WO2016133207A1 - カーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法 - Google Patents
カーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法 Download PDFInfo
- Publication number
- WO2016133207A1 WO2016133207A1 PCT/JP2016/054912 JP2016054912W WO2016133207A1 WO 2016133207 A1 WO2016133207 A1 WO 2016133207A1 JP 2016054912 W JP2016054912 W JP 2016054912W WO 2016133207 A1 WO2016133207 A1 WO 2016133207A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon nanotube
- composite material
- elastomer
- elastomer composite
- cnt
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/005—Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/06—Multi-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2321/00—Characterised by the use of unspecified rubbers
Definitions
- the present invention relates to a carbon nanotube-elastomer composite material, a sealing material and a sealing material using the same, and a method for producing a carbon nanotube-elastomer composite material.
- the elastomer Since the elastomer is soft and exhibits rubber elasticity, it is widely used in various applications such as sealing materials and absorbent materials. However, when an elastomer is exposed to acids, alkalis, ultraviolet rays, etc., the molecular weight decreases due to, for example, a depolymerization reaction caused by hydrolysis or the like, and physical properties deteriorate. Further, depending on the application, higher mechanical strength (tear strength, Young's modulus, etc.), conductive properties, etc. are required.
- Patent Document 2 reports a fiber composite material in which single-walled carbon nanotubes or multi-walled carbon nanotubes and natural fibers or metal fibers are dispersed in an elastomer.
- a restraint region is formed by surrounding an elastomer as a matrix with fibers and carbon nanofibers, and the mobility of the elastomer molecules restrained by the fibers and carbon nanofibers is the same as that of the fibers and carbon nanofibers. It is described that it becomes smaller than the case where it is not restrained.
- the present invention provides a carbon nanotube-elastomer composite material excellent in tear strength and chemical resistance, a sealing material and a sealing material using the same, and a method for producing a carbon nanotube-elastomer composite material.
- a carbon nanotube-elastomer composite material in which carbon nanotubes are dispersed in an elastomer, the carbon nanotubes having a diameter of 20 nm or less and a number of layers of 10 layers or less,
- the carbon nanotubes are contained in an amount of 0.1 parts by weight or more and 20 parts by weight or less with respect to the total weight of the carbon nanotubes and the elastomer, the elastomer is heated when held at a temperature of 400 ° C. or more for 6 hours under nitrogen introduction.
- a carbon nanotube-elastomer composite material in which carbon nanotubes are dispersed in an elastomer, the elastomer being held at a temperature of 400 ° C. or higher for 6 hours while introducing nitrogen. Thermally decomposed and the remaining carbon nanotubes form a structure.
- V 0 the initial volume of the carbon nanotube-elastomer composite material
- Va Va
- a carbon nanotube-elastomer composite material comprising a continuous network having a pore size of 0.5 or more in the elastomer, the continuous network having at least one peak of pore distribution in a range of 1 nm to 100 ⁇ m is provided. Is done.
- the tear strength of the carbon nanotube-elastomer composite material may be 10 N / mm or more.
- the elastic modulus at 100 ° C. of the carbon nanotube-elastomer composite material may be 20% or more higher than the elastic modulus at 100 ° C. of the elastomer composite material not containing carbon nanotubes.
- the amount of change in tensile strength when the carbon nanotube-elastomer composite material is immersed in methyl isobutyl ketone for 72 hours may be 4 MPa or less.
- the hardness change of Shore A when the carbon nanotube-elastomer composite material is immersed in gasoline oil (gasoline 85%, ethanol 15%) for 72 hours may be 4 or less.
- the electrical conductivity when 20% strain is applied to the carbon nanotube-elastomer composite material may be in the range of 50% to 150% with respect to the electrical conductivity at 0% strain.
- the tensile strength in a tensile test (based on JIS K6251) at 20 ° C. or higher and 150 ° C. or lower may be 5 MPa or higher.
- the carbon nanotube-elastomer composite material may have a storage elastic modulus at 150 ° C. of 0.5 MPa or more and a loss tangent of 0.1 or less.
- the carbon nanotube-elastomer composite material may have a thermal expansion coefficient of 6 ⁇ 10 ⁇ 4 / K or less in the range of room temperature to 150 ° C.
- the carbon nanotube-elastomer composite material may have a glass transition temperature Tg in a range from ⁇ 50 ° C. to 10 ° C.
- the carbon nanotube may have a specific surface area of 200 m 2 / g or more.
- the diameter of the carbon nanotube may be 20 nm or less.
- the number of the carbon nanotubes may be 10 or less.
- a carbon nanotube-elastomer is prepared by preparing a defibrated carbon nanotube, including an elastomer and a crosslinking agent in the carbon nanotube, and molding and crosslinking the carbon nanotube, the elastomer, and the crosslinking agent.
- a method of manufacturing a composite material is provided.
- an endless sealing material having an endless continuous outer shape formed using any one of the carbon nanotube-elastomer composite materials.
- a sealing material formed using any one of the carbon nanotube-elastomer composite materials.
- the present invention it is possible to provide a carbon nanotube-elastomer composite material excellent in tear strength and chemical resistance, a sealing material and a sealing material using the carbon nanotube-elastomer composite material, and a method for producing the carbon nanotube-elastomer composite material.
- FIG. 2 is a schematic view of a carbon nanotube-elastomer composite material 100 according to an embodiment of the present invention, in which (a) is a cutaway view of the carbon nanotube-elastomer composite material 100, and (b) is a carbon nanotube-elastomer. It is a schematic diagram of the structure after burning the composite material. It is a schematic diagram showing a continuous network in which a part of the CNT structure 50 in the carbon nanotube-elastomer composite material 100 according to an embodiment of the present invention is enlarged.
- 3 is a table showing characteristics of a carbon nanotube-elastomer composite material according to an example of the present invention.
- the carbon nanotube-elastomer composite material according to the present invention is a carbon nanotube-elastomer composite material in which carbon nanotubes (CNT) are dispersed in an elastomer, and 0.1% of CNT is added to the total weight of CNT and elastomer. Inclusive of 20 to 20 parts by weight.
- the CNT has a diameter of 20 nm or less and a number of layers of 10 layers or less.
- the carbon nanotube-elastomer composite material according to the present invention when held for 6 hours under nitrogen introduction at a temperature of 400 ° C. or higher, preferably 500 ° C., more preferably 600 ° C. or higher, the elastomer thermally decomposes and remains.
- Va / V 0 is 0.5 or more, preferably 0.8.
- a continuous network of 6 or more, more preferably 0.7 or more, even more preferably 0.8 or more, and most preferably 0.9 or more is provided in the elastomer.
- FIG. 1 is a schematic view of a carbon nanotube-elastomer composite material 100 according to an embodiment of the present invention.
- FIG. 1A is a diagram in which a part of the carbon nanotube-elastomer composite material 100 is cut
- FIG. 1B is a schematic diagram of the structure after the carbon nanotube-elastomer composite material 100 is burned.
- the carbon nanotube-elastomer composite material 100 includes a CNT 10 and an elastomer 30, and a carbon nanotube structure (hereinafter referred to as a CNT structure) having a continuous network configured such that the CNT 10 is highly defibrated in the elastomer 30 and is in contact with each other. 50) (also referred to as a structure).
- FIG. 2 is a schematic diagram showing a continuous network in which a part of the CNT structure 50 in the carbon nanotube-elastomer composite material 100 according to an embodiment of the present invention is enlarged.
- the CNT 10 included in the carbon nanotube-elastomer composite material 100 has a structure in which the CNT 10 is defibrated from a bundle of CNTs 10.
- the CNTs 10 are physically intertwined with each other to form a highly developed continuous network.
- the volume ratio is 1.
- the volume ratio before and after the disappearance of the elastomer 30 (before and after the heat treatment) reflects the denseness of the continuous network of the CNTs 10.
- the CNT 10 of the elastomer 30 forms a continuous network, so that the carbon nanotube-elastomer composite material 100 becomes mechanically robust, chemically stable, and has excellent tear properties and the like. Show the characteristics.
- the remaining CNT 10 forms the CNT structure 50 and the carbon nanotube-elastomer before combustion
- the ratio of the volume of the CNT structure 50 constituted by the CNTs 10 remaining after combustion to the volume of the composite material 100 is 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more, and still more preferably 0.8. 8 or more, most preferably 0.9 or more, and 1.0 or less.
- CNTs 10 are in contact with each other in the elastomer to form a continuous network having a dynamic holding force.
- Such a CNT structure 50 can impart robustness and excellent mechanical and chemical properties to the elastomer 30 like a reinforcing bar in concrete.
- the area of the interface between the CNT 10 and the elastomer 30 increases when the CNTs 10 are not bundled but are broken apart.
- the fibrillated CNTs 10 are in physical contact and form a conductive path. Since the CNTs 10 are in physical contact, even if the elastomer 30 is removed, the physical contact points 15 between the CNTs 10 suppress the shrinkage of the CNTs 10, and the carbon nanotube-elastomer composite material 100 according to the present invention has an apparent appearance.
- the bulk density, which is the volume of, does not decrease.
- the interval between the physical contact points 15 of the CNT 10 observed with a scanning electron microscope (SEM) is about 1 ⁇ m to 100 ⁇ m.
- the interval between the physical contact points 15 of the CNT 10 there is a dynamic mechanical property measuring device (DMA).
- DMA dynamic mechanical property measuring device
- the frequency is changed from 0.001 Hz to 1000 Hz at room temperature with respect to the carbon nanotube-elastomer composite material 100 according to the present invention, an elastic modulus region independent of the frequency appears (plateau region).
- the storage elastic modulus of the carbon nanotube-elastomer composite material 100 in the plateau region is 10 3 Pa to 10 6 Pa.
- the distance between the physical contact points 15 can be estimated from the elastic modulus.
- the carbon nanotube-elastomer composite material 100 has one or more peaks in the range of 1 nm to 100 ⁇ m in the pore distribution of the remaining CNT structure 50 when held at 500 ° C. in a nitrogen atmosphere for 6 hours or more.
- the pore distribution can be measured with a mercury intrusion porosimeter.
- the peak is a point where the differential pore volume becomes 0 and the differential pore volume changes from negative to positive. Since the carbon nanotube-elastomer composite material 100 having such a peak has a continuous network of CNTs 10, the CNT structure 50 can remain. On the other hand, when the continuous network is not formed, the CNT residue is compressed or shattered, and the CNT structure 50 cannot be maintained.
- the tear strength of the carbon nanotube-elastomer composite material 100 is 5 N / mm or more, preferably 10 N / mm or more.
- the carbon nanotube-elastomer composite material 100 has a tear strength that is 10%, preferably 20%, more preferably 30% or more greater than that of an elastomer not containing CNT10.
- the carbon nanotube-elastomer composite material 100 having such a high tear strength is excellent in product reliability because it is difficult for cracks to develop from a damaged part, a flaw or the like, and is suitable for use as a sealing material.
- the carbon nanotube-elastomer composite material according to the present invention has a high tear strength because the CNT 10 forms a continuous network in the elastomer 30 and inhibits the progress of cracks.
- the elastic modulus at 100 ° C. of the carbon nanotube-elastomer composite material 100 is 20% or more, preferably 50%, more preferably 100% or more, and 1000% or less as compared with an elastomer not containing CNT.
- Such a high elastic modulus at 100 ° C. enables use as a sealing material or the like under a high temperature at which the elastomer 30 is softened.
- the carbon nanotube-elastomer composite material 100 according to the present invention is excellent as a sealing material even at 100 ° C. where the CNT 10 dynamically reinforces the elastomer 30 and the elastomer 30 softens because the CNT 10 forms a continuous network in the elastomer 30. It exhibits good mechanical properties.
- the carbon nanotube-elastomer composite material 100 has a tensile strength of 1 MPa or more, preferably 5 MPa or more, more preferably 10 MPa or more in a tensile test (conforming to JIS K6251) at 20 ° C. or more and 150 ° C. Yes, 100 MPa or less. If the tensile strength is less than 1 MPa, it becomes liquid. On the other hand, if the tensile strength is 1 MPa or more, it exhibits rubber elasticity and can be used as a sealing material.
- the CNTs 10 form a continuous network in the elastomer 30 that is a matrix. Unlike polymer materials such as general rubber, the CNT 10 does not soften even when the temperature is raised. Therefore, sufficient tensile strength can be maintained even at a temperature of 150 ° C.
- the carbon nanotube-elastomer composite material 100 has an amount of change in physical properties (elastic modulus and hardness) when immersed in methyl isobutyl ketone for 72 hours, preferably 144 hours, to the amount of change in the elastomer not containing CNT. Compared to 20% or more, preferably 40% or more, more preferably 60% or more. Even when the carbon nanotube-elastomer composite material 100 according to the present invention is immersed in methyl isobutyl ketone, which is a good solvent for swelling the elastomer 30, the continuous network of CNTs 10 constructed in the system suppresses the swelling of the elastomer 30. Deterioration of mechanical properties can be suppressed. Therefore, the carbon nanotube-elastomer composite material 100 is suitable for use as a sealing material used in various organic solvents.
- the carbon nanotube-elastomer composite material 100 has a change in physical properties (elastic modulus, hardness) when immersed in gasoline oil (85% gasoline, 15% ethanol) for 72 hours, preferably 144 hours. It is 30% or less, more preferably 10% or less, compared to the hardness change of the elastomer not contained. Even when the carbon nanotube-elastomer composite material 100 according to the present invention is immersed in mineral oil, which is a good solvent for swelling the elastomer 30, the continuous network of CNTs 10 constructed in the system suppresses swelling of the elastomer 30, Deterioration of characteristics can be suppressed. Therefore, the carbon nanotube-elastomer composite material 100 is suitable for use as a sealing material used in various mineral oils.
- the carbon nanotube-elastomer composite material 100 has a conductivity in the range of 50% or more and 150% or less with respect to the conductivity at the time of 0% strain when the strain of 20% is applied.
- the change in conductivity due to strain is 10 mm by using a tensile tester with electrodes attached to the upper and lower parts of a dockbone-type test piece compliant with JIS K 6251 of the carbon nanotube-elastomer composite material 100. It can be determined by measuring the change in resistance by applying strain to the sample while pulling at / min. The distance between the electrodes can be calculated from the pulling speed, and the cross-sectional area of the sample is calculated from the elongation rate when the Poisson's ratio of the sample is 0.5, and the conductivity at each strain is calculated. The conductivity is measured by the 4-terminal method.
- the carbon nanotube-elastomer composite material 100 has a storage elastic modulus at 150 ° C. of 0.5 MPa or more, preferably 1 MPa when the dynamic mechanical property apparatus is heated from room temperature at a rate of 10 ° C./min. Above, more preferably 5 MPa or more and 100 MPa or less, and loss tangent is 0.1 or less, preferably 0.05 or less and 0.001 or more.
- the storage elastic modulus and loss tangent are within these ranges, so that the rubber elasticity peculiar to the elastomer can be maintained even at high temperatures. Thereby, the carbon nanotube-elastomer composite material 100 can be used as a sealing material even at a high temperature.
- the CNTs 10 defibrated in the elastomer 30 form a dense continuous network. Since the CNT 10 is not softened by the temperature rise, it becomes possible to maintain a storage elastic modulus of 0.5 MPa or more even at 150 ° C.
- the carbon nanotube-elastomer composite material 100 has a linear expansion coefficient in the range from room temperature to 150 ° C. of 6 ⁇ 10 ⁇ 4 / K or less, preferably 2 ⁇ 10 ⁇ 4 / K or less, ⁇ 1 ⁇ 10 ⁇ 4 / K or more.
- the sealing material mounted at room temperature does not loosen due to thermal expansion and can be used even at high temperatures.
- the carbon nanotube-elastomer composite material 100 according to the present invention forms a CNT structure 50 composed of CNTs in which a CNT 10 having a negative linear thermal expansion coefficient forms a continuous network in an elastomer 30. Therefore, the thermal expansion of the elastomer 30 is suppressed.
- the carbon nanotube-elastomer composite material 100 has a glass transition temperature of ⁇ 50 ° C. or higher and 10 ° C. or lower, preferably ⁇ 50 ° C. or higher and ⁇ 10 ° C. or lower.
- the carbon nanotube-elastomer composite material 100 according to the present invention exhibits rubber elasticity peculiar to an elastomer at room temperature, and can be used as a sealing material or the like. .
- the glass transition temperature rises due to the suppression of the molecular motion of the elastomer molecules by the filler.
- the CNT 10 since the CNT 10 does not suppress the molecular motion of the elastomer 30, the change in the glass transition temperature due to the addition of the CNT 10 can be reduced.
- the carbon nanotube-elastomer composite material 100 includes 0.1 parts by weight or more and 20 parts by weight or less, preferably 0.3 parts by weight or more, based on the total weight of the carbon nanotube-elastomer composite material 100. 10 parts by weight or less, more preferably 0.5 parts by weight or more and 15 parts by weight or less. If the CNT content is less than 0.1 parts by weight, a sufficiently developed continuous network cannot be formed in the carbon nanotube-elastomer composite material 100. Further, when the content of CNT is more than 20 parts by weight, the viscoelasticity inherent to the elastomer is not sufficiently exhibited, and the required flexibility and followability can be obtained when used for a sealing material and a sheet-like material. Since it cannot be done, it is not preferable.
