity ions for imparting p-type to the front side of the n ⁇ epitaxial layer 42, a p-type semiconductor layer to be the p + semiconductor layer 43 is formed.
  • an island-shaped mask pattern made of a silicon oxide film is formed in a region to be the mesa structure 44.
  • the planar shape of the mask pattern may be a hexagonal shape, for example, but may be any other shape (for example, a circle or a square).
  • p + semiconductor layer 43 and n ⁇ epitaxial layer 42 are partially removed by etching.
  • a convex portion to be the mesa structure 44 is formed under the mask pattern (corresponding to FIG. 7 of the first embodiment).
  • the side surface SS is formed by etching the side surface of the convex portion by the same thermal etching as in the first embodiment. Thereafter, the mask pattern is removed. Next, a guard ring 45 is formed by ion implantation. Next, an activation annealing process is performed. In the activation annealing treatment, the heat treatment may be performed without forming a cap layer that covers at least the side surface SS.
  • the PiN diode 102 is obtained.
  • a PiN diode 102v provided with a JTE (Junction Termination Extension) region 46 may be used.
  • JTE region 46 has p-type conductivity and is arranged on n ⁇ epitaxial layer 42 so as to be connected to p + semiconductor layer 43.
  • the crystal plane constituting the side surface SS includes any one of ⁇ 03-3-8 ⁇ plane, ⁇ 01-1-4 ⁇ plane, and ⁇ 100 ⁇ plane
  • the crystal plane constituting the side surface SS and a plurality of crystal planes include any of ⁇ 03-3-8 ⁇ plane, ⁇ 01-1-4 ⁇ plane, and ⁇ 100 ⁇ plane.
  • the side surface SS includes the ⁇ 03-3-8 ⁇ plane and other planes will be specifically described.
  • the side surface SS is microscopically, for example, on the side surface of the trench 6, the surface 56a having the surface orientation ⁇ 0-33-8 ⁇ , and the surface orientation of the surface 56a connected to the surface 56a. It may be a chemically stable surface formed by alternately providing the surfaces 56b having different surface orientations.
  • “microscopic” means that the dimensions are as detailed as at least a dimension of about twice the atomic spacing.
  • the surface 56b has a surface orientation ⁇ 0-11-1 ⁇ .
  • the length (width) of the surface 56b in FIG. 23 may be, for example, twice the atomic spacing of Si atoms (or C atoms).
  • the silicon carbide semiconductor device is not limited to these, and may be, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • a configuration in which the p-type and the n-type in the above-described configuration are interchanged may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 基板(1)上に、主表面が設けられた炭化珪素層(19)が形成される。炭化珪素層(19)の主表面の一部を覆うマスク(17)が形成される。主表面に対して傾斜した側面(SS)が炭化珪素層(19)に設けられるように、マスク(17)が形成された炭化珪素層(19)の主表面に対して、塩素系ガスを用いた熱エッチングが行われる。熱エッチングを行う工程は、塩素系ガスの分圧が50%以下である雰囲気下で行われる。

