WO2015087788A1 - In又はIn合金スパッタリングターゲット及びその製造方法 - Google Patents

In又はIn合金スパッタリングターゲット及びその製造方法 Download PDF

Info

Publication number
WO2015087788A1
WO2015087788A1 PCT/JP2014/082180 JP2014082180W WO2015087788A1 WO 2015087788 A1 WO2015087788 A1 WO 2015087788A1 JP 2014082180 W JP2014082180 W JP 2014082180W WO 2015087788 A1 WO2015087788 A1 WO 2015087788A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
layer
target
backing plate
sputtering target
Prior art date
Application number
PCT/JP2014/082180
Other languages
English (en)
French (fr)
Inventor
雄也 陸田
啓太 梅本
張 守斌
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201480054518.1A priority Critical patent/CN105593398B/zh
Publication of WO2015087788A1 publication Critical patent/WO2015087788A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to an In or In alloy sputtering target in which Cu diffusion into In is reduced and the bonding strength with a target support base composed of a backing plate, backing tube, or the like made of Cu or Cu alloy is improved, and a method for manufacturing the same.
  • This application claims priority based on Japanese Patent Application No. 2013-253986 for which it applied to Japan on December 9, 2013, and uses the content here.
  • a thin film solar cell including a compound semiconductor has been put to practical use.
  • a Cu—In—Ga—Se quaternary alloy film (hereinafter referred to as a CIGS film) is used.
  • the thing using the light absorption layer which consists of is known.
  • a method of forming this CIGS film by a sputtering method first, an In film is formed by a sputtering method using an In sputtering target, and a Cu—Ga binary alloy sputtering target is used on the In film.
  • a Cu—Ga binary alloy film is formed by sputtering, and the obtained multilayer film composed of the In film and the Cu—Ga binary alloy film is heat-treated in a Se atmosphere to form a Cu—In—Ga— film.
  • a method (selenization method) for forming a Se quaternary alloy film has been proposed.
  • a step of forming a Ni film on the backing plate made of Cu or Cu alloy A process for producing an In sputtering target by dissolving an In raw material on a Ni film formed on a heated backing plate and further cooling and solidifying the dissolved In raw material.
  • a manufacturing method has been developed (see, for example, Patent Document 2).
  • the present invention suppresses the diffusion of Cu from the target support substrate (hereinafter also referred to as the backing plate) composed of a Cu or Cu alloy backing plate, backing tube, etc. It is an object of the present invention to provide an In or In alloy sputtering target that can reduce the content of impurities in the substrate and has sufficient bonding strength between the backing plate and In and a method for producing the same.
  • the target support substrate hereinafter also referred to as the backing plate
  • the backing plate composed of a Cu or Cu alloy backing plate, backing tube, etc.
  • the present inventors have made various studies.
  • the In or Cu is bonded via a bonding layer made of an alloy of In and Cu (InCu alloy). It was found that by bonding a target body made of an In alloy, an In or In alloy sputtering target in which the bonding strength between the target body and the backing plate was increased can be obtained. It was also found that this InCu alloy bonding layer can suppress Cu diffusion into the In layer. Further, after polishing the surface of the Cu or Cu alloy backing plate, an underlayer made of an alloy of In and Cu (InCu alloy) is formed in advance on the surface.
  • the present invention is not only an In or In alloy sputtering target using a flat Cu or Cu alloy backing plate, but also an In or In alloy cylindrical sputtering target using a cylindrical Cu or Cu alloy backing tube, The present invention can also be applied to In or In alloy sputtering targets having other similar structures.
  • an In or In alloy sputtering target of the present invention an In or In alloy layer as a target body is bonded by an alloy of In and Cu on a target support base made of a backing plate or backing tube made of Cu or Cu alloy.
  • An In or In alloy sputtering target bonded through layers, wherein the bonding layer has a thickness of 5 to 100 ⁇ m.
  • the bonding layer in the In or In alloy sputtering target according to (1) has a coverage of 90% or more on the bonding surface between the In or In alloy layer and the target support base.
  • the method for producing an In or In alloy sputtering target of the present invention comprises a step of polishing the surface of a target support substrate with a backing plate or a backing tube made of Cu or Cu alloy, and a thickness on the surface of the target support substrate.
  • the method for producing an In or In alloy sputtering target of the present invention comprises a step of polishing the surface of a target support substrate with a backing plate or a backing tube made of Cu or Cu alloy, and a thickness on the surface of the target support substrate.
  • the step of forming a base layer made of an alloy of In and Cu having a thickness of 3 to 50 ⁇ m, and forming In or an In alloy melt on the formed base layer, cooling and solidifying the In or the target body A step of forming an In alloy layer and a step of machining the In or In alloy layer, wherein the In or In alloy layer and the target support base are made of In and Cu formed in the underlayer. It is characterized by being bonded through a bonding layer made of an alloy.
  • the base layer and the bonding layer each have a coverage ratio of 90% or more with respect to the bonding surface between the In or In alloy layer and the target support base. .
  • the surface of the target support base is polished to a surface roughness of 0.1 to 1.0 ⁇ m.
  • the In or In alloy layer serving as the target main body is formed of InCu on the target support base constituted by the Cu or Cu alloy-made backing plate or backing tube. Since the bonding is performed through the alloy bonding layer, sufficient bonding strength between the target support base composed of the backing plate or the backing tube and the target main body composed of the In or In alloy layer is obtained, and the machine at the time of target production Peeling does not occur during processing, and an In or In alloy sputtering target with reduced diffusion of Cu as an impurity can be obtained.
  • an underlayer composed of InCu alloy is formed in advance on the surface. Then, the In raw material is dissolved on the formed underlayer, and the dissolved In is cooled and solidified to form an In layer or an In alloy layer. Therefore, in the In layer or In alloy layer, the Cu concentration can be reduced to such an extent that it does not affect the formation of the CIGS film, and the target body composed of the In or In alloy layer and the backing plate form the InCu alloy bonded layer. Are joined together. Therefore, the diffusion of Cu from the backing plate can be suppressed without the intervention of a Ni film that leads to an increase in cost.
  • FIGS. 1 to 5 An embodiment relating to an In or In alloy sputtering target and a method for producing the same according to the present invention will be described with reference to FIGS. 1 to 5.
  • the In or In alloy layer constituting the target body is formed of an alloy of In and Cu having a thickness of 5 to 100 ⁇ m on a backing plate made of Cu or Cu alloy. Are bonded via a bonding layer (InCu alloy phase).
  • a bonding layer InCu alloy phase.
  • the bonding layer can suppress the diffusion of Cu into the target body constituted by the In or In alloy layer.
  • a better diffusion suppression effect can be obtained by setting the coverage of the bonding layer at the interface between the backing plate and the In or In alloy layer serving as the target body to 90% or more. The coverage is preferably 95 to 100%, but is not limited thereto.
