WO2013042451A1 - 積層構造体及びその製造方法 - Google Patents

積層構造体及びその製造方法 Download PDF

Info

Publication number
WO2013042451A1
WO2013042451A1 PCT/JP2012/068838 JP2012068838W WO2013042451A1 WO 2013042451 A1 WO2013042451 A1 WO 2013042451A1 JP 2012068838 W JP2012068838 W JP 2012068838W WO 2013042451 A1 WO2013042451 A1 WO 2013042451A1
Authority
WO
WIPO (PCT)
Prior art keywords
indium
tin
brazing material
target
laminated structure
Prior art date
Application number
PCT/JP2012/068838
Other languages
English (en)
French (fr)
Inventor
瑶輔 遠藤
坂本 勝
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to US13/808,009 priority Critical patent/US9023487B2/en
Priority to EP12806324.5A priority patent/EP2653585B1/en
Priority to KR1020127032368A priority patent/KR101271846B1/ko
Publication of WO2013042451A1 publication Critical patent/WO2013042451A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12681Ga-, In-, Tl- or Group VA metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component

Definitions

  • the present invention relates to a laminated structure and a manufacturing method thereof, and more particularly to a laminated structure including a backing plate and an indium target and a manufacturing method thereof.
  • Patent Document 1 a sputtering target is often used by being bonded to a backing plate using indium as a brazing material.
  • an indium target if an indium brazing material is used for bonding, both the target and the brazing material are formed of indium, which causes a problem of melting the target itself. Therefore, in the case of an indium target, conventionally, a casting method in which a mold is placed on a backing plate and directly cast, or bonding using a special adhesive has been used, but if a special adhesive is used, the adhesion rate May not be sufficient, and defects may occur during sputtering. Therefore, in the bonding of an indium target, an indium-tin alloy having a melting point lower than that of indium is sometimes used as a bonding brazing material.
  • the difference between the melting points of the indium target and the indium-tin brazing material is about 35 ° C., and the melting point is constantly lowered on the bonding surface due to the diffusion and solid solution of tin.
  • the diffusion of tin to the indium target side becomes very fast, and the indium target has a problem that tin diffuses from the backing plate side surface to a thickness range of 4 mm.
  • the diffusion of tin in the vicinity of the region of 3 to 4 mm in the thickness direction from the surface on the backing plate side is reduced to about several tens of wtppm.
  • the target thickness is approximately 5 to 20 mm, in this case, tin is contaminated and diffused in a region of 15 to 60% of the target itself.
  • an indium film obtained by sputtering an indium target is used in a CIGS (Cu—In—Ga—Se) solar cell, the indium target is required to have a high purity of 4N or higher. In order to maintain such a high purity in an indium target in which tin is contaminated and diffused, sputtering cannot be performed up to the contaminated and diffused region of tin, causing a significant decrease in utilization efficiency.
  • an object of the present invention is to provide a laminated structure with good use efficiency in which the diffusion of tin from the indium-tin brazing material to the indium target is satisfactorily suppressed, and a method for manufacturing the same.
  • the diffusion rate of tin is temperature dependent.
  • the diffusion of tin is 4 mm from the surface of the indium target in the thickness direction. Confirm that it has advanced to the area. For this reason, when bonding an indium target with an indium-tin brazing material, it is desirable to perform it at as low a temperature as possible.
  • the inventors have also noted that tin diffusion is affected by temperature and time. Based on such knowledge, the present inventors diligently studied to solve the above-mentioned problems. After the indium target and the backing plate are bonded with an indium-tin brazing material, they are cooled at a predetermined cooling rate. Thus, it was found that diffusion of tin into the indium target can be satisfactorily suppressed.
  • a backing plate, an indium-tin brazing material, and an indium target are laminated in this order, and 2. from the surface of the indium target on the indium-tin brazing material side.
  • the laminated structure has a tin concentration of 5 wtppm or less in a thickness range of 5 to 3.0 mm.
  • the tin concentration in the thickness range of 2.0 to 2.5 mm from the surface of the indium target on the indium-tin brazing material side is 100 wtppm or less.
  • the tin concentration in the thickness range of 2.0 to 2.5 mm from the surface of the indium target on the indium-tin brazing material side is 80 wtppm or less.
  • the tin concentration in the thickness range of 1.5 to 2.0 mm from the surface of the indium target on the indium-tin brazing material side is 200 wtppm or less.
  • the tin concentration in the thickness range of 1.5 to 2.0 mm from the surface of the indium target on the indium-tin brazing material side is 160 wtppm or less.
  • Another aspect of the present invention is a method for manufacturing a laminated structure in which a backing plate, an indium-tin brazing material, and an indium target are laminated in this order, and an indium target having a temperature of 120 to 140 ° C., Bonding the backing plate with an indium-tin brazing material, and cooling the bonded backing plate, the indium-tin brazing material, and the indium target at a cooling rate of 2.5 ° C./min or more; , A method for producing a laminated structure.
  • the indium target and a backing plate having a temperature higher by 8 to 20 ° C. than the indium target are bonded using an indium-tin brazing material. To do.
  • the indium-tin brazing material used in the bonding has a tin concentration of 10 to 60 at%.
  • the present invention it is possible to provide a laminated structure with good use efficiency in which the diffusion of tin from the indium-tin brazing material to the indium target is well suppressed and a method for manufacturing the same.
  • the laminated structure according to the present invention is configured by laminating a backing plate, an indium-tin brazing material, and an indium target in this order.
  • the shape of the backing plate is not particularly limited, but it can be formed in a disk shape having a predetermined thickness and diameter.
  • the constituent material of a backing plate is not specifically limited, For example, it can form with metal materials, such as copper.
  • the indium-tin brazing material has a function of joining the indium target and the backing plate.
  • the indium target undergoes tin diffusion from the indium-tin brazing material when bonded to the backing plate.
  • tin is diffused in the laminated structure according to the present invention, but the degree of this diffusion is small by the manufacturing method described later, and the tin diffusion to the indium target is 2.5 mm or less from the surface of the indium-tin brazing material side. Is controlled.
  • the diffusion thickness of tin is ascertained from the tin concentration at the relevant location, and if the tin concentration in the thickness range of 2.5 to 3.0 mm from the indium-tin brazing material side surface of the indium target is 5 wtppm or less, The diffusion range is considered to be 2.5 mm or less.
