WO2013051707A1 - カーボンナノチューブ複合材料および熱伝導体 - Google Patents

カーボンナノチューブ複合材料および熱伝導体 Download PDF

Info

Publication number
WO2013051707A1
WO2013051707A1 PCT/JP2012/076009 JP2012076009W WO2013051707A1 WO 2013051707 A1 WO2013051707 A1 WO 2013051707A1 JP 2012076009 W JP2012076009 W JP 2012076009W WO 2013051707 A1 WO2013051707 A1 WO 2013051707A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
composite material
nanotube composite
carbon
material according
Prior art date
Application number
PCT/JP2012/076009
Other languages
English (en)
French (fr)
Inventor
賢治 畠
誠介 阿多
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to CN201280049216.6A priority Critical patent/CN103842445B/zh
Priority to JP2013537575A priority patent/JP5709189B2/ja
Publication of WO2013051707A1 publication Critical patent/WO2013051707A1/ja
Priority to US14/246,195 priority patent/US20140221533A1/en
Priority to US15/337,450 priority patent/US9688897B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs

Definitions

  • the present invention relates to a carbon nanotube composite material in which carbon nanotubes are dispersed in a matrix.
  • the present invention also relates to a heat conductor comprising the carbon nanotube composite material.
  • cooling is generally performed by interposing a heat transfer composite material in which a thermally conductive filler is dispersed in a matrix between the heat generating component and the heat radiating component.
  • Patent Document 1 describes that a high thermal conductivity can be obtained when a fibrous thermal conductive filler is filled as compared with a spherical thermal conductive filler.
  • Patent Document 2 describes that two heat conductive fillers are used in combination. That is, there is described a filler-containing resin sheet in which plate-like fillers are distributed in layers in the longitudinal direction of the sheet and in multiple stages in the thickness direction, and granular fillers are distributed between the layers of the plate-like filler.
  • Patent Document 3 discloses that a synthetic resin having compatibility with a coating of a carbon fiber coated with a coating having electrical insulation properties. Describes a heat transfer material that is uniformly dispersed.
  • An object of the present invention is to solve the above-described problems of the prior art, and to provide a carbon nanotube composite material and a heat conductor that have excellent uniformity and high thermal conductivity.
  • a carbon nanotube composite material in which carbon nanotubes and carbon fibers are dispersed in a matrix, wherein a group of carbon nanotubes composed of a plurality of the carbon nanotubes is interposed between the carbon fibers.
  • the carbon fiber has an average diameter of 1 ⁇ m or more and 50 ⁇ m or less
  • the carbon nanotube has an average diameter of 0.7 nm or more and 50 nm or less
  • 100% by weight of the carbon nanotube composite material includes the carbon nanotubes.
  • the carbon nanotube composite material includes 0.01% by weight to 30% by weight, the carbon fiber in a range of 10% by weight to 60% by weight, and the matrix has a thermal conductivity smaller than 10 W / mK. Has a direction in which the thermal conductivity is 10 W / mK or more.
  • a featured carbon nanotube composite is provided.
  • the carbon nanotube group has a three-dimensional network structure.
  • the size of the CNT group is 10 ⁇ m or more.
  • the carbon nanotube composite material has an in-plane direction in which the thermal conductivity is 10 W / mK or more and a thickness direction in which the thermal conductivity is 0.5 W / mK or more, and the thickness of the carbon nanotube composite material
  • the ratio of the sheet resistance of the first surface to the sheet resistance of the second surface is 0.2 or more and 5 or less in the first surface and the second surface facing in the direction.
  • the carbon nanotube composite material has a hardness of 0.01 N / mm 2 or more and 10 N / mm 2 or less.
  • the carbon fibers are arranged mainly in a plane direction of the carbon nanotube composite material and extend in the plane of the carbon nanotube composite material.
  • the carbon nanotube composite material has a sheet-like form.
  • the carbon nanotube composite material has a film form.
  • the carbon nanotube composite material has a pellet form.
  • the carbon fiber has a thermal conductivity of 300 W / mK or more.
  • the carbon fiber has a thermal conductivity equal to or higher than that of the carbon nanotube.
  • an average diameter of the carbon fibers is 1000 times or more and 10,000 times or less of an average diameter of the carbon nanotubes.
  • the carbon fiber is a pitch-based carbon fiber.
  • the average length of the carbon fibers is 100 ⁇ m or more.
  • the carbon purity of the carbon nanotube analyzed by using fluorescent X-ray is 90% by weight or more.
  • the carbon nanotube has a length of 0.1 ⁇ m or more.
  • the carbon nanotube is a spectrum obtained in the measurement by resonance Raman scattering measurement method, a maximum peak intensity in the range of 1560 cm -1 or 1600 cm -1 or less G, 1310cm -1 or 1350cm When the maximum peak intensity within the range of ⁇ 1 or less is D, the G / D ratio is 3 or more.
  • the matrix is a resin.
  • the resin is at least one of a silicone resin, a modified silicone resin, an acrylic resin, a chloroprene resin, a polysulfide resin, a polyurethane resin, a polyisobutyl resin, and a fluorosilicone resin.
  • the matrix is an elastomer.
  • the elastomer is natural rubber, epoxidized natural rubber, styrene-butadiene rubber, nitrile rubber, chloroprene rubber, ethylene propylene rubber, butyl rubber, chlorobutyl rubber, acrylic rubber, silicone rubber, fluorine rubber, butadiene rubber. , Epoxidized butadiene rubber, epichlorohydrin rubber, urethane rubber, polysulfide rubber, or one or more selected from olefin-based, polyvinyl chloride-based, polyester-based, polyurethane-based, polyamide-based, and styrene-based thermoplastic elastomers.
  • the matrix includes fluororubber.
  • a heat conductor comprising the carbon nanotube composite material according to any one of the above.
  • a carbon nanotube composite material having excellent uniformity and high thermal conductivity, and a thermal conductor can be realized.
  • FIG. 1 It is a schematic diagram of the carbon nanotube composite material 100 which concerns on one Embodiment of this invention, (a) is the figure which cut off some carbon nanotube composite materials 100, and exposed the inside, (b) is a carbon nanotube composite material 2 is a perspective view of material 100.
  • FIG. It is a schematic diagram of the CNT group 15 which concerns on one Embodiment of this invention. It is a figure which shows the relationship between the density (weight) and thermal conductivity of the carbon nanotube composite material which concerns on one Embodiment of this invention, and another material.
  • 3 is a flowchart showing a manufacturing process of a carbon nanotube composite material according to an embodiment of the present invention.
  • the carbon nanotube composite material according to the present invention is obtained by dispersing CNTs and carbon fibers in a matrix.
  • the carbon nanotube composite material according to the present invention forms a carbon nanotube group composed of a plurality of CNTs (hereinafter referred to as CNT group), and the CNT group enters between the carbon fibers.
  • the network is formed by communicating with each other.
  • the carbon nanotube composite material according to the present invention allows the CNT group to make good contact between the carbon fibers by allowing the plurality of CNTs constituting the CNT group to enter between the carbon fibers.
  • a carbon nanotube composite material is realized.
  • the carbon nanotube composite material according to the present invention supports carbon fibers that are heavier than CNTs by the CNT group, so that the carbon fibers are prevented from settling, so that the carbon fibers are uniformly dispersed in the carbon nanotube composite material.
  • a carbon nanotube composite material having excellent uniformity can be obtained.
  • FIG. 1 is a schematic view of a carbon nanotube composite material 100 according to an embodiment of the present invention
  • FIG. 1A is a view in which a part of the carbon nanotube composite material 100 is cut out to expose the inside.
  • (B) is a perspective view of the carbon nanotube composite material 100.
  • the carbon nanotube composite material 100 according to this embodiment is obtained by dispersing CNTs 10 and carbon fibers 50 in a matrix 30.
  • a CNT group 15 composed of a plurality of CNTs 10 exists between adjacent carbon fibers 50.
  • the structure of the carbon nanotube composite material 100 of the present invention is preferably evaluated by observing a fracture surface created by the following procedure with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the SEM image was immersed in liquid nitrogen for 20 seconds with a carbon nanotube composite material (sample) cut into a plate shape having a length of 30 mm, a width of 5 mm, and a thickness of 0.3 mm held by tweezers. A length of about 10 mm is fixed to a vise so as to be held in the thickness direction.
  • One end of the fixed sample is pinched with pliers and folded in the thickness direction.
  • the frozen fracture surface is observed by SEM.
  • the size, observation method, magnification, and the like of the sample may be appropriately selected so that the CNTs and carbon fibers in the carbon nanotube composite material 100 can be observed, and are not limited thereto.
  • FIG. 2 is a schematic diagram of the CNT group 15 according to an embodiment of the present invention.
  • the CNT group 15 includes a network structure (mesh structure, stitch body) in which a plurality of CNTs 10 (or bundles of CNTs) and CNTs (or bundles of CNTs) 10 are intertwined and discretely assembled.
  • CNT “discrete aggregation” means that some CNTs locally aggregate or leave, that is, have a “discrete” state. means.
  • FIG. 2 shows the CNT group 15 in which a plurality of CNTs 10 are gathered as having a gathering part 11 and a discrete part 13.
  • the gathering part 11a and the gathering part 11b are discrete from each other).
  • the CNT group 15 has a three-dimensional network structure.
  • the network structure formed by the CNT groups 15 is a network of CNTs stretched to details in a wide area, and the carbon fibers 50 and the CNT groups 15 communicate to form a network.
  • the carbon nanotube composite material 100 includes CNTs intertwined with each other, has a nonwoven fabric (film shape), and extends in a direction substantially perpendicular to the thickness direction of the carbon nanotube composite material 100 to form a layered CNT group 15. It is preferable to provide.
  • the carbon nanotube composite material 100 preferably includes carbon fibers 50 that are present in layers between the CNT layers and / or are disposed through the CNT groups 15. Moreover, it is preferable that the carbon fiber 50 is arrange
  • Such a carbon nanotube composite material 100 including the CNT group 15 and the carbon fiber 50 is formed between the carbon fibers 50 by inserting the CNT group 15 between the carbon fibers 50 and preferably between adjacent carbon fibers. Give good contact. Further, the network structure of the CNT group 15 supports carbon fibers that are heavier than the CNT group like a hammock, thereby preventing the carbon fibers 50 from settling, and thus dispersing the carbon fibers 50 in the carbon nanotube composite material 100. A carbon nanotube composite material 100 having excellent thermal characteristics can be obtained.
  • the carbon nanotube composite material 100 preferably includes a CNT group 15 that clings to and / or contacts and / or at least partially covers the carbon fiber 50.
  • a CNT group provides a good thermal contact between the CNT group and the carbon fiber, and is suitable for realizing a carbon nanotube composite material having high thermal conductivity.
  • the carbon nanotube composite material 100 preferably includes the NT group 15 that connects and / or communicates and / or bridges the first carbon fiber 50 and the second carbon fiber 50.
  • Such a CNT group is suitable for providing a good thermal contact between carbon fibers and realizing a carbon nanotube composite material having high thermal conductivity.
  • the carbon nanotube composite material 100 includes a CNT group 15 having a size of 10 ⁇ m or more, more preferably 15 ⁇ m, and still more preferably 20 ⁇ m.
  • the CNT group 15 is a CNT network stretched three-dimensionally to details in a wide area, and the CNT groups 15 are also in contact with each other. For this reason, it is difficult to measure the size of each CNT group 15. Therefore, in the present invention, in order to define the size of the CNT group 15, a two-dimensional image observed with an optical micrograph such as a fracture surface of the carbon nanotube composite material is used.
  • the size of the CNT group 15 is related to all points constituting the network structure of the CNT group 15 observed in the two-dimensional image, and the network structure of the CNT group 15 existing at a position farthest from the point. It is defined as the maximum distance.
  • the CNT group 15 having such a size is easy to cross-link between the carbon fibers 50, is suitable for providing a good thermal contact between the carbon fibers 50, and realizing a carbon nanotube composite material having high thermal conductivity.
  • the carbon nanotube composite material 100 has a weight density of 1.0 g / cm 3 or more and 3.0 g / cm 3 or less, preferably 2.5 g / cm 3 or less, more preferably 2.1 g / cm 3 or less. is there. Since the carbon nanotube composite material 100 is composed of lightweight carbon fibers, CNTs, and resin / rubber, it has a lower density and is lighter than metals.
  • FIG. 3 compares the density (weight) and thermal conductivity of the carbon nanotube composite material 100 according to the present invention with other materials such as metals and inorganic materials. It is clear that the carbon nanotube composite material 100 according to the present invention has the features that it is lighter and has higher heat transfer than other materials.
  • the carbon fibers 50 are arranged mainly in the plane direction of the carbon nanotube composite material 100 and extend in the plane of the carbon nanotube composite material 100.
  • the carbon nanotube composite material 100 according to the present embodiment has carbon fibers 50 in which the long axis is oriented and dispersed in the longitudinal direction (first direction) of the carbon nanotube composite material 100, and the CNT 10 is the carbon fiber 50. Distributed between the layers.
  • the carbon nanotube composite material 100 obtained by uniformly dispersing the carbon fibers 50 having an orientation has an in-plane direction in which the thermal conductivity is 10 W / mK or more, and a thermal conductivity of 0.5 W / mK.
  • the thickness direction is as described above.
  • the ratio of the sheet resistance to the sheet resistance on the back surface is 0.2 or more and 5 or less.
  • the carbon nanotube composite material 100 has a hardness (Martens hardness) of 0.01 N / mm 2 or more and 10 N / mm 2 or less.
  • the carbon nanotube composite material 100 having a hardness in this range is flexible and has a low thermal resistance at the contact point. Therefore, when the carbon nanotube composite material 100 is used as a heat conductor, the contact property with the heat-generating component is improved and high heat dissipation can be exhibited.
  • the carbon nanotube composite material 100 is preferably formed into a sheet form, a film form, or a pellet form by molding.
  • the carbon nanotube composite material 100 molded in such a form can be suitably used as a heat conductor.
  • the carbon fibers in the present invention are, for example, carbon fibers and graphite fibers made from PAN (Polyacrylonitrile) series and pitch (PITCH) series, plating them with metals such as nickel, ytterbium, gold, silver, copper, etc. Electrolytic, electroless), CVD method, PVD method, ion plating method, vapor deposition method, etc., metal coated carbon fiber constructed by coating at least one layer or more, or a blend of two or more of these Point to. When two or more types are used in combination, carbon fibers and fibers other than carbon fibers such as glass fibers and aramid fibers can be used in combination. As such a carbon fiber, a pitch-based carbon fiber excellent in thermal conductivity is preferable.
  • the thermal conductivity of the carbon fiber 50 is preferably 300 W / mK or more, more preferably 400 W / mK or more, and further preferably 500 W / mK or more.
  • the thermal conductivity of the carbon fiber 50 is preferably 300 W / mK or more, more preferably 400 W / mK or more, and further preferably 500 W / mK or more.
  • the thermal conductivity of the carbon fiber 50 used is equal to or higher than the thermal conductivity of the CNT 10.
  • CNT itself has excellent thermal conductivity, high thermal conductivity can be imparted to the carbon nanotube composite material 100 by using carbon fibers having higher thermal conductivity than CNT.
  • the average diameter of the carbon fibers 50 is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and further preferably 3 ⁇ m or more and 30 ⁇ m or less.
  • the carbon fiber having such an average diameter increases the amount of heat that can be transferred per carbon fiber, and can provide high thermal conductivity.
  • the average diameter of the carbon fiber 50 is 1000 times or more and 10,000 times or less of the average diameter of the CNT 10. By having such an average diameter ratio, it becomes easy for the CNTs 10 to enter between the carbon fibers 50, and good thermal contact between the carbon fibers 50 can be provided.
  • the average length of the carbon fibers 50 is preferably 100 ⁇ m or more, more preferably 150 ⁇ m or more, and further preferably 200 ⁇ m or more.
  • the addition amount of the carbon fiber 50 is not particularly limited. However, from the balance of heat conductivity, mechanical properties, and moldability of the obtained carbon nanotube composite material 100, the amount of carbon fiber 50 is 100% by weight of the carbon nanotube composite material. Therefore, it is preferably within the range of 10% by weight to 60% by weight, and more preferably within the range of 15% by weight to 50% by weight.
  • the CNT 10 used for the carbon nanotube composite material 100 is a single-walled carbon nanotube (single wall carbon nanotube: SWNT) in which one surface of graphite having a carbon hexagonal mesh surface is wound in one layer, and a double-walled carbon nanotube (double in a double layer).
  • Wall carbon nanotubes (DWNT), multi-wall carbon nanotubes (MWNT: multi-wall carbon nanotubes) wound in three or more layers, and the like are used as appropriate.
  • a carbon material partially having a carbon nanotube structure can also be used. Moreover, these can take arbitrary forms, such as a needle shape, a coil shape, a tube, and a cup shape, and what blended these 2 or more types may be used.
  • carbon nanotube it may be called “graphite fibril nanotube”.
  • CNT 10 a CNT obtained by a production method (vapor phase growth method) for growing crystals in a gas phase can be suitably used. Those graphitized at 2300 ° C. to 3200 ° C. may be used.
  • the CNT 10 is preferably a single-wall CNT.
  • Single-walled CNTs can easily penetrate between the carbon fibers 50 and can provide good thermal contact between the carbon fibers 50.
  • the verification that the CNT10 is a single layer is made by observing with a transmission electron microscope (TEM) at a magnification of 400,000, and a field of view in which 10% or more of the field area is a CNT aggregate in a field of view of 75 nm square. This can be done by evaluating the number of layers of 100 CNTs arbitrarily extracted from the inside and confirming the number of single-walled CNTs. When 100 lines cannot be measured in one field of view, measurement is performed from a plurality of fields until 100 lines are obtained. At this time, if one CNT is visible in the field of view, one CNT is counted as one, and both ends are not necessarily visible. In addition, even if it is recognized as two in the field of view, it may be connected outside the field of view and become one, but in that case, it is counted as two.
  • TEM transmission electron microscope
  • the cylindrical graphite structure that is characteristic of CNTs can be examined with a high-resolution transmission electron microscope.
  • the graphite layer is preferred so that it can be seen straight and clearly in a transmission electron microscope, but the graphite layer may be disordered. What disturbs the graphite layer may be defined as carbon nanofiber, and such carbon nanofiber is also included in the CNT in the present invention.
  • the CNT 10 used for the carbon nanotube composite material 100 can generally be manufactured by a laser ablation method, an arc discharge method, a thermal CVD method, a plasma CVD method, a combustion method, or the like, but may be a CNT manufactured by any method.
  • the CNT 10 used for the carbon nanotube composite material 100 can be obtained, for example, by a manufacturing method described in Japanese Patent Application No. 2010-544871 (Patent No. 4803687).
  • the characteristics of the CNT 10 used for the carbon nanotube composite material 100 of the present invention can be evaluated by extracting only the CNT 10 from the carbon nanotube composite material 100, for example, backing paper. For the extraction, a known means such as dissolving the matrix 30 using a solvent can be appropriately used.
  • the length of the CNT 10 used for the carbon nanotube composite material 100 of the present invention is 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more. Such CNTs 10 can easily enter between the carbon fibers 50 and can provide good thermal contact between the carbon fibers 50.
  • the average diameter of the CNTs 10 used for the carbon nanotube composite material 100 of the present invention is in the range of 0.7 nm to 50 nm, preferably in the range of 1 nm to 10 nm. If the average diameter is too small, the cohesiveness is too strong to disperse. On the other hand, if the average diameter is too large, the contact resistance between the CNTs increases, so that the formation of a thermal contact having high thermal conductivity is hindered.
  • the average diameter of the CNTs 10 used for the carbon nanotube composite material 100 of the present invention is the outer diameter of each CNT from the transmission electron microscope (hereinafter referred to as TEM) image of the aligned carbon nanotube aggregate before being dispersed in the matrix. That is, the diameter is measured and a histogram is created and obtained from this histogram.
  • TEM transmission electron microscope
  • the carbon purity of the CNT 10 used in the carbon nanotube composite material 100 of the present invention is preferably 90% by weight or more, more preferably 95% by weight or more, and still more preferably 98% by weight or more. It is. Such high-purity CNTs can give good moldability because the amount of impurities such as a metal catalyst is small.
  • Carbon purity refers to what percentage of the CNT weight is composed of carbon, and the carbon purity of the CNT 10 used in the carbon nanotube composite material 100 of the present invention is determined from elemental analysis using fluorescent X-rays.
  • the maximum peak intensity in the range 1560 cm -1 or 1600 cm -1 The following spectrum obtained by measurement of the resonance Raman scattering measurement method G, 1310cm -1 or 1350cm
  • the G / D ratio is preferably 3 or more.
  • the CNT 10 having such a high G / D ratio has improved heat conduction characteristics and can provide high heat conduction.
  • the carbon nanotube composite material 100 of the present invention preferably contains CNTs having such characteristics in a range of 0.01 wt% to 30 wt%.
  • CNTs having such characteristics in a range of 0.01 wt% to 30 wt%.
  • the amount of CNT is less than this, it becomes difficult to uniformly disperse the carbon fibers 50 in the carbon nanotube composite material 100.
  • a CNT having a larger blending amount is not preferable because the characteristics of the matrix 30 are suppressed.
  • matrix 30 Although there is no particular limitation on the matrix 30 used in the present invention, it is effective to use a material having a thermal conductivity of less than 10 W / mK, more preferably 5 W / mK, particularly preferably 2 W / mK or less. Preferred for obtaining. It is particularly preferable to use a resin.
  • the resin used for the matrix 30 is preferably composed of at least one of silicone resin, modified silicone resin, acrylic resin, chloroprene resin, polysulfide resin, polyurethane resin, polyisobutyl resin, and fluorosilicone resin. .
  • the resin both a thermosetting resin and a thermoplastic resin can be used.
  • thermosetting resins examples include unsaturated polyesters, vinyl esters, epoxies, phenols (resol type), urea melamines, polyimides, copolymers thereof, modified products, and resins blended in two or more types. Can be used. Further, in order to further improve the impact resistance, a resin obtained by adding an elastomer or a rubber component to the thermosetting resin may be used.
  • thermoplastic resin examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyester such as liquid crystal polyester, polyethylene (PE), polypropylene ( PP), polyolefins such as polybutylene, styrene resins, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethylene methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide ( PPS), polyphenylene ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), polyethersulfone , Polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), polyethernitrile (PEN), phenolic resin
  • the elastomer used for the carbon nanotube composite material 100 of the present invention may be either a rubber-based elastomer or a thermoplastic elastomer.
  • elastomers include natural rubber (NR), epoxidized natural rubber (ENR), styrene-butadiene rubber (SBR), nitrile rubber (NBR), chloroprene rubber (CR), ethylene propylene rubber (EPR, EPDM), and butyl rubber.
  • IIR chlorobutyl rubber
  • CIIR chlorobutyl rubber
  • ACM acrylic rubber
  • Q fluorine rubber
  • FKM butadiene rubber
  • EBR epoxidized butadiene rubber
  • CO epichlorohydrin rubber
  • Elastomers such as urethane rubber (U) and polysulfide rubber (T), or olefin (TPO), polyvinyl chloride (TPVC), polyester (TPEE), polyurethane (TPU), polyamide (TPEA), styrene System (SBS) and other thermoplastics It can contain one or more kinds selected from an elastomer. Mixtures can also be used.
  • highly polar elastomers that easily generate free radicals during elastomer kneading, such as natural rubber (NR) and nitrile rubber (NBR). Also, a mixture, copolymer, modified product, or a blend of two or more of these may be used.
  • NR natural rubber
  • NBR nitrile rubber
