WO2013065564A1 - スパッタリングターゲットおよびその製造方法 - Google Patents

スパッタリングターゲットおよびその製造方法 Download PDF

Info

Publication number
WO2013065564A1
WO2013065564A1 PCT/JP2012/077566 JP2012077566W WO2013065564A1 WO 2013065564 A1 WO2013065564 A1 WO 2013065564A1 JP 2012077566 W JP2012077566 W JP 2012077566W WO 2013065564 A1 WO2013065564 A1 WO 2013065564A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
sintered body
purity
magnesium oxide
less
Prior art date
Application number
PCT/JP2012/077566
Other languages
English (en)
French (fr)
Inventor
研 岡本
忠久 荒堀
彰繁 佐藤
幸夫 宮下
英二 草野
宗明 坂本
Original Assignee
株式会社フェローテックセラミックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48191914&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013065564(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社フェローテックセラミックス filed Critical 株式会社フェローテックセラミックス
Priority to US14/355,988 priority Critical patent/US9824868B2/en
Priority to JP2013541734A priority patent/JP6069214B2/ja
Priority to KR1020147012232A priority patent/KR20140073571A/ko
Priority to CN201280054142.5A priority patent/CN103917687B/zh
Publication of WO2013065564A1 publication Critical patent/WO2013065564A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/724Halogenide content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains

Definitions

  • the present invention relates to a sputtering target and a manufacturing method thereof.
  • Sputtering is usually a method in which ions accelerated by glow discharge are struck against a sputtering target, and a film material ejected from the target by its kinetic energy is formed on a substrate.
  • a target using a magnesium oxide sintered body (hereinafter also referred to as “magnesium oxide target”, “magnesia target”, “MgO target”) is a tunnel magnet used in a magnetic head of a hard disk, a high-performance nonvolatile memory, or the like. It is used as a film material of a tunnel barrier layer of a resistance element (TMR element) and as a supply source of a film material in a purpose of forming a protective film or an insulating film in a plasma display panel (PDP).
  • TMR element resistance element
  • a TMR element is an element that detects a change in external magnetic force using the tunnel magnetoresistance effect, and has an extremely thin insulator layer (tunnel barrier layer) of several nanometers or less sandwiched between conductors (electrodes). .
  • a TMR element having a larger electric resistance change rate (MR ratio) can detect a change in magnetic force more sensitively and has higher performance, and magnesium oxide is particularly promising as a tunnel barrier layer material.
  • a high-frequency sputtering apparatus is used to form the magnesium oxide sputtered film.
  • a magnesium oxide target is bonded to an electrode, a substrate is disposed on the counter electrode of the electrode, and a film is deposited on the substrate by sputter discharge in an atmosphere such as argon under reduced pressure.
  • Patent Document 1 discloses an invention relating to a “magnesium oxide sintered body / sputtering target in which the sintered density is close to the theoretical density and gas emission is small and the (111) plane is oriented to promote secondary electron emission during sputtering”. Is disclosed.
  • the magnesium oxide sputtering target of Patent Document 1 is composed of a sintered body in which a large number of (111) planes are crystallized on a surface to which uniaxial pressure is applied, and secondary electron emission during sputtering is promoted to increase sputtering efficiency. It is supposed to improve. In the examples, the average crystal grain size is all about 10 ⁇ m.
  • the deposition rate of magnesium oxide sputtering target is improved by adjusting the purity within a range of 97.5% to 99.5% with a purity of 99.50% or more and less than 99.99%.
  • a purity of 99.50% or more and less than 99.99% Is disclosed.
  • an example of a 99.99% sintered body fired at 1650 ° C. in an atmospheric furnace is reported.
  • Patent Document 3 proposes a method for efficient aqueous granulation of magnesium oxide powder, and a purity of 99.985 in a cubic shape with a specific surface area of 7.5 m 2 / g obtained by a gas phase oxidation reaction method.
  • Magnesium oxide is granulated using polyethylene glycol or ammonium polycarboxylate, molded and fired at 1650 ° C. in an electric furnace to obtain a sintered body having a relative density of 96.1%.
  • Patent Document 1 discloses a crystal structure of a sintered body that improves the sputtering efficiency, but the performance of the formed sputtered film is not verified.
  • the film material itself is high withstand voltage and high in reliability compared to the sputtering efficiency, and the film thickness distribution / quality of the sputtered film is high. Homogeneity is more important.
  • Patent Document 2 also proposes a material that places importance on the efficiency of sputtering, and does not examine the performance of the formed film material.
  • the purity should not exceed 99.99%.
  • Some of the comparative examples have a purity of 99.99%, but the relative density remains in the range of 97.8 to 98.0%. With this sintered body, a high withstand voltage of the sputtered film is achieved. And cannot be homogenized.
  • Patent Document 3 although the granulation process is improved, the relative density of the finally obtained sintered body remains at 96.1%.
  • An object of the present invention is to provide a sputtering target having both high insulation resistance and homogeneity and capable of forming a magnesium oxide insulating layer, and a method for manufacturing the same.
  • the inventors of the present invention have the physical properties of a magnesium oxide thin film used as an insulating layer of various devices, in particular, excellent insulation resistance and homogeneity in a sputtered film formed by sputtering using the target.
  • the magnesium oxide sintered body which is the target raw material, with a purity of 99.99% or higher (4N), further 99.995% or higher (4N5 ), More preferably 99.999% or more (5N), and it is effective to improve the relative density of the high-purity magnesium oxide sintered body and to refine the crystal grain size.
  • the present invention was completed.
  • the gist of the present invention is a sputtering target of the following (1) to (7) and a manufacturing method of the sputtering target of the following (8) to (10).
  • Hot press sintering at 1250 to 1350 ° C. is performed to obtain a sintered body, followed by annealing at 1250 to 1400 ° C. in the atmosphere.
  • a sputtering target using a magnesium oxide sintered body is performed to obtain a sintered body, followed by annealing at 1250 to 1400 ° C. in the atmosphere.
  • the sputtering target of the present invention can have excellent insulation resistance, a small surface roughness and excellent homogeneity in a sputtered film formed by sputtering using the sputtering target.
  • a sputtered film having excellent insulation resistance and excellent homogeneity becomes a film having stable electrical characteristics and dielectric constant even with an extremely thin film, and contributes to, for example, improving the performance of a TMR element.
  • a magnesium oxide sintered body having a mass% and a purity of 99.995% or more (4N5), more preferably a purity of 99.999% or more (5N) can be used.
  • a sputtered film with higher withstand voltage is obtained.
  • Magnesium oxide sintered body is obtained by firing raw material powder having the same level of purity as the target purity, but it is difficult to obtain a sufficiently dense sintered body by normal pressure sintering in a normal atmospheric furnace. It is preferable to perform hot press sintering described in the above.
  • the relative density of the sputtering target (value obtained by dividing the measured density by the theoretical density as a percentage) is low, the surface roughness of the sputtered film obtained by sputtering using the target increases, resulting in a homogeneous thin film. It will adversely affect the process. In addition, the number of pores in the substrate is increased, and a small amount of moisture is adsorbed in the substrate, so that water is released during the sputtering process, which adversely affects the characteristics of the sputtered film. For this reason, the relative density is preferably set to a level exceeding 98%, particularly preferably 99% or more.
  • Average crystal grain size When the average crystal grain size of the sputtering target is large, the surface roughness of the sputtered film obtained by sputtering using the target increases, which adversely affects the homogenization of the thin film. For this reason, it is preferable to make the average crystal grain size as small as possible, and it is particularly necessary to make it 8 ⁇ m or less.
  • the average crystal grain size is more preferably 5 ⁇ m or less, and particularly preferably 2 ⁇ m or less.
  • Crystal orientation In the case of magnesium oxide, the crystal orientation of the (111) plane is promoted, which causes anisotropy. With a sputtering target in which the crystal orientation of the (111) plane is promoted, it becomes difficult to obtain a sputtered film having a uniform thickness distribution.
  • the degree of crystal orientation of the (111) plane can be quantitatively compared by taking the peak intensity ratio by X-ray diffraction with the (200) plane, which is the strongest peak of magnesium oxide, and I (111) / I (200) The ratio is preferably 8% or more and 25% or less. When it exceeds 25%, it becomes difficult to obtain film thickness uniformity of the sputtered film.
  • the lower limit of the I (111) / I (200) ratio is preferably 8%, and the upper limit is preferably 25%.
  • the manufacturing method of the sputtering target according to the present invention may be manufactured by sintering in an atmospheric furnace, but in normal pressure sintering, it is a dense sintered body having a relative density of 98% or more, particularly in purity. Since a high-purity raw material of 4N or more tends to cause crystal grain growth, it is difficult to obtain a sintered body having an average crystal grain size of 8 ⁇ m or less.
  • the sputtering target according to the present invention is manufactured by a hot press method in which magnesium oxide powder is sintered while being pressed.
  • the HIP method is known as a means for densifying the atmospheric pressure sintered body later.
  • it is a material that facilitates crystal grain growth, excessive grain growth occurs during the HIP process, and the average crystal grain size is increased. It becomes difficult to suppress to 8 ⁇ m or less.
  • the sintered body can be manufactured by performing a hot press sintering at 1250 to 1350 ° C. and then performing an annealing treatment at 1000 to 1400 ° C. in the atmosphere.
  • a powder raw material having the same purity as the target sintered body is loaded into a carbon mold and uniaxially pressed and sintered in a vacuum or a non-oxidizing atmosphere such as nitrogen or argon. It is common.
  • the sputtered film is similarly in a state deficient in oxygen, leading to deterioration of film properties such as withstand voltage.
  • the oxygen defects of the hot-press sintered body can be removed later by annealing in an oxygen-containing environment.