- the CNT 10 included in the carbon nanotube-elastomer composite material 100 has a network structure in which the CNTs 10 intersect with the plurality of CNTs 10 and are connected at points by van der Waals forces.
- the diameter of the CNT 10 is 20 nm or less, preferably 10 nm or less, more preferably 7 nm or less, still more preferably 4 nm or less, and 0.5 nm or more.
- the CNT 10 having such a small diameter has a large specific surface area, so that the number of contact points between the CNTs necessary for forming a continuous network is increased, and thus a continuous network can be easily formed.
- the number of CNT10 layers is 10 or less, preferably 5 or less, more preferably 2 or less, and most preferably a single layer.
- the number of CNT layers is an average of the number of 100 CNT layers observed by a transmission electron microscope (TEM), and the two-layer CNT is a CNT having two or more CNTs,
- Single-walled CNT means that more than half of the whole is single-walled CNT.
- the smaller the number of layers the more flexible the CNT 10 is to construct a continuous network.
- the smaller the number of layers the more contact points between the CNTs necessary for forming the continuous network. It is.
- the specific surface area of the CNT 10 contained in the carbon nanotube-elastomer composite material 100 is 200 m 2 / g or more, preferably 400 m 2 / g or more, more preferably 600 m 2 / g or more, and 2000 m 2 / g or less. It is.
- the CNT 10 having such a large specific surface area is suitable because it has a large number of contact points between the CNTs necessary for forming a continuous network, so that it is easy to form a continuous network.
- the volume ratio of the CNT structure 50 can be measured using any existing method, but the size of the CNT structure 50 is measured with a digital microscope, the area is measured from the top surface, and the thickness is measured from the lateral direction. It is preferable to obtain the bulk volume by the product of the bottom area and the height. Therefore, in this specification, the CNT structure 50 is not calculated by evaluating the bulk volume and integrating the volume of the CNT 10.
- the length of the CNT 10 is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and further preferably 10 ⁇ m or more.
- Such a long CNT 10 has many bonding points between the CNTs, so that it is possible to form a network structure with excellent shape retention.
- what is necessary is just to contain such elongate CNT, The manufacturing method etc. are not specifically limited.
- the carbon nanotube-elastomer composite material 100 according to the present invention is excellent in tear strength and chemical resistance, it can be suitably used as a sealing material and a sheet-like material.
- the carbon nanotube-elastomer composite material 100 according to the present invention can be used as an endless seal member.
- the endless seal member is endless in which the outer shape is continuous.
- the endless seal member can be formed not only in a circular outer shape but also in accordance with the shape of the groove or member in which the seal member is disposed.
- an O-ring or an X-ring having a circular cross section may be used.
- the carbon nanotube-elastomer composite material 100 can also be used as a dynamic seal such as a rotary shaft seal, a reciprocating seal, a rod seal, and a piston seal. It can also be used as a static seal, such as a gasket.
- the elastomer 30 contained in the carbon nanotube-elastomer composite material 100 is not particularly limited as long as the thermal decomposition temperature is 150 ° C. or higher.
- the elastomer 30 is preferably a thermoplastic elastomer or rubber.
- fluororubber binary fluororubber, ternary fluororubber having high heat resistance is suitable.
- Examples of the elastomer 30 include natural rubber (NR), epoxidized natural rubber (ENR), styrene-butadiene rubber (SBR), nitrile rubber (NBR), chloroprene rubber (CR), ethylene propylene rubber (EPR, EPDM), Butyl rubber (IIR), Chlorobutyl rubber (CIIR), Acrylic rubber (ACM), Silicone rubber (Q), Fluorine rubber (FKM), Butadiene rubber (BR), Epoxidized butadiene rubber (EBR), Epichlorohydrin rubber (CO, CEO) , Elastomers such as urethane rubber (U) and polysulfide rubber (T); olefin (TPO), polyvinyl chloride (TPVC), polyester (TPEE), polyurethane (TPU), polyamide (TPEA), styrene Thermoplastics (SBS), etc. Elastomers; and mixtures thereof.
- the elastomer 30 may further contain additives such as
- the method for producing a carbon nanotube-elastomer composite material according to the present invention differs from the conventional production method in that a step of defibrating CNT and making it composite with an elastomer, and a curing agent using an open roll for the carbon nanotube-elastomer composite material
- One of the features is that it is separated from the step of adding and distributing to obtain a molded body.
- CNTs are not bundled but defibrated.
- defibration means unraveling the fibers.
- Unraveling means that CNT exposes a surface that can be measured by gas adsorption from the bundle.
- the CNTs are not solidified in one place and are uniformly distributed in the elastomer.
- Examples of the CNT used in the production of the carbon nanotube-elastomer composite material according to the present invention include, for example, International Publication No. 2006/011655 (single-walled CNT), International Publication No. 2012/060454 (multi-layered CNT), and Japanese Translation of PCT International Publication No. 2004-526660. It can be produced by the method disclosed in the publication (multilayer CNT). CNTs produced by such a production method have a very large specific surface area because of their small diameter and small number of layers. For this reason, since the number of contact points between CNTs necessary for forming a continuous network increases, it becomes easier to form a continuous network, and the tear strength and chemical resistance of the carbon nanotube-elastomer composite material can be improved. Is preferred.
- CNT drying process CNTs are manufactured as aggregates, but in a state where moisture is adsorbed, the CNTs are attached to each other due to the surface tension of water, so that the CNTs are very difficult to unravel and good dispersibility in the elastomer is obtained. Absent.
- the CNT is heated to 180 ° C. or higher, preferably 200 ° C. or higher, and held at 10 Pa or lower, preferably 1 Pa or lower for 24 hours or longer, preferably 72 hours or longer to remove water adhering to the CNT surface. By removing moisture from the CNT surface, wetting with the solvent in the next step can be improved and defibration can be facilitated. Thereby, it becomes easy to form a continuous network of CNTs, and the tear strength and chemical resistance in the carbon nanotube-elastomer composite material can be improved.
- the CNT aggregate It is preferable to make the CNT aggregate of a uniform size by setting the size of the CNT aggregate within a predetermined range.
- the CNT aggregate also includes a large-sized lump synthetic product. Since these large lumped CNT aggregates have different dispersibility, the dispersibility is lowered. Therefore, if only CNT aggregates that have passed through a net, filter, mesh, etc., excluding large CNT aggregates, are used in the subsequent steps, the dispersibility of CNTs in the carbon nanotube-elastomer composite material can be improved. it can.
- the shake dispersion step can be performed, for example, by stirring about 0.1 parts by weight of CNT added to an organic solvent with a crosshead stirrer at 500 rpm or more for 8 hours or more.
- MIBK can be used as an organic solvent in which CNTs are dispersed.
- CNT defibration process CNT is defibrated in an organic solvent such as MIBK.
- an existing dispersion method can be adopted, in particular, an apparatus that disperses by a turbulent shear force such as a jet mill can reduce the damage to the CNTs and perform defibration.
- the wet jet mill is configured to pump a mixture in a solvent as a high-speed flow from a nozzle disposed in a sealed state in a pressure resistant container.
- CNTs are dispersed by collision between opposing flows, collision with a vessel wall, turbulent flow generated by high-speed flow, shear flow, or the like.
- the treatment pressure in the dispersion step is preferably a value in the range of 10 MPa to 150 MPa.
- the area of the interface between the CNT and the elastomer in the carbon nanotube-elastomer composite material can be increased.
- the larger the specific surface area the more contact points between the CNTs necessary to form a continuous network, which makes it easier to form a continuous network and improves the tear strength and chemical resistance in the carbon nanotube-elastomer composite material. .
- the elastomer kneading process An appropriate amount of elastomer is added to the obtained CNT dispersion to prepare a CNT-elastomer solution. By adjusting the addition amount of the elastomer and the crosslinking agent, the final CNT concentration can be adjusted.
- the elastomer kneading step may be performed, for example, by adding an elastomer and a crosslinking agent to the CNT dispersion and mixing them in a beaker using a conical magnet stirrer. In this case, it is desirable to mix the fibrillated CNT and the elastomer by mixing at room temperature for 100 rpm or more for 12 hours or more.
- CNT and elastomer are evenly distributed. As a result, a continuous network can be easily formed, and the tear strength and chemical resistance of the carbon nanotube-elastomer composite material can be improved.
- solvent removal step The organic solvent used for CNT dispersion is removed. At this time, a homogeneous structure can be maintained without phase separation of CNT and elastomer even in the solvent evaporation process by using an organic solvent having high affinity (close solubility parameter) to CNT and elastomer.
- a beaker containing a CNT-elastomer solution is held on a plate (for example, an iron plate) at 80 ° C. (or a temperature of 10 ° C. to 50 ° C. of the boiling point of the organic solvent), and the organic solvent is removed to some extent. Remove.
- the organic solvent can be completely removed by maintaining the boiling point of the organic solvent at a low temperature of 20 ° C. or higher and 50 ° C. or lower in a vacuum oven. Since the organic solvent is a factor that degrades the elastomer, it is important to remove the organic solvent surely in order to improve the tear strength and chemical resistance of the carbon nanotube-elastomer composite material. In this way, a carbon nanotube-elastomer masterbatch is obtained.
- the carbon nanotube-elastomer masterbatch is kneaded using an open roll.
- the roll temperature is preferably 20 ° C. or more lower than the crosslinking initiation temperature and 50 ° C. or more higher than room temperature.
- the rotation speed ratio of the roll is 1.2 or less, preferably 1.15 or less, more preferably 1.1 or less. Generally, the lower the temperature and the higher the rotation speed ratio in the open roll, the higher the shearing force is applied and the material can be kneaded well. In this step, the masterbatch is kneaded with the low shearing force at the high temperature and the low rotation ratio.
- the viscosity of the elastomer is lowered and the shearing force applied to the CNTs is reduced. Further, it is preferable to reduce the shearing force by applying a rotation ratio of 1.2 or less, to reduce the shearing force applied to the CNT, and to suppress the shortening due to the cutting of the CNT. As a result, the CNT forms a continuous network, and the tear strength and chemical resistance of the carbon nanotube-elastomer composite material are improved.
- a crosslinking agent, a crosslinking initiator, and other additives may be added.
- the obtained carbon nanotube-elastomer composite material can be thinned to obtain a sheet-like material containing CNT, elastomer and other additives.
- the sheet-like material can be molded by filling in a mold or the like and heating while pressing in a hot press or a vacuum press. At this time, a crosslinking operation may be performed. By molding, it can be made into a shape such as a sealing material, and by performing a crosslinking operation, three-dimensional crosslinking is performed, and tear strength and chemical resistance are improved.
- Example 1 A carbon nanotube-elastomer composite material of Example 1 was manufactured using single-walled CNTs manufactured by the method described in International Publication No. 2006/011655 and fluororubber (Daikin, Daiel-G912).
- the single-walled CNT used in Example 1 had a length of 100 ⁇ m, an average diameter of 3.0 nm, and the number of layers was 1, as observed by TEM. Further, a 50 mg mass was taken out, and an adsorption / desorption isotherm of liquid nitrogen was measured at 77 K using BELSORP-MINI (manufactured by Nippon Bell Co., Ltd.) (adsorption equilibrium time was 600 seconds). When the specific surface area was measured from this adsorption / desorption isotherm by the method of Brunauer, Emmett, Teller, it was about 1000 m 2 / g.
- Single-walled CNTs are placed on one side of a 0.8 mm mesh mesh, sucked with a vacuum cleaner through the mesh, and the passed material is collected. The CNT aggregate was removed and classification was performed (classification process).
- the CNT aggregates were measured by the Karl Fischer reaction method (Mitsubishi Chemical Analitech Coulometric Titration Trace Moisture Analyzer CA-200). After drying the CNT aggregate under predetermined conditions (maintained at 200 ° C. for 1 hour under vacuum), the vacuum is released in a glove box in a dry nitrogen gas stream, and about 30 mg of the CNT aggregate is taken out. Moved to a glass boat. The glass boat moved to a vaporizer, where it was heated at 150 ° C. for 2 minutes, and the vaporized water was conveyed with nitrogen gas and reacted with iodine by the adjacent Karl Fischer reaction.
- Karl Fischer reaction method Mitsubishi Chemical Analitech Coulometric Titration Trace Moisture Analyzer CA-200.
- the amount of water was detected from the amount of electricity required to generate an amount of iodine equal to the iodine consumed at that time.
- the CNT aggregate before drying contained 0.8 part by weight of water.
- the dried CNT aggregate was reduced to 0.3 parts by weight of water.
- 100 mg of the classified CNT aggregate was accurately weighed, put into a 100 ml flask (3 necks: for vacuum, for temperature control), held at vacuum for 200 hours and dried for 12 hours. . After drying is completed, 20 ml of dispersion medium MIBK (methyl isobutyl ketone) (manufactured by Sigma-Aldrich Japan) is injected at a temperature of 100 ° C. or higher in the state of heating and vacuum treatment to prevent the CNT aggregate from being exposed to the atmosphere. (Drying process).
- MIBK methyl isobutyl ketone
- MIBK manufactured by Sigma Aldrich Japan
- a stirrer was put in the beaker, the beaker was sealed with aluminum foil, and MIBK was not volatilized, and the mixture was stirred at room temperature with a stirrer at 600 rpm for 12 hours.
- a wet jet mill (wet jet mill (jet mill (HJP-7000) manufactured by Sugino Machine Co., Ltd.)) is used, and a 0.13 mm channel is passed at a pressure of 100 MPa, and a pressure of 120 MPa. Then, the CNT aggregate was dispersed in MIBK to obtain a CNT dispersion having a weight concentration of 0.033 parts by weight.
- the CNT dispersion was further stirred with a stirrer at room temperature for 24 hours. At this time, the temperature of the solution was raised to 70 ° C. to volatilize MIBK to about 150 ml. The weight concentration of CNTs at this time was about 0.075 parts by weight (dispersing step). Thus, a CNT dispersion according to the present invention was obtained.
- fluororubber (Daikin Kogyo Co., Ltd., Daiel-G912) was used as the fluorine-containing compound. Assuming that the total weight of the carbon nanotube-elastomer composite material is 100 parts by weight, 100 mg of the CNT dispersion is added so that the CNT content is 1 part by weight, and 100 mg of the fluoroelastomer is added so that the fluororubber content is 99 parts by weight. Then, the mixture was stirred for 16 hours at room temperature under a condition of about 300 rpm using a stirrer, and concentrated until the total amount was about 50 ml.
- the sufficiently mixed solution was poured into a beaker or the like and dried at 80 ° C. for 2 days. Furthermore, it put into the 80 degreeC vacuum drying furnace, it was made to dry for 2 days, the organic solvent was removed, and the masterbatch was obtained.
- the master batch was wound around the roll using two rolls (Kansai roll, ⁇ 6 ′′ ⁇ L15 test roll machine, independent front and rear continuously variable transmission).
- Roll temperature was 70 ° C.
- rotation speed ratio was 1.2
- front wheel rotation speed was 23 0.2 rpm
- rear wheel rotation speed 18.9 rpm
- roll interval 0.5 mm
- cross-linking agent triallyl isocyanurate (TAIC), 4 phr
- TAIC triallyl isocyanurate
- Perhexa 25B, 1 the carbon nanotube-elastomer composite material of Example 1 was obtained by forming and heating with a mold at 270 ° C. for 10 minutes and further heat treating at 180 ° C. for 4 hours or more. It was.
- Example 2 In Example 2, the same single-walled CNT (hereinafter also referred to as SG-SWNT) as in Example 1 was used, and the content was changed.
- the carbon nanotube-elastomer composite material of Example 2 using SG-SWNT (0.1 part by weight) and ternary fluororubber (FKM) (Daikin Kogyo Co., Ltd., Daiel-G912) in the same manner as in Example 1. was made.
- Example 3 The carbon nanotube-elastomer composite material of Example 3 was prepared using SG-SWNT (10 parts by weight) and ternary FKM (Daikin Industries, Ltd., Daiel-G912) in the same manner as in Example 1.
- Example 4 Nanocyl having 5 to 10 graphene layers was used as the multilayer CNT.
- a carbon nanotube-elastomer composite material of Example 4 was produced using Nanocyl-MWNT (5 parts by weight) and ternary FKM (Daikin Industries, Ltd., Daiel-G912) in the same manner as in Example 1.
- Example 5 CNano having 5 to 10 graphene layers was used as the multilayer CNT.
- a carbon nanotube-elastomer composite material of Example 5 was prepared using CNano-MWNT (5 parts by weight) and ternary FKM (Daikin Industries, Ltd., Daiel-G912) in the same manner as in Example 1.
- Example 6 binary fluororubber (FKM) was used as the elastomer.
- a carbon nanotube-elastomer composite material of Example 6 was produced using SG-SWNT (1 part by weight) and binary FKM (Daikin Industries, Ltd., Daiel-G801) in the same manner as in Example 1.
- Example 7 water-added nitrile rubber (H-NBR) was used as the elastomer.
- a composite material was prepared using SG-SWNT (1 part by weight) and H-NBR (water-added nitrile rubber, Nippon Zeon, Zetpol 2020). In this system, 1.5 phr of perhexa 25B was added as a cross-linking material for cross-linking. (TAIC is not added)
- Example 8 acrylic rubber (ACM) was used as the elastomer.