  • the matrix used in the carbon nanotube composite material 100 of the present invention is particularly preferably a fluororesin or fluororubber. This is because the affinity between the fluororesin and the carbon nanotube is high and CNT can be dispersed well.
  • Fluororesin includes polytetrafluoroethylene, polychlorotrifluoroethylene polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, ethylene tetrafluoride / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer , Ethylene / chlorotrifluoroethylene copolymer, or a mixture thereof can be preferably used.
  • CNT aggregate Since CNT is supplied as an aggregate of carbon nanotubes (hereinafter referred to as CNT aggregate), it is necessary to disperse it in a solvent and then mix it with a carbon fiber in a matrix.
  • a method for producing a carbon nanotube composite material using a CNT aggregate will be described with reference to FIG. First, a drying process is performed on the supplied CNT aggregate (S101). By carrying out the drying step, the dispersibility is increased, which is suitable for producing the carbon nanotube composite material according to the present invention.
  • the carbon nanotubes constituting the CNT aggregate used in the carbon nanotube composite material of the present invention easily adsorb moisture in the atmosphere between the carbon nanotubes during storage and transportation in the atmosphere.
  • the carbon nanotube drying step before the dispersion step, moisture contained in the carbon nanotubes can be removed and the dispersibility in the dispersion medium can be improved.
  • heat drying or vacuum drying can be used, and heat vacuum drying is preferably used.
  • the separated CNT aggregate is preferably classified by a classification step (S103).
  • the classification step is a step of obtaining a CNT aggregate having a uniform size by setting the size of the CNT aggregate within a predetermined range.
  • the CNT aggregate also includes a large-sized lump synthetic product. Since these large lumped CNT aggregates have different dispersibility, the production of a stable dispersion is hindered. Therefore, it is preferable to use a CNT aggregate that has passed through a net, a filter, a mesh, etc., excluding a large block of CNT aggregates, in the subsequent steps, in order to obtain a stable carbon nanotube dispersion.
  • the classified CNT aggregate is preferably subjected to a pre-dispersion step before the next dispersion step (S105).
  • the pre-dispersing step is a step of stirring and dispersing the CNT aggregate in a solvent.
  • the carbon nanotube used in the carbon nanotube composite material of the present invention is preferably a dispersion method using a jet mill. However, by performing a pre-dispersion step, the jet mill is prevented from being clogged with carbon nanotubes. The dispersibility of the carbon nanotube can be improved. It is preferable to use a stirrer for the pre-dispersion step.
  • the dispersion process is performed on the dispersion liquid of the CNT aggregate subjected to the pre-dispersion process (S107).
  • a method of dispersing carbon nanotubes by shear stress is preferable, and a jet mill is preferably used.
  • a wet jet mill can be suitably used.
  • a mixture in a solvent is fed as a high-speed flow from a nozzle arranged in a sealed state in a pressure vessel.
  • the carbon nanotubes are dispersed by collision between opposing flows, collision with the vessel wall, turbulent flow caused by high-speed flow, shear flow, and the like.
  • the treatment pressure in the dispersion step is preferably a value in the range of 10 MPa to 150 MPa.
  • a jet mill HJP-17004 manufactured by Sugino Machine may be used for the dispersion step of the CNT aggregate.
  • the carbon nanotube dispersion liquid thus dispersed can provide a highly stable and stable dispersion liquid while maintaining the excellent electrical characteristics, thermal conductivity, and mechanical properties of the carbon nanotubes.
  • a matrix solution in which the matrix is dissolved in a solvent and carbon fibers are prepared, added to the carbon nanotube dispersion, and sufficiently stirred to disperse the carbon nanotubes and carbon fibers in the matrix (S109).
  • the carbon nanotube composite material of the present invention when the mass of the entire carbon nanotube composite material is 100% by mass, the carbon nanotube dispersion liquid and Mix with matrix solution.
  • the carbon fiber is added in the range of 10% by weight to 60% by weight, more preferably 15% by weight to 50% by weight with respect to 100% by weight of the carbon nanotube composite material.
  • the sufficiently mixed solution is poured into a mold such as a petri dish and dried at room temperature to solidify the carbon nanotube composite material (S111). At this time, it is preferable to dry the mixed solution while stirring. If it is dried without stirring, carbon fibers with high density will be separated.
  • the solidified carbon nanotube composite material is placed in a vacuum drying oven and dried to remove the solvent (S113).
  • the drying temperature is a temperature at which the solvent can be sufficiently removed from the carbon nanotube composite material and the matrix is not deteriorated. Therefore, although it can be changed depending on the matrix used for the carbon nanotube composite material, for example, at about 80 ° C., the solvent is sufficiently removed and the matrix is not deteriorated.
  • the solvent used for dissolving the carbon nanotube dispersion medium and matrix used in the carbon nanotube composite material of the present invention may be any organic solvent that can dissolve the matrix, and can be appropriately selected depending on the matrix used.
  • organic solvent for example, toluene, xylene, acetone, carbon tetrachloride and the like can be used.
  • MIBK methyl isobutyl ketone
  • a dispersant may be added to the carbon nanotube dispersion.
  • the dispersant is useful for improving the dispersibility and dispersion stabilization ability of the carbon nanotubes.
  • the carbon nanotube composite material of the present invention that can exhibit high conductivity with a low amount of carbon nanotubes can be produced.
  • Heat conductor By molding the above-described carbon nanotube composite material, it is possible to realize a heat conductor having excellent uniformity and high thermal conductivity.
  • the heat conductor according to the present invention can be used as an excellent heat dissipation component in various fields as well as small electronic devices and LEDs by using a known processing method.
  • Example 1 [Characteristics of CNT used in Example 1]
  • the CNT used in Example 1 typically has a length of 100 ⁇ m, an average diameter of 3.0 nm, and a thermal conductivity of 80 W / mK.
  • the D band peak derived from the defect structure or the like is observed in the vicinity of 1340 cm ⁇ 1 , it indicates that the CNT contains a significant defect. Since the RBM mode due to a plurality of single-walled CNTs was observed on the low wavelength side (100 to 300 cm ⁇ 1 ), it can be seen that this graphite layer is a single-walled CNT. The G / D ratio was 8.6.
  • the moisture content of the CNT aggregate was measured by the Karl Fischer reaction method (coulometric titration method trace moisture analyzer CA-200 manufactured by Mitsubishi Chemical Analytech). After drying the CNT aggregate under specified conditions (maintained at 200 ° C. for 1 hour under vacuum), the vacuum is released in a glove box in a dry nitrogen gas stream, and about 30 mg of the CNT aggregate is taken out, and the moisture meter glass is removed. Moved to the boat. The glass boat moved to a vaporizer, where it was heated at 150 ° C. for 2 minutes, and the vaporized water was conveyed with nitrogen gas and reacted with iodine by the adjacent Karl Fischer reaction.
  • the amount of water was detected from the amount of electricity required to generate an amount of iodine equal to the iodine consumed at that time.
  • the CNT aggregate before drying contained 0.8% by weight of water.
  • the CNT aggregate after drying was reduced to 0.3% by weight of water.
  • 100 mg of the classified CNT aggregate was accurately weighed, put into a 100 ml flask (3 necks: for vacuum, for temperature control), held at vacuum for 200 hours, and dried for 24 hours. After completion of drying, 20 ml of dispersion medium MIBK (methyl isobutyl ketone) (manufactured by Sigma-Aldrich Japan) was injected in the heated and vacuum treated state to prevent the CNT aggregate from coming into contact with the atmosphere (drying step).
  • MIBK methyl isobutyl ketone
  • MIBK manufactured by Sigma Aldrich Japan
  • a stir bar was placed in the beaker, the beaker was sealed with aluminum foil, and MIBK was not volatilized, and stirred at room temperature with a stirrer at 600 RPM for 24 hours.
  • a wet jet mill (Sugino Machine's jet mill (HJP-17004)) is used, and a 0.13 mm channel is passed at a pressure of 100 MPa ⁇ 2 to disperse the CNT aggregate in MIBK.
  • a carbon nanotube dispersion liquid having a concentration of 0.033 wt% was obtained.
  • the dispersion was further stirred with a stirrer at room temperature for 24 hours. At this time, the temperature of the solution was raised to 70 ° C. to volatilize MIBK to about 150 ml. The weight concentration of the carbon nanotubes at this time was about 0.075 wt% (dispersing step). In this way, a carbon nanotube dispersion according to the present invention was obtained.
  • pitch-based carbon fibers (Made by Mitsubishi Plastics, DIALEAD (registered trademark) K223HM) were used as the carbon fibers.
  • the average diameter of the carbon fibers is 10 ⁇ m
  • the average length of the carbon fibers is 213 ⁇ m
  • the thermal conductivity ⁇ of the carbon fibers is 627 W / mK.
  • fluororubber (Daikin Industries, Daiel-G912) was used as the matrix.
  • the total mass of the carbon nanotube composite material is 100% by mass
  • 20 g of carbon fiber so that the carbon fiber content is 19%.
  • the mixture was added to 50 ml, and the mixture was stirred for 16 hours at room temperature under a condition of about 300 rpm using a stirrer, and concentrated until the total amount was about 50 ml.
  • the carbon nanotube composite material was solidified by pouring the well mixed solution into a mold such as a petri dish and drying at room temperature for 12 hours while stirring.
  • the solidified carbon nanotube composite material was put in a vacuum drying furnace at 80 ° C. and dried for 24 hours to remove the solvent.
  • the carbon nanotube composite material 200 of Example 1 was obtained (the shape of the sample is a circular sheet having a diameter of 77 mm and a thickness of about 300 ⁇ m).
  • Example 2 As Example 2, using the same production method as in Example 1, when the mass of the entire carbon nanotube composite material is 100% by mass, the carbon nanotube content is 4.8% and the carbon fiber content is 28.6%. Thus, the carbon nanotube composite material 210 was manufactured by adding the carbon nanotube dispersion liquid and the carbon fiber to the fluororubber solution.
  • Example 3 silicone rubber (manufactured by Momentive Performance Materials Japan GK, TSE3282-G) was used as the matrix. Using the same production method as in Example 1, when the total mass of the carbon nanotube composite material is 100% by mass, the carbon nanotubes are dispersed so that the carbon nanotube content is 4.8% and the carbon fiber content is 19%.
  • the carbon nanotube composite material 220 was manufactured by adding the liquid and carbon fiber to the silicone rubber solution.
  • Example 4 acrylonitrile-butadiene-styrene copolymer synthetic resin (ABS resin) (manufactured by Toray Industries, Inc.) was used as a matrix, and the mass of the entire carbon nanotube composite material was 100 using the same production method as in Example 1.
  • the carbon nanotube composite material 230 is manufactured by adding the carbon nanotube dispersion liquid and the carbon fiber to the silicone rubber solution so that the carbon nanotube content is 4.8% and the carbon fiber content is 19%. did.
  • Example 5 As Example 5, using the same production method as in Example 1, when the mass of the entire carbon nanotube composite material is 100% by mass, the carbon nanotube content is 6.7% by mass and the carbon fiber content is 19.0% by mass.
  • the carbon nanotube composite material 240 was manufactured by adding the carbon nanotube dispersion liquid and the carbon fiber to the fluororubber solution so that the ratio of the carbon nanotube dispersion liquid and the carbon fiber was 250%.
  • Example 6 As Example 6, using the same manufacturing method as in Example 1, when the mass of the entire carbon nanotube composite material is 100% by mass, the carbon nanotube content is 9.5% by mass and the carbon fiber content is 19.0% by mass.
  • the carbon nanotube composite material 250 was manufactured by adding the carbon nanotube dispersion liquid and the carbon fiber to the fluororubber solution so that the carbon nanotube dispersion liquid and the carbon fiber dispersion ratio would be 5%.
  • Example 7 As Example 7, 1 mass% equivalent nitric acid was added to the CNT / CF solution, and acid treatment was performed for 5 minutes. Thereafter, the acid was washed with water and ethanol, and then a carbon nanotube composite material was prepared using the same production method as in Example 1. However, when the total mass is 100% by mass, the carbon nanotube dispersion liquid and the carbon fiber are respectively added to the fluororubber solution so that the carbon nanotube content is 4.8% by mass and the carbon fiber content is 19.0% by mass. In addition, a carbon nanotube composite material 260 was produced.
  • Example 8 In Example 8, hydrin rubber (manufactured by ZEON) was used as a matrix, and a carbon nanotube composite material was prepared using the same production method as in Example 7. However, when the total mass is 100% by mass, the carbon nanotube dispersion liquid and the carbon fiber are respectively added to the fluororubber solution so that the carbon nanotube content is 4.8% by mass and the carbon fiber content is 19.0% by mass. In addition, a carbon nanotube composite material 270 was produced.
  • Example 9 a carbon nanotube composite material was prepared using an acrylic rubber (manufactured by ZEON) as a matrix and using the same production method as in Example 7. However, when the total mass is 100% by mass, the carbon nanotube dispersion liquid and the carbon fiber are respectively added to the fluororubber solution so that the carbon nanotube content is 4.8% by mass and the carbon fiber content is 19.0% by mass. In addition, a carbon nanotube composite material 280 was produced.
  • Comparative Example 1 a carbon nanotube composite material 900 containing no carbon fiber was manufactured. Using the same production method as in Example 1, the carbon nanotube dispersion was added to the fluororubber solution so that the carbon nanotube content was 5% when the total mass of the carbon nanotube composite material was 100% by mass. A carbon nanotube composite material 900 was manufactured.
  • Comparative Example 2 In Comparative Example 2, a composite material 910 containing no CNT was manufactured. When the total mass of the composite material is 100% by mass, carbon fiber is added to the fluororubber solution so that the carbon fiber content is 20%, and the composite material 910 is manufactured using the same manufacturing method as in Example 1. Manufactured.
  • Comparative Example 3 In Comparative Example 3, a composite material 930 containing no CNT was manufactured. When the total mass of the composite material is 100% by mass, carbon fiber is added to the fluororubber solution so that the carbon fiber content is 10%, and the composite material 920 is manufactured using the same manufacturing method as in Example 1. Manufactured.
  • Comparative Example 4 a composite material 950 containing no CNT was manufactured.
  • carbon fiber is added to the fluororubber solution so that the carbon fiber content is 30%, and the composite material 930 is manufactured using the same manufacturing method as in Example 1. Manufactured.
  • Comparative Example 5 As Comparative Example 5, when a multi-walled CNT Nanocyl (NC7000, Nanocyl) was used as the CNT and the mass of the carbon nanotube composite material was 100% by mass using the same production method as in Example 1, the carbon nanotube A carbon nanotube composite material 940 was manufactured by adding the carbon nanotube dispersion and the carbon fiber to the fluororubber solution so that the content was 4.8% and the carbon fiber content was 28.6%.
  • NC7000, Nanocyl a multi-walled CNT Nanocyl
  • Comparative Example 6 As Comparative Example 6, using HiPCO (NanoIntegris), which is a short single-walled CNT as a CNT, and using the same manufacturing method as in Example 1, the total mass of the carbon nanotube composite material is 100% by mass.
  • a carbon nanotube composite material 950 was manufactured by adding the carbon nanotube dispersion and the carbon fiber to the fluororubber solution so that the nanotube content was 4.8% and the carbon fiber content was 28.6%.
  • Comparative Example 7 As Comparative Example 7, using AlN (Toyalnite, Toyo Aluminum Co., Ltd.), which is a heat conductive filler, instead of CNT, the mass of the entire AlN composite material is 100% by mass using the same production method as in Example 1.
  • AlN Toyalnite, Toyo Aluminum Co., Ltd.
  • an AlN composite material 960 was manufactured by adding the AlN dispersion and the carbon fiber to the fluororubber solution so that the AlN content was 4.8% and the carbon fiber content was 28.6%.
  • Comparative Example 8 As Comparative Example 8, using graphene (graphene nanopowder, ATR Co., Ltd.), which is a thermally conductive filler, instead of CNTs, using the same manufacturing method as in Example 1, the total mass of the graphene composite material is 100 masses.
  • Graphene composite material 970 was manufactured by adding the graphene dispersion and the carbon fiber to the fluororubber solution so that the graphene content was 4.8% and the carbon fiber content was 28.6%.
  • Example 1 Example 2, Comparative Example 2 and Comparative Example 4, the scanning electron microscope (hereinafter, SEM) images of the frozen fracture surfaces were compared.
  • SEM image was immersed in liquid nitrogen for 20 seconds while holding a carbon nanotube composite material (sample) cut into a plate shape having a length of 30 mm, a width of 5 mm, and a thickness of 0.3 mm with tweezers. A length of about 10 mm was fixed in a vise so as to be held in the thickness direction. One end of the fixed sample was pinched with pliers, and was broken by bending in the thickness direction. The frozen fracture surface was observed by SEM.
  • FIG. 5 is an SEM image of a fractured surface of the carbon nanotube composite material 200 of Example 1
  • FIG. 5 (a) is 200 times magnification
  • FIG. 5 (b) is 500 times magnification
  • FIG. 6 is an SEM image at a magnification of 1000 times of the fracture surface of the carbon nanotube composite material 200 of Example 1.
  • FIG. 7 is an SEM image of a fractured surface of the carbon nanotube composite material 210 of Example 2.
  • FIG. 7 (a) is 200 times magnification
  • FIG. 7 (b) is 500 times magnification.
  • FIG. 8 is an SEM image at a magnification of 2000 times of the fracture surface of the carbon nanotube composite material 260 of Example 7.
  • FIG. 9 is an SEM image at a magnification of 2000 times of the fracture surface of the carbon nanotube composite material 260 of Example 7.
  • FIG. 10 is an enlarged view of the fracture surface of the carbon nanotube composite material 260 of Example 7 of FIG. SEM image.
  • FIG. 11 is an SEM image of a fracture surface of the composite material 910 of Comparative Example 2.
  • FIG. 11A is a magnification of 200 times
  • FIG. 11B is a magnification of 500 times.
  • 12 is an SEM image of a fracture surface of the composite material 950 of Comparative Example 4.
  • FIG. 12 (a) is a magnification of 200 times
  • FIG. 12 (b) is a magnification of 500 times.
  • the carbon fiber 50 is supported by the CNT 10 and at the same time, the contact between the carbon fiber 50 and the CNT 10 provides a path for exhibiting thermal conductivity. Is done.
  • the CNT group 15 includes a network structure (network structure, stitch body) in which a plurality of CNTs 10 (or bundles of CNTs) and CNTs (or bundles of CNTs) 10 are intertwined and discretely assembled.
  • the carbon nanotube composite material according to this example includes CNTs 10 that are intertwined with each other, exhibits a nonwoven fabric (film shape), and extends in a direction substantially perpendicular to the thickness direction of the carbon nanotube composite material to form a layered CNT Group 15 is provided.
  • the carbon nanotube composite material according to the present embodiment includes carbon fibers 50 that exist in layers between the CNT layers and / or are disposed through the CNT groups 15. Moreover, the carbon fiber 50 is arrange
  • the carbon nanotube composite material according to the present embodiment includes the CNT group 15 that clings to the carbon fiber 50 and / or is in contact with and / or at least partially covered.
  • the carbon nanotube composite material according to this example includes the NT group 15 that connects and / or communicates and / or bridges the first carbon fiber 50 and the second carbon fiber 50.
  • the carbon nanotube composite material 260 of Example 7 As shown in FIGS. 8 to 10, in the carbon nanotube composite material 260 of Example 7, the three-dimensional network structure of the CNTs 10 is observed on the fracture surface, and the carbon fibers 50 are supported by this network structure. It can be confirmed that the carbon nanotube composite material 260 is uniformly dispersed. Thus, in the carbon nanotube composite material of the present example, it is inferred that the carbon fiber 50 is supported by the CNT 10 and at the same time, the contact between the carbon fiber 50 and the CNT 10 provides a path for exhibiting thermal conductivity. Is done.
  • the CNT group 15 includes a plurality of CNTs 10 (or bundles of CNTs) and CNTs (or bundles of CNTs) 10 that are intertwined and discrete. It has an aggregated network structure (mesh structure, stitch body).
  • a CNT group in which a plurality of CNTs 10 are “gathered” a part of the CNTs 10 is locally gathered or separated, that is, a “discrete group” having a “discrete” state. Has occurred.
  • the carbon nanotube composite material 260 of Example 7 includes CNTs 10 that are intertwined with each other, has a nonwoven fabric shape (film shape), and extends in a direction substantially perpendicular to the thickness direction of the carbon nanotube composite material to form a layered CNT Group 15 is provided.
  • the carbon nanotube composite material 260 includes carbon fibers 50 that exist in layers between the CNT layers and / or are disposed through the CNT groups 15. Moreover, the carbon fiber 50 is arrange
  • the carbon nanotube composite material 260 includes the CNT group 15 that clings to and / or contacts and / or at least partially covers the carbon fiber 50.
  • the carbon nanotube composite material 260 includes the NT group 15 that connects and / or communicates and / or bridges the first carbon fiber 50 and the second carbon fiber 50.
  • Thermal conductivity About an Example and a comparative example, the heat conductivity was calculated
  • the thermal conductivity was obtained by measuring the thermal diffusivity and converted from the obtained thermal diffusivity.
  • the thermal conductivity was compared between the in-plane thermal conductivity and the thickness direction thermal conductivity.
  • the thermal diffusivity is ⁇ (W / mK)
  • the thermal diffusivity is ⁇ (m 2 / S)
  • the heat capacity is C (J / kgK)
  • the thermal diffusivity was measured using LFA447-Nanoflash manufactured by NETZSCH.
  • the heat capacity of fluororubber is measured with a differential scanning calorimeter (SII Nano Technology, X-DSC7000) using sapphire as a control sample, and the density is measured with a dry densimeter (Shimadzu Corporation, Accuvic II 1340). The product was used as the heat capacity.
  • the in-plane thermal conductivity and the thickness direction thermal conductivity are summarized in FIG. As shown in FIG. 13, in the carbon nanotube composite material 200 of Example 1, the in-plane thermal conductivity was 23.5 W / mK and the thickness direction thermal conductivity was 2.24 W / mK. In addition, in the carbon nanotube composite material 210 of Example 2, the in-plane thermal conductivity was 19.3 W / mK and the thickness direction thermal conductivity was 0.96 W / mK. The carbon nanotube composite materials of Examples 3 to 9 also showed in-plane thermal conductivity of 10 W / mK or more, and Example 7 showed in-plane thermal conductivity of 105 W / mK.
  • the in-plane thermal conductivity is 5.15 W / mK and the thickness direction thermal conductivity is 0.046 W / mK, which are extremely low values as compared with the examples. Met.
  • the in-plane thermal conductivity is 5.49 W / mK and the thickness direction thermal conductivity is 0.76 W / mK, which are extremely low values as compared with the examples. there were. Even if the carbon fiber content was increased in Comparative Example 4, the results did not reach the examples. In Comparative Examples 5 to 8, the in-plane thermal conductivity was extremely low as compared with the Examples.
  • the carbon nanotube composite material of the example is that the carbon fiber 50 is supported by the three-dimensional network structure of the CNT 10 and is uniformly dispersed in the carbon nanotube composite material 210. It is speculated that the contact efficiency between carbon fibers is improved by CNT, and high thermal conductivity is realized.
  • Hardness was measured about the Example and the comparative example.
  • a microhardness meter HM2000 manufactured by Fischer Instruments was used for hardness measurement.
  • the results of hardness measurement are summarized in FIG.
  • the thermal resistance it is important that the heating element and the thermal conductor are in close contact with each other.
  • the carbon nanotube composite material of the example is more flexible than the composite material of the comparative example containing only the carbon fiber 50 because the carbon fiber 50 is supported by the three-dimensional network structure of the CNT 10. It has been shown that the material is suitable as a heat conductor.
  • the carbon fiber 50 is supported by the three-dimensional network structure of the CNT 10 and is uniformly dispersed in the carbon nanotube composite material 210.
  • CNT is an excellent material that improves the contact efficiency between carbon fibers and realizes high thermal conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は均一性に優れ、高い熱伝導性を有するカーボンナノチューブ複合材料及び熱伝導体を提供することを課題とする。本発明のカーボンナノチューブ複合材料は、複数の前記カーボンナノチューブから構成されるカーボンナノチューブ群が隣接する前記炭素繊維の間に存在し、前記炭素繊維の平均直径が1μm以上50μm以下であり、前記カーボンナノチューブの平均直径が0.7nm以上50nm以下であり、前記カーボンナノチューブ複合材料の100重量%に対して、前記カーボンナノチューブを0.01重量%以上30重量%以下の範囲で含み、前記炭素繊維を10重量%以上60重量%以下の範囲で含み、前記マトリックス材の熱伝導率が10W/mKより小さく、前記カーボンナノチューブ複合材料は、熱伝導率が10W/mK以上である方向を有する。

