WO2016159072A1 - 炭素繊維複合材料の製造方法 - Google Patents
炭素繊維複合材料の製造方法 Download PDFInfo
- Publication number
- WO2016159072A1 WO2016159072A1 PCT/JP2016/060383 JP2016060383W WO2016159072A1 WO 2016159072 A1 WO2016159072 A1 WO 2016159072A1 JP 2016060383 W JP2016060383 W JP 2016060383W WO 2016159072 A1 WO2016159072 A1 WO 2016159072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon fiber
- carbon
- dispersion layer
- composite material
- paste
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/105—Coating or impregnating independently of the moulding or shaping step of reinforcement of definite length with a matrix in solid form, e.g. powder, fibre or sheet form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/28—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/159—Carbon nanotubes single-walled
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/005—Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/243—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/24—Thermosetting resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
Definitions
- the present invention relates to a carbon fiber composite material and a method for producing the same.
- the present invention relates to a carbon fiber composite material including a reinforced fiber plastic and a manufacturing method thereof.
- Fiber Reinforced Plastics which is a composite material of glass fiber and carbon fiber reinforcements and the base plastic, is used in a wide range of industrial fields such as automobiles, aircraft, and housing equipment as a lightweight and high-strength material.
- Carbon fiber reinforced plastic (CFRP) using carbon fiber as a reinforcing material is a useful material having high durability and conductivity.
- a prepreg which is an intermediate product of FRP, is a sheet material obtained by impregnating an oriented reinforcing material such as glass fiber or carbon fiber with a resin as a base material and semi-curing it by heating or drying.
- a prepreg is a material that can be molded into an arbitrary shape by being stuck to a substrate or the like and solidified.
- an adhesive layer When a prepreg is attached to a base material or when prepregs are laminated, an adhesive layer needs to be interposed, and thus an adhesive layer having a large peel strength is desired.
- an adhesive layer made of a resin is a material having low conductivity, even when a prepreg containing conductive carbon fibers is laminated, conductivity between the prepreg layers cannot be obtained by the adhesive layer.
- a carbon nanotube (hereinafter also referred to as CNT) composed of only carbon atoms can be given.
- CNT is a material having excellent electrical characteristics, thermal conductivity, and mechanical properties.
- a paste-like composition in which CNTs and a resin are mixed is required.
- Patent Document 1 proposes a method of preparing a CNT dispersion by unraveling CNT bundles by kneading CNT with an ionic liquid.
- Non-Patent Document 1 a method of coating a dispersion obtained by dispersing CNTs in a general-purpose organic solvent by a spray method (Non-Patent Document 1) or a coating by an inkjet method A method (Patent Document 2) is known.
- a step of removing the solution from the applied CNT dispersion is required.
- the film thickness formed by one coating becomes thin, for example, to coat a thick film of 0.1 ⁇ m or more, It took a long time to overcoat.
- the dispersions obtained by these known methods have low viscosity and are not suitable for coating, and it is difficult to form an adhesive layer having a high film thickness and excellent flatness with high throughput. It was.
- a process of applying a CNT dispersion liquid to a thickness of typically about 1 mm on a substrate is required. It has been difficult to prepare a paste-like composition having a viscosity characteristic that enables the process.
- the ionic liquid since the ionic liquid has a problem in chemical stability, it may impair the excellent characteristics of the CNT, and it is not preferable to use it for the adhesive layer to which the prepreg is bonded.
- the present invention solves the problems of the prior art as described above, and provides a carbon fiber composite material provided with an adhesive layer having high peel strength and excellent conductivity, and a method for producing the same.
- a first carbon fiber dispersion layer in which carbon fibers are dispersed in a thermosetting resin a carbon nanotube dispersion layer in which carbon nanotubes are dispersed in a thermosetting resin, and carbon in the thermosetting resin.
- a second carbon fiber dispersion layer in which fibers are dispersed, and the carbon nanotube dispersion layer is provided between the first carbon fiber dispersion layer and the second carbon fiber dispersion layer.
- Carbon fiber, which is a composite material is disposed in close contact with the carbon fiber of the first carbon fiber dispersion layer and the carbon fiber of the second carbon fiber dispersion layer.
- a composite material is provided.
- a first carbon fiber dispersion layer in which carbon fibers are dispersed in a thermosetting resin a carbon nanotube dispersion layer in which carbon nanotubes are dispersed in a thermosetting resin, and a second in which carbon fibers are dispersed in a thermosetting resin.
- the carbon nanotube dispersion layer is a carbon fiber composite material provided between the first carbon fiber dispersion layer and the second carbon fiber dispersion layer,
- the carbon fiber composite material has a delamination strength of 300 J / m 2 or more, a conductivity in the fiber axis direction of 0.1 S / cm or more, a conductivity in the vertical direction of 10 ⁇ 5 S / cm or more, and a three-point bending strength of 500 MPa.
- a carbon fiber composite material comprising at least one of the following is provided.
- the carbon nanotube dispersion layer may be in the form of a film.
- the size of the carbon nanotube aggregate in the carbon nanotube dispersion layer may be such that the median value of the particle size distribution on a volume basis is in the range of 5 ⁇ m to 50 ⁇ m.
- the carbon nanotube concentration in the carbon nanotube aggregate in the carbon nanotube dispersion layer may be 0.1 wt% or more.
- an average length of carbon nanotubes of the carbon nanotube aggregate in the carbon nanotube dispersion layer may be 1 ⁇ m or more.
- a thickness of the carbon nanotube dispersion layer may be 0.1 ⁇ m or more.
- the first carbon fiber dispersion layer is formed by dispersing carbon fibers in the thermosetting resin
- the carbon nanotube dispersion layer is formed by dispersing the carbon nanotubes in the thermosetting resin.
- carbon fibers are dispersed in a thermosetting resin to form a second carbon fiber dispersion layer
- the carbon nanotube dispersion layer is composed of the first carbon fiber dispersion layer and the second carbon fiber dispersion layer.
- a carbon fiber composite material is provided in between, and the carbon nanotubes in the carbon nanotube dispersion layer are in close contact with the carbon fibers of the first carbon fiber dispersion layer and the carbon fibers of the second carbon fiber dispersion layer.
- a method of manufacturing a disposed carbon fiber composite material is provided.
- the first carbon fiber dispersion layer is formed by dispersing carbon fibers in the thermosetting resin
- the carbon nanotube dispersion layer is formed by dispersing the carbon nanotubes in the thermosetting resin. Then, carbon fibers are dispersed in a thermosetting resin to form a second carbon fiber dispersion layer, and the carbon nanotube dispersion layer is composed of the first carbon fiber dispersion layer and the second carbon fiber dispersion layer.
- a carbon fiber composite material is formed in between, and the carbon fiber composite material has an interlaminar peel strength of 300 J / m 2 or more, a fiber axis direction conductivity of 0.1 S / cm or more, and a vertical direction conductivity of 10
- a method for producing a carbon fiber composite material comprising at least one of ⁇ 5 S / cm or more and a three-point bending strength of 500 MPa is provided.
- the carbon nanotube dispersion layer may be in the form of a film.
- the size of the carbon nanotube aggregate in the carbon nanotube dispersion layer may be such that the median value of the particle size distribution on a volume basis is in the range of 5 ⁇ m to 50 ⁇ m.
- the carbon nanotube concentration in the carbon nanotube aggregate in the carbon nanotube dispersion layer may be 0.1% by weight or more.
- an average length of carbon nanotubes of the carbon nanotube aggregate in the carbon nanotube dispersion layer may be 1 ⁇ m or more.
- the carbon nanotube dispersion layer may have a thickness of 0.1 ⁇ m or more.
- a paste-like carbon nanotube-containing resin material applied to the first carbon fiber dispersion layer and / or the second carbon fiber dispersion layer of any one of the carbon fiber composite materials.
- the paste-like carbon nanotube-containing resin material has a viscosity measured by a rheometer of 50 Pa ⁇ s or more in a stationary state and / or 20 Pa ⁇ s or less in a shear rate of 100 s ⁇ 1 or more.
- a carbon nanotube-containing resin material is provided.
- the carbon fiber composite material provided with the contact bonding layer which has high peeling strength and the outstanding electroconductivity, and its manufacturing method can be provided.
- the carbon fiber composite material of the present invention is an excellent material having high peel strength through an adhesive layer and having high conductivity.
- FIG. 4 is a schematic diagram showing a method of moving the tip of the ultrasonic wave generation unit as viewed from the side of the beaker.
- the optical microscope image only of the epoxy resin of a comparative example is shown, (a) is 100 times of magnification, (b) is a figure of 1000 times of magnification.
- the optical microscope image of the paste-form composition which concerns on one Example of this invention is shown, (a) is 100 times of magnification, (b) is a figure of 1000 times of magnification.
- the optical microscope image of the paste-form composition which concerns on one Example of this invention is shown, (a) is 100 times of magnification, (b) is a figure of 1000 times of magnification.
- the optical microscope image of the paste-form composition which concerns on one Example of this invention is shown, (a) is 100 times of magnification, (b) is a figure of 1000 times of magnification.
- (A) shows the viscosity measurement result of the paste-like composition according to one embodiment of the present invention
- (b) shows the hysteresis of the paste-like composition according to one embodiment of the present invention. It is a figure which shows the time-dependent change of CNT content and the viscosity of the paste-form composition which concerns on one Example of this invention.
- (A) is a figure which shows the paste-like composition immediately after arrange
- (b) is a figure which shows the paste-form composition after 1 minute arrange
- (A) shows the result of the viscosity measurement of the paste-like composition which concerns on one Example of this invention
- (b) shows the enlarged view of the area
- FIG. It is an optical microscope image of the fracture surface of the carbon fiber composite material 100 which concerns on one Example of this invention, (a) is a top view of the fracture surface of the carbon fiber composite material 100, (b) is the carbon fiber composite material 100.
- FIG. It is a figure which shows the electrical conductivity of the carbon fiber composite material which concerns on one Example of this invention.
- (A) shows the storage elastic modulus of the paste-like composition which concerns on one Example of this invention
- (b) is a figure which shows the loss elastic modulus of the paste-like composition which concerns on one Example of this invention.
- FIG. It is a figure which shows the electrical conductivity of the carbon fiber composite material which concerns on one Example of this invention.
- distributed CNT which concerns on one Example of this invention to acetone, and was mixed with the epoxy resin is shown, (a) is a figure of 300 time magnification, (b) is 1000 time magnification.
- FIG. The optical microscope image of the paste-form composition which disperse
- FIG. It is a figure which shows the viscosity measurement result of the paste-form composition which concerns on one Example of this invention.
- the present inventors have found that a paste having a viscosity suitable for forming an adhesive layer with high throughput by dispersing carbon nanotubes in a resin without using an ionic liquid.
- the composition has been developed.
- the present invention provides a carbon fiber composite material having high peel strength and excellent conductivity, and a method for producing the same, by applying a paste-like composition having the viscosity described in detail below to a prepreg and solidifying it.
- FIG. 1 is a schematic view of a carbon fiber composite material 100 according to an embodiment of the present invention.
- FIG. 1A is a side view (or a cross-sectional view) of the carbon fiber composite material 100 viewed from the direction of the oriented carbon fiber 111.
- FIG. 1B is a schematic view of a carbon nanotube dispersion layer (hereinafter also referred to as a CNT dispersion layer) 130 which is an adhesive layer according to an embodiment of the present invention. It is the figure exposed.
- the carbon fiber composite material 100 has a structure in which, for example, a CNT dispersion layer 130 is provided between a first carbon fiber dispersion layer 110 and a second carbon fiber dispersion layer 120 that are sheet materials.
- the present invention is not limited to this.
- a structure in which a desired base material is used in place of one of the carbon fiber dispersion layers and the carbon fiber dispersion layer is disposed on the base material via the CNT dispersion layer 130 may be used.
- the carbon nanotubes in the carbon nanotube dispersion layer are in close contact with the carbon fibers of the first carbon fiber dispersion layer and the carbon fibers of the second carbon fiber dispersion layer.
- the carbon nanotubes in the carbon nanotube dispersion layer are disposed in close contact with the carbon fibers in the first carbon fiber dispersion layer and the carbon fibers in the second carbon fiber dispersion layer. It means that the distance between the carbon fibers in the first carbon fiber dispersion layer and the second carbon fiber dispersion layer is 500 nm or less, more preferably 100 nm or less.
- delamination strength Carbon fiber composite material 100 according to an embodiment of the present invention, delamination strength (G1c) is 300 J / m 2 or more, preferably, 500 J / m 2 or more, more preferably 600 J / m 2 or more.
- a carbon fiber composite material having such delamination strength is preferable because it is generally known to have excellent impact characteristics and can be applied to, for example, transportation equipment.
- the electrical conductivity of the carbon fiber composite material 100 is determined by forming an electrode by applying a conductive paste to the end surface and the upper and lower surfaces (both sides in the stacking direction of the carbon fiber composite material 100) of the carbon fiber composite material 100. Measured by the two-terminal method. The conductivity measured between the end faces of the carbon fiber composite material 100 is defined as the conductivity in the fiber axis direction, and the conductivity measured on the upper and lower surfaces of the carbon fiber composite material 100 is defined as the conductivity in the vertical direction. To do.
- the carbon fiber composite material 100 has a conductivity in the fiber axis direction of 0.1 S / cm or more, preferably 1 S / cm or more, more preferably 10 S / cm or more. Further, the electrical conductivity in the vertical direction is 10 ⁇ 5 S / cm or more, preferably 10 ⁇ 3 S / cm or more, more preferably 10 ⁇ 1 S / cm or more.
- a carbon fiber composite material having such conductivity is preferable because, for example, a current can be safely diffused and arrested during a lightning strike, and therefore, it is suitable for, for example, an aircraft application or an automobile application.
- the carbon fiber composite material 100 has a three-point bending strength of 500 MPa or more, preferably 750 MPa or more, more preferably 1000 MPa or more.
- the carbon fiber composite material having such a three-point bending strength has a feature that it is difficult to be deformed by an external force, and is preferable when used for an application in which deformation is not preferable, for example, an exterior or a casing of a transportation device.
- the carbon fiber composite material 100 according to an embodiment of the present invention at least one of delamination strength, electrical conductivity, and three-point bending strength is in the above range. Therefore, the carbon fiber composite material 100 according to an embodiment of the present invention may be within the above range for two or all of the delamination strength, conductivity, and three-point bending strength.
- the carbon fiber dispersion layer is a sheet-like member in which carbon fibers 111 are dispersed in a thermosetting resin 113.
- the carbon fiber 111 is a known material having desired tensile elastic modulus, tensile strength, and tensile elongation, and is not particularly limited.
- the carbon fiber 111 is, for example, a carbon fiber having a tensile modulus of 260 GPa or more and 440 GPa or less, a tensile strength of 4.4 or more and 6.5 GPa or less, and a tensile elongation of 1.7% or more and 2.3% or less.
- the carbon fibers 111 may be arranged so that all the fibers have the same orientation, or may be arranged in a woven form.
- a known thermosetting resin can be used as the thermosetting resin 113, for example, unsaturated polyester resin, vinyl ester resin, epoxy resin, benzoxazine resin, phenol resin, urea resin, melamine resin, polyimide resin, and the like. Or these modified bodies and a mixture of two or more kinds are selected.
- the thermosetting resin may be any of those that are self-cured by heating and those that contain a curing agent or a curing accelerator.
- a prepreg in which carbon fibers oriented as a reinforcing material are disposed on a thermosetting resin as a base material can be used.
- the first carbon fiber dispersion layer 110 and / or the first prepreg can be used.
- Two carbon fiber dispersion layers 120 can be formed. Since the prepreg is a sheet material obtained by semi-curing a resin by heating or drying, it can be solidified in a desired shape together with the paste composition after the paste composition forming the CNT dispersion layer is applied. It is also preferable from the viewpoint of workability.
- the CNT dispersion layer 130 is in the form of a film.
- a carbon nanotube aggregate hereinafter also referred to as a CNT aggregate
- the CNT aggregate 131 has a network structure in which a plurality of CNTs (or bundles of CNTs) and CNTs (or bundles of CNTs) are intertwined and discretely assembled.
- the CNT aggregate 131 further forms a three-dimensional network structure with the adjacent CNT aggregate 131.
- the three-dimensional network structure included in the CNT aggregate 131 is a highly developed CNT network extending over a wide area, and the CNTs constituting the CNT aggregate 131 communicate with each other to form a CNT dispersion layer 130.
- a continuous skeletal structure is formed in the CNTs, and provides the CNT dispersion layer 130 with a large unprecedented peel strength.
- the CNTs constituting the CNT aggregate 131 communicate with each other to form a continuous conductive path in the CNT dispersion layer 130, whereby conductivity can be imparted to the CNT dispersion layer 130.
- the CNT aggregate 131 is an area where the CNT aggregate is observed by observation with an optical microscope.
- the CNT dispersion layer 130 includes a region formed of the thermosetting resin 133, so that the CNT dispersion layer 130 can be provided with physical characteristics included in the thermosetting resin 133.
- the CNT dispersion layer 130 includes the CNT aggregate 131 that encloses the thermosetting resin 133, the CNT aggregate 131 is arranged like a soap bubble film, and the CNT aggregate 131 has a continuous skeleton structure and It is easy to form a conductive path and / or suitable for obtaining the effects of the present invention.
- the CNT aggregate 131 according to the present invention has a network structure in which CNTs intersect with a plurality of CNTs and are joined at points by van der Waals forces. For this reason, it is preferable that the average length of CNT is 1 micrometer or more, More preferably, it is 5 micrometers or more, More preferably, it is 10 micrometers or more. Since such long CNTs have many bonding points between CNTs, it is possible to form a network structure with excellent shape retention.
- the CNT aggregate according to the present invention is not particularly limited as long as it includes such a long CNT, and the manufacturing method thereof is not particularly limited.
- the average length of the CNT is an average value obtained by observing the CNT placed on the silicon wafer with an atomic force microscope (AFM) and measuring the length of 10 or more arbitrary CNTs.
- AFM atomic force microscope
- thermosetting resin 133 is selected from, for example, silicone resins, modified silicone resins, acrylic resins, chloroprene resins, polysulfide resins, polyurethane resins, polyisobutyl resins, and fluorosilicone resins. Or one or a mixture of two or more thereof.
- FIG. 2 is a schematic diagram of a paste-like composition 50 according to an embodiment of the present invention.
- the paste-like composition 50 according to the present invention includes a CNT aggregate 131 and a monomer solution containing a solution having an ionic strength of 1.0 mol / L or less, and the viscosity measured by a rheometer is in a stationary state. It is characterized by being 50 Pa ⁇ s or more and 20 Pa ⁇ s or less under conditions of a shear rate of 100 s ⁇ 1 or more.
- the CNT aggregate 131 has a network structure in which a plurality of CNTs 11 (or bundles of CNTs) spreads in a three-dimensional space, and has many fine pores 13 inside. It is characterized by that.