- a composite material was prepared using SG-SWNT (1 part by weight) and ACM (acrylic rubber, Nippon Zeon, Nipol AR31). In this system, 1.5 phr of perhexa 25B was added as a crosslinking material for crosslinking. (TAIC is not added)
- Comparative Example 1 carbon black was used instead of CNT.
- a carbon nanotube-elastomer composite material of Comparative Example 1 was prepared using CB (Tokai Carbon, MAF, 10 parts by weight) and ternary FKM (Daikin Industries, Ltd., Daiel-G912) in the same manner as in Example 1. .
- Comparative Example 2 carbon fiber (CF) was used instead of CNT.
- An elastomer composite material was prepared.
- Comparative Example 3 As Comparative Example 3, a sample was prepared using only an elastomer. TAIC and perhexa 25B were added to the ternary FKM simple substance, and the sample of the comparative example 3 was produced.
- the amount of CNT added was measured by the following method. Measurement was performed using a differential thermothermal gravimetric simultaneous measurement apparatus (TG / DTA, STA7000, Hitachi High-Tech). For the primary temperature increase, nitrogen was supplied at 200 ml / min, and the temperature was increased from room temperature to 800 ° C. at 1 ° C./min. In the primary temperature increase, only the elastomer is sublimated and the residual component is CNT. When carbon fillers other than CNT were included, secondary temperature increase was performed.
- the secondary temperature increase was performed by supplying pure air 200 ml / min and increasing the temperature from room temperature to 800 ° C. at 1 ° C./min.
- pure air CNT and carbon filler burned at known temperatures, resulting in weight loss. From the weight reduction, the CNT filling amount was calculated.
- the measurement result of CNT addition amount is shown in FIG.
- the CNT volume was measured by the following method. The sample was set in a tubular furnace, and this was heat-treated at 500 ° C. for 6 hours in a nitrogen atmosphere to remove the matrix components by pyrolysis. The volume of the CNT structure was obtained by measuring the thickness of each sample on the sheet and the length of each side with a micrometer, and multiplying them.
- the volume measurement result of the CNT structure is shown in FIG.
- the ratio of the volume of the CNT structure 50 formed by the CNTs 10 remaining after combustion to the volume of the carbon nanotube-elastomer composite material 100 before combustion becomes 0.5 or more, and It became clear that the CNTs 10 were in contact with each other to form a continuous network having a dynamic holding force.
- the volume ratio was 0.2 or less, and it was revealed that a continuous network was not sufficiently formed and a dynamic holding force could not be obtained.
- the tear strength of the carbon nanotube-elastomer composite materials of Examples and Comparative Examples was measured by the following method. A sample was cut out of the CNT elastomer composite film formed to a thickness of 2 mm into a non-cut crescent type as defined in JIS K-6252 using a punching blade. A 1 mm cut was made using a notch cutting jig to prepare a sample piece. Using a tensile tester (Autograph, AG-X 10 kN), the test piece was pulled at a speed of 500 mm / min, and the tear strength was calculated. The tear strength is a value obtained by dividing the maximum stress by the film thickness.
- FIG. 3 shows the measurement results of the tear strength of the carbon nanotube-elastomer composite material.
- the tear strength was 10 N / mm or more, and it became clear that the CNTs 10 were in contact with each other in the elastomer to form a continuous network having a dynamic holding force.
- the carbon nanotube-elastomer composite material of the comparative example has a tear strength of less than 10 N / mm, and it has been revealed that a continuous network is not sufficiently formed and a dynamic holding force cannot be obtained.
- Storage modulus and loss tangent The storage modulus and loss tangent of the carbon nanotube-elastomer composite materials of Examples and Comparative Examples were measured by the following methods. It measured using the dynamic viscoelasticity measuring apparatus (RSA2000, TA instruments). Nitrogen was supplied at 200 ml / min, and the temperature was raised from room temperature to glass transition point (TG) -50 ° C. at 5 ° C./min.
- the measurement results of the viscoelasticity of the carbon nanotube-elastomer composite material are shown in FIG.
- the storage elastic modulus at 100 ° C. and 150 ° C. is 5 ⁇ 10 6 Pa or more, and the behavior as rubber is maintained.
- the elastic modulus at 100 ° C. is 5 ⁇ 10 6 Pa or less, and the elastic characteristics as rubber are lost.
- the loss tangent which is the ratio of the loss elastic modulus to the storage elastic modulus, is not more than 0.2 in the examples at 150 ° C. and is elastic, but is not less than 0.2 in the comparative examples and is viscous. Appears.
- FIG. 3 shows the ratio of the tensile strength value of the sample after MIBK immersion to the tensile strength before MIBK immersion as a chemical resistance characteristic of the carbon nanotube-elastomer composite material.
- the difference in the tensile strength of the sample before and after MIBK immersion is 4 MPa or less, and the CNTs 10 are in contact with each other in the elastomer to form a continuous network having a dynamic holding force. It was revealed that the chemical resistance was improved.
- the difference in the tensile strength of the sample before and after the MIBK immersion is 4 MPa or more, the continuous network is not sufficiently formed, and sufficient chemical resistance characteristics cannot be obtained. It became clear.
- FIG. 3 shows the difference in Shore A hardness of the sample after gasoline oil immersion with respect to the tensile strength before gasoline oil immersion as an oil resistance characteristic of the carbon nanotube-elastomer composite material.
- the difference in Shore A hardness value of the sample before and after immersion in gasoline oil is 4 or less, and the CNTs 10 are in contact with each other in the elastomer, and a continuous network having a dynamic holding force is formed. It was found that the oil-resistant properties improved.
- the difference in the Shore A hardness value of the sample before and after immersion in gasoline oil is 4 or more, a continuous network is not sufficiently formed, and sufficient oil resistance characteristics can be obtained. It became clear that there was no.
- the pore distribution of the CNT structure was measured by the following method. The sample was set in a tubular furnace, and this was heat-treated at 500 ° C. for 6 hours in a nitrogen atmosphere to remove the matrix components by pyrolysis. The pore size distribution of the obtained CNT residue was measured with a mercury porosimeter (PoreMaster 60GT manufactured by Quantachrome). The measurement was based on the Washburn method, and the mercury pressure was changed from 1.6 kPa to 420 Mpa.
- the pore distribution of the CNT structure is shown in FIG.
- the carbon nanotube-elastomer composite material of the example one or more in the range of 1 nm to 100 ⁇ m in the pore distribution of the remaining CNT structure 50 when held at 500 ° C. in a nitrogen atmosphere for 6 hours or more A peak was observed, and it was revealed that the CNTs 10 were highly defibrated in the elastomer 30 and a continuous network was formed while the CNTs 10 were in contact with each other.
- the resistance change was measured while pulling the sample at 10 mm / min.
- the distance between the electrodes can be calculated from the pulling speed, and the cross-sectional area of the sample was calculated from the elongation rate when the Poisson's ratio of the sample was 0.5, and the conductivity at each strain was calculated.
- FIG. 3 shows the change in conductivity due to the strain of the carbon nanotube-elastomer composite material.
- the carbon nanotube-elastomer composite material of the example conductivity was observed at 20% strain, and the CNTs 10 were highly defibrated in the elastomer 30 to form a continuous network while the CNTs 10 were in contact with each other. It became clear that even if the strain was applied, it was conducted by the continuous network.
- the conductivity was below the measurement limit at 20% strain, and it was revealed that the conductivity could not be obtained. From this, it is assumed that the carbon nanotube-elastomer composite material of the comparative example does not sufficiently form a continuous network and cannot maintain conductivity.
- the tensile strength of the carbon nanotube-elastomer composite materials of Examples and Comparative Examples was measured by the following method. Measurement was performed using a precision universal testing machine-tensile testing machine (AutoGraph, AG-1kN). It was kept at 150 ° C. in a thermostatic bath. Measurement was performed based on JIS K 6251.
- the measurement results of the tensile strength are shown in FIG.
- the tensile strength in the tensile test (based on JIS K6251) was 1 MPa or more, and it was revealed that the rubber elasticity peculiar to the elastomer can be maintained even at a high temperature.
- the carbon nanotube-elastomer composite material of the comparative example was smaller than 1 MPa and became liquid.
- Linear expansion coefficient With respect to the carbon nanotube-elastomer composite materials of Examples and Comparative Examples, the linear expansion coefficient was measured by the following method. Measurement was performed using a thermomechanical analyzer (TMA / SS) (TMA7000, Hitachi High-Tech). Nitrogen was supplied at 200 ml / min, the linear expansion coefficient of the sample was measured while raising the indentation pressure at 50 ⁇ g and raising the temperature at a rate of temperature rise of 5 ° C./min.