  • the surface of the backing plate made of Cu or Cu alloy and the In or In alloy layer serving as the target body are joined via the bonding layer composed of an alloy of In and Cu, sufficient joining strength is obtained. And will not peel off during machining. And Cu diffusion to In or In alloy layer used as a target body is also controlled in the range of Cu concentration: 2000 mass ppm or less. When the Cu concentration exceeds 2000 ppm by mass, the composition control of the CIGS film is affected, and the necessity of an In or In alloy sputtering target with few impurities cannot be met.
  • the thickness of the bonding layer made of the alloy of In and Cu is 5 to 100 ⁇ m.
  • the bonding strength between the In or In alloy layer and the backing plate is lowered, and the peeling of the bonding is likely to occur (the backing plate and the target body are easily peeled off).
  • the bonding layer composed of an alloy of In and Cu has high hardness and is brittle, when the thickness exceeds 100 ⁇ m, bonding peeling or a crack on the bonding surface is likely to occur.
  • the thickness of the bonding layer is preferably 5 to 50 ⁇ m, but is not limited thereto.
  • the bonding layer having a thickness of 5 to 100 ⁇ m has 90% or more of the interface (bonding surface) between the In or In alloy layer serving as the target body and the backing plate. Covering.
  • a bonding layer having a thickness of 5 ⁇ m or more cannot cover a bonding surface of 90% or more, In or In which becomes a target body from a portion without the bonding layer or a thin portion (a portion having a thickness of less than 5 ⁇ m)
  • a large amount of Cu is diffused into the alloy layer, and the Cu content in the target cannot be controlled within the target value.
  • the bonding layer having a thickness of 100 ⁇ m or more occupies 90% or more, cracks are likely to occur at the interface between the In or In alloy layer serving as the target body and the backing plate.
  • the surface of the backing plate made of Cu or Cu alloy is polished, and then an alloy of In and Cu having a thickness of 3 to 50 ⁇ m (InCu alloy) is used.
  • a base layer to be formed is formed, and then an In raw material is dissolved on the base layer of the InCu alloy (In or In alloy melt is formed), and a bonding layer made of an alloy of In and Cu (InCu alloy) Is formed on the surface of the backing plate, and an In or In alloy layer serving as a target body is attached to the backing plate via a bonding layer, thereby producing an In or In alloy sputtering target.
  • a base layer made of an InCu alloy with a thickness of 3 to 50 ⁇ m is formed, and thereafter or simultaneously with this, the In raw material is dissolved on the base layer, and the dissolved In raw material is cooled.
  • the target body made of In or In alloy layer is cast on the surface of the backing plate by solidifying and the target body can be machined to prevent peeling of the target body from the backing plate, and Cu It is also possible to produce an In or In alloy sputtering target with a low impurity content. Therefore, the In or In alloy layer can be bonded to the Cu or Cu alloy backing plate via the bonding layer (InCu alloy phase), and the bonding strength between the target body and the backing plate is increased. A sputtering target can be produced.
  • the surface of the backing plate made of Cu or Cu alloy is polished to a surface roughness of 0.1 to 1.0 ⁇ m.
  • the reason is that it is not preferable that the surface roughness is less than 0.1 ⁇ m because it takes time and effort for surface processing.
  • the surface roughness exceeds 1.0 ⁇ m, defects are likely to occur in the bonding layer formed on the surface, and Cu diffusion to the In or In alloy layer cannot be reduced, which is not preferable. Therefore, the surface roughness (arithmetic mean roughness Ra) of the backing plate is set in the range of 0.1 to 1.0 ⁇ m.
  • the surface roughness of the backing plate is preferably 0.1 to 0.5 ⁇ m, but is not limited thereto.
  • FIG. 2 shows an image photographed with an electron microscope
  • FIG. 3 shows each measured with an electron probe microanalyzer (EPMA).
  • EPMA electron probe microanalyzer
  • the element distribution images of the elements are shown.
  • the element distribution image by EPMA is originally a color image, but in the photograph of FIG. 3, it is converted into a black and white image, so that the whiter in the photograph, the higher the concentration of the element. ing.
  • the In layer serving as the target body labeled “In” passes through the bonding layer labeled “InCu alloy phase”.
  • a state of being bonded to a Cu backing plate labeled “Cu” is observed.
  • the composition distribution of each element of In and Cu is observed, and a bonding layer that is an “InCu alloy phase” is formed at the interface between the In layer and the Cu backing plate. Is confirmed to be generated.
  • FIG. 4 shows an image taken with an electron microscope
  • FIG. 5 shows an element distribution image of each element measured by EPMA. . 4 and 5, it can be seen that a bonding layer that is an “InCu alloy phase” is not generated in the In sputtering target according to the conventional example.
  • the In layer serving as the target body has been described in the case of an In sputtering target bonded to a Cu or Cu alloy backing plate.
  • the In layer may also be an In alloy sputtering target in which an In alloy layer is used. Even if the shape of the target is cylindrical (using a Cu or Cu alloy backing tube as the target support base), the In alloy layer and the Cu or Cu alloy backing plate (or backing) can be used according to the above-described manufacturing procedure. It has been confirmed that a bonding layer made of an InCu alloy phase is generated at the interface when the tube is bonded to the tube.
  • the In alloy include alloys such as In—Al, In—Bi, In—Sb, In—Zn, and In—Sn.
  • the bonding layer made of an InCu alloy can be formed by a vapor deposition method (for example, an ion plating method, a sputtering method, etc.), a plating method, or the like.
  • a uniform underlayer made of an alloy of Cu and In is produced by irradiating the surface of the Cu backing plate with ultrasonic waves while heating at a temperature of 160-230 ° C after forming an In film or applying In molten metal. can do.
  • the irradiation time is adjusted so that the thickness of the underlying layer to be generated is 3 to 50 ⁇ m.
  • the underlayer coverage rate can be adjusted to 90% or more by adjusting the irradiation time or the In molten metal temperature.
  • the frequency of the ultrasonic wave used for irradiation may be in the range of 10 to 100 kHz, and 20 to 50 kHz is particularly preferable.
  • the irradiation power of ultrasonic waves is preferably 5 to 300 W / cm 2 , particularly preferably 10 to 100 W / cm 2 .
  • the ultrasonic irradiation may be performed simultaneously on the entire bonding surface, or may be sequentially performed for each part of the bonding surface.
  • the irradiation time is preferably 5 to 30 seconds, but is not limited thereto.
  • Step 1 Surface roughness: A backing plate 1 made of circular Cu or Cu alloy polished in a range of 0.1 to 1.0 ⁇ m is placed on a hot plate 2 heated to 160 to 230 ° C., and the backing plate 1 is heated (see FIG. 1A).
  • the surface polishing of the backing plate 1 is performed using a commercially available polishing apparatus so as to be in the above-described surface roughness range.
  • Step 2 A mold (made of SUS) 3 serving as a weir is provided on the outer periphery of the backing plate 1 to form a mold on the backing plate 1 (see FIG. 1B).
  • Step 3 The backing plate 1 is heated to 160 to 230 ° C., and the molten In is uniformly applied to the bonding surface.
  • Step 4 The In molten metal and the backing plate 1 are irradiated with ultrasonic waves to uniformly form a base layer 4 made of a Cu—In alloy having a thickness of 3 to 50 ⁇ m. After the underlayer 4 is formed, the excess In molten metal is removed. After forming the foundation layer 4, the backing plate 1 is once cooled, and the following step 5 may be performed, or may be performed substantially continuously with the step 5.
  • Step 5 A predetermined amount of In ingot 5 which is an In raw material having a purity of 99.99% or more is charged into a mold formed by the mold 3 (see FIG. 1D).