  • annealing for example, heat treatment at 1000 to 1400 ° C. is preferably performed in a normal atmospheric furnace.
  • oxygen can be added to the process gas to compensate for oxygen deficiency in the target material during film deposition.
  • oxygen atoms derived from the target reach an ultra-high temperature range exceeding 10,000 K at the moment of sputtering, whereas oxygen atoms supplied from the outside as a process gas are low in temperature and thus are not easily taken into the sputtered film.
  • the film quality may not be stable such as embedding minute defects (vacancies) in the sputtered film, and the withstand voltage may be extremely deteriorated.
  • Hot press sintering is preferably performed in the range of 30 to 600 minutes, for example. If the pressing time is less than 30 minutes, heat transfer and sintering do not reach a stable state, and overall densification is insufficient, or only the outer periphery is densified and residual stress is accumulated. It may be damaged. On the other hand, if the pressing time exceeds 600 minutes, crystal grain growth and oxygen defects increase in the sintered body, and it becomes difficult to obtain a high-quality sputtered film when used as a target material.
  • the pressing pressure for hot press sintering is preferably 5 MPa or more. If the pressing pressure is less than 5 MPa, insufficient pressure will cause a decrease in density and local density unevenness in the substrate.
  • the upper limit of the press pressure is not particularly limited as long as the facility capacity allows.
  • the atmospheric annealing process is performed at a temperature of 1250 ° C. or higher, it is preferable to perform it in the range of 30 to 600 minutes. If the annealing time is less than 30 minutes, the entire material does not reach the target density and crystal grain size, which causes the physical properties to vary within the same substrate. On the other hand, if the annealing time exceeds 600 minutes, non-uniform coarse grains are generated due to excessive grain growth, which may cause a problem that the sputtered film quality is deteriorated.
  • the atmospheric annealing treatment is performed at a temperature lower than 1250 ° C., it is preferable to hold it for 600 minutes or more. By holding for such a long time, the density can be improved and oxygen defects can be removed as in the case of performing at 1250 ° C. or higher. In this case, since there is almost no crystal grain growth, it is possible to obtain a better sputtered film. Note that the holding time when the atmospheric annealing process is performed at a temperature of less than 1250 ° C. only saturates the effect even if the holding time is too long, so the upper limit is preferably 5760 minutes.
  • the relative density of the sintered body exceeds 98%, preferably 99% or more, It is possible to simultaneously remove oxygen defects and control the density and crystal grains.
  • the sputtering target obtained in this manner is dense, microcrystalline, and hardly contains oxygen defects. The removal of oxygen defects can be confirmed by whitening the sintered body.
  • the material tends to be anisotropic. As described above, it is difficult to obtain a sputtered film having a uniform thickness distribution with magnesium oxide whose crystal orientation on the (111) plane is promoted. Therefore, it is preferable to perform hot press sintering so that the peak intensity ratio I (111) / I (200) by X-ray diffraction of the hot press surface is 8% or more and less than 25%.
  • the I (111) / I (200) ratio of the obtained sintered body may exceed 25%.
  • the I (111) / I (200) ratio may be less.
  • Examples of the case where grain growth occurs to an average crystal grain size of several tens of ⁇ m or more include a case where atmospheric furnace firing (normal pressure firing) is performed under relatively high temperature conditions.
  • normal atmospheric sintering atmospheric pressure sintering
  • atmospheric pressure sintered body prepared in a state in which grain growth is suppressed is Further, since the densification is insufficient and the film is porous, there are problems such as gas generation during sputtering, and it is difficult to obtain a good sputtered film.
  • the sintered body is preferably processed by wet grinding using a grindstone containing general diamond abrasive grains. If necessary, polishing treatment such as lapping and / or roughening treatment such as sand blasting may be added. Since the outermost layer portion of the sintered body is easily contaminated with impurity elements derived from the firing furnace material or the like, it is preferable to grind and remove the entire surface. After grinding, it is also effective to sufficiently remove the grinding fluid and grinding debris adhering to the surface layer using a technique such as chemical cleaning or pure water ultrasonic cleaning.
  • a magnesium oxide sintered body having the purity shown in Table 1 was prepared, and a target (a disk having a diameter of 75 mm and a thickness of 5 mm) was prepared under various production conditions shown in Table 1. Various performances of this target were investigated. Measurement methods for various performances are shown below.
  • SEM scanning electron microscope
  • ⁇ Crystal orientation of sintered body> A square test piece was cut out from the inner layer of the material by grinding so that the hot pressed surface of magnesium oxide sintered and the surface in the vertical direction could be analyzed. The analysis was carried out in an X-ray diffractometer having a Cu-K ⁇ radiation source by comparing the crystal orientation of the hot-pressed surface of the same material and the surface in the vertical direction. Common to all analysis samples and analysis directions, as the strongest first peak, the (200) plane peak is around 23.0 ° at 2 ⁇ , and as the second peak, the (220) plane peak is around 62.4 ° at 2 ⁇ .
  • the sintered body is subjected to pretreatment such as alkali melting to form a solution, and then subjected to inductively coupled plasma emission spectrometry (ICP-AES) and flame spectrophotometer (for Li, Na, K), Quantitative analysis of 17 elements of Al, Si, Fe, Cu, Ca, Cr, Ti, Ni, Mo, W, Co, Y, Zn, Mn, Li, Na and K was performed, and the detected elements were quantified. The value was converted to an oxide and removed from 100% to obtain the purity of the magnesium oxide sintered body.
  • ICP-AES inductively coupled plasma emission spectrometry
  • flame spectrophotometer for Li, Na, K
  • the purity of the obtained sintered body is 3N when the purity is 99.9% or more and less than 99.99%, 4N when the purity is 99.99% or more and less than 99.995%, and 99.995% or more. Those with less than 999% are referred to as 4N5, and those with 99.999% or more are referred to as 5N.
  • the film formation was performed using 99.9995% Ar gas as the discharge gas, the flow rate was 10 sccm, and the discharge pressure was 0.4 Pa. The ultimate pressure during film formation was 2.0 ⁇ 10 ⁇ 4 Pa.
  • the input power was 150W.
  • a glass with 50 mm square borosilicate glass and tin-doped indium oxide (ITO) film with a silver electrode on ITO with a width of 5 mm at both ends was used, and a magnesium oxide sputtered film was deposited at a film thickness of 400 nm. It was.
  • ITO indium oxide
  • nine Cu electrodes having a diameter of 3 mm and a film thickness of 100 nm were formed on the magnesium oxide sputtered film by sputtering. The following measurements were performed on thin films deposited after the target input power reached 4.5 kWh.
  • ⁇ Surface roughness of sputtered film> The surface roughness Ra (nm) of the sputtered film was measured with a scanning probe microscope (AFM) under the conditions of an excitation voltage of 1.36 V, a scanning range of 1000 nm, a lever length of 125 ⁇ m, and a needle height of 10 ⁇ m.
  • AFM scanning probe microscope
  • No. No. 1 was sintered in an atmospheric furnace, and as a result, the relative density was as low as 93.5%, and the dielectric strength and homogeneity of the sputtered film were poor.
  • No. In No. 2 since the hot press temperature was low, air annealing was subsequently performed, but the relative density was as low as 85.5%, and both the withstand voltage and homogeneity of the sputtered film were poor.
  • No. No. 3 is an example in which hot pressing was performed at an appropriate temperature, but atmospheric annealing was not performed after that, but the relative density was a low 97.4%, and oxygen defects also remained. The dielectric strength and homogeneity of the sputtered film were poor.
  • No. No. 4 has a hot press sintering temperature as high as 1400 ° C., an average crystal grain size of the sintered body as high as 12.8 ⁇ m, and “I (111) / I (200)” on the hot press surface is 49.1%. It was high. As a result, both the withstand voltage and homogeneity of the sputtered film were poor. No. In No. 7, the temperature of atmospheric annealing after hot pressing is as high as 1450 ° C., crystal grain growth proceeds excessively, and the average grain size becomes 13.5 ⁇ m. Was as low as 7.5%. As a result, both the withstand voltage and homogeneity of the sputtered film were poor. No. No. 11, the manufacturing conditions as well as the relative density and average crystal grain size of the sintered body satisfied the conditions specified in the present invention, but the purity was low at 99.91%, so the insulation breakdown voltage of the sputtered film was poor. Met.
  • the sputtering target of the present invention can have excellent insulation resistance, a small surface roughness and excellent homogeneity in a sputtered film formed by sputtering using the sputtering target.
  • a sputtered film having excellent insulation resistance and excellent homogeneity becomes a film having stable electrical characteristics and dielectric constant even with an extremely thin film, and contributes to, for example, improving the performance of a TMR element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