Description

炭化珪素半導体装置の製造方法
 この発明は、炭化珪素半導体装置の製造方法に関し、より特定的には、傾斜した側面を有する炭化珪素層を含む炭化珪素半導体装置の製造方法に関する。
 従来、半導体装置の材料として炭化珪素(SiC)を用いることが提案されている。たとえば、炭化珪素を用いてトレンチゲート型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を形成することが提案されている(特開2008-235546号公報(特許文献1)参照)。
 この公報では、ゲート絶縁膜の耐圧を向上させるため、ゲートトレンチの側壁をテーパ状にすることが提案されている。具体的には、開口パターンを有するエッチングマスクを用いて炭化珪素からなる半導体層を異方性エッチングにより部分的に除去した後、等方性エッチングを行うことで、半導体層に形成されるゲートトレンチの側壁をテーパ状にしている。
特開2008-235546号公報
 この公報に開示されているようにゲートトレンチの側壁(側面)の形成が等方性エッチングにより行われる場合、側面の面方位を、特定の結晶面に十分に近いものとすることが困難であった。側面の面方位を特定の結晶面に近づけることができれば、様々な利点が得られ得る。たとえば、電子の移動度が高い結晶面が選択されれば、チャネル移動度を高めることで、低いオン抵抗を有するMOSFETを得ることができる。
 本発明は、上記のような課題を解決するために成されたものであり、その目的は、炭化珪素半導体装置に含まれる炭化珪素層の側面の面方位を特定の結晶面により近づけることができる炭化珪素半導体装置の製造方法を提供することである。
 本発明の一の局面に従う炭化珪素半導体装置の製造方法は、次の工程を有する。基板上に、主表面が設けられた炭化珪素層が形成される。炭化珪素層の主表面の一部を覆うマスクが形成される。主表面に対して傾斜した側面が炭化珪素層に設けられるように、マスクが形成された炭化珪素層の主表面に対して、塩素系ガスを用いた熱エッチングが行われる。熱エッチングを行う工程は、塩素系ガスの分圧が50%以下である雰囲気下で行われる。
 上記一の局面に従う製造方法によれば、熱エッチングが、塩素系ガスの分圧が50%以下である雰囲気下で行われる。これにより、エッチングされる面に供給される塩素系ガスの量が抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層に形成される側面の面方位を特定の結晶面により近づけることができる。
 上記一の局面に従う製造方法において好ましくは、熱エッチングを行う工程は減圧雰囲気下で行われる。これにより、エッチングされる面に供給される塩素系ガスの量が抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層に形成される側面の面方位を特定の結晶面により近づけることができる。
 上記一の局面に従う製造方法において好ましくは、熱エッチングを行う工程は1000℃以上で行われる。これにより、エッチングされる面が化学的に活性化されるので、この面におけるエッチングによる塩素系ガスの消費量が大きくなる。よって、エッチングされる面上に存在する、エッチング能力を有する塩素系ガスの量が抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層に形成される側面の面方位を特定の結晶面により近づけることができる。
 本発明の他の局面に従う炭化珪素半導体装置の製造方法は、次の工程を有する。基板上に、主表面が設けられた炭化珪素層が形成される。炭化珪素層の主表面の一部を覆うマスクが形成される。主表面に対して傾斜した側面が炭化珪素層に設けられるように、マスクが形成された炭化珪素層の主表面に対して、塩素系ガスを用いた熱エッチングが行われる。熱エッチングを行う工程は減圧雰囲気下で行われる。
 上記他の局面に従う製造方法によれば、熱エッチングが、減圧雰囲気下で行われる。これにより、エッチングされる面に供給される塩素系ガスの量が抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層に形成される側面の面方位を特定の結晶面により近づけることができる。
 上記他の局面に従う製造方法において好ましくは、減圧雰囲気は大気圧の1/10以下の圧力を有する。これにより、エッチングされる面に供給される塩素系ガスの量が十分に抑えられる。
 上記他の局面に従う製造方法において好ましくは、熱エッチングを行う工程は、塩素系ガスの分圧が50%以下である雰囲気下で行われる。これにより、エッチングされる面に供給される塩素系ガスの量が抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層に形成される側面の面方位を特定の結晶面により近づけることができる。
 上記他の局面に従う製造方法において好ましくは、熱エッチングを行う工程は1000℃以上で行われる。これにより、エッチングされる面が化学的に活性化されるので、この面におけるエッチングによる塩素系ガスの消費量が大きくなる。よって、エッチングされる面上に存在する、エッチング能力を有する塩素系ガスの量が抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層に形成される側面の面方位を特定の結晶面により近づけることができる。
 本発明のさらに他の局面に従う炭化珪素半導体装置の製造方法は、次の工程を有する。基板上に、主表面が設けられた炭化珪素層が形成される。炭化珪素層の主表面の一部を覆うマスクが形成される。主表面に対して傾斜した側面が炭化珪素層に設けられるように、マスクが形成された炭化珪素層の主表面に対して、塩素系ガスを用いた熱エッチングが行われる。熱エッチングを行う工程は1000℃以上で行われる。
 上記さらに他の局面に従う製造方法によれば、熱エッチングが1000℃以上で行われる。これにより、エッチングされる面が化学的に活性化されるので、この面におけるエッチングによる塩素系ガスの消費量が大きくなる。よって、エッチングされる面上に存在する、エッチング能力を有する塩素系ガスの量が抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層に形成される側面の面方位を特定の結晶面により近づけることができる。
 上記さらに他の局面に従う製造方法において好ましくは、熱エッチングを行う工程は、塩素系ガスの分圧が50%以下である雰囲気下で行われる。これにより、エッチングされる面に供給される塩素系ガスの量がより抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層に形成される側面の面方位を特定の結晶面により近づけることができる。
 上記さらに他の局面に従う製造方法において好ましくは、熱エッチングを行う工程は、減圧雰囲気下で行われる。これにより、エッチングされる面に供給される塩素系ガスの量が抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層に形成される側面の面方位を特定の結晶面により近づけることができる。
 好ましくは、炭化珪素半導体装置の製造方法は、次の工程をさらに有する。炭化珪素層の側面上にゲート絶縁膜が形成される。次にゲート絶縁膜を介して炭化珪素層の側面に対向するゲート電極が形成される。これにより、特定の結晶面により近い面方位を有する側面を、ゲート電極によって制御されるチャネル面として用いることができる。よってチャネル移動度のばらつきを抑えることができる。また上記特定の結晶面がチャネル移動度の高いものとされることで、安定的に高いチャネル移動度が得られる。
 好ましくは、炭化珪素半導体装置は、炭化珪素層の主表面と基板との間において炭化珪素層の厚さ方向に沿った電流経路を有するダイオードである。この場合、上記側面は、ダイオードの両端に対応する主表面側および基板側の間に位置する。よって、炭化珪素層の表面を経路とするリーク電流は、側面上を通る。側面が、上述したようにより特定の結晶面に近い面方位を有するものとされることで、側面上における電流の流れやすさを安定的に抑えることができる。これによりダイオードのリーク電流を安定的に低い値に抑えることができる。また上記特定の結晶面が界面準位密度の低いものとされることで、安定的にリーク電流を抑えることができる。
 上述したように、本発明によれば、炭化珪素半導体装置に含まれる炭化珪素層の側面の面方位を特定の結晶面により近づけることができる。