  • the diffused tin concentration is sampled for each target thickness and analyzed by ICP. If the analysis thickness is made fine, the diffusion for each thickness can be accurately observed. However, it is preferable to sample by 0.25 mm thickness. A lathe or machining can be used for sampling. From the ICP analysis of the indium pieces sampled in this way, the tin concentration in the thickness range can be analyzed, and the tin diffusion thickness can be obtained. With such a configuration, the laminated structure according to the present invention has a high proportion of the sputterable region and good utilization efficiency.
  • the tin concentration at a thickness of 2.5 to 3.0 mm from the surface of the indium target on the indium tin brazing material side is more preferably 1 wtppm or less.
  • the tin diffusion thickness of the indium target is more preferably 2.0 mm or less from the surface of the indium-tin brazing material side.
  • the tin concentration in the thickness range of 2.0 to 2.5 mm from the surface of the indium target on the indium-tin brazing material side is preferably 100 wtppm or less. According to such a configuration, the region of less than 2.0 mm from the surface of the indium target on the side of the indium-tin brazing material satisfies the purity of 4N, and can be used as a target for CIGS solar cell applications. Compared with the conventional indium target in which the tin concentration exceeds 100 wtppm in the range of 2.5 to 3.0 mm from the brazing material side surface, the use of 6 to 50% when the thickness of the target is 5 to 20 mm The rate can be increased.
  • the tin concentration in the region is more preferably 80 wtppm or less.
  • the tin concentration in the thickness range of 1.5 to 2.0 mm from the surface of the indium target on the indium-tin brazing material side is preferably 200 wtppm or less. According to such a configuration, it is possible to substantially satisfy the standard of purity 4N on the formed film side. Sputtering causes a speed difference in erosion due to the positional relationship of the magnets within the target plane. Usually, the use ends when the deepest erosion part to be sputtered most reaches the diffusion region. At this time, since the other region does not reach the diffusion region and is sputtered with a purity of 4N or more, if the tin concentration in the thickness range of 1.5 to 2.0 mm is 200 wtppm or less, it is sputtered from the deepest part. It is possible to sufficiently dilute the deposited tin contamination and satisfy the film purity of 4N.
  • the tin concentration in the region is more preferably 160 wtppm or less.
  • the thickness of the indium-tin brazing material in the laminated structure is preferably 0.05 to 0.5 mm. If the thickness of the indium-tin brazing material is less than 0.05 mm, sufficient adhesion cannot be provided. Even if the thickness of the indium-tin brazing material is more than 0.5 mm, the effect of adhesion and the like is diminished, but since it contains more expensive metal, it is disadvantageous in terms of cost.
  • the thickness of the indium-tin brazing material is more preferably 0.1 to 0.4 mm.
  • an indium ingot is produced by a melt casting method or the like.
  • the indium ingot is processed into a predetermined shape to produce an indium target.
  • the raw material indium to be used preferably has a higher purity in order to increase the conversion efficiency of the solar cell to be produced.
  • indium having a purity of 99.99% by mass (4N) or more is used. It is desirable to do.
  • a backing plate having a predetermined material and shape is prepared, the indium target is heated to 120 to 140 ° C., and the backing plate is further heated.
  • an indium-tin brazing material is dissolved on the backing plate and sufficiently spread using a scraper or the like. Similarly, an indium-tin brazing material is applied to the indium target and bonding is immediately performed. Next, the bonded backing plate, the indium-tin brazing material, and the indium target are cooled at a cooling rate of 2.5 ° C./min or more to produce a laminated structure.
  • a cooling rate 2.5 ° C./min or more to produce a laminated structure.
  • the cooling rate depends on the difference between the temperature of the indium target (T ° C.) and 40 ° C. at which the solid diffusion of tin is sufficiently suppressed (T ⁇ 40 [° C.]). Divide by to find.
  • the backing plate for bonding with the indium target is set to 8 to 20 ° C. higher than the indium target. Suppresses irregular solidification of the brazing material that often occurs during bonding, and even if it occurs itself, it immediately dissolves and recovers, enabling good bonding, and improving the adhesion rate between the target and the backing plate. It can be 90% or more.
  • the temperature of the backing plate is more preferably heated to a temperature that is 10 to 15 ° C. higher than the indium target.
  • the tin concentration of the indium-tin brazing material used for bonding is preferably 10 to 60 at%. With such a configuration, a temperature difference between the indium target having a low melting point and the brazing material can be sufficiently provided for practical use, and good bonding is possible.
  • the tin concentration is preferably 20 to 55 at% in order to increase the temperature difference.
  • the laminated structure thus obtained can be suitably used as a sputtering target for the light absorption layer for CIGS thin film solar cells.
  • Examples 1 to 12 and Comparative Examples 1 to 7 First, indium having a purity of 4N is used as a raw material, this indium raw material is melted at 160 ° C., this solution is poured into a cylindrical mold having a diameter of 205 mm and a height of 7 mm, and solidified by natural cooling. The indium ingot was processed into a disk shape having a diameter of 204 mm and a thickness of 6 mm to obtain a sputtering target. Next, a copper backing plate having a diameter of 250 mm and a thickness of 5 mm was prepared.
  • the tin concentration indium-tin brazing material shown in Table 1 was used as the backing plate, indium.
  • the laminated structure was produced by spreading the coating in the order of the targets, immediately bonding the backing plate and the indium target, and then cooling at the cooling rate shown in Table 1.
  • the indium targets of the laminated structures obtained in the examples and comparative examples were cut and recovered by machining for each thickness from the indium-tin brazing material side surface to the thickness direction, and the tin concentration was measured by ICP analysis method, respectively. did.
  • the bonding state (adhesion rate) between the indium target and the backing plate of the laminated structures obtained in these examples and comparative examples was measured with an electronic scanning ultrasonic flaw detector.
  • the target is set in the flaw detector water tank of the apparatus, measured at a frequency band of 1.5 to 20 MHz, a pulse repetition frequency of 5 kHz, and a scan speed of 60 mm / min. Was calculated as an adhesion rate. Table 1 shows each measurement condition and measurement result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 インジウム-錫ロウ材からインジウムターゲットへの錫の拡散が良好に抑制された、使用効率が良好な積層構造体及びその製造方法を提供する。積層構造体は、バッキングプレート、インジウム-錫ロウ材、及び、インジウムターゲットがこの順で積層され、インジウムターゲットのインジウム-錫ロウ材側表面から2.5~3.0mmの厚み範囲における錫濃度が、5wtppm以下である。