- TMA / SS thermomechanical analyzer
- Nitrogen was supplied at 200 ml / min
- the linear expansion coefficient of the sample was measured while raising the indentation pressure at 50 ⁇ g and raising the temperature at a rate of temperature rise of 5 ° C./min.
- the measurement result of the linear expansion coefficient is shown in FIG.
- the carbon nanotube-elastomer composite material of the example has a linear expansion coefficient of 5 ⁇ 10 ⁇ 4 / K or less, and it is clear that the sealing material mounted at room temperature can be used even at high temperatures without loosening due to thermal expansion. It became.
- the linear expansion coefficient exceeded 5 ⁇ 10 ⁇ 4 / K, and it was revealed that the carbon nanotube-elastomer composite material loosens due to thermal expansion.
- Glass-transition temperature The glass transition temperature is measured using a differential scanning calorimeter (Hitachi High-Tech, DSC7020). About 10 mg of the sample is sealed in an aluminum sample pan, the temperature is increased from ⁇ 70 ° C. to 5 ° C./min, and the temperature change of the specific heat capacity is measured. The temperature at which the specific heat capacity starts to change significantly for the first time after the temperature rise is defined as the “glass transition temperature”.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Sealing Material Composition (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Composite Materials (AREA)
Abstract
引き裂き強度や耐薬品性に優れるカーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法を提供する。本発明に係るカーボンナノチューブ-エラストマー複合材料は、エラストマーにカーボンナノチューブを分散してなり、カーボンナノチューブは、20 nm以下の直径と、10層以下の層数を備え、カーボンナノチューブとエラストマーとの総重量に対して、カーボンナノチューブを0.1重量部以上20重量部以下含み、400℃以上の温度において窒素導入下で6時間保持したときに、エラストマーが熱分解し、残留したカーボンナノチューブが構造体を成し、複合材料の初期の体積をV0、残留したカーボンナノチューブの構造体の体積をVaとすると、Va/V0が0.5以上である連続ネットワークをエラストマー内に備える。
Description
本発明は、カーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法に関する。
エラストマーは柔らかく、ゴム弾性を示すため、シーリング材や吸収材等種々の用途に幅広く用いられている。しかし、エラストマーは酸、アルカリ、紫外線等への暴露により、例えば加水分解などに起因する解重合反応により分子量が低下し、物性が劣化する。また、用途によっては、より高い機械強度(引き裂き強度、ヤング率など)、導電特性などが必要となる。
エラストマーに、例えばカーボンナノチューブ(以下、CNTとも称す)のようなナノスケールの直径を有するフィラーを複合化することで、機械強度や導電特性などを向上させる試みがなされている。例えば、特許文献1においては、分子中にフッ素原子を含む2元系又は3元系の合成ゴムに多層カーボンナノチューブを分散させ、含フッ素エラストマーとカーボンブラックとを混練した際にカーボンブラックの周囲に形成されるバウンドラバーに類似する気相成長炭素繊維の表面に吸着した含フッ素エラストマーの分子の凝集体と考えられる界面相が形成された炭素繊維複合材料が報告されている。特許文献1においては、気相成長炭素繊維の量が増えるにつれて界面相同士が連鎖して微小なセルを形成し、炭素繊維複合材料中における多層カーボンナノチューブが最適割合にあると、連鎖した界面相によって炭素繊維複合材料のセル内への酸素の浸入が減少し、熱劣化し難くなり、高い弾性率を維持することが記載されている。
また、特許文献2には、単層カーボンナノチューブもしくは多層カーボンナノチューブと、天然繊維または金属繊維とを、エラストマーに分散させた繊維複合材料が報告されている。特許文献2においては、マトリクスであるエラストマーを繊維及びカーボンナノファイバーによって囲むことによって、拘束領域を形成し、繊維及びカーボンナノファイバーによって拘束を受けたエラストマー分子の運動性は、繊維及びカーボンナノファイバーの拘束を受けない場合に比べて小さくなることが記載されている。
しかし、従来は、耐熱性や加熱時での粘弾性の検討はされたものの、カーボンナノチューブ-エラストマー複合材料の引き裂き強度や耐薬品性についての検討がなされて来なかった。
本発明は、引き裂き強度や耐薬品性に優れるカーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法を提供する。
本発明の一実施形態によると、エラストマーにカーボンナノチューブを分散してなるカーボンナノチューブ-エラストマー複合材料であって、前記カーボンナノチューブは、20 nm以下の直径と、10層以下の層数を備え、前記カーボンナノチューブと前記エラストマーとの総重量に対して、前記カーボンナノチューブを0.1重量部以上20重量部以下含み、400℃以上の温度において窒素導入下で6時間保持したときに、前記エラストマーが熱分解し、残留した前記カーボンナノチューブが構造体を成し、前記カーボンナノチューブ-エラストマー複合材料の初期の体積をV0、残留した前記カーボンナノチューブの構造体の体積をVaとすると、Va/V0が0.5以上である連続ネットワークを前記エラストマー内に備えるカーボンナノチューブ-エラストマー複合材料が提供される。
また、本発明の一実施形態によると、エラストマーにカーボンナノチューブを分散してなるカーボンナノチューブ-エラストマー複合材料であって、400℃以上の温度において窒素導入下で6時間保持したときに、前記エラストマーが熱分解し、残留した前記カーボンナノチューブが構造体を成し、前記カーボンナノチューブ-エラストマー複合材料の初期の体積をV0、残留した前記カーボンナノチューブの構造体の体積をVaとすると、Va/V0が0.5以上である連続ネットワークを前記エラストマー内に備え、前記連続ネットワークは、1 nm以上100 μm以下の範囲に少なくとも1つ以上の空孔分布のピークを備えるカーボンナノチューブ-エラストマー複合材料が提供される。
前記カーボンナノチューブ-エラストマー複合材料の引き裂き強度は、10 N/mm以上であってもよい。
前記カーボンナノチューブ-エラストマー複合材料の100℃における弾性率が、カーボンナノチューブを含まないエラストマー複合材料の100℃における弾性率に比べ20%以上高くてもよい。
前記カーボンナノチューブ-エラストマー複合材料をメチルイソブチルケトンに72時間浸漬したときの引っ張り強さの変化量が4 MPa以下であってもよい。
前記カーボンナノチューブ-エラストマー複合材料をガソリンオイル(ガソリン85%、エタノール15%)に72時間浸漬したときのショアAの硬度変化が4以下であってもよい。
前記カーボンナノチューブ-エラストマー複合材料に20%のひずみを加えた時の導電率は、0%ひずみの時の導電率に対して50%以上150%以下の範囲にあってもよい。
前記カーボンナノチューブ-エラストマー複合材料において、20℃以上150℃以下での引っ張り試験(JIS K6251準拠)における引っ張り強さが5 MPa以上であってもよい。
前記カーボンナノチューブ-エラストマー複合材料において、150℃における貯蔵弾性率が0.5MPa以上であり、且つ損失正接が0.1以下であってもよい。
前記カーボンナノチューブ-エラストマー複合材料において、室温から150℃の範囲における熱膨張係数が6×10-4/K以下であってもよい。
前記カーボンナノチューブ-エラストマー複合材料のガラス転移温度Tgが、-50℃以上10℃以下の範囲にあってもよい。
前記カーボンナノチューブ-エラストマー複合材料において、前記カーボンナノチューブの比表面積は200 m2/g以上であってもよい。
前記カーボンナノチューブ-エラストマー複合材料において、前記カーボンナノチューブの直径が20 nm以下であってもよい。
前記カーボンナノチューブ-エラストマー複合材料において、前記カーボンナノチューブの層数が10層以下であってもよい。
また、本発明の一実施形態によると、解繊したカーボンナノチューブを用意し、前記カーボンナノチューブにエラストマー及び架橋剤を含ませ、前記カーボンナノチューブ、エラストマー及び架橋剤を成形・架橋硬化させるカーボンナノチューブ-エラストマー複合材料の製造方法が提供される。
また、本発明の一実施形態によると、前記何れかの前記カーボンナノチューブ-エラストマー複合材料を用いて形成される外形が連続する無端状である無端状シール材料が提供される。
また、本発明の一実施形態によると、前記何れかの前記カーボンナノチューブ-エラストマー複合材料を用いて形成されるシーリング材料が提供される。
本発明によると、引き裂き強度や耐薬品性に優れるカーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法を提供することができる。
以下、図面を参照して本発明に係るカーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法について説明する。なお、本発明のカーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法は、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び後述する実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
本発明に係るカーボンナノチューブ-エラストマー複合材料は、エラストマーにカーボンナノチューブ(CNT)を分散してなるカーボンナノチューブ-エラストマー複合材料であって、CNTとエラストマーとの総重量に対して、CNTを0.1重量部以上20重量部以下含む。CNTは、20 nm以下の直径と、10層以下の層数を備える。また、本発明に係るカーボンナノチューブ-エラストマー複合材料は、400℃以上、好ましくは500℃、より好ましくは600℃以上の温度において窒素導入下で6時間保持したときに、エラストマーが熱分解し、残留したCNTが構造体を成し、カーボンナノチューブ-エラストマー複合材料の初期の体積をV0、残留したCNTの構造体の体積をVaとすると、Va/V0が0.5以上、好ましくは0.6以上、より好ましくは0.7以上、さらに好ましくは0.8以上、最も好ましくは0.9以上である連続ネットワークをエラストマー内に備える。
図1は、本発明の一実施形態に係るカーボンナノチューブ-エラストマー複合材料100の模式図である。図1(a)はカーボンナノチューブ-エラストマー複合材料100の一部を切断した図であり、図1(b)はカーボンナノチューブ-エラストマー複合材料100を燃焼させた後の構造体の模式図である。カーボンナノチューブ-エラストマー複合材料100は、CNT10とエラストマー30を含み、エラストマー30中にCNT10が高度に解繊し、相互に接触しながら構成される連続ネットワークを備えたカーボンナノチューブの構造体(以下、CNT構造体とも称す)50を有する。図2は、本発明の一実施形態に係るカーボンナノチューブ-エラストマー複合材料100中のCNT構造体50の一部を拡大した連続ネットワークを示す模式図である。
本発明の一実施形態に係るカーボンナノチューブ-エラストマー複合材料100に含まれるCNT10は、CNT10の束(バンドル)からCNT10が解繊した構造を有する。カーボンナノチューブ-エラストマー複合材料100において、CNT10同士が互いに物理的に絡み合っており、高度に発達した連続ネットワークを形成する。
フィラーであるCNT10間の接触が緊密であればマトリックスであるエラストマー30が消失しても嵩密度は変化しないため、体積比は1となる。一方、CNT10間の接触が緊密ではなく、CNT10間に空隙が多くある場合にはエラストマー30が消失すると体積が収縮するため、体積比は0に近づく。すなわち、エラストマー30の消失前後(熱処理前後)の体積比は、CNT10の連続ネットワークの緻密さを反映している。体積比が1に近づくほどカーボンナノチューブ-エラストマー複合材料100は、エラストマー30のCNT10が連続ネットワークを形成しているため、力学的に頑強になり、化学的に安定になり、高い引き裂き特性等の優れた特性を示す。
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、500℃において窒素雰囲気下で6時間以上保持したときに、残留したCNT10がCNT構造体50を形成し、且つ、燃焼前のカーボンナノチューブ-エラストマー複合材料100の体積に対する燃焼後に残留したCNT10が構成するCNT構造体50の嵩体積との比が0.5以上、好ましくは0.6以上、より好ましくは0.7以上、さらに好ましくは0.8以上、最も好ましくは0.9以上であり、1.0以下である。エラストマー30を窒素雰囲気下で昇華させると、残留したCNTはばらばらにならず、カーボンナノチューブ-エラストマー複合材料に対して体積変化のないCNT構造体50を形成する。これは、エラストマー内でCNT10同士が接触し、力学的な保持力を有する連続ネットワークを形成していることを意味する。このようなCNT構造体50はコンクリートの中の鉄筋のようにエラストマー30に頑強性や、優れた力学・化学特性を付与することができる。
CNT10は、バンドルではなく、ばらばらに解繊することによって、CNT10とエラストマー30の界面の面積が増加する。解繊したCNT10は、物理的に接触し、導電パスを形成する。CNT10は物理的に接触しているため、エラストマー30が取り除かれてもCNT10同士の物理的な接触点15がCNT10の収縮を抑制し、本発明に係るカーボンナノチューブ-エラストマー複合材料100においては、見かけの体積である嵩密度が低下しない。走査型電子顕微鏡(SEM)により観察されるCNT10の物理的な接触点15の間隔は1 μm以上100 μm以下程度である。CNT10の物理的な接触点15の間隔を測定する方法として、例えば、動的機械特性測定装置(DMA)がある。本発明に係るカーボンナノチューブ-エラストマー複合材料100に対して、室温で周波数を0.001Hz~1000Hzまで変化させたとき、周波数に依存しない弾性率領域が現れる(プラトー領域)。プラトー領域におけるカーボンナノチューブ-エラストマー複合材料100の貯蔵弾性率は103 Pa以上106 Pa以下である。本発明に係るカーボンナノチューブ-エラストマー複合材料100において、弾性率から物理な接触点15間の距離は推定可能である。
(カーボンナノチューブの構造体の細孔分布)
カーボンナノチューブ-エラストマー複合材料100は、500℃において窒素雰囲気下で6時間以上保持したときに、残留したCNT構造体50の空孔分布において、1 nm以上100 μm以下の範囲に1つ以上のピークを有する。ここで、空孔分布は、水銀圧入式のポロシメーターで計測することができる。ピークとは微分細孔容積が0になる点であり、かつ微分細孔容積が負から正になる点である。このようなピークを有するカーボンナノチューブ-エラストマー複合材料100は、CNT10の連続ネットワークが形成されているため、CNT構造体50を残留させることができる。一方、連続ネットワークが形成されていない場合には、CNTの残留体は圧縮、もしくは粉々になり、CNT構造体50を維持することはできない。
カーボンナノチューブ-エラストマー複合材料100は、500℃において窒素雰囲気下で6時間以上保持したときに、残留したCNT構造体50の空孔分布において、1 nm以上100 μm以下の範囲に1つ以上のピークを有する。ここで、空孔分布は、水銀圧入式のポロシメーターで計測することができる。ピークとは微分細孔容積が0になる点であり、かつ微分細孔容積が負から正になる点である。このようなピークを有するカーボンナノチューブ-エラストマー複合材料100は、CNT10の連続ネットワークが形成されているため、CNT構造体50を残留させることができる。一方、連続ネットワークが形成されていない場合には、CNTの残留体は圧縮、もしくは粉々になり、CNT構造体50を維持することはできない。
(引き裂き強度)
一実施形態において、カーボンナノチューブ-エラストマー複合材料100の引き裂き強度は、5 N/mm以上、好ましくは10 N/mm以上である。カーボンナノチューブ-エラストマー複合材料100は、CNT10を含まないエラストマーに比べ10%、好ましくは20%、より好ましくは30%以上大きな引き裂き強度を有する。このような高い引き裂き強度を有するカーボンナノチューブ-エラストマー複合材料100は、破損箇所、傷などからクラックが進展しにくいために、製品信頼性に優れ、シーリング材料などに用いるのに好適である。本発明に係るカーボンナノチューブ-エラストマー複合材料は、CNT10がエラストマー30中で連続ネットワークを形成するためにクラックの進展を阻害するため、高い引き裂き強度を有する。
一実施形態において、カーボンナノチューブ-エラストマー複合材料100の引き裂き強度は、5 N/mm以上、好ましくは10 N/mm以上である。カーボンナノチューブ-エラストマー複合材料100は、CNT10を含まないエラストマーに比べ10%、好ましくは20%、より好ましくは30%以上大きな引き裂き強度を有する。このような高い引き裂き強度を有するカーボンナノチューブ-エラストマー複合材料100は、破損箇所、傷などからクラックが進展しにくいために、製品信頼性に優れ、シーリング材料などに用いるのに好適である。本発明に係るカーボンナノチューブ-エラストマー複合材料は、CNT10がエラストマー30中で連続ネットワークを形成するためにクラックの進展を阻害するため、高い引き裂き強度を有する。
(100℃における弾性率)
一実施形態において、カーボンナノチューブ-エラストマー複合材料100の100℃における弾性率はCNTを含まないエラストマーに比べて20%以上、好ましくは50%、より好ましくは100%以上高く、1000%以下である。このような100℃における高い弾性率は、エラストマー30が軟化する高温下において、シーリング材料などとして用いることを可能にする。本発明に係るカーボンナノチューブ-エラストマー複合材料100は、CNT10がエラストマー30中で連続ネットワークを形成するため、CNT10がエラストマー30を力学的に補強し、エラストマー30が軟化する100℃においてもシーリング材料として優れた機械特性を示し、好適である。
一実施形態において、カーボンナノチューブ-エラストマー複合材料100の100℃における弾性率はCNTを含まないエラストマーに比べて20%以上、好ましくは50%、より好ましくは100%以上高く、1000%以下である。このような100℃における高い弾性率は、エラストマー30が軟化する高温下において、シーリング材料などとして用いることを可能にする。本発明に係るカーボンナノチューブ-エラストマー複合材料100は、CNT10がエラストマー30中で連続ネットワークを形成するため、CNT10がエラストマー30を力学的に補強し、エラストマー30が軟化する100℃においてもシーリング材料として優れた機械特性を示し、好適である。
(引っ張り強さ)
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、20℃以上150℃での引っ張り試験(JIS K6251準拠)における引っ張り強さが1 MPa以上、好ましくは5 MPa以上、より好ましくは10 MPa以上であり、100 MPa以下である。引っ張り強さが1 MPaより小さいと液状の性状となる。一方、引っ張り強さが1 MPa以上であれば、ゴム弾性を示し、シーリング材料として使用可能である。本発明に係るカーボンナノチューブ-エラストマー複合材料100においては、マトリックスであるエラストマー30中にCNT10が連続ネットワークを形成している。CNT10は一般的なゴムなどの高分子材料とは異なり、昇温しても軟化することがない。そのため、150℃の温度においても十分な引っ張り強さを維持することが可能となる。