Description

カーボンナノチューブ複合材料および熱伝導体
本発明は、カーボンナノチューブをマトリックス中に分散させたカーボンナノチューブ複合材料に関する。また、本発明は、そのカーボンナノチューブ複合材料を備える熱伝導体に関する。
近年、CPUやLEDの半導体素子については、高集積化に加えて動作時の処理速度の高速化が進み、従来にも増して動作時の発熱量が増える傾向にある。このため、半導体素子が動作時に発生した熱を効率よく外部へ逃さないと、動作中に半導体素子の内部温度が動作温度の限界を超えて焼損してしまう恐れが出てくる。そこで、熱伝導性フィラーをマトリックス中に分散させた伝熱複合材料を発熱部品と放熱部品との間に介在させて冷却することが一般的に行われる。
熱伝導性フィラーの粒子形状が球形でなく、繊維状である場合、単位重量当たりの表面積が大きくなる。そのため、樹脂材料に充填された場合、熱伝導性フィラー同士が接触し易く、熱の通り道となるパスを形成し易い。よって、球状の熱伝導性フィラーを充填する場合に比べて繊維状の熱伝導性フィラーを充填した場合、高い熱伝導率を得ることができることが例えば、特許文献1に記載されている。
しかしながら、高い熱伝導性を得るために、熱伝導性フィラーの充填量を大きくした場合、樹脂組成物が急激に固くなり、複合材料の特性が著しく劣化するという問題があった。このような問題を解決するために、特許文献2には、2つの熱伝導性フィラーを併用することが記載されている。すなわち、板状充填材をシートの長手方向において、層状に、かつ厚み方向に多段状に分布させ、粒状充填材が板状充填材の層間に分布した充填材含有樹脂シートが記載されている。
しかしながら、近年の電子部品の小型化と、プラスチック部品の使用が進むにつれて、特に民生用電子機器では、より高伝熱性を有する複合材料が必要とされてきている。そこで、伝熱性に優れた炭素繊維状フィラー、例えばカーボンナノチューブや、炭素繊維がフィラー、特に熱伝導性フィラーとして着目されている。
このような炭素繊維を熱伝導性フィラーとして用いた伝熱複合材料として、例えば特許文献3には、電気絶縁性を有する被膜で被覆された炭素繊維を、被膜に対して相溶性を有する合成樹脂に均一分散した伝熱用材料が記載されている。
上述のような従来技術では、炭素繊維を高充填量で添加すると、密度が高い炭素繊維が製造工程中に沈降し、伝熱複合材料中において、表面と裏面で炭素繊維の分布の不均一性が発生してしまうという問題があった。そのような場合、発熱部品と放熱部品の間での熱抵抗が増大して、効率良く冷却ができないという課題があった。また、小型電子機器や、LEDなどの十分な冷却にはより高い熱伝導性を有する複合材料の創出が望まれていた。
特開平10-139893号公報 特開平3-200397号公報 特開平5-235217
本発明は、上記の如き従来技術の問題点を解決し、均一性に優れ、高い熱伝導性を有するカーボンナノチューブ複合材料及び熱伝導体を提供することを課題とする。
本発明の一実施形態によると、カーボンナノチューブと炭素繊維とをマトリックス中に分散してなるカーボンナノチューブ複合材料であって、複数の前記カーボンナノチューブから構成されるカーボンナノチューブ群が前記炭素繊維の間に存在し、前記炭素繊維の平均直径が1μm以上50μm以下であり、前記カーボンナノチューブの平均直径が0.7nm以上50nm以下であり、前記カーボンナノチューブ複合材料の100重量%に対して、前記カーボンナノチューブを0.01重量%以上30重量%以下の範囲で含み、前記炭素繊維を10重量%以上60重量%以下の範囲で含み、前記マトリックスの熱伝導率が10W/mKより小さく、前記カーボンナノチューブ複合材料は、熱伝導率が10W/mK以上である方向を有することを特徴とするカーボンナノチューブ複合材料が提供される。
前記カーボンナノチューブ複合材料において、前記カーボンナノチューブ群が、三次元的な網目構造を有する。
前記カーボンナノチューブ複合材料において、CNT群のサイズが10μm以上である。
前記カーボンナノチューブ複合材料は、熱伝導率が10W/mK以上となる面内方向と、熱伝導率が0.5W/mK以上となる厚み方向と、を有し、前記カーボンナノチューブ複合材料の前記厚み方向に対向する第1の面と第2の面とにおいて、前記第1の面のシート抵抗と前記第2の面のシート抵抗の比が0.2以上5以下である。
前記カーボンナノチューブ複合材料の硬度が0.01N/mm以上10N/mm以下である。
前記カーボンナノチューブ複合材料において、前記炭素繊維は、前記カーボンナノチューブ複合材料の主に面方向に配置され、前記カーボンナノチューブ複合材料の面内に延出する。
前記カーボンナノチューブ複合材料は、シート状の形態を有する。
前記カーボンナノチューブ複合材料は、フィルム状の形態を有する。
前記カーボンナノチューブ複合材料は、ペレットの形態を有する。
前記カーボンナノチューブ複合材料において、前記炭素繊維の熱伝導率が300W/mK以上である。
前記カーボンナノチューブ複合材料において、前記炭素繊維が、前記カーボンナノチューブの熱伝導率以上の熱伝導率を有する。
前記カーボンナノチューブ複合材料において、前記炭素繊維の平均直径が、前記カーボンナノチューブの平均直径の1000倍以上10000倍以下である。
前記カーボンナノチューブ複合材料において、前記炭素繊維が、ピッチ系炭素繊維である。
前記カーボンナノチューブ複合材料において、前記炭素繊維の平均長さが100μm以上である。
前記カーボンナノチューブ複合材料において、前記カーボンナノチューブの蛍光X線を用いた分析による炭素純度が90重量%以上である。
前記カーボンナノチューブ複合材料において、前記カーボンナノチューブの長さは、0.1μm以上である。
前記カーボンナノチューブ複合材料において、前記カーボンナノチューブは、共鳴ラマン散乱測定法による測定において得られるスペクトルで、1560cm-1以上1600cm-1以下の範囲内での最大のピーク強度をG、1310cm-1以上1350cm-1以下の範囲内での最大のピーク強度をDとしたときに、G/D比が3以上ある。
前記カーボンナノチューブ複合材料において、前記マトリックスは、樹脂である。
前記カーボンナノチューブ複合材料において、前記樹脂は、シリコーン系樹脂、変成シリコーン系樹脂、アクリル系樹脂、クロロプレン系樹脂、ポリサルファイド系樹脂、ポリウレタン系樹脂、ポリイソブチル系樹脂、フロロシリコーン系樹脂の少なくとも1つからなる。
前記カーボンナノチューブ複合材料において、前記マトリックスは、エラストマーである。
前記カーボンナノチューブ複合材料において、前記エラストマーは、天然ゴム、エポキシ化天然ゴム、スチレン-ブタジエンゴム、ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、ブチルゴム、クロロブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、ブタジエンゴム、エポキシ化ブタジエンゴム、エピクロルヒドリンゴム、ウレタンゴム、ポリスルフィドゴム、またはオレフィン系、ポリ塩化ビニル系、ポリエステル系、ポリウレタン系、ポリアミド系、スチレン系の熱可塑性エラストマーから選ばれる一種以上を含有する。
前記カーボンナノチューブ複合材料において、前記マトリックスは、フッ素ゴムを含む。
また、本発明の一実施形態によると、前記何れか一に記載のカーボンナノチューブ複合材料を備えることを特徴とする熱伝導体が提供される。
本発明によると、カーボンナノチューブと炭素繊維とをマトリックス中に分散することで、均一性に優れ、高い熱伝導性を有するカーボンナノチューブ複合材料、および熱伝導体を実現することができる。
本発明の一実施形態に係るカーボンナノチューブ複合材料100の模式図であり、(a)はカーボンナノチューブ複合材料100の一部を切り取り、内部を露出させた図であり、(b)はカーボンナノチューブ複合材料100の透視図である。 本発明の一実施形態に係るCNT群15の模式図である。 本発明の一実施形態に係るカーボンナノチューブ複合材料と他の材料の密度(重量)と熱伝導率の関係を示す図である。 本発明の一実施形態に係るカーボンナノチューブ複合材料の製造過程を示すフローチャートである。 一実施例に係るカーボンナノチューブ複合材料200の破断面のSEM像であり、(a)は倍率200倍であり、(b)は倍率500倍である。 一実施例に係るカーボンナノチューブ複合材料200の破断面の倍率1000倍のSEM像である。 一実施例に係るカーボンナノチューブ複合材料210の破断面のSEM像であり、(a)は倍率200倍であり、(b)は倍率500倍である。 一実施例に係るカーボンナノチューブ複合材料260の破断面の倍率2000倍のSEM像である。 一実施例に係るカーボンナノチューブ複合材料260の破断面の倍率2000倍のSEM像である。 一実施例に係るカーボンナノチューブ複合材料260の破断面の倍率8000倍のSEM像である。 比較例の複合材料910の破断面のSEM像であり、(a)は倍率200倍であり、(b)は倍率500倍である。 比較例の複合材料950の破断面のSEM像であり、(a)は倍率200倍であり、(b)は倍率500倍である。 一実施例に係るカーボンナノチューブ複合材料の特性を示す表である。
以下、図面を参照して本発明にカーボンナノチューブ複合材料および熱伝導体について説明する。本発明のカーボンナノチューブ複合材料および熱伝導体は、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び後述する実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
上述したように、従来の伝熱用材料は、炭素繊維をマトリックス中に均一に分散させるのが困難であった。また、従来は、カーボンナノチューブ(以下、CNTという)をマトリックス中に分散させるのが困難であり、伝熱性に優れたCNTと炭素繊維の特性を十分に発揮できる伝熱用材料を実現するのは困難であった。鋭意検討の結果、本発明者らは、CNTをマトリックス中に分散させて嵩高い三次元的な網目構造を形成させ、CNTが炭素繊維を支えることにより、マトリックス中に均一に炭素繊維を分散させる方法を想到した。このようなマトリックス中CNTと炭素繊維との構造に対する着想は、従来には報告されていないものである。
本発明に係るカーボンナノチューブ複合材料は、CNT、炭素繊維、をマトリックス中に分散してなる。ここで、本発明に係るカーボンナノチューブ複合材料は、複数のCNTから構成されるカーボンナノチューブ群(以下、CNT群)を形成し、そのCNT群が炭素繊維の間に入り込み、炭素繊維とCNT群とが連通してネットワークを形成してなることを特徴としている。本発明に係るカーボンナノチューブ複合材料は、このように、CNT群を構成する複数のCNTが炭素繊維の間に入り込むことにより、CNT群は炭素繊維の間に良好な接触を与え、高熱伝導性のカーボンナノチューブ複合材料を実現させるものである。
また、本発明に係るカーボンナノチューブ複合材料は、CNTに比べて重量のある炭素繊維をCNT群が支えることで、炭素繊維の沈降を防ぎ、よってカーボンナノチューブ複合材料中で炭素繊維を均一に分散させて、均一性に優れたカーボンナノチューブ複合材料を得ることができる。
図1は、本発明の実施形態に係るカーボンナノチューブ複合材料100の模式図であり、図1(a)はカーボンナノチューブ複合材料100の一部を切り取り、内部を露出させた図であり、図1(b)はカーボンナノチューブ複合材料100の透視図である。本実施形態に係るカーボンナノチューブ複合材料100は、CNT10と炭素繊維50とをマトリックス30中に分散してなる。複数のCNT10から構成されるCNT群15が隣接する炭素繊維50の間に存在する。
なお、本発明のカーボンナノチューブ複合材料100の構造は、以下の手順で作成した破断面を走査型電子顕微鏡(SEM)で観察し、評価するのが好ましい。SEM像は、長さ30mm、幅5mm、厚さ0.3mmの板状に切り出したカーボンナノチューブ複合材料(試料)をピンセットで保持した状態で液体窒素に20秒間浸漬し、取り出して直ぐに試料の一端を厚さ方向に狭持するように、長さ約10mmを万力に固定する。固定した試料の一端をペンチで挟み、厚さ方向に折り曲げることにより破談する。その凍結破断面破断面をSEMにより観察する。なお試料のサイズ、観察方法、倍率等は、カーボンナノチューブ複合材料100中のCNTと炭素繊維が観測できるように適宜選択しても良く、これらに限定されない。
[CNT群]
図2は、本発明の一実施形態に係るCNT群15の模式図である。CNT群15は、複数のCNT10(もしくはCNTのバンドル)とCNT(もしくはCNTのバンドル)10が絡み合い離散集合したネットワーク構造(網目構造、編目体)を備えることを特徴とする。ここで、複数のCNTが「集合」したCNT群において、CNTが「離散集合」するとは、一部のCNTが局所的に集合したり、離れたりする、すなわち「離散」した状態を有することを意味する。(便宜的に図2においては、複数のCNT10が集合したCNT群15において、集合部11と、離散部13とを有するものとして示した。また、図2において、集合部11aと集合部11bとは、互いに離散している)。カーボンナノチューブ複合材料中で、CNT群15は、三次元的な網目構造を備える。CNT群15により形成される網目体構造は、広い領域の細部まで張り巡らされたCNTのネットワークであり、炭素繊維50とCNT群15とが連通してネットワークを形成する。
カーボンナノチューブ複合材料100は、互に絡み合ったCNTを備え、不織布状(フイルム状)を呈し、カーボンナノチューブ複合材料100の厚み方向と略直交する方向に伸びて層状を成しているCNT群15を備えることが好ましい。カーボンナノチューブ複合材料100は、CNT層の間に層状に存在する、および/または、CNT群15を貫通して配置されている炭素繊維50を備えることが好ましい。また、炭素繊維50は、厚み方向と交差方向(略直角方向)に配置されていることが好ましい。
このような、CNT群15と炭素繊維50を備えるカーボンナノチューブ複合材料100は、炭素繊維50との間、好ましくは隣接する炭素繊維との間にCNT群15が入り込むことにより、炭素繊維50の間に良好な接触を与える。また、CNT群15の網目構造は、ハンモックのように、CNT群より重量のある炭素繊維を支え、よって炭素繊維50の沈降を防ぎ、よってカーボンナノチューブ複合材料100中での炭素繊維50を分散させ、熱特性に優れた、カーボンナノチューブ複合材料100を得ることができる。
カーボンナノチューブ複合材料100は、炭素繊維50にまつわり付く、および/または、接触している、および/または、少なくとも部分的に被覆しているCNT群15を備えることが好ましい。このようなCNT群は、CNT群と炭素繊維の間に良好な熱接触を与え、高熱伝導性のカーボンナノチューブ複合材料を実現させるのに好適である。
カーボンナノチューブ複合材料100は、第一の炭素繊維50と第二の炭素繊維50をつなぐ、および/または連通する、および/または、架橋しているNT群15を備えることが好ましい。このようなCNT群は、炭素繊維の間に良好な熱接触を与え、高熱伝導性のカーボンナノチューブ複合材料を実現させるのに好適である。
カーボンナノチューブ複合材料100は、サイズが10μm以上、より好ましくは15μm、さらに好ましくは20μmのCNT群15を備える。ここで、CNT群15は、広い領域の細部まで三次元的に張り巡らされたCNTのネットワークであり、CNT群15同士もお互いに接触している。このため、各々のCNT群15のサイズを測定することは難しい。そこで、本発明では、CNT群15のサイズを規定するために、カーボンナノチューブ複合材料の破断面等の光学顕微鏡写真などで観察された2次元画像を用いる。CNT群15のサイズは2次元画像で観察されたCNT群15の網目構造を構成する全ての点に関し、ある該点と、該点に対して最も遠い位置に存在するCNT群15の網目構造の距離の最大値と定義する。
このようなサイズを有するCNT群15は、炭素繊維50間を架橋しやすく、炭素繊維50の間に良好な熱接触を与え、高熱伝導性のカーボンナノチューブ複合材料を実現させるのに好適である。
カーボンナノチューブ複合材料100は、重量密度が1.0g/cm以上で、かつ、3.0g/cm以下、好ましくは2.5g/cm以下、さらに好ましくは2.1g/cm以下である。カーボンナノチューブ複合材料100は、軽量な炭素繊維、CNT、樹脂・ゴムより構成されるために、金属と比較して、密度が低く、軽量である。図3に、金属、無機物などの他の材料と、本発明によるカーボンナノチューブ複合材料100の密度(重量)と熱伝導率を比較した。本発明に係るカーボンナノチューブ複合材料100が他の材料と比較して軽量で、かつ高伝熱であるという特長を有することが明らかである。
[カーボンナノチューブ複合材料の特性]
図1に示したように、本実施形態に係るカーボンナノチューブ複合材料100において、炭素繊維50は、カーボンナノチューブ複合材料100の主に面方向に配置され、カーボンナノチューブ複合材料100の面内に延出する。本実施形態に係るカーボンナノチューブ複合材料100は、長軸がカーボンナノチューブ複合材料100の長手方向(第1の方向)に配向されて分散された炭素繊維50を有しており、CNT10が炭素繊維50の層間に分散されている。
このように配向性を有する炭素繊維50が、均一に分散して得られるカーボンナノチューブ複合材料100は、熱伝導率が10W/mK以上となる面内方向と、熱伝導率が0.5W/mK以上となる厚み方向とを有する。また、カーボンナノチューブ複合材料100の表面(カーボンナノチューブ複合材料100の厚み方向に対向する第1の面)と、裏面(カーボンナノチューブ複合材料100の厚み方向に対向する第2の面)において、表面のシート抵抗と裏面のシート抵抗の比が0.2以上5以下である。
また、カーボンナノチューブ複合材料100の硬度(マルテンス硬度)は、0.01N/mm以上10N/mm以下である。この範囲の硬度を有するカーボンナノチューブ複合材料100は、柔軟性があり、接触点での熱抵抗が小さい。したがって、カーボンナノチューブ複合材料100は、熱伝導体として用いると、発熱部品との接触性が向上し、高い放熱性を発揮することができる。
カーボンナノチューブ複合材料100は、成形することにより、シート状の形態、フィルム状の形態、ペレットの形態であることが好ましい。このような形態に成形されたカーボンナノチューブ複合材料100は熱伝導体として好適に用いることができる。
[炭素繊維]
本発明における炭素繊維とは、例えば、PAN(Polyacrylonitrile)系、ピッチ(PITCH)系からつくられた炭素繊維や黒鉛繊維、それらをニッケル、イッテルビウム、金、銀、銅などの金属を、メッキ法(電解、無電解)、CVD法、PVD法、イオンプレーティング法、蒸着法などにより少なくとも1層以上被覆して構成された金属被覆炭素繊維や、これらを2種類以上ブレンドして構成されたものを指す。2種類以上併用する場合には、炭素繊維とガラス繊維やアラミド繊維などの炭素繊維以外の繊維とを併用することもできる。かかる炭素繊維としては、熱伝導性に優れるピッチ系炭素繊維が好ましい。
カーボンナノチューブ複合材料100においては、炭素繊維50の熱伝導率が300W/mK以上であることが好ましく、より好ましくは400W/mK以上であり、更に好ましくは500W/mK以上である。このような熱伝導性を備える炭素繊維をマトリックス30中に均一に分散させることにより、カーボンナノチューブ複合材料100に高い熱伝導性を付与することができる。
また、カーボンナノチューブ複合材料100において、使用される炭素繊維50の熱伝導率が、CNT10の熱伝導率以上であることが好ましい。CNT自体も優れた熱伝導性であるが、CNTよりも熱伝導率が高い炭素繊維を用いることにより、カーボンナノチューブ複合材料100に高熱伝導性を付与することができる。
カーボンナノチューブ複合材料100において、炭素繊維50の平均直径は1μm以上50μm以下が好ましく、より好ましくは2μm以上40μm以下、更に好ましくは3μm以上30μm以下である。このような平均直径を有する炭素繊維は、炭素繊維一本当たりに伝達できる熱量が増加し、高熱伝導性を与えることができる。
また、炭素繊維50の平均直径は、CNT10の平均直径の1000倍以上10000倍以下であることが好ましい。このような平均直径の比を有することにより、CNT10が炭素繊維50の間に入り込むのが容易になり、炭素繊維50の間の良好な熱接触を与えることができる。
カーボンナノチューブ複合材料100において、炭素繊維50の平均長さは100μm以上が好ましく、より好ましくは150μm以上、更に好ましくは200μm以上である。このような長さを有する炭素繊維50を均一にマトリックス30中に分散させることにより、炭素繊維同士の接触点が減り、高熱伝導を与えることができる。
カーボンナノチューブ複合材料100において、炭素繊維50の添加量は特に制限はないが、得られるカーボンナノチューブ複合材料100の伝熱性、力学特性および成形性のバランスから、カーボンナノチューブ複合材料の100重量%に対して、10重量%以上60重量%以下の範囲内が好ましく、15重量%以上50重量%以下の範囲内がより好ましい。
[カーボンナノチューブの特性]
カーボンナノチューブ複合材料100に用いるCNT10は、炭素六角網面のグラファイトの1枚面を1層に巻いた単層カーボンナノチューブ(シングルウォールカーボンナノチューブ:SWNT)、2層に巻いた2層カーボンナノチューブ(ダブルウォールカーボンナノチューブ:DWNT)、3層以上に巻いた多層カーボンナノチューブ(MWNT:マルチウォールカーボンナノチューブ)などが適宜用いられる。また、部分的にカーボンナノチューブの構造を有する炭素材料も使用することができる。また、これらは、針状、コイル状、チューブ、カップ状の形態など任意の形態をとることができ、また、これらを2種類以上ブレンドしたものでもよい。なお、カーボンナノチューブという名称の他にグラファイトフィブリルナノチューブといった名称で称されることもある。また、CNT10は、気相で結晶を成長させる製造方法(気相成長法)により得られるCNTを好適に用いることができるが、ホウ素、炭化ホウ素、ベリリウム、アルミニウム、ケイ素等の黒鉛化触媒と共に約2300℃~3200℃で黒鉛化処理したものを用いてもよい。
カーボンナノチューブ複合材料100において、CNT10は単層CNTが好ましい。単層CNTは、炭素繊維50の間に入り込むのが容易になり、炭素繊維50の間の良好な熱接触を与えることができる。
CNT10が単層であることの検証は、透過型電子顕微鏡(TEM)を用いて、倍率40万倍で観察し、75nm四方の視野の中で視野面積の10%以上がCNT集合体である視野中から任意に抽出した100本のCNTについて層数を評価し、単層CNTの本数を確認することにより行うことができる。一つの視野中で100本の測定ができない場合は、100本になるまで複数の視野から測定する。このとき、CNT1本とは視野中で一部CNTが見えていれば1本と計上し、必ずしも両端が見えている必要はない。また視野中で2本と認識されても視野外でつながって1本となっていることもあり得るが、その場合は2本と計上する。
CNTの特徴である円筒状のグラファイト構造は、高分解能透過型電子顕微鏡で調べることができる。グラファイトの層は、透過型電子顕微鏡でまっすぐにはっきりと見えるほど好ましいが、グラファイト層は乱れていても構わない。グラファイト層が乱れたものは、カーボンナノファイバーと定義することがあるが、このようなカーボンナノファイバーも本発明においてはCNTに含むものとする。
カーボンナノチューブ複合材料100に用いるCNT10は、一般にレーザーアブレーション法、アーク放電法、熱CVD法、プラズマCVD法、燃焼法などで製造できるが、どのような方法で製造したCNTでも構わない。カーボンナノチューブ複合材料100に用いるCNT10は、例えば特願2010-544871(特許第4803687)に記載された製造方法により得られる。
本発明のカーボンナノチューブ複合材料100に用いるCNT10の特性は、カーボンナノチューブ複合材料100からCNT10のみを抽出し、例えばバッキペーパーにして評価することができる。抽出は、溶媒を用いてマトリックス30を溶解するなどの公知の手段を適宜用いることができる。本発明のカーボンナノチューブ複合材料100に用いるCNT10の長さは、0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。このようなCNT10は、炭素繊維50の間に入り込むのが容易になり、炭素繊維50の間の良好な熱接触を与えることができる。
本発明のカーボンナノチューブ複合材料100に用いるCNT10の平均直径は、0.7nm以上50nm以下の範囲であり、好ましくは1nm以上10nm以下の範囲である。平均直径が小さすぎると、凝集性が強すぎて分散しない。逆に平均直径が大きすぎると、CNT同士の接触抵抗が増加するため、高い熱伝導性を有する熱接触の形成が阻害される。なお、本発明のカーボンナノチューブ複合材料100に用いるCNT10の平均直径は、マトリックスに分散させる前のカーボンナノチューブ配向集合体の透過電子顕微鏡(以下、TEMという)画像から一本一本のCNTの外径、すなわち直径を計測してヒストグラムを作成し、このヒストグラムから求める。
本発明のカーボンナノチューブ複合材料100に用いるCNT10の蛍光X線を用いた分析による炭素純度が90重量%以上であることが好ましく、より好ましくは95重量%以上であり、更に好ましくは98重量%以上である。このような高純度のCNTは、金属触媒等の不純物の量が少ないため、良好な成形加工性を与えることができる。なお、炭素純度とは、CNTの重量の何パーセントが炭素で構成されているかを示し、本発明のカーボンナノチューブ複合材料100に用いるCNT10の炭素純度は、蛍光X線による元素分析から求める。
本発明のカーボンナノチューブ複合材料100に用いるCNT10は、共鳴ラマン散乱測定法の測定により得られるスペクトルで1560cm-1以上1600cm-1以下の範囲内での最大のピーク強度をG、1310cm-1以上1350cm-1以下の範囲内での最大のピーク強度をDとしたときに、G/D比が3以上あることが好ましい。このような高いG/D比を備えるCNT10は、熱伝導特性が向上し、高熱伝導を与えることができる。
本発明のカーボンナノチューブ複合材料100においては、このような特性を有するCNTを0.01重量%以上30重量%以下の範囲で含むことが好ましい。これより少ないCNTの配合量では、カーボンナノチューブ複合材料100において炭素繊維50を均一に分散させることが困難となる。また、これより多い配合量のCNTは、マトリックス30の特性を抑制するため、好ましくない。
[マトリックス]
本発明で用いるマトリックス30に特段の制限はないが、熱伝導率が10W/mKより小さい材料、より好ましくは5W/mK、特に好ましくは2W/mK以下の物を用いることが本発明の効果を得るために好ましい。特に樹脂を用いることが好ましい。マトリックス30に用いる樹脂は、シリコーン系樹脂、変成シリコーン系樹脂、アクリル系樹脂、クロロプレン系樹脂、ポリサルファイド系樹脂、ポリウレタン系樹脂、ポリイソブチル系樹脂、フロロシリコーン系樹脂の少なくとも1つからなることが好ましい。樹脂は、熱硬化性樹脂および熱可塑性樹脂のどちらも使用することができる。
熱硬化性樹脂としては、例えば、不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド等や、これらの共重合体、変性体、および、2種類以上ブレンドした樹脂などを使用することができる。また、更に耐衝撃性向上のために、上記熱硬化性樹脂にエラストマーもしくはゴム成分を添加した樹脂であってもよい。
熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、ポリエーテルスルホン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂であってもよい。
本発明のカーボンナノチューブ複合材料100に用いるエラストマーは、ゴム系エラストマーあるいは熱可塑性エラストマーのいずれであってもよい。エラストマーとしては、例えば、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、スチレン-ブタジエンゴム(SBR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPR,EPDM)、ブチルゴム(IIR)、クロロブチルゴム(CIIR)、アクリルゴム(ACM)、シリコーンゴム(Q)、フッ素ゴム(FKM)、ブタジエンゴム(BR)、エポキシ化ブタジエンゴム(EBR)、エピクロルヒドリンゴム(CO,CEO)、ウレタンゴム(U)、ポリスルフィドゴム(T)などのエラストマー類、またはオレフィン系(TPO)、ポリ塩化ビニル系(TPVC)、ポリエステル系(TPEE)、ポリウレタン系(TPU)、ポリアミド系(TPEA)、スチレン系(SBS)などの熱可塑性エラストマーから選ばれる一種以上を含有することができる。また、混合物を用いることができる。特に、エラストマーの混練の際にフリーラジカルを生成しやすい極性の高いエラストマー、例えば、天然ゴム(NR)、ニトリルゴム(NBR)などが好ましい。また、これらの混合物、共重合体、変性体、および2種類以上ブレンドしたものであってもよい。
本発明のカーボンナノチューブ複合材料100に用いるマトリックスはとしては、特にフッ素樹脂や、フッ素ゴムが好ましい。フッ素樹脂とカーボンナノチューブの親和性が高くCNTを良好に分散させることができるためである。
フッ素樹脂としては、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレンポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン・四フッ化エチレン共重合体、エチレン・クロロトリフルオロエチレン共重合体のいずれか、もしくはこれらの混合物、いずれも好適に用いることができる。
[製造方法]
上述した本実施形態に係るカーボンナノチューブ複合材料100の製造方法について、以下に説明する。上述したように、カーボンナノチューブ複合材料100においては、公知のCNTを用いることができる。
[カーボンナノチューブの分散]
CNTはカーボンナノチューブ集合体(以下、CNT集合体という)として供給されるため、溶媒に分散させてから、炭素繊維とともにマトリックスに混合する必要がある。CNT集合体を用いたカーボンナノチューブ複合材料の製造方法について図4を参照して説明する。まず、供給されたCNT集合体に乾燥工程を実施する(S101)。乾燥工程を実施することで分散性が高まり、本発明に係わるカーボンナノチューブ複合材料を製造するために好適である。本発明のカーボンナノチューブ複合材料に用いるCNT集合体を構成するカーボンナノチューブは大気中に保存、搬送時に、カーボンナノチューブの間に容易に大気中の水分を吸着する。このように水分が吸着した状態では、水の表面張力により、カーボンナノチューブ同士がくっついているため、カーボンナノチューブが非常にほどけにくくなり、マトリックス中での良好な分散性が得られない。そこで、分散工程の前にカーボンナノチューブの乾燥工程を実施することで、カーボンナノチューブに含まれる水分を除去し、分散媒への分散性を高めることができる。乾燥工程には、例えば、加熱乾燥や真空乾燥を用いることができ、加熱真空乾燥を好適に用いる。
剥離したCNT集合体を分級工程により分級すると好ましい(S103)。分級工程は、CNT集合体の大きさを所定の範囲にすることで、均一なサイズのCNT集合体を得る工程である。CNT集合体は、サイズの大きな塊状の合成品も含まれる。これらのサイズの大きな塊状のCNT集合体は分散性が異なるため、安定した分散液の作成を阻害する。そこで、網、フィルター、メッシュ等を通過した、大きな塊状のCNT集合体を除外したCNT集合体だけを以後の工程に用いると、安定したカーボンナノチューブ分散液を得る上で好適である。
分級したCNT集合体は、次の分散工程の前にプレ分散工程を実施することが好ましい(S105)。プレ分散工程とは、溶媒中にCNT集合体を攪拌して分散させる工程である。本発明のカーボンナノチューブ複合材料に用いるカーボンナノチューブは、後述するように、ジェットミルを用いた分散方法が好ましいが、プレ分散工程を実施することにより、ジェットミルにカーボンナノチューブが詰まるのを防止するとともに、カーボンナノチューブの分散性を高めることができる。プレ分散工程には、撹拌子を用いることが好ましい。
プレ分散工程を施したCNT集合体の分散液に分散工程を施す(S107)。CNT集合体の分散液への分散工程には、剪断応力によりカーボンナノチューブを分散させる方法が好ましく、ジェットミルを用いるのが好ましい。特に、湿式ジェットミルを好適に用いることができる。湿式ジェットミルは、溶媒中の混合物を高速流として、耐圧容器内に密閉状態で配置されたノズルから圧送するものである。耐圧容器内で対向流同士の衝突、容器壁との衝突、高速流によって生じる乱流、剪断流などによりカーボンナノチューブを分散させる。湿式ジェットミルとして、例えば、株式会社常光のナノジェットパル(JN10、JN100、JN1000)を用いた場合、分散工程における処理圧力は、10MPa以上150MPa以下の範囲内の値が好ましい。また、本実施形態において、CNT集合体の分散工程には、スギノマシン社製のジェットミル(HJP-17004)を用いてもよい。
このように分散させたカーボンナノチューブ分散液は、カーボンナノチューブの優れた電気的特性や熱伝導性、機械的性質を維持しつつ、分散性が高く、安定した分散液を提供することができる。
次に、マトリックスを溶媒に溶解させたマトリックス溶液と、炭素繊維を準備し、カーボンナノチューブ分散液に添加して、十分に攪拌し、マトリックス中にカーボンナノチューブ及び炭素繊維を分散させる(S109)。上述したように、本発明のカーボンナノチューブ複合材料においては、カーボンナノチューブ複合材料全体の質量を100質量%とした場合、0.01重量%以上30重量%以下となるように、カーボンナノチューブ分散液とマトリックス溶液とを混合する。また、炭素繊維は、カーボンナノチューブ複合材料の100重量%に対して、10重量%以上60重量%以下、より好ましくは15重量%以上50重量%以下の範囲内で添加する。
十分に混合した溶液をシャーレ等の型に流しこみ、室温で乾燥させることにより、カーボンナノチューブ複合材料を固化させる(S111)。このとき、混合溶液は、攪拌しながら乾燥させることが好ましい。攪拌せずに乾燥させると、密度の大きな炭素繊維が分離してしまう。
固化したカーボンナノチューブ複合材料を真空乾燥炉に入れて乾燥させて、溶媒を除去する(S113)。ここで、乾燥温度は、カーボンナノチューブ複合材料から溶媒を十分に除去可能で、且つ、マトリックスが劣化しない温度とする。従って、カーボンナノチューブ複合材料に用いるマトリックスにより変更可能であるが、例えば、80℃程度であれば、溶媒を十分に除去し、且つ、マトリックスを劣化させることはない。
[溶媒]
本発明のカーボンナノチューブ複合材料に用いるカーボンナノチューブの分散媒及びマトリックスの溶解に用いる溶媒としては、マトリックスを溶解可能な有機溶媒であればよく、用いるマトリックスにより適宜選択することができる。例えば、トルエン、キシレン、アセトン、四塩化炭素等を用いることができる。特に、本発明のカーボンナノチューブ複合材料に用いる溶媒として、フッ素ゴム及びシリコーンゴムを含む多くのゴムが可溶であり、カーボンナノチューブの良溶媒であるメチルイソブチルケトン(以下、MIBKという)が好ましい。
分散剤をカーボンナノチューブ分散液に添加してもよい。分散剤は、カーボンナノチューブの分散能や分散安定化能等を向上させるのに役立つ。
このようにして、低添加量のカーボンナノチューブで高導電性を発揮できる本発明のカーボンナノチューブ複合材料を製造することができる。
以上説明したように、本発明に係るカーボンナノチューブと炭素繊維とをマトリックス中に分散することで、均一性に優れ、高い熱伝導性を有するカーボンナノチューブ複合材料、および熱伝導体を実現することができる。
[熱伝導体]
上述のカーボンナノチューブ複合材料を成形することにより、均一性に優れ、高い熱伝導性を有する熱伝導体を実現することができる。本発明に係る熱伝導体は、公知の加工法を用いることにより、小型電子機器やLEDのみならず、様々な分野において、優れた放熱部品として利用可能である。
(実施例1)
[実施例1に用いたCNTの特性]
実施例1に用いたCNTは、典型値として、長さが100μm、平均直径が3.0nm、熱伝導率は80W/mKである。
[CNT集合体のラマンスペクトル評価]
実施例1に用いたCNT集合体のラマンスペクトルを計測した。鋭いGバンドピークが1590cm-1近傍で観察され、これより本発明のCNT集合体を構成するCNTにグラファイト結晶構造が存在することが分かる。
また欠陥構造などに由来するDバンドピークが1340cm-1近傍で観察されているため、CNTに有意な欠陥が含まれていることを示している。複数の単層CNTに起因するRBMモードが低波長側(100~300cm-1)に観察されたことから、このグラファイト層が単層CNTであることが分かる。G/D比は8.6であった。
[CNT集合体の純度]
CNT集合体の炭素純度は、蛍光X線を用いた元素分析結果より求めた。CNT集合体を蛍光X線によって元素分析したところ、炭素の重量パーセントは99.98%、鉄の重量パーセントは0.013%であり、その他の元素は計測されなかった。この結果から、炭素純度は99.98%と計測された。
[CNTの分散]
供給されたCNT集合体は、目開き0.8mmの網の一方にCNT集合体を置き、網を介して掃除機で吸引し、通過したものを回収して、CNT集合体から、サイズの大きな塊状のCNT集合体を取り除き、分級を行った(分級工程)。
CNT集合体はカール・フィッシャー反応法(三菱化学アナリテック製電量滴定方式微量水分測定装置CA-200型)で水分量を測定した。CNT集合体を所定の条件(真空下、200℃に1時間保持)で乾燥後、乾燥窒素ガス気流中のグローブボックス内で、真空を解除してCNT集合体を約30mg取り出し、水分計のガラスボートに移した。ガラスボートは、気化装置に移動し、そこで150℃×2分間加熱され、その間に気化した水分は窒素ガスで運ばれて隣のカール・フィッシャー反応によりヨウ素と反応させた。その時消費されたヨウ素と等しい量のヨウ素を発生させるために要した電気量により、水分量を検知した。この方法により、乾燥前のCNT集合体は、0.8重量%の水分を含有していた。乾燥後のCNT集合体は、0.3重量%の水分に減少した。
分級したCNT集合体を100mg正確に計量し、100mlフラスコ(3つ口:真空用、温度調節用)に投入して、真空下で200℃に達してから24時間保持し、乾燥させた。乾燥が終了後、加熱・真空処理状態のまま、分散媒MIBK(メチルイソブチルケトン)(シグマアルドリッチジャパン社製)を20ml注入しCNT集合体が大気に触れることを防いだ(乾燥工程)。
さらに、MIBK(シグマアルドリッチジャパン社製)を追加して300mlとした。そのビーカーに撹拌子を入れて、ビーカーをアルミ箔で封印し、MIBKが揮発しないようにして、600RPMで、24時間スターラーで常温撹拌した。
分散工程には、湿式ジェットミル(スギノマシン社製のジェットミル(HJP-17004)を用い、0.13mmの流路を100MPa×2の圧力で通過させてCNT集合体をMIBKに分散させ、重量濃度0.033wt%のカーボンナノチューブ分散液を得た。
その分散液を更に常温で24時間、スターラーで撹拌した。この時、溶液を70℃まで昇温し、MIBKを揮発させ150ml程度とした。この時のカーボンナノチューブの重量濃度は、0.075wt%程度となった(分散工程)。このようにして、本発明に係わるカーボンナノチューブ分散液を得た。
本実施例においては、炭素繊維としてピッチ系炭素繊維(三菱樹脂株式会社製、ダイアリード(登録商標) K223HM)を用いた。炭素繊維の平均直径は10μm、炭素繊維の平均長さは213μm、炭素繊維の熱伝導率λは627W/mKである。
本実施例においては、マトリックスとしてフッ素ゴム(ダイキン工業社製、Daiel-G912)を用いた。カーボンナノチューブ複合材料全体の質量を100質量%とした場合、CNT含量が4.8%となるようにカーボンナノチューブ分散液600mlと、炭素繊維含量が19%となるように炭素繊維20gをフッ素ゴム溶液50mlに添加し、スターラーを用い、約300rpm条件下で、室温で16時間攪拌し全量が50ml程度になるまで濃縮した。
十分に混合した溶液をシャーレ等の型に流しこみ、攪拌しながら、室温で12時間乾燥させることにより、カーボンナノチューブ複合材料を固化させた。
固化したカーボンナノチューブ複合材料を80℃の真空乾燥炉に入れて、24時間で乾燥させ溶媒を除去した。このようにして、実施例1のカーボンナノチューブ複合材料200を得た(試料の形状は直径77mm、厚さ約300μmの円形のシート状である。)
(実施例2)
実施例2として、実施例1と同様の製造方法を用いて、カーボンナノチューブ複合材料全体の質量を100質量%とした場合、カーボンナノチューブ含量が4.8%、炭素繊維含量が28.6%となるように、カーボンナノチューブ分散液と炭素繊維をフッ素ゴム溶液にそれぞれ添加して、カーボンナノチューブ複合材料210を製造した。
(実施例3)
実施例3においては、マトリックスとしてシリコーンゴム(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、TSE3282-G)を用いた。実施例1と同様の製造方法を用いて、カーボンナノチューブ複合材料全体の質量を100質量%とした場合、カーボンナノチューブ含量が4.8%、炭素繊維含量が19%となるように、カーボンナノチューブ分散液と炭素繊維をシリコーンゴム溶液にそれぞれ添加して、カーボンナノチューブ複合材料220を製造した。
(実施例4)
実施例4においては、マトリックスとしてアクリロニトリル-ブタジエン-スチレン共重合合成樹脂(ABS樹脂)(東レ社製)を用い、実施例1と同様の製造方法を用いて、カーボンナノチューブ複合材料全体の質量を100質量%とした場合、カーボンナノチューブ含量が4.8%、炭素繊維含量が19%となるように、カーボンナノチューブ分散液と炭素繊維をシリコーンゴム溶液にそれぞれ添加して、カーボンナノチューブ複合材料230を製造した。
(実施例5)
実施例5として、実施例1と同様の製造方法を用いて、カーボンナノチューブ複合材料全体の質量を100質量%とした場合、カーボンナノチューブ含量が6.7質量%、炭素繊維含量が19.0質量%となるように、カーボンナノチューブ分散液と炭素繊維をフッ素ゴム溶液にそれぞれ添加して、カーボンナノチューブ複合材料240を製造した。
(実施例6)
実施例6として、実施例1と同様の製造方法を用いて、カーボンナノチューブ複合材料全体の質量を100質量%とした場合、カーボンナノチューブ含量が9.5質量%、炭素繊維含量が19.0質量%となるように、カーボンナノチューブ分散液と炭素繊維をフッ素ゴム溶液にそれぞれ添加して、カーボンナノチューブ複合材料250を製造した。
(実施例7)
実施例7として、CNT/CF溶液に1質量%等量の硝酸を加え、5分間酸処理をした。その後、酸は水及びエタノールを用いて洗浄したのち、実施例1と同様の製造方法を用いて、カーボンナノチューブ複合材料を作成した。ただし、全体の質量を100質量%とした場合、カーボンナノチューブ含量が4.8質量%、炭素繊維含量が19.0質量%となるように、カーボンナノチューブ分散液と炭素繊維をフッ素ゴム溶液にそれぞれ添加して、カーボンナノチューブ複合材料260を製造した。
(実施例8)
実施例8においては、マトリックスとしてヒドリンゴム(ZEON社製)を用い、実施例7と同様の製造方法を用いて、カーボンナノチューブ複合材料を作成した。ただし、全体の質量を100質量%とした場合、カーボンナノチューブ含量が4.8質量%、炭素繊維含量が19.0質量%となるように、カーボンナノチューブ分散液と炭素繊維をフッ素ゴム溶液にそれぞれ添加して、カーボンナノチューブ複合材料270を製造した。
(実施例9)
実施例8においては、マトリックスとしてアクリルゴム(ZEON社製)を用い、実施例7と同様の製造方法を用いて、カーボンナノチューブ複合材料を作成した。ただし、全体の質量を100質量%とした場合、カーボンナノチューブ含量が4.8質量%、炭素繊維含量が19.0質量%となるように、カーボンナノチューブ分散液と炭素繊維をフッ素ゴム溶液にそれぞれ添加して、カーボンナノチューブ複合材料280を製造した。
(比較例1)
比較例1においては、炭素繊維を含有しないカーボンナノチューブ複合材料900を製造した。実施例1と同様の製造方法を用いて、カーボンナノチューブ複合材料全体の質量を100質量%とした場合、カーボンナノチューブ含量が5%となるように、カーボンナノチューブ分散液をフッ素ゴム溶液に添加して、カーボンナノチューブ複合材料900を製造した。
(比較例2)
比較例2においては、CNTを含有しない複合材料910を製造した。複合材料全体の質量を100質量%とした場合、炭素繊維含量が20%となるように、炭素繊維をフッ素ゴム溶液に添加して、実施例1と同様の製造方法を用いて、複合材料910を製造した。
(比較例3)
比較例3においては、CNTを含有しない複合材料930を製造した。複合材料全体の質量を100質量%とした場合、炭素繊維含量が10%となるように、炭素繊維をフッ素ゴム溶液に添加して、実施例1と同様の製造方法を用いて、複合材料920を製造した。
(比較例4)
比較例4においては、CNTを含有しない複合材料950を製造した。複合材料全体の質量を100質量%とした場合、炭素繊維含量が30%となるように、炭素繊維をフッ素ゴム溶液に添加して、実施例1と同様の製造方法を用いて、複合材料930を製造した。
(比較例5)
比較例5として、CNTとして多層CNTのNanocyl(NC7000、Nanocyl社)を用いて、実施例1と同様の製造方法を用いて、カーボンナノチューブ複合材料全体の質量を100質量%とした場合、カーボンナノチューブ含量が4.8%、炭素繊維含量が28.6%となるように、カーボンナノチューブ分散液と炭素繊維をフッ素ゴム溶液にそれぞれ添加して、カーボンナノチューブ複合材料940を製造した。
(比較例6)
比較例6として、CNTとして短い単層CNTであるHiPCO(NanoIntegris社)を用いて、実施例1と同様の製造方法を用いて、カーボンナノチューブ複合材料全体の質量を100質量%とした場合、カーボンナノチューブ含量が4.8%、炭素繊維含量が28.6%となるように、カーボンナノチューブ分散液と炭素繊維をフッ素ゴム溶液にそれぞれ添加して、カーボンナノチューブ複合材料950を製造した。
(比較例7)
比較例7として、CNTの代わりに熱伝導性フィラーであるAlN(トーヤルナイト、東洋アルミニウム社)を用いて、実施例1と同様の製造方法を用いて、AlN複合材料全体の質量を100質量%とした場合、AlN含量が4.8%、炭素繊維含量が28.6%となるように、AlN分散液と炭素繊維をフッ素ゴム溶液にそれぞれ添加して、AlN複合材料960を製造した。
(比較例8)
比較例8として、CNTの代わりに熱伝導性フィラーであるグラフェン(グラフェンナノパウダー、株式会社ATR)を用いて、実施例1と同様の製造方法を用いて、グラフェン複合材料全体の質量を100質量%とした場合、グラフェン含量が4.8%、炭素繊維含量が28.6%となるように、グラフェン分散液と炭素繊維をフッ素ゴム溶液にそれぞれ添加して、グラフェン複合材料970を製造した。
[走査電子顕微鏡像]
実施例1、実施例2、比較例2及び比較例4について、凍結破断面の走査電子顕微鏡(以下、SEM)像を比較した。SEM像は、長さ30mm、幅5mm、厚さ0.3mmの板状に切り出したカーボンナノチューブ複合材料(試料)をピンセットで保持した状態で液体窒素に20秒間浸漬し、取り出して直ぐに試料の一端を厚さ方向に狭持するように長さ約10mmを万力に固定した。固定した試料の一端をペンチで挟み、厚さ方向に折り曲げることにより破断した。その凍結破断面破断面をSEMにより観察した。
図5は実施例1のカーボンナノチューブ複合材料200の破断面のSEM像であり、図5(a)は倍率200倍であり、図5(b)は倍率500倍である。図6は実施例1のカーボンナノチューブ複合材料200の破断面の倍率1000倍のSEM像である。図7は実施例2のカーボンナノチューブ複合材料210の破断面のSEM像であり、図7(a)は倍率200倍であり、図7(b)は倍率500倍である。図8は実施例7のカーボンナノチューブ複合材料260の破断面の倍率2000倍のSEM像である。図9は実施例7のカーボンナノチューブ複合材料260の破断面の倍率2000倍のSEM像であり、図10は、図9の実施例7のカーボンナノチューブ複合材料260の破断面を倍率8000倍に拡大したSEM像である。図11は比較例2の複合材料910の破断面のSEM像であり、図11(a)は倍率200倍であり、図11(b)は倍率500倍である。図12は比較例4の複合材料950の破断面のSEM像であり、図12(a)は倍率200倍であり、図12(b)は倍率500倍である。
図5に示したように、実施例1のカーボンナノチューブ複合材料200の破断面においては、CNT10の三次元的な網目構造が観察され、炭素繊維50がこの網目構造に支えられて、カーボンナノチューブ複合材料200中に均一に分散していることが確認できる。また、図7に示した実施例2のカーボンナノチューブ複合材料210の破断面においても、同様に、炭素繊維50がCNT10の三次元的な網目構造に支えられて、カーボンナノチューブ複合材料210中に均一に分散していることが確認できる。このように、本実施例のカーボンナノチューブ複合材料においては、炭素繊維50がCNT10により支えられると同時に、炭素繊維50とCNT10との接触が熱伝導性を発揮する経路を提供していることが推察される。
本実施例において、CNT群15は、複数のCNT10(もしくはCNTのバンドル)とCNT(もしくはCNTのバンドル)10が絡み合い離散集合したネットワーク構造(網目構造、編目体)を備える。本実施例に係るカーボンナノチューブ複合材料は、互に絡み合ったCNT10を備え、不織布状(フイルム状)を呈し、カーボンナノチューブ複合材料の厚み方向と略直交する方向に伸びて層状を成しているCNT群15を備える。本実施例に係るカーボンナノチューブ複合材料は、CNT層の間に層状に存在する、および/または、CNT群15を貫通して配置されている炭素繊維50を備える。また、炭素繊維50は、厚み方向と交差方向(略直角方向)に配置されている。
本実施例に係るカーボンナノチューブ複合材料は、炭素繊維50にまつわり付く、および/または、接触している、および/または、少なくとも部分的に被覆しているCNT群15を備える。また、本実施例に係るカーボンナノチューブ複合材料は、第一の炭素繊維50と第二の炭素繊維50をつなぐ、および/または連通する、および/または、架橋しているNT群15を備える。
図8~図10に示したように、実施例7のカーボンナノチューブ複合材料260は、破断面においては、CNT10の三次元的な網目構造が観察され、炭素繊維50がこの網目構造に支えられて、カーボンナノチューブ複合材料260中に均一に分散していることが確認できる。このように、本実施例のカーボンナノチューブ複合材料においては、炭素繊維50がCNT10により支えられると同時に、炭素繊維50とCNT10との接触が熱伝導性を発揮する経路を提供していることが推察される。
図9及び図10においてよく観察されるように、実施例7のカーボンナノチューブ複合材料260において、CNT群15は、複数のCNT10(もしくはCNTのバンドル)とCNT(もしくはCNTのバンドル)10が絡み合い離散集合したネットワーク構造(網目構造、編目体)を備える。特に図10から明らかなように、複数のCNT10が「集合」したCNT群において、一部のCNT10が局所的に集合したり、離れたりする、すなわち「離散」した状態を有する「離散集合」が生じている。
実施例7のカーボンナノチューブ複合材料260は、互に絡み合ったCNT10を備え、不織布状(フイルム状)を呈し、カーボンナノチューブ複合材料の厚み方向と略直交する方向に伸びて層状を成しているCNT群15を備える。カーボンナノチューブ複合材料260は、CNT層の間に層状に存在する、および/または、CNT群15を貫通して配置されている炭素繊維50を備える。また、炭素繊維50は、厚み方向と交差方向(略直角方向)に配置されている。
カーボンナノチューブ複合材料260は、炭素繊維50にまつわり付く、および/または、接触している、および/または、少なくとも部分的に被覆しているCNT群15を備える。また、カーボンナノチューブ複合材料260は、第一の炭素繊維50と第二の炭素繊維50をつなぐ、および/または連通する、および/または、架橋しているNT群15を備える。
一方、図11に示したように、比較例2の複合材料910の破断面においては、炭素繊維50がマトリックス30に包埋されるのみであるため、炭素繊維50同士の接触でのみ熱伝導性を発揮する経路が提供されるため、実施例に比して熱伝導率が低くなるものと推察される。図12に示した比較例4の複合材料950の破断面においては、炭素繊維50同士の接触割合は増加するものの、実施例のようなCNT10の三次元的な網目構造は存在しないため、実施例に比して熱伝導性が低くなるものと推察される。
[熱伝導率]
実施例及び比較例について、熱伝導率を求めた。熱伝導率は熱拡散率を測定により求め、得られた熱拡散率から換算した。熱伝導率は面内熱伝導率と、厚み方向熱伝導率について比較した。熱拡散率をλ(W/mK)、熱拡散率をα(m/S)、熱容量をC(J/kgK)とすると、次式の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000001