- Such a network structure is formed by the CNTs 11 (or bundles of CNTs) intersecting with a plurality of CNTs 11 (or bundles of CNTs) and being joined at points by van der Waals forces. By the van der Waals force, the CNT aggregate 131 can maintain a network structure having the pores 13 in a stationary state, and the monomer solution 55 constituting the paste-like composition 50 according to the present invention Can be captured inside.
- the paste-like composition 50 has a structure in which a plurality of CNT aggregates 131 are adjacent to each other. However, since the bond between the CNT aggregates 131 is weak, the paste-like composition 50 is diluted with the same solution as the solution contained in the monomer solution 55 constituting the paste-like composition 50, and then is magnetically stirred. By stirring well, a structure in which the single CNT aggregate 131 is dispersed in the solution can be obtained. By utilizing this fact, the size of the CNT aggregate 131 can be measured by a laser diffraction method or microscopic observation.
- the bonds between the CNTs in the CNT aggregate 131 are mainly due to van der Waals forces at the intersections between the CNTs.
- a bond between CNTs is formed by a “cation- ⁇ ” interaction via an ionic liquid to obtain a three-dimensional network structure of CNTs.
- the CNT aggregate 131 according to the present invention it is possible to obtain the CNT aggregate 131 having a three-dimensional network structure by using only direct coupling by van der Waals force between CNTs at the intersections between CNTs. I found out.
- the paste-like composition 50 of the present invention composed of the CNT aggregate 131 having excellent shape retention can be obtained.
- the paste-like composition 50 according to the present invention having the above structure is used to form a high-throughput flat CNT dispersion layer 130 containing CNTs by using a coating method such as bar coating.
- a coating method such as bar coating.
- the following requirements are met. That is, (1) Since the paste-like composition 50 according to the present invention has a high shape-retaining property in a stationary state, the paste-like composition 50 can be placed on a substrate at a high level. (2) Since the paste-like composition 50 exhibits fluidity when a shear stress is applied, the paste-like composition 50 can be wet spread on the carbon fiber dispersion layer by using a coating method such as bar coating, and is flat and uniform.
- the CNT dispersion layer 130 can be formed.
- the paste-like composition 50 immediately recovers its shape retention in a stationary state when the shear stress is released, so immediately after forming a flat thick film using a coating method such as bar coating. In addition, dripping or the like does not occur and the shape of the thick film can be maintained.
- the CNT aggregate 131 can maintain the network structure having the pores 13 by the bonds between the CNTs, and the monomer solution 55 constituting the paste-like composition 50 according to the present invention is contained in the pores 13. Can be imported.
- the fluidity is low in a stationary state, and the paste-like composition 50 according to the present invention has shape retention. If shape retention in such a stationary state is utilized, a thick film of CNTs is contained by using a coating method such as bar coating after the paste-like composition 50 is placed high on the carbon fiber dispersion layer.
- the CNT dispersion layer 130 can be formed with high throughput.
- the height after 1 minute after arranging 0.2 g of the paste-like composition on the glass plate in a shape having a height of 5 mm or more Is preferably 2 mm or more, more preferably 3 mm or more, further preferably 4 mm or more, and further preferably 5 mm or more.
- the shape-retaining property exhibited by the paste-like composition 50 according to the present invention has a correlation with the viscosity value measured under the low shear rate condition.
- the viscosity of the paste-like composition 50 according to the present invention is measured with a rheometer under the following conditions. Torque applied to the circular flat plate after 20 seconds or more after rotating the circular flat plate after placing the paste-like composition between the measurement stage and the circular flat plate with a diameter of 40 mm or less having an interval of 500 ⁇ m or more The viscosity obtained by measuring is used, and the temperature of the paste-like composition at the time of measurement is in the range of 15 ° C to 25 ° C.
- the viscosity of the paste-like composition 50 according to the present invention measured by a rheometer under the above conditions under a low shear condition with a shear rate of 0.1 s ⁇ 1 or less is preferably 50 Pa ⁇ s or more, more preferably 100 Pa. S or more, more preferably 200 Pa ⁇ s or more, further preferably 500 Pa ⁇ s or more, and further preferably 1000 Pa ⁇ s or more.
- the paste-like composition 50 of the present invention also has a feature that the fluidity increases when a shear stress is applied. This is because when a shear stress is applied to the network structure in the CNT aggregate 131, the pores 13 are compressed while maintaining the intersections between the CNTs, and the monomer solution 55 existing inside the pores 13 bleeds outside. Derived from putting out.
- the paste-like composition 50 of the present invention can be spread on the carbon fiber dispersion layer when the shear stress is applied by various coating methods such as blade coating. Thereby, a uniform and flat CNT dispersion layer 130 can be formed.
- the fluidity exhibited by the paste-like composition 50 is defined as a value of viscosity measured in a high shear rate region measured by a rheometer. That is, the viscosity of the pasty composition 50 according to the present invention is preferably 20 Pa ⁇ s or less, more preferably 10 Pa, under high shear conditions where the viscosity measured by the rheometer is a shear rate of 100 s ⁇ 1 or more. It is s or less, More preferably, it is 5 Pa.s or less, More preferably, it is 2 Pa.s or less, More preferably, it is 1 Pa.s or less.
- the paste-like composition 50 of the present invention preferably exhibits shape retention in a stationary state and also exhibits fluidity when subjected to shear stress, and under low shear conditions with a shear rate of 0.1 s ⁇ 1 or less. It is preferable that the viscosity is 50 Pa ⁇ s or more and the viscosity under a high shearing condition with a shear rate of 100 s ⁇ 1 or more is 10 Pa ⁇ s or less. More preferably, the viscosity at a shear rate of 0.1 s ⁇ 1 is preferably 100 times or more the viscosity at a shear rate of 100 s ⁇ 1 .
- the paste-like composition 50 of this invention has the characteristics which will recover shape retainability in a short time, when it releases from a shear stress. Such recoverability of shape retention is important in maintaining the shape of the CNT dispersion layer 130 made of the paste-like composition 50 of the present invention formed by various coating methods such as blade coating. Etc. can be avoided.
- the CNT dispersion layer 130 containing uniform and flat CNTs can be obtained by subjecting the paste-like composition 50 whose shape is maintained to a drying process or the like.
- the recoverability of shape retention in the paste-like composition 50 described above is that the shear rate is changed from 100 s ⁇ 1 or more to 0.1 s ⁇ 1 or less within 0.01 seconds, and the viscosity measurement is 0.
- the paste-like composition 50 is disposed between the measurement stage and a circular flat plate having a diameter of 40 mm or less having an interval of 500 ⁇ m or more. After rotating the circular flat plate at a shear rate of 100 s -1 or more for 20 seconds or more, the shear rate is changed to 0.1 s -1 or less within 0.01 seconds. Before and after this, the viscosity obtained by measuring the torque applied to the circular flat plate is used.
- the temperature of the paste-like composition 50 at the time of measurement shall be in the range of 15 ° C to 25 ° C.
- the pasty composition 50 according to the present invention has a viscosity measured before and after changing the shear rate from 100 s ⁇ 1 or more to 0.1 s ⁇ 1 or less from a value of 20 Pa ⁇ s or less within 0.1 seconds. It is preferable to increase to a value of 40 Pa ⁇ s or more, more preferably from a value of 10 Pa ⁇ s or less to a value of 40 Pa ⁇ s or more, more preferably from a value of 10 Pa ⁇ s or less to 100 Pa ⁇ s or more.
- the size of the CNT aggregate 131 contained in the paste-like composition 50 of the present invention is preferably not too coarse in order to form a flat and uniform CNT dispersion layer 130. Furthermore, since it is necessary for the CNT aggregate 131 to hold the monomer solution 55 inside the pores 13, it is preferable that the CNT aggregate 131 exists at a high density as long as entanglement between the CNTs is possible. Therefore, the CNT aggregate 131 needs to have a certain size or more. In this specification, the size of the CNT aggregate 131 including the pores 13 is defined as follows. The paste-like composition 50 including the CNT aggregate 131 is diluted with the same solution as the solution contained in the monomer solution 55 constituting the paste-like composition 50 until the volume becomes 100 times or more.
- a structure in which a single CNT aggregate 131 is dispersed in a solution is obtained by stirring with only a magnetic stir bar for 1 hour or more.
- the size distribution of the CNT aggregate 131 dispersed alone is measured by laser diffraction or microscopic observation.
- a circle area equivalent diameter obtained from the area projected on the image is used as the size of the CNT aggregate 131.
- the size of the CNT aggregate 131 can be evaluated by the median value of the size distribution based on the volume obtained by the above method.
- the median value of the particle size distribution on a volume basis is preferably 5 ⁇ m or more and 50 ⁇ m or less, more preferably 10 ⁇ m or more and 40 ⁇ m or less, and further preferably 30 ⁇ m or less. It is.
- the concentration of the CNT aggregate 131 present in the paste-like composition 50 according to the present invention is preferably 0.1% by weight or more, more preferably 0.3% by weight or more.
- the monomer solution 55 contained in the paste-like composition 50 according to the present invention is a mixed solution of a monomer that becomes a thermosetting resin 133 by polymerization and a solution that can dissolve the monomer. Moreover, you may mix
- the solution constituting the paste-like composition 50 according to the present invention preferably has a low ionic strength.
- the CNTs are bonded at a point by van der Waals force generated by the entanglement between the CNTs, thereby expressing the shape retention of the three-dimensional network structure.
- the ionic strength is defined by the following formula (1).
- m represents the molar concentration of each ion
- z represents the charge.
- the ionic strength of the solution is preferably 1.0 mol / L or less, more preferably 0.5 mol / L or less.
- the solution contained in the paste-like composition 50 according to the present invention may be a liquid in which a liquid substance such as an organic solvent or water, a dispersant, a polymer compound, or the like is dissolved as long as the ionic strength is satisfied.
- Examples of the organic solvent used in the solution according to the present invention include isobutyl alcohol, 2-propanol, N, N-dimethylformamide, styrene, 1-butanol, 2-butanol, ethanol, methanol, normal methylpyrrolidone, methyl isobutyl ketone, Methyl ethyl ketone, ethylene glycol, ethyl acetate, cyclohexanol, tetrahydrofuran and the like can be used.
- Examples of the dispersant used in the solution according to the present invention include cholic acid, sodium cholate, sodium dodecyl sulfate, stearyl stearate, diglycerin oleate, citric acid fatty acid monoglyceride, sodium polyacrylate, polyvinyl alcohol and the like. Can be used. Further, as the solution according to the present invention, a solution in which a polymer compound or its monomer is dissolved can be used. For example, as the polymer compound, polyethylene, polyvinyl chloride, polystyrene, polytetrafluoroethylene, dimethylpolysiloxane, Polyurethane, polyphenol, polyethylene terephthalate and the like can be used.
- the CNT dispersion layer 130 according to the present invention can be formed using the paste-like composition 50 according to the present invention described above.
- the CNT dispersion layer 130 according to the present invention is formed by applying or printing the paste-like composition 50 according to the present invention on the first carbon fiber dispersion layer 110 and / or the second carbon fiber dispersion layer 120.
- the CNT dispersion layer 130 according to the present invention preferably has a thickness of 0.1 ⁇ m or more, a flatness of 30% or less, and a CNT purity of 90% or more.
- “flatness” of the CNT dispersion layer 130 is defined as follows. The thickness is measured with a laser displacement meter or the like at any 10 or more locations in the CNT dispersion layer 130 that are 1 mm or more apart, and the standard deviation Ra of the measured value divided by the average value t is flat. Expressed as gender.
- the method for producing the paste-like composition 50 according to the present invention described above is not particularly limited as long as a paste-like composition satisfying the conditions specified in this specification can be obtained.
- a dispersion method that appropriately unwinds the bundle of CNTs as raw materials and keeps the length of the CNTs long is necessary.
- a paste-like composition according to the present invention having a very high viscosity in a stationary state it is necessary to uniformly disperse even in a medium having a high viscosity.
- the general dispersion process of CNTs is as follows: 1. Mechanically applying shear force (ball mill, roller mill, vibration mill, kneader, etc.) 2. Technique using cavitation (ultrasonic dispersion) It is classified into three methods using turbulent flow (jet mill, nanomizer, etc.). Of these, it is difficult to overcome the van der Waals force and untangling the CNTs only by a method classified as a method of mechanically applying a shearing force.
- Patent Document 1 in which the bond itself due to van der Waals force between CNTs is weakened by using an ionic liquid as a solvent, a gel-like composition is obtained only by shearing force, but van der Waals force between CNTs is networked.
- the present invention used to form the structure requires a different dispersion technique.
- the ultrasonic wave generator probe is moved in a container containing a dispersion liquid. Furthermore, by setting the probe movement path so that the probe moves all the way through the container, the dispersion can proceed for all the CNTs in the container, and a more uniform dispersion can be realized.
- the ultrasonic probe is moved in a spiral shape while ultrasonic waves are applied to the solution. , It is possible to promote the dispersion of CNTs everywhere in the container and realize more uniform dispersion.
- CNT can be disperse
- the CNT dispersion layer 130 according to the present invention can be formed by dispersing and solidifying carbon nanotubes in a thermosetting resin.
- the method for synthesizing the CNT used for producing the paste-like composition according to the present invention is not particularly limited as long as it has the CNT characteristics defined in this specification. However, as described above, since it is necessary to synthesize long CNTs having a length of 1 ⁇ m or more, for example, they can also be produced by the method described in International Publication WO2006 / 011655 by the present inventors.
- the carbon fiber dispersion layer according to the present invention can be formed by dispersing and solidifying carbon fibers in a thermosetting resin.
- the paste-like composition 50 according to the present invention thus prepared is applied or printed on the first carbon fiber dispersion layer 110 and solidified to obtain the carbon fiber composite material 100 with the CNT dispersion layer 130 interposed therebetween. Can do.
- the CNT dispersion layer 130 can be obtained by removing the solution contained in the paste-like composition 50 by drying or washing.
- the first carbon fiber dispersion layer 110 is an intermediate product in which the impregnated thermosetting resin is semi-solidified, it is solidified together with the CNT dispersion layer 130 by heating.
- the heating temperature is set based on the temperature at which the thermosetting resin contained in the paste-like composition 50 is solidified and the temperature at which the thermosetting resin 113 impregnated in the first carbon fiber dispersion layer 110 is solidified. Can do. Therefore, in the present invention, the difference between the temperature at which the thermosetting resin contained in the paste-like composition 50 is solidified and the temperature at which the thermosetting resin 113 impregnated in the first carbon fiber dispersion layer 110 is solidified is reduced. Thus, it is preferable to select each thermosetting resin. In particular, when the thermosetting resin contained in the paste-like composition 50 and the thermosetting resin 113 impregnated in the first carbon fiber dispersion layer 110 are the same type of thermosetting resin, the first carbon fiber is solidified at the time of solidification.
- the interface between the dispersion layer 110 and the CNT dispersion layer 130 is fused and the peel strength is increased.
- the CNT dispersion layer 130 having a film thickness excellent in flatness can be produced.
- the CNT dispersion layer 130 according to the present invention thus manufactured has a thickness of 0.1 ⁇ m or more, flatness of 30% or less, and CNT purity of 90% or more.
- a paste-like composition containing CNTs having an appropriate viscosity with high shape retention during coating a high peel strength and a thickness of 0.1 ⁇ m or more can be obtained.
- a carbon fiber composite material having excellent conductivity can be produced.
- Paste compositions of Examples were prepared using CNTs produced by the method described in International Publication WO2006 / 011655 and an epoxy resin (Epicoat 806, Mitsubishi Chemical).
- the epoxy resin used has a viscosity of 15 to 25 Pa ⁇ s, an epoxy equivalent of 160 to 170, appearance: liquid at normal temperature, and specific gravity of 1.2 g / cm 3 .
- a jet mill Joko Corporation, NanoJet Pal (registered trademark) JN10 incorporating a pump for feeding liquid with high viscosity and high pressure was used.
- FIG. 5 shows an optical microscope image of the paste-like composition of the example in which 0.1% by weight of CNT is dispersed
- FIG. 5 (a) is a magnification of 100 times
- FIG. 5 (b) is a magnification of 1000 times.
- FIG. 6 shows an optical microscope image of the paste-like composition of the example in which 0.2% by weight of CNT is dispersed.
- FIG. 6 (a) is a magnification of 100 times
- FIG. 6 (b) is a magnification of 1000 times.
- FIG. 7 shows an optical microscope image of the paste-like composition of the example in which 0.5% by weight of CNT is dispersed.
- FIG. 7 (a) is a magnification of 100 times
- FIG. 7 (b) is a magnification of 1000 times. . From these results, it was revealed that CNT was highly dispersed in the epoxy resin in the paste-like compositions of the examples.
- the viscosity of the paste-like composition of this example containing 0.1% by weight, 0.2% by weight or 0.5% by weight of the above-mentioned CNT was measured. Moreover, the viscosity was measured using only an epoxy resin as a comparative example. The viscosity was measured at 20 ° C. with a 40 mm parallel cone (500 ⁇ m) using Discovery from TA instrument.
- FIG. 8A shows the viscosity measurement result of the paste-like composition.
- the viscosity under a low shear condition with a shear rate of 0.1 s ⁇ 1 or less is 50 Pa ⁇ s or more, and the shear rate is 100 s ⁇ 1 or more.
- the viscosity under the high shear condition was 20 Pa ⁇ s or less.
- FIG. 8B shows the hysteresis of each paste-like composition. From the result of FIG. 8B, it became clear that the CNTs were uniformly dispersed in the thermosetting resin in the paste-like composition according to this example. It was also revealed that even if the CNT content is increased, it can be uniformly dispersed.
- FIG. 10A is a diagram showing the paste-like composition immediately after being placed on the PET substrate
- FIG. 10B is a diagram showing the paste-like composition one minute after being placed on the PET substrate. .
- the height immediately after placing the paste composition 50 on the substrate and T when the height of the paste composition after 1 minute and T 1, the ratio T 1 / T 0 of T 1 for T 0 0.95, indicating good shape retention characteristics.
- Fig.11 (a) shows the result of the viscosity measurement of the paste-like composition of an Example
- FIG.11 (b) shows the enlarged view of the area
- the pasty compositions of the examples had a viscosity measured before and after changing the shear rate from 1000 s ⁇ 1 to 0.1 s ⁇ 1 from a value of 1.92 Pa ⁇ s or less within 200 seconds to 200 Pa ⁇ s. It increased to a value of s or more. From this result, it was shown that the shape retention of the paste-like composition of the example has an excellent recovery rate.
- the size distribution of the CNT aggregate contained in the paste-like composition was evaluated by a laser diffraction method.
- FIG. 12 shows the size distribution of the paste-like composition of the example containing 0.1% by weight of CNTs.
- the median particle size distribution on a volume basis was 41.5 ⁇ m.
- FIG. 13 shows the particle size distribution on a volume basis of the paste-like composition of the example.
- the median particle size distribution on a volume basis was 30 ⁇ m.