Description

積層構造体及びその製造方法
 本発明は積層構造体及びその製造方法に関し、より詳細にはバッキングプレート及びインジウムターゲットを備えた積層構造体及びその製造方法に関する。
 通常、スパッタリングターゲットは、特許文献1に開示されているように、インジウムをロウ材としてバッキングプレートにボンディングされて用いられることが多い。
特開平10-280137号公報
 インジウムターゲットの場合、ボンディングにインジウムのロウ材を用いると、ターゲット及びロウ材が共にインジウムで形成されているため、ターゲット自体の溶融を招くといった問題がある。そのため、インジウムターゲットの場合、従来、バッキングプレート上に鋳型を設置し、直接鋳込む鋳造法や、特殊な接着剤を用いたボンディングが利用されてきたが、特殊な接着剤を用いると、接着率が十分でないことがあり、スパッタ中に不具合が生じることがあった。そこで、インジウムターゲットのボンディングにおいて、インジウムよりも融点の低いインジウム-錫合金をボンディングのロウ材として使用することがある。
 しかしながら、インジウムターゲットとインジウム-錫ロウ材とは融点の差が35℃程度であり、ボンディング表面では絶えず錫の拡散、固溶による融点低下が生じている。このような原因から、インジウムターゲット側への錫の拡散は非常に速くなり、インジウムターゲットではバッキングプレート側表面から4mmの厚み範囲まで錫が拡散するという問題が生じている。具体的には、バッキングプレート側表面から厚み方向に3~4mmの領域付近での錫の拡散は数十wtppm程度まで低減されているが、例えば厚み方向に2~3mmの領域付近では100wtppmを超えることがある。ターゲット厚みは概ね5~20mmであるから、この場合、ターゲット自体の15~60%の領域に錫が汚染拡散していることとなる。インジウムターゲットをスパッタして得られるインジウム膜はCIGS(Cu-In-Ga-Se)型太陽電池に使用されるため、インジウムターゲットは4N以上の高純度であることが求められる。錫が汚染拡散したインジウムターゲットにおいて、このような高純度を維持するためには、錫の汚染拡散領域までスパッタできず、大幅な利用効率低下を引き起こしている。
 そこで、本発明は、インジウム-錫ロウ材からインジウムターゲットへの錫の拡散が良好に抑制された、使用効率が良好な積層構造体及びその製造方法を提供することを課題とする。
 錫の拡散速度は温度依存性をもつ。本発明者らは、インジウムターゲットとバッキングプレートとをロウ材融点以上且つインジウム融点以下の温度で十分に加熱してロウ材でボンディングしたとき、錫の拡散がインジウムターゲットの表面から厚み方向に4mmの領域まで進んだことを確認している。このため、インジウムターゲットをインジウム-錫ロウ材でボンディングする際は、できるだけ低温で行うことが望ましい。また、本発明者らは、錫の拡散が温度や時間の影響を受けることにも着目した。
 このような知見に基づき、本発明者らは上記課題を解決するために鋭意検討したところ、インジウムターゲットとバッキングプレートとをインジウム-錫ロウ材でボンディングした後、それらを所定の冷却速度で冷却することで、錫のインジウムターゲット内への拡散を良好に抑制することができることを見出した。
 以上の知見を基礎として完成した本発明は一側面において、バッキングプレート、インジウム-錫ロウ材、及び、インジウムターゲットがこの順で積層され、前記インジウムターゲットの前記インジウム-錫ロウ材側表面から2.5~3.0mmの厚み範囲における錫濃度が、5wtppm以下である積層構造体である。
 本発明に係る積層構造体は一実施形態において、前記インジウムターゲットの前記インジウム-錫ロウ材側表面から2.0~2.5mmの厚み範囲における錫濃度が、100wtppm以下である。
 本発明に係る積層構造体は別の一実施形態において、前記インジウムターゲットの前記インジウム-錫ロウ材側表面から2.0~2.5mmの厚み範囲における錫濃度が、80wtppm以下である。
 本発明に係る積層構造体は更に別の一実施形態において、前記インジウムターゲットの前記インジウム-錫ロウ材側表面から1.5~2.0mmの厚み範囲における錫濃度が、200wtppm以下である。
 本発明に係る積層構造体は更に別の一実施形態において、前記インジウムターゲットの前記インジウム-錫ロウ材側表面から1.5~2.0mmの厚み範囲における錫濃度が、160wtppm以下である。
 本発明は別の一側面において、バッキングプレート、インジウム-錫ロウ材、及び、インジウムターゲットがこの順で積層された積層構造体の製造方法であって、温度が120~140℃のインジウムターゲットと、バッキングプレートとをインジウム-錫ロウ材を用いてボンディングする工程と、前記ボンディングされたバッキングプレート、インジウム-錫ロウ材、及び、インジウムターゲットを2.5℃/分以上の冷却速度で冷却する工程と、を備えた積層構造体の製造方法である。