  • Step 6 In the mold, heated to a temperature equal to or higher than the melting point of In, the In ingot 5 is melted, and the In melt 6 is formed. Then, for example, the heating is stopped quickly, and the In melt 6 is cooled and solidified. Do.
  • the molten In temperature is preferably 250 ° C. or lower, and the cooling rate to 160 ° C. is 30 ° C./h or higher. It is preferable (see (E) of FIG. 1).
  • Step 7 After the In melt 6 is solidified and the In layer 7 serving as the target body is formed, the mold 3 is removed, and the surface of the In layer 7 is cut by machining to complete an In sputtering target having a predetermined shape ( (See (F) in FIG. 1).
  • the In layer 7 is joined to the backing plate 1 via a bonding layer made of an InCu alloy.
  • the underlayer 4 made of an InCu alloy is formed, and on this underlayer 4, In as an In raw material is formed.
  • the In sputtering target is manufactured by melting the ingot 5 and cooling and solidifying the In melt 6 to form the In layer 7.
  • an alloy layer of In and Cu is further uniformly grown on the base layer 4 to form a bonding layer having a thickness of 5 to 100 ⁇ m. From the backing plate 1 to the In layer 7 serving as the target body Cu diffusion can be suppressed, and the Cu content in the In layer 7 can be reduced to a range of 200 to 2000 ppm by mass.
  • step 4 since the underlayer 4 made of InCu alloy and the backing plate 1 are diffusion-bonded, that is, a bonding layer made of an InCu alloy phase is formed, an In sputtering target having sufficient bonding strength can be produced. Further, by setting the coverage of the base layer 4 formed in advance on the bonding surface to 90% or more, a bonding layer having a coverage of 90% or more at the bonding interface can be formed. For this reason, the better suppression effect is acquired with respect to the spreading
  • FIG. Similarly, after step 4, there is also a method of forming an In layer 7 by bonding an In plate corresponding to an In layer prepared in advance to the backing plate 1 through the base layer 4, and the same effect as above. Is obtained.
  • the In sputtering target of this embodiment was produced according to the process procedure shown in FIG. First, the circular Cu backing plate 1 polished to the surface roughness shown in Table 1 is placed on a heated hot plate so as to have the backing plate temperature shown in Table 1, and the backing plate is placed. Was heated (step 1) to form an InCu alloy underlayer on the polished surface. An underlayer is formed by irradiating ultrasonic waves with a frequency of 40 kHz and a power density of 50 W / cm 2 for the irradiation time (seconds) shown in Table 1 on the surface of the backing plate coated with the molten In.
  • Indium melt with oxide film was removed (step 2).
  • an SUS cylindrical mold was provided on the backing plate on which the underlayer was formed, and a mold having a diameter of 50.8 mm was formed on the backing plate (step 3).
  • a predetermined amount of In ingot having a purity of 99.99% or more was charged into the mold (step 4).
  • the heating time is set to the keeping time (minutes) shown in Table 1 and heated, the In ingot is melted, an In melt is formed, and then it is allowed to cool and solidify. (Step 5).
  • Example 7 After the In melt was solidified and the In layer was formed, in order to remove the cylindrical mold and make a target body, the surface of the In layer was cut by machining and Examples 1 to 6 having a thickness of 10 mm were used.
  • An In sputtering target was prepared (step 6). Further, in Example 7, following the step 2, the surface of the backing plate on which the underlayer was formed was previously coated with an In molten metal having a thickness of about 0.4 mm, and then rolled and machined in advance. An In plate corresponding to the In layer was placed (step 7). When the bottom surface of the In plate began to melt, heating by the hot plate was stopped, allowed to cool, and bonded (step 8).
  • Comparative Example 4 For comparison with the above examples, In sputtering targets of Comparative Examples 1 to 3 were produced.
  • the production of the In sputtering target of each comparative example is the same as the production procedure of the In sputtering target of Examples 1 to 6 (steps 1 to 6). In this case, any of the conditions of surface roughness Ra, melting temperature, keeping time, bonding layer (InCu alloy phase) thickness, and Cu content is out of the range of the present embodiment.
  • Comparative Example 4 is similar to the In sputtering target manufacturing steps 7 and 8 of Example 7, but the step 2 of forming the underlayer is not performed.
  • the backing plate surface roughness, the underlayer thickness and the cover ratio, the bonding layer thickness and the cover ratio, the target body and the backing The Cu content in the target body at a position 1 mm from the plate interface was measured, and the state of the bonding interface was confirmed visually.
  • the reason for measuring the Cu content in the In target main body at a position of 1 mm from the interface between the target main body and the backing plate is that the Cu impurity diffused from the backing plate tends to be higher in concentration as it is closer to the bonding surface. This is because the sampling at the position can more appropriately confirm the Cu impurity concentration in the target body to be used.
  • the coverage of the underlayer is obtained by cutting and analyzing the backing plate with the underlayer in step 2 created under the same conditions as in the example and the comparative example.
  • the thickness of the alloy phase was measured.
  • the thickness of the InCu alloy phase is measured at every 5 mm in the same direction from the center of the target body in the direction perpendicular to the thickness direction, and the measured values at the five locations are averaged.
  • the thickness of the alloy phase was obtained by line analysis.
  • the measurement results are shown in the “Underlayer thickness ( ⁇ m)” column and “Binding layer thickness ( ⁇ m)” column of Table 1.
  • ⁇ Measurement of Coverage of Underlayer and Bonding Layer (InCu Alloy Phase)> Using the above EPMA image, the length of the interface area where the thickness of the underlayer was 3 ⁇ m to 50 ⁇ m was measured, and the coverage was calculated as follows.
  • (Underlayer coverage) [(Length of interface area of 3 to 50 ⁇ m) / (Total length of observed interface)] ⁇ 100%
  • the measured values in the range of arbitrary 5 locations on the bonding surface and the interface length of 5 mm in each location were averaged to obtain the coverage of the underlayer related to the In sputtering target.
  • the coverage of the bonding layer having a thickness of 5 to 100 ⁇ m was also measured, and the measurement results are shown in the “Underlayer Coverage” column and the “Binding Layer Coverage” column of Table 1.
  • the InCu alloy phase serving as the bonding layer has a thickness in the range of 5 to 100 ⁇ m, and the Cu content in the In layer as the target body is 2000 mass. It was confirmed that it was reduced to ppm or less.
  • the thickness of the InCu alloy phase was thin, a crack occurred at the bonding interface.
  • the comparative example 2 although peeling of a bond, a crack, etc.
  • an In or In alloy sputtering target of the present invention In is sufficient in the bonding strength between the target support base and the target body with a low content of Cu impurities in the target body without increasing the production cost.
  • an In alloy sputtering target can be manufactured.
  • the In or In alloy sputtering target of the present invention is suitable for the production of a CIGS film because the Cu impurity content in the target body is small and the bonding strength between the target support base and the target body is sufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 本発明のIn又はIn合金スパッタリングターゲットは、Cu又はCu合金製のバッキングプレート又はバッキングチューブによるターゲット支持基体上に、ターゲット本体となるIn又はIn合金層が、InとCuの合金による結合層を介して接合されたIn又はIn合金スパッタリングターゲットであって、前記結合層は、厚さ:5~100μmを有する。