本発明の実施の形態1における炭化珪素半導体装置の構成を概略的に示す部分断面図である。 図1の炭化珪素半導体装置が有する炭化珪素層の構成を概略的に示す部分平面図である。 図1の炭化珪素半導体装置の製造方法の第1工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第2工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第3工程を概略的に示す部分平面図である。 図1の炭化珪素半導体装置の製造方法の第3工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第4工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第5工程を概略的に示す部分平面図である。 図1の炭化珪素半導体装置の製造方法の第5工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第6工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第6工程を概略的に示す部分斜視図である。 図1の炭化珪素半導体装置の製造方法の第7工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第8工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第9工程を概略的に示す部分断面図である。 マスクの回転ずれについて説明するための平面図である。 比較例における炭化珪素層の側面の形状を概略的に示す部分平面図である。 本実施の形態における炭化珪素層の側面の形状を概略的に示す部分平面図である。 比較例における炭化珪素層の顕微鏡写真である。 実施例における炭化珪素層の顕微鏡写真である。 図1の変形例を概略的に示す部分断面図である。 本発明の実施の形態2における炭化珪素半導体装置の構成を概略的に示す部分断面図である。 図21の変形例を概略的に示す部分断面図である。 炭化珪素層の側面の一例を概略的に示す部分断面図である。
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。また角度の記載には、全方位角を360度とする系を用いている。
 (実施の形態1)
 図1および図2に示すように、本実施の形態の炭化珪素半導体装置は、トレンチゲートを有する縦型のMOSFET101である。MOSFET101は、n型の導電型を有する基板1と、基板1の主表面MS上にエピタキシャルに形成された炭化珪素層19とを有する。炭化珪素層19は、n型の導電型を有する耐圧保持層2と、p型ボディ層3と、n型ソースコンタクト層4と、p型の導電型を有するコンタクト領域5とを含む。
 基板1は、六方晶系および立方晶系のいずれかの単結晶構造を有する炭化珪素から作られている。また基板1には、基準面から5度以内のオフ角を有する主表面MSが設けられている。基準面は、六方晶系の場合は{000-1}面であり、より好ましくは(000-1)面である。また基準面は立方晶系の場合は{111}面である。好ましくは、オフ角は0.5度以上である。
 炭化珪素層19は、基板1の主表面MSと実質的に平行な主表面TSを有する。トレンチ6は側面SSを有する。トレンチ6は、開口に向かって広がるようなテーパ形状を有し、よって主表面TSに対して側面SSは傾いている。側面SSのうちp型ボディ層3によって形成されている部分は、MOSFET101のチャネル面を構成している。側面SSは特定の結晶面を有する。具体的には、側面SSは、六方晶系の場合は実質的に{0-33-8}面および{01-1-4}面のいずれか一方を含み、立方晶系の場合は実質的に{100}面を含む。
 なおトレンチ6の存在は、逆の見方をすれば、主表面TSを頂面とするメサ構造の存在に対応している。好ましくはこの頂面の形状は、六方晶の場合、図2に示すように六角形であり、立方晶の場合、長方形または正方形である。
 また半導体装置は、ゲート絶縁膜8と、ゲート電極9と、層間絶縁膜10と、ソース電極12と、ソース配線電極13と、ドレイン電極14と、裏面保護電極15とを有する。
 次に半導体装置の詳細について説明する。耐圧保持層2は、基板1の一方の主表面上に形成されている。耐圧保持層2上にはp型ボディ層3が形成されている。p型ボディ層3上には、n型ソースコンタクト層4が形成されている。このn型ソースコンタクト層4に取囲まれるように、p型のコンタクト領域5が形成されている。n型ソースコンタクト層4、p型ボディ層3および耐圧保持層2を部分的に除去することにより、トレンチ6により囲まれたメサ構造が形成されている。
 トレンチ6の側面SSおよび底面上にはゲート絶縁膜8が形成されている。このゲート絶縁膜8はn型ソースコンタクト層4の上部表面上にまで延在している。このゲート絶縁膜8上であって、トレンチ6の内部を充填するように(つまり隣接するメサ構造の間の空間を充填するように)ゲート電極9が形成されている。ゲート電極9の上部表面は、ゲート絶縁膜8においてn型ソースコンタクト層4の上部表面上に位置する部分の上面とほぼ同じ高さになっている。
 ゲート絶縁膜8のうちn型ソースコンタクト層4の上部表面上にまで延在する部分とゲート電極9とを覆うように層間絶縁膜10が形成されている。層間絶縁膜10とゲート絶縁膜8の一部とを除去することにより、n型ソースコンタクト層4の一部とp型のコンタクト領域5とを露出するように開口部11が形成されている。この開口部11の内部を充填するとともに、p型のコンタクト領域5およびn型ソースコンタクト層4の一部と接触するようにソース電極12が形成されている。ソース電極12の上部表面と接触するとともに、層間絶縁膜10の上部表面上に延在するようにソース配線電極13が形成されている。また、基板1において耐圧保持層2が形成された主表面とは反対側の裏面上には、ドレイン電極14が形成されている。このドレイン電極14はオーミック電極である。このドレイン電極14において、基板1と対向する面とは反対側の面上に裏面保護電極15が形成されている。
 トレンチ6の側面SS(メサ構造の側壁)は、炭化珪素層19の結晶構造が六方晶の場合には実質的に{0-33-8}面となっている。具体的には、側面SSを構成する結晶面について、<1-100>方向における{0-33-8}面に対するオフ角が-3°以上3°以下の面、より好ましくは-1°以上1°以下の面となっている。このような側面SSは、安定な結晶面であるため、チャネル面として利用された場合、他の結晶面(たとえば(0001)面)が利用された場合に比して、高いチャネル移動度が得られるとともに、リーク電流が低減され、また高い耐圧が得られる。
 次にMOSFET101の製造方法について説明する。
 まず炭化珪素から作られた基板1(図3)が準備される。基板1の主表面MSは、六方晶系の場合はほぼ{000-1}面であり、立方晶系の場合はほぼ{111}面である。
 図3に示すように、基板1上に、主表面TSが設けられた炭化珪素層19が形成される。具体的には、基板1の主表面MS上におけるエピタキシャル成長によって、導電型がn型である炭化珪素層19が形成される。このエピタキシャル成長は、たとえば原料ガスとしてシラン(SiH4)とプロパン(C38)との混合ガスを用い、キャリアガスとしてたとえば水素ガス(H2)を用いたCVD(Chemical Vapor Deposition)法により実施することができる。また、このとき炭化珪素層19にn型を付与するための不純物としてたとえば窒素(N)やリン(P)を導入することが好ましい。不純物の濃度は、たとえば5×1015cm-3以上5×1016cm-3以下とすることができる。
 図4に示すように、炭化珪素層19から、耐圧保持層2、p型ボディ層3およびn型ソースコンタクト層4が形成される。具体的には、炭化珪素層19の上部表面層にイオン注入を行なうことにより、p型ボディ層3およびn型ソースコンタクト層4が形成され、イオン注入がなされなかった部分が耐圧保持層2となる。p型ボディ層3を形成するためのイオン注入においては、たとえばアルミニウム(Al)などのp型を付与するための不純物イオンが注入される。このとき、注入するイオンの加速エネルギーを調整することによりp型ボディ層3が形成される領域の深さを調整することができる。またn型を付与するための不純物イオンを、p型ボディ層3が形成された耐圧保持層2へイオン注入することにより、n型ソースコンタクト層4が形成される。n型を付与するための不純物としては、たとえばリン(P)などを用いることができる。
 図5および図6に示すように、炭化珪素層19の主表面TSの一部を覆うマスク17が形成される。マスク17として、たとえばシリコン酸化膜などの絶縁膜を用いることができる。マスク17の形成方法としては、たとえば以下のような工程を用いることができる。すなわち、n型ソースコンタクト層4の上部表面上に、CVD法などを用いてシリコン酸化膜を形成する。そして、このシリコン酸化膜上にフォトリソグラフィ法を用いて所定の開口パターンを有するレジスト膜(図示せず)を形成する。このレジスト膜をマスクとして用いて、シリコン酸化膜をエッチングにより除去する。その後レジスト膜を除去する。この結果、開口パターンを有するマスク17が形成される。