 本発明に係る積層構造体の製造方法は一実施形態において、前記ボンディング工程で、前記インジウムターゲットと、前記インジウムターゲットより温度が8~20℃高いバッキングプレートとをインジウム-錫ロウ材を用いてボンディングする。
 本発明に係る積層構造体の製造方法は別の一実施形態において、前記ボンディングで使用するインジウム-錫ロウ材の錫濃度が10~60at%である。
 本発明によれば、インジウム-錫ロウ材からインジウムターゲットへの錫の拡散が良好に抑制された、使用効率が良好な積層構造体及びその製造方法を提供することができる。
 本発明に係る積層構造体は、バッキングプレート、インジウム-錫ロウ材、及び、インジウムターゲットがこの順で積層されて構成されている。バッキングプレートの形状は特に限定されないが、所定の厚さ及び直径を有する円盤状に形成することができる。バッキングプレートの構成材料は特に限定されないが、例えば銅等の金属材料で形成することができる。インジウム-錫ロウ材は、インジウムターゲットとバッキングプレートとを接合する機能を有している。
 通常、インジウムターゲットは、バッキングプレートにボンディングされる際に、インジウム-錫ロウ材からの錫の拡散を受ける。本発明に係る積層構造体も同様に錫が拡散しているが、後述の製造方法によりこの拡散の程度が小さく、インジウムターゲットへの錫拡散が、インジウム-錫ロウ材側表面から2.5mm以下に制御されている。ただし、錫の拡散厚みは当該箇所の錫濃度により把握し、インジウムターゲットのインジウム-錫ロウ材側表面から2.5~3.0mmの厚み範囲における錫濃度が、5wtppm以下であれば、錫の拡散範囲は2.5mm以下とみなす。拡散した錫の濃度はターゲット厚みごとにサンプリングし、ICPにより分析する。分析厚みを細かくすればそれだけ正確に厚みごとの拡散をみることができるが、0.25mm厚みずつサンプリングするとよい。サンプリングには旋盤やマシニングを用いることができる。このようにしてサンプリングしたインジウム片のICP分析から、その厚み範囲の錫濃度を分析することができ、錫拡散厚みを求めることができる。
 本発明に係る積層構造体は、このような構成により、スパッタ可能な領域の割合が多く、利用効率が良好である。インジウムターゲットのインジウム錫ロウ材側表面から2.5~3.0mmの厚みにおける錫濃度は1wtppm以下であることがより好ましい。また、インジウムターゲットの錫拡散厚みは、インジウム-錫ロウ材側表面から2.0mm以下であることがより好ましい。
 また、インジウムターゲットのインジウム-錫ロウ材側表面から2.0~2.5mmの厚み範囲における錫濃度が、100wtppm以下であることが好ましい。このような構成によれば、インジウムターゲットのインジウム-錫ロウ材側表面から2.0mm未満の領域は全て純度4Nを満たし、CIGS太陽電池用途のターゲットとして利用可能である。これは、ロウ材側表面から2.5~3.0mmの範囲で錫濃度が100wtppmを超える従来のインジウムターゲットに比べると、当該ターゲットの厚みが5~20mmである場合、6~50%の使用率の増加が可能である。当該領域の錫濃度はより好ましくは80wtppm以下である。
 また、インジウムターゲットのインジウム-錫ロウ材側表面から1.5~2.0mmの厚み範囲における錫濃度が、200wtppm以下であることが好ましい。このような構成によれば、成膜された膜側で、実質的に純度4Nの基準を満たすことができる。スパッタリングではターゲット面内でマグネットの位置関係からエロージョンに速度差が生じる。通常、最も良くスパッタされるエロージョン最深部が当該拡散域に到達した時点で使用終了となる。この際、他の領域は拡散域まで到達しておらず、4N以上の純度でスパッタされるため、1.5~2.0mmの厚み範囲における錫濃度が200wtppm以下であれば、最深部からスパッタされた錫汚染を十分に希釈することができ、膜の純度4Nを満たすことが可能である。当該領域の錫濃度はより好ましくは160wtppm以下である。
 積層構造体におけるインジウム-錫ロウ材の厚みは、0.05~0.5mmであるのが好ましい。インジウム-錫ロウ材の厚みが0.05mm未満であると、十分な密着性を提供できない。インジウム-錫ロウ材の厚みが0.5mm超であっても、密着性等の効果は逓減する一方で、高価な金属をより含むこととなるために、コスト的に不利となる。インジウム-錫ロウ材の厚みは、より好ましくは0.1~0.4mmである。
 次に、本発明に係る積層構造体の製造方法の好適な例を、順を追って説明する。
 まず、溶解鋳造法等でインジウムインゴットを作製する。続いて、このインジウムインゴットを所定の形状に加工してインジウムターゲットを作製する。この際、使用する原料インジウムは、作製する太陽電池の変換効率を高くするために、より高い純度を有していることが望ましく、例えば、純度99.99質量%(4N)以上のインジウムを使用することが望ましい。