Description

In又はIn合金スパッタリングターゲット及びその製造方法
 この発明は、In内へのCu拡散を低減し、Cu又はCu合金製のバッキングプレート、バッキングチューブ等で構成されるターゲット支持基体との接合強度を向上したIn又はIn合金スパッタリングターゲットとその製造方法に関する。
 本願は、2013年12月9日に、日本に出願された特願2013-253986号に基づき優先権を主張し、その内容をここに援用する。
 近年、化合物半導体を備える薄膜太陽電池が実用に供せられるようになり、この化合物半導体を備える薄膜太陽電池としては、Cu-In-Ga-Se四元系合金膜(以下、CIGS膜と称す)からなる光吸収層を用いたものが知られている。
 このCIGS膜をスパッタリング法により成膜する方法として、まず、Inスパッタリングターゲットを使用してスパッタリング法によりIn膜を成膜し、このIn膜の上にCu-Ga二元系合金スパッタリングターゲットを使用してスパッタリングすることによりCu-Ga二元系合金膜を成膜し、得られたIn膜及びCu-Ga二元系合金膜からなる積層膜をSe雰囲気中で熱処理してCu-In-Ga-Se四元系合金膜を形成する方法(セレン化法)が提案されている。
 従来では、上記のInスパッタリングターゲットを作製する場合、外周に堰を設けた鋳型を形成したCu製バッキングプレートをホットプレートの上に載置して、Cu製バッキングプレートを加熱し、その上にInインゴットを投入し、Inインゴットを溶解した後、放冷して固化させることによりInスパッタリングターゲットを作製する方法が知られている(例えば、特許文献1を参照)。
 また、CuバッキングプレートからのCuの拡散を抑制して不純物の含有を低減するために、Inスパッタリングターゲットの製造方法において、Cu又はCu合金製のバッキングプレート上にNi膜を成膜する工程と、加熱されたバッキングプレート上に成膜されたNi膜上でIn原料を溶解し、さらに、溶解したIn原料を冷却して固化させることでInスパッタリングターゲットを作製する工程と、を有するInスパッタリングターゲットの製造方法が開発された(例えば、特許文献2を参照)。
特開2010-24474号公報 特開2012-52180号公報
 しかしながら、特許文献1に記載のInスパッタリングターゲットの製造方法では、Cuのバッキングプレートが加熱され、その鋳型内にIn原料であるInインゴットを投入して、Inインゴットを溶解するため、溶解したIn中にバッキングプレートからCuが拡散してしまう。その後、溶解したInを冷却して固化させた際には、Inスパッタリングターゲット中に不純物として高濃度のCuが含まれたままとなる。さらに、このように自由拡散によって混入された高濃度のCu不純物のスパッタリングターゲット中の分布が非常に不均一である。この高濃度且つ不均一に分布されているCuを含有するInスパッタリングターゲットを用いてCIGS膜を形成する場合には、膜中のCu含有量を目標とする量に調整し難く、所望するCIGS膜特性が得られなくなるという問題があった。
 また、上記引用文献2に記載のInスパッタリングターゲットの製造方法では、上記特許文献1に記載の方法により製造したInスパッタリングターゲットのように、溶解したIn中に、バッキングプレートからのCuが拡散することを低減できる。しかしながら、Cu又はCu合金製のバッキングプレート上にNi膜を成膜する工程が追加されているので、Inスパッタリングターゲットの製造上、手間を要するだけでなく、コストの増加を招来するという課題があった。
 そこで、本発明は、Cu又はCu合金製のバッキングプレート、バッキングチューブ等で構成されるターゲット支持基体(以下、バッキングプレートと称する場合もある)からInへのCuの拡散を抑制して、In中における不純物の含有量を低減し、かつ、該バッキングプレートとInとの接合強度も充分なIn又はIn合金スパッタリングターゲット及びその製造方法を提供することを目的とする。
 本発明者らが、前記課題を解決するために、種々検討したところ、Cu又はCu合金製のバッキングプレートに、InとCuからなる合金(InCu合金)で構成される結合層を介してIn又はIn合金からなるターゲット本体を接合することによって、ターゲット本体とバッキングプレートとの接合強度を高めたIn又はIn合金スパッタリングターゲットを得られることが分かった。また、このInCu合金結合層によって、In層へのCuの拡散を抑制できることが分かった。さらに、Cu又はCu合金製のバッキングプレートの表面を研磨した後に、その表面上に、InとCuからなる合金(InCu合金)による下地層を予め形成する。この形成されたInCu合金下地層によって、Inスパッタリングターゲットの製造中に、ターゲット本体となるIn層中へのCuの拡散をCIGS膜の成膜に影響しない程度に低減でき、かつ、バッキングプレートとIn層とが結合層を介して確実に接合されるという知見が得られた。この製造手順によれば、In又はIn合金スパッタリングターゲットの作製におけるコストの増加に繋がるNi膜の介在なしでも、バッキングプレートからのCuの拡散を抑制することができ、しかも、バッキングプレートとIn層との十分な接合強度も得られることが分かった。
 また、本発明は平板状のCu又はCu合金製のバッキングプレートを用いるIn又はIn合金スパッタリングターゲットのみならず、円筒状のCu又はCu合金製のバッキングチューブを用いるIn又はIn合金円筒スパッタリングターゲットや、その他の類似構造を有するIn又はIn合金スパッタリングターゲットにも適用できる。
 したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。
(1)本発明のIn又はIn合金スパッタリングターゲットは、Cu又はCu合金製のバッキングプレート又はバッキングチューブによるターゲット支持基体上に、ターゲット本体となるIn又はIn合金層が、InとCuの合金による結合層を介して接合されたIn又はIn合金スパッタリングターゲットであって、前記結合層は、厚さ:5~100μmを有することを特徴とする。
(2)前記(1)のIn又はIn合金スパッタリングターゲットにおける前記結合層は、前記In又はIn合金層と前記ターゲット支持基体とのボンディング面におけるカバー率が90%以上である。
(3)本発明のIn又はIn合金スパッタリングターゲットの製造方法は、Cu又はCu合金製のバッキングプレート又はバッキングチューブによるターゲット支持基体の表面を研磨する工程と、前記ターゲット支持基体の表面上に、厚さ:3~50μmを有するInとCuの合金による下地層を形成する工程と、形成された前記下地層上にIn又はIn合金溶融体を形成し、前記ターゲット支持基体上に、ターゲット本体となるIn又はIn合金層とを接合する工程と、を備え、前記In又はIn合金層と前記ターゲット支持基体とは、前記下地層に生成されたInとCuの合金による結合層を介して接合されることを特徴とする。
(4)本発明のIn又はIn合金スパッタリングターゲットの製造方法は、Cu又はCu合金製のバッキングプレート又はバッキングチューブによるターゲット支持基体の表面を研磨する工程と、前記ターゲット支持基体の表面上に、厚さ:3~50μmを有するInとCuの合金による下地層を形成する工程と、形成された前記下地層上にIn又はIn合金溶融体を形成し、冷却固化して、ターゲット本体となるIn又はIn合金層を形成する工程と、前記In又はIn合金層を機械加工する工程と、を備え、前記In又はIn合金層と前記ターゲット支持基体とは、前記下地層に生成されたInとCuの合金による結合層を介して接合されることを特徴とする。
(5)前記(3)又は(4)の製造方法では、前記下地層及び前記結合層は、前記In又はIn合金層と前記ターゲット支持基体とのボンディング面に対するカバー率がそれぞれ90%以上である。
(6)前記(3)乃至(5)のいずれかの製造方法では、前記ターゲット支持基体の表面を表面粗さ:0.1~1.0μmに研磨する。
 以上の様に、本発明に係るIn又はIn合金スパッタリングターゲットによれば、ターゲット本体となるIn又はIn合金層が、Cu又はCu合金製のバッキングプレート又はバッキングチューブで構成されるターゲット支持基体にInCu合金結合層を介して接合されるので、バッキングプレート又はバッキングチューブで構成されるターゲット支持基体とIn又はIn合金層で構成されるターゲット本体との十分な接合強度が得られ、ターゲット製作時の機械加工中に剥がれが発生することがなく、不純物としてのCuの拡散を低減したIn又はIn合金スパッタリングターゲットとすることができる。また、本発明に係るIn又はIn合金スパッタリングターゲットの製造方法によれば、Cu又はCu合金製のバッキングプレートの表面を研磨した後に、その表面上に、InCu合金で構成される下地層を予め形成して、この形成された下地層上で、In原料を溶解し、さらに、溶解したInを冷却して固化させてIn層又はIn合金層を形成している。そのため、In層又はIn合金層中において、CIGS膜の成膜に影響しない程度までCu濃度を低減でき、かつ、In又はIn合金層で構成されるターゲット本体とバッキングプレートとがInCu合金結合層を介して接合される。そのため、コストの増加に繋がるNi膜の介在なしでも、バッキングプレートからのCuの拡散を抑制することができる。