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、20℃以上150℃での引っ張り試験(JIS K6251準拠)における引っ張り強さが1 MPa以上、好ましくは5 MPa以上、より好ましくは10 MPa以上であり、100 MPa以下である。引っ張り強さが1 MPaより小さいと液状の性状となる。一方、引っ張り強さが1 MPa以上であれば、ゴム弾性を示し、シーリング材料として使用可能である。本発明に係るカーボンナノチューブ-エラストマー複合材料100においては、マトリックスであるエラストマー30中にCNT10が連続ネットワークを形成している。CNT10は一般的なゴムなどの高分子材料とは異なり、昇温しても軟化することがない。そのため、150℃の温度においても十分な引っ張り強さを維持することが可能となる。
(耐化学特性)
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、メチルイソブチルケトンに72時間、好ましくは144時間浸漬したときの物性(弾性率、硬度)の変化量が、CNTを含まないエラストマーの変化量に比べ20%以上、好ましくは40%以上、より好ましくは60%以上小さい。本発明に係るカーボンナノチューブ-エラストマー複合材料100は、エラストマー30を膨潤させる良溶媒であるメチルイソブチルケトンに浸漬されても、系内に構築されたCNT10の連続ネットワークがエラストマー30の膨潤を抑制し、機械特性の劣化を抑えることができる。このため、カーボンナノチューブ-エラストマー複合材料100は、各種有機溶媒の中で使用されるようなシーリング材料として用いるのに好適である。
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、メチルイソブチルケトンに72時間、好ましくは144時間浸漬したときの物性(弾性率、硬度)の変化量が、CNTを含まないエラストマーの変化量に比べ20%以上、好ましくは40%以上、より好ましくは60%以上小さい。本発明に係るカーボンナノチューブ-エラストマー複合材料100は、エラストマー30を膨潤させる良溶媒であるメチルイソブチルケトンに浸漬されても、系内に構築されたCNT10の連続ネットワークがエラストマー30の膨潤を抑制し、機械特性の劣化を抑えることができる。このため、カーボンナノチューブ-エラストマー複合材料100は、各種有機溶媒の中で使用されるようなシーリング材料として用いるのに好適である。
(耐油学特性)
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、ガソリンオイル(ガソリン85%、エタノール15%)に72時間、好ましくは144時間浸漬したときの物性(弾性率、硬度)の変化が、CNTを含まないエラストマーの硬度変化に比べ30%以下、より好ましくは10%以下である。本発明に係るカーボンナノチューブ-エラストマー複合材料100は、エラストマー30を膨潤させる良溶媒である鉱物油に浸漬されても、系内に構築されたCNT10の連続ネットワークがエラストマー30の膨潤を抑制し、機械特性の劣化を抑えることができる。このため、カーボンナノチューブ-エラストマー複合材料100は、各種鉱物油の中で使用されるようなシーリング材料として用いるのに好適である。
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、ガソリンオイル(ガソリン85%、エタノール15%)に72時間、好ましくは144時間浸漬したときの物性(弾性率、硬度)の変化が、CNTを含まないエラストマーの硬度変化に比べ30%以下、より好ましくは10%以下である。本発明に係るカーボンナノチューブ-エラストマー複合材料100は、エラストマー30を膨潤させる良溶媒である鉱物油に浸漬されても、系内に構築されたCNT10の連続ネットワークがエラストマー30の膨潤を抑制し、機械特性の劣化を抑えることができる。このため、カーボンナノチューブ-エラストマー複合材料100は、各種鉱物油の中で使用されるようなシーリング材料として用いるのに好適である。
(ひずみによる導電率の変化)
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、20%のひずみを加えた時の導電率が、0%ひずみの時の導電率に対して50%以上150%以下の範囲にある。
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、20%のひずみを加えた時の導電率が、0%ひずみの時の導電率に対して50%以上150%以下の範囲にある。
一実施形態において、ひずみによる導電率の変化は、カーボンナノチューブ-エラストマー複合材料100のJIS K 6251に準拠したドックボーン型の試験片について、上部と下部に電極を装着し、引っ張り試験機により10 mm/minで引っ張りながら試料に歪みを加え抵抗の変化を測定することにより求めることができる。電極間距離は引っ張り速度から算出でき、また試料の断面積は試料のポアソン比が0.5として伸張率から算出し、各ひずみにおける導電率を算出する。導電率の測定は4端子法により行う。
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、動的機械特性装置において室温から10℃/minで昇温したときに、150℃における貯蔵弾性率が0.5 MPa以上、好ましくは1 MPa以上、より好ましくは5 MPa以上で、100 MPa以下であり、かつ損失正接が0.1以下、好ましくは0.05以下で、0.001以上である。本発明に係るカーボンナノチューブ-エラストマー複合材料100においては、貯蔵弾性率及び損失正接がこれらの範囲にあることにより、高温下においてもエラストマー特有のゴム弾性を維持することができる。これにより、カーボンナノチューブ-エラストマー複合材料100は、高温においてもシーリング材料などに用いることができる。
本発明に係るカーボンナノチューブ-エラストマー複合材料100は、エラストマー30中に解繊したCNT10が緻密な連続ネットワークを構築する。CNT10は昇温により軟化することがないため、150℃においても0.5 MPa以上の貯蔵弾性率を維持することが可能となる。
(熱膨張係数)
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、室温から150℃迄の範囲における線膨張係数が6×10-4/K以下、好ましくは2×10-4/K以下であり、-1×10-4/K以上である。本発明に係るカーボンナノチューブ-エラストマー複合材料100においては、室温で装着したシーリング材料が熱膨張により緩むことなく、高温化においても用いることが出来る。図1に示したように、本発明に係るカーボンナノチューブ-エラストマー複合材料100は、負の線熱膨張係数を有するCNT10がエラストマー30中に連続ネットワークを形成したCNTが構成するCNT構造体50を形成するため、エラストマー30の熱膨張が抑制される。
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、室温から150℃迄の範囲における線膨張係数が6×10-4/K以下、好ましくは2×10-4/K以下であり、-1×10-4/K以上である。本発明に係るカーボンナノチューブ-エラストマー複合材料100においては、室温で装着したシーリング材料が熱膨張により緩むことなく、高温化においても用いることが出来る。図1に示したように、本発明に係るカーボンナノチューブ-エラストマー複合材料100は、負の線熱膨張係数を有するCNT10がエラストマー30中に連続ネットワークを形成したCNTが構成するCNT構造体50を形成するため、エラストマー30の熱膨張が抑制される。
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、ガラス転移温度が、-50℃以上10℃以下であり、好ましくは-50℃以上-10℃以下である。本発明に係るカーボンナノチューブ-エラストマー複合材料100においては、このようなガラス転移温度をもつカーボンナノチューブ-エラストマー複合材料100は、室温においてエラストマー特有のゴム弾性を示すため、シーリング材料等として使用可能である。一般に、エラストマーにフィラーを添加した場合、フィラーによるエラストマー分子の分子運動の抑制により、ガラス転移温度が上昇する。本発明に係るカーボンナノチューブ-エラストマー複合材料100は、CNT10がエラストマー30の分子運動を抑制しないため、CNT10を添加することによるガラス転移温度の変化を小さくすることが可能である。
(カーボンナノチューブの含有量)
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、カーボンナノチューブ-エラストマー複合材料100の総重量に対して、CNTを0.1重量部以上20重量部以下含み、好ましくは0.3重量部以上10重量部以下、より好ましくは0.5重量部以上15重量部以下含む。CNTの含有量が0.1重量部より少ないと、カーボンナノチューブ-エラストマー複合材料100に十分に発達した連続ネットワークを形成することはできない。また、CNTの含有量が20重量部より多いと、エラストマー固有の粘弾性が十分に発揮されず、シーリング材料及びシート状材料に用いたときに、要求される柔軟性や追従性を得ることができないため、好ましくない。
一実施形態において、カーボンナノチューブ-エラストマー複合材料100は、カーボンナノチューブ-エラストマー複合材料100の総重量に対して、CNTを0.1重量部以上20重量部以下含み、好ましくは0.3重量部以上10重量部以下、より好ましくは0.5重量部以上15重量部以下含む。CNTの含有量が0.1重量部より少ないと、カーボンナノチューブ-エラストマー複合材料100に十分に発達した連続ネットワークを形成することはできない。また、CNTの含有量が20重量部より多いと、エラストマー固有の粘弾性が十分に発揮されず、シーリング材料及びシート状材料に用いたときに、要求される柔軟性や追従性を得ることができないため、好ましくない。
(カーボンナノチューブの直径)
図1に示したように、カーボンナノチューブ-エラストマー複合材料100に含まれるCNT10は、CNT10が複数のCNT10と交差し、ファンデルワールス力により点で結合したネットワーク構造を有する。CNT10の直径は20 nm以下、好ましくは10 nm以下、より好ましくは7 nm以下、さらに好ましくは4 nm以下であり、0.5 nm以上である。このような小さな直径を有するCNT10は、比表面積が大きくなるため、連続ネットワークを形成するために必要なCNT同士の接触点が多くなるため、連続ネットワークを形成しやすく、好適である。
図1に示したように、カーボンナノチューブ-エラストマー複合材料100に含まれるCNT10は、CNT10が複数のCNT10と交差し、ファンデルワールス力により点で結合したネットワーク構造を有する。CNT10の直径は20 nm以下、好ましくは10 nm以下、より好ましくは7 nm以下、さらに好ましくは4 nm以下であり、0.5 nm以上である。このような小さな直径を有するCNT10は、比表面積が大きくなるため、連続ネットワークを形成するために必要なCNT同士の接触点が多くなるため、連続ネットワークを形成しやすく、好適である。
また、CNT10の層数は10層以下、好ましくは5層以下、より好ましくは2層以下、最も好ましくは単層である。ここで、CNTの層数とは透過型電子顕微鏡(TEM)により観察した100本のCNTの層数の平均であり、二層CNTとは全体の半分本以上が二層のCNTであるもの、単層CNTとは全体の半分以上が単層CNTであるものをいう。層数が少ないほど、CNT10はフレキシブルで連続ネットワークを構築しやすいため、層数が少ないほど連続ネットワークを形成するために必要なCNT同士の接触点が多くなるため、連続ネットワークを形成しやすく、好適である。
カーボンナノチューブ-エラストマー複合材料100に含まれるCNT10の比表面積は、200 m2/g以上、好ましくは400 m2/g以上、より好ましくは600 m2/g以上であり、2000 m2/g以下である。このような大きな比表面積を有するCNT10は、連続ネットワークを形成するために必要なCNT同士の接触点が多くなるため、連続ネットワークを形成しやすく、好適である。
CNT構造体50の体積比は既存のいかなる手法を用いても計測することが可能であるが、デジタル顕微鏡でCNT構造体50のサイズを計測し、上面から面積を、厚みを横方向から計測し、底面積と高さの積により嵩体積を求めることが好適である。したがって、本明細書においては、CNT構造体50は、嵩体積により評価し、CNT10の体積を積算して算出するものではない。
また、CNT10の長さは、1 μm以上であることが好ましく、より好ましくは5 μm以上、さらに好ましくは10 μm以上である。このような長尺なCNT10は、CNT間の結合点が多いため、形状保持性に優れたネットワーク構造を形成することを可能とする。なお、本発明においては、このような長尺なCNTを含むものであればよく、その製造方法等は特に限定されない。
(シーリング材料及びシート状材料)
本発明に係るカーボンナノチューブ-エラストマー複合材料100は、引き裂き強度や耐薬品性に優れるため、シーリング材料及びシート状材料に好適に用いることができる。
本発明に係るカーボンナノチューブ-エラストマー複合材料100は、引き裂き強度や耐薬品性に優れるため、シーリング材料及びシート状材料に好適に用いることができる。
本発明に係るカーボンナノチューブ-エラストマー複合材料100は、無端状シール部材として用いることができる。無端状シール部材は、外形が連続する無端状である。無端状シール部材は、外形が円形だけでなく、シール部材を配置する溝や部材の形状に併せて形成することができる。無端状シール部材としては、例えば、横断面が円形のOリング、又はXリングであってもよい。カーボンナノチューブ-エラストマー複合材料100は動的シール、例えば回転軸シール、往復動用シール、ロッドシール、ピストンシールとして用いることもできる。また静的シール、例えばガスケットとしても用いることもできる。
(エラストマー)
カーボンナノチューブ-エラストマー複合材料100に含まれるエラストマー30は、熱分解温度は150℃以上であれば、特に限定されない。エラストマー30は熱可塑性エラストマー又はゴムであることが好ましい。特に、耐熱性が高いフッ素ゴム(二元系フッ素ゴム、3元系フッ素ゴム)が好適である。エラストマー30としては、例えば、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、スチレン-ブタジエンゴム(SBR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPR,EPDM)、ブチルゴム(IIR)、クロロブチルゴム(CIIR)、アクリルゴム(ACM)、シリコーンゴム(Q)、フッ素ゴム(FKM)、ブタジエンゴム(BR)、エポキシ化ブタジエンゴム(EBR)、エピクロルヒドリンゴム(CO,CEO)、ウレタンゴム(U)、ポリスルフィドゴム(T)などのエラストマー類;オレフィン系(TPO)、ポリ塩化ビニル系(TPVC)、ポリエステル系(TPEE)、ポリウレタン系(TPU)、ポリアミド系(TPEA)、スチレン系(SBS)、などの熱可塑性エラストマー;およびこれらの混合物が挙げられる。また、エラストマー30は、架橋剤、架橋開始材、酸化防止剤などの添加物等をさらに含有していてもよい。
カーボンナノチューブ-エラストマー複合材料100に含まれるエラストマー30は、熱分解温度は150℃以上であれば、特に限定されない。エラストマー30は熱可塑性エラストマー又はゴムであることが好ましい。特に、耐熱性が高いフッ素ゴム(二元系フッ素ゴム、3元系フッ素ゴム)が好適である。エラストマー30としては、例えば、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、スチレン-ブタジエンゴム(SBR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPR,EPDM)、ブチルゴム(IIR)、クロロブチルゴム(CIIR)、アクリルゴム(ACM)、シリコーンゴム(Q)、フッ素ゴム(FKM)、ブタジエンゴム(BR)、エポキシ化ブタジエンゴム(EBR)、エピクロルヒドリンゴム(CO,CEO)、ウレタンゴム(U)、ポリスルフィドゴム(T)などのエラストマー類;オレフィン系(TPO)、ポリ塩化ビニル系(TPVC)、ポリエステル系(TPEE)、ポリウレタン系(TPU)、ポリアミド系(TPEA)、スチレン系(SBS)、などの熱可塑性エラストマー;およびこれらの混合物が挙げられる。また、エラストマー30は、架橋剤、架橋開始材、酸化防止剤などの添加物等をさらに含有していてもよい。
(製造方法)
上述した本発明に係るカーボンナノチューブ-エラストマー複合材料の製造方法について説明する。なお、以下に説明する製造方法は一例であって、本発明に係るカーボンナノチューブ-エラストマー複合材料の製造方法は、これらに限定されるものではない。
上述した本発明に係るカーボンナノチューブ-エラストマー複合材料の製造方法について説明する。なお、以下に説明する製造方法は一例であって、本発明に係るカーボンナノチューブ-エラストマー複合材料の製造方法は、これらに限定されるものではない。
本発明に係るカーボンナノチューブ-エラストマー複合材料の製造方法は、従来の製造方法とは異なり、CNTを解繊しエラストマーに複合化する工程と、カーボンナノチューブ-エラストマー複合材料にオープンロールを用いて硬化剤を加え分配し、成形体を得る工程とに分離したことを特徴の一つとする。このような2つの工程を経ることにより、CNTの連続ネットワークをエラストマー中に構築することができ、引き裂き強度や耐薬品性を向上させることができる。すなわち、CNTに強いせん断力を加えると、CNTの束(バンドル)が解れる解繊と、CNTの切断の両方がおきる。CNTの高度に発達した連続ネットワークを構築するためには、CNTを切断することなくCNTを解繊し、アスペクト比の高いCNTを得ることが必要となる。また、CNTをゴムに混ぜる場合、CNTとゴムは表面エネルギーが異なることからCNTは凝集する可能性がある。CNTが凝集するとCNTの高度に発達した連続なネットワーク構造を得ることが出来ない。そこで、CNTをできる限り位置的に乱雑に分配(配置)することによりネットワーク構造を構築する。連続ネットワークにより、引き裂き強度や耐薬品性に優れるカーボンナノチューブ-エラストマー複合材料を製造することが出来る。
本発明に係るカーボンナノチューブ-エラストマー複合材料において、CNTがバンドルではなく、解繊している事が重要である。ここで、「解繊」とは、繊維を解すことを意味する。「解す」とは、CNTがガス吸着法で測定可能な表面をバンドルから露出することを意味する。
また、本発明において、CNTが一カ所に固まって居らず、エラストマー中に均一に分布していることが重要である。熱ラジカルを少ない移動距離で補足するためには、CNTがエラストマー中に均一に分布していることが必要である。またCNT同士が互いに物理的に接触していることによって、熱ラジカルの補足時の安定化エネルギーが大きくなる。
本発明に係るカーボンナノチューブ-エラストマー複合材料の製造に用いるCNTは、例えば、国際公開第2006/011655号(単層CNT)、国際公開第2012/060454号(多層CNT)、特表2004-526660号公報(多層CNT)に開示された方法により製造することができる。このような製造方法により製造されたCNTは、直径が小さく、層数が少ないため、非常に大きな比表面積を有する。このため、連続ネットワークを形成するために必要なCNT同士の接触点が多くなるため、連続ネットワークを形成しやすくなり、カーボンナノチューブ-エラストマー複合材料の引き裂き強度や耐薬品性を向上させることができ、好適である。
(CNT乾燥工程)
CNTは集合体として製造されるが、水分が吸着した状態では、水の表面張力により、CNT同士がくっついているため、CNTが非常にほどけにくくなり、エラストマー中での良好な分散性が得られない。CNTを180℃以上、好ましくは200℃以上に加熱し、10 Pa以下、好ましくは1 Pa以下で24時間以上、好ましくは72時間以上保持して、CNTの表面に付着した水を除去する。CNT表面の水分を除去することで、次工程での溶剤とのぬれ性を高め、解繊を容易にすることができる。これにより、CNTの連続ネットワークを形成しやすくなり、カーボンナノチューブ-エラストマー複合材料中の引き裂き強度や耐薬品性を向上させることができる。
CNTは集合体として製造されるが、水分が吸着した状態では、水の表面張力により、CNT同士がくっついているため、CNTが非常にほどけにくくなり、エラストマー中での良好な分散性が得られない。CNTを180℃以上、好ましくは200℃以上に加熱し、10 Pa以下、好ましくは1 Pa以下で24時間以上、好ましくは72時間以上保持して、CNTの表面に付着した水を除去する。CNT表面の水分を除去することで、次工程での溶剤とのぬれ性を高め、解繊を容易にすることができる。これにより、CNTの連続ネットワークを形成しやすくなり、カーボンナノチューブ-エラストマー複合材料中の引き裂き強度や耐薬品性を向上させることができる。
(分級工程)
CNT集合体の大きさを所定の範囲にすることで、均一なサイズのCNT集合体とすることが好ましい。CNT集合体は、サイズの大きな塊状の合成品も含まれる。これらのサイズの大きな塊状のCNT集合体は分散性が異なるため、分散性が低下する。そこで、網、フィルター、メッシュ等を通過した、大きな塊状のCNT集合体を除外したCNT集合体だけを以後の工程に用いると、カーボンナノチューブ-エラストマー複合材料中でのCNTの分散性を高めることができる。
CNT集合体の大きさを所定の範囲にすることで、均一なサイズのCNT集合体とすることが好ましい。CNT集合体は、サイズの大きな塊状の合成品も含まれる。これらのサイズの大きな塊状のCNT集合体は分散性が異なるため、分散性が低下する。そこで、網、フィルター、メッシュ等を通過した、大きな塊状のCNT集合体を除外したCNT集合体だけを以後の工程に用いると、カーボンナノチューブ-エラストマー複合材料中でのCNTの分散性を高めることができる。
(ブレ分散工程)