 次に、所定の材料及び形状のバッキングプレートを用意して、インジウムターゲットを120~140℃に加熱しておき、さらにバッキングプレートを加熱しておく。十分に定常状態となった後、まずバッキングプレート上にインジウム-錫ロウ材を溶解させて、スクレーパー等を用いて十分に塗り広げる。インジウムターゲットも同様にインジウム-錫ロウ材を塗り、直ちにボンディングを行う。
 次に、ボンディングされたバッキングプレート、インジウム-錫ロウ材、及び、インジウムターゲットを2.5℃/分以上の冷却速度で冷却することで、積層構造体を作製する。
 このような構成により、インジウムターゲットへの錫の拡散の抑制が可能となる。これは、物質の拡散が温度、時間の影響を受けるためである。
 インジウムターゲットの温度は125~135℃とすることがより好ましい。
 冷却速度は4℃/分以上とすることがより好ましい。冷却速度はインジウムターゲットの温度(T℃)と、錫の固層拡散が十分に抑制されると考えられる40℃との差(T-40〔℃〕)を、冷却に要した時間(分)で除して求める。
 また、上記ボンディング工程において、インジウムターゲットとボンディングするバッキングプレートをインジウムターゲットより8~20℃高く設定しておくことが好ましい。ボンディング時にたびたび発生するロウ材のイレギュラーな凝固を抑制し、仮にそのような自体が発生した場合にも直ちに最溶解、回復され、良好なボンディングが可能となり、ターゲットとバッキングプレートとの接着率を90%以上とすることができる。バッキングプレートの温度はインジウムターゲットより10~15℃高い温度に加熱するのがより好ましい。また、このような温度差の設定を上記ボンディング法と組み合わせることで高い接着率と錫拡散の低減の両立が可能となる。
 ボンディングで使用するインジウム-錫ロウ材の錫濃度は10~60at%であることが好ましい。このような構成により、低融点であるインジウムターゲットとロウ材の温度差を実用上十分に設けることができ、良好なボンディングが可能となる。錫濃度は温度差をより大きくするため20~55at%が好ましい。
 このようにして得られた積層構造体は、CIGS系薄膜太陽電池用光吸収層のスパッタリングターゲットとして好適に使用することができる。
 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をより良く理解するために提供するものであり、発明が限定されることを意図するものではない。
 (実施例1~12及び比較例1~7)
 まず、純度4Nのインジウムを原料として使用し、このインジウム原料を160℃で溶解させ、この溶体を周囲が直径205mm、高さ7mmの円柱状の鋳型に流し込み、自然冷却により、凝固して得られたインジウムインゴットを直径204mm、厚さ6mmの円板状に加工して、スパッタリングターゲットとした。
 次に、直径250mm、厚さ5mmの銅製のバッキングプレートを準備した。
 次に、バッキングプレートを表1に記載の温度Aに加熱し、インジウムターゲットを表1記載の温度Bで加熱した状態で、表1に記載の錫濃度のインジウム-錫ロウ材をバッキングプレート、インジウムターゲットの順に塗り広げ、ただちにバッキングプレートとインジウムターゲットとをボンディングし、次に表1に記載の冷却速度で冷却することにより積層構造体を作製した。
 (評価)
 実施例及び比較例で得られた積層構造体のインジウムターゲットについて、インジウム-錫ロウ材側表面から厚み方向へかけて、厚みごとにマシニングにより切削、回収し、錫濃度をそれぞれICP分析法で測定した。
 また、これら実施例及び比較例で得られた積層構造体のインジウムターゲットとバッキングプレートとの接合状態(接着率)を電子走査式超音波探傷器で測定した。具体的には、ターゲットを当該装置の探傷器水槽内にセットして、周波数帯域1.5~20MHz、パルス繰返し周波数5kHz、スキャンスピード60mm/minで測定し、得られた像イメージから、接着領域が全体領域に占める割合を算出し、接着率として表した。
 各測定条件及び測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1によれば、実施例1~12は、いずれもインジウム-錫ロウ材からインジウムターゲットへの錫の拡散が良好に抑制され、インジウムターゲットとバッキングプレートとの接着率も良好であった。ただし、実施例11及び12は、ボンディング工程で、バッキングプレートの温度がインジウムターゲットより8~20℃高いものではなかったため、他の実施例と比較した場合、接着率はやや低下した。
 比較例1~5は、いずれもボンディングされたバッキングプレート、インジウム-錫ロウ材、及び、インジウムターゲットを冷却する速度が2.5℃/分未満であったため、インジウム-錫ロウ材からインジウムターゲットへの錫の拡散が大きかった。
 比較例6及び7は、ボンディング工程におけるインジウムターゲットの温度が120~140℃の範囲外であったため、インジウム-錫ロウ材からインジウムターゲットへの錫の拡散が大きかった。