- the first carbon fiber dispersion layer 110 Toray Trading Card type 32525-12 (125, basis weight, carbon fiber content 67Wf%, thickness 0.12mm, used carbon fiber T7005C) was used. Moreover, the carbon fiber composite material was manufactured using the composition containing 0.1 weight%, 0.2 weight%, or 0.5 weight% of CNT as the paste-form composition 50 of a present Example. Further, as a comparative example, a carbon fiber composite material was manufactured using only the above epoxy resin without adding CNT. The paste-like composition is applied to the first carbon fiber dispersion layer 110 with a doctor blade so as to have a thickness of 30 ⁇ m, dried at 50 ° C. for 6 hours or more, and the solvent in the paste-like composition is removed to disperse the CNT.
- Layer 130 was formed. An intermediate product of carbon fiber composite material was obtained. The intermediate product and the first carbon fiber dispersion layer 110 are laminated so that the first carbon fiber dispersion layer 110 has 8 layers (ply) and the CNT dispersion layer 130 has 7 layers, and an autoclave (Hanada Iron Works, Dande) The thermosetting tree was solidified by heating at 175 ° C. and 0.3 MPa for 3 hours to obtain a carbon fiber composite material 100.
- the delamination strength (G1c) of the obtained carbon fiber composite material 100 was examined.
- the delamination strength of the carbon fiber composite material was measured by a DCB (Double cantilever beam) method, mode I (opening type).
- 14 and FIG. 14 show the measurement results of delamination strength for the carbon fiber composite material using the paste-like composition having a CNT content of 0 wt%, 0.1 wt%, 0.2 wt% and 0.5 wt%. As shown in FIG.
- the delamination strength of the carbon fiber composite material in which the CNT dispersion layer was formed with the paste-like composition having a CNT content of 0% by weight in the comparative example was about 20 N
- CNT was added to the paste-like composition in an amount of 0.0. It has been clarified that when the content is 1% by weight or more, the delamination strength becomes 60N or more, and high peel strength is exhibited.
- FIG. 16 is an optical microscope image of the fracture surface of the carbon fiber composite material 100.
- 16A is a top view of the fracture surface of the carbon fiber composite material 100
- FIG. 16B is a cross-sectional view of the fracture surface of the carbon fiber composite material 100.
- FIG. 16A and FIG. 16B it is observed that carbon fibers are exposed on the fracture surface. From this result, it became clear that the destruction of the carbon fiber composite material 100 by the peel test occurred not in the CNT dispersion layer 130 but in the first carbon fiber dispersion layer 110.
- the electrical conductivity in the fiber axis direction measured from the end surface to the end surface and the electrical conductivity in the vertical direction measured from the upper and lower surfaces were obtained.
- the electrical conductivity of each carbon fiber composite material is shown in FIG. It became clear that the electrical conductivity of the carbon fiber composite material was improved according to the CNT content added to the paste-like composition.
- the CNTs produced by the method described in International Publication WO2006 / 011655 used in the above-described Examples are single-walled CNTs having an average length of 1 ⁇ m or more (hereinafter also referred to as SGCNT).
- SGCNT single-walled CNTs having an average length of 1 ⁇ m or more
- commercially available multilayer CNT Nanocyl (Nanocyl) and single-wall CNT CoMoCAT (South West NanoTechnologies) with an average length of less than 1 ⁇ m were used.
- FIG. 18 (a) shows the storage elastic modulus of the paste-like composition
- FIG. 18 (b) shows the loss elastic modulus of the paste-like composition.
- the storage elastic modulus and loss elastic modulus were obtained by dynamic viscoelasticity measurement (DMA).
- DMA dynamic viscoelasticity measurement
- the dynamic viscoelasticity measurement was performed using a torsional dynamic viscoelasticity measuring apparatus, AR-2000ex and ARES-G2 manufactured by TA instrument. Unless otherwise noted, the measurement temperature is 25 ° C., which is room temperature. Circulation tests were performed in amplitude mode using a sinusoidal stress / strain pattern.
- the evaluation result of the adhesive strength of the carbon fiber composite material is shown in FIG. It was shown that the adhesion strength of the carbon fiber composite material is significantly increased whether the CNT added is a single layer or a multilayer. On the other hand, SGCNT was found to have higher adhesive strength than Nanocyl and CoMoCAT.
- the conductivity was evaluated for the carbon fiber composite materials and sheet materials of the above-described examples.
- a conductive paste (Fujikura Kasei Co., Ltd., Dotite (registered trademark) D-550) was applied to the end face and the upper and lower surfaces of the fiber reinforced composite material (both sides in the lamination direction of the fiber reinforced composite material).
- the R6581 digital multimeter of Advantest Co., Ltd. was connected to the conductive paste on the end face and upper and lower surfaces of the fiber reinforced composite material, and the conductivity of the sample was measured by the two-terminal method.
- the electrical conductivity in the fiber axis direction measured from the end surface to the end surface and the electrical conductivity in the vertical direction measured from the upper and lower surfaces were obtained.
- the electrical conductivity of each carbon fiber composite material is shown in FIG.
- the conductivity is improved four times that of the sheet material alone.
- the carbon fiber composite material containing Nanocyl or CoMoCAT in the CNT dispersion layer no significant improvement in conductivity was observed. From this result, it is presumed that by using SGCNT having a long fiber length, a dense network structure was formed in the CNT dispersion layer, and a good conductive path was formed in the carbon fiber composite material.
- acetone Korean Chemical, EL acetone for electronic industry, 99.8%, ionic strength: 0
- MIBK methyl isobutyl ketone
- CNT and acetone were stirred overnight with a magnetic stir bar.
- a jet mill Joko Corporation, Nano Jet Pal (registered trademark) JN10
- CNT was dispersed in acetone at 60 MPa ⁇ 1 pass. Concentrate the dispersion to the limit.
- the dispersion and the epoxy resin (Epicoat 806, Mitsubishi Chemical) were mixed with a stirrer so that the CNT content was 0.5% by weight to prepare a paste-like composition of the example.
- the solvent was evaporated on a hot stirrer and a curing agent (W, Mitsubishi Chemical) was added.
- a polyimide tape was applied to both ends of the upper surface of the slide glass, and the paste-like composition of the example obtained at the center of the slide glass was stretched with a glass rod so as to have a film thickness of 70 ⁇ m. Applied. It was cured by heating at 100 ° C. for 2 hours in an autoclave.
- CNT and MIBK were stirred overnight with a magnetic stirring bar stirrer.
- a jet mill SUVGINO jet mill
- CNT was dispersed in MIBK at 100 MPa ⁇ 1 pass and 120 MPa ⁇ 1 pass. Concentrate the dispersion to the limit.
- the dispersion and the epoxy resin (Epicoat 806, Mitsubishi Chemical) were mixed with a stirrer so that the CNT content was 0.5% by weight to prepare a paste-like composition of the example.
- the solvent was evaporated in a vacuum oven and a curing agent (W, Mitsubishi Chemical) was added.
- a polyimide tape was applied to both ends of the upper surface of the slide glass, and the paste-like composition of the example obtained at the center of the slide glass was stretched with a glass rod so as to have a film thickness of 70 ⁇ m. Applied. Autoclave was cured by heating at 175 ° C. for 4 hours.
- FIG. 21 shows an optical microscope image of a paste-like composition of an example in which CNTs are dispersed in acetone and then mixed with an epoxy resin.
- FIG. 21 (a) is a magnification of 300 times
- FIG. 21 (b) is a magnification of 1000 times.
- FIG. 22 shows an optical microscope image of a paste-like composition of an example in which CNTs are dispersed in MIBK and then mixed with an epoxy resin.
- FIG. 22 (a) is a magnification of 300 times
- FIG. 22 (b) is a magnification of 1000 times.
- Paste composition in which CNT is directly dispersed in epoxy resin paste composition in which CNT is dispersed in acetone and then mixed with epoxy resin, and paste composition in which CNT is dispersed in MIBK and then mixed with epoxy resin
- the product was used as an example, and the viscosity was measured using only an epoxy resin as a comparative example.
- the viscosity was measured at 20 ° C. with a 40 mm parallel cone (500 ⁇ m) using Discovery from TA instrument.
- FIG. 23 shows the viscosity measurement results of the paste-like composition.
- the viscosity under a low shear condition with a shear rate of 0.1 s ⁇ 1 or less is 50 Pa ⁇ s or more
- the viscosity under a high shear condition with a shear rate of 100 s ⁇ 1 or more is 20 Pa ⁇ s or less.
- the first carbon fiber dispersion layer 110 Toray Trading Card type 32525-12 (125, basis weight, carbon fiber content 67Wf%, thickness 0.12mm, used carbon fiber T7005C) was used. Also, a paste composition in which the above CNT is directly dispersed in an epoxy resin, a paste composition in which CNT is dispersed in acetone and then mixed with an epoxy resin, and a paste in which CNT is dispersed in MIBK and then mixed with an epoxy resin A carbon fiber composite material was produced using the composition in an example and using only an epoxy resin as a comparative example. The paste composition was applied to the first carbon fiber dispersion layer 110 with a doctor blade so as to have a thickness of 30 ⁇ m, dried at 50 ° C.
- thermosetting tree was solidified by heating at 175 ° C. and 0.3 MPa for 3 hours to obtain a carbon fiber composite material 100.
- the delamination strength of carbon fiber composite material 100 was examined.
- the delamination strength of the carbon fiber composite material was measured by DCB method mode I.
- the measurement result of the delamination strength of the carbon fiber composite material is shown in FIG. While the delamination strength of the carbon fiber composite material in which the CNT dispersion layer was formed only with the epoxy resin of the comparative example was about 20 N, the paste-like composition contained 0.5% by weight of CNT, It was revealed that the peel strength was 60 N or more, and high peel strength was exhibited. On the other hand, in the example in which CNT was previously dispersed in an organic solvent, it was revealed that the delamination strength was lower than in the example in which CNT was directly dispersed in an epoxy resin. This is surmised to be due to the influence of the organic solvent remaining in the paste-like composition.
- thermosetting resin a method for dispersing CNTs in a thermosetting resin was examined.
- the CNT dried at 200 ° C. was mixed with the thermosetting resin in a beaker.
- the CNT resin was treated at a dispersion pressure of 60 MPa with a jet mill (Joko, JN-10) modified so that high viscosity liquid feeding was possible. Thereafter, the resin containing CNTs was intermittently treated for 24 hours while changing the irradiation position with an ultrasonic homogenizer VCX180 (Vidra-Cell, Sakai Sonics) to obtain a paste-like composition.
- an ultrasonic homogenizer VCX180 Vidra-Cell, Sakai Sonics
- the paste-like composition (CNT content: 0.5% by weight) of the above-described example in which CNT was dispersed in an epoxy resin by a jet mill, and in this example, the CNT was combined using a jet mill and an ultrasonic disperser.
- the storage elastic modulus was measured about the paste-form composition disperse
- Fig.26 (a) is a figure which shows the storage elastic modulus of a paste-form composition. The storage elastic modulus was improved by using a jet mill and an ultrasonic disperser in combination to disperse CNT in the epoxy resin.
- FIG. 26B is an optical microscope image of a paste-like composition in which CNTs are dispersed in an epoxy resin using a jet mill at a magnification of 100 times and an ultrasonic disperser
- FIG. It is an optical microscope image of the paste-form composition which disperse
- FIG.26 (b) it became clear that CNT was disperse
- a carbon fiber composite material of this example was manufactured by the above-described manufacturing method using the paste-like composition containing 0.5% by weight of CNTs.
- the adhesive strength of the carbon fiber composite material of this example was evaluated by a three-point bending test.
- the three-point bending test was conducted using AG-IS Autograph-10 kN (Shimadzu Corporation) in accordance with JIS K7074 (5 mm / min).
- FIG. 27 shows the evaluation results of the adhesive strength of the carbon fiber composite material. It has been clarified that the adhesive strength is improved by dispersing CNTs in an epoxy resin using a jet mill and an ultrasonic disperser in combination.
- the carbon fiber composite materials of the above-described examples were evaluated for conductivity. Furthermore, the paste-like composition disperse
- the CNT content of the paste-like composition was 0.1 wt%, 0.5 wt% and 1.0 wt%.
- CNT dried at 200 ° C. was mixed with a thermosetting resin in a beaker.
- the CNT resin was treated at a dispersion pressure of 60 MPa with a jet mill (Joko, JN-10) modified so that high viscosity liquid feeding was possible. Thereafter, the resin containing CNTs was intermittently treated for 24 hours while changing the irradiation position with an ultrasonic homogenizer VCX180 (Vidra-Cell, Sonics) to obtain a paste-like composition.
- a conductive paste (Fujikura Kasei Co., Ltd., Dotite (registered trademark) D-550) was applied to the end face and the upper and lower surfaces of the fiber reinforced composite material (both sides in the lamination direction of the fiber reinforced composite material).
- the R6581 digital multimeter of Advantest Co., Ltd. was connected to the conductive paste on the end face and upper and lower surfaces of the fiber reinforced composite material, and the conductivity of the sample was measured by the two-terminal method.
- the electrical conductivity in the fiber axis direction measured from the end surface to the end surface and the electrical conductivity in the vertical direction measured from the upper and lower surfaces were obtained.
- the electric conductivity of each carbon fiber composite material is shown in FIG.
- FIG. 29 shows an optical microscope image of a cross section of the carbon fiber composite material according to one example of the present invention.
- FIG. 29A is a reference example in which the paste-like composition is not applied between the carbon fiber dispersion layers.
- FIG. 29B is a comparative example in which only an epoxy resin is applied between the carbon fiber dispersion layers.
- FIG. 29 (c) shows a carbon fiber composite material according to an example of the present invention. From the cross section of each sample, it was not possible to confirm the jumping-out or detachment of the carbon nanotubes, and no CNT aggregates could be observed. Therefore, it is assumed that the CNTs were uniformly dispersed in the epoxy layer.
- FIG. 30 shows a cross section of a carbon fiber composite material according to an embodiment of the present invention
- FIG. 31 shows a cross section of a carbon fiber composite material of a comparative example.
- the area surrounded by the frame in (a) is enlarged and shown in (b).
- the arrow of FIG.30 (b) shows CNT.
- the CNTs in the CNT dispersion layer are arranged in close contact with the carbon fibers of the carbon fiber dispersion layer.
- FIG. 32A shows the measurement result at 532 nm
- FIG. 32B shows the measurement result at 633 nm.
- the cross-section of the carbon fiber composite materials of Examples the largest peak intensity in the range 1560 cm -1 or 1600 cm -1 or less, called G band derived from graphite was observed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
高い剥離強度と優れた導電性を有するCNT分散層を備えた炭素繊維複合材料及びその製造方法を提供する。本発明に係る炭素繊維複合材料は、熱硬化性樹脂に炭素繊維を分散させた第1の炭素繊維分散層と、熱硬化性樹脂にカーボンナノチューブを分散させたカーボンナノチューブ分散層と、熱硬化性樹脂に炭素繊維を分散させた第2の炭素繊維分散層と、を備え、前記カーボンナノチューブ分散層は、前記第1の炭素繊維分散層と前記第2の炭素繊維分散層との間に設けられている炭素繊維複合材料であり、前記カーボンナノチューブ分散層中のカーボンナノチューブは、前記第1の炭素繊維分散層の炭素繊維及び前記第2の炭素繊維分散層の炭素繊維と密接して、配設される。
Description
本発明は、炭素繊維複合材料及びその製造方法に関する。特に、強化繊維プラスチックを備える炭素繊維複合材料及びその製造方法に関する。
ガラス繊維や炭素繊維等の強化材と母材であるプラスチックとの複合材料である繊維強化プラスチック(FRP)は、軽量かつ高強度の材料として、自動車、航空機、住宅設備等の幅広い産業分野で利用されている。強化材に炭素繊維を用いる炭素繊維強化プラスチック(CFRP)は耐久性が高く、導電性も備えた有用な材料である。FRPの中間製品であるプリプレグは、配向させたガラス繊維や炭素繊維等の強化材に母材である樹脂を含浸させ、加熱又は乾燥により半硬化させたシート材である。プリプレグは、基材等に貼り付けて固化させることにより、任意の形状に成形可能な材料である。
プリプレグを基材に貼り付けたり、プリプレグどうしを積層したりする場合には、接着層を介在させる必要があるため、大きな剥離強度を有する接着層が望まれる。また、一般に樹脂を材料とする接着層は導電性が低い材料であるため、導電性を有する炭素繊維を含むプリプレグを積層した場合でも、接着層によりプリプレグ層間の導電性が得られない。