 図7に示すように、炭化珪素層19の主表面TSに対してほぼ垂直な側面を有する凹部16が形成される。具体的には、マスク17を用いて、n型ソースコンタクト層4、p型ボディ層3および耐圧保持層2の一部がエッチングされる。エッチングとしてはたとえば反応性イオンエッチング(RIE)またはイオンミリングを用いることができる。RIEとしては特に誘導結合プラズマ(ICP)RIEを用いることができる。具体的には、たとえば反応ガスとしてSF6またはSF6とO2との混合ガスを用いたICP-RIEを用いることができる。
 図8および図9に示すように、主表面TSに対して傾斜した側面SSが炭化珪素層19に設けられるように、トレンチ6が形成される。具体的には、マスク17が形成された炭化珪素層19の主表面TSに対して、熱エッチングが行われる。ここで熱エッチングとは、加熱されたエッチング対象へ反応性ガスを含むプロセスガス供給することによって生じる化学反応を用いて行われるエッチングである。本実施の形態においては、反応性ガスとして塩素系ガスが用いられ、好ましくは塩素ガスが用いられる。また熱エッチングは、好ましくは、塩素系ガスの分圧が50%以下である雰囲気下で行われる。また熱エッチングは、好ましくは、減圧雰囲気下で行われ、より好ましくは、減圧雰囲気は大気圧の1/10以下の圧力を有する。また熱エッチングは、好ましくは、炭化珪素層19が設けられた基板1の温度(熱処理温度)を1000℃以上とする条件で行われる。
 次に熱エッチングの詳細の一例について、以下に説明する。
 プロセスガスとしては、酸素ガスと塩素ガスとの混合ガスを反応ガスとして用い、熱処理温度をたとえば700℃以上1200℃以下としたエッチングを行なう。熱処理温度は、好ましくは700℃以上1200℃以下である。1200℃以下の場合、熱処理のための装置に石英部材を用いることができる。温度の上限は、より好ましくは1100℃、さらに好ましくは1000℃である。温度の下限は、より好ましくは800℃、さらに好ましくは900℃である。この場合、上記{0-33-8}面、{01-1-4}面または{100}面を含む面を形成する熱エッチング工程でのエッチング速度を十分実用的な値とすることができるので、当該工程の処理時間を十分短くすることができる。
 ここで、上記熱エッチング工程の条件については、SiC+mO+nCl→SiCl+CO(ただし、m、n、x、yは正の数)と表される反応式において、0.5≦x≦2.0、1.0≦y≦2.0というxおよびyの条件が満たされる場合に主な反応が進み、x=4、y=2という条件の場合が最も反応(熱エッチング)が進む。ただし上記mおよびnは、実際に反応している酸素ガスおよび塩素ガスの量を表しており、プロセスガスとして供給される量とは異なる。本発明者らは、この熱エッチングにおいて供給される塩素の流量に対する酸素の流量の比率が0.1以上2.0以下となることが好ましく、より好ましくはこの比率の下限は0.25である。この場合、上記{0-33-8}面、{01-1-4}面または{100}面を含む面を確実に形成することができる。
 なお、反応ガスは、上述した塩素ガスと酸素ガスとに加えて、キャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素(N)ガス、アルゴンガス、ヘリウムガスなどを用いることができる。そして、上述のように熱処理温度を700℃以上1000℃以下とした場合、SiCのエッチング速度はたとえば70μm/hr程度になる。また、この場合にマスク17として酸化珪素(SiO)を用いると、SiOに対するSiCの選択比を極めて大きくすることができるので、SiCのエッチング中にSiO2からなるマスク17は実質的にエッチングされない。
 なお六方晶系の場合、側面SSにおいて露出する結晶面は実質的に{0-33-8}面となってもよい。つまり、上述した条件のエッチングにおいては、エッチング速度の最も遅い結晶面である{0-33-8}面がトレンチ6の側面SSとして自己形成される。この結果、図9に示すような構造を得る。なお側面SSを構成する結晶面は{01-1-4}面となってもよい。また立方晶系である場合には、側面SSを構成する結晶面は{100}面であってもよい。
 次にマスク17(図8および図9)がエッチングなど任意の方法により除去される。
 図10および図11に示すように、コンタクト領域5および電界緩和領域7が形成される。具体的には、まず、トレンチ6の内部からn型ソースコンタクト層4の上部表面上にまで延在するように、所定のパターンを有するレジスト膜(図示せず)が、フォトリソグラフィ法を用いて形成される。レジスト膜としては、トレンチ6の底部およびn型ソースコンタクト層4の上部表面の一部に開口パターンが形成されているものを用いる。そして、このレジスト膜をマスクとして用いて、p型を付与するための不純物イオンを注入することにより、トレンチ6の底部に電界緩和領域7が形成され、またn型ソースコンタクト層4の一部領域にp型のコンタクト領域5が形成される。その後レジスト膜が除去される。
 なお図11から分かるように、トレンチ6の平面形状は、単位胞(1つのメサ構造を取り囲む環状のトレンチ6)の平面形状が六角形状である網目形状となっている。また、p型のコンタクト領域5は、図11に示すようにメサ構造の上部表面におけるほぼ中央部に配置されている。また、p型のコンタクト領域5の平面形状は、メサ構造の上部表面の外周形状と同じであって、六角形状となっている。
 次に、上述したイオン注入により注入された不純物を活性化するための活性化アニール工程を実施する。この活性化アニール工程においては、炭化珪素からなるエピタキシャル層の表面上(たとえばメサ構造の側壁上)に特にキャップ層を形成することなくアニール処理を実施する。ここで、発明者らは、上述した{0-33-8}面については、キャップ層などの保護膜を表面に形成することなく活性化アニール処理を行なっても表面性状が劣化することがなく、十分な表面平滑性を維持できることを見出した。このため、従来必要と考えられていた活性化アニール処理前の保護膜(キャップ層)の形成工程を省略して、直接活性化アニール工程を実施している。なお、上述したキャップ層を形成したうえで活性化アニール工程を実施してもよい。また、たとえばn型ソースコンタクト層4およびp型のコンタクト領域5の上部表面上のみにキャップ層を設けた構成として、活性化アニール処理を実施してもよい。
 図12に示すように、炭化珪素層19の側面SS上にゲート絶縁膜8が形成される。具体的には、トレンチ6の内部からn型ソースコンタクト層4およびp型のコンタクト領域5の上部表面上にまで延在するようにゲート絶縁膜8が形成される。ゲート絶縁膜8としては、たとえば炭化珪素層19を熱酸化することにより得られる酸化膜(酸化珪素膜)を用いることができる。
 図13に示すように、ゲート絶縁膜8を介して炭化珪素層19の側面SSに対向するゲート電極9が形成される。具体的には、トレンチ6の内部を充填するように、ゲート絶縁膜8上にゲート電極9が形成される。ゲート電極9の形成方法としては、たとえば以下のような方法を用いることができる。まず、ゲート絶縁膜8上において、トレンチ6の内部およびp型のコンタクト領域5上の領域にまで延在するゲート電極となるべき導電体膜が、スパッタリング法などを用いて形成される。導電体膜の材料としては導電性を有する材料であれば金属など任意の材料を用いることができる。その後、エッチバックあるいはCMP(Chemical Mechanical Polishing)法など任意の方法を用いて、トレンチ6の内部以外の領域に形成された導電体膜の部分が除去される。この結果、トレンチ6の内部を充填するような導電体膜が残存し、当該導電体膜によりゲート電極9が構成される。
 図14を参照して、ゲート電極9の上部表面、およびp型のコンタクト領域5上において露出しているゲート絶縁膜8の上部表面上を覆うように層間絶縁膜10が形成される。層間絶縁膜10としては、絶縁性を有する材料であれば任意の材料を用いることができる。そして、層間絶縁膜10上に、パターンを有するレジスト膜(図示せず)が、フォトリソグラフィ法を用いて形成される。当該レジスト膜にはp型のコンタクト領域5上に位置する領域に開口パターンが形成される。そして、このレジスト膜をマスクとして用いて、エッチングにより層間絶縁膜10およびゲート絶縁膜8が部分的にエッチングにより除去される。この結果、層間絶縁膜10およびゲート絶縁膜8には開口部11(図14参照)が形成される。この開口部11の底部においては、p型のコンタクト領域5およびn型ソースコンタクト層4の一部が露出した状態となる。
 その後、開口部11の内部を充填するとともに、上述したレジスト膜の上部表面上を覆うように導電体膜が形成される。その後、薬液などを用いてレジスト膜を除去することにより、レジスト膜上に形成されていた導電体膜の部分も同時に除去する(リストオフ)。この結果、開口部11の内部に充填された導電体膜によりソース電極12を形成できる。このソース電極12はp型のコンタクト領域5およびn型ソースコンタクト層4とオーミック接触したオーミック電極である。
 また、基板1の裏面側(耐圧保持層2が形成された主表面と反対側の表面側)に、ドレイン電極14が形成される。ドレイン電極14としては、基板1とオーミック接触が可能な材料であれば任意の材料を用いることができる。