CNTを大きい凝集塊のまま分散機に投入すると詰まりの原因となるため、乾燥させたCNTに有機溶媒を加え、CNTを10 μm程度以下のバンドルまで解繊することにより、分散工程における歩留まりを改善することができる。ブレ分散工程は、例えば、有機溶媒に添加した約0.1重量部のCNTをクロスヘッドスターラーで500 rpm以上、8時間以上攪拌することで実施することができる。CNTを分散させる有機溶媒としては、例えば、MIBKを用いることができる。プレ分散工程を行うことにより、次工程である解繊工程において、より解繊が容易に進むようになる。解繊が進むことにより、連続ネットワークをエラストマー中に構築することができ、カーボンナノチューブ-エラストマー複合材料の引き裂き強度や耐薬品性が向上する。
CNTを大きい凝集塊のまま分散機に投入すると詰まりの原因となるため、乾燥させたCNTに有機溶媒を加え、CNTを10 μm程度以下のバンドルまで解繊することにより、分散工程における歩留まりを改善することができる。ブレ分散工程は、例えば、有機溶媒に添加した約0.1重量部のCNTをクロスヘッドスターラーで500 rpm以上、8時間以上攪拌することで実施することができる。CNTを分散させる有機溶媒としては、例えば、MIBKを用いることができる。プレ分散工程を行うことにより、次工程である解繊工程において、より解繊が容易に進むようになる。解繊が進むことにより、連続ネットワークをエラストマー中に構築することができ、カーボンナノチューブ-エラストマー複合材料の引き裂き強度や耐薬品性が向上する。
(CNT解繊工程)
CNTをMIBKのような有機溶媒中で解繊する。既存の分散方法を採用できるが、特にジェットミルなどの乱流状のせん断力により分散する装置ではCNTへのダメージを低減して解繊することができる。特に、湿式ジェットミルは、溶媒中の混合物を高速流として、耐圧容器内に密閉状態で配置されたノズルから圧送するものである。耐圧容器内で対向流同士の衝突、容器壁との衝突、高速流によって生じる乱流、剪断流などによりCNTを分散させる。湿式ジェットミルとして、例えば、株式会社常光のナノジェットパル(JN10、JN100、JN1000)を用いた場合、分散工程における処理圧力は、10 MPa以上150 MPa以下の範囲内の値が好ましい。
CNTをMIBKのような有機溶媒中で解繊する。既存の分散方法を採用できるが、特にジェットミルなどの乱流状のせん断力により分散する装置ではCNTへのダメージを低減して解繊することができる。特に、湿式ジェットミルは、溶媒中の混合物を高速流として、耐圧容器内に密閉状態で配置されたノズルから圧送するものである。耐圧容器内で対向流同士の衝突、容器壁との衝突、高速流によって生じる乱流、剪断流などによりCNTを分散させる。湿式ジェットミルとして、例えば、株式会社常光のナノジェットパル(JN10、JN100、JN1000)を用いた場合、分散工程における処理圧力は、10 MPa以上150 MPa以下の範囲内の値が好ましい。
これ以上高い圧力でせん断力を加えた場合、CNTは繊維軸方向に切断される。このことはCNTの欠陥を評価するラマン分光法により確かめられている。また10 MPa以下の圧力では、CNTを効率良く解繊することが出来ない。すなわち10 MPa~150 Mpaの圧力を加えることによりCNTは切断よりも解繊がより進み、より高いアスペクト比を有するようになる。この高いアスペクト比はCNTが高度に発達した連続したネットワーク構造を構築するために必要である。また、本実施形態において、CNT集合体の分散工程には、スギノマシン社製のジェットミル(HJP-17007)を用いてもよい。
CNTを100nm程度以下まで解繊することにより、カーボンナノチューブ-エラストマー複合材料中でのCNTとエラストマーとの界面の面積を増やすことができる。比表面積が大きいほど、連続ネットワークを形成するために必要なCNT同士の接触点が多くなるため、連続ネットワークを形成しやすくなり、カーボンナノチューブ-エラストマー複合材料中の引き裂き強度や耐薬品性が向上する。
(エラストマー混練工程)
得られたCNT分散液にエラストマーを適量加え、CNT-エラストマー溶液を作製する。エラストマー及び架橋剤の添加量を調整することにより、最終的なCNTの濃度を調整することができる。エラストマー混練工程は、例えば、CNT分散液にエラストマー及び架橋剤を加え、ビーカー中で円錐状のマグネット攪拌子を用いて混合することにより行っても良い。この場合、室温で、100rpm以上、12時間以上混合して、解繊したCNTとエラストマーを混練することが望ましい。CNT及びエラストマーに親和性の高い(溶解度パラメーターが近い)有機溶媒を用いることにより、CNTとエラストマーが均等に分配される。この結果、連続ネットワークを形成しやすくなり、カーボンナノチューブ-エラストマー複合材料の引き裂き強度や耐薬品性を向上させることができる。
得られたCNT分散液にエラストマーを適量加え、CNT-エラストマー溶液を作製する。エラストマー及び架橋剤の添加量を調整することにより、最終的なCNTの濃度を調整することができる。エラストマー混練工程は、例えば、CNT分散液にエラストマー及び架橋剤を加え、ビーカー中で円錐状のマグネット攪拌子を用いて混合することにより行っても良い。この場合、室温で、100rpm以上、12時間以上混合して、解繊したCNTとエラストマーを混練することが望ましい。CNT及びエラストマーに親和性の高い(溶解度パラメーターが近い)有機溶媒を用いることにより、CNTとエラストマーが均等に分配される。この結果、連続ネットワークを形成しやすくなり、カーボンナノチューブ-エラストマー複合材料の引き裂き強度や耐薬品性を向上させることができる。
(溶媒除去工程)
CNTの分散に用いた有機溶媒を除去する。このとき、CNT及びエラストマーに親和性の高い(溶解度パラメーターが近い)有機溶媒を用いることにより溶媒蒸発過程においてもCNTとエラストマーとが相分離することなく、均質な構造を保持することができる。溶媒除去工程は、例えば、80℃(もしくは有機溶媒の沸点の10℃以上50℃以下の温度)の板(例えば、鉄板)上でCNT-エラストマー溶液の入ったビーカーを保持し、有機溶媒をある程度除去する。さらに真空オーブンで有機溶媒の沸点の20℃以上50℃以下の低い温度で保持することにより、有機溶媒を完全に除去することができる。有機溶媒は、エラストマーを劣化させる要因であるため、有機溶媒を確実に取り除いておくことがカーボンナノチューブ-エラストマー複合材料の引き裂き強度や耐薬品性の向上のためには重要である。このようにして、カーボンナノチューブ-エラストマーマスターバッチを得る。
CNTの分散に用いた有機溶媒を除去する。このとき、CNT及びエラストマーに親和性の高い(溶解度パラメーターが近い)有機溶媒を用いることにより溶媒蒸発過程においてもCNTとエラストマーとが相分離することなく、均質な構造を保持することができる。溶媒除去工程は、例えば、80℃(もしくは有機溶媒の沸点の10℃以上50℃以下の温度)の板(例えば、鉄板)上でCNT-エラストマー溶液の入ったビーカーを保持し、有機溶媒をある程度除去する。さらに真空オーブンで有機溶媒の沸点の20℃以上50℃以下の低い温度で保持することにより、有機溶媒を完全に除去することができる。有機溶媒は、エラストマーを劣化させる要因であるため、有機溶媒を確実に取り除いておくことがカーボンナノチューブ-エラストマー複合材料の引き裂き強度や耐薬品性の向上のためには重要である。このようにして、カーボンナノチューブ-エラストマーマスターバッチを得る。
(オープンロールによる混練り)
カーボンナノチューブ-エラストマーマスターバッチを、オープンロールを用いて混練りする。ロールの温度は、架橋開始温度よりも20℃以上低く、室温よりも50℃以上高い温度であることが好ましい。またロールの回転数比は1.2以下、好ましくは1.15以下、より好ましくは1.1以下とする。一般にオープンロールにおいて低温、高回転数比であるほど高いせん断力がかかり、材料をよく練ることができるが、本工程においては高い温度、低回転比によりマスターバッチを緩慢なせん断力により練る。可能な限りロール温度を高い温度にすることでエラストマーの粘度を下げ、CNTにかかるせん断力を低減させる。また回転比率を1.2以下にすることによりせん断力を低減させ、CNTに加わるせん断力を低下させ、CNTの切断による短尺化を抑制することが好ましい。この結果、CNTは連続ネットワークを形成し、カーボンナノチューブ-エラストマー複合材料の引き裂き強度や耐薬品性が向上する。このとき、架橋剤、架橋開始剤、その他の添加剤を添加してもよい。
カーボンナノチューブ-エラストマーマスターバッチを、オープンロールを用いて混練りする。ロールの温度は、架橋開始温度よりも20℃以上低く、室温よりも50℃以上高い温度であることが好ましい。またロールの回転数比は1.2以下、好ましくは1.15以下、より好ましくは1.1以下とする。一般にオープンロールにおいて低温、高回転数比であるほど高いせん断力がかかり、材料をよく練ることができるが、本工程においては高い温度、低回転比によりマスターバッチを緩慢なせん断力により練る。可能な限りロール温度を高い温度にすることでエラストマーの粘度を下げ、CNTにかかるせん断力を低減させる。また回転比率を1.2以下にすることによりせん断力を低減させ、CNTに加わるせん断力を低下させ、CNTの切断による短尺化を抑制することが好ましい。この結果、CNTは連続ネットワークを形成し、カーボンナノチューブ-エラストマー複合材料の引き裂き強度や耐薬品性が向上する。このとき、架橋剤、架橋開始剤、その他の添加剤を添加してもよい。
得られたカーボンナノチューブ-エラストマー複合材料に薄通しを行い、CNT、エラストマー、その他添加剤が含まれたシート状材料を得ることができる。シート状材料は、金型等に充填し、ホットプレス、真空プレスにおいてプレスしながら加熱し、成形することができる。このとき架橋操作を行ってもよい。成形することにより、シーリング材料などの形状にすることができ、また架橋操作を行うことにより、3次元架橋が行われ、引き裂き強度や耐薬品性が向上する。
(実施例1)
国際公開第2006/011655号に記載した方法により製造した単層CNTと、フッ素ゴム(ダイキン、Daiel-G912)を用い、実施例1のカーボンナノチューブ-エラストマー複合材料を製造した。実施例1に用いた単層CNTは、TEMによる観察から、長さが100 μm、平均直径が3.0 nm、層数は1層であった。また、50 mgの塊を取り出し、これをBELSORP-MINI(株式会社日本ベル製)を用いて77Kで液体窒素の吸脱着等温線を計測した(吸着平衡時間は600秒とした)。この吸脱着等温線からBrunauer, Emmett, Tellerの方法で比表面積を計測したところ、約1000 m2/gであった。
国際公開第2006/011655号に記載した方法により製造した単層CNTと、フッ素ゴム(ダイキン、Daiel-G912)を用い、実施例1のカーボンナノチューブ-エラストマー複合材料を製造した。実施例1に用いた単層CNTは、TEMによる観察から、長さが100 μm、平均直径が3.0 nm、層数は1層であった。また、50 mgの塊を取り出し、これをBELSORP-MINI(株式会社日本ベル製)を用いて77Kで液体窒素の吸脱着等温線を計測した(吸着平衡時間は600秒とした)。この吸脱着等温線からBrunauer, Emmett, Tellerの方法で比表面積を計測したところ、約1000 m2/gであった。
単層CNTは、目開き0.8 mmの網の一方にCNT集合体を置き、網を介して掃除機で吸引し、通過したものを回収して、CNT集合体から、サイズの大きな塊状のCNT集合体を取り除き、分級を行った(分級工程)。
CNT集合体はカール・フィッシャー反応法(三菱化学アナリテック製電量滴定方式微量水分測定装置CA-200型)で測定した。CNT集合体を所定の条件(真空下、200℃に1時間保持)で乾燥後、乾燥窒素ガス気流中のグローブボックス内で、真空を解除してCNT集合体を約30 mg取り出し、水分計のガラスボートに移した。ガラスボートは、気化装置に移動し、そこで150℃×2分間加熱され、その間に気化した水分は窒素ガスで運ばれて隣のカール・フィッシャー反応によりヨウ素と反応させた。その時消費されたヨウ素と等しい量のヨウ素を発生させるために要した電気量により、水分量を検知した。この方法により、乾燥前のCNT集合体は、0.8重量部の水分を含有していた。乾燥後のCNT集合体は、0.3重量部の水分に減少した。
分級したCNT集合体を100 mg正確に計量し、100 mlフラスコ(3つ口:真空用、温度調節用)に投入して、真空下で200℃に達してから12時間保持し、乾燥させた。乾燥が終了後、加熱・真空処理状態のまま、100℃以上の温度で、分散媒MIBK(メチルイソブチルケトン)(シグマアルドリッチジャパン社製)を20 ml注入しCNT集合体が大気に触れることを防いだ(乾燥工程)。
さらに、MIBK(シグマアルドリッチジャパン社製)を追加して300 mlとした。そのビーカーに撹拌子を入れて、ビーカーをアルミ箔で封印し、MIBKが揮発しないようにして、600 rpmで、12時間スターラーで常温撹拌した。
分散工程には、湿式ジェットミル(湿式ジェットミル(スギノマシン社製のジェットミル(HJP-7000)))を用い、0.13 mmの流路を100 MPaの圧力で通過させ、120 MPaの圧力でさらに通過させてCNT集合体をMIBKに分散させ、重量濃度0.033重量部のCNT分散液を得た。
CNT分散液を更に常温で24時間、スターラーで撹拌した。この時、溶液を70℃まで昇温し、MIBKを揮発させ、150 ml程度とした。この時のCNTの重量濃度は、0.075重量部程度となった(分散工程)。このようにして、本発明に係るCNT分散液を得た。
本実施例においては、フッ素を含む化合物としてフッ素ゴム(ダイキン工業社製、Daiel-G912)を用いた。カーボンナノチューブ-エラストマー複合材料全体の重量を100重量部とした場合、CNT含量が1重量部となるようにCNT分散液100 mlに、フッ素ゴム含量が99重量部となるようにフッ素ゴム100 mgを添加し、スターラーを用い、約300 rpm条件下で、室温で16時間攪拌し全量が50 ml程度になるまで濃縮した。
十分に混合した溶液をビーカー等に流しこみ、80℃で2日間乾燥させた。さらに、80℃の真空乾燥炉に入れて、2日間乾燥させ有機溶媒を除去し、マスターバッチを得た。
二本ロール(関西ロール、φ6”×L15テストロール機、前後独立無段変速)を用い、マスターバッチをロールに巻き付けた。ロールの温度は70℃、回転数比1.2、前輪回転数23.2 rpm、後輪回転数18.9rpm、ロール間隔が0.5 mmとした。試料を薄通ししながら架橋剤(トリアリルイソシアヌレート(TAIC)、4phr)、架橋開始剤(パーヘキサ25B、1.5phr)を添加した。その後、金型で、270℃で10分間成形加熱し、さらに180℃で4時間以上熱処理することにより架橋を進行させ、実施例1のカーボンナノチューブ-エラストマー複合材料を得た。
(実施例2)
実施例2においては、実施例1と同じ単層CNT(以下、SG-SWNTとも称する)を用い、含有量を変更した。SG-SWNT(0.1重量部)と3元フッ素ゴム(FKM)(ダイキン工業社製、Daiel-G912)を用い、実施例1と同様の手法で、実施例2のカーボンナノチューブ-エラストマー複合材料を作製した。
実施例2においては、実施例1と同じ単層CNT(以下、SG-SWNTとも称する)を用い、含有量を変更した。SG-SWNT(0.1重量部)と3元フッ素ゴム(FKM)(ダイキン工業社製、Daiel-G912)を用い、実施例1と同様の手法で、実施例2のカーボンナノチューブ-エラストマー複合材料を作製した。
(実施例3)
SG-SWNT(10重量部)と3元FKM(ダイキン工業社製、Daiel-G912)を実施例1と同様の手法を用いて、実施例3のカーボンナノチューブ-エラストマー複合材料を作製した。
SG-SWNT(10重量部)と3元FKM(ダイキン工業社製、Daiel-G912)を実施例1と同様の手法を用いて、実施例3のカーボンナノチューブ-エラストマー複合材料を作製した。
(実施例4)
実施例4においては、多層CNTとして、グラフェン層を5~10層を有するNanocylを用いた。Nanocyl-MWNT(5重量部)と3元FKM(ダイキン工業社製、Daiel-G912)を実施例1と同様の手法を用いて、実施例4のカーボンナノチューブ-エラストマー複合材料を作製した。
実施例4においては、多層CNTとして、グラフェン層を5~10層を有するNanocylを用いた。Nanocyl-MWNT(5重量部)と3元FKM(ダイキン工業社製、Daiel-G912)を実施例1と同様の手法を用いて、実施例4のカーボンナノチューブ-エラストマー複合材料を作製した。
(実施例5)
実施例5においては、多層CNTとして、グラフェン層が5~10層のCNanoを用いた。CNano-MWNT(5重量部)と3元FKM(ダイキン工業社製、Daiel-G912)を実施例1と同様の手法を用いて、実施例5のカーボンナノチューブ-エラストマー複合材料を作製した。
実施例5においては、多層CNTとして、グラフェン層が5~10層のCNanoを用いた。CNano-MWNT(5重量部)と3元FKM(ダイキン工業社製、Daiel-G912)を実施例1と同様の手法を用いて、実施例5のカーボンナノチューブ-エラストマー複合材料を作製した。
(実施例6)
実施例6においては、エラストマーとして、2元フッ素ゴム(FKM)を用いた。SG-SWNT(1重量部)と2元FKM(ダイキン工業社製、Daiel-G801)を実施例1と同様の手法を用いて、実施例6のカーボンナノチューブ-エラストマー複合材料を作製した。
実施例6においては、エラストマーとして、2元フッ素ゴム(FKM)を用いた。SG-SWNT(1重量部)と2元FKM(ダイキン工業社製、Daiel-G801)を実施例1と同様の手法を用いて、実施例6のカーボンナノチューブ-エラストマー複合材料を作製した。
(実施例7)
実施例7においては、エラストマーとして、水添加ニトリルゴム(H-NBR)を用いた。SG-SWNT(1重量部)とH-NBR(水添加ニトリルゴム、日本ゼオン、Zetpol 2020)を用いて複合材料作製を行った。本系においては、架橋材としてパーヘキサ25Bを1.5phr加え架橋した。(TAICは加えていない)
実施例7においては、エラストマーとして、水添加ニトリルゴム(H-NBR)を用いた。SG-SWNT(1重量部)とH-NBR(水添加ニトリルゴム、日本ゼオン、Zetpol 2020)を用いて複合材料作製を行った。本系においては、架橋材としてパーヘキサ25Bを1.5phr加え架橋した。(TAICは加えていない)
(実施例8)
実施例8においては、エラストマーとして、アクリルゴム(ACM)を用いた。SG-SWNT(1重量部)とACM(アクリルゴム、日本ゼオン、Nipol AR31)を用いて複合材料作製を行った。本系においては、架橋材としてパーヘキサ25Bを1.5phr加え架橋を行った。(TAICは加えていない)
実施例8においては、エラストマーとして、アクリルゴム(ACM)を用いた。SG-SWNT(1重量部)とACM(アクリルゴム、日本ゼオン、Nipol AR31)を用いて複合材料作製を行った。本系においては、架橋材としてパーヘキサ25Bを1.5phr加え架橋を行った。(TAICは加えていない)
(比較例1)
比較例1として、CNTに替えて、カーボンブラックを用いた。CB(東海カーボン、MAF,10重量部)と3元FKM(ダイキン工業社製、Daiel-G912)を実施例1と同様の手法を用いて、比較例1のカーボンナノチューブ-エラストマー複合材料を作製した。
比較例1として、CNTに替えて、カーボンブラックを用いた。CB(東海カーボン、MAF,10重量部)と3元FKM(ダイキン工業社製、Daiel-G912)を実施例1と同様の手法を用いて、比較例1のカーボンナノチューブ-エラストマー複合材料を作製した。
(比較例2)
比較例2として、CNTに替えて、炭素繊維(CF)を用いた。ピッチ系炭素繊維(三菱化学、ダイアリード200 μm,10重量部)と3元FKM(ダイキン工業社製、Daiel-G912)を実施例1と同様の手法を用いて、比較例2のカーボンナノチューブ-エラストマー複合材料を作製した。
比較例2として、CNTに替えて、炭素繊維(CF)を用いた。ピッチ系炭素繊維(三菱化学、ダイアリード200 μm,10重量部)と3元FKM(ダイキン工業社製、Daiel-G912)を実施例1と同様の手法を用いて、比較例2のカーボンナノチューブ-エラストマー複合材料を作製した。
(比較例3)
比較例3として、エラストマーのみで試料を作製した。3元FKM単体にTAICとパーヘキサ25Bを加え、比較例3の試料を作製した。
比較例3として、エラストマーのみで試料を作製した。3元FKM単体にTAICとパーヘキサ25Bを加え、比較例3の試料を作製した。
(カーボンナノチューブ-エラストマー複合材料の成形、加工)
実施例1~8及び比較例1~3のカーボンナノチューブ-エラストマー複合材料を金型に入れ込み、真空ホットプレス中でガス抜きを3回行った。真空オーブン中、170℃で15分間保持し、ギアオーブン(大気圧)で180℃4時間保持した。カーボンナノチューブ-エラストマー複合材料によるシーリング材料、シート状材料を得た。
実施例1~8及び比較例1~3のカーボンナノチューブ-エラストマー複合材料を金型に入れ込み、真空ホットプレス中でガス抜きを3回行った。真空オーブン中、170℃で15分間保持し、ギアオーブン(大気圧)で180℃4時間保持した。カーボンナノチューブ-エラストマー複合材料によるシーリング材料、シート状材料を得た。
(CNT添加量の測定)
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、CNT添加量を以下の方法により測定した。示差熱熱重量同時測定装置(TG/DTA、STA7000、Hitachiハイテク)を用いて測定した。一次昇温は、窒素200 ml/minを供給し、1℃/minで、室温から800℃まで昇温させた。一次昇温においては、エラストマーのみ昇華し、残留成分がCNTである。CNT以外の炭素フィラーなどが含まれる場合には、二次昇温を行った。二次昇温は、純空気200 ml/minを供給し、1℃/minで、室温から800℃まで昇温させた。純空気中ではCNT、および炭素フィラーは既知の温度において燃焼し、重量減少を生じた。重量減少から、CNT充填量を算出した。CNT添加量の測定結果を図3に示す。