Claims (8)

  1.  バッキングプレート、インジウム-錫ロウ材、及び、インジウムターゲットがこの順で積層され、
     前記インジウムターゲットの前記インジウム-錫ロウ材側表面から2.5~3.0mmの厚み範囲における錫濃度が、5wtppm以下である積層構造体。
  2.  前記インジウムターゲットの前記インジウム-錫ロウ材側表面から2.0~2.5mmの厚み範囲における錫濃度が、100wtppm以下である請求項1に記載の積層構造体。
  3.  前記インジウムターゲットの前記インジウム-錫ロウ材側表面から2.0~2.5mmの厚み範囲における錫濃度が、80wtppm以下である請求項2に記載の積層構造体。
  4.  前記インジウムターゲットの前記インジウム-錫ロウ材側表面から1.5~2.0mmの厚み範囲における錫濃度が、200wtppm以下である請求項1~3のいずれかに記載の積層構造体。
  5.  前記インジウムターゲットの前記インジウム-錫ロウ材側表面から1.5~2.0mmの厚み範囲における錫濃度が、160wtppm以下である請求項4に記載の積層構造体。
  6.  バッキングプレート、インジウム-錫ロウ材、及び、インジウムターゲットがこの順で積層された積層構造体の製造方法であって、
     温度が120~140℃のインジウムターゲットと、バッキングプレートとをインジウム-錫ロウ材を用いてボンディングする工程と、
     前記ボンディングされたバッキングプレート、インジウム-錫ロウ材、及び、インジウムターゲットを2.5℃/分以上の冷却速度で冷却する工程と、
    を備えた積層構造体の製造方法。
  7.  前記ボンディング工程で、前記インジウムターゲットと、前記インジウムターゲットより温度が8~20℃高いバッキングプレートとをインジウム-錫ロウ材を用いてボンディングする請求項6に記載の積層構造体の製造方法。
  8.  前記ボンディングで使用するインジウム-錫ロウ材の錫濃度が10~60at%である請求項6又は7に記載の積層構造体の製造方法。
PCT/JP2012/068838 2011-09-21 2012-07-25 積層構造体及びその製造方法 WO2013042451A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/808,009 US9023487B2 (en) 2011-09-21 2012-07-25 Laminated structure and method for producing the same
EP12806324.5A EP2653585B1 (en) 2011-09-21 2012-07-25 Laminated structure body and fabrication method for same
KR1020127032368A KR101271846B1 (ko) 2011-09-21 2012-07-25 적층 구조체 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-206363 2011-09-21
JP2011206363A JP5026611B1 (ja) 2011-09-21 2011-09-21 積層構造体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013042451A1 true WO2013042451A1 (ja) 2013-03-28

Family

ID=46980590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068838 WO2013042451A1 (ja) 2011-09-21 2012-07-25 積層構造体及びその製造方法

Country Status (6)

Country Link
US (1) US9023487B2 (ja)
EP (1) EP2653585B1 (ja)
JP (1) JP5026611B1 (ja)
KR (1) KR101271846B1 (ja)
TW (1) TWI401332B (ja)
WO (1) WO2013042451A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948634B2 (ja) 2010-09-01 2012-06-06 Jx日鉱日石金属株式会社 インジウムターゲット及びその製造方法
JP5256332B2 (ja) 2010-12-16 2013-08-07 住友ゴム工業株式会社 劣化解析方法
JP5140169B2 (ja) 2011-03-01 2013-02-06 Jx日鉱日石金属株式会社 インジウムターゲット及びその製造方法
JP5074628B1 (ja) 2012-01-05 2012-11-14 Jx日鉱日石金属株式会社 インジウム製スパッタリングターゲット及びその製造方法
KR20140054169A (ko) 2012-08-22 2014-05-08 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 인듐제 원통형 스퍼터링 타깃 및 그 제조 방법
WO2015004958A1 (ja) 2013-07-08 2015-01-15 Jx日鉱日石金属株式会社 スパッタリングターゲット及び、それの製造方法
JP6448441B2 (ja) * 2015-03-30 2019-01-09 Jx金属株式会社 積層構造体及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344820B2 (ja) * 1981-05-07 1988-09-07 Mitsui Mining & Smelting Co
JPH10280137A (ja) 1997-04-04 1998-10-20 Tosoh Corp スパッタリングターゲットの製造方法
JPH11236664A (ja) * 1998-02-24 1999-08-31 Mitsui Chem Inc スパッタリング用ターゲットのバッキングプレート
JP2010024474A (ja) * 2008-07-16 2010-02-04 Sumitomo Metal Mining Co Ltd インジウムターゲットの製造方法