 再び図1を参照して、ソース電極12の上部表面に接触するとともに、層間絶縁膜10の上部表面上に延在するソース配線電極13と、ドレイン電極14の表面に形成された裏面保護電極15とがスパッタリング法などの任意の方法を用いて形成される。この結果、MOSFET101が得られる。
 本実施の形態によれば、熱エッチングが、塩素系ガスの分圧が50%以下である雰囲気下で行われる。これにより、エッチングされる面に供給される塩素系ガスの量が抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層19に形成される側面SSの面方位を特定の結晶面により近づけることができる。
 また熱エッチングが、減圧雰囲気下で行われる。これにより、エッチングされる面に供給される塩素系ガスの量が抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層19に形成される側面SSの面方位を特定の結晶面により近づけることができる。好ましくは、減圧雰囲気は大気圧の1/10以下の圧力を有する。これにより、エッチングされる面に供給される塩素系ガスの量が十分に抑えられる。
 また熱エッチングが1000℃以上で行われる。これにより、エッチングされる面が化学的に活性化されるので、この面におけるエッチングによる塩素系ガスの消費量が大きくなる。よって、エッチングされる面上に存在する、エッチング能力を有する塩素系ガスの量が抑えられる。この結果、化学的安定性が高い部分のエッチングの進行が抑えられ、化学的安定性の低い部分のエッチングが主に進行する。よってエッチングによって炭化珪素層19に形成される側面SSの面方位を特定の結晶面により近づけることができる。
 また炭化珪素層19の側面SS上にゲート絶縁膜8が形成され、ゲート絶縁膜8を介して炭化珪素層19の側面SSに対向するゲート電極9が形成される。これにより、特定の結晶面により近い面方位を有する側面SSを、ゲート電極9によって制御されるチャネル面として用いることができる。よってチャネル移動度のばらつきを抑えることができる。また上記特定の結晶面がチャネル移動度の高いものとされることで、安定的に高いチャネル移動度が得られる。
 次に、図15を参照して、マスク17(図5)の回転ずれが生じた場合について説明する。炭化珪素層19(図6)が六方晶の場合にマスク17の形状は好適には六角形とされる。この六角形の配置が、理想的な配置17iからずれた配置17rに、図中矢印に示すようにずれることがある。この場合、本実施の形態の熱エッチングの条件が用いられれば、特定の結晶面が自己形成される傾向が高いことにより、ある程度のずれがあっても所望の側面SSが得られる。
 次に側面SSの形状について説明する。化学的安定性の低い部分だけでなく化学的安定性の高い部分までもエッチングが顕著に進行するような、不適切な熱エッチング条件が用いられた場合(比較例の場合)、図16に示すように、平面視において直線性に乏しい側面SSzが形成されやすい。これに対して本実施の形態によれば、特定の結晶面が自己形成されることで、図17に示すように、平面視において直線性が高い側面SSを形成することができる。図18および図19のそれぞれに、比較例および実施例における炭化珪素層の顕微鏡写真を示す。
 なおMOSFET101のトレンチ6は平坦な底面を有するが、MOSFET101vのトレンチ6V(図20)のように、V字状のトレンチが設けられてもよい。この場合、MOSFETをより集積化することが可能である。
 (実施の形態2)
 図21に示すように、本実施の形態の炭化珪素半導体装置としての、PiNダイオード102は、基板1と、n-エピタキシャル層42およびp+半導体層43を有する炭化珪素層とを有する。基板1はn型の導電型を有する。n-エピタキシャル層42は、n型の導電型を有し、基板1の導電型不純物の濃度よりも低い不純物濃度を有する。p+半導体層43は、n-エピタキシャル層42上に設けられている。上記炭化珪素層には、頂面としての主表面TSと、側面SSとを有するメサ構造44が形成されている。炭化珪素層は、このメサ構造44を取り囲むように、n-エピタキシャル層42からなる表面を有し、この表面上には、ガードリング45が設けられている。ガードリング45は、p型の導電型を有する。
 側面SSは、特定の結晶面(たとえば{03-3-8}面)により構成されている。つまり、メサ構造44は、上述した特定の結晶面({03-3-8}面)と等価な6つの面を有する。
 PiNダイオード102は、炭化珪素層の主表面TSと基板1との間において炭化珪素層の厚さ方向(図中、縦方向)に沿った電流経路を有する。この場合、側面SSは、PiNダイオード102の両端に対応する主表面TS側および基板1側の間に位置する。よって、炭化珪素層の表面を経路とするリーク電流は、側面SS上を通る。側面SSが、上述したようにより特定の結晶面に近い面方位を有するものとされることで、側面SS上における電流の流れやすさを安定的に抑えることができる。これによりダイオード102のリーク電流を安定的に低い値に抑えることができる。また上記特定の結晶面が界面準位密度の低いものとされることで、安定的にリーク電流を抑えることができる。
 次に、PiNダイオード102の製造方法について説明する。基板1が準備される。基板1としてはたとえば結晶型が六方晶の炭化珪素からなる基板が用いられ得る。この基板1の主表面上にエピタキシャル成長法を用いてn-エピタキシャル層42が形成される。このn-エピタキシャル層42の表側に、p型を付与するための不純物イオンが注入されることにより、p+半導体層43となるべきp型の半導体層が形成される。
 その後、メサ構造44となるべき領域に、シリコン酸化膜からなる島状のマスクパターンが形成される。このマスクパターンの平面形状はたとえば六角形状としてもよいが、他の任意の形状(たとえば丸や四角など)としてもよい。そして、このマスクパターンが形成された状態で、p+半導体層43およびn-エピタキシャル層42が部分的にエッチングにより除去される。この結果、マスクパターンの下にメサ構造44となるべき凸部が形成された状態となる(実施の形態1の図7に対応)。
 次に実施の形態1と同様の熱エッチングにより、凸部の側面をエッチングすることで、側面SSが形成される。その後、マスクパターンが除去される。次にイオン注入によってガードリング45が形成される。次に、活性化アニール処理が行なわれる。活性化アニール処理においては、少なくとも側面SSを覆うようなキャップ層を形成することなく加熱処理が行われてもよい。
 以上によりPiNダイオード102が得られる。
 なお図22に示すように、JTE(Junction Termination Extension)領域46が設けられたPiNダイオード102vが用いられてもよい。JTE領域46はp型の導電型を有し、p+半導体層43につながるようにn-エピタキシャル層42上に配置されている。
 なお、本明細書において、側面SSが{03-3-8}面、{01-1-4}面および{100}面のいずれかを含む、という場合には、側面SSを構成する結晶面が複数存在し、それらの複数の結晶面が{03-3-8}面、{01-1-4}面および{100}面のいずれかを含む場合を含んでいる。以下、側面SSが{03-3-8}面と他の面とを含む場合を例にして具体的に説明する。
 図23に示すように、側面SSは、微視的には、たとえばトレンチ6の側面において、面方位{0-33-8}を有する面56aと、面56aにつながりかつ面56aの面方位と異なる面方位を有する面56bとが交互に設けられることによって構成された、化学的に安定な面であってもよい。ここで「微視的」とは、原子間隔の2倍程度の寸法を少なくとも考慮する程度に詳細に、ということを意味する。好ましくは面56bは面方位{0-11-1}を有する。また、図23における面56bの長さ(幅)は、たとえばSi原子(またはC原子)の原子間隔の2倍であってもよい。
 なお上記においては、MOSFETおよびPiNダイオードについて特に詳しく説明したが、炭化珪素半導体装置はこれらに限定されるものではなく、たとえばIGBT(Insulated Gate Bipolar Transistor)であってもよい。また上述した構成におけるp型とn型とが入れ替えられた構成が用いられてもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の請求の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 基板、2 耐圧保持層、3 p型ボディ層、4 n型ソースコンタクト層、5 コンタクト領域、6,6V トレンチ、7 電界緩和領域、8 ゲート絶縁膜、9 ゲート電極、10 層間絶縁膜、11 開口部、12 ソース電極、13 ソース配線電極、14 ドレイン電極、15 裏面保護電極、17 マスク、19 炭化珪素層、42 n-エピタキシャル層、43 p+半導体層、44 メサ構造、101 MOSFET(炭化珪素半導体装置)、102 PiNダイオード。