A. L. M. Reddy et al. SCIENTIFIC REPORTS, 2,481(2012).
上述した問題を解決する方法の1つとして、接着層に強度と導電性を付与する材料を添加することが考えられる。例えば、金属粒子や炭素粒子を樹脂と混合して接着層を形成することも考えられるが、十分な導電性を得るには相当量の粒子を添加する必要があるため、軽量なプリプレグの特性を損ないかねない。また、金属は化学的に不安定であり、化学的に安定な金や白金は大面積を必要とするプリプレグの利用には適さない。
軽量で高強度な材料として、炭素原子のみで構成されるカーボンナノチューブ(以下、CNTとも称す)が挙げられる。CNTは、電気的特性や熱伝導性、機械的性質の優れた材料である。CNTを添加して接着層を形成するには、CNTと樹脂を混合したペースト状組成物が必要となる。しかし、CNTを含有するペースト状組成物を調製する場合、CNT相互の凝集力(ファンデルワールス力)により、バンドルと呼ばれる大きな束のような構造で存在するCNTを樹脂中に分散させる必要がある。例えば、特許文献1には、CNTをイオン液体と混錬することにより、CNTのバンドルを解きほぐしてCNT分散液を調製する方法が提案されている。
一方、イオン液体を用いずにCNT分散液を調製する場合、汎用の有機溶媒などにCNTを分散させた分散液をスプレー法により塗膜する方法(非特許文献1)や、インクジェット法により塗膜する方法(特許文献2)が知られている。CNTを含む接着層を形成する場合、塗布したCNT分散液から溶液を除去する工程が必要となる。このため、これら公知の方法で得られた分散液を用いた場合、1回の塗膜で形成される膜厚は薄くなり、例えば、0.1μm以上の厚膜を塗膜するのには、重ね塗りをするための長い時間が必要であった。また、これら公知の方法で得られた分散液は、粘度が低く、塗工には不向きであり、高い膜厚を有する平坦性に優れた接着層を、高いスループットで形成するのは困難であった。
例えば、0.1μm以上の膜厚の接着層を形成するには、CNT分散液を基板上に典型的には1mm程度まで厚く塗るプロセスが必要となるが、イオン液体を用いずにそのようなプロセスを可能とする粘度特性を有するペースト状組成物の調製は困難であった。しかし、イオン液体は化学的安定性に課題があるため、CNTの優れた特性を損なう場合もあり、プリプレグを貼り合わせる接着層に用いるのは好ましくない。
本発明は、上記の如き従来技術の問題点を解決するものであって、高い剥離強度と優れた導電性を有する接着層を備えた炭素繊維複合材料及びその製造方法を提供する。
本発明の一実施形態によると、熱硬化性樹脂に炭素繊維が分散する第1の炭素繊維分散層と、熱硬化性樹脂にカーボンナノチューブが分散するカーボンナノチューブ分散層と、熱硬化性樹脂に炭素繊維が分散する第2の炭素繊維分散層と、を備え、前記カーボンナノチューブ分散層は、前記第1の炭素繊維分散層と前記第2の炭素繊維分散層との間に設けられている炭素繊維複合材料であり、前記カーボンナノチューブ分散層中のカーボンナノチューブは、前記第1の炭素繊維分散層の炭素繊維及び前記第2の炭素繊維分散層の炭素繊維と密接して、配設される炭素繊維複合材料が提供される。
また、熱硬化性樹脂に炭素繊維が分散する第1の炭素繊維分散層と、熱硬化性樹脂にカーボンナノチューブが分散するカーボンナノチューブ分散層と、熱硬化性樹脂に炭素繊維を分散させた第2の炭素繊維分散層と、を備え、前記カーボンナノチューブ分散層は、前記第1の炭素繊維分散層と前記第2の炭素繊維分散層との間に設けられている炭素繊維複合材料であり、前記炭素繊維複合材料は、層間剥離強度が300J/m2以上、繊維軸方向の導電率が0.1S/cm以上、垂直方向の導電率が10-5S/cm以上、三点曲げ強度が500MPaの少なくとも1つを備える炭素繊維複合材料が提供される。
前記炭素繊維複合材料において、前記カーボンナノチューブ分散層は、フィルム状であってもよい。
前記炭素繊維複合材料において、前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のサイズは、体積基準での粒度分布の中央値が5μm以上50μm以下の範囲にあってもよい。
前記炭素繊維複合材料において、前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のカーボンナノチューブ濃度が、0.1重量%以上であってもよい。
前記炭素繊維複合材料において、前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のカーボンナノチューブの平均長さが、1μm以上であってもよい。
前記炭素繊維複合材料において、前記カーボンナノチューブ分散層の厚さが、0.1μm以上であってもよい。
また、本発明の一実施形態によると、熱硬化性樹脂に炭素繊維を分散させて第1の炭素繊維分散層を形成し、熱硬化性樹脂にカーボンナノチューブを分散させてカーボンナノチューブ分散層を形成し、熱硬化性樹脂に炭素繊維を分散させて第2の炭素繊維分散層を形成し、前記カーボンナノチューブ分散層は、前記第1の炭素繊維分散層と前記第2の炭素繊維分散層との間に設けて炭素繊維複合材料を形成し、前記カーボンナノチューブ分散層中のカーボンナノチューブは、前記第1の炭素繊維分散層の炭素繊維及び前記第2の炭素繊維分散層の炭素繊維と密接して、配設される炭素繊維複合材料の製造方法が提供される。
また、本発明の一実施形態によると、熱硬化性樹脂に炭素繊維を分散させて第1の炭素繊維分散層を形成し、熱硬化性樹脂にカーボンナノチューブを分散させてカーボンナノチューブ分散層を形成し、熱硬化性樹脂に炭素繊維を分散させて第2の炭素繊維分散層を形成し、前記カーボンナノチューブ分散層は、前記第1の炭素繊維分散層と前記第2の炭素繊維分散層との間に設けて炭素繊維複合材料を形成し、前記炭素繊維複合材料は、層間剥離強度が300J/m2以上、繊維軸方向の導電率が0.1S/cm以上、垂直方向の導電率が10-5S/cm以上、三点曲げ強度が500MPaの少なくとも1つを備える炭素繊維複合材料の製造方法が提供される。
前記炭素繊維複合材料の製造方法において、前記カーボンナノチューブ分散層は、フィルム状であってもよい。
前記炭素繊維複合材料の製造方法において、前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のサイズは、体積基準での粒度分布の中央値が5μm以上50μm以下の範囲にあってもよい。
前記炭素繊維複合材料の製造方法において、前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のカーボンナノチューブ濃度が、0.1重量%以上であってもよい。
前記炭素繊維複合材料の製造方法において、前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のカーボンナノチューブの平均長さが、1μm以上であってもよい。
前記炭素繊維複合材料の製造方法において、前記カーボンナノチューブ分散層の厚さが、0.1μm以上であってもよい。
また、本発明の一実施形態によると、前記何れかの炭素繊維複合材料の前記第1の炭素繊維分散層及び/又は前記第2の炭素繊維分散層に塗布されるペースト状カーボンナノチューブ含有樹脂材であり、前記ペースト状カーボンナノチューブ含有樹脂材は、レオメータにより計測される粘度が、静止状態では50Pa・s以上、及び/又は、剪断速度100s-1以上の条件では20Pa・s以下を備えるペースト状カーボンナノチューブ含有樹脂材が提供される。
本発明によると、高い剥離強度と優れた導電性を有する接着層を備えた炭素繊維複合材料及びその製造方法を提供することができる。本発明の炭素繊維複合材料は接着層を介した高い剥離強度を有するとともに、高い導電性を兼ね備えた優れた材料である。
本発明者らは、上述した問題を解決すべく鋭意検討した結果、イオン液体を用いずに、カーボンナノチューブを樹脂に分散させ、高いスループットで接着層を形成するのに適した粘度を有するペースト状組成物を開発するに至った。以下に詳述する粘度を有するペースト状組成物をプリプレグに塗工して固化させることにより、高い剥離強度と優れた導電性を有する炭素繊維複合材料及びその製造方法を提供するものである。
以下、図面を参照して本発明に係る炭素繊維複合材料及びその製造方法について説明する。なお、本発明の炭素繊維複合材料及びその製造方法は、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び後述する実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
図1は、本発明の一実施形態に係る炭素繊維複合材料100の模式図である。図1(a)は、炭素繊維複合材料100を配向した炭素繊維111方向から見た側面図(又は断面図)である。図1(b)は本発明の一実施形態に係る接着層であるカーボンナノチューブ分散層(以下、CNT分散層とも称す)130の模式図であり、CNT分散層130の一部を切り取り、内部を露出させた図である。炭素繊維複合材料100は、例えば、シート材である第1の炭素繊維分散層110と第2の炭素繊維分散層120との間に、CNT分散層130が設けられている構造を有する。なお、図1においては、2つのシート材の間にCNT分散層130が設けられている構造を示すが、本発明はこれに限定されるものではない。例えば、一方の炭素繊維分散層に替えて所望の基材を用い、この基材にCNT分散層130を介して炭素繊維分散層を配置した構造物であってもよい。
本発明の一実施形態に係る炭素繊維複合材料100において、カーボンナノチューブ分散層中のカーボンナノチューブは、第1の炭素繊維分散層の炭素繊維及び第2の炭素繊維分散層の炭素繊維と密接して、配設される。ここで、カーボンナノチューブ分散層中のカーボンナノチューブは、第1の炭素繊維分散層の炭素繊維及び第2の炭素繊維分散層の炭素繊維と密接して、配設されるとは、カーボンナノチューブと第1の炭素繊維分散層及び第2の炭素繊維分散層中の炭素繊維との距離が500nm以下、より好ましくは100nm以下であることを意味する。
(層間剥離強度)
本発明の一実施形態に係る炭素繊維複合材料100は、層間剥離強度(G1c)が300J/m2以上、好ましくは、500J/m2以上、より好ましくは600J/m2以上である。このような層間剥離強度を備える炭素繊維複合材料は、一般的に衝撃特性に優れていることが知られているため、例えば輸送機器などへの応用が可能であるため、好ましい。
本発明の一実施形態に係る炭素繊維複合材料100は、層間剥離強度(G1c)が300J/m2以上、好ましくは、500J/m2以上、より好ましくは600J/m2以上である。このような層間剥離強度を備える炭素繊維複合材料は、一般的に衝撃特性に優れていることが知られているため、例えば輸送機器などへの応用が可能であるため、好ましい。
(導電率)
本明細書において、炭素繊維複合材料100の導電率は、炭素繊維複合材料100の端面及び上・下面(炭素繊維複合材料100の積層方向の両面)に導電性ペーストを塗布して電極を形成し、二端子法により測定する。炭素繊維複合材料100の端面と端面との間で測定した導電率を繊維軸方向の導電率と定義し、炭素繊維複合材料100の上・下面で測定した導電率を垂直方向の導電率と定義する。本発明の一実施形態に係る炭素繊維複合材料100は、繊維軸方向の導電率が0.1S/cm以上、好ましくは1S/cm以上、より好ましくは10S/cm以上である。また、垂直方向の導電率が10-5S/cm以上、好ましくは10-3S/cm以上、より好ましくは10-1S/cm以上である。このような導電率を備える炭素繊維複合材料は、例えば落雷時に電流を安全に拡散・避雷することが出来るため、例えば航空機用途や自動車用途に適しており、好ましい。
本明細書において、炭素繊維複合材料100の導電率は、炭素繊維複合材料100の端面及び上・下面(炭素繊維複合材料100の積層方向の両面)に導電性ペーストを塗布して電極を形成し、二端子法により測定する。炭素繊維複合材料100の端面と端面との間で測定した導電率を繊維軸方向の導電率と定義し、炭素繊維複合材料100の上・下面で測定した導電率を垂直方向の導電率と定義する。本発明の一実施形態に係る炭素繊維複合材料100は、繊維軸方向の導電率が0.1S/cm以上、好ましくは1S/cm以上、より好ましくは10S/cm以上である。また、垂直方向の導電率が10-5S/cm以上、好ましくは10-3S/cm以上、より好ましくは10-1S/cm以上である。このような導電率を備える炭素繊維複合材料は、例えば落雷時に電流を安全に拡散・避雷することが出来るため、例えば航空機用途や自動車用途に適しており、好ましい。
(三点曲げ強度)
本発明の一実施形態に係る炭素繊維複合材料100は、三点曲げ強度が500MPa以上、好ましくは、750MPa以上、より好ましくは1000MPa以上である。このような三点曲げ強度を備える炭素繊維複合材料は外力に対して変形しにくいという特徴を示しており、変形が好ましくない用途、例えば輸送機器の外装や筐体などに用いる際に、好ましい。
本発明の一実施形態に係る炭素繊維複合材料100は、三点曲げ強度が500MPa以上、好ましくは、750MPa以上、より好ましくは1000MPa以上である。このような三点曲げ強度を備える炭素繊維複合材料は外力に対して変形しにくいという特徴を示しており、変形が好ましくない用途、例えば輸送機器の外装や筐体などに用いる際に、好ましい。
本発明の一実施形態に係る炭素繊維複合材料100は、層間剥離強度、導電率及び三点曲げ強度の少なくとも1つが上記範囲となる。したがって、本発明の一実施形態に係る炭素繊維複合材料100は、層間剥離強度、導電率及び三点曲げ強度のうちの2つ、又は全てについて、上記範囲となることもある。
(炭素繊維分散層)
本明細書において、炭素繊維分散層は、熱硬化性樹脂113に炭素繊維111を分散させたシート状の部材である。本発明において、炭素繊維111は、所望の引張弾性率、引張強度及び引張伸度を有する公知の材料であり、特に限定されない。炭素繊維111は、例えば、260GPa以上440GPa以下の引張弾性率、4.4以上6.5GPa以下の引張強度、1.7%以上2.3%以下の引張伸度を有する炭素繊維である。また、炭素繊維111は、全ての繊維が同じ配向を有するように配置されてもよく、織物状の配置であってもよい。熱硬化性樹脂113には、公知の熱硬化性樹脂を用いることができ、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂及びポリイミド樹脂等、又は、これらの変性体および2種類以上の混合物から選択される。また、熱硬化性樹脂としては、加熱により自己硬化するもの、硬化剤や硬化促進剤などを配合するものの何れであってもよい。
本明細書において、炭素繊維分散層は、熱硬化性樹脂113に炭素繊維111を分散させたシート状の部材である。本発明において、炭素繊維111は、所望の引張弾性率、引張強度及び引張伸度を有する公知の材料であり、特に限定されない。炭素繊維111は、例えば、260GPa以上440GPa以下の引張弾性率、4.4以上6.5GPa以下の引張強度、1.7%以上2.3%以下の引張伸度を有する炭素繊維である。また、炭素繊維111は、全ての繊維が同じ配向を有するように配置されてもよく、織物状の配置であってもよい。熱硬化性樹脂113には、公知の熱硬化性樹脂を用いることができ、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂及びポリイミド樹脂等、又は、これらの変性体および2種類以上の混合物から選択される。また、熱硬化性樹脂としては、加熱により自己硬化するもの、硬化剤や硬化促進剤などを配合するものの何れであってもよい。
例えば、母材である熱硬化性樹脂に強化材として配向した炭素繊維を配置したプリプレグを用いることができ、プリプレグを加熱して固化させることにより、第1の炭素繊維分散層110及び/又は第2の炭素繊維分散層120を形成することができる。プリプレグは、加熱又は乾燥により樹脂を半硬化させたシート材であるため、CNT分散層を形成するペースト状組成物を塗工した後に、ペースト状組成物とともに所望の形状で固化させることができるため、作業性からも好適である。
(カーボンナノチューブ分散層)
一実施形態において、CNT分散層130は、フィルム状である。また、図1(b)に示したように、CNT分散層130は、母材である熱硬化性樹脂133にカーボンナノチューブ集合体(以下、CNT集合体とも称す)131を分散させている。CNT集合体131は複数のCNT(もしくはCNTのバンドル)とCNT(もしくはCNTのバンドル)が絡み合い離散集合したネットワーク構造を備える。CNT集合体131は、隣接するCNT集合体131と、三次元的なネットワーク構造をさらに形成する。したがって、CNT集合体131が備える三次元的なネットワーク構造は、非常に発達した、広い領域まで張り巡らされたCNTのネットワークであり、CNT集合体131を構成するCNTが連通してCNT分散層130の中に連続的な骨格構造が形成され、CNT分散層130に従来にない大きな剥離強度を提供する。また、CNT集合体131を構成するCNTが連通してCNT分散層130の中に連続的な導電路が形成されることで、CNT分散層130に導電性を付与することができる。本明細書においてCNT集合体131は、光学顕微鏡による観察で、CNTの集合体が観察される領域である。
一実施形態において、CNT分散層130は、フィルム状である。また、図1(b)に示したように、CNT分散層130は、母材である熱硬化性樹脂133にカーボンナノチューブ集合体(以下、CNT集合体とも称す)131を分散させている。CNT集合体131は複数のCNT(もしくはCNTのバンドル)とCNT(もしくはCNTのバンドル)が絡み合い離散集合したネットワーク構造を備える。CNT集合体131は、隣接するCNT集合体131と、三次元的なネットワーク構造をさらに形成する。したがって、CNT集合体131が備える三次元的なネットワーク構造は、非常に発達した、広い領域まで張り巡らされたCNTのネットワークであり、CNT集合体131を構成するCNTが連通してCNT分散層130の中に連続的な骨格構造が形成され、CNT分散層130に従来にない大きな剥離強度を提供する。また、CNT集合体131を構成するCNTが連通してCNT分散層130の中に連続的な導電路が形成されることで、CNT分散層130に導電性を付与することができる。本明細書においてCNT集合体131は、光学顕微鏡による観察で、CNTの集合体が観察される領域である。
また、CNT分散層130は熱硬化性樹脂133により形成された領域を備えることにより、CNT分散層130に熱硬化性樹脂133が備える物理特性を付与することができる。CNT分散層130において、熱硬化性樹脂133を囲い込むCNT集合体131を備えると、いわば、CNT集合体131がシャボン玉の膜のように配置され、CNT集合体131が連続的な骨格構造及び/又は導電路を形成しやすくなり、本発明の効果を得るのに好適である。
(カーボンナノチューブ)
本発明に係るCNT集合体131は、CNTが複数のCNTと交差し、ファンデルワールス力により点で結合したネットワーク構造を有する。このため、CNTの平均長さは、1μm以上であることが好ましく、より好ましくは5μm以上、より好ましくは10μm以上である。このような長尺なCNTは、CNT間の結合点が多いため、形状保持性に優れたネットワーク構造を形成することを可能とする。なお、本発明に係るCNT集合体は、このような長尺なCNTを含むものであればよく、その製造方法等は特に限定されない。CNTの平均長さとは、シリコンウエハ上に載置したCNTを原子間力顕微鏡(AFM)により観察し、10本以上の任意のCNTの長さを測定した平均値とする。
本発明に係るCNT集合体131は、CNTが複数のCNTと交差し、ファンデルワールス力により点で結合したネットワーク構造を有する。このため、CNTの平均長さは、1μm以上であることが好ましく、より好ましくは5μm以上、より好ましくは10μm以上である。このような長尺なCNTは、CNT間の結合点が多いため、形状保持性に優れたネットワーク構造を形成することを可能とする。なお、本発明に係るCNT集合体は、このような長尺なCNTを含むものであればよく、その製造方法等は特に限定されない。CNTの平均長さとは、シリコンウエハ上に載置したCNTを原子間力顕微鏡(AFM)により観察し、10本以上の任意のCNTの長さを測定した平均値とする。
(熱硬化性樹脂)
本発明において、熱硬化性樹脂133としては、例えば、シリコーン系樹脂、変成シリコーン系樹脂、アクリル系樹脂、クロロプレン系樹脂、ポリサルファイド系樹脂、ポリウレタン系樹脂、ポリイソブチル系樹脂、フロロシリコーン系樹脂から選ばれる一種以上、又は、これらの2種類以上の混合物から選択される。
本発明において、熱硬化性樹脂133としては、例えば、シリコーン系樹脂、変成シリコーン系樹脂、アクリル系樹脂、クロロプレン系樹脂、ポリサルファイド系樹脂、ポリウレタン系樹脂、ポリイソブチル系樹脂、フロロシリコーン系樹脂から選ばれる一種以上、又は、これらの2種類以上の混合物から選択される。