質量%で、純度が99.99%以上または更に純度が99.995%以上であり、相対密度98%以上でかつ平均結晶粒径が8μm以下である酸化マグネシウム焼結体を用いたスパッタリングターゲット。このスパッタリングターゲットは、平均結晶粒径が5μm以下であること、さらには、平均結晶粒径が2μm以下であることが好ましい。このスパッタリングターゲットを用いれば、優れた絶縁耐性と均質性を有するスパッタ膜を得ることができる。

Description

スパッタリングターゲットおよびその製造方法
 本発明は、スパッタリングターゲットおよびその製造方法に関する。
 スパッタリングは、通常、グロー放電を使って加速したイオンをスパッタリングターゲットにぶつけ、その運動エネルギーによりターゲットから弾き出された膜材料を基板に成膜する方法である。半導体、液晶、太陽電池の分野などで薄膜デバイス等の構造を作製するツールとして広く使用されている。中でも、酸化マグネシウム焼結体を用いたターゲット(以下、「酸化マグネシウムターゲット」、「マグネシアターゲット」、「MgOターゲット」ともいう。)は、ハードディスクの磁気ヘッド、高性能不揮発メモリ等に用いられるトンネル磁気抵抗素子(TMR素子)のトンネル障壁層の膜材料として、また、プラズマディスプレイパネル(PDP)における保護膜または絶縁膜を形成する用途で膜材料の供給源として用いられている。
 TMR素子は、トンネル磁気抵抗効果を利用した外部磁力の変化を検出する素子で、導電体(電極)に挟まれた数ナノメートル以下の極めて薄い絶縁体層(トンネル障壁層)を有している。電気抵抗変化率(MR比)が大きなTMR素子ほど磁力変化を鋭敏に検出可能で高性能とされており、トンネル障壁層材料としては特に酸化マグネシウムが有望視されている。
 酸化マグネシウムターゲットは、通常、絶縁材料であるので、酸化マグネシウムスパッタ膜の形成は、高周波スパッタリング装置が用いられる。この装置においては、酸化マグネシウムターゲットを電極に接合し、この電極の対極に基板を配置し、減圧下、アルゴンなどの雰囲気などにおいて、スパッタ放電させることにより、基板上に膜を堆積させる。
 特許文献1では、「焼結密度が理論密度に近くガス放出が少なく、(111)面を配向させてスパッタリング時の二次電子放出が促進される酸化マグネシウム焼結体・スパッタリング・ターゲット」に関する発明を開示している。特許文献1の酸化マグネシウム・スパッタリング・ターゲットは、一軸圧力を加えた面に(111)面を多く結晶配向させた焼結体から構成されており、スパッタリング時の二次電子放出が促進されスパッタリング効率が向上するとされている。また、実施例において、平均結晶粒径はいずれも10μm程度であったとされている。
 特許文献2には、純度が99.50%以上99.99%未満で相対密度97.5%~99.5%の範囲で調製することで酸化マグネシウム・スパッタリング・ターゲットの蒸着速度が改善することが開示されている。その比較例では、大気炉1650℃で焼成した99.99%焼結体の事例が報告されている。
 特許文献3には、酸化マグネシウム粉末の効率のよい水系造粒の手法が提案されており、気相酸化反応法で得た比表面積:7.5m/gの立方体形状をした純度99.985%の酸化マグネシウムをポリエチレングリコールやポリカルボン酸アンモニウムを用いて造粒、成形、電気炉1650℃にて焼成して相対密度96.1%の焼結体が得られるとされている。
特開2009-173502号公報 特開2007-138198号公報 特開2004-84018号公報
 特許文献1では、スパッタ効率が改善する焼結体の結晶構造について開示されているが、形成されるスパッタ膜の性能については検証されていない。例えば、TMR素子のトンネル障壁層等の用途では、極薄膜でありスパッタリングの効率よりも、形成される膜材料自体が高絶縁耐圧で信頼性が高いことや、スパッタ膜の膜厚分布・膜質が均質であることの方が重要となる。
 特許文献2もスパッタリングの効率を重視した材料の提案がなされているだけで、形成された膜材料の性能については検討されていない。また、この発明においては、純度は99.99%を超えないことが良いとされているが、このように純度が低い焼結体では、スパッタ膜の高絶縁耐圧化および均質化ができない。なお、比較例の中に純度99.99%のものがあるが、その相対密度は97.8~98.0%の範囲に留まっており、この焼結体では、スパッタ膜の高絶縁耐圧化および均質化ができない。
 特許文献3では造粒工程が改善されたものの、最終的に得られた焼結体の相対密度は96.1%に留まっている。
 本発明は、高い絶縁耐性と均質性を兼ね備え、酸化マグネシウム絶縁層を形成できるスパッタリングターゲットおよびその製造方法を提供することを目的としている。
 本発明者らは、上記の課題を解決するべく、各種デバイスの絶縁層として利用される酸化マグネシウム薄膜の物性、特に、該ターゲットを用いたスパッタリングによって形成したスパッタ膜に優れた絶縁耐性と均質性に関して鋭意研究を行った結果、ターゲットの原料である酸化マグネシウム焼結体の更なる高純度化が必要であり、その純度を99.99%以上(4N)、さらには99.995%以上(4N5)、さらに好ましくは99.999%以上(5N)とする必要があること、さらに、高純度の酸化マグネシウム焼結体の相対密度を向上し、結晶粒径を微細化させることが有効であることを見出し、本発明を完成させた。
 本発明は、下記(1)~(7)のスパッタリングターゲットおよび下記(8)~(10)のスパッタリングターゲットの製造方法を要旨としている。
 (1)質量%で、純度が99.99%以上であり、相対密度が98%を超え、かつ平均結晶粒径が8μm以下である酸化マグネシウム焼結体を用いたスパッタリングターゲット。
 (2)質量%で、純度が99.995%以上の酸化マグネシウム焼結体を用いた上記(1)のスパッタリングターゲット。
 (3)質量%で、純度が99.999%以上の酸化マグネシウム焼結体を用いた上記(1)のスパッタリングターゲット。
 (4)平均結晶粒径が5μm以下である上記(1)~(3)のいずれかのスパッタリングターゲット。
 (5)平均結晶粒径が2μm以下である上記(1)~(3)のいずれかのスパッタリングターゲット。
 (6)平均結晶粒径が1μm以下である上記(1)~(3)のいずれかのスパッタリングターゲット。
 (7)X線回折によるピーク強度比I(111)/I(200)が8%以上25%未満である上記(1)~(6)のいずれかのスパッタリングターゲット。
 (8)X線回折によるピーク強度比I(111)/I(200)が8%以上25%未満である面が、スパッタ時のエロージョン面となるように研削加工した上記(7)のスパッタリングターゲット。
 (9)1250~1350℃でのホットプレス焼結を実施して焼結体を得た後、大気中で1250~1400℃のアニール処理を実施する、質量%で、純度が99.99%以上の酸化マグネシウム焼結体を用いたスパッタリングターゲットの製造方法。
 (10)1250~1350℃でのホットプレス焼結を実施した後、大気中で1250~1400℃のアニール処理を実施して、ホットプレス面のX線回折によるピーク強度比I(111)/I(200)が8%以上25%未満である焼結体を得た後、ホットプレス面が、スパッタ時のエロージョン面となるように研削加工する上記(8)のスパッタリングターゲットの製造方法。
 (11)1250~1350℃でのホットプレス焼結を実施して焼結体を得た後、大気中で1000~1250℃で、10時間以上のアニール処理を実施する、質量%で、純度が99.99%以上の酸化マグネシウム焼結体を使用したスパッタリングターゲットの製造方法。
 (12)1250~1350℃でのホットプレス焼結を実施した後、大気中で1000~1250℃で、10時間以上のアニール処理を実施して、ホットプレス面のX線回折によるピーク強度比I(111)/I(200)が8%以上25%未満である焼結体を得た後、ホットプレス面が、スパッタ時のエロージョン面となるように研削加工する、上記(11)のスパッタリングターゲットの製造方法。
本発明のスパッタリングターゲットは、それを用いたスパッタリングによって形成したスパッタ膜に優れた絶縁耐性と、表面粗さが小さく、優れた均質性を有するものとすることができる。このように、優れた絶縁耐性および優れた均質性を有するスパッタ膜は、極薄膜でも安定した電気特性と誘電率を有する膜となり、例えば、TMR素子の性能改善に寄与する。
 1.酸化マグネシウム焼結体の純度