Claims (12)

  1.  炭化珪素半導体装置(101)の製造方法であって、
     基板(1)上に、主表面(TS)が設けられた炭化珪素層(19)を形成する工程と、
     前記炭化珪素層の前記主表面の一部を覆うマスク(17)を形成する工程と、
     前記主表面に対して傾斜した側面(SS)が前記炭化珪素層に設けられるように、前記マスクが形成された前記炭化珪素層の前記主表面に対して、塩素系ガスを用いた熱エッチングを行う工程とを備え、
     前記熱エッチングを行う工程は、前記塩素系ガスの分圧が50%以下である雰囲気下で行われる、炭化珪素半導体装置の製造方法。
  2.  前記熱エッチングを行う工程は、減圧雰囲気下で行われる、請求項1に記載の炭化珪素半導体装置の製造方法。
  3.  前記熱エッチングを行う工程は1000℃以上で行われる、請求項1または2に記載の炭化珪素半導体装置の製造方法。
  4.  炭化珪素半導体装置(101)の製造方法であって、
     基板(1)上に、主表面(TS)が設けられた炭化珪素層(19)を形成する工程と、
     前記炭化珪素層の前記主表面の一部を覆うマスク(17)を形成する工程と、
     前記主表面に対して傾斜した側面(SS)が前記炭化珪素層に設けられるように、前記マスクが形成された前記炭化珪素層の前記主表面に対して、塩素系ガスを用いた熱エッチングを行う工程とを備え、
     前記熱エッチングを行う工程は、減圧雰囲気下で行われる、炭化珪素半導体装置の製造方法。
  5.  前記減圧雰囲気は大気圧の1/10以下の圧力を有する、請求項4に記載の炭化珪素半導体装置の製造方法。
  6.  前記熱エッチングを行う工程は、前記塩素系ガスの分圧が50%以下である雰囲気下で行われる、請求項4または5に記載の炭化珪素半導体装置の製造方法。
  7.  前記熱エッチングを行う工程は1000℃以上で行われる、請求項4~6のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  8.  炭化珪素半導体装置(101)の製造方法であって、
     基板(1)上に、主表面(TS)が設けられた炭化珪素層(19)を形成する工程と、
     前記炭化珪素層の前記主表面の一部を覆うマスク(17)を形成する工程と、
     前記主表面に対して傾斜した側面(SS)が前記炭化珪素層に設けられるように、前記マスクが形成された前記炭化珪素層の前記主表面に対して、塩素系ガスを用いた熱エッチングを行う工程とを備え、
     前記熱エッチングを行う工程は1000℃以上で行われる、炭化珪素半導体装置の製造方法。
  9.  前記熱エッチングを行う工程は、前記塩素系ガスの分圧が50%以下である雰囲気下で行われる、請求項8に記載の炭化珪素半導体装置の製造方法。
  10.  前記熱エッチングを行う工程は、減圧雰囲気下で行われる、請求項8または9に記載の炭化珪素半導体装置の製造方法。
  11.  前記炭化珪素層の前記側面上にゲート絶縁膜(8)を形成する工程と、
     前記ゲート絶縁膜を介して前記炭化珪素層の前記側面に対向するゲート電極(9)を形成する工程とをさらに備える、請求項1~10のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  12.  前記炭化珪素半導体装置は、前記炭化珪素層の前記主表面と前記基板との間において前記炭化珪素層の厚さ方向に沿った電流経路を有するダイオードである、請求項1~10のいずれか1項に記載の炭化珪素半導体装置の製造方法。
PCT/JP2012/075516 2011-11-21 2012-10-02 炭化珪素半導体装置の製造方法 WO2013077089A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12851007.0A EP2784805A4 (en) 2011-11-21 2012-10-02 METHOD OF MANUFACTURING A SILICON CARBIDE SEMICONDUCTOR ELEMENT
CN201280051730.3A CN103890921A (zh) 2011-11-21 2012-10-02 制造碳化硅半导体器件的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011253614A JP5764046B2 (ja) 2011-11-21 2011-11-21 炭化珪素半導体装置の製造方法
JP2011-253614 2011-11-21