本発明の実施形態に係るInスパッタリングターゲットの製造方法の工程を説明するための概略図である。 本発明の実施形態に係るInスパッタリングターゲットの一具体例について、ターゲット断面を電子顕微鏡で撮影した画像である。 本発明の実施形態に係るInスパッタリングターゲットの一具体例について、スパッタリングターゲットの断面組織をEPMAにより測定した各元素の元素分布像である。 従来例に係るInスパッタリングターゲットの一具体例について、ターゲット断面を電子顕微鏡で撮影した画像である。 従来例に係るInスパッタリングターゲットの一具体例について、スパッタリングターゲットの断面組織をEPMAにより測定した各元素の元素分布像である。
 以下、本発明に係るIn又はIn合金スパッタリングターゲット及びその製造方法に関する一実施形態を、図1乃至図5を参照して説明する。
 本実施形態のIn又はIn合金スパッタリングターゲットによれば、ターゲット本体を構成するIn又はIn合金層を、Cu又はCu合金製のバッキングプレートに、厚み:5~100μmのInとCuの合金で構成される結合層(InCu合金相)を介して接合している。これによって、ターゲット本体とバッキングプレートとの接合強度を高めたIn又はIn合金スパッタリングターゲットが得られる。また、この結合層によって、In又はIn合金層で構成されるターゲット本体へのCuの拡散を抑制することができる。さらに、ターゲット本体となるIn又はIn合金層とバッキングプレートとの界面におけるこの結合層のカバー率を90%以上にすることで、より良い拡散抑制効果が得られる。このカバー率を95~100%とすることが好ましいが、これに限定されない。
 このように、Cu又はCu合金製のバッキングプレートの表面とターゲット本体となるIn又はIn合金層とは、InとCuの合金で構成される結合層を介して接合されるため、十分な接合強度を有し、機械加工中に剥がれることがない。そして、ターゲット本体となるIn又はIn合金層へのCu拡散も、Cu濃度:2000質量ppm以下の範囲に抑制される。そのCu濃度が2000質量ppmを超えてしまうと、CIGS膜の組成制御に影響するようになり、不純物の少ないIn又はIn合金スパッタリングターゲットの必要性に応じることができなくなる。
 また、本実施形態のIn又はIn合金スパッタリングターゲットでは、前記InとCuの合金で構成される結合層の厚さが5~100μmである。この厚さが、5μm未満の場合には、In又はIn合金層とバッキングプレートとの接合強度が低下し、ボンディング剥がれが発生しやすくなる(バッキングプレートとターゲット本体とが剥がれやすくなる)。一方、InとCuの合金で構成される結合層は硬度が高く脆いため、その厚さが、100μmを超える場合には、ボンディング剥がれ又はボンディング面での亀裂が発生しやすくなる。結合層の厚さは5~50μmであることが好ましいが、これに限定されない。
 さらに、本実施形態のIn又はIn合金スパッタリングターゲットでは、厚さ:5~100μmの前記結合層が、ターゲット本体となるIn又はIn合金層とバッキングプレートとの界面(ボンディング面)の90%以上をカバーしている。厚さが5μm以上の結合層が90%以上のボンディング面をカバーできない場合には、結合層がない部分、或いは、薄い部分(厚さが5μm未満の部分)から、ターゲット本体となるIn又はIn合金層へのCuの拡散が多量に発生し、ターゲット中のCu含有量を目標値以内に制御できなくなる。一方、厚さ:100μm以上の結合層が90%以上を占めると、ターゲット本体となるIn又はIn合金層とバッキングプレートの界面に、亀裂が発生しやすくなる。
 また、本実施形態のIn又はIn合金スパッタリングターゲットの製造方法では、Cu又はCu合金からなるバッキングプレートの表面を研磨したうえで、厚さ:3~50μmのInとCuの合金(InCu合金)で構成される下地層を形成し、その後に、このInCu合金の下地層上でIn原料を溶解し(In又はIn合金溶融体を形成し)、InとCuとの合金(InCu合金)による結合層を前記バッキングプレートの表面上に形成しながら、結合層を介してターゲット本体となるIn又はIn合金層をバッキングプレートに貼り付けて、In又はIn合金スパッタリングターゲットが作製される。この様な手順に従えば、厚さ:3~50μmのInCu合金からなる下地層を形成し、その後又はそれと同時に、この下地層上でIn原料を溶解し、さらに溶解されたIn原料を冷却して固化させることで前記バッキングプレートの表面上に、In又はIn合金層からなるターゲット本体を鋳造し、ターゲット本体を機械加工することによっても、ターゲット本体のバッキングプレートからの剥がれを防止でき、且つCu不純物の含有量が少ないIn又はIn合金スパッタリングターゲットを作製することもできる。
 従って、In又はIn合金層を、Cu又はCu合金製のバッキングプレートに結合層(InCu合金相)を介して接合させることができ、ターゲット本体とバッキングプレートとの接合強度を高めたIn又はIn合金スパッタリングターゲットを作製できる。
 ここで、上記の本実施形態に係るIn又はIn合金スパッタリングターゲットの製造方法では、Cu又はCu合金からなるバッキングプレートの表面を、表面粗さ:0.1~1.0μmに研磨している。その理由は、表面粗さが0.1μm未満であると、表面加工の手間もかかるため、好ましくない。また、表面粗さが、1.0μmを超えると、表面に形成される結合層に欠陥ができやすく、In又はIn合金層へのCuの拡散を低減できなくなり、好ましくない。そのため、バッキングプレートの表面粗さ(算術平均粗さRa)を、0.1~1.0μmの範囲に定めている。バッキングプレートの表面粗さは0.1~0.5μmが好ましいが、これに限定されない。
 以上に説明した本実施形態に係るInスパッタリングターゲットの一具体例におけるターゲット断面について、図2に、電子顕微鏡で撮影した画像を、そして、図3に、電子プローブマイクロアナライザー(EPMA)により測定した各元素の元素分布像をそれぞれ示した。なお、EPMAによる元素分布像は、本来カラー像であるが、図3の写真では、白黒像に変換して示しているため、その写真中において、白いほど、当該元素の濃度が高いことを表している。
 図2に示された画像によれば、本実施形態に係るInスパッタリングターゲットでは、「In」と表示したターゲット本体となるIn層が、「InCu合金相」と表示した結合層を介して、「Cu」と表示したCu製バッキングプレートに接合されている様子が観察される。さらに、図3に示された元素分布像によれば、In及びCuの各元素の組成分布が観察され、In層とCu製バッキングプレートとの界面には、「InCu合金相」である結合層が生成されていることが確認される。
 一方、従来例に係るInスパッタリングターゲットの一具体例におけるターゲット断面について、図4に、電子顕微鏡で撮影した画像を、そして、図5に、EPMAにより測定した各元素の元素分布像をそれぞれ示した。図4及び図5によれば、従来例に係るInスパッタリングターゲットでは、「InCu合金相」である結合層が生成されていないことが分かる。
 以上では、ターゲット本体となるIn層がCu製又はCu合金製バッキングプレートにボンディングされたInスパッタリングターゲットの場合で説明したが、In層が、In合金層であるIn合金スパッタリングターゲットの場合も、また、ターゲットの形状が円筒状(ターゲット支持基体としてCu又はCu合金製バッキングチューブを用いる)であっても、上述した製造手順に従えば、In合金層とCu製又はCu合金製バッキングプレート(又はバッキングチューブ)とがボンディングされたとき、その界面には、InCu合金相からなる結合層が生成されることが確認されている。なお、In合金としては、In-Al、In-Bi、In-Sb、In-Zn、In-Snなどの合金が挙げられる。
 また、InCu合金からなる結合層については、蒸着法(例えば、イオンプレーティング法、スパッタ法など)や、メッキ法等で形成することもできる。Cu製のバッキングプレートの表面に、In膜形成又はIn溶湯塗布の後、160~230℃の温度に加熱しながら、超音波照射することによって、CuとInの合金からなる均一な下地層を生成することができる。超音波を照射する場合に、生成される下地層の厚みが、3~50μmになるように、照射時間を調整する。
 また、下地層カバー率についても、照射時間やIn溶湯温度での調整で90%以上に調整することができる。照射に使用する超音波の周波数は10~100kHzの範囲で良く、特に、20~50kHzが好ましい。超音波の照射パワーは、5~300W/cmが好ましく、特に、10~100W/cmが好ましい。超音波照射はボンディング面全面において同時に行っても良く、ボンディング面の局所ごとに順次に照射することも良い。照射時間は5~30秒が好ましいが、これに限定されない。
 本実施形態のInスパッタリングターゲットの製造方法における基本的な工程の概要が、図1に示されている。なお、図1に示された各工程は、模式的に表示したものであり、具体的な形状、大きさを具体的に特定するものではない。
工程1:
 表面粗さ:0.1~1.0μmの範囲に研磨された円形のCu又はCu合金からなるバッキングプレート1を、160~230℃に加熱されたホットプレート2上に載置し、該バッキングプレート1を加熱する(図1(A)を参照)。ここで、バッキングプレート1の表面研磨は、上記の表面粗さ範囲になるように、市販の研磨装置を用いて行われる。
工程2:
  バッキングプレート1の外周に、外周に堰となる型(SUS製)3を設けて、バッキングプレート1上に鋳型を形成する(図1の(B)を参照)。
工程3:
 バッキングプレート1を160~230℃に加熱し、ボンディング面にInの溶湯を均一に塗布する。
工程4:
 上記In溶湯とバッキングプレート1に超音波を照射し、厚さ:3~50μmのCu-In合金で構成される下地層4を均一に形成する。この下地層4を形成した後に、余ったIn溶湯を取り除く。
 下地層4を形成後、一旦バッキングプレート1を冷却し、下記の工程5を行っても良く、工程5と実質的に連続的に行ってもよい。
工程5:
 型3で形成された鋳型内に、純度99.99%以上のIn原料であるInインゴット5を所定量だけ投入する(図1の(D)を参照)。
工程6:
 上記鋳型内で、Inの融点以上の温度に加熱し、Inインゴット5を溶解し、In溶融体6を作成し、その後に、例えば、迅速に加熱を停止し、In溶融体6の冷却固化を行う。下地層4をベースに形成される結合層の厚みを一定範囲に制御するため、Inの溶湯温度が250℃以下であることが好ましく、160℃までの冷却速度は、30℃/h以上であることが好ましい(図1の(E)を参照)。なお、最高温度での保持時間は、3時間以下である。
工程7:
 In溶融体6が固化され、ターゲット本体となるIn層7が形成された後に、型3を除去し、In層7の表面を機械加工により切削して、所定形状のInスパッタリングターゲットを完成させる(図1の(F)を参照)。ここで、In層7は、バッキングプレート1上に、InCu合金からなる結合層を介して接合される。
 以上の様に、本実施形態のInスパッタリングターゲットの製造方法では、バッキングプレート1の表面を研磨した後に、InCu合金からなる下地層4を形成し、この下地層4上で、In原料であるInインゴット5を溶解して、In溶融体6を冷却して固化させてIn層7を形成することでInスパッタリングターゲットを作製する。その結果、下地層4をベースにInとCuの合金層がさらに均一に成長することで、厚さ:5~100μmの結合層が形成され、ターゲット本体となるIn層7へのバッキングプレート1からのCuの拡散を抑制することができ、In層7中のCuの含有量を、200~2000質量ppmの範囲に低減できる。さらに、InCu合金からなる下地層4とバッキングプレート1とは拡散接合され、即ち、InCu合金相からなる結合層が形成されるので、十分な接合強度を有するInスパッタリングターゲットを作製することができる。また、ボンディング面にあらかじめ形成される下地層4のカバー率を90%以上にすることで、ボンディング界面におけるカバー率が90%以上である結合層を形成することができる。このため、バッキングプレート1からのCuの拡散に対し、より良好な抑制効果が得られる。
 同様に、工程4の後に、予め用意したIn層に相当するIn板を、下地層4を介して、バッキングプレート1に接合させることによりIn層7を形成する方法もあり、以上と同様の効果が得られる。
 なお、上述した本実施形態における製造工程では、Inスパッタリングターゲットについて説明したが、上記のターゲット本体となるIn合金層を形成する場合には、In合金インゴットを用いることにより、同様の製造工程で、In合金スパッタリングターゲットを作製することができる。
〔実施例〕
 次に、上記本実施形態に基づいて、具体的に、Inスパッタリングターゲットを作製した実施例について説明する。
 本実施形態のInスパッタリングターゲットについては、図1に示された工程手順に従って作製された。
 先ず、表1に示される表面粗さに研磨された円形のCu製バッキングプレート1を、表1に示されるバッキングプレート温度となるように、加熱されたホットプレート上に載置し、該バッキングプレートを加熱し(工程1)、研磨表面にInCu合金下地層を形成した。In溶湯を塗布したバッキングプレート表面に対して、周波数40kHz、パワー密度50W/cmの超音波を、表1に示される照射時間(秒)の間、照射することにより下地層を形成し、余った酸化膜付きIn溶湯を取り除いた(工程2)。次に、この下地層が形成されたバッキングプレート上に、SUS製の円筒状型を設け、バッキングプレート上に直径50.8mmの鋳型を形成した(工程3)。鋳型内に、純度99.99%以上のInインゴットを所定量だけ投入した(工程4)。ここで、上記鋳型内で、加熱時間を表1に示されるキープ時間(分)に設定して加熱し、Inインゴットを溶解し、In溶融体を作成し、その後に、放冷し、固化させた(工程5)。In溶融体が固化されて、In層が形成された後に、円筒状型を除去し、ターゲット本体とするため、In層の表面を機械加工により切削して、厚さ10mmの実施例1~6のInスパッタリングターゲットを作製した(工程6)。
 また、実施例7は、上記工程2に続いて、下地層が形成されたバッキングプレート表面に、予め、厚さ:0.4mm程度にIn溶湯を塗り、その上に予め圧延、機械加工されたIn層に相当するIn板を載せた(工程7)。In板の底面が溶け始めたら、ホットプレートによる加熱を停止し、放冷し、接着させた(工程8)。
〔比較例〕
 上記の実施例と比較するため、比較例1~3のInスパッタリングターゲットを作製した。各比較例のInスパッタリングターゲットの作製においては、実施例1~6のInスパッタリングターゲットの作製手順(工程1~6)と同様であるが、表1に示されるように、比較例1~3の場合は、表面粗さRa、溶解温度、キープ時間、結合層(InCu合金相)厚み、Cu含有量のいずれかの条件が本実施形態の範囲外になっている。
 また、比較例4は実施例7のInスパッタリングターゲットの作製工程7、8と同様であるが、下地層を形成する工程2が行われていない。
 以上の様に作製された実施例1~7及び比較例1~4のInスパッタリングターゲットについて、バッキングプレート表面粗さ、下地層の厚みとカバー率、結合層の厚みとカバー率、ターゲット本体とバッキングプレート界面から1mm位置のターゲット本体内のCu含有量を測定し、さらに、ボンディング界面の状態を目視で確認を行った。ターゲット本体とバッキングプレート界面から1mm位置のInターゲット本体内のCu含有量を測定する理由は、バッキングプレートから拡散されたCu不純物はボンディング面に近ければ近いほど、濃度が高い傾向を示しており、前記位置でのサンプリングは使用されるターゲット本体中のCu不純物濃度を、より適正に確認できるためである。
 なお、下地層のカバー率は、実施例と比較例と同様な条件で作成した工程2の下地層付きバッキングプレートを切断、解析したものである。
<表面粗さの測定>
 バッキングプレートのボンディング面について、表面粗さ計測装置を用いて測定した。ボンディング面における複数個所(5箇所)の測定値を平均して、その値を表1の「表面粗さ(Ra)(μm)」欄に示した。
<下地層及び結合層(InCu合金相)の厚み測定>
 バッキングプレート表面に予め形成した下地層及びスパッタリングターゲット作成後の結合層になるInCu合金相の厚みを測定した。
 作製したInスパッタリングターゲットの縦断面(厚さ方向に平行な断面)について、電子プローブマイクロアナライザ(EPMA)により像を取得し、スパッタリングターゲット本体とバッキングプレートとの界面(ボンディング面)に形成されたInCu合金相の厚さを計測した。厚さ方向に直交する方向におけるターゲット本体の中心から同方向に5mm毎、全5カ所についてInCu合金相の厚さを測定し、5カ所の測定値を平均して、当該Inスパッタリングターゲットに係るInCu合金相の厚さとした。また、各測定点におけるInCu合金相の厚さは、ライン分析により求めた。測定結果を、表1の「下地層厚み(μm)」欄及び「結合層厚み(μm)」欄に示した。
<下地層及び結合層(InCu合金相)のカバー率の測定>
 上記EPMA像を用いて、下地層の厚みが3μmから50μmの界面区域の長さを測定し、下記のようにカバー率を計算した。
  (下地層のカバー率)=
  〔(3~50μmの界面区域の長さ)/(観察した界面の全長)〕×100%
 ここで、ボンディング面の任意5ヶ所、各箇所の界面長さ5mmの範囲の測定値を平均して、当該Inスパッタリングターゲットに係る下地層のカバー率とした。
 上記と同様に、厚みが5~100μmの結合層のカバー率も測定し、その測定結果を、表1の「下地層カバー率」欄及び「結合層カバー率」欄に示した。
<Cu含有量の測定>
 バッキングプレートがボンディングされたInスパッタリングターゲットにおけるIn層を切削し、バッキングプレート面から1mmのところで得られた切粉5サンプルをICP(誘導結合プラズマ)によりCu含有量(質量ppm)を測定した。5サンプルの測定結果の最大値を、表1の「Cu含有量(ppm)」欄に示した。5サンプルの測定結果の最大値をCu含有量測定値として選ぶ理由は、結合層のカバー状況によって、ターゲット本体へのCu不純物の拡散が場所により異なり、サンプリングした箇所のCu不純物の最大測定値はターゲット本体中のCu不純物最大濃度を、より適正に反映できるためである。
<ボンディング剥がれの評価>
 上記工程6において、バッキングプレートにボンディングされたIn層の表面を機械加工する際に、ボンディング界面における剥がれ又は亀裂の有無を確認した。その剥がれ又は亀裂が発生しない場合を、「無」とし、亀裂等の欠陥が発生した場合を、「亀裂有り」として、その結果を、表1の「ボンディング欠陥の有無」欄に示した。
Figure JPOXMLDOC01-appb-T000001
 