 本発明に係るスパッタリングターゲットにおいては、質量%で、純度が99.99%以上(4N)の酸化マグネシウム焼結体を用いる必要がある。純度が99.9%以上(3N)の酸化マグネシウム焼結体では、後段で説明するようなホットプレス焼結およびアニール処理を実施するなど、様々な対策を講じたところで、これをターゲットにして得たスパッタ膜に優れた絶縁耐圧と良好な表面粗さを与えることができない。これに対して、純度が99.99%以上(4N)の酸化マグネシウム原料を用い、相対密度と平均結晶粒を適切に制御した焼結体とすれば、これをスパッタリングターゲットとして用いてスパッタリングによって得られるスパッタ膜に優れた絶縁耐圧と良好な表面粗さ(均質性)を付与できる。特に、アルカリ金属およびハロゲンを含まないことが好ましい。
 本発明に係るスパッタリングターゲットにおいては、質量%で、純度が99.995%以上(4N5)、更に好ましくは純度が99.999%以上(5N)の酸化マグネシウム焼結体を用いることもできる。純度の高い酸化マグネシウム焼結体を用いるほど、絶縁耐圧の高いスパッタ膜が得られる。
 酸化マグネシウム焼結体は、目的の純度と同等水準の純度を有する原料粉末を焼成して得られるが、通常の大気炉による常圧焼結では十分に緻密な焼結体が得にくいため、後段で説明するホットプレス焼結を実施するのがよい。
 2.相対密度
 スパッタリングターゲットの相対密度(実測密度を理論密度で除した値を百分率で示した値)が低いと、そのターゲットを用いたスパッタリングによって得られるスパッタ膜の表面粗さが大きくなり、薄膜の均質化に悪影響を及ぼすことになる。また、基材中の気孔も多くなり、基材内に微量の水分を吸着するためスパッタプロセス中に水を放出し、スパッタ膜の特性にも悪影響及ぼす。このため、相対密度は、98%を超える水準とするのが好ましく、特に、99%以上とするのが好ましい。
 3.平均結晶粒径
 スパッタリングターゲットの平均結晶粒径が大きいと、そのターゲットを用いたスパッタリングによって得られるスパッタ膜の表面粗さが大きくなり、薄膜の均質化に悪影響を及ぼすことになる。このため、平均結晶粒径はできるだけ小さくすることが好ましく、特に、8μm以下とする必要がある。平均結晶粒径は5μm以下とするのがより好ましく、特に、2μm以下とするのが好ましい。
 なお、本発明者らの研究によると、スパッタリングターゲットの純度を3Nから4N、5Nに上げることは、スパッタ膜の物性に良好な影響を与える。
 4.結晶配向
 酸化マグネシウムの場合は、(111)面の結晶配向が促進され、異方性発現の要因となる。(111)面の結晶配向が促進したスパッタリングターゲットでは、均質な厚み分布を持つスパッタ膜を得にくくなる。(111)面の結晶配向度は、酸化マグネシウムの最強ピークである(200)面とのX線回折によるピーク強度比を取ることで定量比較が可能であり、I(111)/I(200)比で8%以上、25%以下であることが好ましい。25%を超える場合は、スパッタ膜の膜厚均質性が得にくい状態となる。一方、8%未満となる場合は(200)面結晶が過成長した状態であり、スパッタ膜の絶縁耐圧と膜質均質性が損なわれる。I(111)/I(200)比の下限は、8%とするのが好ましく、上限は、25%とするのが好ましい。
 5.スパッタリングターゲットの製造方法
 本発明に係るスパッタリングターゲットの製造方法については、大気炉での焼結によって製造してもよいが、常圧焼結では相対密度98%以上の緻密焼結体で、特に純度4N以上の高純度原料は結晶粒成長を起こしやすいので、平均結晶粒径8μm以下の焼結体を得ることは難しい。
 したがって、本発明に係るスパッタリングターゲットは、酸化マグネシウム粉末を加圧しながら焼結するホットプレス法によって製造することが望ましい。常圧焼結体を後から緻密化する手段としてHIP法が知られているが、結晶粒成長が容易な材料であるため、HIP処理中に過剰に結晶粒が成長し、平均結晶粒径を8μm以下に抑制することが困難となる。
 焼結体は1250~1350℃でのホットプレス焼結を実施した後、大気中で1000~1400℃のアニール処理を実施することにより製造することができる。ホットプレス焼結を用いる場合、目的の焼結体と同等純度の粉末原料をカーボン製のモールド内に装填し、真空、または、窒素、アルゴン等の非酸化性雰囲気で一軸加圧焼結されることが一般的である。
 ホットプレス焼結の温度が1250℃未満の場合、焼結体の密度が十分に確保できず、スパッタ膜の均質性および絶縁耐圧の悪化につながる。一方、温度が1350℃を超えると、理論密度に近い緻密焼結体を得ることは可能だが、焼結中に結晶粒成長が進行し、平均結晶粒径を8μm以下に抑制することが困難となる。また、焼結温度が高くなるほど焼結体中に多数の酸素欠陥が生じ、焼結体の呈色が白色から灰色~黒色に変化する。このような酸素が欠乏した焼結体をスパッタリングターゲットに用いた場合は、スパッタ膜も同様に酸素が欠乏した状態となり、絶縁耐圧等の膜物性の悪化を招く。ただし、ホットプレス焼結体の酸素欠陥は、後から酸素を含む環境でアニーリングすることで除去が可能である。アニーリングとしては、例えば、通常の大気炉で1000~1400℃の熱処理を実施するのがよい。
 一方、スパッタリングではプロセスガスに酸素を添加して、ターゲット材で欠乏した酸素を膜堆積時に補うことも可能である。しかしながら、ターゲット由来の酸素原子はスパッタされる瞬間には10000K超の超高温域に到達するのに対し、外部からプロセスガスとして供給された酸素原子は低温であるため、スパッタ膜に取り込まれにくい。その結果、スパッタ膜中に微小欠陥(空孔)を抱き込むなど膜質が安定せず、絶縁耐圧が極端に悪化する場合がある。加えて、酸素ガス添加のスパッタリングでは成膜速度を落とす必要があり、歩留まり面でも悪影響があり、また、膜質の経時変化も伴いやすい。従って、酸素欠陥をもつターゲットは極薄で信頼性のある絶縁膜の形成には適さない。
 ホットプレス焼結は、例えば、30~600分の範囲で行うのがよい。プレス時間が30分未満では、熱伝達および焼結が安定状態に達せず、全体的な緻密化が不足するか、外周のみが緻密化して残留応力が蓄積され、スパッタリングの衝撃でターゲット基材が破損することがある。一方、プレス時間が600分を超えると、焼結体の結晶粒成長および酸素欠陥の増大し、ターゲット材とした時に良質のスパッタ膜が得にくくなる。
 ホットプレス焼結のプレス圧は、5MPa以上とするのがよい。プレス圧が5MPa未満であると、加圧力不足で密度の低下や基材中で局所的な密度むらが生じる原因となる。プレス圧の上限は、設備能力が許容する範囲で特に制約はない。
 大気アニール処理は、実施しないか、ホットプレス焼結後に実施したとしてもその温度が1000℃未満の場合、密度を改善できず、しかも焼結体中の酸素欠陥を十分除去できないため、前述した通りスパッタ膜の特性が低下する。一方、アニール温度が1400℃を超えると、結晶粒成長が過剰となり、スパッタ膜厚の均質性を悪化させる。また、ターゲット中に不均一な粗大結晶粒が存在すると、スパッタリングの進行に伴い大粒子が処理室内に異物として脱落することがある。脱落が生じ、ターゲット表面が荒れると、スパッタ膜の均質性を悪化させることもある。
 大気アニール処理は、1250℃以上の温度で行う場合には、30~600分の範囲で行うのがよい。アニール時間が30分未満では、素材全体が目的の密度や結晶粒径に到達せず、同一基材内で物性がばらつく要因となる。一方、アニール時間が600分を超えた場合は過剰粒成長による不均一な粗大粒が発生し、スパッタ膜質の悪化を招くという問題が生じる恐れがある。
 大気アニール処理は、1250℃未満の温度で行う場合には、600分以上保持することのがよい。このような長時間保持することにより、1250℃以上で行う場合と同様に、密度の改善および酸素欠陥の除去が可能である。この場合、結晶粒成長を殆ど伴わないためより優れたスパッタ膜を得ることが可能である。なお、大気アニール処理を1250℃未満の温度で行う場合の保持時間は、あまりに長く行っても効果が飽和するだけであるので、その上限は、5760分とするのがよい。
 特に前述のホットプレス条件で焼結体の相対密度を90~98%に調製し、大気アニール工程で焼結を進めて相対密度を98%を超える範囲、好ましくは99%以上にすることで、酸素欠陥の除去と密度と結晶粒の制御を同時に進めることが可能となる。このようにして得られるスパッタリングターゲットは、緻密質、微結晶かつ酸素欠陥を殆ど含まないものとなる。また、酸素欠陥の除去については焼結体の白色化で確認が可能である。
 ホットプレスを用いた焼結では、一軸加圧状態で焼結と結晶成長が進行するため、材料が異方性を生じやすい。前述のように、(111)面の結晶配向が促進した酸化マグネシウムでは、均質な厚み分布を持つスパッタ膜を得にくくなる。よって、ホットプレス面のX線回折によるピーク強度比I(111)/I(200)が8%以上25%未満であるようにホットプレス焼結を行うことが好ましい。ここで、例えば、比較的高温でホットプレスをした場合には、得られた焼結体のI(111)/I(200)比が25%を超えることがある。また、例えば、平均結晶粒径が数10μm以上の水準まで粒成長を起こした焼結体の場合、I(111)/I(200)比が未満となることがある。平均結晶粒径が数10μm以上の水準まで粒成長を起こす場合としては、例えば、比較的高温条件で大気炉焼成(常圧焼成)する場合などが挙げられる。
 なお、通常の大気焼結(常圧焼結)は、等方的な結晶状態を持つ材料を容易に得ることが可能である反面、粒成長を抑えた状態で調製した常圧焼結体は、緻密化が不十分で、多孔質のため、スパッタリング時にガス発生を伴うなどの問題があり、良好なスパッタ膜を得ることは難しい。
 焼結体の加工は、一般的なダイヤモンド砥粒を含む砥石を用いた湿式の研削加工によって行うのがよい。必要に応じてラッピングなどの研磨処理および/またはサンドブラスト等の粗面化処理を加えてもよい。焼結体最表層部分は、焼成炉材等由来の不純物元素で汚染され易いので、全面を研削除去しておくことが好ましい。なお、研削加工後には、表層に付着している研削液および研削屑を、薬液洗浄、純水超音波洗浄等の手法を用いて十分に除去することも有効である。
 本発明の効果を確認するべく、表1に示す純度を有する酸化マグネシウム焼結体を用意し、表1に示す各種の製造条件でターゲット(直径75mm、厚さ5mmの円板)を作製した。このターゲットについて、各種の性能を調査した。各種性能の測定方法を下記に示す。
<焼結体の相対密度>
 JIS R 1634に準拠し、アルキメデス法で見掛け密度を測定し、酸化マグネシウムの理論密度を3.58g/cmとして、これに対する相対密度(%)を求めた。
<焼結体の平均結晶粒径>
 焼結体の内層部からRa:0.05μm未満まで鏡面研磨した試験片を切り出し、結晶グレインを露出させるために1200℃で熱エッチング処理を実施した。その後、走査電子顕微鏡(SEM)で結晶粒の写真撮影を実施し、JIS R 1670に準拠し、N=100が確保される任意視野内で円相当径を作図して結晶粒径を集計の上、平均結晶粒径を(μm)を算出した。
<焼結体の結晶配向>
 酸化マグネシウム焼結のホットプレス面と、その垂直方向の面の分析が出来るように、角型試験片を素材内層より研削加工により切り出した。Cu-Kα線源をもつX線回折装置で、同じ素材のホットプレス面とその垂直方向の面の結晶配向を比較する形で分析を行った。全分析試料、分析方向に共通して、最強の第1ピークとして(200)面ピークが2θで43.0°付近に、第2ピークとして(220)面ピークが2θで62.4°付近に、第3ピークとして(111)面ピークが2θで37.0°付近にそれぞれ検出されたので、ホットプレスによる結晶配向を検証するため、最強ピークである(200)面に対する(111)面の強度比率(%)を下式の通り算出した。
   I(111)/I(200)  …(1)
 ただし、(1)式中の各記号の意味は下記のとおりである。
I(111): X線スペクトルの(111)面のピーク高さ(cps)
I(200): X線スペクトルの(200)面のピーク高さ(cps)
<焼結体の純度>
 焼結体に、アルカリ溶融等の前処理を実施して溶液化した上で、誘導結合プラズマ発光分光分析(ICP-AES)および炎光分光光度計(Li,Na,Kが対象)にて、Al、Si、Fe、Cu、Ca、Cr、Ti、Ni、Mo、W、Co、Y、Zn、Mn、Li、NaおよびKの17元素の定量分析を実施し、検出された元素については定量値を酸化物に換算し、100%から除して酸化マグネシウム焼結体の純度を求めた。
 なお、求めた焼結体の純度は、99.9%以上99.99%未満であるものを3N、99.99%以上99.995%未満であるものを4N、99.995%以上99.999%未満であるものを4N5、99.999%以上であるものを5Nと称する。
<スパッタリングターゲットの表面仕上げ>
 #400番砥石を用いた研削加工にてエロージョン面の仕上げ加工を実施した、各ターゲット材の研削面の中心線平均粗さ(Ra)=0.2~0.8μmの範囲となった。
 上記各種のターゲットを、ロードロック式超高真空高周波スパッタリング装置のチャンバー内に装着し、成膜し、得られたスパッタ膜の物性値を測定し、評価する実験を行った。その結果を表1に併記した。
 なお、成膜は、放電ガスとして99.9995%のArガスを用い、流量は10sccm、放電圧力は0.4Paとして行った。また、成膜時の到達圧力は、2.0×10-4Paとした。投入電力は150Wとした。基板には、50mm角のほう珪酸ガラスとスズドープ酸化インジウム(Indium Tin Oxide/ITO)膜付ガラスで両端5mm幅のITO上銀電極を有するものを用い、酸化マグネシウムスパッタ膜を膜厚400nmで堆積させた。絶縁耐圧測定用サンプルでは酸化マグネシウムスパッタ膜上に直径3mm、膜厚100nmのCu電極9箇所をスパッタリング法により形成した。なお、下記の測定は、ターゲット投入電力が4.5kWhに到達した以降に堆積した薄膜について行った。
<スパッタ膜の表面粗さ>
 スパッタ膜の表面粗さRa(nm)は、走査プローブ顕微鏡(AFM)にて加振電圧1.36V、走査範囲1000nm、レバー長125μm、針高さ10μmの条件で測定した。
<スパッタ膜の絶縁耐圧>
 Electrochemical Analyzerを用い、測定電位0~5V、スキャン速度0.01V/sの条件で、Cu上部電極を設けた部分9箇所の絶縁耐圧値を測定し、9点の平均値を求め、スパッタ膜の絶縁耐圧とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、No.1は、大気炉によって焼結した結果、相対密度が93.5%と低く、スパッタ膜の絶縁耐圧、均質性ともに不良であった。No.2は、ホットプレス温度が低いため、その後に大気アニーリングを実施したが、相対密度が85.5%と低く、スパッタ膜の絶縁耐圧、均質性ともに不良であった。No.3は、適切な温度でホットプレスを行ったが、その後に大気アニーリングを行わなかった例であるが、相対密度が97.4%と低めであり、酸素欠陥も残存する条件であることから、スパッタ膜の絶縁耐圧、均質性とも不良であった。
 No.4は、ホットプレス焼結温度が1400℃と高く、焼結体の平均結晶粒径が12.8μmと高く、ホットプレス面での「I(111)/I(200)」が49.1%と高かった。その結果、スパッタ膜の絶縁耐圧、均質性ともに不良であった。No.7は、ホットプレス後の大気アニールの温度が1450℃と高く、結晶粒成長が過剰に進行し、平均粒径が13.5μmとなり、ホットプレス面での「I(111)/I(200)」が7.5%と低かった。その結果、スパッタ膜の絶縁耐圧、均質性ともに不良であった。No.11は、製造条件も、焼結体の相対密度および平均結晶粒径も本発明で規定される条件を満たしていたが、純度が、99.91%と低いため、スパッタ膜の絶縁耐圧が不良であった。
 これに対して、No.5、6、8、9、10、12、13および14は、いずれも本発明で規定される条件を満足するため、スパッタ膜の絶縁耐圧、均質性ともに良好であった。特に、No.12~14はいずれも、低温長時間のアニールを実施した例である。No.12および13は、密度が上昇し、かつ酸素欠陥の除去が進行した一方、結晶粒成長は抑えられているため、膜特性が大きく改善した。No.14は、アニール温度が950℃と温度が低く、No.12および13ほども酸素欠陥の除去を行うことができなかった。
本発明のスパッタリングターゲットは、それを用いたスパッタリングによって形成したスパッタ膜に優れた絶縁耐性と、表面粗さが小さく、優れた均質性を有するものとすることができる。このように、優れた絶縁耐性および優れた均質性を有するスパッタ膜は、極薄膜でも安定した電気特性と誘電率を有する膜となり、例えば、TMR素子の性能改善に寄与する。

Claims (12)

  1.  質量%で、純度が99.99%以上であり、相対密度が98%を超え、かつ平均結晶粒径が8μm以下である酸化マグネシウム焼結体を用いたことを特徴とするスパッタリングターゲット。
  2.  質量%で、純度が99.995%以上の酸化マグネシウム焼結体を用いたことを特徴とする請求項1に記載のスパッタリングターゲット。
  3.  質量%で、純度が99.999%以上の酸化マグネシウム焼結体を用いたことを特徴とする請求項1に記載のスパッタリングターゲット。
  4.  平均結晶粒径が5μm以下であることを特徴とする請求項1から3までのいずれかに記載のスパッタリングターゲット。
  5.  平均結晶粒径が2μm以下であることを特徴とする請求項1から3までのいずれかに記載のスパッタリングターゲット。
  6.  平均結晶粒径が1μm以下であることを特徴とする請求項1から3までのいずれかに記載のスパッタリングターゲット。
  7.  X線回折によるピーク強度比I(111)/I(200)が8%以上25%未満であることを特徴とする請求項1から6までのいずれかに記載のスパッタリングターゲット。
  8.  X線回折によるピーク強度比I(111)/I(200)が8%以上25%未満である面が、スパッタ時のエロージョン面となるように研削加工したことを特徴とする、請求項7に記載のスパッタリングターゲット。
  9.  1250~1350℃でのホットプレス焼結を実施して焼結体を得た後、大気中で1250~1400℃のアニール処理を実施することを特徴とする、質量%で、純度が99.99%以上の酸化マグネシウム焼結体を使用したスパッタリングターゲットの製造方法。
  10.  1250~1350℃でのホットプレス焼結を実施した後、大気中で1250~1400℃のアニール処理を実施して、ホットプレス面のX線回折によるピーク強度比I(111)/I(200)が8%以上25%未満である焼結体を得た後、ホットプレス面が、スパッタ時のエロージョン面となるように研削加工することを特徴とする、請求項9に記載のスパッタリングターゲットの製造方法。
  11.  1250~1350℃でのホットプレス焼結を実施して焼結体を得た後、大気中で1000~1250℃で、10時間以上のアニール処理を実施することを特徴とする、質量%で、純度が99.99%以上の酸化マグネシウム焼結体を使用したスパッタリングターゲットの製造方法。
  12.  1250~1350℃でのホットプレス焼結を実施した後、大気中で1000~1250℃で、10時間以上のアニール処理を実施して、ホットプレス面のX線回折によるピーク強度比I(111)/I(200)が8%以上25%未満である焼結体を得た後、ホットプレス面が、スパッタ時のエロージョン面となるように研削加工することを特徴とする、請求項11に記載のスパッタリングターゲットの製造方法。
PCT/JP2012/077566 2011-11-04 2012-10-25 スパッタリングターゲットおよびその製造方法 WO2013065564A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/355,988 US9824868B2 (en) 2011-11-04 2012-10-25 Sputtering target and method for producing the same
JP2013541734A JP6069214B2 (ja) 2011-11-04 2012-10-25 スパッタリングターゲットおよびその製造方法
KR1020147012232A KR20140073571A (ko) 2011-11-04 2012-10-25 스퍼터링 타겟 및 그 제조 방법
CN201280054142.5A CN103917687B (zh) 2011-11-04 2012-10-25 溅射靶材及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011242573 2011-11-04
JP2011-242573 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013065564A1 true WO2013065564A1 (ja) 2013-05-10

Family

ID=48191914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077566 WO2013065564A1 (ja) 2011-11-04 2012-10-25 スパッタリングターゲットおよびその製造方法

Country Status (6)

Country Link
US (1) US9824868B2 (ja)
JP (1) JP6069214B2 (ja)
KR (1) KR20140073571A (ja)
CN (1) CN103917687B (ja)
TW (1) TWI498438B (ja)
WO (1) WO2013065564A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177086A1 (ja) * 2018-03-15 2019-09-19 宇部マテリアルズ株式会社 MgO焼結体及びスパッタリングターゲット
WO2020075750A1 (ja) 2018-10-10 2020-04-16 Jx金属株式会社 酸化マグネシウムスパッタリングターゲット
JP2020059883A (ja) * 2018-10-10 2020-04-16 Jx金属株式会社 酸化マグネシウムスパッタリングターゲット

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9610452B2 (en) * 2013-12-12 2017-04-04 Heraeus Deutschland GmbH & Co. KG Direct integration of feedthrough to implantable medical device housing by sintering
US9504841B2 (en) 2013-12-12 2016-11-29 Heraeus Deutschland GmbH & Co. KG Direct integration of feedthrough to implantable medical device housing with ultrasonic welding
CN106587940B (zh) * 2016-12-02 2020-03-27 有研亿金新材料有限公司 一种高纯致密氧化镁靶材及其制备方法
US10704139B2 (en) * 2017-04-07 2020-07-07 Applied Materials, Inc. Plasma chamber target for reducing defects in workpiece during dielectric sputtering
JP6832437B2 (ja) 2018-09-13 2021-02-24 Jx金属株式会社 MgO焼結体スパッタリングターゲット
CN112111719B (zh) * 2020-09-11 2022-09-30 宁波江丰电子材料股份有限公司 一种钨钛硅合金溅射靶材及其制备方法
CN113073299B (zh) * 2021-03-24 2022-09-09 宁波江丰电子材料股份有限公司 一种铬硅合金溅射靶材的制备方法
CN115094392A (zh) * 2022-07-06 2022-09-23 天津华瑞新材料科技有限公司 一种细晶高致密镍铬铝钇硅合金靶材的制备方法
CN116874284A (zh) * 2023-07-13 2023-10-13 宁波江丰电子材料股份有限公司 一种氧化镁靶材的制备方法
CN116903349A (zh) * 2023-07-13 2023-10-20 宁波江丰电子材料股份有限公司 一种大尺寸氧化镁靶材的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130828A (ja) * 1996-10-31 1998-05-19 Mitsubishi Materials Corp MgOターゲット及びその製造方法
JPH10158826A (ja) * 1996-12-04 1998-06-16 Mitsubishi Materials Corp MgOターゲット及びその製造方法
JPH1129857A (ja) * 1997-07-11 1999-02-02 Mitsubishi Materials Corp 多結晶MgO蒸着材及びその製造方法
JPH11139862A (ja) * 1997-11-04 1999-05-25 Sumitomo Metal Mining Co Ltd 高密度MgO焼結体及びその製造方法
JP2000169956A (ja) * 1998-12-03 2000-06-20 Japan Energy Corp スパッタリング用MgOターゲット及びその製造方法
JP2006069811A (ja) * 2004-08-31 2006-03-16 Tateho Chem Ind Co Ltd 単結晶酸化マグネシウム焼結体及びプラズマディスプレイパネル用保護膜
JP2007138198A (ja) * 2005-11-15 2007-06-07 Tateho Chem Ind Co Ltd 蒸着材用酸化マグネシウム焼結体
JP2008189493A (ja) * 2007-02-02 2008-08-21 Sumitomo Electric Ind Ltd 多結晶MgO焼結体
JP2009173502A (ja) * 2008-01-28 2009-08-06 Nippon Tungsten Co Ltd 多結晶MgO焼結体及びその製造方法、並びにスパッタリング用MgOターゲット