(ペースト状組成物)
本発明に係るCNT分散層130は、ペースト状組成物を固化して形成される。図2は、本発明の一実施形態に係るペースト状組成物50の模式図である。本発明に係るペースト状組成物50は、CNT集合体131と、イオン強度が1.0mol/L以下である溶液を含むモノマー溶液とを含み、レオメータにより計測される粘度が静止状態での条件では50Pa・s以上となり、且つ、剪断速度100s-1以上の条件では20Pa・s以下となることを特徴とする。
本発明に係るCNT分散層130は、ペースト状組成物を固化して形成される。図2は、本発明の一実施形態に係るペースト状組成物50の模式図である。本発明に係るペースト状組成物50は、CNT集合体131と、イオン強度が1.0mol/L以下である溶液を含むモノマー溶液とを含み、レオメータにより計測される粘度が静止状態での条件では50Pa・s以上となり、且つ、剪断速度100s-1以上の条件では20Pa・s以下となることを特徴とする。
図2(a)に示したように、本発明に係るペースト状組成物50においては、複数のCNT集合体131がモノマー溶液55とともに含まれた状態にある。また、図2(b)に示したように、CNT集合体131は、複数のCNT11(若しくはCNTのバンドル)が三次元空間に広がるネットワーク構造を有し、内部に微細な細孔13を多く有していることを特徴とする。このようなネットワーク構造は、CNT11(若しくはCNTのバンドル)が複数のCNT11(若しくはCNTのバンドル)と交差し、ファンデルワールス力により点で結合していることにより形成される。上記ファンデルワールス力により、静置状態においてCNT集合体131は細孔13を有するネットワーク構造を維持することができ、本発明に係るペースト状組成物50を構成するモノマー溶液55を細孔13の内部に取り込むことができる。
なお、ペースト状組成物50においては、複数のCNT集合体131がそれぞれ隣接する構造を有する。ただし、CNT集合体131の間の結合は弱いため、ペースト状組成物50について、ペースト状組成物50を構成するモノマー溶液55に含まれる溶液と同じ溶液で希釈したのちに、磁気撹拌子などによってよく撹拌することによって、単独のCNT集合体131を溶液中に分散する構造を得ることができる。このことを利用して、CNT集合体131のサイズをレーザ回折法又は顕微鏡観察などにより測定することができる。
上述したように、CNT集合体131におけるCNT間の結合は、主にCNT間の交差点におけるファンデルワールス力によるものである。特許文献1では、イオン液体を介した「カチオン-π」相互作用によってCNT間の結合を形成させ、CNTの三次元網目構造を得ている。一方、本発明に係るCNT集合体131においては、CNT間の交差点におけるCNT間のファンデルワールス力による直接の結合のみを用いることにより、三次元ネットワーク構造を有するCNT集合体131を得ることが可能であることを見出した。CNT間の直接の結合を用いたCNT集合体131を形成することによって、形状保持性に優れたCNT集合体131から構成される本発明のペースト状組成物50を得ることができる。
上記のような構造を有する本発明に係るペースト状組成物50は、バーコーティングなどの塗工法を用いることで、CNTを含んだ膜厚の高い平坦なCNT分散層130を高いスループットで形成するための以下の要件を満たしている。すなわち、(1)本発明に係るペースト状組成物50は静置状態における高い形状保持性を有しているため、基板上に高く配置することができる。(2)また上記ペースト状組成物50は剪断応力を加えた際に流動性を示すため、バーコーティングなどの塗工法を用いることで炭素繊維分散層上に濡れ広げることができ、平坦かつ均一なCNT分散層130を形成することが可能となる。(3)さらに上記ペースト状組成物50は、剪断応力を解放した際に即座に静置状態の形状保持性が回復するため、バーコーティングなどの塗工法を用いて平坦な厚膜を形成した直後に、液ダレなどが起こらず、この厚膜の形状を維持することができる。
静置状態においてCNT集合体131は、CNT間の結合により細孔13を有するネットワーク構造を維持することができ、本発明に係るペースト状組成物50を構成するモノマー溶液55を細孔13の内部に取り込むことができる。その結果、本発明に係るペースト状組成物50においては、静置状態では流動性が低く、本発明に係るペースト状組成物50は形状保持性を有する。このような静置状態における形状保持性を利用すれば、炭素繊維分散層上にペースト状組成物50を高く配置した後に、バーコーティングなどの塗工法を用いることで、厚膜のCNTを含んだCNT分散層130を高いスループットで形成することができる。ここで、本発明に係るペースト状組成物50が示す形状保持性として、ペースト状組成物0.2gをガラス平板上に高さを5mm以上となる形状に配置したのち、1分後の高さが2mm以上となることが好ましく、より好ましくは3mm以上、さらに好ましくは4mm以上、さらに好ましくは5mm以上となることが好ましい。
さらに本発明に係るペースト状組成物50が示す形状保持性は、低剪断速度条件で測定される粘度の値と相関がある。本明細書においては、本発明に係るペースト状組成物50が有する粘度を、以下の条件下においてレオメータにより計測するものとする。測定ステージと500μm以上の間隔を有する直径40mm以下の円形平板プレートの間にペースト状組成物を配置したのちに、円形平板プレートを回転させてから20秒以上経過したのちに円形平板プレートに加わるトルクを測定して得られる粘度を用いるものとし、測定時のペースト状組成物の温度は15℃から25℃の範囲にあるものとする。上記の条件下で剪断速度0.1s-1以下の低剪断条件においてレオメータにより計測される本発明に係るペースト状組成物50の粘度は、50Pa・s以上となることが好ましく、より好ましくは100Pa・s以上であり,さらに好ましくは200Pa・s以上であり,さらに好ましくは500Pa・s以上であり,さらに好ましくは1000Pa・s以上であることが好ましい。
一方、本発明のペースト状組成物50は、剪断応力を加えると、流動性が高くなるという特徴も有する。これは、CNT集合体131におけるネットワーク構造に剪断応力を加えると、CNT間の交差点を保ったまま、細孔13が圧縮され、細孔13の内部に存在していたモノマー溶液55が外部に滲み出すことに由来する。この剪断応力で示す流動性を利用すれば、ブレードコーティングなど種々の塗工法により剪断応力を加えた際に、本発明のペースト状組成物50を炭素繊維分散層上に濡れ広げることができる。これにより、均一かつ平坦なCNT分散層130を形成することができる。
本明細書において、ペースト状組成物50が示す流動性とは、レオメータで測定される高剪断速度領域で測定される粘度の値として定義される。すなわち、レオメータにより計測される粘度が剪断速度100s-1以上の高剪断条件では、本発明に係るペースト状組成物50の粘度は20Pa・s以下の値となるとなることが好ましく、より好ましくは10Pa・s以下であり、さらに好ましくは5Pa・s以下であり、さらに好ましくは2Pa・s以下であり、さらに好ましくは1Pa・s以下であることが好ましい。
したがって、本発明のペースト状組成物50は、静置状態で形状保持性を示すとともに、剪断応力が加えられると流動性を示すことが好ましく、剪断速度0.1s-1以下の低剪断条件での粘度が50Pa・s以上であり、且つ、剪断速度100s-1以上の高剪断条件での粘度が10Pa・s以下の値となるとなることが好ましい。より好ましくは、剪断速度0.1s-1における粘度が、剪断速度100s-1における粘度の100倍以上の値となることが好ましい。
また、本発明のペースト状組成物50は、剪断応力から解放されると、短時間で形状保持性を回復する特徴を有する。このような形状保持性の回復性は、ブレードコーティングなど種々の塗工法により形成される本発明のペースト状組成物50からなるCNT分散層130の形状を保持する上で重要であり、いわゆる液ダレなどの問題を回避することができる。これによって、形状が維持されたペースト状組成物50を乾燥工程などに供することによって、均一かつ平坦なCNTを含んだCNT分散層130を得ることができる。本明細書において、上記のペースト状組成物50における形状保持性の回復性は、剪断速度を0.01秒以内に100s-1以上から0.1s-1以下まで変化させ、かつ粘度測定を0.01秒以内の間隔で行うことが可能なレオメータを用いて、以下のように測定される。測定ステージと500μm以上の間隔を有する直径40mm以下の円形平板プレートの間にペースト状組成物50を配置する。100s-1以上の剪断速度で円形平板プレートを20秒以上回転させたのちに、0.01秒以内に剪断速度を0.1s-1以下まで変化させる。この前後において円形平板プレートに加わるトルクを測定して得られる粘度を用いる。測定時のペースト状組成物50の温度は15℃から25℃の範囲にあるものとする。本発明に係るペースト状組成物50は、剪断速度を100s-1以上から0.1s-1以下まで変化させた前後で測定される粘度が、0.1秒以内に20Pa・s以下の値から40Pa・s以上の値に上昇することが好ましく、より好ましくは10Pa・s以下の値から40Pa・s以上の値に上昇することが好ましく、より好ましくは10Pa・s以下の値から100Pa・s以上の値に上昇することが好ましく、より好ましくは5Pa・s以下の値から100Pa・s以上の値に上昇することが好ましく、より好ましくは5Pa・s以下の値から150Pa・s以上の値に上昇することが好ましく、より好ましくは5Pa・s以下の値から200Pa・s以上の値に上昇することが好ましい。
本発明のペースト状組成物50に含まれるCNT集合体131のサイズは、平坦かつ均一なCNT分散層130を成膜する上で、粗大すぎないことが好ましい。さらに、CNT集合体131は、細孔13の内部にモノマー溶液55を保持することが必要であるため、CNT間の絡まりあいが可能な範囲で高密度に存在していることが好ましい。よって、CNT集合体131は、ある程度以上のサイズを有する必要がある。本明細書において、細孔13も含めたCNT集合体131のサイズについては以下のように定義するものとする。CNT集合体131を含んだペースト状組成物50について、ペースト状組成物50を構成するモノマー溶液55に含まれる溶液と同じ溶液により100倍以上の体積になるまで希釈する。磁気撹拌子のみによって1時間以上撹拌することによって単独のCNT集合体131を溶液中に分散した構造を得る。この単独で分散しているCNT集合体131のサイズ分布についてレーザ回折法又は顕微鏡観察により測定する。画像解析法を用いる場合は、画像に投影された面積から得た円面積相当径をCNT集合体131のサイズとして用いるものとする。CNT集合体131のサイズは、上記の方法で得られた体積基準でのサイズ分布の中央値で評価することができる。具体的には、本発明に係るCNT集合体131は、体積基準での粒度分布の中央値が5μm以上50μm以下であることが好ましく、より好ましくは10μm以上40μm以下であり、さらに好ましくは30μm以下である。
本発明に係るペースト状組成物50中に存在するCNT集合体131の濃度は、0.1重量%以上であることが好ましく、より好ましくは0.3重量%以上である。CNT集合体131の濃度を高くすることによって、CNT集合体131の細孔13の内部に多くのモノマー溶液55を保持することが可能となり、形状保持性に優れたペースト状組成物50が得られる。
(モノマー溶液)
本発明に係るペースト状組成物50に含まれるモノマー溶液55は、重合により熱硬化性樹脂133となるモノマーと、モノマーを溶解可能な溶液との混合液である。また、モノマー溶液55には、必要に応じて硬化剤や硬化促進剤などを配合してもよい。
本発明に係るペースト状組成物50に含まれるモノマー溶液55は、重合により熱硬化性樹脂133となるモノマーと、モノマーを溶解可能な溶液との混合液である。また、モノマー溶液55には、必要に応じて硬化剤や硬化促進剤などを配合してもよい。
(溶液)
上述したように、イオン液体は化学的安定性に課題があるため、CNTの優れた特性を損なう場合もあり、本発明に係るペースト状組成物50には好ましくない。したがって、本発明に係るペースト状組成物50を構成する溶液は、イオン強度が低いことが好ましい。本発明に係るペースト状組成物50においては、CNT間の絡まりあいにより生じるファンデルワールス力によってCNTが点で結合し、3次元網目構造体の形状保持性を発現させていると考えられる。イオン強度が高いイオン液体を用いると、CNT間にイオンが親和することによってCNT間の距離が離れ(ほぐされ)、ファンデルワールス力が弱まる。
上述したように、イオン液体は化学的安定性に課題があるため、CNTの優れた特性を損なう場合もあり、本発明に係るペースト状組成物50には好ましくない。したがって、本発明に係るペースト状組成物50を構成する溶液は、イオン強度が低いことが好ましい。本発明に係るペースト状組成物50においては、CNT間の絡まりあいにより生じるファンデルワールス力によってCNTが点で結合し、3次元網目構造体の形状保持性を発現させていると考えられる。イオン強度が高いイオン液体を用いると、CNT間にイオンが親和することによってCNT間の距離が離れ(ほぐされ)、ファンデルワールス力が弱まる。
本発明に係るペースト状組成物50において、溶液のイオン強度は1.0mol/L以下であることが好ましく、より好ましくは0.5mol/L以下である。本発明に係るペースト状組成物50が含む溶液は、上記のイオン強度を満たせば、有機溶媒や水などの液体物質、および分散剤や高分子化合物等が溶解した液体であってもよい。本発明に係る溶液に用いる有機溶媒としては、例えば、イソブチルアルコール、2-プロパノール、N,N-ジメチルホルムアミド、スチレン、1-ブタノール、2-ブタノール、エタノール、メタノール、ノルマルメチルピロリドン、メチルイソブチルケトン、メチルエチルケトン、エチレングリコール、酢酸エチル、シクロヘキサノール、テトラヒドロフラン等を用いることができる。また、本発明に係る溶液に用いる分散剤としては、例えば、コール酸、コール酸ナトリウム、ドデシル硫酸ナトリウム、ステアリルステアレート、ジグリセリンオレエート、クエン酸脂肪酸モノグリセライド、ポリアクリル酸ナトリウム、ポリビニルアルコール等を用いることができる。また、本発明に係る溶液として、高分子化合物やそのモノマーを溶解させた溶液を用いることもでき、例えば高分子化合物としては、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ポリテトラフルオロエチレン、ジメチルポリシロキサン、ポリウレタン、ポリフェノール、ポリエチレンテレフタラート等を用いることができる。
(カーボンナノチューブ分散層の特性)
上述した本発明に係るペースト状組成物50を用いて、本発明に係るCNT分散層130を形成することができる。本発明に係るCNT分散層130は、本発明に係るペースト状組成物50を第1の炭素繊維分散層110及び/又は第2の炭素繊維分散層120に塗布又は印刷して形成する。本発明に係るCNT分散層130は、厚さ0.1μm以上、平坦性30%以下、CNTの純度90%以上であることが好ましい。
上述した本発明に係るペースト状組成物50を用いて、本発明に係るCNT分散層130を形成することができる。本発明に係るCNT分散層130は、本発明に係るペースト状組成物50を第1の炭素繊維分散層110及び/又は第2の炭素繊維分散層120に塗布又は印刷して形成する。本発明に係るCNT分散層130は、厚さ0.1μm以上、平坦性30%以下、CNTの純度90%以上であることが好ましい。
なお、本明細書において、CNT分散層130の「平坦性」とは以下のように定義される。それぞれ1mm以上離れた、CNT分散層130における任意の10か所以上で、レーザ式の変位計などにより厚さを測定し、その測定値の標準偏差Raを平均値tで割った値が、平坦性として表される。
従来技術では、本発明に係るCNT分散層130のような膜厚なCNT分散層を形成するには、長時間を要するとともに、重ね塗りを施すため、十分な平坦性を確保するのは困難であった。本発明に係るペースト状組成物50を用いることにより、膜厚で、平坦性の高いCNT分散層130を高いスループットで形成することができる。
(ペースト状組成物の製造方法)
上述した本発明に係るペースト状組成物50の製造方法としては、本明細書において規定した条件を満たすペースト状組成物が得られる限り特に限定はされない。しかし、本発明に係るペースト状組成物を得るためには、CNT集合体に含まれるCNTが可能な限り多くのCNTとの間に結合を形成したネットワーク構造を形成することが好ましい。このようなネットワーク構造を得るためには、原料であるCNTのバンドルを適度に解きほぐし、且つCNTの長さを長く保つ分散方法が必要である。さらに、静置状態で極めて粘度が高い本発明に係るペースト状組成物を得るためには、粘度が高い媒体中においても均一に分散を進行させる必要がある。
上述した本発明に係るペースト状組成物50の製造方法としては、本明細書において規定した条件を満たすペースト状組成物が得られる限り特に限定はされない。しかし、本発明に係るペースト状組成物を得るためには、CNT集合体に含まれるCNTが可能な限り多くのCNTとの間に結合を形成したネットワーク構造を形成することが好ましい。このようなネットワーク構造を得るためには、原料であるCNTのバンドルを適度に解きほぐし、且つCNTの長さを長く保つ分散方法が必要である。さらに、静置状態で極めて粘度が高い本発明に係るペースト状組成物を得るためには、粘度が高い媒体中においても均一に分散を進行させる必要がある。
CNTの一般的な分散過程は、1.機械的に剪断力を加える手法(ボールミル、ローラーミル、振動ミル、混練機など)、2.キャビテーションを用いた手法(超音波分散)、3.乱流を用いた手法(ジェットミル、ナノマイザーなど)の3つに分類される。このうち、機械的に剪断力を加える手法に分類される方法のみでは、ファンデルワールス力に打ち勝ち、CNT間の絡み合いをほどくことが困難である。イオン液体を溶媒として用いることでCNT間のファンデルワールス力による結合自体を弱めている特許文献1では、剪断力のみでゲル状組成物を得ているが、CNT間のファンデルワールス力をネットワーク構造の形成に用いる本発明では、異なる分散手法が必要となる。
一方、キャビテーションを用いた手法においては、ファンデルワールス力に打ち勝ち、CNT間の結合をほぐしていく効果は高いものの、本発明に係るペースト状組成物のような高粘度の媒体中では超音波が短距離で減衰してしまうという問題がある。このため、従来技術においては、プローブの極近傍にあるCNTについては分散が進行するが、一旦、プローブから遠い距離まで弾き飛ばされたCNTは、分散が進行しなくなり、さらに本発明に係るペースト状組成物が有する形状保持性のため、上記CNTが再びプローブの極近傍に戻ることは困難であるため、結果として十分に均一にCNT間の結合がほぐされた分散が得られない。
そこで、本発明の一実施形態においては、超音波発生部プローブを分散液が入った容器の中で移動させる。さらに、プローブの移動を、容器の至る所まで到達するよう、プローブの移動経路を設定することにより、容器内のすべてのCNTについて分散を進行させ、より均一な分散を実現することができる。
本発明の一実施形態において、図3に示したように、固定された円筒状のビーカー内に溶液ならびにカーボンナノチューブを投入した後、超音波プローブを渦巻き状に移動させながら溶液に対して超音波を照射することで、容器内の至る所にあるCNTについて分散を進行させ、より均一な分散を実現することができる。
また、本発明においては、いくつかの異なる分散手法を段階的に使い分けることで、CNTを溶液に分散させることができる。即ち、撹拌等により低粘度の分散液を得る通常の分散過程を経た後に、粘度が上昇して流動性が低下したところで上述した何れかの分散方法を適用する。また、粘度が上昇して流動性が低下したところで、上述した何れか2以上の分散方法を組合せて用いてもよい。例えば、キャビテーションを用いた手法と乱流を用いた手法を組合せてもよい。本発明に係るCNT分散層130は、熱硬化性樹脂にカーボンナノチューブを分散させ、固化させることにより形成することができる。
(CNTの合成方法)
本発明に係るペースト状組成物を製造するために用いるCNTの合成方法は、本明細書に規定したCNTの特性を備える限り特に限定はされない。しかし、上述したように、1μm以上の長いCNTを合成する必要から、例えば、本発明者らによる国際公開WO2006/011655号に記載した方法により製造することもできる。
本発明に係るペースト状組成物を製造するために用いるCNTの合成方法は、本明細書に規定したCNTの特性を備える限り特に限定はされない。しかし、上述したように、1μm以上の長いCNTを合成する必要から、例えば、本発明者らによる国際公開WO2006/011655号に記載した方法により製造することもできる。
(炭素繊維分散層の製造方法)
本発明に係る炭素繊維分散層は、熱硬化性樹脂に炭素繊維を分散させ、固化させることにより形成することができる。