 この表1の評価結果からわかるように、実施例1~7のInスパッタリングターゲットのいずれにおいても、ボンディング剥がれが無いことが確認された。しかも、実施例1~7のいずれでも、結合層となっているInCu合金相が、5~100μmの範囲の厚みを有しており、ターゲット本体であるIn層中のCu含有量が、2000質量ppm以下に低減されていることが確認された。
 一方、比較例1の場合には、InCu合金相の厚みが薄いため、ボンディング界面に亀裂が発生した。また、比較例2の場合には、ボンディング剥がれや亀裂等が発生しなかったが、ターゲット本体中のCu含有量が、2000質量ppmを超えており、CIGS膜の成膜には不適であることが分かった。比較例3の場合には、下地層と結合層が共に100μm以上と厚かったため、ボンディング界面に亀裂が発生した。比較例4の場合には、結合層がないため、バッキングプレートとターゲット本体との間に、亀裂が発生した。
 なお、本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 本発明のIn又はIn合金スパッタリングターゲットの製造方法によれば、製造コストを増加することなく、ターゲット本体中におけるCu不純物の含有量が少なく、ターゲット支持基体とターゲット本体との接合強度が充分なIn又はIn合金スパッタリングターゲットを製造できる。また、本発明のIn又はIn合金スパッタリングターゲットは、ターゲット本体中におけるCu不純物の含有量が少なく、ターゲット支持基体とターゲット本体との接合強度も充分であるため、CIGS膜の製造に好適である。
1 バッキングプレート
2 ホットプレート
3 円筒状型
4 下地層
5 Inインゴット
6 In溶融体
7 In層

Claims (6)

  1.  Cu又はCu合金製のバッキングプレート又はバッキングチューブによるターゲット支持基体上に、ターゲット本体となるIn又はIn合金層が、InとCuの合金による結合層を介して接合されたIn又はIn合金スパッタリングターゲットであって、
     前記結合層は、厚さ:5~100μmを有することを特徴とするIn又はIn合金スパッタリングターゲット。
  2.  前記結合層は、前記In又はIn合金層と前記ターゲット支持基体とのボンディング面におけるカバー率が90%以上である請求項1に記載のIn又はIn合金スパッタリングターゲット。
  3.  Cu又はCu合金製のバッキングプレート又はバッキングチューブによるターゲット支持基体の表面を研磨する工程と、
     前記ターゲット支持基体の表面上に、厚さ:3~50μmを有するInとCuの合金による下地層を形成する工程と、
     形成された前記下地層上にIn又はIn合金溶融体を形成し、前記ターゲット支持基体上に、ターゲット本体となるIn又はIn合金層とを接合する工程と、を備え、
     前記In又はIn合金層と前記ターゲット支持基体とは、前記下地層に生成されたInとCuの合金による結合層を介して接合されることを特徴とするIn又はIn合金スパッタリングターゲットの製造方法。
  4.  Cu又はCu合金製のバッキングプレート又はバッキングチューブによるターゲット支持基体の表面を研磨する工程と、
     前記ターゲット支持基体の表面上に、厚さ:3~50μmを有するInとCuの合金による下地層を形成する工程と、
     形成された前記下地層上にIn又はIn合金溶融体を形成し、冷却固化して、ターゲット本体となるIn又はIn合金層を形成する工程と、
     前記In又はIn合金層を機械加工する工程と、を備え、
     前記In又はIn合金層と前記ターゲット支持基体とは、前記下地層に生成されたInとCuの合金による結合層を介して接合されることを特徴とするIn又はIn合金スパッタリングターゲットの製造方法。
  5.  前記下地層及び前記結合層は、前記In又はIn合金層と前記ターゲット支持基体とのボンディング面に対するカバー率がそれぞれ90%以上である請求項3又は4に記載のIn又はIn合金スパッタリングターゲットの製造方法。
  6.  前記ターゲット支持基体の表面を表面粗さ:0.1~1.0μmに研磨する請求項3乃至5のいずれかに記載のIn又はIn合金スパッタリングターゲットの製造方法。
PCT/JP2014/082180 2013-12-09 2014-12-04 In又はIn合金スパッタリングターゲット及びその製造方法 WO2015087788A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480054518.1A CN105593398B (zh) 2013-12-09 2014-12-04 In或In合金溅射靶及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-253986 2013-12-09
JP2013253986A JP5773335B2 (ja) 2013-12-09 2013-12-09 In又はIn合金スパッタリングターゲット及びその製造方法

Publications (1)

Publication Number Publication Date
WO2015087788A1 true WO2015087788A1 (ja) 2015-06-18

Family

ID=53371093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082180 WO2015087788A1 (ja) 2013-12-09 2014-12-04 In又はIn合金スパッタリングターゲット及びその製造方法

Country Status (4)

Country Link
JP (1) JP5773335B2 (ja)
CN (1) CN105593398B (ja)
TW (1) TWI557236B (ja)
WO (1) WO2015087788A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179573A1 (ja) * 2016-04-12 2017-10-19 三菱マテリアル株式会社 銅合金製バッキングチューブ及び銅合金製バッキングチューブの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350969B2 (ja) * 2015-07-06 2018-07-04 三菱マテリアル株式会社 In又はIn合金スパッタリングターゲット及びその製造方法
CN111441021A (zh) * 2020-05-25 2020-07-24 先导薄膜材料(广东)有限公司 一种旋转靶的制备方法及其喷涂设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780634A (ja) * 1993-09-08 1995-03-28 Sanyo Special Steel Co Ltd ろう付け方法
JP2012224910A (ja) * 2011-04-19 2012-11-15 Jx Nippon Mining & Metals Corp 積層構造体及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593082A (en) * 1994-11-15 1997-01-14 Tosoh Smd, Inc. Methods of bonding targets to backing plate members using solder pastes and target/backing plate assemblies bonded thereby
KR100785208B1 (ko) * 2005-06-15 2007-12-11 미쓰이 긴조꾸 고교 가부시키가이샤 스퍼터링 타깃 제조용 땜납 합금 및 이것을 이용한스퍼터링 타깃
JP4992843B2 (ja) * 2008-07-16 2012-08-08 住友金属鉱山株式会社 インジウムターゲットの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780634A (ja) * 1993-09-08 1995-03-28 Sanyo Special Steel Co Ltd ろう付け方法
JP2012224910A (ja) * 2011-04-19 2012-11-15 Jx Nippon Mining & Metals Corp 積層構造体及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179573A1 (ja) * 2016-04-12 2017-10-19 三菱マテリアル株式会社 銅合金製バッキングチューブ及び銅合金製バッキングチューブの製造方法
JP2017190479A (ja) * 2016-04-12 2017-10-19 三菱マテリアル株式会社 銅合金製バッキングチューブ及び銅合金製バッキングチューブの製造方法

Also Published As

Publication number Publication date
TWI557236B (zh) 2016-11-11
CN105593398B (zh) 2017-07-25
CN105593398A (zh) 2016-05-18
TW201529863A (zh) 2015-08-01
JP5773335B2 (ja) 2015-09-02
JP2015113474A (ja) 2015-06-22

Similar Documents

Publication Publication Date Title
KR100543847B1 (ko) 방전가공용 전극선 및 그 제조 방법
JP6716452B2 (ja) 再生スパッタリングターゲットの製造方法および再生スパッタリング
JP2012031508A (ja) Cu−Ga合金ターゲット材およびその製造方法
JP5594618B1 (ja) スパッタリングターゲット及びその製造方法
JP5026611B1 (ja) 積層構造体及びその製造方法
JP6305083B2 (ja) スパッタリングターゲット及び、それの製造方法
WO2015087788A1 (ja) In又はIn合金スパッタリングターゲット及びその製造方法
JP2010168602A (ja) 磁気ディスク用アルミニウム合金基板およびその製造方法
KR101355902B1 (ko) 태양 전지용 스퍼터링 타깃
JP6350969B2 (ja) In又はIn合金スパッタリングターゲット及びその製造方法
JP2012193423A (ja) Cu−Ga合金材およびその製造方法
JP6176535B2 (ja) スパッタリングターゲット及びその製造方法
JP5871106B2 (ja) In合金スパッタリングターゲット、その製造方法及びIn合金膜
JP6586540B1 (ja) ターゲット材とバッキングプレートとの接合体、および、ターゲット材とバッキングプレートとの接合体の製造方法
JP5611886B2 (ja) 積層構造体及びその製造方法
KR101852616B1 (ko) 마그네슘 용탕이송장치 및 그 제조방법
JP2017141515A (ja) スパッタリングターゲット及び、それの製造方法
CN110295349A (zh) 溅射靶材及其制造方法
TWI781065B (zh) 濺鍍靶
JP7155677B2 (ja) はんだ接合電極およびはんだ接合電極の被膜形成用錫合金ターゲット
JP3674860B2 (ja) 純アルミニウムとアルミニウム合金との接合法
JP5918920B2 (ja) 超電導化合物用基板及びその製造方法
JP6167899B2 (ja) CuGa合金スパッタリングターゲットの製造方法
JP2012184469A (ja) Inスパッタリングターゲットの製造方法
JPH01118796A (ja) 核融合装置の第1壁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869683

Country of ref document: EP

Kind code of ref document: A1