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3046651A (en) * 1958-03-14 1962-07-31 Honeywell Regulator Co Soldering technique
JPS58145310A (ja) 1982-02-22 1983-08-30 Masanobu Nakamura 偏肉管の製造方法
JPS61227166A (ja) * 1985-03-29 1986-10-09 Mitsubishi Metal Corp スパツタリング用ビスマスまたはビスマス含有タ−ゲツト
JPS63111172A (ja) 1986-10-29 1988-05-16 Hitachi Metals Ltd タ−ゲツト材の製造方法
DE3929534A1 (de) 1989-09-06 1991-03-28 Daimler Benz Ag Verfahren zur herstellung eines ventils
JPH04301074A (ja) 1991-03-29 1992-10-23 Mitsui Mining & Smelting Co Ltd スパッタリング用ターゲット
JP3974945B2 (ja) 1992-01-30 2007-09-12 東ソー株式会社 チタンスパッタリングターゲット
US5269453A (en) * 1992-04-02 1993-12-14 Motorola, Inc. Low temperature method for forming solder bump interconnections to a plated circuit trace
JPH06287661A (ja) 1993-03-31 1994-10-11 Nikko Kinzoku Kk 高融点金属溶製材の製造法
JP3152108B2 (ja) 1994-06-13 2001-04-03 東ソー株式会社 Itoスパッタリングターゲット
US5630918A (en) 1994-06-13 1997-05-20 Tosoh Corporation ITO sputtering target
JP3591602B2 (ja) 1995-02-09 2004-11-24 日立金属株式会社 インジウム・スズ酸化物膜用ターゲット
JPH08281208A (ja) 1995-04-07 1996-10-29 Sumitomo Light Metal Ind Ltd アルミニウム合金研削部の塗装前処理方法
JP3560393B2 (ja) 1995-07-06 2004-09-02 株式会社日鉱マテリアルズ アルミニウム合金スパッタリングターゲットの製造方法
JPH09155585A (ja) * 1995-12-04 1997-06-17 Mitsubishi Materials Corp 可塑性を備えたはんだシ−ト材およびその製造方法
JP3538664B2 (ja) * 1997-04-16 2004-06-14 株式会社小松製作所 Ti系材料のコーティング方法
US20010047838A1 (en) 2000-03-28 2001-12-06 Segal Vladimir M. Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions
DE10063383C1 (de) 2000-12-19 2002-03-14 Heraeus Gmbh W C Verfahren zur Herstellung eines Rohrtargets und Verwendung
KR100541329B1 (ko) 2001-09-18 2006-01-10 미쓰이 긴조꾸 고교 가부시키가이샤 스퍼터링 표적 및 그 제조 방법
JP2003183820A (ja) 2001-12-10 2003-07-03 Mitsui Mining & Smelting Co Ltd スパッタリングターゲット
JP2003089869A (ja) 2001-09-18 2003-03-28 Mitsui Mining & Smelting Co Ltd スパッタリングターゲットおよびその製造方法
JP2003136190A (ja) 2001-11-07 2003-05-14 Mitsubishi Materials Corp 微細な結晶粒を有するインゴットを製造するための振動鋳造用鋳型
JP2004131747A (ja) 2002-10-08 2004-04-30 Sumitomo Metal Mining Co Ltd 表示デバイス用銀合金及びこの銀合金を用いて形成した電極膜または反射膜を使用する表示デバイス
US20050029675A1 (en) * 2003-03-31 2005-02-10 Fay Hua Tin/indium lead-free solders for low stress chip attachment
JP2005002364A (ja) 2003-06-09 2005-01-06 Mitsui Mining & Smelting Co Ltd スパッタリングターゲット及びその製造方法
US20050269385A1 (en) * 2004-06-03 2005-12-08 National Tsing Hua University Soldering method and solder joints formed therein
JP2006102807A (ja) 2004-10-08 2006-04-20 Toyota Motor Corp 金属組織改質方法
DE102004060423B4 (de) 2004-12-14 2016-10-27 Heraeus Deutschland GmbH & Co. KG Rohrtarget und dessen Verwendung
JP2006322039A (ja) 2005-05-18 2006-11-30 Sumitomo Metal Mining Co Ltd スパッタリングターゲット
DE102006026005A1 (de) * 2006-06-01 2007-12-06 W.C. Heraeus Gmbh Kaltgepresste Sputtertargets
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
US20090065354A1 (en) 2007-09-12 2009-03-12 Kardokus Janine K Sputtering targets comprising a novel manufacturing design, methods of production and uses thereof
JP5208556B2 (ja) 2008-03-31 2013-06-12 Jx日鉱日石金属株式会社 精密プレス加工に適したチタン銅及び該チタン銅の製造方法
US8003432B2 (en) 2008-06-25 2011-08-23 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
CN102265716B (zh) * 2008-12-26 2015-04-01 高通股份有限公司 具有功率管理集成电路的芯片封装和相关技术
EP2287356A1 (en) 2009-07-31 2011-02-23 Bekaert Advanced Coatings NV. Sputter target, method and apparatus for manufacturing sputter targets
US8894826B2 (en) 2009-09-24 2014-11-25 Jesse A. Frantz Copper indium gallium selenide (CIGS) thin films with composition controlled by co-sputtering
US20110089030A1 (en) 2009-10-20 2011-04-21 Miasole CIG sputtering target and methods of making and using thereof
JP2011236445A (ja) 2010-04-30 2011-11-24 Jx Nippon Mining & Metals Corp インジウムメタルターゲット及びその製造方法
JP4948633B2 (ja) 2010-08-31 2012-06-06 Jx日鉱日石金属株式会社 インジウムターゲット及びその製造方法
JP4872014B1 (ja) 2010-08-31 2012-02-08 Jx日鉱日石金属株式会社 積層構造体及びその製造方法
JP4837785B1 (ja) 2010-09-01 2011-12-14 Jx日鉱日石金属株式会社 インジウムターゲット及びその製造方法
JP4948634B2 (ja) 2010-09-01 2012-06-06 Jx日鉱日石金属株式会社 インジウムターゲット及びその製造方法
DE102011012034A1 (de) 2011-02-22 2012-08-23 Heraeus Materials Technology Gmbh & Co. Kg Rohrförmiges Sputtertarget
JP5140169B2 (ja) 2011-03-01 2013-02-06 Jx日鉱日石金属株式会社 インジウムターゲット及びその製造方法
JP4884561B1 (ja) 2011-04-19 2012-02-29 Jx日鉱日石金属株式会社 インジウムターゲット及びその製造方法
JP5074628B1 (ja) 2012-01-05 2012-11-14 Jx日鉱日石金属株式会社 インジウム製スパッタリングターゲット及びその製造方法
KR20140054169A (ko) 2012-08-22 2014-05-08 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 인듐제 원통형 스퍼터링 타깃 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344820B2 (ja) * 1981-05-07 1988-09-07 Mitsui Mining & Smelting Co
JPH10280137A (ja) 1997-04-04 1998-10-20 Tosoh Corp スパッタリングターゲットの製造方法
JPH11236664A (ja) * 1998-02-24 1999-08-31 Mitsui Chem Inc スパッタリング用ターゲットのバッキングプレート
JP2010024474A (ja) * 2008-07-16 2010-02-04 Sumitomo Metal Mining Co Ltd インジウムターゲットの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653585A4 *