本発明に係る炭素繊維分散層は、熱硬化性樹脂に炭素繊維を分散させ、固化させることにより形成することができる。
(炭素繊維複合材料の製造方法)
このように調製した本発明に係るペースト状組成物50を第1の炭素繊維分散層110上に塗布又は印刷し、固化させることにより、CNT分散層130が介在した炭素繊維複合材料100を得ることができる。ペースト状組成物50を塗布又は印刷後に、ペースト状組成物50に含まれる溶液を乾燥又は洗浄により除去することによって、CNT分散層130を得ることができる。また、第1の炭素繊維分散層110は含浸させた熱硬化性樹脂が半固化した中間製品であるため、加熱により、CNT分散層130とともに固化する。加熱温度は、ペースト状組成物50に含まれる熱硬化性樹脂が固化する温度、及び第1の炭素繊維分散層110に含浸させた熱硬化性樹脂113が固化する温度に基づいて、設定することができる。従って、本発明においては、ペースト状組成物50に含まれる熱硬化性樹脂が固化する温度と第1の炭素繊維分散層110に含浸させた熱硬化性樹脂113が固化する温度の差が小さくなるようにそれぞれの熱硬化性樹脂を選択することが好ましい。特に、ペースト状組成物50に含まれる熱硬化性樹脂と第1の炭素繊維分散層110に含浸させた熱硬化性樹脂113が同種の熱硬化性樹脂であれば、固化時に第1の炭素繊維分散層110とCNT分散層130との界面が融合し、剥離強度が大きくなるため好ましい。このように、本発明に係るペースト状組成物50を用いることにより、平坦性に優れた膜厚のCNT分散層130を製造することができる。このように製造された本発明に係るCNT分散層130は、厚さ0.1μm以上、平坦性30%以下、CNTの純度90%以上を有する。
このように調製した本発明に係るペースト状組成物50を第1の炭素繊維分散層110上に塗布又は印刷し、固化させることにより、CNT分散層130が介在した炭素繊維複合材料100を得ることができる。ペースト状組成物50を塗布又は印刷後に、ペースト状組成物50に含まれる溶液を乾燥又は洗浄により除去することによって、CNT分散層130を得ることができる。また、第1の炭素繊維分散層110は含浸させた熱硬化性樹脂が半固化した中間製品であるため、加熱により、CNT分散層130とともに固化する。加熱温度は、ペースト状組成物50に含まれる熱硬化性樹脂が固化する温度、及び第1の炭素繊維分散層110に含浸させた熱硬化性樹脂113が固化する温度に基づいて、設定することができる。従って、本発明においては、ペースト状組成物50に含まれる熱硬化性樹脂が固化する温度と第1の炭素繊維分散層110に含浸させた熱硬化性樹脂113が固化する温度の差が小さくなるようにそれぞれの熱硬化性樹脂を選択することが好ましい。特に、ペースト状組成物50に含まれる熱硬化性樹脂と第1の炭素繊維分散層110に含浸させた熱硬化性樹脂113が同種の熱硬化性樹脂であれば、固化時に第1の炭素繊維分散層110とCNT分散層130との界面が融合し、剥離強度が大きくなるため好ましい。このように、本発明に係るペースト状組成物50を用いることにより、平坦性に優れた膜厚のCNT分散層130を製造することができる。このように製造された本発明に係るCNT分散層130は、厚さ0.1μm以上、平坦性30%以下、CNTの純度90%以上を有する。
以上説明したように、本発明によると、塗工時の形状保持性が高い適度な粘度を有するCNTを含むペースト状組成物を用いることにより、0.1μm以上の厚さで、高い剥離強度と優れた導電性を有する炭素繊維複合材料を製造することができる。
(ペースト状組成物)
国際公開WO2006/011655号に記載した方法により製造したCNTと、エポキシ樹脂(エピコート806、三菱化学)を用い、実施例のペースト状組成物を調製した。なお、用いたエポキシ樹脂は、粘度:15~25Pa・s、エポキシ当量:160~170、外観:常温で液体、比重:1.2g/cm3である。ペースト状組成物の調製には、高粘度の高圧で送液するポンプを組み込んだジェットミル(常光社、ナノジェットパル(登録商標)JN10)を用いた。実施例として、CNTを0.1重量%、0.2重量%及び0.5重量%を添加し、処理圧力を60MPaで200μmの径の流路を6回(0.5重量%では4回)通過させ、CNTをエポキシ樹脂に分散させた。このようにして、実施例のペースト状組成物を得た。
国際公開WO2006/011655号に記載した方法により製造したCNTと、エポキシ樹脂(エピコート806、三菱化学)を用い、実施例のペースト状組成物を調製した。なお、用いたエポキシ樹脂は、粘度:15~25Pa・s、エポキシ当量:160~170、外観:常温で液体、比重:1.2g/cm3である。ペースト状組成物の調製には、高粘度の高圧で送液するポンプを組み込んだジェットミル(常光社、ナノジェットパル(登録商標)JN10)を用いた。実施例として、CNTを0.1重量%、0.2重量%及び0.5重量%を添加し、処理圧力を60MPaで200μmの径の流路を6回(0.5重量%では4回)通過させ、CNTをエポキシ樹脂に分散させた。このようにして、実施例のペースト状組成物を得た。
CNTの分散状態を確認するため、スライドガラスの上面の両端側にポリイミドテープを貼り、スライドガラス中央部に得られた実施例のペースト状組成物を膜厚70μmとなるよう、ガラス棒で伸ばして塗布した。エポキシ樹脂のみを塗布して比較例とした。光学顕微鏡(デジタルマイクロスコープ VHX-1000、KEYENCE)を用いて、ペースト状組成物を観察した。図4は比較例のエポキシ樹脂のみの光学顕微鏡像を示し、図4(a)は倍率100倍、図4(b)は倍率1000倍の図である。図5はCNTを0.1重量%分散させた実施例のペースト状組成物の光学顕微鏡像を示し、図5(a)は倍率100倍、図5(b)は倍率1000倍の図である。図6はCNTを0.2重量%分散させた実施例のペースト状組成物の光学顕微鏡像を示し、図6(a)は倍率100倍、図6(b)は倍率1000倍の図である。図7はCNTを0.5重量%分散させた実施例のペースト状組成物の光学顕微鏡像を示し、図7(a)は倍率100倍、図7(b)は倍率1000倍の図である。これらの結果から、実施例のペースト状組成物においては、CNTがエポキシ樹脂に高度に分散していることが明らかとなった。
(CNT含有量とペースト状組成物の粘度)
上述したCNTを0.1重量%、0.2重量%又は0.5重量%含有する本実施例のペースト状組成物の粘度を測定した。また、比較例としてエポキシ樹脂のみを用いて、粘度を測定した。粘度測定には、TA instrument社Discoveryを用い、φ40mmパラレルコーン(500μm)で20℃にて測定した。図8(a)はペースト状組成物の粘度測定結果を示す。本実施例においては、CNTを0.1重量%以上分散させることにより、剪断速度0.1s-1以下の低剪断条件での粘度は50Pa・s以上であり、且つ、剪断速度100s-1以上の高剪断条件での粘度が20Pa・s以下の値となった。また、CNT含有量の増加に応じて粘度が高くなることが示された。
上述したCNTを0.1重量%、0.2重量%又は0.5重量%含有する本実施例のペースト状組成物の粘度を測定した。また、比較例としてエポキシ樹脂のみを用いて、粘度を測定した。粘度測定には、TA instrument社Discoveryを用い、φ40mmパラレルコーン(500μm)で20℃にて測定した。図8(a)はペースト状組成物の粘度測定結果を示す。本実施例においては、CNTを0.1重量%以上分散させることにより、剪断速度0.1s-1以下の低剪断条件での粘度は50Pa・s以上であり、且つ、剪断速度100s-1以上の高剪断条件での粘度が20Pa・s以下の値となった。また、CNT含有量の増加に応じて粘度が高くなることが示された。
図8(b)に各ペースト状組成物のヒステリシスを示す。図8(b)の結果から、本実施例に係るペースト状組成物は、熱硬化性樹脂中にCNTが均一に分散していることが明らかとなった。また、CNT含有量を高めても均一に分散できることも明らかとなった。
(CNT含有量とペースト状組成物の粘度の経時変化)
上述した方法により、CNTを0.1重量%及び1.0重量%を添加し、エポキシ樹脂に分散させてペースト状組成物を調製した。実施例としてこれらのペースト状組成物を用い、比較例としてエポキシ樹脂のみを用いて、CNT含有量とペースト状組成物の粘度の経時変化について検討した。粘度測定には、TA instrument社Discoveryを用い、φ40mmパラレルコーン(500μm)で20℃にて測定した。図9は、CNT含有量とペースト状組成物の粘度の経時変化を示す図である。実施例、比較例ともに経時的にペースト状組成物の粘度が上昇するものの、ペースト状組成物の粘度の経時変化はCNT含有量に対して特段の依存性は認められなかった。
上述した方法により、CNTを0.1重量%及び1.0重量%を添加し、エポキシ樹脂に分散させてペースト状組成物を調製した。実施例としてこれらのペースト状組成物を用い、比較例としてエポキシ樹脂のみを用いて、CNT含有量とペースト状組成物の粘度の経時変化について検討した。粘度測定には、TA instrument社Discoveryを用い、φ40mmパラレルコーン(500μm)で20℃にて測定した。図9は、CNT含有量とペースト状組成物の粘度の経時変化を示す図である。実施例、比較例ともに経時的にペースト状組成物の粘度が上昇するものの、ペースト状組成物の粘度の経時変化はCNT含有量に対して特段の依存性は認められなかった。
(ペースト状組成物の形状保持性)
CNTを0.1重量%含有するペースト状組成物50について、形状保持性を検証した。ペースト状組成物をポリエチレンテレフタラート(PET)基板上に配置した1分後に、高さを測定した。図10(a)はPET基板上に配置した直後のペースト状組成物を示す図であり、図10(b)は、PET基板上に配置した1分後のペースト状組成物を示す図である。ペースト状組成物50を基板上に配置した直後の高さをT0とし、1分後のペースト状組成物の高さをT1とすると、T0に対するT1の比T1/T0が0.95であり良好な形状保持特性を示した。
CNTを0.1重量%含有するペースト状組成物50について、形状保持性を検証した。ペースト状組成物をポリエチレンテレフタラート(PET)基板上に配置した1分後に、高さを測定した。図10(a)はPET基板上に配置した直後のペースト状組成物を示す図であり、図10(b)は、PET基板上に配置した1分後のペースト状組成物を示す図である。ペースト状組成物50を基板上に配置した直後の高さをT0とし、1分後のペースト状組成物の高さをT1とすると、T0に対するT1の比T1/T0が0.95であり良好な形状保持特性を示した。
(ペースト状組成物における形状保持性の回復速度)
CNTを0.1重量%含有する実施例のペースト状組成物について、形状保持性の回復速度を評価した。測定には、TA instrument社Discoveryを用い、φ40mmパラレルコーン(500μm)で測定した。図11(a)は実施例のペースト状組成物の粘度測定の結果を示し、図11(b)は図11(a)の丸で囲んだ領域の拡大図を示す。実施例のペースト状組成物は、剪断速度を1000s-1から0.1s-1まで変化させた前後で測定される粘度が、0.1秒以内に1.92Pa・s以下の値から200Pa・s以上の値に上昇した。この結果から、実施例のペースト状組成物の形状保持性は優れた回復速度を有することが示された。
CNTを0.1重量%含有する実施例のペースト状組成物について、形状保持性の回復速度を評価した。測定には、TA instrument社Discoveryを用い、φ40mmパラレルコーン(500μm)で測定した。図11(a)は実施例のペースト状組成物の粘度測定の結果を示し、図11(b)は図11(a)の丸で囲んだ領域の拡大図を示す。実施例のペースト状組成物は、剪断速度を1000s-1から0.1s-1まで変化させた前後で測定される粘度が、0.1秒以内に1.92Pa・s以下の値から200Pa・s以上の値に上昇した。この結果から、実施例のペースト状組成物の形状保持性は優れた回復速度を有することが示された。
レーザ回折法によりペースト状組成物に含まれるCNT集合体のサイズ分布を評価した。図12はCNTを0.1重量%含有する実施例のペースト状組成物のサイズ分布を示す。体積基準での粒度分布の中央値は41.5μmであった。
また、画像解析法を用いてペースト状組成物に含まれるCNT集合体の粒子サイズ分布を評価した。図13は実施例のペースト状組成物の体積基準での粒子サイズ分布を示す。体積基準での粒度分布の中央値は30μmであった。
ペースト状組成物を希釈してガラス基板上に滴下して、孤立したCNT集合体の中のCNT長さを光学顕微鏡により確認したところ、CNTの平均長さが5μm以上であることを確認した。
第1の炭素繊維分散層110として、東レ トレカ 品種32525-12(糸目付125、炭素繊維含有率67Wf%、厚み0.12mm、使用炭素繊維T7005C)を用いた。また、本実施例のペースト状組成物50として、CNTを0.1重量%、0.2重量%又は0.5重量%含有する組成物を用いて、炭素繊維複合材料を製造した。また、比較例としてCNTを添加せずに上記のエポキシ樹脂のみを用いて、炭素繊維複合材料を製造した。第1の炭素繊維分散層110にペースト状組成物を30μmの厚さとなるようドクターブレードを用いて塗布し、50℃で6時間以上乾燥させ、ペースト状組成物中の溶媒を除去してCNT分散層130を形成した。炭素繊維複合材料の中間製品を得た。第1の炭素繊維分散層110が8層(ply)、CNT分散層130が7層となるように、この中間製品と第1の炭素繊維分散層110を積層し、オートクレーブ(羽生田鉄工所、ダンデライオン)中で、175℃、0.3MPaで3時間の加熱により熱硬化性樹を固化させ、炭素繊維複合材料100を得た。
(炭素繊維複合材料の層間剥離強度)
得られた炭素繊維複合材料100の層間剥離強度(G1c)について検討した。炭素繊維複合材料の層間剥離強度は、DCB(Double cantilever beam)法、モードI(開口型)により測定した。CNT含有量が0重量%、0.1重量%、0.2重量%及び0.5重量%のペースト状組成物を用いた炭素繊維複合材料についての層間剥離強度の測定結果を図14及び図15に示す。比較例のCNT含有量が0重量%のペースト状組成物でCNT分散層を形成した炭素繊維複合材料の層間剥離強度が20N程度であったのに対して、ペースト状組成物にCNTを0.1重量%以上含有させることにより、層間剥離強度が60N以上となり、高い剥離強度を示すことが明らかとなった。
得られた炭素繊維複合材料100の層間剥離強度(G1c)について検討した。炭素繊維複合材料の層間剥離強度は、DCB(Double cantilever beam)法、モードI(開口型)により測定した。CNT含有量が0重量%、0.1重量%、0.2重量%及び0.5重量%のペースト状組成物を用いた炭素繊維複合材料についての層間剥離強度の測定結果を図14及び図15に示す。比較例のCNT含有量が0重量%のペースト状組成物でCNT分散層を形成した炭素繊維複合材料の層間剥離強度が20N程度であったのに対して、ペースト状組成物にCNTを0.1重量%以上含有させることにより、層間剥離強度が60N以上となり、高い剥離強度を示すことが明らかとなった。
剥離試験後の炭素繊維複合材料100の破壊面を観察した。図16は、炭素繊維複合材料100の破壊面の光学顕微鏡像である。図16(a)は炭素繊維複合材料100の破壊面の上面図であり、図16(b)は炭素繊維複合材料100の破壊面の断面図である。図16(a)及び図16(b)において、破壊面には炭素繊維が露出していることが観察される。この結果から、剥離試験による炭素繊維複合材料100の破壊は、CNT分散層130ではなく、第1の炭素繊維分散層110で生じることが明らかとなった。
また、CNTのラマンスペクトルを測定すると、532nm及び633nmにピークが観察される。一方、炭素繊維では、532nm及び633nmにピークが観察されない。この事実を利用して、炭素繊維複合材料100の破壊面をラマンスペクトルで検証した。炭素繊維複合材料100の破壊面の9箇所についてラマンスペクトルを測定したところ、532nm及び633nmにピークが観察されなかった。この結果より、炭素繊維複合材料100の破壊はCNT分散層130では生じていないことが検証された。
(炭素繊維複合材料の導電性)
上述した実施例及び比較例の炭素繊維複合材料について、導電性を評価した。導電性ペースト(藤倉化成(株)、ドータイト(登録商標)D-550)を繊維強化複合材料の端面および上・下面(繊維強化複合材料の積層方向の両面)に塗布した。アドバンテスト(株)のR6581デジタルマルチメーターを繊維強化複合材料の端面及び上・下面の導電性ペーストに接続し、二端子法により試料の導電率を測定した。端面-端面で測定した繊維軸方向の導電率、上・下面で測定した垂直方向の導電率をそれぞれ得た。各炭素繊維複合材料の導電率を図17に示す。ペースト状組成物に添加したCNT含有量に応じて、炭素繊維複合材料の導電率が向上することが明らかとなった。
上述した実施例及び比較例の炭素繊維複合材料について、導電性を評価した。導電性ペースト(藤倉化成(株)、ドータイト(登録商標)D-550)を繊維強化複合材料の端面および上・下面(繊維強化複合材料の積層方向の両面)に塗布した。アドバンテスト(株)のR6581デジタルマルチメーターを繊維強化複合材料の端面及び上・下面の導電性ペーストに接続し、二端子法により試料の導電率を測定した。端面-端面で測定した繊維軸方向の導電率、上・下面で測定した垂直方向の導電率をそれぞれ得た。各炭素繊維複合材料の導電率を図17に示す。ペースト状組成物に添加したCNT含有量に応じて、炭素繊維複合材料の導電率が向上することが明らかとなった。
次に、CNTの特性とペースト状組成物の特性の関係を検討した。上述した実施例で用いた国際公開WO2006/011655号に記載した方法により製造したCNTは、平均長さが1μm以上の単層CNTである(以下、SGCNTとも称する)。SGCNTと比較するため、市販されている多層CNTのNanocyl(Nanocyl)及び平均長さが1μm未満の単層CNTのCoMoCAT(SouthWest NanoTechnologies)を用いた。
(CNTの特性とペースト状組成物の弾性率の関係)
上述した製造方法により、CNTを1重量%含有する実施例のペースト状組成物を製造した。CNTとして、SGCNTとNanocylを用いた。また、比較例としてエポキシ樹脂のみを用いて、貯蔵弾性率及び損失弾性率を測定した。図18(a)はペースト状組成物の貯蔵弾性率を示し、図18(b)はペースト状組成物の損失弾性率を示す。貯蔵弾性率及び損失弾性率は、動的粘弾性測定(DMA)により求めた。動的粘弾性測定はTA instrument社のねじれ方式動的粘弾性測定装置、AR-2000ex及びARES-G2を用いて、測定した。断りがない限り、測定の温度は室温の25℃である。循環試験は正弦関数の応力/歪みパターンを用いた振幅モードで実施した。
上述した製造方法により、CNTを1重量%含有する実施例のペースト状組成物を製造した。CNTとして、SGCNTとNanocylを用いた。また、比較例としてエポキシ樹脂のみを用いて、貯蔵弾性率及び損失弾性率を測定した。図18(a)はペースト状組成物の貯蔵弾性率を示し、図18(b)はペースト状組成物の損失弾性率を示す。貯蔵弾性率及び損失弾性率は、動的粘弾性測定(DMA)により求めた。動的粘弾性測定はTA instrument社のねじれ方式動的粘弾性測定装置、AR-2000ex及びARES-G2を用いて、測定した。断りがない限り、測定の温度は室温の25℃である。循環試験は正弦関数の応力/歪みパターンを用いた振幅モードで実施した。
図18(a)及び図18(b)の結果から、添加するCNTは単層でも多層でも、ペースト状組成物の貯蔵弾性率及び損失弾性率が大幅に高くなることが示された。一方、SGCNTは、Nanocylに比して貯蔵弾性率、損失弾性率ともに高くなり、この結果から、SGCNTはNanocylよりも緻密な網目構造を形成することが明らかとなった。
(CNTの特性とペースト状組成物の接着強度の関係)
CoMoCATを用い、上述した製造方法により、CNTを0.1重量%含有する実施例のペースト状組成物を製造した。また、上述したSGCNTとNanocylを用いた実施例のペースト状組成物と、比較例としてエポキシ樹脂のみを用いて、炭素繊維複合材料を上述して方法により製造し、炭素繊維複合材料の接着強度を評価した。接着強度を評価は、3点曲げ試験により行った。3点曲げ試験はAG-ISオートグラフ-10kN(島津製作所)を用いて、JIS K7074(5mm/min)に準拠して試験を行った。
CoMoCATを用い、上述した製造方法により、CNTを0.1重量%含有する実施例のペースト状組成物を製造した。また、上述したSGCNTとNanocylを用いた実施例のペースト状組成物と、比較例としてエポキシ樹脂のみを用いて、炭素繊維複合材料を上述して方法により製造し、炭素繊維複合材料の接着強度を評価した。接着強度を評価は、3点曲げ試験により行った。3点曲げ試験はAG-ISオートグラフ-10kN(島津製作所)を用いて、JIS K7074(5mm/min)に準拠して試験を行った。