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、CNT添加量を以下の方法により測定した。示差熱熱重量同時測定装置(TG/DTA、STA7000、Hitachiハイテク)を用いて測定した。一次昇温は、窒素200 ml/minを供給し、1℃/minで、室温から800℃まで昇温させた。一次昇温においては、エラストマーのみ昇華し、残留成分がCNTである。CNT以外の炭素フィラーなどが含まれる場合には、二次昇温を行った。二次昇温は、純空気200 ml/minを供給し、1℃/minで、室温から800℃まで昇温させた。純空気中ではCNT、および炭素フィラーは既知の温度において燃焼し、重量減少を生じた。重量減少から、CNT充填量を算出した。CNT添加量の測定結果を図3に示す。
(CNT構造体の体積測定)
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、CNT体積を以下の方法により測定した。試料を管状炉にセットし、これを窒素雰囲気下、500℃で6時間熱処理することによりマトリックス成分を熱分解により除去した。CNT構造体の体積は、シート上の試料を厚さおよび各辺の長さをマイクロメーターにより測定し、これを乗じることにより体積を求めた。
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、CNT体積を以下の方法により測定した。試料を管状炉にセットし、これを窒素雰囲気下、500℃で6時間熱処理することによりマトリックス成分を熱分解により除去した。CNT構造体の体積は、シート上の試料を厚さおよび各辺の長さをマイクロメーターにより測定し、これを乗じることにより体積を求めた。
CNT構造体の体積測定結果を図3に示す。実施例のカーボンナノチューブ-エラストマー複合材料では燃焼前のカーボンナノチューブ-エラストマー複合材料100の体積に対する燃焼後に残留したCNT10が構成するCNT構造体50の嵩体積との比が0.5以上となり、エラストマー内でCNT10同士が接触し、力学的な保持力を有する連続ネットワークを形成していることが明らかとなった。一方、比較例のカーボンナノチューブ-エラストマー複合材料では体積の比が0.2以下であり、連続ネットワークが十分に形成されず、力学的な保持力を得られないことが明らかとなった。
(引き裂き強度)
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、引き裂き強度を以下の方法により測定した。2 mm厚に成膜したCNTエラストマー複合材料を、打ち抜き刃を用いてJIS K-6252に定められる切り込み無しクレセント型に試料を切り出した。これにノッチ切り込み治具を用いて1 mmの切り込みを入れ、試料片を調製した。引っ張り試験器(オートグラフ、AG-X 10kN)を用いて、試験片を500 mm/minの速度で引っ張り、引き裂き強度を算出した。引き裂き強度は最大応力を膜厚で割った値である。
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、引き裂き強度を以下の方法により測定した。2 mm厚に成膜したCNTエラストマー複合材料を、打ち抜き刃を用いてJIS K-6252に定められる切り込み無しクレセント型に試料を切り出した。これにノッチ切り込み治具を用いて1 mmの切り込みを入れ、試料片を調製した。引っ張り試験器(オートグラフ、AG-X 10kN)を用いて、試験片を500 mm/minの速度で引っ張り、引き裂き強度を算出した。引き裂き強度は最大応力を膜厚で割った値である。
カーボンナノチューブ-エラストマー複合材料の引き裂き強度の測定結果を図3に示す。実施例のカーボンナノチューブ-エラストマー複合材料では引き裂き強度が10 N/mm以上であり、エラストマー内でCNT10同士が接触し、力学的な保持力を有する連続ネットワークを形成していることが明らかとなった。一方、比較例のカーボンナノチューブ-エラストマー複合材料では引き裂き強度が10 N/mm未満であり、連続ネットワークが十分に形成されず、力学的な保持力を得られないことが明らかとなった。
(貯蔵弾性率及び損失正接)
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、貯蔵弾性率及び損失正接を以下の方法により測定した。動的粘弾性測定装置(RSA2000、TA instruments)を用いて測定した。窒素200 ml/minを供給し、5℃/minで、室温からガラス転移点(TG)-50℃まで昇温させた。
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、貯蔵弾性率及び損失正接を以下の方法により測定した。動的粘弾性測定装置(RSA2000、TA instruments)を用いて測定した。窒素200 ml/minを供給し、5℃/minで、室温からガラス転移点(TG)-50℃まで昇温させた。
カーボンナノチューブ-エラストマー複合材料の粘弾性の測定結果を図3に示す。実施例のカーボンナノチューブ-エラストマー複合材料では100℃、150℃における貯蔵弾性率が5×106 Pa以上であり、ゴムとしての振る舞いを保持している。一方、比較例においては100℃における弾性率が5×106 Pa以下であり、ゴムとしての弾性的特性が失われている。また、貯蔵弾性率に対する損失弾性率の比である損失正接は、150℃において実施例においては0.2以下であり弾性的であるが、比較例においては0.2以上であり粘性的な特徴が現れている。
(耐化学特性)
2mm厚のCNTエラストマー複合材料のシートから、JIS K 6251に準拠したドックボーン型の試験片を切り出し、これをメチルイソブチルケトン(MIBK)に72時間浸漬した。浸漬中の液温は25℃±1℃に保った。浸漬前と浸漬後の試験片を引っ張り試験機(オートグラフ、AG-X、島津製作所)により20 mm/minで引っ張り試験を行い、引っ張り強度を求めた。試験は各試料に対して少なくとも3回行い、その平均値をその試料の引っ張り強度とした。各試料に対して浸漬前の引っ張り強度に対する、浸漬後の試料の引っ張り強度の値の差を求めた。
2mm厚のCNTエラストマー複合材料のシートから、JIS K 6251に準拠したドックボーン型の試験片を切り出し、これをメチルイソブチルケトン(MIBK)に72時間浸漬した。浸漬中の液温は25℃±1℃に保った。浸漬前と浸漬後の試験片を引っ張り試験機(オートグラフ、AG-X、島津製作所)により20 mm/minで引っ張り試験を行い、引っ張り強度を求めた。試験は各試料に対して少なくとも3回行い、その平均値をその試料の引っ張り強度とした。各試料に対して浸漬前の引っ張り強度に対する、浸漬後の試料の引っ張り強度の値の差を求めた。
カーボンナノチューブ-エラストマー複合材料の耐化学特性としてMIBK浸漬前の引っ張り強度に対する、MIBK浸漬後の試料の引っ張り強度の値の比を図3に示す。実施例のカーボンナノチューブ-エラストマー複合材料ではMIBK浸漬前後での試料の引っ張り強度の値の差が4 MPa以下であり、エラストマー内でCNT10同士が接触し、力学的な保持力を有する連続ネットワークを形成して耐化学特性が向上することが明らかとなった。一方、比較例のカーボンナノチューブ-エラストマー複合材料ではMIBK浸漬前後での試料の引っ張り強度の値の差が4 MPa以上であり、連続ネットワークが十分に形成されず、耐化学特性を十分な得られないことが明らかとなった。
(耐油学特性)
2 mm厚のCNTエラストマー複合材料のシートから、JIS K 6251に準拠したドックボーン型の試験片を切り出し、これをガソリンオイル(ガソリン85%、エタノール15%)に72時間浸漬した。浸漬中の液温は25℃±1℃に保った。浸漬前と浸漬後の試験片を引っ張り試験機(オートグラフ、AG-X、島津製作所)により20 mm/minで引っ張り試験を行い、引っ張り強度を求めた。試験は各試料に対して少なくとも3回行い、その平均値をその試料の引っ張り強度とした。各試料に対して浸漬前の引っ張り強度に対する、浸漬後の試料の引っ張り強度の値の差を求めた。
2 mm厚のCNTエラストマー複合材料のシートから、JIS K 6251に準拠したドックボーン型の試験片を切り出し、これをガソリンオイル(ガソリン85%、エタノール15%)に72時間浸漬した。浸漬中の液温は25℃±1℃に保った。浸漬前と浸漬後の試験片を引っ張り試験機(オートグラフ、AG-X、島津製作所)により20 mm/minで引っ張り試験を行い、引っ張り強度を求めた。試験は各試料に対して少なくとも3回行い、その平均値をその試料の引っ張り強度とした。各試料に対して浸漬前の引っ張り強度に対する、浸漬後の試料の引っ張り強度の値の差を求めた。
カーボンナノチューブ-エラストマー複合材料の耐油学特性としてガソリンオイル浸漬前の引っ張り強度に対する、ガソリンオイル浸漬後の試料のショアA硬度の差を図3に示す。実施例のカーボンナノチューブ-エラストマー複合材料ではガソリンオイル浸漬前後での試料のショアA硬度の値の差が4以下であり、エラストマー内でCNT10同士が接触し、力学的な保持力を有する連続ネットワークを形成して耐油学特性が向上することが明らかとなった。一方、比較例のカーボンナノチューブ-エラストマー複合材料ではガソリンオイル浸漬前後での試料のショアA硬度の値の差が4以上であり、連続ネットワークが十分に形成されず、十分な耐油学特性を得られないことが明らかとなった。
(CNT構造体の空孔分布)
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、CNT構造体の空孔分布を以下の方法により測定した。試料を管状炉にセットし、これを窒素雰囲気下、500℃で6時間熱処理することによりマトリックス成分を熱分解により除去した。得られたCNT残留物の空孔径の分布を水銀ポロシメーター(Quantachrome社製 PoreMaster 60GT)により測定を行った。測定はWashburn法に準拠し、水銀圧は1.6 kPa~420 Mpaまで変化させた。
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、CNT構造体の空孔分布を以下の方法により測定した。試料を管状炉にセットし、これを窒素雰囲気下、500℃で6時間熱処理することによりマトリックス成分を熱分解により除去した。得られたCNT残留物の空孔径の分布を水銀ポロシメーター(Quantachrome社製 PoreMaster 60GT)により測定を行った。測定はWashburn法に準拠し、水銀圧は1.6 kPa~420 Mpaまで変化させた。
CNT構造体の空孔分布を図3に示す。実施例のカーボンナノチューブ-エラストマー複合材料では500℃において窒素雰囲気下で6時間以上保持したときに、残留したCNT構造体50の空孔分布において、1 nm以上100 μm以下の範囲に1つ以上のピークが認められ、エラストマー30中にCNT10が高度に解繊し、CNT10同士が相互に接触しながら連続ネットワークを構成することが明らかとなった。
(ひずみによる導電率の変化)
カーボンナノチューブ-エラストマー複合材料をJIS K 6251に準拠したドックボーン型の試験片を切り出した。引っ張り試験機(オートグラフ、AG-X、島津製作所)に試験片をセットした。試験片と引っ張り試験機の掴み具の間には絶縁性のイミドシートを挿入し、絶縁した。次に、試験片の上部と下部に電極を装着し、各電極からの信号を抵抗測定器(2000/200-SCAN、Keitheley社製)により測定し、試料の抵抗を測定した。試料の断面積と電極間距離から試料の導電率を算出した。次に、試料を10 mm/minで引っ張りながら抵抗の変化を測定した。電極間距離は引っ張り速度から算出でき、また試料の断面積は試料のポアソン比が0.5として伸張率から算出し、各ひずみにおける導電率を算出した。
カーボンナノチューブ-エラストマー複合材料をJIS K 6251に準拠したドックボーン型の試験片を切り出した。引っ張り試験機(オートグラフ、AG-X、島津製作所)に試験片をセットした。試験片と引っ張り試験機の掴み具の間には絶縁性のイミドシートを挿入し、絶縁した。次に、試験片の上部と下部に電極を装着し、各電極からの信号を抵抗測定器(2000/200-SCAN、Keitheley社製)により測定し、試料の抵抗を測定した。試料の断面積と電極間距離から試料の導電率を算出した。次に、試料を10 mm/minで引っ張りながら抵抗の変化を測定した。電極間距離は引っ張り速度から算出でき、また試料の断面積は試料のポアソン比が0.5として伸張率から算出し、各ひずみにおける導電率を算出した。
カーボンナノチューブ-エラストマー複合材料のひずみによる導電率の変化を図3に示す。実施例のカーボンナノチューブ-エラストマー複合材料では20%ひずみのときに導電性が認められ、エラストマー30中にCNT10が高度に解繊し、CNT10同士が相互に接触しながら連続ネットワークを構成することにより、ひずみを与えても連続ネットワークにより導電することが明らかとなった。一方、比較例のカーボンナノチューブ-エラストマー複合材料では20%ひずみのときに導電性が測定限界を下回り、導電性が得られないことが明らかとなった。このことから、比較例のカーボンナノチューブ-エラストマー複合材料では連続ネットワークが十分に形成されず、導電性を維持できないものと推察される。
(引っ張り強さ)
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、引っ張り強さを以下の方法により測定した。精密万能試験機-引っ張り試験機(AutoGraph, AG-1kN)を用いて測定した。恒温槽で150℃に保持した。JIS K 6251に基づき測定を行った。
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、引っ張り強さを以下の方法により測定した。精密万能試験機-引っ張り試験機(AutoGraph, AG-1kN)を用いて測定した。恒温槽で150℃に保持した。JIS K 6251に基づき測定を行った。
引っ張り強さの測定結果を図3に示す。実施例のカーボンナノチューブ-エラストマー複合材料では、引っ張り試験(JIS K6251準拠)における引っ張り強さが1 MPa以上となり、高温下においてもエラストマー特有のゴム弾性を維持することができることが明らかとなった。一方、比較例のカーボンナノチューブ-エラストマー複合材料では1 MPaより小さく、液状の性状となった。
(線膨張係数)
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、線膨張係数を以下の方法により測定した。熱機械的分析装置(TMA/SS)(TMA7000、Hitachiハイテク)を用いて測定した。窒素200 ml/minを供給し、押し込み圧力を50 μgとして昇温速度5℃/minで昇温しながら試料の線膨張係数を測定した。
実施例及び比較例のカーボンナノチューブ-エラストマー複合材料について、線膨張係数を以下の方法により測定した。熱機械的分析装置(TMA/SS)(TMA7000、Hitachiハイテク)を用いて測定した。窒素200 ml/minを供給し、押し込み圧力を50 μgとして昇温速度5℃/minで昇温しながら試料の線膨張係数を測定した。
線膨張係数の測定結果を図3に示す。実施例のカーボンナノチューブ-エラストマー複合材料では線膨張係数が5×10-4/K以下であり、室温で装着したシーリング材料が熱膨張により緩むことなく、高温化においても用いることが出来ることが明らかとなった。一方、比較例のカーボンナノチューブ-エラストマー複合材料では線膨張係数が5×10-4/Kを超え、熱膨張により緩むことが明らかとなった。
(ガラス転移温度)
ガラス転移温度は示差走査熱量計(日立ハイテク社、DSC7020)を用いて測定する。試料約10 mgをアルミニウム製のサンプルパンに封入し、-70℃から5℃/minで昇温し、比熱容量の温度変化を測定する。昇温後、初めて比熱容量が有意に変化を開始する温度を「ガラス転移温度」と定義する。
ガラス転移温度は示差走査熱量計(日立ハイテク社、DSC7020)を用いて測定する。試料約10 mgをアルミニウム製のサンプルパンに封入し、-70℃から5℃/minで昇温し、比熱容量の温度変化を測定する。昇温後、初めて比熱容量が有意に変化を開始する温度を「ガラス転移温度」と定義する。
カーボンナノチューブ-エラストマー複合材料のガラス転移温度の測定を図3に示す。図3の結果から、連続ネットワークが形成された実施例のカーボンナノチューブ-エラストマー複合材料は、比較例と同様にガラス転移温度を有することが明らかとなった。
10:CNT、30:エラストマー、50:CNT構造体、100:カーボンナノチューブ-エラストマー複合材料
Claims (17)
- エラストマーにカーボンナノチューブを分散してなるカーボンナノチューブ-エラストマー複合材料であって、
前記カーボンナノチューブは、20 nm以下の直径と、10層以下の層数を備え、
前記カーボンナノチューブと前記エラストマーとの総重量に対して、前記カーボンナノチューブを0.1重量部以上20重量部以下含み、
400℃以上の温度において窒素導入下で6時間保持したときに、前記エラストマーが熱分解し、残留した前記カーボンナノチューブが構造体を成し、前記カーボンナノチューブ-エラストマー複合材料の初期の体積をV0、残留した前記カーボンナノチューブの構造体の体積をVaとすると、Va/V0が0.5以上である連続ネットワークを前記エラストマー内に備えることを特徴とするカーボンナノチューブ-エラストマー複合材料。 - エラストマーにカーボンナノチューブを分散してなるカーボンナノチューブ-エラストマー複合材料であって、
400℃以上の温度において窒素導入下で6時間保持したときに、前記エラストマーが熱分解し、残留した前記カーボンナノチューブが構造体を成し、前記カーボンナノチューブ-エラストマー複合材料の初期の体積をV0、残留した前記カーボンナノチューブの構造体の体積をVaとすると、Va/V0が0.5以上である連続ネットワークを前記エラストマー内に備え、
前記連続ネットワークは、1 nm以上100 μm以下の範囲に少なくとも1つ以上の空孔分布のピークを備えることを特徴とするカーボンナノチューブ-エラストマー複合材料。 - 前記カーボンナノチューブ-エラストマー複合材料の引き裂き強度は、5 N/mm以上であることを特徴とする請求項1に記載のカーボンナノチューブ-エラストマー複合材料。
- 前記カーボンナノチューブ-エラストマー複合材料の100℃における弾性率が、カーボンナノチューブを含まないエラストマー複合材料の100℃における弾性率に比べ20%以上高いことを特徴とする請求項1に記載のカーボンナノチューブ-エラストマー複合材料。
- 前記カーボンナノチューブ-エラストマー複合材料をメチルイソブチルケトンに72時間浸漬したときの引っ張り強さの変化量が4 MPa以下であることを特徴とする請求項1に記載のカーボンナノチューブ-エラストマー複合材料。
- 前記カーボンナノチューブ-エラストマー複合材料をガソリンオイル(ガソリン85%、エタノール15%)に72時間浸漬したときのショアA硬度変化が、4以下であることを特徴とする請求項1に記載のカーボンナノチューブ-エラストマー複合材料。
- 前記カーボンナノチューブ-エラストマー複合材料に20%のひずみを加えた時の導電率は、0%ひずみの時の導電率に対して50%以上150%以下の範囲にあることを特徴とする請求項1に記載のカーボンナノチューブ-エラストマー複合材料。
- 20℃以上150℃以下での引っ張り試験(JIS K6251準拠)における引っ張り強さが5 MPa以上であることを特徴とする請求項1に記載のカーボンナノチューブ-エラストマー複合材料。
- 150℃における貯蔵弾性率が0.5MPa以上であり、且つ損失正接が0.1以下であることを特徴とする請求項1に記載のカーボンナノチューブ-エラストマー複合材料。
- 室温から150℃の範囲における熱膨張係数が6×10-4/K以下であることを特徴とする請求項1に記載のカーボンナノチューブ-エラストマー複合材料。
- 前記カーボンナノチューブ-エラストマー複合材料のガラス転移温度Tgが、-50℃以上10℃以下の範囲にあることを特徴とする請求項1に記載のカーボンナノチューブ-エラストマー複合材料。
- 前記カーボンナノチューブの比表面積は200 m2/g以上であることを特徴とする請求項1に記載のカーボンナノチューブ-エラストマー複合材料。
- 前記カーボンナノチューブの直径が20 nm以下であることを特徴とする請求項2に記載のカーボンナノチューブ-エラストマー複合材料。
- 前記カーボンナノチューブの層数が10層以下であることを特徴とする請求項2に記載のカーボンナノチューブ-エラストマー複合材料。
- 解繊したカーボンナノチューブを用意し、
前記カーボンナノチューブにエラストマー及び架橋剤を含ませ、
前記カーボンナノチューブ、エラストマー及び架橋剤を成形・架橋硬化させることを特徴とするカーボンナノチューブ-エラストマー複合材料の製造方法。 - 請求項1に記載の前記カーボンナノチューブ-エラストマー複合材料を用いて形成される外形が連続する無端状であることを特徴とする無端状シール材料。
- 請求項1に記載の前記カーボンナノチューブ-エラストマー複合材料を用いて形成されることを特徴とするシーリング材料。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017500762A JPWO2016133207A1 (ja) | 2015-02-19 | 2016-02-19 | カーボンナノチューブ−エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ−エラストマー複合材料の製造方法 |
CN201680009723.5A CN107207869A (zh) | 2015-02-19 | 2016-02-19 | 碳纳米管弹性体复合材料、使用其的密封件材料及密封材料、以及碳纳米管弹性体复合材料的制造方法 |