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212357A (ja) * 1989-02-10 1990-08-23 Sumitomo Electric Ind Ltd 装飾用透明スピネル焼結体及びその製造方法
JPH10237636A (ja) * 1997-02-21 1998-09-08 Mitsubishi Materials Corp MgOを主成分とするターゲット及びその製造方法
JPH10297955A (ja) * 1997-04-23 1998-11-10 Mitsubishi Materials Corp MgO蒸着材及びその製造方法
JP3494205B2 (ja) * 1998-05-28 2004-02-09 三菱マテリアル株式会社 MgOを主成分とするタ−ゲット材料およびその製造方法
JP4579488B2 (ja) 2002-08-27 2010-11-10 宇部マテリアルズ株式会社 酸化マグネシウム蒸着材の製造方法
JP4575035B2 (ja) 2004-06-04 2010-11-04 タテホ化学工業株式会社 単結晶酸化マグネシウム焼結体及びその製造方法並びにプラズマディスプレイパネル用保護膜
JP2006207014A (ja) 2004-07-14 2006-08-10 Mitsubishi Materials Corp MgO蒸着材
JP2008285371A (ja) * 2007-05-18 2008-11-27 Sumitomo Electric Ind Ltd 多結晶MgO焼結体
JP5203113B2 (ja) * 2008-09-29 2013-06-05 タテホ化学工業株式会社 特殊な構造の酸化マグネシウム焼結体及びpdp保護膜用蒸着材
JPWO2011040028A1 (ja) * 2009-09-30 2013-02-21 出光興産株式会社 In−Ga−Zn−O系酸化物焼結体
CN102086504B (zh) 2009-12-08 2012-07-11 沈阳临德陶瓷研发有限公司 高致密度氧化镁靶材的制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130828A (ja) * 1996-10-31 1998-05-19 Mitsubishi Materials Corp MgOターゲット及びその製造方法
JPH10158826A (ja) * 1996-12-04 1998-06-16 Mitsubishi Materials Corp MgOターゲット及びその製造方法
JPH1129857A (ja) * 1997-07-11 1999-02-02 Mitsubishi Materials Corp 多結晶MgO蒸着材及びその製造方法
JPH11139862A (ja) * 1997-11-04 1999-05-25 Sumitomo Metal Mining Co Ltd 高密度MgO焼結体及びその製造方法
JP2000169956A (ja) * 1998-12-03 2000-06-20 Japan Energy Corp スパッタリング用MgOターゲット及びその製造方法
JP2006069811A (ja) * 2004-08-31 2006-03-16 Tateho Chem Ind Co Ltd 単結晶酸化マグネシウム焼結体及びプラズマディスプレイパネル用保護膜
JP2007138198A (ja) * 2005-11-15 2007-06-07 Tateho Chem Ind Co Ltd 蒸着材用酸化マグネシウム焼結体
JP2008189493A (ja) * 2007-02-02 2008-08-21 Sumitomo Electric Ind Ltd 多結晶MgO焼結体
JP2009173502A (ja) * 2008-01-28 2009-08-06 Nippon Tungsten Co Ltd 多結晶MgO焼結体及びその製造方法、並びにスパッタリング用MgOターゲット

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177086A1 (ja) * 2018-03-15 2019-09-19 宇部マテリアルズ株式会社 MgO焼結体及びスパッタリングターゲット
WO2020075750A1 (ja) 2018-10-10 2020-04-16 Jx金属株式会社 酸化マグネシウムスパッタリングターゲット
JP2020059883A (ja) * 2018-10-10 2020-04-16 Jx金属株式会社 酸化マグネシウムスパッタリングターゲット
KR20210047358A (ko) 2018-10-10 2021-04-29 제이엑스금속주식회사 산화마그네슘 스퍼터링 타깃
JP7165023B2 (ja) 2018-10-10 2022-11-02 Jx金属株式会社 酸化マグネシウムスパッタリングターゲット
KR20240090879A (ko) 2018-10-10 2024-06-21 제이엑스금속주식회사 산화마그네슘 스퍼터링 타깃

Also Published As

Publication number Publication date
JP6069214B2 (ja) 2017-02-01
KR20140073571A (ko) 2014-06-16
US20140318956A1 (en) 2014-10-30
CN103917687A (zh) 2014-07-09
US9824868B2 (en) 2017-11-21
TW201337017A (zh) 2013-09-16
TWI498438B (zh) 2015-09-01
JPWO2013065564A1 (ja) 2015-04-27
CN103917687B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6069214B2 (ja) スパッタリングターゲットおよびその製造方法
JP5437825B2 (ja) In−Ga−O系酸化物焼結体、ターゲット、酸化物半導体薄膜及びこれらの製造方法
JP5689250B2 (ja) 酸化物焼結体、それからなるターゲット及び酸化物半導体薄膜
JP5969493B2 (ja) スパッタリングターゲットおよびその製造方法
JPWO2011122100A1 (ja) 六ホウ化ランタン焼結体、それを用いたターゲット、六ホウ化ランタン膜、及び該焼結体の製造方法
WO2010125801A1 (ja) ZnO-Ga2O3系スパッタリングターゲット用焼結体及びその製造方法
JP6231924B2 (ja) 酸化物焼結体及びスパッタリングターゲット
TWI842834B (zh) 氧化物燒結體、濺鍍靶材及濺鍍靶材之製造方法
JP2007290875A (ja) 酸化チタン系焼結体およびその製造方法
JP7456992B2 (ja) 酸化物焼結体、スパッタリングターゲット及びスパッタリングターゲットの製造方法
JP7108046B2 (ja) 酸化マグネシウムスパッタリングターゲット
JP6158129B2 (ja) 酸化物焼結体及びスパッタリングターゲット
JP5754093B2 (ja) 酸化亜鉛焼結体、その製造方法、スパッタリングターゲット及び透明性膜の製造方法
JP7165023B2 (ja) 酸化マグネシウムスパッタリングターゲット
JP2000313655A (ja) 高密度酸化マグネシウム質焼結体及びその製造方法、並びにプラズマ処理装置用部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280054142.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14355988

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147012232

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013541734

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12845203

Country of ref document: EP

Kind code of ref document: A1