炭素繊維複合材料の接着強度の評価結果を図19に示す。添加するCNTは単層でも多層でも、炭素繊維複合材料の接着強度が大幅に高くなることが示された。一方、SGCNTは、NanocylやCoMoCATに比して接着強度を高くすることが明らかとなった。
(CNTの特性と炭素繊維複合材料の導電性の関係)
上述した実施例の炭素繊維複合材料及びシート材について、導電性を評価した。導電性ペースト(藤倉化成(株)、ドータイト(登録商標)D-550)を繊維強化複合材料の端面および上・下面(繊維強化複合材料の積層方向の両面)に塗布した。アドバンテスト(株)のR6581デジタルマルチメーターを繊維強化複合材料の端面及び上・下面の導電性ペーストに接続し、二端子法により試料の導電率を測定した。端面-端面で測定した繊維軸方向の導電率、上・下面で測定した垂直方向の導電率をそれぞれ得た。各炭素繊維複合材料の導電率を図20に示す。CNT分散層にSGCNTを含有する炭素繊維複合材料においては、導電率がシート材単体の4倍に向上した。一方、CNT分散層にNanocylやCoMoCATを含有する炭素繊維複合材料においては、顕著な導電率の向上は認められなかった。この結果から、繊維長の長いSGCNTを用いることにより、CNT分散層に緻密な網目構造が形成され、炭素繊維複合材料に良好な導電パスが形成されたものと推察される。
上述した実施例の炭素繊維複合材料及びシート材について、導電性を評価した。導電性ペースト(藤倉化成(株)、ドータイト(登録商標)D-550)を繊維強化複合材料の端面および上・下面(繊維強化複合材料の積層方向の両面)に塗布した。アドバンテスト(株)のR6581デジタルマルチメーターを繊維強化複合材料の端面及び上・下面の導電性ペーストに接続し、二端子法により試料の導電率を測定した。端面-端面で測定した繊維軸方向の導電率、上・下面で測定した垂直方向の導電率をそれぞれ得た。各炭素繊維複合材料の導電率を図20に示す。CNT分散層にSGCNTを含有する炭素繊維複合材料においては、導電率がシート材単体の4倍に向上した。一方、CNT分散層にNanocylやCoMoCATを含有する炭素繊維複合材料においては、顕著な導電率の向上は認められなかった。この結果から、繊維長の長いSGCNTを用いることにより、CNT分散層に緻密な網目構造が形成され、炭素繊維複合材料に良好な導電パスが形成されたものと推察される。
次に、ペースト状組成物及び炭素繊維複合材料の製造工程の最適化を検討した。本実施例においては、有機溶媒にCNTを予め分散させてから熱硬化性樹脂と混合する方法について検討した。
(ペースト状組成物)
上述したCNTと、有機溶媒としてアセトン(関東化学、電子工業用ELアセトン、99.8%、イオン強度:0)又はメチルイソブチルケトン(MIBK、シグマアルドリッチジャパン、イオン強度:0)を用いた。CNTとアセトンを磁気撹拌子スターラーで一晩撹拌した。ジェットミル(常光社、ナノジェットパル(登録商標)JN10)を用いて、60MPa×1パスで、CNTをアセトンに分散させた。分散液を限界まで濃縮する。CNTの含有量が0.5重量%となるように、分散液とエポキシ樹脂(エピコート806、三菱化学)をスターラーで混合し、実施例のペースト状組成物を調製した。ホットスターラー上で溶媒を蒸発させ、硬化剤(W、三菱化学)を添加した。CNTの分散状態を確認するため、スライドガラスの上面の両端側にポリイミドテープを貼り、スライドガラス中央部に得られた実施例のペースト状組成物を膜厚70μmとなるよう、ガラス棒で伸ばして塗布した。オートクレーブ、100℃で2時間加熱して硬化させた。
上述したCNTと、有機溶媒としてアセトン(関東化学、電子工業用ELアセトン、99.8%、イオン強度:0)又はメチルイソブチルケトン(MIBK、シグマアルドリッチジャパン、イオン強度:0)を用いた。CNTとアセトンを磁気撹拌子スターラーで一晩撹拌した。ジェットミル(常光社、ナノジェットパル(登録商標)JN10)を用いて、60MPa×1パスで、CNTをアセトンに分散させた。分散液を限界まで濃縮する。CNTの含有量が0.5重量%となるように、分散液とエポキシ樹脂(エピコート806、三菱化学)をスターラーで混合し、実施例のペースト状組成物を調製した。ホットスターラー上で溶媒を蒸発させ、硬化剤(W、三菱化学)を添加した。CNTの分散状態を確認するため、スライドガラスの上面の両端側にポリイミドテープを貼り、スライドガラス中央部に得られた実施例のペースト状組成物を膜厚70μmとなるよう、ガラス棒で伸ばして塗布した。オートクレーブ、100℃で2時間加熱して硬化させた。
また、CNTとMIBKを磁気撹拌子スターラーで一晩撹拌した。ジェットミル(SUGINOジェットミル)を用いて、100MPa×1パス及び120MPa×1パスで、CNTをMIBKに分散させた。分散液を限界まで濃縮する。CNTの含有量が0.5重量%となるように、分散液とエポキシ樹脂(エピコート806、三菱化学)をスターラーで混合し、実施例のペースト状組成物を調製した。真空オーブンで溶媒を蒸発させ、硬化剤(W、三菱化学)を添加した。CNTの分散状態を確認するため、スライドガラスの上面の両端側にポリイミドテープを貼り、スライドガラス中央部に得られた実施例のペースト状組成物を膜厚70μmとなるよう、ガラス棒で伸ばして塗布した。オートクレーブ、175℃で4時間加熱して硬化させた。
光学顕微鏡(デジタルマイクロスコープ VHX-1000、KEYENCE)を用いて、ペースト状組成物を観察した。図21はCNTをアセトンに分散させてからエポキシ樹脂と混合した実施例のペースト状組成物の光学顕微鏡像を示し、図21(a)は倍率300倍、図21(b)は倍率1000倍の図である。図22はCNTをMIBKに分散させてからエポキシ樹脂と混合した実施例のペースト状組成物の光学顕微鏡像を示し、図22(a)は倍率300倍、図22(b)は倍率1000倍の図である。先に述べたCNTをエポキシ樹脂に直接分散させたペースト状組成物の光学顕微鏡像(図7)と比較すると、有機溶媒にCNTを事前に分散させた本実施例においては、CNTのバンドルが解れて網目構造が発達していた。また、CNTをMIBKに分散させた場合、アセトンに分散させた場合よりも、エポキシ樹脂へのCNTの分散性が向上することが明らかとなった。
(ペースト状組成物の粘度測定)
上述したCNTをエポキシ樹脂に直接分散させたペースト状組成物、CNTをアセトンに分散させてからエポキシ樹脂と混合したペースト状組成物及びCNTをMIBKに分散させてからエポキシ樹脂と混合したペースト状組成物を実施例とし、比較例としてエポキシ樹脂のみを用いて、粘度を測定した。粘度測定には、TA instrument社Discoveryを用い、φ40mmパラレルコーン(500μm)で20℃にて測定した。図23にペースト状組成物の粘度測定結果を示す。本実施例においては、剪断速度0.1s-1以下の低剪断条件での粘度は50Pa・s以上であり、且つ、剪断速度100s-1以上の高剪断条件での粘度が20Pa・s以下の値となった。一方、CNTを予め有機溶媒に分散させた実施例においては、エポキシ樹脂にCNTを直接分散させた実施例よりも粘度が低下することが明らかとなった。これは、ペースト状組成物に残留した有機溶媒が影響しているものと推察される。
上述したCNTをエポキシ樹脂に直接分散させたペースト状組成物、CNTをアセトンに分散させてからエポキシ樹脂と混合したペースト状組成物及びCNTをMIBKに分散させてからエポキシ樹脂と混合したペースト状組成物を実施例とし、比較例としてエポキシ樹脂のみを用いて、粘度を測定した。粘度測定には、TA instrument社Discoveryを用い、φ40mmパラレルコーン(500μm)で20℃にて測定した。図23にペースト状組成物の粘度測定結果を示す。本実施例においては、剪断速度0.1s-1以下の低剪断条件での粘度は50Pa・s以上であり、且つ、剪断速度100s-1以上の高剪断条件での粘度が20Pa・s以下の値となった。一方、CNTを予め有機溶媒に分散させた実施例においては、エポキシ樹脂にCNTを直接分散させた実施例よりも粘度が低下することが明らかとなった。これは、ペースト状組成物に残留した有機溶媒が影響しているものと推察される。
第1の炭素繊維分散層110として、東レ トレカ 品種32525-12(糸目付125、炭素繊維含有率67Wf%、厚み0.12mm、使用炭素繊維T7005C)を用いた。また、上述したCNTをエポキシ樹脂に直接分散させたペースト状組成物、CNTをアセトンに分散させてからエポキシ樹脂と混合したペースト状組成物及びCNTをMIBKに分散させてからエポキシ樹脂と混合したペースト状組成物を実施例とし、比較例としてエポキシ樹脂のみを用いて、炭素繊維複合材料を製造した。第1の炭素繊維分散層110にペースト状組成物を30μmの厚さとなるようドクターブレードを用いて塗布し、50℃で6時間乾燥させ、ペースト状組成物中の溶媒を除去してCNT分散層130を形成した。炭素繊維複合材料の中間製品を得た。第1の炭素繊維分散層110が8層(ply)、CNT分散層130が7層となるように、この中間製品と第1の炭素繊維分散層110を積層し、オートクレーブ(羽生田鉄工所、ダンデライオン)中で、175℃、0.3MPaで3時間の加熱により熱硬化性樹を固化させ、炭素繊維複合材料100を得た。
(炭素繊維複合材料の層間剥離強度)
得られた炭素繊維複合材料100の層間剥離強度について検討した。炭素繊維複合材料の層間剥離強度は、DCB法 モードIにより測定した。炭素繊維複合材料の層間剥離強度の測定結果を図24に示す。比較例のエポキシ樹脂のみでCNT分散層を形成した炭素繊維複合材料の層間剥離強度が20N程度であったのに対して、ペースト状組成物にCNTを0.5重量%含有させることにより、層間剥離強度が60N以上となり、高い剥離強度を示すことが明らかとなった。一方、CNTを予め有機溶媒に分散させた実施例においては、エポキシ樹脂にCNTを直接分散させた実施例よりも層間剥離強度が低下することが明らかとなった。これは、ペースト状組成物に残留した有機溶媒が影響しているものと推察される。
得られた炭素繊維複合材料100の層間剥離強度について検討した。炭素繊維複合材料の層間剥離強度は、DCB法 モードIにより測定した。炭素繊維複合材料の層間剥離強度の測定結果を図24に示す。比較例のエポキシ樹脂のみでCNT分散層を形成した炭素繊維複合材料の層間剥離強度が20N程度であったのに対して、ペースト状組成物にCNTを0.5重量%含有させることにより、層間剥離強度が60N以上となり、高い剥離強度を示すことが明らかとなった。一方、CNTを予め有機溶媒に分散させた実施例においては、エポキシ樹脂にCNTを直接分散させた実施例よりも層間剥離強度が低下することが明らかとなった。これは、ペースト状組成物に残留した有機溶媒が影響しているものと推察される。
(炭素繊維複合材料の導電性)
上述した実施例及び比較例の炭素繊維複合材料について、導電性を評価した。繊維強化複合材料の積層方向の両面に導電性ペースト(藤倉化成(株)、ドータイト(登録商標)D-550)を塗布した。アドバンテスト(株)のR6581デジタルマルチメーターを繊維強化複合材料の両面の導電性ペーストに接続し、四端子法で積層方向の導電率を求めた。各炭素繊維複合材料の導電率を図25に示す。ペースト状組成物にCNTを0.5重量%含有させることにより、炭素繊維複合材料の導電率が大幅に向上することが明らかとなった。一方、CNTを予め有機溶媒に分散させた実施例においては、エポキシ樹脂にCNTを直接分散させた実施例よりも導電性が向上することが明らかとなった。これは、ペースト状組成物中にCNTがより分散しているためであると推察される。
上述した実施例及び比較例の炭素繊維複合材料について、導電性を評価した。繊維強化複合材料の積層方向の両面に導電性ペースト(藤倉化成(株)、ドータイト(登録商標)D-550)を塗布した。アドバンテスト(株)のR6581デジタルマルチメーターを繊維強化複合材料の両面の導電性ペーストに接続し、四端子法で積層方向の導電率を求めた。各炭素繊維複合材料の導電率を図25に示す。ペースト状組成物にCNTを0.5重量%含有させることにより、炭素繊維複合材料の導電率が大幅に向上することが明らかとなった。一方、CNTを予め有機溶媒に分散させた実施例においては、エポキシ樹脂にCNTを直接分散させた実施例よりも導電性が向上することが明らかとなった。これは、ペースト状組成物中にCNTがより分散しているためであると推察される。
次に、熱硬化性樹脂へのCNTの分散方法について検討した。200℃で乾燥したCNTを熱硬化性樹脂とビーカー中で混ぜ合わせた。高粘度液送が可能なように改造したジェットミル(常光、JN-10)により、分散圧60MPaで上記CNT樹脂を処理した。その後、超音波ホモジナイザーVCX180(Vidra-Cell, Sonics社)で照射位置を変えながら断続的に24時間上記CNTを含む樹脂を処理し、ペースト状組成物を得た。
(分散方法と貯蔵弾性率)
ジェットミルでCNTをエポキシ樹脂に分散させた上述の実施例のペースト状組成物(CNT含有量:0.5重量%)と、本実施例においてジェットミルと超音波分散機を併用してCNTをエポキシ樹脂に分散させたペースト状組成物について、貯蔵弾性率を測定した。図26(a)はペースト状組成物の貯蔵弾性率を示す図である。ジェットミルと超音波分散機を併用してCNTをエポキシ樹脂に分散させることにより、貯蔵弾性率が向上した。
ジェットミルでCNTをエポキシ樹脂に分散させた上述の実施例のペースト状組成物(CNT含有量:0.5重量%)と、本実施例においてジェットミルと超音波分散機を併用してCNTをエポキシ樹脂に分散させたペースト状組成物について、貯蔵弾性率を測定した。図26(a)はペースト状組成物の貯蔵弾性率を示す図である。ジェットミルと超音波分散機を併用してCNTをエポキシ樹脂に分散させることにより、貯蔵弾性率が向上した。
それぞれのペースト状組成物を光学顕微鏡で観察した。図26(b)は倍率100倍でのジェットミルと超音波分散機を併用してCNTをエポキシ樹脂に分散させたペースト状組成物の光学顕微鏡像であり、図26(c)はジェットミルでCNTをエポキシ樹脂に分散させたペースト状組成物の光学顕微鏡像である。図26(b)において、CNTがエポキシ樹脂中により均一に分散していることが明らかとなった。
(分散方法と接着強度)
CNTを0.5重量%含有する上記のペースト状組成物を用いて、上述した製造方法により、本実施例の炭素繊維複合材料を製造した。本実施例の炭素繊維複合材料の接着強度を3点曲げ試験により評価した。3点曲げ試験はAG-ISオートグラフ-10kN(島津製作所)を用いて、JIS K7074(5mm/min)に準拠して試験を行った。
CNTを0.5重量%含有する上記のペースト状組成物を用いて、上述した製造方法により、本実施例の炭素繊維複合材料を製造した。本実施例の炭素繊維複合材料の接着強度を3点曲げ試験により評価した。3点曲げ試験はAG-ISオートグラフ-10kN(島津製作所)を用いて、JIS K7074(5mm/min)に準拠して試験を行った。
炭素繊維複合材料の接着強度の評価結果を図27に示す。ジェットミルと超音波分散機を併用してCNTをエポキシ樹脂に分散させることにより、接着強度が向上することが明らかとなった。
(分散方法と導電性)
上述した実施例の炭素繊維複合材料について、導電性を評価した。さらに、超音波分散機のみで分散させたペースト状組成物を製造し、上述した製造方法により、本実施例の炭素繊維複合材料を製造した。ペースト状組成物のCNT含有量を0.1重量%、0.5重量%及び1.0重量%とした。まず、200℃で乾燥したCNTを熱硬化性樹脂とビーカー中で混ぜ合わせた。高粘度液送が可能なように改造したジェットミル(常光、JN-10)により、分散圧60MPaで上記CNT樹脂を処理した。その後、超音波ホモジナイザーVCX180(Vidra-Cell, Sonics社)で照射位置を変えながら断続的に24時間上記CNTを含む樹脂を処理し、ペースト状組成物を得た。
上述した実施例の炭素繊維複合材料について、導電性を評価した。さらに、超音波分散機のみで分散させたペースト状組成物を製造し、上述した製造方法により、本実施例の炭素繊維複合材料を製造した。ペースト状組成物のCNT含有量を0.1重量%、0.5重量%及び1.0重量%とした。まず、200℃で乾燥したCNTを熱硬化性樹脂とビーカー中で混ぜ合わせた。高粘度液送が可能なように改造したジェットミル(常光、JN-10)により、分散圧60MPaで上記CNT樹脂を処理した。その後、超音波ホモジナイザーVCX180(Vidra-Cell, Sonics社)で照射位置を変えながら断続的に24時間上記CNTを含む樹脂を処理し、ペースト状組成物を得た。
導電性ペースト(藤倉化成(株)、ドータイト(登録商標)D-550)を繊維強化複合材料の端面および上・下面(繊維強化複合材料の積層方向の両面)に塗布した。アドバンテスト(株)のR6581デジタルマルチメーターを繊維強化複合材料の端面及び上・下面の導電性ペーストに接続し、二端子法により試料の導電率を測定した。端面-端面で測定した繊維軸方向の導電率、上・下面で測定した垂直方向の導電率をそれぞれ得た。各炭素繊維複合材料の導電率を図28に示す。
(炭素繊維複合材料の観察)
図29に本発明の一実施例に係る炭素繊維複合材料の断面の光学顕微鏡像を示す。図29(a)は炭素繊維分散層の間にペースト状組成物を塗布していない参考例である。図29(b)は炭素繊維分散層の間にエポキシ樹脂のみを塗布した比較例である。図29(c)は本発明の実施例の炭素繊維複合材料である。各試料の断面からはカーボンナノチューブの飛び出し、抜け等は確認できず、またCNTの凝集体も観察できなかったことから、CNTはエポキシ層中に均一に分散していると推測される。
図29に本発明の一実施例に係る炭素繊維複合材料の断面の光学顕微鏡像を示す。図29(a)は炭素繊維分散層の間にペースト状組成物を塗布していない参考例である。図29(b)は炭素繊維分散層の間にエポキシ樹脂のみを塗布した比較例である。図29(c)は本発明の実施例の炭素繊維複合材料である。各試料の断面からはカーボンナノチューブの飛び出し、抜け等は確認できず、またCNTの凝集体も観察できなかったことから、CNTはエポキシ層中に均一に分散していると推測される。
(透過型電子顕微鏡像)
上述した実施例及び比較例の炭素繊維複合材料の断面を透過型電子顕微鏡(TEM)により観察した。図30に本発明の一実施例に係る炭素繊維複合材料の断面を示し、図31に比較例の炭素繊維複合材料の断面を示す。それぞれの図において、(a)において枠により囲まれた領域を拡大して、(b)に示した。図30(b)の矢印はCNTを示す。実施例の炭素繊維複合材料においては、CNT分散層中のCNTが炭素繊維分散層の炭素繊維と密接して、配設されるが明らかとなった。
上述した実施例及び比較例の炭素繊維複合材料の断面を透過型電子顕微鏡(TEM)により観察した。図30に本発明の一実施例に係る炭素繊維複合材料の断面を示し、図31に比較例の炭素繊維複合材料の断面を示す。それぞれの図において、(a)において枠により囲まれた領域を拡大して、(b)に示した。図30(b)の矢印はCNTを示す。実施例の炭素繊維複合材料においては、CNT分散層中のCNTが炭素繊維分散層の炭素繊維と密接して、配設されるが明らかとなった。
(ラマンスペクトル)
TEMでの観察結果を検証するため、実施例及び比較例の炭素繊維複合材料の断面について、ラマンスペクトルを測定した。ラマンスペクトルを図32に示す。図32(a)は532nmでの測定結果を示し、図32(b)は633nmでの測定結果を示す。実施例の炭素繊維複合材料の断面では、グラファイト由来のGバンドと呼ばれる1560cm-1以上1600cm-1以下の範囲内での最大のピーク強度が観察された。
TEMでの観察結果を検証するため、実施例及び比較例の炭素繊維複合材料の断面について、ラマンスペクトルを測定した。ラマンスペクトルを図32に示す。図32(a)は532nmでの測定結果を示し、図32(b)は633nmでの測定結果を示す。実施例の炭素繊維複合材料の断面では、グラファイト由来のGバンドと呼ばれる1560cm-1以上1600cm-1以下の範囲内での最大のピーク強度が観察された。
11:CNT、13:細孔、50:ペースト状組成物、100:炭素繊維複合材料、110:第1の炭素繊維分散層、120:第2の炭素繊維分散層、130:CNT分散層、131:CNT集合体、133:熱硬化性樹脂
Claims (15)
- 熱硬化性樹脂に炭素繊維が分散する第1の炭素繊維分散層と、
熱硬化性樹脂にカーボンナノチューブが分散するカーボンナノチューブ分散層と、
熱硬化性樹脂に炭素繊維が分散する第2の炭素繊維分散層と、を備え、
前記カーボンナノチューブ分散層は、前記第1の炭素繊維分散層と前記第2の炭素繊維分散層との間に設けられている炭素繊維複合材料であり、
前記カーボンナノチューブ分散層中のカーボンナノチューブは、前記第1の炭素繊維分散層の炭素繊維及び前記第2の炭素繊維分散層の炭素繊維と密接して、配設されることを特徴とする炭素繊維複合材料。 - 熱硬化性樹脂に炭素繊維が分散する第1の炭素繊維分散層と、
熱硬化性樹脂にカーボンナノチューブが分散するカーボンナノチューブ分散層と、
熱硬化性樹脂に炭素繊維が分散する第2の炭素繊維分散層と、を備え、
前記カーボンナノチューブ分散層は、前記第1の炭素繊維分散層と前記第2の炭素繊維分散層との間に設けられている炭素繊維複合材料であり、
前記炭素繊維複合材料は、層間剥離強度が300J/m2以上、繊維軸方向の導電率が0.1S/cm以上、垂直方向の導電率が10-5S/cm以上、三点曲げ強度が500MPa以上の少なくとも1つを備えることを特徴とする炭素繊維複合材料。 - 前記カーボンナノチューブ分散層は、フィルム状であることを特徴とする請求項1に記載の炭素繊維複合材料。
- 前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のサイズは、体積基準での粒度分布の中央値が5μm以上50μm以下の範囲にあることを特徴とする請求項1に記載の炭素繊維複合材料。
- 前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のカーボンナノチューブ濃度が、0.1重量%以上であることを特徴とする請求項1に記載の炭素繊維複合材料。
- 前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のカーボンナノチューブの平均長さが、1μm以上であることを特徴とする請求項1に記載の炭素繊維複合材料。
- 前記カーボンナノチューブ分散層の厚さが、厚さ0.1μm以上であることを特徴とする請求項1に記載の炭素繊維複合材料。
- 熱硬化性樹脂に炭素繊維を分散させて第1の炭素繊維分散層を形成し、
熱硬化性樹脂にカーボンナノチューブを分散させてカーボンナノチューブ分散層を形成し、
熱硬化性樹脂に炭素繊維を分散させて第2の炭素繊維分散層を形成し、
前記カーボンナノチューブ分散層は、前記第1の炭素繊維分散層と前記第2の炭素繊維分散層との間に設けて炭素繊維複合材料を形成し、
前記カーボンナノチューブ分散層中のカーボンナノチューブは、前記第1の炭素繊維分散層の炭素繊維及び前記第2の炭素繊維分散層の炭素繊維と密接して、配設されることを特徴とする炭素繊維複合材料の製造方法。 - 熱硬化性樹脂に炭素繊維を分散させて第1の炭素繊維分散層を形成し、
熱硬化性樹脂にカーボンナノチューブを分散させてカーボンナノチューブ分散層を形成し、
熱硬化性樹脂に炭素繊維を分散させて第2の炭素繊維分散層を形成し、
前記カーボンナノチューブ分散層は、前記第1の炭素繊維分散層と前記第2の炭素繊維分散層との間に設けて炭素繊維複合材料を形成し、
前記炭素繊維複合材料は、層間剥離強度が300J/m2以上、繊維軸方向の導電率が0.1S/cm以上、垂直方向の導電率が10-5S/cm以上、三点曲げ強度が500MPaの少なくとも1つを備えることを特徴とする炭素繊維複合材料の製造方法。 - 前記カーボンナノチューブ分散層は、フィルム状であることを特徴とする請求項8に記載の炭素繊維複合材料の製造方法。
- 前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のサイズは、体積基準での粒度分布の中央値が5μm以上50μm以下の範囲にあることを特徴とする請求項8に記載の炭素繊維複合材料の製造方法。
- 前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のカーボンナノチューブ濃度が、0.1重量%以上であることを特徴とする請求項8に記載の炭素繊維複合材料の製造方法。
- 前記カーボンナノチューブ分散層中のカーボンナノチューブ集合体のカーボンナノチューブの平均長さが、1μm以上であることを特徴とする請求項8に記載の炭素繊維複合材料の製造方法。
- 前記カーボンナノチューブ分散層の厚さが、厚さ0.1μm以上であることを特徴とする請求項8に記載の炭素繊維複合材料の製造方法。
- 請求項1に記載の炭素繊維複合材料の前記第1の炭素繊維分散層及び又は前記第2の炭素繊維分散層に塗布されるペースト状カーボンナノチューブ含有樹脂材であり、
前記ペースト状カーボンナノチューブ含有樹脂材は、レオメータにより計測される粘度が、静止状態では50Pa・s以上、及び/又は、剪断速度100s-1以上の条件では20Pa・s以下を備えることを特徴とするペースト状カーボンナノチューブ含有樹脂材。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680016935.6A CN107517586A (zh) | 2015-03-31 | 2016-03-30 | 碳纤维复合材料的制造方法 |
JP2017510099A JP6685558B2 (ja) | 2015-03-31 | 2016-03-30 | 炭素繊維複合材料の製造方法 |
US15/720,725 US20180023220A1 (en) | 2015-03-31 | 2017-09-29 | Method for producing carbon fiber composite material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-074158 | 2015-03-31 | ||
JP2015074158 | 2015-03-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/720,725 Continuation US20180023220A1 (en) | 2015-03-31 | 2017-09-29 | Method for producing carbon fiber composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016159072A1 true WO2016159072A1 (ja) | 2016-10-06 |
Family
ID=57005821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/060383 WO2016159072A1 (ja) | 2015-03-31 | 2016-03-30 | 炭素繊維複合材料の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180023220A1 (ja) |
JP (1) | JP6685558B2 (ja) |
CN (1) | CN107517586A (ja) |
WO (1) | WO2016159072A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018016030A (ja) * | 2016-07-29 | 2018-02-01 | 学校法人幾徳学園 | 炭素繊維強化プラスチックおよびその製造方法 |
KR20200023597A (ko) * | 2018-08-24 | 2020-03-05 | 타이 위 아츠 & 디벨롭먼트 컴퍼니 리미티드 | 복합체 및 이를 포함하는 물품 |
TWI755483B (zh) * | 2017-02-14 | 2022-02-21 | 日商霓塔股份有限公司 | 碳纖維強化成形體 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10427382B2 (en) * | 2015-10-29 | 2019-10-01 | King Abdulaziz University | Composite epoxy material with embedded MWCNT fibers and process of manufacturing |
US10427378B2 (en) * | 2015-10-29 | 2019-10-01 | King Abdulaziz University | Composite epoxy material with embedded silicon carbide and alumina nanoparticles |
CN116176002A (zh) * | 2023-02-13 | 2023-05-30 | 山东非金属材料研究所 | 一种增强单向碳纤维复合材料纤维间强度的快速制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005022141A (ja) * | 2003-06-30 | 2005-01-27 | Shinshu Univ | 複合材料およびその製造方法 |
JP2005238708A (ja) * | 2004-02-27 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | カーボンナノチューブ強化樹脂構造体およびその製造方法 |
JP2009013327A (ja) * | 2007-07-06 | 2009-01-22 | Gsi Creos Corp | 複合材料 |
JP2010527302A (ja) * | 2007-05-17 | 2010-08-12 | ザ・ボーイング・カンパニー | 複合構造用ナノチューブ強化中間層 |
JP2015003859A (ja) * | 2010-11-05 | 2015-01-08 | 独立行政法人産業技術総合研究所 | Cnt分散液、cnt成形体、cnt組成物、cnt集合体及びそれらの製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3735651B2 (ja) * | 2002-10-08 | 2006-01-18 | 独立行政法人 宇宙航空研究開発機構 | カーボンナノファイバー分散樹脂繊維強化複合材料 |
JP2007126637A (ja) * | 2005-10-03 | 2007-05-24 | Toray Ind Inc | 樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料 |
JP5454138B2 (ja) * | 2008-03-25 | 2014-03-26 | 東レ株式会社 | エポキシ樹脂組成物、繊維強化複合材料、およびその製造方法 |
CN102149755A (zh) * | 2008-05-23 | 2011-08-10 | 朗盛德国有限责任公司 | 含有碳纳米管和微凝胶体的有机介质 |
JP5709189B2 (ja) * | 2011-10-05 | 2015-04-30 | 独立行政法人産業技術総合研究所 | カーボンナノチューブ複合材料および熱伝導体 |
EP2788542B1 (de) * | 2011-12-07 | 2017-06-14 | Toho Tenax Europe GmbH | Kohlenstofffaser für verbundwerkstoffe mit verbesserter leitfähigkeit |
JP2017065964A (ja) * | 2015-09-30 | 2017-04-06 | 東レ株式会社 | カーボンナノチューブを含む分散液及びそれを用いた導電積層体 |
-
2016
- 2016-03-30 WO PCT/JP2016/060383 patent/WO2016159072A1/ja active Application Filing
- 2016-03-30 CN CN201680016935.6A patent/CN107517586A/zh active Pending
- 2016-03-30 JP JP2017510099A patent/JP6685558B2/ja active Active
-
2017
- 2017-09-29 US US15/720,725 patent/US20180023220A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005022141A (ja) * | 2003-06-30 | 2005-01-27 | Shinshu Univ | 複合材料およびその製造方法 |
JP2005238708A (ja) * | 2004-02-27 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | カーボンナノチューブ強化樹脂構造体およびその製造方法 |
JP2010527302A (ja) * | 2007-05-17 | 2010-08-12 | ザ・ボーイング・カンパニー | 複合構造用ナノチューブ強化中間層 |
JP2009013327A (ja) * | 2007-07-06 | 2009-01-22 | Gsi Creos Corp | 複合材料 |
JP2015003859A (ja) * | 2010-11-05 | 2015-01-08 | 独立行政法人産業技術総合研究所 | Cnt分散液、cnt成形体、cnt組成物、cnt集合体及びそれらの製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018016030A (ja) * | 2016-07-29 | 2018-02-01 | 学校法人幾徳学園 | 炭素繊維強化プラスチックおよびその製造方法 |
TWI755483B (zh) * | 2017-02-14 | 2022-02-21 | 日商霓塔股份有限公司 | 碳纖維強化成形體 |
KR20200023597A (ko) * | 2018-08-24 | 2020-03-05 | 타이 위 아츠 & 디벨롭먼트 컴퍼니 리미티드 | 복합체 및 이를 포함하는 물품 |
KR102355070B1 (ko) * | 2018-08-24 | 2022-01-25 | 타이 위 아츠 & 디벨롭먼트 컴퍼니 리미티드 | 복합체 및 이를 포함하는 물품 |
Also Published As
Publication number | Publication date |
---|---|
CN107517586A (zh) | 2017-12-26 |
JPWO2016159072A1 (ja) | 2018-03-08 |
JP6685558B2 (ja) | 2020-04-22 |
US20180023220A1 (en) | 2018-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016159072A1 (ja) | 炭素繊維複合材料の製造方法 | |
Roy et al. | Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites | |
Wernik et al. | On the mechanical characterization of carbon nanotube reinforced epoxy adhesives | |
Guadagno et al. | Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials | |
AU2015321585B2 (en) | Composite materials with high z-direction electrical conductivity | |
Gao et al. | Interfacial microstructure and enhanced mechanical properties of carbon fiber composites caused by growing generation 1–4 dendritic poly (amidoamine) on a fiber surface | |
Tang et al. | Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles | |
Palmeri et al. | Sacrificial bonds in stacked-cup carbon nanofibers: biomimetic toughening mechanisms for composite systems | |
KR102453189B1 (ko) | 복합 소재 및 강화 섬유 | |
Quan et al. | Carbon nanotubes and core–shell rubber nanoparticles modified structural epoxy adhesives | |
Gholami et al. | Glass fiber-reinforced polymer nanocomposite adhesive joints reinforced with aligned carbon nanofillers | |
Liu et al. | Aqueous dispersion of carbon fibers and expanded graphite stabilized from the addition of cellulose nanocrystals to produce highly conductive cellulose composites | |
Du et al. | Improving the electrical conductivity and interface properties of carbon fiber/epoxy composites by low temperature flame growth of carbon nanotubes | |
KR20070116662A (ko) | 투명 도전막 및 투명 도전막용 코팅 조성물 | |
Banerjee et al. | Thermoreversible bonds and graphene oxide additives enhance the flexural and interlaminar shear strength of self-healing epoxy/carbon fiber laminates | |
Salahuddin et al. | Carbonaceous materials coated carbon fibre reinforced polymer matrix composites | |
KR20160002785A (ko) | 복합 소재 및 성형품 | |
MX2010011575A (es) | Componente electrico multicapa, composicion de recubrimiento y metodo de marcacion de componente electrico. | |
Rezazadeh et al. | Effect of amine-functionalized dispersant on cure and electrical properties of carbon nanotube/epoxy nanocomposites | |
Ghosh et al. | CNT coating and anchoring beads enhance interfacial adhesion in fiber composites | |
KR20140032974A (ko) | 미세 탄소 섬유가 분산된 열경화성 수지 함유액 및 그들의 열경화성 수지 성형품 | |
Anwer et al. | 1D/2D CNF/GNP hybrid nanofillers: Evaluation of the effect of surfactant on the morphological, mechanical, fracture, and thermal characteristics of their nanocomposites with epoxy resin | |
Johnson et al. | Dispersion and film properties of carbon nanofiber pigmented conductive coatings | |
US11149154B2 (en) | Spray-coating method with particle alignment control | |
Bal et al. | Scheming of microwave shielding effectiveness for X band considering functionalized MWNTs/epoxy composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16772953 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017510099 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16772953 Country of ref document: EP Kind code of ref document: A1 |