熱拡散率の測定は、NETZSCH社製LFA447-Nanoflashを用いて行った。なお、フッ素ゴムの熱容量は、示差走査熱量計(エスアイアイ・ナノテクノロジー社製、X-DSC7000)によりサファイアを対照サンプルとして比熱容量を、乾式密度計(島津製作所製、アキュビックII1340)により密度を測定し、その積を熱容量として用いた。
面内熱伝導率と厚み方向熱伝導率を図13にまとめる。図13に示したように、実施例1のカーボンナノチューブ複合材料200においては、面内熱伝導率が23.5W/mK、厚み方向熱伝導率が2.24W/mKであった。また、実施例2のカーボンナノチューブ複合材料210においては、面内熱伝導率が19.3W/mK、厚み方向熱伝導率が0.96W/mKであった。実施例3~9のカーボンナノチューブ複合材料においても、10W/mK以上の面内熱伝導率を示し、実施例7においては、105W/mKの面内熱伝導率を示した。一方、炭素繊維を含有しない比較例1の複合材料900においては、面内熱伝導率が5.15W/mK、厚み方向熱伝導率が0.046W/mKと実施例に比して極めて低い値であった。また、CNTを含有しない比較例2の複合材料910においては、面内熱伝導率が5.49W/mK、厚み方向熱伝導率が0.76W/mKと実施例に比して極めて低い値であった。比較例4において炭素繊維の含有量を増加させても実施例には及ばなかった。比較例5~8においても、実施例に比して極めて低い面内熱伝導率を示した。
SEM観察と熱伝導率の結果から、実施例のカーボンナノチューブ複合材料は、炭素繊維50がCNT10の三次元の網目構造に支えられて、カーボンナノチューブ複合材料210中に均一に分散していることにより、CNTにより炭素繊維間の接触効率が向上し、高い熱伝導性を実現するものと推察される。
[硬度測定]
実施例及び比較例について、硬度を測定した。硬度測定には、フィッシャー・インストルメンツ社製微少硬度計HM2000を用いた。
硬度測定の結果を図13にまとめた。熱抵抗を下げるには、発熱体と熱伝導体とが密着することが重要である。図13から明らかなように、実施例のカーボンナノチューブ複合材料は、炭素繊維50をCNT10の三次元的な網目構造が支えるため、炭素繊維50のみを含有する比較例の複合材料に比して柔軟性を有しており、熱伝導体とし適した材料であることが示された。
[表面体積抵抗率]
実施例及び比較例について、その厚み方向の両面の表面体積抵抗率を測定した。表面体積抵抗率の測定には、三菱化学アナリテック社製抵抗率計ロレスタGP MCP-T610を用いた。
表面体積抵抗率の測定の結果を図13にまとめた。図13に示したように、実施例1及び2のカーボンナノチューブ複合材料においては、シート抵抗の比が1であった。一方、比較例2~4の複合材料においては、シート抵抗の比が極めて大きかった。したがって、実施例のカーボンナノチューブ複合材料は、均一性に優れた材料であると評価される。
以上説明したように、本実施例に係るカーボンナノチューブ複合材料は、炭素繊維50がCNT10の三次元的な網目構造に支えられて、カーボンナノチューブ複合材料210中に均一に分散していることにより、CNTにより炭素繊維間の接触効率が向上し、高い熱伝導性を実現する優れた材料である。
10 カーボンナノチューブ、15:CNT群、30 マトリックス、50:炭素繊維、100 カーボンナノチューブ複合材料、200 カーボンナノチューブ複合材料、210 カーボンナノチューブ複合材料、220 カーボンナノチューブ複合材料、230 カーボンナノチューブ複合材料、240 カーボンナノチューブ複合材料、250 カーボンナノチューブ複合材料、260 カーボンナノチューブ複合材料、270 カーボンナノチューブ複合材料、280 カーボンナノチューブ複合材料、900 カーボンナノチューブ複合材料、910 カーボンナノチューブ複合材料、920 カーボンナノチューブ複合材料、930 カーボンナノチューブ複合材料、940 カーボンナノチューブ複合材料、950 カーボンナノチューブ複合材料、960 カーボンナノチューブ複合材料、970 カーボンナノチューブ複合材料

Claims (23)

  1. カーボンナノチューブと炭素繊維とをマトリックス中に分散してなるカーボンナノチューブ複合材料であって、
    複数の前記カーボンナノチューブから構成されるカーボンナノチューブ群が前記炭素繊維の間に存在し、
    前記炭素繊維の平均直径が1μm以上50μm以下であり、
    前記カーボンナノチューブの平均直径が0.7nm以上50nm以下であり、
    前記カーボンナノチューブ複合材料の100重量%に対して、前記カーボンナノチューブを0.01重量%以上30重量%以下の範囲で含み、前記炭素繊維を10重量%以上60重量%以下の範囲で含み、
    前記マトリックスの熱伝導率が10W/mKより小さく、
    前記カーボンナノチューブ複合材料は、熱伝導率が10W/mK以上である方向を有することを特徴とするカーボンナノチューブ複合材料。
  2. 前記カーボンナノチューブ群が、三次元的な網目構造を有することを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  3. CNT群のサイズが10μm以上であることを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  4. 前記カーボンナノチューブ複合材料は、熱伝導率が10W/mK以上となる面内方向と、熱伝導率が0.5W/mK以上となる厚み方向と、を有し、
    前記カーボンナノチューブ複合材料の前記厚み方向に対向する第1の面と第2の面とにおいて、前記第1の面のシート抵抗と前記第2の面のシート抵抗の比が0.2以上5以下であることを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  5. 前記カーボンナノチューブ複合材料の硬度が0.01N/mm以上10N/mm以下であることを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  6. 前記炭素繊維は、前記カーボンナノチューブ複合材料の主に面方向に配置され、前記カーボンナノチューブ複合材料の面内に延出することを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  7. 前記カーボンナノチューブ複合材料は、シート状の形態を有することを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  8. 前記カーボンナノチューブ複合材料は、フィルム状の形態を有することを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  9. 前記カーボンナノチューブ複合材料は、ペレットの形態を有することを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  10. 前記炭素繊維の熱伝導率が300W/mK以上であることを特徴とする特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  11. 前記炭素繊維が、前記カーボンナノチューブの熱伝導率以上の熱伝導率を有することを特徴とする請求項10に記載のカーボンナノチューブ複合材料。
  12. 前記炭素繊維の平均直径が、前記カーボンナノチューブの平均直径の1000倍以上10000倍以下であることを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  13. 前記炭素繊維が、ピッチ系炭素繊維であることを特徴とする請求項12に記載のカーボンナノチューブ複合材料。
  14. 前記炭素繊維の平均長さが100μm以上であることを特徴とする請求項13に記載のカーボンナノチューブ複合材料。
  15. 前記カーボンナノチューブの蛍光X線を用いた分析による炭素純度が90重量%以上であることを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  16. 前記カーボンナノチューブの長さは、0.1μm以上であることを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  17. 前記カーボンナノチューブは、共鳴ラマン散乱測定法による測定において得られるスペクトルで、1560cm-1以上1600cm-1以下の範囲内での最大のピーク強度をG、1310cm-1以上1350cm-1以下の範囲内での最大のピーク強度をDとしたときに、G/D比が3以上あることを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  18. 前記マトリックスは、樹脂であることを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  19. 前記樹脂は、シリコーン系樹脂、変成シリコーン系樹脂、アクリル系樹脂、クロロプレン系樹脂、ポリサルファイド系樹脂、ポリウレタン系樹脂、ポリイソブチル系樹脂、フロロシリコーン系樹脂の少なくとも1つからなることを特徴とする請求項18に記載のカーボンナノチューブ複合材料。
  20. 前記マトリックスは、エラストマーであることを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  21. 前記エラストマーは、天然ゴム、エポキシ化天然ゴム、スチレン-ブタジエンゴム、ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、ブチルゴム、クロロブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、ブタジエンゴム、エポキシ化ブタジエンゴム、エピクロルヒドリンゴム、ウレタンゴム、ポリスルフィドゴム、またはオレフィン系、ポリ塩化ビニル系、ポリエステル系、ポリウレタン系、ポリアミド系、スチレン系の熱可塑性エラストマーから選ばれる一種以上を含有することを特徴とする請求項20に記載のカーボンナノチューブ複合材料。
  22. 前記マトリックスは、フッ素ゴムを含むことを特徴とする請求項1に記載のカーボンナノチューブ複合材料。
  23. 請求項1に記載のカーボンナノチューブ複合材料を備えることを特徴とする熱伝導体。
PCT/JP2012/076009 2011-10-05 2012-10-05 カーボンナノチューブ複合材料および熱伝導体 WO2013051707A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280049216.6A CN103842445B (zh) 2011-10-05 2012-10-05 碳纳米管复合材料以及导热体
JP2013537575A JP5709189B2 (ja) 2011-10-05 2012-10-05 カーボンナノチューブ複合材料および熱伝導体
US14/246,195 US20140221533A1 (en) 2011-10-05 2014-04-07 Carbon nanotube composite material and thermal conductor
US15/337,450 US9688897B2 (en) 2011-10-05 2016-10-28 Carbon nanotube composite material and thermal conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-220832 2011-10-05
JP2011220832 2011-10-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/246,195 Continuation US20140221533A1 (en) 2011-10-05 2014-04-07 Carbon nanotube composite material and thermal conductor

Publications (1)

Publication Number Publication Date
WO2013051707A1 true WO2013051707A1 (ja) 2013-04-11

Family

ID=48043860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076009 WO2013051707A1 (ja) 2011-10-05 2012-10-05 カーボンナノチューブ複合材料および熱伝導体

Country Status (4)

Country Link
US (1) US20140221533A1 (ja)
JP (1) JP5709189B2 (ja)
CN (1) CN103842445B (ja)
WO (1) WO2013051707A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119627A (zh) * 2014-07-15 2014-10-29 西南科技大学 一种高体积分数导热复合材料及其制备方法
JP2015071757A (ja) * 2013-10-02 2015-04-16 ゼロックス コーポレイションXerox Corporation グラフェンフルオロポリマー分散物を製造する方法
JP2015093980A (ja) * 2013-11-14 2015-05-18 独立行政法人産業技術総合研究所 繊維強化樹脂組成物、繊維強化成形体、繊維強化樹脂組成物の製造方法、繊維強化成形体の製造方法
WO2015084065A1 (ko) * 2013-12-06 2015-06-11 주식회사 엘지화학 기계적 물성이 개선된 복합재 및 이를 함유하는 성형품
JP2015120613A (ja) * 2013-12-24 2015-07-02 日本ケミコン株式会社 炭素複合シート
CN104919539A (zh) * 2013-12-06 2015-09-16 Lg化学株式会社 具有提高的电导率的复合材料以及包含该复合材料的模制品
WO2016133207A1 (ja) * 2015-02-19 2016-08-25 国立研究開発法人産業技術総合研究所 カーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法
CN105981161A (zh) * 2013-12-06 2016-09-28 株式会社电装 热输送装置
CN106062062A (zh) * 2013-12-06 2016-10-26 Lg化学株式会社 具有提高的电导率的复合材料以及包含该复合材料的模塑制品
CN106164151A (zh) * 2014-08-29 2016-11-23 株式会社Lg化学 具有提高的机械性能的复合材料和包括该复合材料的模制品
JP2017007234A (ja) * 2015-06-23 2017-01-12 日本ゼオン株式会社 熱伝導シートおよびその製造方法
JP6078892B2 (ja) * 2013-04-16 2017-02-15 国立研究開発法人産業技術総合研究所 カーボンナノチューブ含有エラストマー構造体及びその製造方法
WO2017175807A1 (ja) * 2016-04-07 2017-10-12 日本ゼオン株式会社 含フッ素エラストマー組成物および成形体
JP2018016806A (ja) * 2017-10-04 2018-02-01 国立研究開発法人産業技術総合研究所 カーボンナノチューブ複合膜
KR20180034069A (ko) * 2016-09-27 2018-04-04 롯데케미칼 주식회사 전도성 파이프
JP2018098515A (ja) * 2016-01-26 2018-06-21 デクセリアルズ株式会社 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
WO2019039124A1 (ja) * 2017-08-24 2019-02-28 株式会社デンソー シリコーンゴム複合材料および防振部材
WO2019039125A1 (ja) * 2017-08-24 2019-02-28 株式会社デンソー シリコーンゴム複合材料および防振部材
WO2020129269A1 (ja) * 2018-12-18 2020-06-25 オムロン株式会社 樹脂組成物および樹脂成形部品
KR20210046865A (ko) * 2016-01-26 2021-04-28 데쿠세리아루즈 가부시키가이샤 열전도 시트, 열전도 시트의 제조 방법, 방열 부재 및 반도체 장치
JPWO2021140837A1 (ja) * 2020-01-07 2021-07-15
CN114196186A (zh) * 2021-12-29 2022-03-18 西华大学 基于纳米调控的多尺度绝缘导热pc复合材料及其制备方法
KR20230099895A (ko) * 2021-12-28 2023-07-05 주식회사 핫앤쿨 탄소나노튜브 및 탄소섬유 복합체 제조방법

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741300B1 (ko) * 2014-08-29 2017-05-29 주식회사 엘지화학 전도성 및 기계적 물성이 개선된 복합재 및 이를 함유하는 성형품
KR101741301B1 (ko) * 2014-08-29 2017-05-29 주식회사 엘지화학 전도성 및 기계적 물성이 개선된 복합재 및 이를 함유하는 성형품
CN112190118A (zh) * 2014-11-25 2021-01-08 佛山市顺德区美的电热电器制造有限公司 用于烹饪器具的内锅
US20180044184A1 (en) * 2015-02-19 2018-02-15 National Institute Of Advanced Industrial Science And Technology, Carbon-nanotube-elastomer composite material and sealing material and sheet material employing same
WO2016159072A1 (ja) * 2015-03-31 2016-10-06 国立研究開発法人産業技術総合研究所 炭素繊維複合材料の製造方法
JPWO2016182018A1 (ja) * 2015-05-13 2018-03-01 昭和電工株式会社 カーボンナノチューブ複合シートの製造方法
CN104987483A (zh) * 2015-07-29 2015-10-21 苏州科淼新材料有限公司 一种抗菌散热聚氨酯复合材料及其制备方法
WO2017047440A1 (ja) * 2015-09-18 2017-03-23 東レ株式会社 電子機器筐体
KR101772039B1 (ko) * 2015-10-30 2017-08-28 한국생산기술연구원 개선된 전도성을 갖는 복합재료의 제조방법
JP6902468B2 (ja) * 2016-03-01 2021-07-14 Nok株式会社 フッ素ゴム組成物及びフッ素ゴム架橋体
DE102017129146B4 (de) * 2016-12-12 2023-11-02 Korea Kumho Petrochemical Co., Ltd. Verfahren zur Herstellung einer Kohlenstoffnanoröhren in hoher Konzentration enthaltenden leitenden Harzzusammensetzung
TWI672217B (zh) * 2017-06-14 2019-09-21 台灣奈米碳素股份有限公司 胎面膠以及用於生產胎面膠的配方
EP3460561A1 (en) 2017-09-26 2019-03-27 Thomson Licensing Device for deviating and focusing light
CN108329893A (zh) * 2018-03-11 2018-07-27 深圳市驭晟新能源科技有限公司 一种柔性热界面相变复合薄片材料及其制备方法
CN109020473B (zh) * 2018-07-05 2021-04-27 大连工业大学 一种提高碳纸力学强度的改性方法
CN110494014A (zh) * 2019-07-30 2019-11-22 武汉华星光电半导体显示技术有限公司 一种用于显示面板的散热结构及其制备方法和应用
CN114644825B (zh) * 2022-03-14 2023-05-05 金发科技股份有限公司 一种导电碳纤维增强热塑性树脂组合物及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097375A (ja) * 2000-09-22 2002-04-02 Toray Ind Inc 熱可塑性樹脂組成物及び成形品
JP2003012939A (ja) * 2001-07-03 2003-01-15 Toray Ind Inc カーボン含有樹脂組成物、成形材料および成形体
JP2005200620A (ja) * 2003-12-15 2005-07-28 Bridgestone Corp 熱可塑性樹脂組成物及び熱可塑性樹脂成形品
JP2007039667A (ja) * 2005-06-28 2007-02-15 Nsk Ltd 樹脂組成物、転がり軸受の保持器
JP2008024800A (ja) * 2006-07-20 2008-02-07 Nissin Kogyo Co Ltd 炭素繊維複合材料
JP2010185032A (ja) * 2009-02-13 2010-08-26 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194484A (en) * 1991-09-25 1993-03-16 E. I. Du Pont De Nemours And Company Process for making fluoropolymer composites
US8048688B2 (en) * 2006-10-24 2011-11-01 Samsung Electronics Co., Ltd. Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays
US8178203B2 (en) * 2004-07-27 2012-05-15 National Institute Of Advanced Industrial Science And Technology Aligned single-walled carbon nanotube aggregate, bulk aligned single-walled carbon nanotube aggregate, and powdered aligned single-walled carbon nanotube aggregate
US7718736B2 (en) * 2005-06-30 2010-05-18 Freudenberg-Nok General Partnership Base resistant FKM-TPV elastomers
CN101017067A (zh) * 2006-02-11 2007-08-15 鸿富锦精密工业(深圳)有限公司 散热板及其制备方法
CN101250059B (zh) * 2008-01-25 2011-05-04 上海纳晶科技有限公司 轻质高导热碳纳米复合材料的制备方法
JP4803687B2 (ja) * 2008-12-30 2011-10-26 独立行政法人産業技術総合研究所 単層カーボンナノチューブ配向集合体の製造方法
US8585934B2 (en) * 2009-02-17 2013-11-19 Applied Nanostructured Solutions, Llc Composites comprising carbon nanotubes on fiber
FR2957926A1 (fr) * 2010-03-25 2011-09-30 Arkema France Procede de preparation d'un materiau composite elastomerique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097375A (ja) * 2000-09-22 2002-04-02 Toray Ind Inc 熱可塑性樹脂組成物及び成形品
JP2003012939A (ja) * 2001-07-03 2003-01-15 Toray Ind Inc カーボン含有樹脂組成物、成形材料および成形体
JP2005200620A (ja) * 2003-12-15 2005-07-28 Bridgestone Corp 熱可塑性樹脂組成物及び熱可塑性樹脂成形品
JP2007039667A (ja) * 2005-06-28 2007-02-15 Nsk Ltd 樹脂組成物、転がり軸受の保持器
JP2008024800A (ja) * 2006-07-20 2008-02-07 Nissin Kogyo Co Ltd 炭素繊維複合材料
JP2010185032A (ja) * 2009-02-13 2010-08-26 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10023715B2 (en) 2013-04-16 2018-07-17 National Institute Of Advanced Industrial Science And Technology Elastomer structure containing carbon nanotubes and method for producing the same
JPWO2014171440A1 (ja) * 2013-04-16 2017-02-23 国立研究開発法人産業技術総合研究所 カーボンナノチューブ含有エラストマー構造体及びその製造方法
JP6078892B2 (ja) * 2013-04-16 2017-02-15 国立研究開発法人産業技術総合研究所 カーボンナノチューブ含有エラストマー構造体及びその製造方法
JP2015071757A (ja) * 2013-10-02 2015-04-16 ゼロックス コーポレイションXerox Corporation グラフェンフルオロポリマー分散物を製造する方法
JP2015093980A (ja) * 2013-11-14 2015-05-18 独立行政法人産業技術総合研究所 繊維強化樹脂組成物、繊維強化成形体、繊維強化樹脂組成物の製造方法、繊維強化成形体の製造方法
CN106062062A (zh) * 2013-12-06 2016-10-26 Lg化学株式会社 具有提高的电导率的复合材料以及包含该复合材料的模塑制品
EP3079155A4 (en) * 2013-12-06 2017-08-16 LG Chem, Ltd. Composite material having improved electrical conductivity and molded part containing same
JP2016503117A (ja) * 2013-12-06 2016-02-01 エルジー・ケム・リミテッド 伝導性が改善された複合材及びこれを含有する成形品
JP2016504470A (ja) * 2013-12-06 2016-02-12 エルジー・ケム・リミテッド 機械的物性が改善された複合材及びこれを含有する成形品
DE112014005550B4 (de) 2013-12-06 2020-07-09 Denso Corporation Wärmetransfer-Einrichtung
KR101654405B1 (ko) * 2013-12-06 2016-09-05 주식회사 엘지화학 기계적 물성이 개선된 복합재 및 이를 함유하는 성형품
CN105981161A (zh) * 2013-12-06 2016-09-28 株式会社电装 热输送装置
CN105981161B (zh) * 2013-12-06 2018-11-27 株式会社电装 热输送装置
EP3078708A4 (en) * 2013-12-06 2017-11-15 LG Chem, Ltd. Composite material having improved electrical conductivity and molded part containing same
US10752078B2 (en) 2013-12-06 2020-08-25 Denso Corporation Heat transfer device
KR20150066209A (ko) * 2013-12-06 2015-06-16 주식회사 엘지화학 기계적 물성이 개선된 복합재 및 이를 함유하는 성형품
WO2015084065A1 (ko) * 2013-12-06 2015-06-11 주식회사 엘지화학 기계적 물성이 개선된 복합재 및 이를 함유하는 성형품
EP3078707A4 (en) * 2013-12-06 2017-08-02 LG Chem, Ltd. Composite material with improved mechanical properties and molded article containing same
CN104919539A (zh) * 2013-12-06 2015-09-16 Lg化学株式会社 具有提高的电导率的复合材料以及包含该复合材料的模制品
JP2015120613A (ja) * 2013-12-24 2015-07-02 日本ケミコン株式会社 炭素複合シート
CN104119627A (zh) * 2014-07-15 2014-10-29 西南科技大学 一种高体积分数导热复合材料及其制备方法
CN106164151A (zh) * 2014-08-29 2016-11-23 株式会社Lg化学 具有提高的机械性能的复合材料和包括该复合材料的模制品
US10626252B2 (en) 2014-08-29 2020-04-21 Lg Chem, Ltd. Composite with improved mechanical properties and molded article including the same
US10113056B2 (en) 2014-08-29 2018-10-30 Lg Chem, Ltd. Composite with improved mechanical properties and molded article including the same
CN106164151B (zh) * 2014-08-29 2018-03-02 株式会社Lg化学 具有提高的机械性能的复合材料和包括该复合材料的模制品
US20170369660A1 (en) * 2015-02-19 2017-12-28 National Institute Of Advanced Industrial Science And Technology Carbon nanotube-elastomer composite material, seal material and sealing material each produced using same, and method for producing carbon nanotube-elastomer composite material
JPWO2016133207A1 (ja) * 2015-02-19 2018-02-01 国立研究開発法人産業技術総合研究所 カーボンナノチューブ−エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ−エラストマー複合材料の製造方法
US10494492B2 (en) 2015-02-19 2019-12-03 National Institute Of Advanced Industrial Science And Technology Carbon nanotube-elastomer composite material, seal material and sealing material each produced using same, and method for producing carbon nanotube-elastomer composite material
WO2016133207A1 (ja) * 2015-02-19 2016-08-25 国立研究開発法人産業技術総合研究所 カーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法
JP2017007234A (ja) * 2015-06-23 2017-01-12 日本ゼオン株式会社 熱伝導シートおよびその製造方法
JP2018098515A (ja) * 2016-01-26 2018-06-21 デクセリアルズ株式会社 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
KR102141170B1 (ko) 2016-01-26 2020-08-04 데쿠세리아루즈 가부시키가이샤 열전도 시트, 열전도 시트의 제조 방법, 방열 부재 및 반도체 장치
KR102449343B1 (ko) 2016-01-26 2022-10-04 데쿠세리아루즈 가부시키가이샤 열전도 시트, 열전도 시트의 제조 방법, 방열 부재 및 반도체 장치
KR20210046865A (ko) * 2016-01-26 2021-04-28 데쿠세리아루즈 가부시키가이샤 열전도 시트, 열전도 시트의 제조 방법, 방열 부재 및 반도체 장치
KR102245167B1 (ko) 2016-01-26 2021-04-28 데쿠세리아루즈 가부시키가이샤 열전도 시트, 열전도 시트의 제조 방법, 방열 부재 및 반도체 장치
KR20180086432A (ko) * 2016-01-26 2018-07-31 데쿠세리아루즈 가부시키가이샤 열전도 시트, 열전도 시트의 제조 방법, 방열 부재 및 반도체 장치
KR20200093712A (ko) * 2016-01-26 2020-08-05 데쿠세리아루즈 가부시키가이샤 열전도 시트, 열전도 시트의 제조 방법, 방열 부재 및 반도체 장치
JP7056556B2 (ja) 2016-04-07 2022-04-19 日本ゼオン株式会社 含フッ素エラストマー組成物および成形体
JPWO2017175807A1 (ja) * 2016-04-07 2019-02-14 日本ゼオン株式会社 含フッ素エラストマー組成物および成形体
WO2017175807A1 (ja) * 2016-04-07 2017-10-12 日本ゼオン株式会社 含フッ素エラストマー組成物および成形体
KR20180034069A (ko) * 2016-09-27 2018-04-04 롯데케미칼 주식회사 전도성 파이프
CN111032785A (zh) * 2017-08-24 2020-04-17 株式会社电装 硅橡胶复合材料及防振部件
JP2019038934A (ja) * 2017-08-24 2019-03-14 株式会社デンソー シリコーンゴム複合材料および防振部材
WO2019039125A1 (ja) * 2017-08-24 2019-02-28 株式会社デンソー シリコーンゴム複合材料および防振部材
WO2019039124A1 (ja) * 2017-08-24 2019-02-28 株式会社デンソー シリコーンゴム複合材料および防振部材
JP2018016806A (ja) * 2017-10-04 2018-02-01 国立研究開発法人産業技術総合研究所 カーボンナノチューブ複合膜
JP2020097684A (ja) * 2018-12-18 2020-06-25 オムロン株式会社 樹脂組成物および樹脂成形部品
WO2020129269A1 (ja) * 2018-12-18 2020-06-25 オムロン株式会社 樹脂組成物および樹脂成形部品
JP7135825B2 (ja) 2018-12-18 2022-09-13 オムロン株式会社 樹脂組成物および樹脂成形部品
JPWO2021140837A1 (ja) * 2020-01-07 2021-07-15
JP7129574B2 (ja) 2020-01-07 2022-09-01 Nok株式会社 フッ素ゴム組成物
WO2021140837A1 (ja) * 2020-01-07 2021-07-15 Nok株式会社 フッ素ゴム組成物
KR20230099895A (ko) * 2021-12-28 2023-07-05 주식회사 핫앤쿨 탄소나노튜브 및 탄소섬유 복합체 제조방법
KR102698397B1 (ko) * 2021-12-28 2024-08-23 주식회사 핫앤쿨 탄소나노튜브 및 탄소섬유 복합체 제조방법
CN114196186A (zh) * 2021-12-29 2022-03-18 西华大学 基于纳米调控的多尺度绝缘导热pc复合材料及其制备方法

Also Published As

Publication number Publication date
CN103842445A (zh) 2014-06-04
CN103842445B (zh) 2017-05-03
JP5709189B2 (ja) 2015-04-30
US20140221533A1 (en) 2014-08-07
JPWO2013051707A1 (ja) 2015-03-30

Similar Documents

Publication Publication Date Title
JP5709189B2 (ja) カーボンナノチューブ複合材料および熱伝導体
JP5900860B2 (ja) カーボンナノチューブ複合材料
Chen et al. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes
Papageorgiou et al. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites
Pak et al. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers
Sathyanarayana et al. Thermoplastic nanocomposites with carbon nanotubes
Laird et al. Structure and morphology control in crystalline polymer–carbon nanotube nanocomposites
Shim et al. Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness
Martin-Gallego et al. Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites
Ci et al. Direct growth of carbon nanotubes on the surface of ceramic fibers
JP2006111870A (ja) 導電性樹脂組成物、その製造方法及び用途
JP2015533187A (ja) カーボンナノ構造体の剪断混合により形成される複合体材料及び関連方法
AU2006292615A1 (en) Conductive silicone and methods for preparing same
US9688897B2 (en) Carbon nanotube composite material and thermal conductor
JP2003239171A (ja) 炭素繊維その製造方法および炭素繊維強化樹脂組成物
Vera-Agullo et al. Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites
Lee et al. High electrical and thermal conductivities of a PAN-based carbon fiber via boron-assisted catalytic graphitization
Barjasteh et al. Conductive polyamide–graphene composite fabric via interface engineering
Jiang et al. Eco-friendly synthesis of graphene nanoplatelets via a carbonation route and its reinforcement for polytetrafluoroethylene composites
Othman et al. Carbon nanotube hybrids and their polymer nanocomposites
Diouri et al. Effect of carbon nanotubes dispersion on morphology, internal structure and thermal stability of electrospun poly (vinyl alcohol)/carbon nanotubes nanofibers
Ultrasonik Properties enhancement of TPNR-MWNTs-OMMT hybrid nanocomposites by using ultrasonic treatment
Velasco-Soto et al. Carbon polymer nanocomposites
Salim et al. Characterization techniques for hybrid nanocomposites based on graphene and nanoparticles
WO2009069565A1 (en) Molded articles, process for producing the molded articles, and use of the molded articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838113

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013537575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838113

Country of ref document: EP

Kind code of ref document: A1