US15/681,113 US10494492B2 (en) | 2015-02-19 | 2017-08-18 | Carbon nanotube-elastomer composite material, seal material and sealing material each produced using same, and method for producing carbon nanotube-elastomer composite material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015031162 | 2015-02-19 | ||
JP2015-031162 | 2015-02-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/681,113 Continuation US10494492B2 (en) | 2015-02-19 | 2017-08-18 | Carbon nanotube-elastomer composite material, seal material and sealing material each produced using same, and method for producing carbon nanotube-elastomer composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016133207A1 true WO2016133207A1 (ja) | 2016-08-25 |
Family
ID=56689356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/054912 WO2016133207A1 (ja) | 2015-02-19 | 2016-02-19 | カーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10494492B2 (ja) |
JP (1) | JPWO2016133207A1 (ja) |
CN (1) | CN107207869A (ja) |
WO (1) | WO2016133207A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017008244A (ja) * | 2015-06-24 | 2017-01-12 | 昭和電工株式会社 | エラストマー組成物の製造方法、エラストマー組成物、マスターバッチ、エラストマー混合物及びエラストマー混合物の製造方法 |
WO2018180251A1 (ja) * | 2017-03-28 | 2018-10-04 | 国立大学法人九州大学 | ガスシール部材用組成物およびその製造方法、高圧水素機器用ガスシール部材、並びに、高圧水素機器 |
WO2019009188A1 (ja) * | 2017-07-05 | 2019-01-10 | Nok株式会社 | フッ素ゴム組成物、その製造法およびフッ素ゴム架橋成形品 |
WO2021039728A1 (ja) * | 2019-08-29 | 2021-03-04 | キヤノン株式会社 | マイクロ流路デバイス |
JP2021039095A (ja) * | 2019-08-29 | 2021-03-11 | キヤノン株式会社 | マイクロ流路デバイス |
TWI722846B (zh) * | 2019-03-26 | 2021-03-21 | 日商日本曹達股份有限公司 | 含有環氧化聚丁二烯之氟橡膠組合物 |
JP2021528554A (ja) * | 2018-05-25 | 2021-10-21 | カーボンエックス・アイピー・4・ビー.ブイ.Carbonx Ip 4 B.V. | カーボンナノファイバー含有カーボンネットワークの使用 |
US20220363897A1 (en) * | 2021-05-14 | 2022-11-17 | Hyundai Motor Company | Plastic composite resin composition, a method of manufacturing a plastic molded article, and a plastic molded article for radar absorption manufactured using the method |
JP7377503B1 (ja) * | 2023-06-05 | 2023-11-10 | 株式会社日本トリム | カーボンナノチューブ成形体、電気化学的水分解用電極およびそれらの製造方法、電気化学的水分解装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019139623A1 (en) | 2018-01-12 | 2019-07-18 | Compagnie Generale Des Etablissements Michelin | Rubber compositions with dissaggregated carbon nanotubes |
JP7513024B2 (ja) * | 2019-05-31 | 2024-07-09 | 日本ゼオン株式会社 | 複合材料の評価方法および製造方法、並びに、複合材料 |
CN115627039B (zh) * | 2022-09-26 | 2023-08-01 | 温州大学苍南研究院 | 一种双填料体系三元氟橡胶纳米复合材料及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007039638A (ja) * | 2005-03-23 | 2007-02-15 | Nissin Kogyo Co Ltd | 炭素繊維複合材料 |
JP2007039648A (ja) * | 2005-06-30 | 2007-02-15 | Nissin Kogyo Co Ltd | 繊維複合材料及びその製造方法 |
JP2007273283A (ja) * | 2006-03-31 | 2007-10-18 | Nissin Kogyo Co Ltd | 電子放出材料及びその製造方法、電子放出材料が形成された基材、電子放出装置 |
JP2008024800A (ja) * | 2006-07-20 | 2008-02-07 | Nissin Kogyo Co Ltd | 炭素繊維複合材料 |
WO2012060454A1 (ja) * | 2010-11-05 | 2012-05-10 | 独立行政法人産業技術総合研究所 | Cnt分散液、cnt成形体、cnt組成物、cnt集合体及びそれらの製造方法 |
WO2013051707A1 (ja) * | 2011-10-05 | 2013-04-11 | 独立行政法人産業技術総合研究所 | カーボンナノチューブ複合材料および熱伝導体 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100591724C (zh) | 2005-06-30 | 2010-02-24 | 日信工业株式会社 | 纤维复合材料及其制造方法 |
JP5374047B2 (ja) | 2008-01-07 | 2013-12-25 | 日信工業株式会社 | 炭素繊維複合材料 |
CN103764556B (zh) * | 2011-09-02 | 2016-01-06 | 独立行政法人产业技术综合研究所 | 碳纳米管复合材料及导电材料 |
US9688897B2 (en) * | 2011-10-05 | 2017-06-27 | National Institute Of Advanced Industrial Science And Technology | Carbon nanotube composite material and thermal conductor |
-
2016
- 2016-02-19 WO PCT/JP2016/054912 patent/WO2016133207A1/ja active Application Filing
- 2016-02-19 JP JP2017500762A patent/JPWO2016133207A1/ja active Pending
- 2016-02-19 CN CN201680009723.5A patent/CN107207869A/zh active Pending
-
2017
- 2017-08-18 US US15/681,113 patent/US10494492B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007039638A (ja) * | 2005-03-23 | 2007-02-15 | Nissin Kogyo Co Ltd | 炭素繊維複合材料 |
JP2007039648A (ja) * | 2005-06-30 | 2007-02-15 | Nissin Kogyo Co Ltd | 繊維複合材料及びその製造方法 |
JP2007273283A (ja) * | 2006-03-31 | 2007-10-18 | Nissin Kogyo Co Ltd | 電子放出材料及びその製造方法、電子放出材料が形成された基材、電子放出装置 |
JP2008024800A (ja) * | 2006-07-20 | 2008-02-07 | Nissin Kogyo Co Ltd | 炭素繊維複合材料 |
WO2012060454A1 (ja) * | 2010-11-05 | 2012-05-10 | 独立行政法人産業技術総合研究所 | Cnt分散液、cnt成形体、cnt組成物、cnt集合体及びそれらの製造方法 |
WO2013051707A1 (ja) * | 2011-10-05 | 2013-04-11 | 独立行政法人産業技術総合研究所 | カーボンナノチューブ複合材料および熱伝導体 |
Non-Patent Citations (1)
Title |
---|
KOJI TSUCHIYA ET AL.: "High electrical performance of carbon nanotubes/rubber composites with lowpercolation threshold prepared with a rotation.revolution mixing technique", COMPOSITES SCIENCE AND TECHNOLOGY, vol. 71, 14 April 2011 (2011-04-14), pages 1098 - 1104 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017008244A (ja) * | 2015-06-24 | 2017-01-12 | 昭和電工株式会社 | エラストマー組成物の製造方法、エラストマー組成物、マスターバッチ、エラストマー混合物及びエラストマー混合物の製造方法 |
JP2022069611A (ja) * | 2017-03-28 | 2022-05-11 | 国立大学法人九州大学 | ガスシール部材用組成物、高圧水素機器用ガスシール部材、および、高圧水素機器 |
WO2018180251A1 (ja) * | 2017-03-28 | 2018-10-04 | 国立大学法人九州大学 | ガスシール部材用組成物およびその製造方法、高圧水素機器用ガスシール部材、並びに、高圧水素機器 |
KR102564829B1 (ko) | 2017-03-28 | 2023-08-07 | 고쿠리쓰다이가쿠호진 규슈다이가쿠 | 가스 시일 부재용 조성물 및 그 제조 방법, 고압 수소 기기용 가스 시일 부재, 그리고, 고압 수소 기기 |
CN110431207A (zh) * | 2017-03-28 | 2019-11-08 | 国立大学法人九州大学 | 气体密封构件用组合物及其制造方法、高压氢设备用气体密封构件、以及高压氢设备 |
KR20190132634A (ko) * | 2017-03-28 | 2019-11-28 | 고쿠리쓰다이가쿠호진 규슈다이가쿠 | 가스 시일 부재용 조성물 및 그 제조 방법, 고압 수소 기기용 가스 시일 부재, 그리고, 고압 수소 기기 |
JPWO2018180251A1 (ja) * | 2017-03-28 | 2020-02-06 | 国立大学法人九州大学 | ガスシール部材用組成物およびその製造方法、高圧水素機器用ガスシール部材、並びに、高圧水素機器 |
JP7306641B2 (ja) | 2017-03-28 | 2023-07-11 | 国立大学法人九州大学 | ガスシール部材用組成物、高圧水素機器用ガスシール部材、および、高圧水素機器 |
CN110431207B (zh) * | 2017-03-28 | 2023-02-03 | 国立大学法人九州大学 | 气体密封构件用组合物的制造方法 |
JP7067705B2 (ja) | 2017-03-28 | 2022-05-16 | 国立大学法人九州大学 | ガスシール部材用組成物の製造方法 |
US11613612B2 (en) | 2017-07-05 | 2023-03-28 | Nok Corporation | Fluororubber composition, method for producing the same and fluororubber crosslinked molded article |
JPWO2019009188A1 (ja) * | 2017-07-05 | 2020-04-16 | Nok株式会社 | フッ素ゴム組成物、その製造法およびフッ素ゴム架橋成形品 |
WO2019009188A1 (ja) * | 2017-07-05 | 2019-01-10 | Nok株式会社 | フッ素ゴム組成物、その製造法およびフッ素ゴム架橋成形品 |
JP2021528554A (ja) * | 2018-05-25 | 2021-10-21 | カーボンエックス・アイピー・4・ビー.ブイ.Carbonx Ip 4 B.V. | カーボンナノファイバー含有カーボンネットワークの使用 |
TWI722846B (zh) * | 2019-03-26 | 2021-03-21 | 日商日本曹達股份有限公司 | 含有環氧化聚丁二烯之氟橡膠組合物 |
JP2021039095A (ja) * | 2019-08-29 | 2021-03-11 | キヤノン株式会社 | マイクロ流路デバイス |
WO2021039728A1 (ja) * | 2019-08-29 | 2021-03-04 | キヤノン株式会社 | マイクロ流路デバイス |
JP7479980B2 (ja) | 2019-08-29 | 2024-05-09 | キヤノン株式会社 | マイクロ流路デバイス |
US20220363897A1 (en) * | 2021-05-14 | 2022-11-17 | Hyundai Motor Company | Plastic composite resin composition, a method of manufacturing a plastic molded article, and a plastic molded article for radar absorption manufactured using the method |
JP7377503B1 (ja) * | 2023-06-05 | 2023-11-10 | 株式会社日本トリム | カーボンナノチューブ成形体、電気化学的水分解用電極およびそれらの製造方法、電気化学的水分解装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107207869A (zh) | 2017-09-26 |
US10494492B2 (en) | 2019-12-03 |
JPWO2016133207A1 (ja) | 2018-02-01 |
US20170369660A1 (en) | 2017-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016133207A1 (ja) | カーボンナノチューブ-エラストマー複合材料、それを用いたシール材料及びシーリング材料、及びカーボンナノチューブ-エラストマー複合材料の製造方法 | |
Phiri et al. | A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide-and reduced graphene oxide-doped microfibrillated cellulose nanocomposites | |
Shao et al. | Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances | |
WO2016133201A1 (ja) | カーボンナノチューブ-エラストマー複合材料、それを用いたシーリング材料及びシート状材料 | |
JP6613319B2 (ja) | 電磁波遮蔽カーボンナノチューブ高分子複合材料、電磁波遮蔽材料、及び電磁波遮蔽カーボンナノチューブ高分子複合材料の製造方法 | |
KR101487363B1 (ko) | 가스 차단층 적용을 위한 작용성 그라핀-고무 나노복합물 | |
Pan et al. | Green fabrication of chitosan films reinforced with parallel aligned graphene oxide | |
JP5207351B2 (ja) | 溶融混練物、樹脂成形物及びその製造方法 | |
Tjong | Polymer composites with carbonaceous nanofillers: properties and applications | |
Araby et al. | Graphene for flame-retarding elastomeric composite foams having strong interface | |
WO2008045778A1 (en) | Functional graphene-rubber nanocomposites | |
KR20150027146A (ko) | 매우 낮은 농도의 탄소계 나노충전제를 갖는 복합 재료, 이의 제조 방법 및 상기 재료의 용도 | |
JP6415284B2 (ja) | 炭素繊維複合材料 | |
Gupta et al. | Rheologic and mechanical properties of multiwalled carbon nanotubes-reinforced poly (trimethylene terephthalate) composites | |
Li et al. | A novel reduced graphene oxide decorated with halloysite nanotubes (HNTs-d-rGO) hybrid composite and its flame-retardant application for polyamide! 6. | |
Liu et al. | Facile preparation of poly (vinyl alcohol)/graphene oxide nanocomposites and their foaming behavior in supercritical carbon dioxide | |
Deng et al. | Enhanced interfacial interaction of epoxy nanocomposites with activated graphene nanosheets | |
Phiri et al. | Co-exfoliation and fabrication of graphene based microfibrillated cellulose composites–mechanical and thermal stability and functional conductive properties | |
Varela-Rizo et al. | Analysis of the electrical and rheological behavior of different processed CNF/PMMA nanocomposites | |
Diouri et al. | Effect of carbon nanotubes dispersion on morphology, internal structure and thermal stability of electrospun poly (vinyl alcohol)/carbon nanotubes nanofibers | |
JP2004323717A (ja) | 充填材入りフッ素樹脂シートおよびその製造方法 | |
JP6473588B2 (ja) | 炭素繊維複合材料及び炭素繊維複合材料の製造方法 | |
Kim et al. | Influence of GMA grafted MWNTs on physical and rheological properties of PMMA-based nanocomposites by in situ polymerization | |
Ko et al. | Properties of ultrahigh‐molecular‐weight polyethylene nanocomposite films containing different functionalized multiwalled carbon nanotubes | |
JP7324492B2 (ja) | カーボンナノチューブ含有組成物の製造方法及び複合材料の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16752593 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017500762 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16752593 Country of ref document: EP Kind code of ref document: A1 |