Publications (1)

Publication Number Publication Date
WO2013077089A1 true WO2013077089A1 (ja) 2013-05-30

Family

ID=48427348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075516 WO2013077089A1 (ja) 2011-11-21 2012-10-02 炭化珪素半導体装置の製造方法

Country Status (5)

Country Link
US (1) US8999854B2 (ja)
EP (1) EP2784805A4 (ja)
JP (1) JP5764046B2 (ja)
CN (1) CN103890921A (ja)
WO (1) WO2013077089A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862660B2 (ja) * 2011-04-19 2016-02-16 日産自動車株式会社 半導体装置およびその製造方法
JPWO2013031172A1 (ja) 2011-08-26 2015-03-23 国立大学法人 奈良先端科学技術大学院大学 SiC半導体素子およびその製造方法
JP5954140B2 (ja) * 2012-11-29 2016-07-20 住友電気工業株式会社 炭化珪素半導体装置
JP2015053428A (ja) * 2013-09-09 2015-03-19 住友電気工業株式会社 炭化珪素半導体装置の製造方法
JP2015060859A (ja) * 2013-09-17 2015-03-30 住友電気工業株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2015076592A (ja) * 2013-10-11 2015-04-20 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
CN108140676B (zh) * 2015-10-30 2020-12-18 三菱电机株式会社 碳化硅半导体器件
JP7166053B2 (ja) * 2017-12-21 2022-11-07 株式会社東芝 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
JP7230477B2 (ja) * 2018-12-12 2023-03-01 株式会社デンソー トレンチゲート型のスイッチング素子の製造方法
US11677023B2 (en) * 2021-05-04 2023-06-13 Infineon Technologies Austria Ag Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021849A (ja) * 1998-07-06 2000-01-21 Shin Etsu Handotai Co Ltd ドライエッチング方法
JP2008235546A (ja) 2007-03-20 2008-10-02 Denso Corp 炭化珪素半導体装置およびその製造方法
WO2011048800A1 (ja) * 2009-10-23 2011-04-28 パナソニック株式会社 半導体装置およびその製造方法