Also Published As

Publication number Publication date
EP2653585A4 (en) 2014-08-06
US9023487B2 (en) 2015-05-05
US20130143069A1 (en) 2013-06-06
EP2653585A1 (en) 2013-10-23
JP5026611B1 (ja) 2012-09-12
KR101271846B1 (ko) 2013-06-07
KR20130041812A (ko) 2013-04-25
JP2013067831A (ja) 2013-04-18
EP2653585B1 (en) 2015-09-09
TW201309832A (zh) 2013-03-01
TWI401332B (zh) 2013-07-11

Similar Documents

Publication Publication Date Title
JP5026611B1 (ja) 積層構造体及びその製造方法
JP5818139B2 (ja) Cu−Ga合金ターゲット材およびその製造方法
JP5140169B2 (ja) インジウムターゲット及びその製造方法
JP6716452B2 (ja) 再生スパッタリングターゲットの製造方法および再生スパッタリング
CN108754437B (zh) 溅射靶
JP5086452B2 (ja) インジウムターゲット及びその製造方法
JP6665428B2 (ja) Cu−Ga合金スパッタリングターゲット及びその製造方法
TWI570252B (zh) Cu-Ga alloy sputtering target and its manufacturing method
US20170169998A1 (en) In-Cu Alloy Sputtering Target And Method For Producing The Same
WO2015087788A1 (ja) In又はIn合金スパッタリングターゲット及びその製造方法
JP6459621B2 (ja) 錫合金スパッタリングターゲット
JP5611886B2 (ja) 積層構造体及びその製造方法
JP4872014B1 (ja) 積層構造体及びその製造方法
JP5871106B2 (ja) In合金スパッタリングターゲット、その製造方法及びIn合金膜
JP6636799B2 (ja) 銅合金スパッタリングターゲット及びその評価方法
JP2012052175A (ja) 積層構造体及びその製造方法
JP6350969B2 (ja) In又はIn合金スパッタリングターゲット及びその製造方法
JP7014003B2 (ja) はんだ接合電極およびはんだ接合電極の被膜形成用銅合金ターゲット
JP7155677B2 (ja) はんだ接合電極およびはんだ接合電極の被膜形成用錫合金ターゲット
KR20170001682U (ko) 백킹 플레이트-스퍼터링 타겟 조립체
JP2020183552A (ja) In−Ag合金スパッタリングターゲット部材及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127032368

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13808009

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012806324

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12806324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE