WO2017179573A1 - 銅合金製バッキングチューブ及び銅合金製バッキングチューブの製造方法 - Google Patents
銅合金製バッキングチューブ及び銅合金製バッキングチューブの製造方法 Download PDFInfo
- Publication number
- WO2017179573A1 WO2017179573A1 PCT/JP2017/014815 JP2017014815W WO2017179573A1 WO 2017179573 A1 WO2017179573 A1 WO 2017179573A1 JP 2017014815 W JP2017014815 W JP 2017014815W WO 2017179573 A1 WO2017179573 A1 WO 2017179573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- copper alloy
- backing tube
- less
- alloy backing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
- B21C1/16—Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
- B21C1/22—Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
- B21C1/16—Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
- B21C1/22—Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
- B21C1/24—Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/002—Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/02—Making uncoated products
- B21C23/04—Making uncoated products by direct extrusion
- B21C23/08—Making wire, bars, tubes
- B21C23/085—Making tubes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3435—Target holders (includes backing plates and endblocks)
Definitions
- the present invention relates to a copper alloy backing tube disposed on the inner peripheral side of a target material in a cylindrical sputtering target, and a method for manufacturing the copper alloy backing tube.
- a sputtering method using a sputtering target As a means for forming a thin film such as a metal film or an oxide film, a sputtering method using a sputtering target is widely used.
- a sputtering target has a structure in which a target material formed in accordance with the composition of a thin film to be deposited and a backing material that holds the target material are bonded via a bonding layer.
- the bonding material constituting the bonding layer interposed between the target material and the backing material include In, Sn—Pb alloy, and the like.
- the flat plate sputtering target has a structure in which a flat target material and a flat backing material (backing plate) are laminated.
- the cylindrical sputtering target has a structure in which a cylindrical backing material (backing tube) is bonded to the inner peripheral side of a cylindrical target material via a bonding layer.
- the axial length of the target material of the cylindrical target is set to be relatively long, for example, 1000 mm or more.
- the use efficiency of the target material is as low as about 20 to 30%, and the film formation cannot be performed efficiently.
- the cylindrical sputtering target has a sputter surface on the outer peripheral surface, and since sputtering is performed while rotating the target, it is more suitable for continuous film formation than when a flat plate type sputtering target is used.
- the erosion part spreads in the circumferential direction, there is an advantage that the use efficiency of the target material is as high as 60 to 80%.
- the cylindrical sputtering target it is configured to be cooled from the inner peripheral side of the backing tube, and since the erosion part spreads in the circumferential direction as described above, the temperature rise of the target material can be suppressed, The power density at the time of sputtering can be increased, and the deposition throughput can be further improved.
- Patent Document 1 discloses a sputtering target including a backing tube made of copper or a copper alloy.
- the cylindrical sputtering target has a structure in which a target material is disposed on the outer peripheral side of the backing tube, and both ends of the backing tube are supported by attachment portions of the sputtering apparatus.
- a magnet and a water cooling mechanism are formed inside the backing tube. For this reason, the weight of the backing tube, the weight of the target material, and the weight of the internal structure of the backing tube are added to the end of the backing tube, and a large bending stress is locally applied.
- the entire target material is heated to melt the bonding layer and pull it out.
- a conventional backing tube made of copper or copper alloy deformation occurs due to bending stress applied to the end of the backing tube, making it difficult to remove the used target material, and the backing tube is repeatedly used. There was a risk of not being able to.
- the titanium backing tube and the stainless steel backing tube have high deformation resistance, the problem of bending deformation as described above is unlikely to occur.
- the thermal conductivity of titanium backing tubes and stainless steel backing tubes is low, the heat on the target material side must be sufficiently dissipated to the inner peripheral side of the backing tube when performing high-power sputtering.
- the bonding layer melts out and the sputtering film formation becomes unstable.
- the present invention has been made in view of the circumstances described above, and is a copper that can be repeatedly used while suppressing deformation of the backing tube, has excellent heat dissipation characteristics, and can be used for high-power sputter film formation. It is an object of the present invention to provide an alloy backing tube and a method for producing the copper alloy backing tube.
- a copper alloy backing tube is a copper alloy backing tube disposed on the inner peripheral side of a cylindrical target material in a cylindrical sputtering target.
- Co 0.10 mass% or more and 0.30 mass% or less
- P 0.030 mass% or more and 0.10 mass% or less
- Sn 0.01 mass% or more and 0.50 mass% or less
- the mass ratio [Co] / [P] of the Co content [Co] and the P content [P] is 3.0 or more.
- the balance is made of copper and a copper alloy having an inevitable impurity, and the thermal conductivity is 250 W / (m ⁇ K) or more, 1 hour micro Vickers hardness after heat treatment under the conditions of holding at 50 ° C. is not less than 100 Hv, and is characterized by a reduction rate from the hardness before the heat treatment is 5% or less.
- the copper alloy backing tube according to one aspect of the present invention having such a configuration, since it is made of the copper alloy having the above-described composition, fine precipitates containing Co and P are dispersed in the matrix. As a result, the strength, conductivity, thermal conductivity, and heat resistance can be improved. Specifically, since the thermal conductivity is set to 250 W / (m ⁇ K) or more, the heat on the target material side can be efficiently dissipated to the inner peripheral side of the backing tube, and the high-power sputtering process can be performed. Can correspond to a membrane. In addition, since the micro Vickers hardness after heat treatment at 250 ° C.
- the used target material can be easily removed, and the copper alloy backing tube can be used repeatedly.
- the orientation of the (200) plane in a cross section orthogonal to the axis is preferably 50% or more.
- the deformation resistance against bending stress is increased, and it is possible to further suppress the occurrence of bending deformation at the end of the copper alloy backing tube.
- a method for producing a copper alloy backing tube according to an aspect of the present invention is a method for producing a copper alloy backing tube as described above, and a melting casting step for obtaining a copper alloy ingot having the above composition, and the copper alloy ingot. Is heated at a temperature of 850 ° C. or higher and extruded to obtain a raw tube, a rapid cooling step for rapidly cooling the raw tube after the hot extrusion step, and the obtained raw tube is subjected to cross-sectional shrinkage.
- a cold drawing process in which a drawing process is performed under a condition of 10% to 30%, and a heat treatment is performed under a condition in which the raw tube after the cold drawing process is held in a temperature range of 400 ° C. to 600 ° C. for 1 hour to 10 hours. And a heat treatment step for performing the above.
- the copper alloy ingot is heated at a temperature of 850 ° C. or higher and extruded to obtain a raw tube, and in the subsequent quenching step, Co
- the thermal conductivity of the copper alloy backing tube can be 250 W / (m ⁇ K) or more.
- the micro Vickers hardness after heat-treating at 250 ° C. for 1 hour can be set to 100 Hv or more, and the reduction rate from the hardness before the heat-treatment can be set to 5% or less.
- a copper alloy backing tube that can be repeatedly used while suppressing deformation of the backing tube, has excellent heat dissipation characteristics, and is compatible with high-power sputter film formation, and It is possible to provide a method for manufacturing the copper alloy backing tube.
- FIG. 4A is a cross-sectional view orthogonal to the direction of the axis O, and FIG. It is explanatory drawing which shows the collection place of the sample which measures crystal orientation. It is a flowchart of the manufacturing method of the copper alloy backing tube which concerns on one Embodiment of this invention. It is explanatory drawing of a cold drawing process. It is explanatory drawing which shows the measuring method of the maximum deformation amount of a backing tube.
- the cylindrical sputtering target 10 in the present embodiment is a cylindrical target material 11 extending along the axis O, and the present embodiment is inserted on the inner peripheral side of the target material 11.
- the copper alloy backing tube 12 is provided.
- the target material 11 and the copper alloy backing tube 12 are bonded via a bonding layer 13.
- the target material 11 has a composition corresponding to the composition of the thin film to be formed, and is composed of various metals and oxides.
- the outer diameter D1 of the target material 11 is, for example, D2 + 10 mm ⁇ D1 ⁇ D2 + 50 mm with respect to the outer diameter D2 of the backing tube, and the inner diameter d1 is D2 + 1 mm ⁇ d1 ⁇ D2 + 6 mm with respect to the outer diameter D2 of the backing tube.
- the length L1 is about 500 mm ⁇ L1 ⁇ 5000 mm.
- the joining layer 13 interposed between the target material 11 and the copper alloy backing tube 12 is formed when the target material 11 and the copper alloy backing tube 12 are joined using the joining material.
- the bonding material constituting the bonding layer 13 is made of a low melting point metal such as In or In alloy, for example.
- the thickness t of the bonding layer 13 is in the range of 0.5 mm ⁇ t ⁇ 3 mm.
- the copper alloy backing tube 12 according to the present embodiment is provided to hold the target material 11 and ensure the mechanical strength. Furthermore, the power supply to the target material 11 and the cooling of the target material 11 are performed. It has the action.
- the copper alloy backing tube 12 has Co: 0.10 mass% or more and 0.30 mass% or less, P: 0.030 mass% or more and 0.10 mass% or less, Sn: 0.01 mass% or more, 0 .50 mass% or less, Ni: 0.02 mass% or more and 0.10 mass% or less, Zn: 0.01 mass% or more and 0.10 mass% or less, Co content [Co] and P content [P]
- the mass ratio [Co] / [P] is in the range of 3.0 or more and 6.0 or less, and the balance is made of copper and a copper alloy having a composition of inevitable impurities.
- the copper alloy further includes Mg: 0.002 mass% to 0.2 mass%, Ag: 0.003 mass% to 0.5 mass%, Al: 0.002 mass% to 0.3 mass%, Si: One or more of 0.002 mass% or more and 0.2 mass% or less, Cr: 0.002 mass% or more and 0.3 mass% or less, Zr: 0.001 mass% or more and 0.1 mass% or less may be contained.
- the thermal conductivity is 250 W / (m ⁇ K) or more.
- the micro Vickers hardness after the heat treatment at 250 ° C. for 1 hour is 100 Hv or more, and the hardness before the heat treatment is The rate of decrease is 5% or less.
- the crystal orientation of the (200) plane in the cross section orthogonal to the axis O is 50% or more.
- the upper limit of the crystal orientation of the (200) plane in the cross section orthogonal to the axis O is not limited, but may be 80% or less.
- the electrical conductivity is preferably 60% IACS or more.
- the outer diameter D2 was 140 mm ⁇ D2 ⁇ 143 mm in a state before machining after the drawing process.
- the inner diameter d2 remained as it was after drawing.
- the length L2 in the direction of the axis O after the drawing was 7,000 mm or less.
- after drawing it heat-processed and finished as a backing tube through cutting and machining.
- Co 0.10 mass% or more and 0.30 mass% or less
- Co when added together with P, has the effect of forming precipitates in the heat treatment step and improving the hardness and heat resistance. Further, by precipitating Co dissolved in the matrix phase, the thermal conductivity and conductivity are improved.
- the Co content is less than 0.10 mass%, a precipitate containing Co and P cannot be sufficiently formed, and the effect of improving the hardness becomes insufficient.
- the content of Co exceeds 0.30 mass%, excessive Co is dissolved, and thermal conductivity and electrical conductivity are lowered. From the above, in the present embodiment, the Co content is defined within a range of 0.10 mass% or more and 0.30 mass% or less.
- the lower limit of the Co content is preferably set to 0.13 mass% or more, and more preferably set to 0.15 mass% or more. Moreover, in order to suppress reliably the fall of heat conductivity and electrical conductivity, it is preferable to make the upper limit of Co content into 0.28 mass% or less, and it is more preferable to set it as 0.25 mass% or less.
- P 0.030 mass% or more and 0.10 mass% or less
- P is co-added with Co to form precipitates in the heat treatment step, and has the effect of improving hardness and heat resistance.
- thermal conductivity and electrical conductivity are improved by precipitating P dissolved in the matrix.
- the content of P is less than 0.030 mass%, a precipitate containing Co and P cannot be sufficiently formed, and the effect of improving the hardness becomes insufficient.
- the content of P exceeds 0.10 mass%, excessive P is dissolved, thermal conductivity and electrical conductivity are lowered, and cracking may occur in the hot extrusion process. .
- the P content is defined within a range of 0.030 mass% or more and 0.10 mass% or less.
- the minimum of content of P shall be 0.045 mass% or more, and it is more preferable to set it as 0.050 mass% or more.
- Co and P can be added together to form fine precipitates such as Co 2 P to increase hardness, further improve heat resistance, and improve thermal conductivity.
- mass ratio [Co] / [P] of the Co content [Co] and the P content [P] is less than 3.0 or more than 6.0, any element Will be dissolved in the parent phase, and the thermal conductivity and conductivity will decrease.
- the mass ratio [Co] / [P] of the Co content [Co] and the P content [P] is set within the range of 3.0 or more and 6.0 or less. is doing.
- the lower limit of the mass ratio [Co] / [P] is preferably 3.3 or more, and more preferably 3.5 or more.
- the upper limit of the mass ratio [Co] / [P] is preferably 4.5 or less, and more preferably 4.0 or less.
- Sn improves the hardness by being dissolved in the matrix, and has the effect of suppressing the decrease in the hardness even when the heat resistance is improved and held at a high temperature.
- the Sn content is less than 0.01 mass%, the effect of improving heat resistance may not be sufficiently obtained.
- the Sn content exceeds 0.5 mass%, the deformation resistance during hot working increases and the workability deteriorates. From the above, in the present embodiment, the Sn content is regulated within the range of 0.01 mass% or more and 0.50 mass% or less.
- the lower limit of the Sn content is preferably 0.04 mass% or more, and more preferably 0.06 mass% or more.
- the upper limit of the Sn content is preferably 0.20 mass% or less, and more preferably 0.15 mass% or less.
- Ni 0.02 mass% or more and 0.10 mass% or less
- Ni has an effect of promoting bonding between Co and P, and is effective in improving hardness.
- the Ni content is defined within the range of 0.02 mass% or more and 0.10 mass% or less.
- the lower limit of the Ni content is preferably set to 0.03 mass% or more.
- the upper limit of the Ni content is preferably 0.08 mass% or less, and more preferably 0.06 mass% or less.
- Zn 0.01 mass% or more and 0.10 mass% or less
- Zn has the effect of improving the heat resistance as well as improving the hardness by dissolving in the matrix. Moreover, it has the effect of improving solder wettability.
- the Zn content is regulated within the range of 0.01 mass% or more and 0.10 mass% or less.
- the lower limit of the Zn content is preferably 0.03 mass% or more.
- the upper limit of the Zn content is preferably set to 0.08 mass% or less.
- the copper alloy backing tube 12 may appropriately contain elements such as Mg, Ag, Al, Si, Cr, and Zr in addition to the above-described additive elements.
- Mg, Ag, Al, and Si are elements having an effect of further improving the hardness by solid solution hardening, and Cr and Zr by precipitation hardening.
- Ag has the effect of further improving heat resistance.
- Thermal conductivity Radiant heat from the plasma generated during sputtering is transmitted from the surface of the target material 11 to the inside, and further passes through the copper alloy backing tube 12 and is deprived by the cooling water flowing on the inner peripheral side of the copper alloy backing tube 12. . Therefore, when the thermal conductivity of the copper alloy backing tube 12 is low, the temperature of the target material 11 rises due to insufficient heat removal effect, and is interposed between the target material 11 and the copper alloy backing tube 12. There is a possibility that the bonding layer 13 may melt. Therefore, the higher the thermal conductivity of the copper alloy backing tube 12 is, the more preferable, specifically, 250 W / (m ⁇ K) or more is preferable.
- the copper alloy backing tube 12 is heated because it is necessary to continue heating for a certain period of time and keep the bonding layer in a molten state when bonding the target material 11 and removing the used target material 11 after completion of sputtering.
- the micro Vickers hardness is preferably 100 Hv or higher even after heating.
- the hardness fall after a heating is 5% or less of the hardness before a heating.
- the micro Vickers hardness after heat treatment is performed at 250 ° C. for 1 hour, and the rate of decrease from the hardness before heat treatment is 5% or less. ing.
- the reduction rate from the hardness before the heat treatment is more preferably 1% or less.
- the cylindrical sputtering target 10 has a structure in which both ends of the copper alloy backing tube 12 are supported by the attachment portion of the sputtering apparatus, and the load is concentrated on the end of the copper alloy backing tube 12, and locally. A large bending stress is applied.
- the crystal orientation of the (200) plane in the cross section perpendicular to the axis O is 50% or more, the deformation resistance to bending increases, and bending deformation becomes difficult. For this reason, in this embodiment, the crystal orientation of the copper alloy backing tube 12 is adjusted as described above.
- the crystal orientation of the (200) plane in the cross section orthogonal to each axis O is determined as follows. As shown in FIG. 2, a measurement sample F is taken from a cross section S orthogonal to the axis O. The peak intensities of the (111), (200), (220), and (311) planes measured by powder X-ray diffractometry are the crystal planes described in the JCPDS card (DB card number 00-04-0836).
- the measured peak intensity of the (111) plane, (200) plane, (220) plane and (311) plane is I 111 , I 200 , I 220 , I 311, and the standard of each crystal plane on the JCPDS card
- the strength is I S111 , I S200 , I S220 , and I S311
- the orientation (%) of the (220) plane can be obtained by the following formula.
- FIG. 3 shows a flowchart of a method for manufacturing the copper alloy backing tube 12 according to the present embodiment.
- the melting raw material is weighed so as to have the above-described composition, and melted and cast to produce a cylindrical copper alloy ingot (melting / casting step S01).
- the obtained copper alloy ingot is heated at 850 ° C. or higher for 2 to 10 minutes, and then a cylindrical raw tube is manufactured by hot extrusion (hot extrusion step S02).
- the cross-sectional shrinkage rate is not particularly defined, but is preferably 90% or more.
- the heating temperature in the hot extrusion step S02 is preferably 1000 ° C. or less, but is not limited thereto.
- water cooling is performed immediately (rapid cooling step S03). Thereby, Co and P are dissolved in the matrix.
- the blank produced by the hot extrusion step S02 is made into a backing tube blank having a predetermined outer diameter and inner diameter by cold drawing (cold drawing step S04).
- cold drawing step S04 first, the tip portion of the raw tube is kneaded so as to pass between the outer diameter mold (die 21) and the inner diameter mold (plug 22). Thereafter, as shown in FIG. 4, the knot portion of the raw tube 31 is passed between the die 21 and the plug 22, and the kneading portion is pulled to perform drawing processing.
- the cross-sectional shrinkage rate in the cold drawing step S03 is preferably 10 to 70%.
- the drawing may be performed in a single process or in multiple stages.
- the backing tube blank after the cold drawing step S04 is subjected to heat treatment under the condition that the temperature is maintained in a temperature range of 400 ° C. to 600 ° C. for 1 hour to 10 hours (heat treatment step S05).
- heat treatment step S05 the solid solution of Co and P is precipitated to improve the hardness of the copper alloy backing tube 12, and at the same time impart heat resistance.
- the crystal orientation of the copper alloy backing tube 12 is made anisotropic so that deformation at the end of the copper alloy backing tube 12 or in the vicinity thereof is prevented.
- the heat treatment temperature is set to 400 ° C. or more and 600 ° C.
- the heat treatment time is set to 1 hour or more and 10 hours or less.
- the minimum of heat processing temperature shall be 450 degreeC or more, and it is preferable that the upper limit of heat processing temperature shall be 500 degrees C or less.
- the lower limit of the heat treatment time is preferably 2 hours or more, and the upper limit of the heat treatment time is preferably 8 hours or less, but is not limited thereto.
- the copper alloy backing tube 12 according to the present embodiment is manufactured through the steps as described above.
- the copper alloy backing tube 12 of the present embodiment having the above-described configuration, since it is made of the copper alloy having the above-described composition, thermal conductivity can be obtained by dispersing fine precipitates containing Co and P. In addition, the strength and heat resistance can be improved without greatly reducing the electrical conductivity. Further, since the thermal conductivity of the copper alloy backing tube 12 is 250 W / (m ⁇ K) or more, the heat on the surface of the target material 11 is efficiently dissipated to the inner peripheral side of the copper alloy backing tube 12. Therefore, it is possible to cope with high-power sputter film formation.
- the micro Vickers hardness after the heat treatment at 250 ° C. for 1 hour is 100 Hv or more, and the decrease rate from the hardness before the heat treatment 5% or less, it is excellent in high temperature strength and heat resistance, and even when bending stress is applied to the end of the copper alloy backing tube 12 during sputtering, bending deformation can be suppressed. . Therefore, the used target material 11 can be easily removed and the copper alloy backing tube 12 can be used repeatedly.
- the orientation of the (200) plane in the cross section orthogonal to the axis O is 50% or more, the deformation resistance against bending increases, and the copper alloy Occurrence of bending deformation at the end of the backing tube 12 can be further suppressed.
- the copper alloy ingot is heated at 850 ° C. or higher for 2 to 10 minutes, and extruded to obtain a raw tube, followed by a hot extrusion step S02.
- Co and P can be solutionized, and in the heat treatment step S05 after the cold drawing step S04, precipitates containing solid solution of Co and P can be precipitated and dispersed.
- Thermal conductivity and conductivity It is possible to improve the strength without greatly reducing the. Further, the thermal conductivity of the copper alloy backing tube 12 can be set to 250 W / (m ⁇ K) or more.
- the hardness and heat resistance of the copper alloy backing tube 12 can be improved, and the micro Vickers hardness after the heat treatment at 250 ° C. for 1 hour is 100 Hv or more from the hardness before the heat treatment.
- the rate of decrease in the thickness can be made 5% or less.
- a backing tube was manufactured according to the flowchart shown in FIG. Ingots having the compositions shown in Table 1 were produced by melting and casting in a high-frequency melting furnace. The size of the ingot was 360 mm in diameter and 640 mm in length.
- a backing tube was manufactured through a hot extrusion process including a solution treatment, a cold drawing process, and a final heat treatment process.
- Comparative Example 20 is a commercially available oxygen-free copper (C1020) tube.
- the thermal conductivity was measured by the laser flash method.
- the measured sample had a diameter of 10 mm and a thickness of 1 mm.
- the measurement was performed at 25 ° C.
- ⁇ Crystal orientation evaluation> According to FIG. 2, a sample for measuring the crystal orientation is taken, the cross section orthogonal to the axis is polished, and the (111) plane, (200) plane, (220) plane and ( 311) The diffraction peak intensity from the plane was measured, and the crystal orientation of the (200) plane was calculated according to the formula described in the embodiment.
- the cylindrical sputtering target was taken out from the sputtering apparatus. Thereafter, the cylindrical sputtering target was heated to about 250 ° C. to melt the solder, and the target material was removed from the copper alloy backing tube and removed. Thereafter, the solder remaining on the bonding surface of the copper alloy backing tube was wiped off, and the maximum deformation amount Z of the copper alloy backing tube was measured. After the measurement of the maximum deformation amount Z, the target material was again bonded to the copper alloy backing tube and subjected to the second sputtering under the same conditions.
- the maximum deformation amount Z of the copper alloy backing tube was measured in the same manner as in the first sputtering. After the maximum deformation amount Z was measured, the target material was again bonded to a copper alloy backing tube and subjected to the third sputtering under the same conditions. After the third sputtering, the maximum deformation amount Z of the copper alloy backing tube is measured by the same method. As shown in FIG. 5, the maximum deformation amount Z was measured by placing the copper alloy backing tube 12 on the surface plate 14 and measuring the gap between the surface plate 14 and the copper alloy backing tube 12 with a gap gauge.
- Comparative Example 11 in which the Co content is less than the range of the present invention, the mass ratio [Co] / [P] is lower than the range of the present invention, and the cross-sectional shrinkage ratio in the cold drawing process is higher than the range of the present invention.
- ⁇ 1 the micro Vickers hardness after heat treatment at 250 ° C. for 1 hour was less than 100 Hv, and the rate of decrease from the hardness before heat treatment exceeded 5%. The heat resistance and heat resistance were insufficient. For this reason, the amount of deformation after the first and subsequent sputter tests increased.
- Comparative Example 12 in which the Co content is larger than the range of the present invention, the mass ratio [Co] / [P] is higher than the range of the present invention, and the cross-sectional shrinkage ratio in the cold drawing process is lower than the range of the present invention.
- the thermal conductivity was less than 250 W / (m ⁇ K).
- the crystal orientation of the (200) plane in the cross section perpendicular to the axis was less than 50%, and the amount of deformation after the second and subsequent sputtering tests was increased.
- Comparative Example 13-1 in which the P content was less than the range of the present invention, the mass ratio [Co] / [P] was higher than the range of the present invention, and water cooling was not performed after the hot extrusion process, The rate was less than 250 W / (m ⁇ K). Moreover, the micro Vickers hardness after heat-processing on the conditions hold
- the thermal conductivity was 250 W / (m ⁇ K) or more, and the thermal conductivity was excellent. Further, the micro Vickers hardness after heat treatment at 250 ° C. for 1 hour is 100 Hv or more, and the decrease rate from the hardness before the heat treatment is 5% or less. Excellent heat resistance. For this reason, the maximum amount of deformation after the sputtering test has been sufficiently suppressed.
- the copper alloy backing tube of the present invention can be used repeatedly while suppressing deformation of the backing tube, has excellent heat dissipation characteristics, and can cope with high-power sputter deposition.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
Abstract
本発明の銅合金製バッキングチューブは、Co:0.10mass%以上0.30mass%以下、P:0.030mass%以上0.10mass%以下、Sn:0.01mass%以上0.50mass%以下、Ni:0.02mass%以上0.10mass%以下、Zn:0.01mass%以上0.10mass%以下、を含み、Coの含有量とPの含有量との質量比〔Co〕/〔P〕が3.0以上6.0以下の範囲内とされ、残部が銅及び不可避不純物とされた組成の銅合金からなり、熱伝導率が250W/(m・K)以上とされ、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv以上であり、かつ、加熱処理前の硬さからの低下率が5%以下とされている。
Description
本発明は、円筒型スパッタリングターゲットにおいてターゲット材の内周側に配置される銅合金製バッキングチューブ、及び、この銅合金製バッキングチューブの製造方法に関する。
本願は、2016年4月12日に、日本に出願された特願2016-079420号に基づき優先権を主張し、その内容をここに援用する。
本願は、2016年4月12日に、日本に出願された特願2016-079420号に基づき優先権を主張し、その内容をここに援用する。
金属膜や酸化物膜等の薄膜を成膜する手段として、スパッタリングターゲットを用いたスパッタ法が広く用いられている。
一般に、スパッタリングターゲットは、成膜する薄膜の組成に応じて形成されたターゲット材と、このターゲット材を保持するバッキング材とが、接合層を介して接合された構造を備えている。
ターゲット材とバッキング材との間に介在する接合層を構成する接合材としては、例えば、In、あるいは、Sn-Pb合金等が挙げられる。
一般に、スパッタリングターゲットは、成膜する薄膜の組成に応じて形成されたターゲット材と、このターゲット材を保持するバッキング材とが、接合層を介して接合された構造を備えている。
ターゲット材とバッキング材との間に介在する接合層を構成する接合材としては、例えば、In、あるいは、Sn-Pb合金等が挙げられる。
上述のスパッタリングターゲットとしては、例えば、平板型スパッタリングターゲット、及び、円筒型スパッタリングターゲットが提案されている。
平板型スパッタリングターゲットにおいては、平板形状のターゲット材と平板状のバッキング材(バッキングプレート)が積層された構造とされる。
また、円筒型スパッタリングターゲットにおいては、円筒形状のターゲット材の内周側に円筒状のバッキング材(バッキングチューブ)が接合層を介して接合された構造とされる。なお、大型基板への成膜に対応するため、円筒型ターゲットのターゲット材の軸線方向長さを、例えば1000mm以上と比較的長く設定したものが提案されている。
平板型スパッタリングターゲットにおいては、平板形状のターゲット材と平板状のバッキング材(バッキングプレート)が積層された構造とされる。
また、円筒型スパッタリングターゲットにおいては、円筒形状のターゲット材の内周側に円筒状のバッキング材(バッキングチューブ)が接合層を介して接合された構造とされる。なお、大型基板への成膜に対応するため、円筒型ターゲットのターゲット材の軸線方向長さを、例えば1000mm以上と比較的長く設定したものが提案されている。
平板型スパッタリングターゲットにおいては、ターゲット材の使用効率が20~30%程度と低く、効率的に成膜ができなかった。
これに対して、円筒型スパッタリングターゲットは、その外周面がスパッタ面とされており、ターゲットを回転しながらスパッタを実施することから、平板型スパッタリングターゲットを用いた場合に比べて連続成膜に適しており、かつ、エロ―ジョン部が周方向に広がるため、ターゲット材の使用効率が60~80%と高くなるといった利点を有している。
さらに、円筒型スパッタリングターゲットにおいては、バッキングチューブの内周側から冷却される構成とされており、上述のようにエロ―ジョン部が周方向に広がることから、ターゲット材の温度上昇を抑制でき、スパッタリング時のパワー密度を上げることができ、成膜のスループットをさらに向上させることが可能となる。
これに対して、円筒型スパッタリングターゲットは、その外周面がスパッタ面とされており、ターゲットを回転しながらスパッタを実施することから、平板型スパッタリングターゲットを用いた場合に比べて連続成膜に適しており、かつ、エロ―ジョン部が周方向に広がるため、ターゲット材の使用効率が60~80%と高くなるといった利点を有している。
さらに、円筒型スパッタリングターゲットにおいては、バッキングチューブの内周側から冷却される構成とされており、上述のようにエロ―ジョン部が周方向に広がることから、ターゲット材の温度上昇を抑制でき、スパッタリング時のパワー密度を上げることができ、成膜のスループットをさらに向上させることが可能となる。
上述のバッキングチューブは、ターゲット材を保持して機械的強度を確保するために設けられたものであり、さらにはターゲット材への電力供給、及び、ターゲット材の冷却といった作用を有する。このため、バッキングチューブとしては、機械的強度、電気伝導性及び熱伝導性に優れていることが求められており、例えばSUS304等のステンレス鋼、銅又は銅合金、チタン等で構成されている。
ここで、特許文献1には、銅又は銅合金で構成されたバッキングチューブを備えたスパッタリングターゲットが開示されている。
ここで、特許文献1には、銅又は銅合金で構成されたバッキングチューブを備えたスパッタリングターゲットが開示されている。
ところで、円筒型スパッタリングターゲットにおいては、バッキングチューブの外周側にターゲット材が配置され、バッキングチューブの両端がスパッタ装置の取り付け部に支持される構造を備えている。また、バッキングチューブの内部には、マグネットや水冷機構が形成されている。
このため、バッキングチューブの端部には、バッキングチューブの自重、ターゲット材の重量、バッキングチューブの内部構造の重量が加わることになり、局所的に大きな曲げ応力が負荷される。
このため、バッキングチューブの端部には、バッキングチューブの自重、ターゲット材の重量、バッキングチューブの内部構造の重量が加わることになり、局所的に大きな曲げ応力が負荷される。
また、消耗した使用後のターゲット材を取り外す際には、ターゲット材全体を加熱して接合層を溶融させて引き抜く。
ここで、従来の銅又は銅合金で構成されたバッキングチューブにおいては、バッキングチューブ端部に加わった曲げ応力によって変形が生じてしまい、使用済ターゲット材の取り外しが困難となり、バッキングチューブを繰り返し使用することができないおそれがあった。
ここで、従来の銅又は銅合金で構成されたバッキングチューブにおいては、バッキングチューブ端部に加わった曲げ応力によって変形が生じてしまい、使用済ターゲット材の取り外しが困難となり、バッキングチューブを繰り返し使用することができないおそれがあった。
なお、チタン製バッキングチューブやステンレス製バッキングチューブは、変形抵抗が高いことから、上述のような曲げ変形の問題が生じにくい。しかしながら、チタン製バッキングチューブやステンレス製バッキングチューブにおいては、熱伝導率が低いために、高出力のスパッタを行った際に、ターゲット材側の熱をバッキングチューブの内周側に十分に放散させることができず、接合層が溶け出したり、スパッタ成膜が不安定となったりするといった問題があった。
この発明は、前述した事情に鑑みてなされたものであって、バッキングチューブの変形を抑制して繰り返し使用が可能であり、かつ、放熱特性に優れ、高出力のスパッタ成膜に対応可能な銅合金製バッキングチューブ、及び、この銅合金製バッキングチューブの製造方法を提供することを目的とする。
上記の課題を解決するために、本発明の一態様である銅合金製バッキングチューブは、円筒型スパッタリングターゲットにおいて円筒形状をなすターゲット材の内周側に配置される銅合金製バッキングチューブであって、Co:0.10mass%以上0.30mass%以下、P:0.030mass%以上0.10mass%以下、Sn:0.01mass%以上0.50mass%以下、Ni:0.02mass%以上0.10mass%以下、Zn:0.01mass%以上0.10mass%以下、を含み、Coの含有量〔Co〕とPの含有量〔P〕との質量比〔Co〕/〔P〕が3.0以上6.0以下の範囲内とされ、残部が銅及び不可避不純物とされた組成の銅合金からなり、熱伝導率が250W/(m・K)以上とされ、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv以上であり、かつ、加熱処理前の硬さからの低下率が5%以下とされていることを特徴としている。
このような構成とされた本発明の一態様である銅合金製バッキングチューブによれば、上述の組成の銅合金からなるので、母相中にCoとPを含有する微細な析出物を分散させることによって強度、導電率、熱伝導性、耐熱性を向上させることができる。具体的には、熱伝導率が250W/(m・K)以上とされているので、ターゲット材側の熱をバッキングチューブの内周側に効率的に放散させることができ、高出力のスパッタ成膜に対応することができる。また、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv以上とされ、加熱処理前の硬さからの低下率が5%以下とされているので、高温強度及び耐熱性に優れており、スパッタ時に曲げ応力が負荷された場合でも、曲げ変形を抑制することができる。よって、使用済のターゲット材を容易に取り外すことができ、銅合金製バッキングチューブを繰り返し使用することができる。
ここで、本発明の一態様である銅合金製バッキングチューブにおいては、軸線に直交する断面における(200)面の配向性が50%以上であることが好ましい。
この場合、曲げ応力に対する変形抵抗が高くなり、銅合金製バッキングチューブの端部における曲げ変形の発生をさらに抑制することが可能となる。
この場合、曲げ応力に対する変形抵抗が高くなり、銅合金製バッキングチューブの端部における曲げ変形の発生をさらに抑制することが可能となる。
本発明の一態様である銅合金製バッキングチューブの製造方法は、上述の銅合金製バッキングチューブの製造方法であって、前記組成の銅合金鋳塊を得る溶解鋳造工程と、前記銅合金鋳塊を850℃以上の温度で加熱し、押出し加工して素管を得る熱間押出工程と、前記熱間押出工程後の素管を急冷する急冷工程と、得られた素管を、断面収縮率10%以上30%以下の条件で引き抜き加工を行う冷間引抜工程と、前記冷間引抜工程後の素管を400℃以上600℃以下の温度範囲で1時間以上10時間以下保持する条件で熱処理を行う熱処理工程と、を備えていることを特徴としている。
この構成の銅合金製バッキングチューブの製造方法によれば、前記銅合金鋳塊を850℃以上の温度で加熱し、押出し加工して素管を得る熱間押出工程及びその後の急冷工程において、Co及びPを溶体化し、前記冷間引抜工程後の素管を熱処理する熱処理工程において、固溶したCo及びPを含む析出物を分散させることができ、熱伝導率及び導電率を大きく低下させることなく強度や耐熱性を向上させることが可能となる。
具体的には、銅合金製バッキングチューブの熱伝導率を250W/(m・K)以上とすることができる。
さらに、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さを100Hv以上とし、加熱処理前の硬さからの低下率を5%以下とすることができる。
具体的には、銅合金製バッキングチューブの熱伝導率を250W/(m・K)以上とすることができる。
さらに、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さを100Hv以上とし、加熱処理前の硬さからの低下率を5%以下とすることができる。
以上のように、本発明によれば、バッキングチューブの変形を抑制して繰り返し使用が可能であり、かつ、放熱特性に優れ、高出力のスパッタ成膜に対応可能な銅合金製バッキングチューブ、及び、この銅合金製バッキングチューブの製造方法を提供することが可能となる。
以下に、本発明の実施形態である銅合金製バッキングチューブを備えた円筒型スパッタリングターゲットについて、添付した図面を参照して説明する。
本実施形態における円筒型スパッタリングターゲット10は、図1に示すように、軸線Oに沿って延在する円筒形状をなすターゲット材11と、このターゲット材11の内周側に挿入された本実施形態である銅合金製バッキングチューブ12とを備えている。
そして、ターゲット材11と銅合金製バッキングチューブ12は、接合層13を介して接合されている。
そして、ターゲット材11と銅合金製バッキングチューブ12は、接合層13を介して接合されている。
ターゲット材11は、成膜する薄膜の組成に応じた組成とされており、各種金属及び酸化物等で構成されている。
また、このターゲット材11の外径D1は、例えばバッキングチューブの外径D2に対し、D2+10mm≦D1≦D2+50mm、内径d1はバッキングチューブの外径D2に対し、D2+1mm≦d1≦D2+6mm、軸線O方向長さL1が500mm≦L1≦5000mm程度とされている。
また、このターゲット材11の外径D1は、例えばバッキングチューブの外径D2に対し、D2+10mm≦D1≦D2+50mm、内径d1はバッキングチューブの外径D2に対し、D2+1mm≦d1≦D2+6mm、軸線O方向長さL1が500mm≦L1≦5000mm程度とされている。
ターゲット材11と銅合金製バッキングチューブ12との間に介在する接合層13は、接合材を用いてターゲット材11と銅合金製バッキングチューブ12とを接合した際に形成されるものである。
接合層13を構成する接合材は、例えばInやIn合金等の低融点金属で構成されている。また、接合層13の厚さtは、0.5mm≦t≦3mmの範囲内とされている。
接合層13を構成する接合材は、例えばInやIn合金等の低融点金属で構成されている。また、接合層13の厚さtは、0.5mm≦t≦3mmの範囲内とされている。
そして、本実施形態である銅合金製バッキングチューブ12は、ターゲット材11を保持して機械的強度を確保するために設けられ、さらにはターゲット材11への電力供給、及び、ターゲット材11の冷却といった作用を有する。
ここで、本実施形態である銅合金製バッキングチューブ12は、Co:0.10mass%以上0.30mass%以下、P:0.030mass%以上0.10mass%以下、Sn:0.01mass%以上0.50mass%以下、Ni:0.02mass%以上0.10mass%以下、Zn:0.01mass%以上0.10mass%以下、を含み、Coの含有量〔Co〕とPの含有量〔P〕との質量比〔Co〕/〔P〕が3.0以上6.0以下の範囲内とされ、残部が銅及び不可避不純物とされた組成の銅合金で構成されている。
なお、上記銅合金は、さらに、Mg:0.002mass%以上0.2mass%以下、Ag:0.003mass%以上0.5mass%以下、Al:0.002mass%以上0.3mass%以下、Si:0.002mass%以上0.2mass%以下、Cr:0.002mass%以上0.3mass%以下、Zr:0.001mass%以上0.1mass%以下の1種以上を含有していてもよい。
なお、上記銅合金は、さらに、Mg:0.002mass%以上0.2mass%以下、Ag:0.003mass%以上0.5mass%以下、Al:0.002mass%以上0.3mass%以下、Si:0.002mass%以上0.2mass%以下、Cr:0.002mass%以上0.3mass%以下、Zr:0.001mass%以上0.1mass%以下の1種以上を含有していてもよい。
本実施形態である銅合金製バッキングチューブ12においては、熱伝導率が250W/(m・K)以上とされている。なお、銅合金製バッキングチューブ12の熱伝導率の上限に制限はないが、現実的には340W/(m・K)以下となる。
また、本実施形態である銅合金製バッキングチューブ12においては、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv以上であり、かつ、加熱処理前の硬さからの低下率が5%以下とされている。なお、加熱処理後のマイクロビッカース硬さの上限に制限はないが、現実的には200Hv以下となる。
また、本実施形態である銅合金製バッキングチューブ12においては、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv以上であり、かつ、加熱処理前の硬さからの低下率が5%以下とされている。なお、加熱処理後のマイクロビッカース硬さの上限に制限はないが、現実的には200Hv以下となる。
さらに、本実施形態である銅合金製バッキングチューブ12においては、軸線Oに直交する断面における(200)面の結晶配向性が50%以上とされている。軸線Oに直交する断面における(200)面の結晶配向性の上限に制限はないが、80%以下であってもよい。
また、本実施形態である銅合金製バッキングチューブ12においては、導電率が60%IACS以上であることが好ましい。
また、本実施形態である銅合金製バッキングチューブ12においては、導電率が60%IACS以上であることが好ましい。
なお、本実施形態である銅合金製バッキングチューブ12のサイズは、引き抜き工程後の機械加工前の状態で外径D2が140mm≦D2≦143mmであった。内径d2は引き抜き後の寸法のままであった。引き抜き後の軸線O方向の長さL2は7,000mm以下となった。また、引き抜き後、熱処理を行い、切断および機械加工を経てバッキングチューブとして仕上げた。
ここで、銅合金製バッキングチューブ12の組成、熱伝導率、硬さ、結晶配向性を上述のように規定した理由について説明する。
(Co:0.10mass%以上0.30mass%以下)
Coは、Pと共添加することにより、熱処理工程において析出物を形成し、硬さ及び耐熱性を向上させる作用効果を有する。また、母相中に固溶したCoを析出させることにより、熱伝導率及び導電率が向上する。ここで、Coの含有量が0.10mass%未満では、CoとPを含む析出物を十分に形成することができず、硬さを向上させる効果が不十分となる。一方、Coの含有量が0.30mass%を超えると、過剰なCoが固溶してしまい、熱伝導率及び導電率が低下してしまう。
以上のことから、本実施形態では、Coの含有量を0.10mass%以上0.30mass%以下の範囲内に規定している。なお、さらなる硬度の向上を図る場合には、Coの含有量の下限を0.13mass%以上とすることが好ましく、0.15mass%以上とすることがさらに好ましい。また、熱伝導率及び導電率の低下を確実に抑制するためには、Coの含有量の上限を0.28mass%以下とすることが好ましく、0.25mass%以下とすることがさらに好ましい。
Coは、Pと共添加することにより、熱処理工程において析出物を形成し、硬さ及び耐熱性を向上させる作用効果を有する。また、母相中に固溶したCoを析出させることにより、熱伝導率及び導電率が向上する。ここで、Coの含有量が0.10mass%未満では、CoとPを含む析出物を十分に形成することができず、硬さを向上させる効果が不十分となる。一方、Coの含有量が0.30mass%を超えると、過剰なCoが固溶してしまい、熱伝導率及び導電率が低下してしまう。
以上のことから、本実施形態では、Coの含有量を0.10mass%以上0.30mass%以下の範囲内に規定している。なお、さらなる硬度の向上を図る場合には、Coの含有量の下限を0.13mass%以上とすることが好ましく、0.15mass%以上とすることがさらに好ましい。また、熱伝導率及び導電率の低下を確実に抑制するためには、Coの含有量の上限を0.28mass%以下とすることが好ましく、0.25mass%以下とすることがさらに好ましい。
(P:0.030mass%以上0.10mass%以下)
Pは、Coと共添加することにより、熱処理工程において析出物を形成し、硬さ及び耐熱性を向上させる作用効果を有する。また、母相中に固溶したPを析出させることにより、熱伝導率及び導電率が向上する。ここで、Pの含有量が0.030mass%未満では、CoとPを含む析出物を十分に形成することができず、硬さを向上させる効果が不十分となる。一方、Pの含有量が0.10mass%を超えると、過剰なPが固溶してしまい、熱伝導率及び導電率が低下してしまうと共に、熱間押出工程において割れが発生する場合がある。
以上のことから、本実施形態では、Pの含有量を0.030mass%以上0.10mass%以下の範囲内に規定している。なお、さらなる硬度の向上を図る場合には、Pの含有量の下限を0.045mass%以上とすることが好ましく、0.050mass%以上とすることがさらに好ましい。また、熱伝導率及び導電率の低下を確実に抑制するためにはPの含有量の上限を0.080mass%以下とすることが好ましく、0.065mass%以下とすることがさらに好ましい。
Pは、Coと共添加することにより、熱処理工程において析出物を形成し、硬さ及び耐熱性を向上させる作用効果を有する。また、母相中に固溶したPを析出させることにより、熱伝導率及び導電率が向上する。ここで、Pの含有量が0.030mass%未満では、CoとPを含む析出物を十分に形成することができず、硬さを向上させる効果が不十分となる。一方、Pの含有量が0.10mass%を超えると、過剰なPが固溶してしまい、熱伝導率及び導電率が低下してしまうと共に、熱間押出工程において割れが発生する場合がある。
以上のことから、本実施形態では、Pの含有量を0.030mass%以上0.10mass%以下の範囲内に規定している。なお、さらなる硬度の向上を図る場合には、Pの含有量の下限を0.045mass%以上とすることが好ましく、0.050mass%以上とすることがさらに好ましい。また、熱伝導率及び導電率の低下を確実に抑制するためにはPの含有量の上限を0.080mass%以下とすることが好ましく、0.065mass%以下とすることがさらに好ましい。
(〔Co〕/〔P〕)
上述のように、CoとPは、共添加することによりCo2P等の微細な析出物を形成し、硬さを高め、さらに耐熱性を向上させ、熱伝導率を向上させることが可能となる。ここで、Coの含有量〔Co〕とPの含有量〔P〕との質量比〔Co〕/〔P〕が3.0未満、あるいは、6.0を超える場合には、いずれかの元素が母相に固溶してしまい、熱伝導率及び導電率が低下してしまう。
以上のことから、本実施形態では、Coの含有量〔Co〕とPの含有量〔P〕との質量比〔Co〕/〔P〕を3.0以上6.0以下の範囲内に設定している。質量比〔Co〕/〔P〕の下限は3.3以上とすることが好ましく、3.5以上とすることがさらに好ましい。また、質量比〔Co〕/〔P〕の上限は4.5以下とすることが好ましく、4.0以下とすることがさらに好ましい。
上述のように、CoとPは、共添加することによりCo2P等の微細な析出物を形成し、硬さを高め、さらに耐熱性を向上させ、熱伝導率を向上させることが可能となる。ここで、Coの含有量〔Co〕とPの含有量〔P〕との質量比〔Co〕/〔P〕が3.0未満、あるいは、6.0を超える場合には、いずれかの元素が母相に固溶してしまい、熱伝導率及び導電率が低下してしまう。
以上のことから、本実施形態では、Coの含有量〔Co〕とPの含有量〔P〕との質量比〔Co〕/〔P〕を3.0以上6.0以下の範囲内に設定している。質量比〔Co〕/〔P〕の下限は3.3以上とすることが好ましく、3.5以上とすることがさらに好ましい。また、質量比〔Co〕/〔P〕の上限は4.5以下とすることが好ましく、4.0以下とすることがさらに好ましい。
(Sn:0.01mass%以上0.50mass%以下)
Snは、母相中に固溶することによって硬さを向上させるとともに、耐熱性を向上させて高温で保持された場合でも硬さの低下を抑制する作用効果を有する。ここで、Snの含有量が0.01mass%未満の場合には耐熱性向上効果が十分に得られないおそれがある。一方、Snの含有量が0.5mass%を超えると、熱間加工時の変形抵抗が高くなり、加工性が低下してしまう。
以上のことから、本実施形態では、Snの含有量を0.01mass%以上0.50mass%以下の範囲内に規定している。なお、さらなる耐熱性の向上を図る場合には、Snの含有量の下限を0.04mass%以上とすることが好ましく、0.06mass%以上とすることがさらに好ましい。また、熱間加工性を十分に確保するためにはSnの含有量の上限を0.20mass%以下とすることが好ましく、0.15mass%以下とすることがさらに好ましい。
Snは、母相中に固溶することによって硬さを向上させるとともに、耐熱性を向上させて高温で保持された場合でも硬さの低下を抑制する作用効果を有する。ここで、Snの含有量が0.01mass%未満の場合には耐熱性向上効果が十分に得られないおそれがある。一方、Snの含有量が0.5mass%を超えると、熱間加工時の変形抵抗が高くなり、加工性が低下してしまう。
以上のことから、本実施形態では、Snの含有量を0.01mass%以上0.50mass%以下の範囲内に規定している。なお、さらなる耐熱性の向上を図る場合には、Snの含有量の下限を0.04mass%以上とすることが好ましく、0.06mass%以上とすることがさらに好ましい。また、熱間加工性を十分に確保するためにはSnの含有量の上限を0.20mass%以下とすることが好ましく、0.15mass%以下とすることがさらに好ましい。
(Ni:0.02mass%以上0.10mass%以下)
Niは、CoとPとの結合を促進する効果があり、硬さの向上に有効である。ここで、Niの含有量が0.02mass%未満では、CoとPとの結合を十分に促進できず、硬さ向上効果を得ることができないおそれがある。一方、Niの含有量が0.10mass%を超えると、過剰なNiが母相中に固溶し、熱伝導率及び導電率が低下するおそれがある。
以上のことから、本実施形態では、Niの含有量を0.02mass%以上0.10mass%以下の範囲内に規定している。なお、CoとPの結合を確実に促進させるためには、Niの含有量の下限を0.03mass%以上とすることが好ましい。また、熱伝導率及び導電率の低下をさらに抑制するためにはNiの含有量の上限を0.08mass%以下とすることが好ましく、0.06mass%以下とすることがさらに好ましい。
Niは、CoとPとの結合を促進する効果があり、硬さの向上に有効である。ここで、Niの含有量が0.02mass%未満では、CoとPとの結合を十分に促進できず、硬さ向上効果を得ることができないおそれがある。一方、Niの含有量が0.10mass%を超えると、過剰なNiが母相中に固溶し、熱伝導率及び導電率が低下するおそれがある。
以上のことから、本実施形態では、Niの含有量を0.02mass%以上0.10mass%以下の範囲内に規定している。なお、CoとPの結合を確実に促進させるためには、Niの含有量の下限を0.03mass%以上とすることが好ましい。また、熱伝導率及び導電率の低下をさらに抑制するためにはNiの含有量の上限を0.08mass%以下とすることが好ましく、0.06mass%以下とすることがさらに好ましい。
(Zn:0.01mass%以上0.10mass%以下)
Znは、母相中に固溶することにより、硬さを向上させるとともに、耐熱性を向上させる作用効果を有する。また、はんだ濡れ性を向上させる作用効果も有する。ここで、Znの含有量が0.01mass%未満では、硬さ及び耐熱性を十分に向上させることができないおそれがある。一方、Znの含有量が0.10mass%を超えると、熱伝導率及び導電率が低下するおそれがある。
以上のことから、本実施形態では、Znの含有量を0.01mass%以上0.10mass%以下の範囲内に規定している。なお、硬さ及び耐熱性を確実に向上させるためには、Znの含有量の下限を0.03mass%以上とすることが好ましい。また、熱伝導率及び導電率の低下をさらに抑制するためにはZnの含有量の上限を0.08mass%以下とすることが好ましい。
Znは、母相中に固溶することにより、硬さを向上させるとともに、耐熱性を向上させる作用効果を有する。また、はんだ濡れ性を向上させる作用効果も有する。ここで、Znの含有量が0.01mass%未満では、硬さ及び耐熱性を十分に向上させることができないおそれがある。一方、Znの含有量が0.10mass%を超えると、熱伝導率及び導電率が低下するおそれがある。
以上のことから、本実施形態では、Znの含有量を0.01mass%以上0.10mass%以下の範囲内に規定している。なお、硬さ及び耐熱性を確実に向上させるためには、Znの含有量の下限を0.03mass%以上とすることが好ましい。また、熱伝導率及び導電率の低下をさらに抑制するためにはZnの含有量の上限を0.08mass%以下とすることが好ましい。
なお、上述のように、本実施形態である銅合金製バッキングチューブ12は、上述の添加元素以外に、適宜、Mg,Ag,Al,Si,Cr,Zrといった元素を含有していてもよい。
Mg,Ag,Al,Siは固溶硬化により、Cr,Zrは析出硬化により、硬さをさらに向上させる作用効果を有する元素である。また、Agは、さらに耐熱性を向上させる作用効果を有する。熱伝導率及び導電率を大きく低下させずに硬さを向上させるためには、これらの元素の添加量は、それぞれ上述の範囲内に設定することが好ましい。
Mg,Ag,Al,Siは固溶硬化により、Cr,Zrは析出硬化により、硬さをさらに向上させる作用効果を有する元素である。また、Agは、さらに耐熱性を向上させる作用効果を有する。熱伝導率及び導電率を大きく低下させずに硬さを向上させるためには、これらの元素の添加量は、それぞれ上述の範囲内に設定することが好ましい。
(熱伝導率)
スパッタ中に発生するプラズマからの輻射熱は、ターゲット材11表面から内部に伝わり、さらに銅合金製バッキングチューブ12を通過し、銅合金製バッキングチューブ12の内周側に流れる冷却水にて奪熱される。従って、銅合金製バッキングチューブ12の熱伝導率が低い場合は、奪熱効果が不足することによりターゲット材11の温度が上昇し、ターゲット材11と銅合金製バッキングチューブ12との間に介在する接合層13が溶け出すおそれがある。したがって、銅合金製バッキングチューブ12の熱伝導率は高いほど好ましく、具体的には250W/(m・K)以上であることが好適である。
スパッタ中に発生するプラズマからの輻射熱は、ターゲット材11表面から内部に伝わり、さらに銅合金製バッキングチューブ12を通過し、銅合金製バッキングチューブ12の内周側に流れる冷却水にて奪熱される。従って、銅合金製バッキングチューブ12の熱伝導率が低い場合は、奪熱効果が不足することによりターゲット材11の温度が上昇し、ターゲット材11と銅合金製バッキングチューブ12との間に介在する接合層13が溶け出すおそれがある。したがって、銅合金製バッキングチューブ12の熱伝導率は高いほど好ましく、具体的には250W/(m・K)以上であることが好適である。
(硬さ)
銅合金製バッキングチューブ12は、ターゲット材11のボンディングおよびスパッタ終了後の使用済のターゲット材11の取り外しに際し、いずれも一定時間加熱を続け、接合層を溶融状態に保つ必要があることから、加熱しても強度が下がらない耐熱性、特に高温保持を繰り返しても硬さが低下しない特性が必要である。銅合金製バッキングチューブ12を繰り返し使用するためには、加熱後においてもマイクロビッカース硬さで100Hv以上であることが好ましい。また、加熱後の硬さ低下は、加熱前の硬さの5%以下であることが好ましい。
このため、本実施形態では、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv以上であり、かつ、加熱処理前の硬さからの低下率が5%以下とされている。また、加熱処理前の硬さからの低下率は1%以下であることがさらに好ましい。
銅合金製バッキングチューブ12は、ターゲット材11のボンディングおよびスパッタ終了後の使用済のターゲット材11の取り外しに際し、いずれも一定時間加熱を続け、接合層を溶融状態に保つ必要があることから、加熱しても強度が下がらない耐熱性、特に高温保持を繰り返しても硬さが低下しない特性が必要である。銅合金製バッキングチューブ12を繰り返し使用するためには、加熱後においてもマイクロビッカース硬さで100Hv以上であることが好ましい。また、加熱後の硬さ低下は、加熱前の硬さの5%以下であることが好ましい。
このため、本実施形態では、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv以上であり、かつ、加熱処理前の硬さからの低下率が5%以下とされている。また、加熱処理前の硬さからの低下率は1%以下であることがさらに好ましい。
(結晶配向性)
円筒型スパッタリングターゲット10においては、銅合金製バッキングチューブ12の両端がスパッタ装置の取り付け部に支持される構造を備えており、銅合金製バッキングチューブ12の端部に荷重が集中し、局所的に大きな曲げ応力が負荷される。
ここで、軸線Oに直交する断面における(200)面の結晶配向性が50%以上となるように結晶配向性を調整することにより、曲げに対する変形抵抗が大きくなり、曲げ変形しにくくなる。このため、本実施形態では、上述のように銅合金製バッキングチューブ12の結晶配向性を調整している。
円筒型スパッタリングターゲット10においては、銅合金製バッキングチューブ12の両端がスパッタ装置の取り付け部に支持される構造を備えており、銅合金製バッキングチューブ12の端部に荷重が集中し、局所的に大きな曲げ応力が負荷される。
ここで、軸線Oに直交する断面における(200)面の結晶配向性が50%以上となるように結晶配向性を調整することにより、曲げに対する変形抵抗が大きくなり、曲げ変形しにくくなる。このため、本実施形態では、上述のように銅合金製バッキングチューブ12の結晶配向性を調整している。
ここで、各軸線Oに直交する断面における(200)面の結晶配向性は、以下のようにして求められる。図2に示すように、軸線Oに直交する断面Sから測定試料Fを採取する。粉末X線回折法によって測定された(111)面、(200)面、(220)面および(311)面のピーク強度を、JCPDSカード(DBカード番号00-04-0836)記載の各結晶面の回折ピークの標準強度でそれぞれ除した値の合計を分母とし、粉末X線回折法で得られた(200)面でのピーク強度をJCPDSカード(DBカード番号00-04-0836)記載の(200)面のピークの標準強度で除した値を分子とする式から求めることができる。
すなわち、測定された(111)面、(200)面、(220)面および(311)面のピーク強度をI111、I200、I220、I311とし、JCPDSカード載の各結晶面の標準強度を、IS111、IS200、IS220、IS311とするとき、(220)面の配向性(%)は、以下の式で求められる。
次に、上述した本実施形態である銅合金製バッキングチューブ12の製造方法について説明する。
図3に、本実施形態である銅合金製バッキングチューブ12の製造方法のフロー図を示す。
図3に、本実施形態である銅合金製バッキングチューブ12の製造方法のフロー図を示す。
まず、上述した組成となるように溶解原料を秤量し、溶解鋳造して円柱形状の銅合金鋳塊を製造する(溶解・鋳造工程S01)。
次に、得られた銅合金鋳塊を850℃以上で2~10分加熱し、その後熱間押出し加工により円筒状の素管を製造する(熱間押出工程S02)。この熱間押出工程S02においては、断面収縮率は特に定めないが、90%以上とすることが好ましい。熱間押出工程S02における加熱温度は、1000℃以下とすることが好ましいが、これに限定されることはない。
ここで、「断面収縮率」は、加工前の断面積をA0、加工後の断面積をA1としたとき、断面収縮率(%)=100×(A0-A1)/A0で与えられる。
次に、熱間押出工程S02の後には、直ちに水冷する(急冷工程S03)。これにより、Co及びPを母相中に固溶させる。
次に、得られた銅合金鋳塊を850℃以上で2~10分加熱し、その後熱間押出し加工により円筒状の素管を製造する(熱間押出工程S02)。この熱間押出工程S02においては、断面収縮率は特に定めないが、90%以上とすることが好ましい。熱間押出工程S02における加熱温度は、1000℃以下とすることが好ましいが、これに限定されることはない。
ここで、「断面収縮率」は、加工前の断面積をA0、加工後の断面積をA1としたとき、断面収縮率(%)=100×(A0-A1)/A0で与えられる。
次に、熱間押出工程S02の後には、直ちに水冷する(急冷工程S03)。これにより、Co及びPを母相中に固溶させる。
次に、熱間押出工程S02により製造した素管は、冷間での引き抜き加工により、所定の外径と内径とを有するバッキングチューブ用素管とする(冷間引抜工程S04)。この冷間引抜工程S04においては、まず、素管の先端部を外径金型(ダイス21)と内径金型(プラグ22)の間に通るように口づけ加工する。その後、図4に示すように、素管31の口づけ部をダイス21とプラグ22の間に通し、口づけ部を引くことにより引き抜き加工を行う。この冷間引抜工程S03における断面収縮率は10~70%が望ましい。また、引き抜きは1回の工程で行ってもよいし、多段階で行ってもよい。
次に、冷間引抜工程S04の後のバッキングチューブ用素管を400℃以上600℃以下の温度範囲で1時間以上10時間以下保持する条件で熱処理を行う(熱処理工程S05)。この熱処理工程S05では、固溶したCo及びPを析出させることで銅合金製バッキングチューブ12の硬さを向上させ、同時に耐熱性を付与する。
さらに、銅合金製バッキングチューブ12の結晶配向性に異方性を発現させて、銅合金製バッキングチューブ12の端部やその近傍での変形を防止する効果を有する。
さらに、銅合金製バッキングチューブ12の結晶配向性に異方性を発現させて、銅合金製バッキングチューブ12の端部やその近傍での変形を防止する効果を有する。
ここで、熱処理温度が400℃未満では、固溶したCo及びPを十分に析出させることができず、硬さや耐熱性を向上させることができない。また、熱伝導性及び導電性が低くなる。一方、熱処理温度が600℃を超えると、析出物が再固溶あるいは粗大化して十分な硬さを得ることができなくなる。
熱処理時間が1時間未満の場合には、固溶したCo及びPを十分に析出させることができず、硬さや耐熱性を向上させることができない。一方、熱処理時間が10時間を超えてもさらなる効果の向上はない。
以上のことから、本実施形態では、熱処理温度を400℃以上600℃以下、熱処理時間を1時間以上10時間以下に設定している。なお、熱処理温度の下限は450℃以上とすることが好ましく、熱処理温度の上限は500℃以下とすることが好ましい。熱処理時間の下限は2時間以上とすることが好ましく、熱処理時間の上限は8時間以下とすることが好ましいが、これに限定されることはない。
熱処理時間が1時間未満の場合には、固溶したCo及びPを十分に析出させることができず、硬さや耐熱性を向上させることができない。一方、熱処理時間が10時間を超えてもさらなる効果の向上はない。
以上のことから、本実施形態では、熱処理温度を400℃以上600℃以下、熱処理時間を1時間以上10時間以下に設定している。なお、熱処理温度の下限は450℃以上とすることが好ましく、熱処理温度の上限は500℃以下とすることが好ましい。熱処理時間の下限は2時間以上とすることが好ましく、熱処理時間の上限は8時間以下とすることが好ましいが、これに限定されることはない。
そして、熱処理工程S05後に機械加工を行うことにより、銅合金製バッキングチューブ12のサイズ及び形状を調整する(機械加工工程S06)。
以上のような工程により、本実施形態である銅合金製バッキングチューブ12が製造される。
以上のような工程により、本実施形態である銅合金製バッキングチューブ12が製造される。
上述の構成とされた本実施形態である銅合金製バッキングチューブ12によれば、上述の組成の銅合金からなるので、CoとPを含有する微細な析出物を分散させることにより、熱伝導性及び導電性を大きく低下させることなく、強度、耐熱性を向上させることができる。
また、銅合金製バッキングチューブ12の熱伝導率が250W/(m・K)以上とされているので、ターゲット材11表面の熱を銅合金製バッキングチューブ12の内周側へと効率的に放散させることができ、高出力のスパッタ成膜に対応することができる。
また、銅合金製バッキングチューブ12の熱伝導率が250W/(m・K)以上とされているので、ターゲット材11表面の熱を銅合金製バッキングチューブ12の内周側へと効率的に放散させることができ、高出力のスパッタ成膜に対応することができる。
さらに、本実施形態である銅合金製バッキングチューブ12においては、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv以上とされ、加熱処理前の硬さからの低下率が5%以下とされているので、高温強度及び耐熱性に優れており、スパッタ時において銅合金製バッキングチューブ12の端部に曲げ応力が負荷された場合でも、曲げ変形を抑制することができる。よって、使用済のターゲット材11を容易に取り外すことができ、銅合金製バッキングチューブ12を繰り返し使用することができる。
さらに、本実施形態である銅合金製バッキングチューブ12においては、軸線Oに直交する断面における(200)面の配向性が50%以上とされているので、曲げに対する変形抵抗が高くなり、銅合金製バッキングチューブ12の端部における曲げ変形の発生をさらに抑制することが可能となる。
本実施形態である銅合金製バッキングチューブ12の製造方法によれば、銅合金鋳塊を850℃以上で2~10分加熱し、押出し加工して素管を得る熱間押出工程S02及びその後の急冷工程S03において、Co及びPを溶体化し、冷間引抜工程S04後の熱処理工程S05において、固溶したCo及びPを含む析出物を析出させて分散させることができ、熱伝導率及び導電率を大きく低下させることなく強度を向上させることが可能となる。
また、銅合金製バッキングチューブ12の熱伝導率を250W/(m・K)以上とすることができる。
さらに、銅合金製バッキングチューブ12の硬さ及び耐熱性を向上させることができ、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さを100Hv以上、加熱処理前の硬さからの低下率を5%以下とすることができる。
また、銅合金製バッキングチューブ12の熱伝導率を250W/(m・K)以上とすることができる。
さらに、銅合金製バッキングチューブ12の硬さ及び耐熱性を向上させることができ、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さを100Hv以上、加熱処理前の硬さからの低下率を5%以下とすることができる。
以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
以下に、本発明に係る銅合金製バッキングチューブの作用効果を確認すべく実施した確認試験の結果について説明する。
図3に示すフロー図に従ってバッキングチューブを製造した。高周波溶解炉にて溶解および鋳造することにより表1に示す組成の鋳塊を製造した。鋳塊のサイズは、直径360mm、長さ640mmとした。
次に、表2に示す条件にて、溶体化処理を含む熱間押出工程、冷間引抜工程、および最終的な熱処理工程を経て、バッキングチューブを製造した。
バッキングチューブの一部を輪切り切断し、図2に示す配向性測定試料とともに、残部から熱伝導率測定試料、硬さ測定試料を採取した。なお、バッキングチューブの引き抜き加工後の寸法は、外径がφ140~142mmであり、内径はすべてφ125mmである。また熱処理後は、内径は加工せず、外径をφ135mm、長さを1950mmに機械加工した。
なお、比較例20は、市販の無酸素銅(C1020)の素管である。
なお、比較例20は、市販の無酸素銅(C1020)の素管である。
<熱伝導率測定>
レーザーフラッシュ法によって熱伝導率を測定した。測定した試料は、直径:10mm、厚さ:1mmの寸法であった。また、測定は25℃にて実施した。
レーザーフラッシュ法によって熱伝導率を測定した。測定した試料は、直径:10mm、厚さ:1mmの寸法であった。また、測定は25℃にて実施した。
<耐熱性評価>
耐熱性評価のために採取した試料は、測定面を研磨しマイクロビッカース硬度計にて硬さ測定を行った。次に、表3に示すように250℃で1時間保持する条件で加熱処理を行い、再び硬さ測定を行った。加熱処理前の硬さをH0、加熱処理後の硬さをH1としたとき、下記の式で定義される硬さの低下率(%)により、耐熱性を評価した。
硬さの低下率(%)=100×(H0-H1)/H0
耐熱性評価のために採取した試料は、測定面を研磨しマイクロビッカース硬度計にて硬さ測定を行った。次に、表3に示すように250℃で1時間保持する条件で加熱処理を行い、再び硬さ測定を行った。加熱処理前の硬さをH0、加熱処理後の硬さをH1としたとき、下記の式で定義される硬さの低下率(%)により、耐熱性を評価した。
硬さの低下率(%)=100×(H0-H1)/H0
<結晶配向性評価>
図2に従って、結晶配向性を測定するための試料を採取し、軸線に直交する断面を研磨し、粉末X線回折装置にて、(111)面、(200)面、(220)面および(311)面からの回折ピーク強度を測定し、実施形態で説明した式により、(200)面の結晶配向性を算出した。
図2に従って、結晶配向性を測定するための試料を採取し、軸線に直交する断面を研磨し、粉末X線回折装置にて、(111)面、(200)面、(220)面および(311)面からの回折ピーク強度を測定し、実施形態で説明した式により、(200)面の結晶配向性を算出した。
<スパッタテスト後の最大変形量の評価>
銅合金製バッキングチューブの性能を確認するために、スパッタテストを行った。スパッタテストでは、内径がφ137mm、外径がφ180mm、長さが725mmの無酸素銅製円筒ターゲット材をそれぞれ2本準備し、各銅合金製バッキングチューブにInはんだを用いてターゲット材をボンディングした。このとき、ターゲット間の隙間を約1mmとした。得られた円筒型スパッタリングターゲットをスパッタ装置に取り付け後、真空排気し、以下の条件にてスパッタテストを実施した。
到達真空圧力:<1×10-4Pa
スパッタガス:Ar
スパッタガス圧:0.5Pa
スパッタ出力:直流、25kW
ターゲット回転数:10rpm
スパッタ時間:連続3時間
銅合金製バッキングチューブの性能を確認するために、スパッタテストを行った。スパッタテストでは、内径がφ137mm、外径がφ180mm、長さが725mmの無酸素銅製円筒ターゲット材をそれぞれ2本準備し、各銅合金製バッキングチューブにInはんだを用いてターゲット材をボンディングした。このとき、ターゲット間の隙間を約1mmとした。得られた円筒型スパッタリングターゲットをスパッタ装置に取り付け後、真空排気し、以下の条件にてスパッタテストを実施した。
到達真空圧力:<1×10-4Pa
スパッタガス:Ar
スパッタガス圧:0.5Pa
スパッタ出力:直流、25kW
ターゲット回転数:10rpm
スパッタ時間:連続3時間
スパッタ後は1時間冷却し、円筒型スパッタリングターゲットをスパッタ装置から取り出した。その後、円筒型スパッタリングターゲットを約250℃まで加熱してはんだを溶融し、ターゲット材を銅合金製バッキングチューブから抜き取って取り外した。
その後、銅合金製バッキングチューブのボンディング面に残ったはんだを拭き取り、銅合金製バッキングチューブの最大変形量Zを測定した。
最大変形量Zの測定後は、再びターゲット材を銅合金製バッキングチューブにボンディングし、同様の条件で2回目のスパッタに供した。2回目のスパッタ後も1回目と同様の方法で銅合金製バッキングチューブの最大変形量Zを測定した。
最大変形量Zの測定後は再びターゲット材を銅合金製バッキングチューブにボンディングし、同様の条件で3回目のスパッタに供した。3回目のスパッタ後も同様の方法で銅合金製バッキングチューブの最大変形量Zを測定する。なお、最大変形量Zは、図5に示すように、銅合金製バッキングチューブ12を定盤14に乗せ、定盤14と銅合金製バッキングチューブ12との隙間を隙間ゲージによって測定した。
その後、銅合金製バッキングチューブのボンディング面に残ったはんだを拭き取り、銅合金製バッキングチューブの最大変形量Zを測定した。
最大変形量Zの測定後は、再びターゲット材を銅合金製バッキングチューブにボンディングし、同様の条件で2回目のスパッタに供した。2回目のスパッタ後も1回目と同様の方法で銅合金製バッキングチューブの最大変形量Zを測定した。
最大変形量Zの測定後は再びターゲット材を銅合金製バッキングチューブにボンディングし、同様の条件で3回目のスパッタに供した。3回目のスパッタ後も同様の方法で銅合金製バッキングチューブの最大変形量Zを測定する。なお、最大変形量Zは、図5に示すように、銅合金製バッキングチューブ12を定盤14に乗せ、定盤14と銅合金製バッキングチューブ12との隙間を隙間ゲージによって測定した。
合金組成が本発明の範囲内であるが、熱処理時間が本発明の範囲よりも短い比較例4-2においては、熱伝導率が250W/(m・K)未満となった。また、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv未満であり、硬さ及び耐熱性が不十分であった。このため、1回目以降のスパッタテスト後の変形量が大きくなった。
Coの含有量が本発明の範囲よりも少なく、質量比〔Co〕/〔P〕が本発明の範囲よりも低く、冷間引抜工程の断面収縮率が本発明の範囲よりも高い比較例11-1においては、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv未満であり、かつ、加熱処理前の硬さからの低下率が5%を超えており、硬さ及び耐熱性が不十分であった。このため、1回目以降のスパッタテスト後の変形量が大きくなった。
Coの含有量が本発明の範囲よりも多く、質量比〔Co〕/〔P〕が本発明の範囲よりも高く、冷間引抜工程の断面収縮率が本発明の範囲よりも低い比較例12-1においては、熱伝導率が250W/(m・K)未満となった。また、軸線に直交する断面における(200)面の結晶配向性が50%未満となり、2回目以降のスパッタテスト後の変形量が大きくなった。
Pの含有量が本発明の範囲よりも少なく、質量比〔Co〕/〔P〕が本発明の範囲よりも高く、熱間押出工程後に水冷しなかった比較例13-1においては、熱伝導率が250W/(m・K)未満となった。また、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv未満であり、かつ、加熱処理前の硬さからの低下率が5%を超えており、硬さ及び耐熱性が不十分であった。このため、1回目以降のスパッタテスト後の変形量が大きくなった。
Pの含有量が本発明の範囲よりも多く、質量比〔Co〕/〔P〕が本発明の範囲よりも低い比較例14においては、熱間押出工程において割れが発生した。このため、この後の工程及び評価を中止した。
Snの含有量が本発明の範囲よりも少なく、熱間加工前の温度が850℃未満とされた比較例15-1においては、250℃で1時間保持の条件で加熱処理した際に、加熱処理前の硬さからの低下率が5%を超えており、耐熱性が不十分であった。また、軸線に直交する断面における(200)面の結晶配向性が50%未満であった。このため、2回目以降のスパッタテスト後の変形量が大きくなった。
Snの含有量が本発明の範囲よりも多く、熱間加工前の温度が850℃未満とされた比較例16-1においては、熱伝導率が250W/(m・K)未満となった。また、軸線に直交する断面における(200)面の結晶配向性が50%未満であった。このため、3回目のスパッタテスト後の変形量が大きくなった。
Niの含有量が本発明の範囲よりも少なく、冷間引抜工程の断面収縮率が本発明の範囲よりも低い比較例17-1においては、250℃で1時間保持の条件で加熱処理した際に、加熱処理前の硬さからの低下率が5%を超えており、耐熱性が不十分であった。また、軸線に直交する断面における(200)面の結晶配向性が50%未満であった。このため、3回目以降のスパッタテスト後の変形量が大きくなった。
Niの含有量が本発明の範囲よりも多く、冷間引抜工程の断面収縮率が本発明の範囲よりも低い比較例18-1においては、熱伝導率が250W/(m・K)未満となった。また、軸線に直交する断面における(200)面の結晶配向性が50%未満であった。このため、3回目のスパッタテスト後の変形量が大きくなった。
Znの含有量が本発明の範囲よりも少なく、冷間引抜工程の断面収縮率が本発明の範囲よりも低い比較例19-1においては、軸線に直交する断面における(200)面の結晶配向性が50%未満であった。このため、2回目以降のスパッタテスト後の変形量が大きくなった。
Znの含有量が本発明の範囲よりも多く、冷間引抜工程の断面収縮率が本発明の範囲よりも低い比較例20-1においては、熱伝導率が250W/(m・K)未満となった。また、軸線に直交する断面における(200)面の結晶配向性が50%未満であった。このため、3回目のスパッタテスト後の変形量が大きくなった。
市販の無酸素銅の素管を用いた比較例21においては、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv未満であり、かつ、加熱処理前の硬さからの低下率が38.6%と非常に大きく、硬さ及び耐熱性が不十分であった。このため、1回目以降のスパッタテスト後の変形量が非常に大きくなった。
これに対して、本発明例によれば、熱伝導率が250W/(m・K)以上であり、熱伝導性に優れていた。また、250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv以上であり、かつ、加熱処理前の硬さからの低下率が5%以下とされており、硬さ及び耐熱性に優れていた。このため、スパッタテスト後の最大変形量も十分に抑えられていた。
以上のことから、本発明例によれば、変形を抑制して繰り返し使用が可能であり、かつ、放熱特性に優れ、高出力のスパッタ成膜に対応可能な銅合金製バッキングチューブを提供できることが確認された。
本発明の銅合金製バッキングチューブによれば、バッキングチューブの変形を抑制して繰り返し使用が可能であり、かつ、放熱特性に優れ、高出力のスパッタ成膜に対応することが可能である。
10 円筒型スパッタリングターゲット
11 ターゲット材
12 銅合金製バッキングチューブ
13 接合層
14 定盤
11 ターゲット材
12 銅合金製バッキングチューブ
13 接合層
14 定盤
Claims (3)
- 円筒型スパッタリングターゲットにおいて円筒形状をなすターゲット材の内周側に配置される銅合金製バッキングチューブであって、
Co:0.10mass%以上0.30mass%以下、P:0.030mass%以上0.10mass%以下、Sn:0.01mass%以上0.50mass%以下、Ni:0.02mass%以上0.10mass%以下、Zn:0.01mass%以上0.10mass%以下、を含み、Coの含有量〔Co〕とPの含有量〔P〕との質量比〔Co〕/〔P〕が3.0以上6.0以下の範囲内であり、残部が銅及び不可避不純物とされた組成の銅合金からなり、
熱伝導率が250W/(m・K)以上であり、
250℃で1時間保持の条件で加熱処理した後のマイクロビッカース硬さが100Hv以上であり、かつ、加熱処理前の硬さからの低下率が5%以下であることを特徴とする銅合金製バッキングチューブ。 - 軸線に直交する断面における(200)面の配向性が50%以上であることを特徴とする請求項1に記載の銅合金製バッキングチューブ。
- 請求項1又は請求項2に記載の銅合金製バッキングチューブの製造方法であって、
前記組成の銅合金鋳塊を得る溶解鋳造工程と、
前記銅合金鋳塊を850℃以上の温度で加熱し、押出し加工して素管を得る熱間押出工程と、
前記熱間押出工程後の素管を急冷する急冷工程と、
得られた素管を、断面収縮率10%以上70%以下の条件で引き抜き加工を行う冷間引抜工程と、
前記冷間引抜工程後の素管を400℃以上600℃以下の温度範囲で1時間以上10時間以下保持する条件で熱処理を行う熱処理工程と、
を備えていることを特徴とする銅合金製バッキングチューブの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187028442A KR20180133852A (ko) | 2016-04-12 | 2017-04-11 | 구리 합금제 백킹 튜브 및 구리 합금제 백킹 튜브의 제조 방법 |
US16/090,886 US20190119786A1 (en) | 2016-04-12 | 2017-04-11 | Copper alloy backing tube and method of manufacturing copper alloy backing tube |
CN201780008119.5A CN108699676A (zh) | 2016-04-12 | 2017-04-11 | 铜合金制衬管及铜合金制衬管的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-079420 | 2016-04-12 | ||
JP2016079420A JP6202131B1 (ja) | 2016-04-12 | 2016-04-12 | 銅合金製バッキングチューブ及び銅合金製バッキングチューブの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017179573A1 true WO2017179573A1 (ja) | 2017-10-19 |
Family
ID=59969448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/014815 WO2017179573A1 (ja) | 2016-04-12 | 2017-04-11 | 銅合金製バッキングチューブ及び銅合金製バッキングチューブの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190119786A1 (ja) |
JP (1) | JP6202131B1 (ja) |
KR (1) | KR20180133852A (ja) |
CN (1) | CN108699676A (ja) |
WO (1) | WO2017179573A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11035036B2 (en) * | 2018-02-01 | 2021-06-15 | Honeywell International Inc. | Method of forming copper alloy sputtering targets with refined shape and microstructure |
CN113249612A (zh) * | 2021-04-21 | 2021-08-13 | 铁岭富兴铜业有限公司 | 新型触点铜合金及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10168532A (ja) * | 1996-10-08 | 1998-06-23 | Dowa Mining Co Ltd | バッキングプレート用銅合金およびその製造方法 |
WO2004079026A1 (ja) * | 2003-03-03 | 2004-09-16 | Sambo Copper Alloy Co.,Ltd. | 耐熱性銅合金材 |
JP2009541594A (ja) * | 2006-06-26 | 2009-11-26 | ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム | 回転可能なスパッタターゲットを製造する方法 |
US20110220489A1 (en) * | 2010-03-09 | 2011-09-15 | Applied Materials, Inc. | Rotatable target, backing tube, sputtering installation and method for producing a rotatable target |
WO2013047199A1 (ja) * | 2011-09-30 | 2013-04-04 | Jx日鉱日石金属株式会社 | スパッタリングターゲット及びその製造方法 |
WO2015087788A1 (ja) * | 2013-12-09 | 2015-06-18 | 三菱マテリアル株式会社 | In又はIn合金スパッタリングターゲット及びその製造方法 |
JP2016037610A (ja) * | 2014-08-05 | 2016-03-22 | 三菱マテリアル株式会社 | 円筒形スパッタリングターゲットおよびその製造方法 |
JP2016050358A (ja) * | 2014-08-28 | 2016-04-11 | 住友金属鉱山株式会社 | 円筒形スパッタリングターゲットの製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5145331B2 (ja) * | 2007-12-21 | 2013-02-13 | 三菱伸銅株式会社 | 高強度・高熱伝導銅合金管及びその製造方法 |
US20130140173A1 (en) * | 2011-06-10 | 2013-06-06 | Séverin Stéphane Gérard Tierce | Rotary sputter target assembly |
EP2883970A4 (en) * | 2012-07-31 | 2016-06-29 | Mitsubishi Cable Ind Ltd | Overlay wire made of a copper alloy and method for producing a top wire from a copper alloy |
CN103789570A (zh) * | 2012-10-29 | 2014-05-14 | 宁波金田铜业(集团)股份有限公司 | 高强耐热微合金化铜管及其制备方法 |
JP5990496B2 (ja) * | 2013-07-01 | 2016-09-14 | 株式会社コベルコ マテリアル銅管 | 熱交換器用りん脱酸銅管 |
CN204224696U (zh) * | 2014-11-13 | 2015-03-25 | 深圳市众诚达应用材料科技有限公司 | 磁控溅射旋转靶材 |
-
2016
- 2016-04-12 JP JP2016079420A patent/JP6202131B1/ja not_active Expired - Fee Related
-
2017
- 2017-04-11 KR KR1020187028442A patent/KR20180133852A/ko not_active Application Discontinuation
- 2017-04-11 US US16/090,886 patent/US20190119786A1/en not_active Abandoned
- 2017-04-11 CN CN201780008119.5A patent/CN108699676A/zh active Pending
- 2017-04-11 WO PCT/JP2017/014815 patent/WO2017179573A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10168532A (ja) * | 1996-10-08 | 1998-06-23 | Dowa Mining Co Ltd | バッキングプレート用銅合金およびその製造方法 |
WO2004079026A1 (ja) * | 2003-03-03 | 2004-09-16 | Sambo Copper Alloy Co.,Ltd. | 耐熱性銅合金材 |
JP2009541594A (ja) * | 2006-06-26 | 2009-11-26 | ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム | 回転可能なスパッタターゲットを製造する方法 |
US20110220489A1 (en) * | 2010-03-09 | 2011-09-15 | Applied Materials, Inc. | Rotatable target, backing tube, sputtering installation and method for producing a rotatable target |
WO2013047199A1 (ja) * | 2011-09-30 | 2013-04-04 | Jx日鉱日石金属株式会社 | スパッタリングターゲット及びその製造方法 |
WO2015087788A1 (ja) * | 2013-12-09 | 2015-06-18 | 三菱マテリアル株式会社 | In又はIn合金スパッタリングターゲット及びその製造方法 |
JP2016037610A (ja) * | 2014-08-05 | 2016-03-22 | 三菱マテリアル株式会社 | 円筒形スパッタリングターゲットおよびその製造方法 |
JP2016050358A (ja) * | 2014-08-28 | 2016-04-11 | 住友金属鉱山株式会社 | 円筒形スパッタリングターゲットの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20180133852A (ko) | 2018-12-17 |
CN108699676A (zh) | 2018-10-23 |
US20190119786A1 (en) | 2019-04-25 |
JP2017190479A (ja) | 2017-10-19 |
JP6202131B1 (ja) | 2017-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI381398B (zh) | Cu-Ni-Si alloy for electronic materials | |
JP4596493B2 (ja) | 導電性ばね材に用いられるCu−Ni−Si系合金 | |
JP6387755B2 (ja) | 銅圧延板及び電子・電気機器用部品 | |
TWI465591B (zh) | Cu-Ni-Si alloy and its manufacturing method | |
JP6151813B1 (ja) | ベーパチャンバーの製造方法 | |
TWI422692B (zh) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
TWI429768B (zh) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP5417366B2 (ja) | 曲げ加工性に優れたCu−Ni−Si系合金 | |
WO2021177460A1 (ja) | 純銅板、銅/セラミックス接合体、絶縁回路基板 | |
WO2011036804A1 (ja) | 電子材料用Cu-Ni-Si-Co系銅合金及びその製造方法 | |
JP6306632B2 (ja) | 電子材料用銅合金 | |
TWI588274B (zh) | 放熱零件用銅合金板以及放熱零件 | |
TW201641700A (zh) | 放熱零件用銅合金板以及放熱零件 | |
JP5539932B2 (ja) | 曲げ加工性に優れたCu−Co−Si系合金 | |
TW201704483A (zh) | 散熱零件用銅合金板及散熱零件 | |
CN111286703B (zh) | 一种镍铂合金溅射靶材及其制备方法 | |
WO2016152648A1 (ja) | 放熱部品用銅合金板及び放熱部品 | |
WO2017179573A1 (ja) | 銅合金製バッキングチューブ及び銅合金製バッキングチューブの製造方法 | |
TW201827613A (zh) | 放熱元件用銅合金板、放熱元件及放熱元件的製造方法 | |
CN111212923B (zh) | 铸造用模具材料及铜合金原材料 | |
JP6732840B2 (ja) | ベーパーチャンバー用銅合金板 | |
JP6617012B2 (ja) | 強度、導電性、ろう付性に優れる熱交換器用アルミニウム合金フィン材および該熱交換器用アルミニウム合金フィン材を備える熱交換器 | |
JP2007136467A (ja) | 銅合金鋳塊と該銅合金鋳塊の製造方法、および銅合金条の製造方法、並びに銅合金鋳塊の製造装置 | |
TWI406960B (zh) | Copper alloy hot forged products and copper alloy hot forging products manufacturing methods | |
JP4568092B2 (ja) | Cu−Ni−Ti系銅合金および放熱板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187028442 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17782386 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17782386 Country of ref document: EP Kind code of ref document: A1 |