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471473B2 (ja) 1994-04-06 2003-12-02 株式会社デンソー 半導体装置及びその製造方法
JP3531291B2 (ja) 1994-06-23 2004-05-24 株式会社デンソー 炭化珪素半導体装置の製造方法
JP3419163B2 (ja) 1995-09-06 2003-06-23 株式会社デンソー 炭化珪素半導体装置の製造方法
FR2738394B1 (fr) 1995-09-06 1998-06-26 Nippon Denso Co Dispositif a semi-conducteur en carbure de silicium, et son procede de fabrication
JP3471509B2 (ja) 1996-01-23 2003-12-02 株式会社デンソー 炭化珪素半導体装置
US6133587A (en) 1996-01-23 2000-10-17 Denso Corporation Silicon carbide semiconductor device and process for manufacturing same
US5882786A (en) 1996-11-15 1999-03-16 C3, Inc. Gemstones formed of silicon carbide with diamond coating
JPH11251592A (ja) 1998-01-05 1999-09-07 Denso Corp 炭化珪素半導体装置
JP4457432B2 (ja) 1999-06-17 2010-04-28 株式会社デンソー 種結晶とそれを用いた炭化珪素単結晶の製造方法、炭化珪素単結晶体および単結晶製造装置
DE60033829T2 (de) 1999-09-07 2007-10-11 Sixon Inc. SiC-HALBLEITERSCHEIBE, SiC-HALBLEITERBAUELEMENT SOWIE HERSTELLUNGSVERFAHREN FÜR EINE SiC-HALBLEITERSCHEIBE
US6617653B1 (en) 2000-05-31 2003-09-09 Matsushita Electric Industrial Co., Ltd. Misfet
US20020177321A1 (en) 2001-03-30 2002-11-28 Li Si Yi Plasma etching of silicon carbide
JP2005056868A (ja) 2001-06-04 2005-03-03 Matsushita Electric Ind Co Ltd 炭化珪素半導体装置の製造方法
US20030012925A1 (en) 2001-07-16 2003-01-16 Motorola, Inc. Process for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate for materials used to form the same and including an etch stop layer used for back side processing
JP2003133434A (ja) 2001-10-23 2003-05-09 Mitsubishi Electric Corp 半導体集積回路
JP2003218350A (ja) 2002-01-22 2003-07-31 Hitachi Ltd 半導体装置及びその製造方法
US20060249073A1 (en) 2003-03-10 2006-11-09 The New Industry Research Organization Method of heat treatment and heat treatment apparatus
JP4593099B2 (ja) 2003-03-10 2010-12-08 学校法人関西学院 単結晶炭化ケイ素の液相エピタキシャル成長法及びそれに用いられる熱処理装置
JP2005167035A (ja) 2003-12-03 2005-06-23 Kansai Electric Power Co Inc:The 炭化珪素半導体素子およびその製造方法
JP4500558B2 (ja) 2004-02-09 2010-07-14 トヨタ自動車株式会社 絶縁ゲート型半導体装置の製造方法
JP4487655B2 (ja) * 2004-04-14 2010-06-23 株式会社デンソー 半導体装置の製造方法
WO2005116307A1 (ja) 2004-05-27 2005-12-08 Bridgestone Corporation 炭化ケイ素単結晶ウェハの製造方法
JP5017768B2 (ja) 2004-05-31 2012-09-05 富士電機株式会社 炭化珪素半導体素子
DE602004025798D1 (de) * 2004-06-30 2010-04-15 Xycarb Ceramics Bv Verfahren zur Oberflächenbehandlung eines Metallcarbid-Substrates zur Verwendung in Halbleiterherstech
JP2007182330A (ja) 2004-08-24 2007-07-19 Bridgestone Corp 炭化ケイ素単結晶ウェハ及びその製造方法
JP4872217B2 (ja) 2005-02-16 2012-02-08 富士電機株式会社 炭化珪素半導体素子の製造方法
US20060214268A1 (en) 2005-03-25 2006-09-28 Shindengen Electric Manufacturing Co., Ltd. SiC semiconductor device
JP2006303469A (ja) 2005-03-25 2006-11-02 Shindengen Electric Mfg Co Ltd SiC半導体装置
JP4986420B2 (ja) 2005-07-05 2012-07-25 三菱電機株式会社 トランジスタ
JP2007035823A (ja) 2005-07-26 2007-02-08 Elpida Memory Inc トレンチ形成方法、半導体装置の製造方法および半導体装置
JP2007053227A (ja) 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd 半導体素子およびその製造方法
JP5017823B2 (ja) 2005-09-12 2012-09-05 富士電機株式会社 半導体素子の製造方法
JP5017855B2 (ja) 2005-12-14 2012-09-05 富士電機株式会社 半導体装置の製造方法
EP2264741B1 (en) 2006-01-10 2021-03-10 Cree, Inc. Silicon carbide dimpled substrate
JP2007243080A (ja) 2006-03-13 2007-09-20 Fuji Electric Holdings Co Ltd 半導体装置およびその製造方法
JP5034315B2 (ja) 2006-05-19 2012-09-26 三菱電機株式会社 半導体装置及びその製造方法
JP2008098593A (ja) 2006-09-15 2008-04-24 Ricoh Co Ltd 半導体装置及びその製造方法
EP2088628A4 (en) 2006-11-21 2010-11-17 Sumitomo Electric Industries SEMICONDUCTOR DEVICE OF SILICON CARBIDE AND METHOD FOR MANUFACTURING THE SAME
JP2008135534A (ja) 2006-11-28 2008-06-12 Toyota Motor Corp 有底の溝を有する半導体基板の製造方法
JP4046140B1 (ja) 2006-11-29 2008-02-13 住友電気工業株式会社 炭化珪素半導体装置の製造方法
JP2009170456A (ja) 2008-01-10 2009-07-30 Sumitomo Electric Ind Ltd 半導体装置の製造方法
EP2091083A3 (en) 2008-02-13 2009-10-14 Denso Corporation Silicon carbide semiconductor device including a deep layer
JP2010147222A (ja) 2008-12-18 2010-07-01 Denso Corp 炭化珪素半導体装置およびその製造方法
JP5589263B2 (ja) 2008-05-29 2014-09-17 富士電機株式会社 炭化珪素半導体基板のトレンチ形成方法
JP5298691B2 (ja) 2008-07-31 2013-09-25 住友電気工業株式会社 炭化ケイ素半導体装置およびその製造方法
JP5442229B2 (ja) 2008-09-04 2014-03-12 ローム株式会社 窒化物半導体素子の製造方法
JP4544360B2 (ja) 2008-10-24 2010-09-15 トヨタ自動車株式会社 Igbtの製造方法
CN102150270B (zh) 2009-03-27 2014-04-09 住友电气工业株式会社 Mosfet和用于制造mosfet的方法
CN101556919B (zh) * 2009-05-21 2014-03-05 中国电子科技集团公司第十三研究所 控制SiC基体刻蚀的台阶形貌的方法
JP2011044513A (ja) 2009-08-20 2011-03-03 National Institute Of Advanced Industrial Science & Technology 炭化珪素半導体装置
JPWO2011115294A1 (ja) 2010-03-16 2013-07-04 合同会社先端配線材料研究所 炭化珪素用電極、炭化珪素半導体素子、炭化珪素半導体装置および炭化珪素用電極の形成方法
JP5741583B2 (ja) 2010-08-03 2015-07-01 住友電気工業株式会社 半導体装置およびその製造方法
JP5707770B2 (ja) 2010-08-03 2015-04-30 住友電気工業株式会社 半導体装置およびその製造方法
JP5510309B2 (ja) 2010-12-22 2014-06-04 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP5668576B2 (ja) * 2011-04-01 2015-02-12 住友電気工業株式会社 炭化珪素半導体装置
JPWO2013031172A1 (ja) 2011-08-26 2015-03-23 国立大学法人 奈良先端科学技術大学院大学 SiC半導体素子およびその製造方法
JP5699878B2 (ja) * 2011-09-14 2015-04-15 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021849A (ja) * 1998-07-06 2000-01-21 Shin Etsu Handotai Co Ltd ドライエッチング方法
JP2008235546A (ja) 2007-03-20 2008-10-02 Denso Corp 炭化珪素半導体装置およびその製造方法
WO2011048800A1 (ja) * 2009-10-23 2011-04-28 パナソニック株式会社 半導体装置およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2784805A4 *

Also Published As

Publication number Publication date
EP2784805A1 (en) 2014-10-01
JP5764046B2 (ja) 2015-08-12
US8999854B2 (en) 2015-04-07
US20130130482A1 (en) 2013-05-23
EP2784805A4 (en) 2015-08-05
CN103890921A (zh) 2014-06-25
JP2013110243A (ja) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5764046B2 (ja) 炭化珪素半導体装置の製造方法
EP2602824B1 (en) Process for production of semiconductor device
JP5699878B2 (ja) 炭化珪素半導体装置およびその製造方法
US8803252B2 (en) Silicon carbide semiconductor device
US9608074B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
WO2013058037A1 (ja) 炭化珪素半導体装置およびその製造方法
EP2763180B1 (en) Silicon carbide semiconductor device
WO2014112233A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2013038862A1 (ja) 炭化珪素半導体装置の製造方法
WO2014199748A1 (ja) 炭化珪素半導体装置
JP6171678B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6119100B2 (ja) 炭化珪素半導体装置
EP2947694A1 (en) Silicon carbide semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851007

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012851007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012851007

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE