WO2013035232A1 - 原料濃度検出機構を備えた原料気化供給装置 - Google Patents

原料濃度検出機構を備えた原料気化供給装置 Download PDF

Info

Publication number
WO2013035232A1
WO2013035232A1 PCT/JP2012/004559 JP2012004559W WO2013035232A1 WO 2013035232 A1 WO2013035232 A1 WO 2013035232A1 JP 2012004559 W JP2012004559 W JP 2012004559W WO 2013035232 A1 WO2013035232 A1 WO 2013035232A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
gas
flow rate
mass flow
pressure
Prior art date
Application number
PCT/JP2012/004559
Other languages
English (en)
French (fr)
Inventor
正明 永瀬
薫 平田
敦志 日高
西野 功二
池田 信一
中村 剛
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to US14/343,226 priority Critical patent/US9631777B2/en
Priority to CN201280043162.2A priority patent/CN103797563B/zh
Priority to KR1020147005952A priority patent/KR101525142B1/ko
Publication of WO2013035232A1 publication Critical patent/WO2013035232A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/135Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means

Definitions

  • the present invention relates to an improvement of a raw material vaporization supply apparatus for a semiconductor manufacturing apparatus by a so-called metal organic chemical vapor deposition method (hereinafter referred to as MOCVD method), and increases the raw material concentration in a raw material mixed gas supplied to a process chamber.
  • MOCVD method metal organic chemical vapor deposition method
  • the present invention relates to a raw material vaporization and supply apparatus equipped with a raw material concentration detection mechanism that can be quickly controlled with accuracy and can display a raw material gas concentration in real time.
  • a raw material vaporizing and supplying apparatus for semiconductor manufacturing equipment, a raw material vaporizing and supplying apparatus utilizing a so-called bubbling method has been widely used.
  • a raw material vaporizing and supplying apparatus is used. Realization of large-scale downsizing, increase of raw material supply amount, quick and accurate control of the mixing ratio of carrier gas and raw material gas, and direct display of raw material gas concentration in the mixed gas supplied to the chamber, etc. Is strongly requested.
  • FIG. 6 is a diagram for explaining the configuration of the reactive gas control method according to the above-mentioned Japanese Patent Application Laid-Open No. 7-118862.
  • 31 is a sealed tank
  • 32 is a heater
  • 33 is a mass flow controller
  • 34 is a blow-in.
  • TEOS liquid raw material
  • G K is carrier gas (N 2 )
  • G m mixed gas (G + G K )
  • G raw material gas
  • Q 1 is carrier Gas flow rate
  • Q 2 is a raw material gas flow rate
  • Q S is a mixed gas flow rate
  • 37 is a flow rate setting circuit
  • 38 a is a concentration calculation circuit
  • 38 b is a concentration setting circuit
  • 38 c is a
  • the temperature control of the liquid material L 0 adjusts the output flow rate Q 2 of the raw material gas G, while the concentration of the raw material gas G in the gas mixture Gm is to St. kept constant, specifically, From the mixed gas flow rate Q S from the mass flow meter 36 and the carrier gas flow rate Q 1 from the mass flow controller 33, the source gas generation flow rate Q 2 is calculated. Further, by obtaining Q 2 / Q S from the calculated Q 2 (the generated flow rate of the raw material gas), the raw material gas concentration K S in the mixed gas G m is calculated.
  • the calculated source gas concentration K S is input to the concentration setting circuit 38b, and compared with the set concentration K SO , the difference (K SO ⁇ K S ) between the two is fed back to the current control circuit 38c, and K SO > K S increased occurrence rate Q 2 of the raw material gas G by raising the temperature of the heater 32 in the case of, also, in the case of K SO ⁇ K S is lowers the heater temperature, thereby reducing the incidence rate Q 2. Also, the mixed gas flow rate Q S from the mass flow meter 36 is compared with the set mixed gas flow rate Q SO in the flow rate setting circuit 37, and the flow rate Q 1 of the mass flow controller is adjusted so that the difference between the two becomes zero.
  • the raw material gas generation flow rate Q 2 is increased by heating the liquid raw material L 2 O (or the raw material gas generation flow rate Q 2 is decreased by lowering the temperature of the liquid raw material L 2 O ). Therefore, the responsiveness of the concentration adjustment is extremely low. In particular, when the raw material gas concentration is lowered, the responsiveness is extremely low.
  • a mass flow meter (thermal flowmeter) 36 the flow rate measurement value greatly varies when mixed gas species and mixing ratio of the mixed gas G m is changed, in the method of FIG. 6, the mixed gas G m when or if the gas species gas species has changed greatly changes the mixing ratio be the same (raw material gas concentration) measurement accuracy of the flow rate Q S is lowered significantly.
  • FIG. 7 is a block diagram of the raw material gas supply apparatus according to the above-mentioned Japanese Patent No. 4605790 so that a mixed gas having a predetermined raw material gas concentration can be supplied to the process chamber while controlling the flow rate with high accuracy and high accuracy. It is a thing.
  • 21 is a closed tank
  • 22 is a thermostatic device
  • 23 is a mass flow controller
  • 24 is a blow pipe
  • 25 is a take-out pipe
  • 26 is an automatic pressure regulator for the closed tank
  • 26a is an arithmetic control unit
  • 26b is a control valve.
  • L 2 O is a liquid source
  • G K is a carrier gas
  • Q 1 is a carrier gas flow rate
  • G is a source gas
  • G m is a mixed gas (G + G K )
  • Q S is a mixed gas flow rate.
  • the thermostatic device 22 heats the main body of the closed tank 21 and the automatic pressure regulator 26 for the closed tank and the piping line L to a predetermined temperature.
  • the space is filled with a raw material saturated vapor (raw material gas) G.
  • the carrier gas G K of flow Q 1 which is flow rate control by the mass flow controller 23 is released from the bottom of the closed tank 21, a mixed gas G m of the saturated vapor G of the raw material and the carrier gas G K is, automatic pressure It is supplied to the outside (process chamber) through the control valve 26b of the adjusting device 26.
  • Flow rate Q S of the mixed gas G m is the automatic pressure regulator 26 is adjusted by controlling the mixed gas pressure in the closed tank 21, in the operation control unit 26a of the automatic pressure regulator 26, set comparing the calculated flow rate Q S computed from the measured value of the flow rate Q sO and pressure gauge P O and a thermometer T O, the difference between them (Q sO -Q S) controllable switch control valve 26b so as to be zero Thus, the supply flow rate Q S of the mixed gas G m is controlled to the set flow rate Q S0 .
  • Source gas supply device of FIG. 7 by adjusting the internal pressure of the closed tank, a mixed gas G m of constant feed gas concentration determined in correspondence with the heating temperature of the liquid material L O, precision, high response
  • the flow rate can be supplied while controlling the flow rate downward, and in the flow rate control of the mixed gas having a predetermined constant raw material gas concentration, excellent effects can be obtained.
  • the raw material gas supply apparatus, the flow rate Q S of the mixed gas G m high accuracy, but to be measured with a high responsiveness can be, the raw material gas concentration of the mixed gas G m, and this was measured with high precision
  • the raw material gas concentration K S in the gas mixture G m is susceptible predicted to some extent, the process automatically continuously feed gas concentration in the mixed gas G m supplied to the chamber, yet lower cost without using a complicated and expensive densitometer or the like, economic measures, technology to be able to display, It is still undeveloped.
  • the present invention relates to the above-mentioned problems in the raw material vaporization and supply apparatus of Japanese Patent Application Laid-Open No. 1-1118862 and Japanese Patent No. 4605790.
  • the generation of raw material gas by heating or cooling of the liquid raw material L 2 O for those that increase the flow rate Q (or decrease) is allowed to adjust the raw material gas concentration K S in the gas mixture G m, the after relatively low responsiveness of the control of the raw material gas concentration, in order to increase this requires expensive ancillary equipment, causing the manufacturing cost of the rising and size of the raw material gas supply device,
  • (b) the mixed gas species and mixing ratio of the mixed gas G m is changed, the flow rate measurement of the mass flow meter is large varies, the calculation accuracy of the mixed gas flow rate Q decreases and raw density of the measurement accuracy of the S K S is greatly reduced, the pressure fluctuations in the closed tank 31 due to changes in (c) the heating temperature, mass flow meter 3 The measurement accuracy is lowered, problems such that the calculation accuracy of the
  • the invention according to claim 1, holding the carrier gas G K through mass flow controller 3 supplies the source tank 5, along with releasing the carrier gas G K from the source tank 5, the source tank 5 by a thermostatic unit 6 at a constant temperature in the raw material vaporizing and supplying apparatus adapted to supply the process chamber with saturated steam G of raw material 4 by which the mixed gas G S between the carrier gas G K and the outflow of the mixed gas G S from the source tank 5
  • An automatic pressure adjusting device 8 and a mass flow meter 9 are provided in the passage, and the internal pressure Po of the source tank 5 is controlled to a predetermined value by opening and closing the control valve 8a of the automatic pressure adjusting device 8, and the carrier by the mass flow controller 3 is controlled.
  • the raw material concentration calculator 10 is provided with a storage device for saturated vapor pressure data of the raw material in the source tank 5 and the internal pressure P of the source tank 5 from the automatic pressure control device 8. In this configuration, detection signals of O and temperature t are input to the raw material concentration calculator 10.
  • the invention according to claim 3, holds the carrier gas G K through mass flow controller 3 supplies the source tank 5, along with releasing the carrier gas G K from the source tank 5, the source tank 5 by a thermostatic unit 6 at a constant temperature in the raw material vaporizing and supplying apparatus adapted to supply the process chamber with saturated steam G of raw material 4 by which the mixed gas G S between the carrier gas G K and the outflow of the mixed gas G S from the source tank 5 the automatic pressure regulating device 8 and a mass flow meter 9 is provided in the passage to control the internal pressure P O of the source tank 5 to a predetermined value by controlling opening and closing of the control valve 8a of the automatic pressure regulating device 8, due to the mass flow controller 3
  • the invention of claim 6, which in the invention of claim 3, and to provide a storage device for each data conversion factor conversion factor and carrier gas G K of the raw material gas G in the source tank to the material density arithmetic unit 10 It is.
  • the invention of claim 7 is the invention according to any one of claims 1 to 6, wherein a mass flow meter 9 is provided on the downstream side of the automatic pressure regulator 8.
  • the invention of claim 8 is the invention according to any one of claims 1 to 6, wherein a mass flow meter 9 is provided on the upstream side of the automatic pressure regulator 8.
  • a ninth aspect of the present invention is the control valve according to any one of the first to sixth aspects, wherein the automatic pressure adjusting device 8 is provided downstream of the temperature detector T, the pressure detector P, and the pressure detector P. 8a and a pressure adjusting device including a pressure calculation unit 8b.
  • the invention of claim 10 is such that a mass flow meter 9 is provided between the pressure detector P and the control valve 8a.
  • the supply flow rate to Q 1 carrier gas G K from the mass flow controller 3, the supply flow rate Q S and the source tank automatic pressure of the mixed gas G S from the mass flow meter 9 the tank internal pressure and the like from the adjustment device 8 enter into the raw material concentration calculating section 10, the raw material concentration at the arithmetic unit 10, in the constant pressure mixture supplied ⁇ Ra supplying mixed gas G S into the chamber at a gas G S because you are configured for calculating display the raw material gas concentration K in real time, more stable with the mixed gas G S of raw material concentration K can be supplied, the raw material concentration K in the mixed gas G S can be displayed digitally It is possible to perform high-quality and stable process processing.
  • the material density calculation unit 10 merely need only be added, as compared with the case of using a conventional so-called expensive gas concentration meter, inexpensively and reliably detect the raw material gas concentration K in the mixed gas G S, Can be displayed.
  • FIG. 1 It is a systematic diagram which shows the structure of the raw material vaporization supply apparatus provided with the raw material concentration detection mechanism which concerns on 1st Embodiment of this invention.
  • FIG. 1 shows an illustration of a raw material gas flow rate Q 2 mixed gas flow rate Q S and test device of investigating the relationship between carrier gas flow rate Q 1, the source tank pressure P O and the source tank temperature t. 2 shows the relationship between the tank internal pressure PO , the mixed gas flow rate Q S, the raw material gas flow rate Q 2, and the
  • FIG. 6 is a diagram showing a relationship between a measured value (mixed gas flow rate Q S ⁇ carrier gas flow rate Q 1 ) when the carrier gas flow rate Q 1 is constant and a raw material gas flow rate Q 2 calculated by the equation (2).
  • It is a simplified diagram of a source gas supply system. It is explanatory drawing which shows an example of the conventional bubbling-type raw material vaporization supply apparatus. (Japanese Unexamined Patent Publication No. 1-1118862). It is explanatory drawing which shows the other example of the raw material vaporization supply apparatus by the conventional bubbling system (patent 4605790 gazette).
  • FIG. 1 is a system diagram showing the configuration of a raw material vaporization supply apparatus equipped with a raw material concentration detection mechanism according to the first embodiment of the present invention.
  • 1 is a carrier gas supply source
  • 2 is a decompression device
  • 3 is a thermal mass flow controller (mass flow controller)
  • 4 is a raw material (organometallic compound (MO material), etc.)
  • 5 is a source tank
  • 6 is a constant temperature section
  • 7 is an introduction pipe
  • 8 is an automatic pressure regulator in the source tank
  • 9 is a mass flow meter
  • 10 is a raw material concentration calculation section
  • Q 1 is a carrier gas flow rate of Ar or the like
  • Q 2 is a raw material saturated steam flow rate (raw material gas flow rate)
  • Q S is the flow rate of the mixed gas of the carrier gas flow rate Q 1
  • P is the pressure detector of the mixed gas G S
  • T is the temperature detector of the mixed gas G S
  • 3a Is a sensor unit of the mass flow controller
  • 8a is a piezo element drive type control valve
  • 9a is a sensor unit of the mass flow meter
  • 9b is an
  • the mass flow controller 3 includes a sensor unit 3a and a flow rate calculation control unit 3b
  • the source tank automatic pressure regulator 8 includes a control valve 8a, a pressure calculation control unit 8b, a pressure detector P, and a temperature detector T. Each is formed.
  • N 2 is generally used as the carrier gas G K , but is not limited to N 2, and various gases such as H 2 Ar are used.
  • An organic metal compound (MO material) is used as a raw material, but is not limited to an organic metal material, and any liquid material or solid material that can obtain a predetermined saturated vapor pressure in a source tank. good.
  • G K carrier gas G is the raw material vapor (feed gas), G S gas mixture
  • P O is the source tank pressure (kPa abs.)
  • 3e is a flow rate display signal
  • 8d is a control valve control signal
  • 8c is a pressure detection signal
  • 8f is a temperature detection signal
  • 8e is a pressure display signal
  • 9c is a mixed gas flow rate detection signal
  • 9e is a mixed gas a flow rate display signal
  • the carrier gas G K is input to the material density arithmetic unit 10 the gas mixture here raw material gas concentration K in G S is calculated and displayed.
  • 10K is a raw material concentration display signal.
  • the flow rate calculation control unit 3 b of the mass flow controller 3, the pressure calculation control unit 8 b of the automatic pressure adjustment device 8, the flow rate calculation control unit 9 b of the mass flow meter 9, and the raw material concentration calculation unit 10 are integrated together. Although it forms on one board
  • the pressure PG 1 of the carrier gas G K supplied into the source tank 5 is set to a predetermined pressure value by the decompression device 2, and the supply flow rate Q 1 is the thermal mass flow control device. (Mass flow controller) 3 is set to a predetermined value. Further, the operation of the constant temperature unit 6 keeps the portion excluding the source tank 5 and the calculation control unit 8b of the automatic pressure adjusting device 9 at a constant temperature.
  • the set value supply amount to Q 1 carrier gas G K is the thermal mass flow controller 3, also the temperature of the source tank 5 is set value, further the internal pressure P O is automatic pressure source tank 5 by being respectively maintained at the set value by the adjustment device 8, the mixed gas G S at a constant flow rate at a constant mixing ratio through the control valve 8a is flowed into the mass flow meter 9, wherein the flow rate Q S of the mixed gas G S is high Measured with accuracy.
  • the source tank 5 and the control valve 8a of the automatic pressure adjusting device 8 are maintained at a constant temperature, the pressure PMO of the raw material saturated vapor G in the source tank 5 is stabilized, and the automatic pressure adjusting device 8 by controlling the internal pressure P O of the tank 5 to a set value, while stabilizing the concentration K of the raw material gas G in the mixed gas G S, the raw material gas in the mixed gas G S in the raw material concentration calculation unit 10 as described later
  • the concentration K can be measured and displayed.
  • the raw material flow rate Q 2 is determined by the mixed gas flow rate Q S , the source tank pressure P O , and the raw material vapor pressure (partial pressure) P MO , and the source tank internal pressure P O is determined by the temperature t in the source tank.
  • the raw material concentration K in the mixed gas G S will be determined carrier gas flow rate Q 1, the source tank internal pressure P O, the temperature t and the like in the source tank as a parameter.
  • the mass flow meter 9 is provided on the downstream side of the automatic pressure adjusting device 8, but the automatic pressure adjusting device 8 is provided on the downstream side of the mass flow meter 9 by exchanging the positions of the two. May be. Further, a mass flow meter 9 may be provided between the pressure detector P and the control valve 8a.
  • the control pressure of the automatic pressure adjusting device 8 and the source tank internal pressure coincide with each other, so that the tank internal pressure is accurately controlled.
  • the supply pressure of the mass flow meter 9 is affected by the secondary side (process chamber side).
  • the mass flow meter 9 when the mass flow meter 9 is provided on the upstream side of the automatic pressure adjusting device 8, the mass flow meter 9 belongs to the pressure control range of the automatic pressure adjusting device 8 and is supplied to the mass flow meter 9. Although the pressure can be stabilized and the flow rate can be measured with high accuracy, a pressure loss occurs in the mass flow meter 9, so that a difference occurs between the control pressure of the automatic pressure adjusting device 8 and the internal pressure of the source tank.
  • the mass flow meter 9 When the mass flow meter 9 is provided between the pressure detector P and the control valve 8a, the control pressure of the automatic pressure adjusting device 8 and the internal pressure of the source tank coincide with each other, and the mass flow meter 9 is the automatic pressure adjusting device. 8, the pressure supplied to the mass flow meter 9 is stable, and the flow rate can be measured with high accuracy. However, the mass flow meter 9 allows the pressure between the pressure detector P and the control valve 8a. There is a problem that the pressure control response is affected because of a pressure loss.
  • FIG. 2 is an explanatory view of an experimental apparatus performed to confirm the establishment of the relationship of the above formulas (1) and (2).
  • a raw material 4 acetone (vapor pressure curve is close to TMGa)
  • a constant temperature unit 6 As a water bath, N 2 is used as the carrier gas G K
  • the tank temperature t is a parameter ( ⁇ 10 ° C., 0 ° C., 10 ° C., 20 ° C.), and the tank pressure P O and the mixed gas G S flow rate Q S And adjusted the relationship.
  • FIG. 3 shows the result of the test carried out by the test apparatus of FIG. 2, and the following Table 1 calculates the raw material gas flow rate Q 2 when the raw material acetone is used by using the formula (2). It is the result.
  • Table 2 shows a comparison between the vapor pressure of acetone as a raw material and the vapor pressure of TMGa, which is a general MO material. Since the vapor pressures of both were very close, acetone was used. The calculated values in Table 1 can be said to represent those using TMGa as a raw material.
  • the measured value by the mass flow meter (mixed gas flow rate Q S ′ ⁇ carrier gas flow rate Q 1 ) is directly proportional to the calculated acetone flow rate Q 2. Is recognized.
  • the source gas flow rate Q 2 can be calculated by measuring the carrier gas flow rate Q 1 with the mass flow controller 3 and the mass flow meter 9 with the mixed gas flow rate Q S and obtaining Q S ⁇ Q 1. It becomes possible.
  • the source gas G having a flow rate Q 2 corresponding to the concentration K and the carrier gas G K (N 2 ) having a flow rate Q 1 (ie, Q 2 + Q 1 sccm) are expressed as follows.
  • the detected flow rate (converted to N 2 ) of the mixed gas Gs when supplied to the mass flow meter 9 is Q S ′ (sccm)
  • the raw material gas flow rate Q 2 and the raw material gas concentration K in the mixed gas are obtained from the following equations.
  • CF in the above equation (3) is a so-called conversion factor of the mixed gas Gs in the thermal mass flow meter, and is obtained by the following equation (5).
  • CF A is the conversion factor of gas A
  • CF B is the conversion factor of gas B
  • C is the volume ratio (concentration) of gas A
  • (1-C) is the volume ratio of gas B ( (Concentration) (flow measurement AtoZ, edited by Japan Metrology Equipment Industries Association, Kogyo Kogyo Co., Ltd., pp. 176-178).
  • Table 3 below, the (5) as a raw material gas flow rate Q 2 to which was calculated using the conversion factor CF obtained by equation (1) and (2) of the raw material gas flow rate Q 2 to which was calculated using the The comparison results are shown, and it can be seen that the values calculated by the equations (1) and (2) and the values calculated by the equation (5) are in good agreement.
  • acetone is used as the source gas G
  • the temperature t is used as a parameter, and calculation is performed using the equations (1) and (2).
  • raw material gas flow rate Q 2 to which was determined from the raw material gas flow rate Q 2 and (5) of the conversion factor CF obtained from the pressure ratio has a flow value that approximates.
  • Tables 4, 5, and 6 below show the contrast between the acetone flow rate obtained using the pressure ratio (Equations (1) and (2)) and the acetone flow rate obtained using the conversion factor CF (Equation 5). This shows a case where the N 2 flow rate Q 1 as the carrier gas G K is changed.
  • the mass flow controller formula (1) when obtaining the raw material gas flow rate of steam Q 2 and raw material gas vapor concentration K by partial pressure method which is based on (2) is shown in FIG. 1 flow rate measurements from 3 Q 1, tank pressure P O of the measurement values and the other to the vapor pressure curve of the raw material of the flow measurement Q S 'from the mass flow meter 9 from the automatic pressure regulating device 8 (temperature t and vapor it is a matter of course that requires the relationship pressure P MO), can of course it is necessary to set in advance so stored curves temperature t and vapor P MO ingredients 4 to the raw material concentration calculation unit 10 of FIG. 1 .
  • the source gas vapor concentration K itself can be increased or decreased by controlling the tank pressure PO and / or the tank temperature t.
  • the present invention is applicable not only as a material vaporization supply device used for MOCVD method and CVD method, but also to all gas supply devices configured to supply gas from a pressurized storage source to a process chamber in a semiconductor or chemical product manufacturing apparatus, etc. can do.
  • a carrier gas supply source 2 is a decompression device 3 is a mass flow control device 3a is a mass flow controller sensor unit 3b is a mass flow controller flow rate calculation control unit 3e is a flow rate display signal 4 is a raw material (MO material such as an organometallic compound) 5 is a source tank (container) 6 is a constant temperature unit 7 is an introduction pipe 8 is an automatic pressure regulator 8a in the source tank 8a is a control valve 8b is a pressure calculation control unit 8c is a pressure detection signal 8d is a control valve control signal 8e is a pressure display signal 8f is a temperature detection signal 9
  • the mass flow meter 9a is a mass flow meter sensor unit 9b
  • conversion factor CF a conversion factor CF B conversion factor C is the volume ratio G K source tank pressure PM 0 is the carrier gas G material gas G S mixed gas P 0 is the source tank of the gas a in the gas B a gas a carrier gas feed vapor partial pressure to Q 1 inner flow rate Q S is the flow rate of the mixed gas Q S 'is Ma Flow meter of the detected flow (N 2 equivalent) Q 2 is the raw material gas flow rate Q 2 ′ is the raw material gas flow rate (N 2 equivalent) K is raw material gas vapor concentration P is pressure gauge T is thermometer t is tank temperature (raw material temperature)

Abstract

 本発明は、キャリアガスと原料ガスとの混合ガス内の原料濃度を正確に調整しつつ、しかも高精度な流量制御の下でプロセスチャンバへ安定供給できるようにすると共に、混合ガス内の原料ガス蒸気濃度を高価な濃度計等を使用することなしに簡単に高精度で検出し、リアルタイムで表示できるようにする。 本発明は、マスフローコントローラ3を通してキャリアガスGをソースタンク5内へ供給し、ソースタンク5内よりキャリアガスGを放出すると共に、ソースタンク5を恒温部により一定温度に保持して発生せしめた原料4の飽和蒸気Gと前記キャリアガスGとの混合ガスGをプロセスチャンバへ供給するようにした原料気化供給装置において、前記ソースタンク5からの混合ガスGの流出通路に自動圧力調整装置8を設けると共にその下流側にマスフローメータ9を設け、前記自動圧力調整装置8のコントロールバルブ8aを開閉制御することによりソースタンク5の内部圧力Poを所定値に制御し、前記マスフローコントローラ3によるキャリアガスGの流量Qと前記タンク内圧Poと前記マスフローメータ9の混合ガスGsの流量QSの各検出値を原料濃度演算部10へ入力し、当該原料濃度演算部10に於いて原料の流量QをQ=Q×PMO/Pとして演算し(但し、PMOはソースタンク内の温度t℃に於ける原料蒸気Gの飽和蒸気圧)、当該原料流量Qを用いて前記プロセスチャンバへ供給する混合ガスGの原料ガス蒸気濃度KをK=Q/Qとして演算、表示する。

Description

原料濃度検出機構を備えた原料気化供給装置
 本発明は、所謂有機金属気相成長方法(以下、MOCVD法と呼ぶ)による半導体製造装置用の原料気化供給装置の改良に関するものであり、プロセスチャンバへ供給する原料混合ガス内の原料濃度を高精度で迅速に制御することができると共に、原料ガス濃度をリアルタイムで表示できるようにした原料濃度検出機構を備えた原料気化供給装置に関するものである。
 従前からこの種の半導体製造装置用原料気化供給装置としては、所謂バブリング方式を利用した原料気化供給装置が多く利用されているが、このバブリング方式の原料気化供給に於いては、原料気化供給装置の大幅な小型化、原料供給量の増大、キャリアガスと原料ガスとの混合比の迅速且つ高精度な制御及びチャンバへ供給する混合ガス内の原料ガス濃度を直接に表示すること等の実現が、強く要請されている。
 そのため、このバブリング型原料気化供給装置に付いては各種の研究開発が進められており、例えば、プロセスチャンバへ供給する混合ガスの供給流量や混合ガス内の原料ガス濃度の制御の技術分野に於いては、特開平7-118862号や特許第4605790号等が公開されている。
 図6は前記特開平7-118862号に係る反応ガス制御方法の構成説明図を示すものであり、図6に於いて31は密閉タンク、32は加熱ヒータ、33はマスフローコントローラ、34は吹込みパイプ、35は取出しパイプ、36はマスフローメータ、L0は液体原料(TEOS)、Gはキャリアガス(N)、Gは混合ガス(G+G)、Gは原料ガス、Qはキャリアガス流量、Qは原料ガス流量、Qは混合ガス流量、37は流量設定回路、38aは濃度算出回路、38bは濃度設定回路、38cは電流制御回路、QS0は設定流量、KSOは設定濃度である。
 本件発明は、液体原料L0の温度制御により原料ガスGの発生流量Qを調整し、混合ガスGm内の原料ガスGの濃度を一定に保持せんとするのであるが、具体的には、マスフローメータ36からの混合ガス流量Q及びマスフローコントローラ33からのキャリアガス流量Qから原料ガスの発生流量Qを演算する。
 また、この演算したQ(原料ガスの発生流量)から、Q/Qを求めることにより、混合ガスG内の原料ガス濃度Kが演算される。
 この演算した原料ガス濃度Kを濃度設定回路38bへ入力し、設定濃度KSOと対比して、両者の差分(KSO-K)を電流制御回路38cへフィードバックしてKSO>Kの場合にはヒータ32の温度を上昇させて原料ガスGの発生流量Qを増し、また、KSO<Kの場合にはヒータ温度を下降させて、発生流量Qを低下させる。
 また、マスフローメータ36からの混合ガス流量Qは流量設定回路37において設定混合ガス流量QSOと比較され、両者の差分が0となるようにマスフローコントローラの流量Qが調整される。
 しかし、上記図6に示した原料ガス濃度調整方法は、液体原料Lの加熱によって原料ガス発生流量Qを増加(又は、液体原料Lの温度低下によって原料ガス発生流量Qを減少)させるものであるため、濃度調整の応答性が極めて低く、特に、原料ガス濃度を低下させる場合にはその応答性が極端に低いと云う難点がある。
 また、マスフローメータ(熱式流量計)36は、混合ガスGの混合ガス種や混合比が変ると流量測定値が大きく変動するため、図6の方法にあっては、混合ガスGのガス種が変った場合やガス種が同一であっても混合比(原料ガス濃度)が大きく変化した場合には、流量Qの測定精度が著しく低下するという問題がある。
 更に、液体原料Lの加熱温度が変化すると密閉タンク31内の圧力が上昇し、必然的にマスフローメータ36の一次側圧力も変動する。その結果、マスフローメータ36の流量計測値に誤差を生ずることになり、流量制御精度や原料ガス濃度の制御精度が低下するという問題がある。
 一方、図7は前記特許第4605790号に係る原料ガス供給装置の構成図であり、所定の原料ガス濃度の混合ガスを高い応答性でもって高精度で流量制御しつつプロセスチャンバへ供給出来るようにしたものである。
 図7において、21は密閉タンク、22は恒温装置、23はマスフローコントローラ、24は吹込みパイプ、25は取出しパイプ、26は密閉タンク用自動圧力調整器、26aは演算制御部、26bは制御弁、Lは液体原料、Gはキャリアガス、Qはキャリアガス流量、Gは原料ガス、Gは混合ガス(G+G)、Qは混合ガス流量である。
 当該原料ガス供給装置に於いては、先ず恒温装置22によって、密閉タンク21や密閉タンク用自動圧力調整器26の本体部及び配管ラインLが所定の温度に加熱され、これによって密閉タンク21の内部空間は原料の飽和蒸気(原料ガス)Gにより充満される。
 また、マスフローコントローラ23により流量制御された流量QのキャリアガスGが密閉タンク21の底部より放出され、このキャリアガスGと前記原料の飽和蒸気Gとの混合ガスGが、自動圧力調整装置26の制御弁26bを通して外部(プロセスチャンバ)へ供給されて行く。
 上記混合ガスGの流量Qは、自動圧力調整器26によって密閉タンク21内の混合ガス圧力を制御することにより調整されており、自動圧力調整器26の演算制御部26aに於いて、設定流量QSOと圧力計P及び温度計Tの計測値から演算した演算流量Qとを比較し、両者の差分(QSO-Q)が零になるように制御弁26bを開閉制御することにより、混合ガスGの供給流量Qを設定流量QS0に制御するものである。
 上記図7の原料ガス供給装置は、密閉タンクの内圧を調整することにより、液体原料Lの加熱温度に対応して定まる一定原料ガス濃度の混合ガスGを、高精度、高応答性の下に流量制御しつつ供給することができ、予め定めた一定の原料ガス濃度の混合ガスの流量制御に於いては、優れた効用を奏するものである。
 しかし、当該原料ガス供給装置では、混合ガスGの流量Qを高精度、高応答性でもって計測することが出来るものの、混合ガスGの原料ガス濃度を、高精度で計測し且つこれを表示することが出来ないと云う基本的な難点がある。勿論、密閉タンク21の加熱温度及びキャリアガスGの流量並びに原料液体Lの液面高さ等が判ると、混合ガスG内の原料ガス濃度Kはある程度予測可能であるが、プロセスチャンバへ供給する混合ガスG内の原料ガス濃度を連続して自動的に、しかも複雑且つ高価な濃度計等を用いることなくより安価に、経済的に計測、表示できるようにした技術は、未だ未開発の状態にある。
特開平1-118862号公報 特許第4605790号公報
 本願発明は特開平1-118862号や特許第4605790号の原料気化供給装置に於ける上述の如き問題、即ち、前者に於いては、(イ)液体原料Lの加熱又は冷却によって原料ガス発生流量Qを増加(又は減少)させて混合ガスG内の原料ガス濃度Kを調整するものであるため、原料ガス濃度の制御の応答性が相対的に低いうえ、これを高めるためには高価な附帯設備が必要となり、原料ガス供給装置の製造コストの高騰や大型化を招くこと、(ロ)混合ガスGの混合ガス種や混合比が変化すると、マスフローメータの流量測定値が大きく変動し、混合ガス流量Qの計測精度の低下や原料濃度Kの演算精度が大幅に低下すること、(ハ)加熱温度の変化による密閉タンク31内の圧力変動により、マスフローメータ35の測定精度が低下し、流量Qの計測値や原料濃度Kの演算精度が低下すること等の問題を、また、後者に於いては、(イ)混合ガスG内の原料ガス濃度を高精度で計測し、これをリアルタイムで表示することが出来ないこと等の問題を、夫々解決することを発明の主目的とするものであり、プロセスチャンバへ供給するキャリアガスGと原料ガスGとの混合ガスG内の原料ガス濃度Kを連続して自動的に計測、表示することができ、しかも複雑高価な濃度計測装置等を用いることなく簡単な構成の安価な装置を用いることにより、極めて経済的に混合ガスG内の原料ガスの濃度制御及び濃度表示を行えるようにした、原料濃度検出機構を備えた原料気化供給装置を提供するものである。
 請求項1の発明は、マスフローコントローラ3を通してキャリアガスGをソースタンク5内へ供給し、ソースタンク5内よりキャリアガスGを放出すると共に、ソースタンク5を恒温部6により一定温度に保持して発生せしめた原料4の飽和蒸気Gと前記キャリアガスGとの混合ガスGをプロセスチャンバへ供給するようにした原料気化供給装置において、前記ソースタンク5からの混合ガスGの流出通路に自動圧力調整装置8およびマスフローメータ9を設け、前記自動圧力調整装置8のコントロールバルブ8aを開閉制御することによりソースタンク5の内部圧力Poを所定値に制御し、前記マスフローコントローラ3によるキャリアガスGの流量Qと前記タンク内圧Poと前記マスフローメータ9の混合ガスGの流量QSの各検出値を原料濃度演算部10へ入力し、当該原料濃度演算部10に於いて原料の流量Q2をQ2=Q×PMO/Pとして演算し(但し、PMOはソースタンク内の温度t℃に於ける原料蒸気Gの飽和蒸気圧)、当該原料流量Q2を用いて前記プロセスチャンバへ供給する混合ガスGの原料濃度KをK=Q/QSとして演算、表示する構成としたものである。
 請求項2の発明は、請求項1の発明において、原料濃度演算部10にソースタンク5内の原料の飽和蒸気圧データの記憶装置を設けると共に、自動圧力制御装置8からソースタンク5の内圧P及び温度tの検出信号を原料濃度演算部10へ入力する構成としたものである。
 請求項3の発明は、マスフローコントローラ3を通してキャリアガスGをソースタンク5内へ供給し、ソースタンク5内よりキャリアガスGを放出すると共に、ソースタンク5を恒温部6により一定温度に保持して発生せしめた原料4の飽和蒸気Gと前記キャリアガスGとの混合ガスGをプロセスチャンバへ供給するようにした原料気化供給装置において、前記ソースタンク5からの混合ガスGの流出通路に自動圧力調整装置8およびマスフローメータ9を設け、前記自動圧力調整装置8のコントロールバルブ8aを開閉制御することによりソースタンク5の内部圧力Pを所定値に制御し、前記マスフローコントローラ3によるキャリアガスGの流量Qと前記タンク内圧Pと前記マスフローメータ9の混合ガスGの流量QSの各検出値を原料濃度演算部10へ入力し、当該原料濃度演算部10に於いて原料流量Q2をQ2=CF×QS’-Q(但し、CFは混合ガスQのコンバージョンファクター)として求め、当該原料流量Q2を用いてプロセスチャンバへ供給する混合ガスGの原料濃度KをK=Q2/(Q+Q)として演算、表示する構成としたものである。
 請求項4の発明は、請求項3の発明において、混合ガスQSのコンバージョンファクターCFを、
1/CF=C/CF+(1-C)/CF(但し、CFはキャリアガスGのコンバージョンファクター、CFは原料ガスGのコンバージョンファクター、Cはキャリアガスの容積比率(Q/(Q+Q)である)とするようにしたものである。
 請求項5の発明、請求項1又は請求項3の発明において、原料濃度検出部10とマスフローコントローラ3の流量演算制御部3bと自動制御装置の圧力演算制御部8bとマスフローメータ9の流量演算制御部9bとを一体的に集合化する構成としたものである。
 請求項6の発明は、請求項3の発明において、原料濃度演算部10にソースタンク内の原料ガスGのコンバージョンファクター及びキャリアガスGのコンバージョンファクターの各データの記憶装置を設けるようにしたものである。
 請求項7の発明は、請求項1から請求項6の何れかの発明において、自動圧力調整装置8の下流側にマスフローメータ9を設けるようにしたものである。
 請求項8の発明は、請求項1から請求項6の何れかの発明において、自動圧力調整装置8の上流側にマスフローメータ9を設けるようにしたものである。
 請求項9の発明は、請求項1から請求項6の何れかの発明において、自動圧力調整装置8を、温度検出器T、圧力検出器P、圧力検出器Pより下流側に設けたコントロールバルブ8a、圧力演算部8bを備えた圧力調整装置としたものである。
 請求項10の発明は、圧力検出器Pとコントロールバルブ8aとの間にマスフローメータ9を設けるようにしたものである。
 本発明に於いては、原料気化供給装置に於いて、マスフローコントローラ3からのキャリアガスGの供給流量Q、マスフローメータ9からの混合ガスGの供給流量Q及びソースタンク内自動圧力調整装置8からのタンク内圧等を原料濃度演算部10へ入力し、当該原料濃度演算部10に於いて、一定圧力でチャンバへ混合ガスGを供給し乍ら供給する混合ガスG内の原料ガス濃度Kをリアルタイムで演算表示する構成としているため、より安定した原料濃度Kの混合ガスGを供給することができると共に、混合ガスG内の原料濃度Kをディジタル表示することができ、高品質の安定したプロセス処理を行うことが可能となる。
 また、原料濃度演算部10を単に付加するだけでよいため、従前の所謂高価なガス濃度計を用いる場合に比較して、安価に且つ確実に混合ガスG内の原料ガス濃度Kを検出、表示することができる。
本発明の第1実施形態に係る原料濃度検出機構を備えた原料気化供給装置の構成を示す系統図である。 原料ガス流量Qと混合ガス流量Qとキャリアガス流量Qとソースタンク圧力P及びソースタンク温度tとの関係を調査した試験装置の説明図である。 図2の試験装置を用いて測定したタンク内圧Pと混合ガス流量Q及び原料ガス流量Qとタンク温度tの関係を示すものであり、(a)は混合ガス流量Qの変化状態、(b)は原料ガス流量Qの変化状態を示すものである。 キャリアガス流量Qを一定とした場合の測定値(混合ガス流量Q-キャリアガス流量Q)と式(2)により計算した原料ガス流量Qの関係を示す線図である。 原料ガス供給系の簡略図である。 従前のバブリング方式の原料気化供給装置の一例を示す説明図である。(特開平1-118862号公報)。 従前のバブリング方式による原料気化供給装置の他の例を示す説明図である(特許第4605790号公報)。
 以下、図面に基づいて本発明の各実施形態を説明する。
 図1は本発明の第1実施形態に係る原料濃度検出機構を備えた原料気化供給装置の構成を示す系統図である。
 図1に於いて、1はキャリアガス供給源、2は減圧装置、3は熱式質量流量制御装置(マスフローコントローラ)、4は原料(有機金属化合物(MO材料)等)、5はソースタンク、6は恒温部、7は導入管、8はソースタンク内の自動圧力調整装置、9はマスフローメータ、10は原料濃度演算部、QはAr等のキャリアガス流量、Qは原料飽和蒸気の流量(原料ガス流量)、Qはキャリアガス流量Qと原料蒸気流量Qとの混合ガス流量、Pは混合ガスGの圧力検出器、Tは混合ガスGの温度検出器、3aはマスフローコントローラのセンサ部、8aはピエゾ素子駆動型のコントロールバルブ、9aはマスフローメータのセンサ部であり、9bはその演算制御部である。前記マスフローコントローラ3はセンサ部3aと流量演算制御部3bとから、また、前記ソースタンクの自動圧力調整器8はコントロールバルブ8aと圧力演算制御部8bと圧力検出器Pと温度検出器Tとから夫々形成されている。
 尚、キャリアガスGとしては一般的にNが用いられるが、Nに限られることはなく、H2 Ar等様々なガスが用いられる。また、原料としては有機金属化合物(MO材料)が用いられるが、有機金属材料に限られることはなく、ソースタンク内において所定の飽和蒸気圧を得ることが可能な液体材料又は固体材料であれば良い。
 尚、上記マスフローコントローラ3は、公知のものであるから、ここではその詳細な説明は省略する。同様にソースタンクの自動圧力調整装置8も特許4605790号等に於いて公知のものであるから、ここではその詳細な説明は省略する。
 また、図1に於いて、Gはキャリアガス、Gは原料蒸気(原料ガス)、Gは混合ガス、Pはソースタンク内圧(kPa abs.)、PMOはソースタンク内の原料蒸気圧(kPa abs.)、3eは流量表示信号、8dはコントロールバルブ制御信号、8cは圧力検出信号、8fは温度検出信号、8eは圧力表示信号、9cは混合ガス流量検出信号、9eは混合ガス流量表示信号であり、前記キャリアガスGの流量Qの表示信号3eとマスフローメータ9の混合ガスGの流量Qの表示信号9eが、原料濃度演算部10へ入力されここで混合ガスG内の原料ガス濃度Kが演算され、表示される。尚、10は原料濃度表示信号である。
 尚、図1の実施形態では、マスフローコントローラ3の流量演算制御部3b、自動圧力調整装置8の圧力演算制御8b、マスフローメータ9の流量演算制御部9b及び原料濃度演算部10を夫々一体として一つの基板に形成するようにしているが、各制御部3b、8b、9b及び原料濃度演算部10を個別に設けるようにしても良いことは勿論である。
 次に、上記原料気化供給装置の作動について説明する。
 当該原料の気化供給装置では、先ずソースタンク5内へ供給するキャリアガスGの圧力PGが減圧装置2により所定圧力値に設定されると共に、その供給流量Qが熱式質量流量制御装置(マスフローコントローラ)3により所定値に設定される。
 また、恒温部6の作動により、ソースタンク5や自動圧力調整装置9の演算制御部8b等を除いた部分が一定温度に保持される。
 このように、キャリアガスGの供給量Qが熱式質量流量制御装置3により設定値に、また、ソースタンク5の温度が設定値に、更にソースタンク5の内部圧力Pが自動圧力調整装置8により設定値に夫々保持されることにより、コントロール弁8aを通して定混合比で一定流量の混合ガスGが、マスフローメータ9へ流入し、ここで混合ガスGの流量Qが高精度で測定される。
 更に、ソースタンク5や自動圧力調整装置8のコントロール弁8a等が一定温度に保持されているため、ソースタンク5内の原料飽和蒸気Gの圧力PMOが安定し、自動圧力調整装置8によってソースタンク5の内圧Pを設定値に制御することにより、混合ガスG内の原料ガスGの濃度Kを安定させながら、後述するように原料濃度演算部10において混合ガスG内の原料ガス濃度Kを測定、表示することができる。
 而して、上記図1に示した原料気化供給装置に於いて、ソースタンク内圧P(kPa abs.)、原料蒸気圧PMO、キャリアガスGの流量Q(sccm)、チャンバへ供給する混合ガスGの流量Q(sccm)、原料蒸気Gの流量Q(sccm)とすると、チャンバへの混合ガスGの供給流量Qは、Q=Q+Q(sccm)となる。
 即ち、原料の流量Qはソースタンク内の原料蒸気圧PMOに、また、混合ガスGの供給流量Q=Q+Qはソースタンク内の内圧Pに比例するため、下記の関係が成立する。原料の流量Q:混合ガス供給流量Q=原料蒸気圧PMO:ソースタンク内圧P
即ち、
Figure JPOXMLDOC01-appb-M000001
(1)式より、原料の流量Qは、
Figure JPOXMLDOC01-appb-M000002
となる。
 上記(2)式からも明らかなように、原料の流量Qは混合ガス流量Q、ソースタンクの圧力P、原料の蒸気圧(分圧)PMOにより決まり、またソースタンクの内圧Pはソースタンク内の温度tにより決まることとなる。
 換言すれば、混合ガスG内の原料濃度Kは、キャリアガス流量Q、ソースタンクの内圧P、ソースタンク内の温度t等をパラメータとして決まることになる。
 尚、図1に於いては、自動圧力調整装置8の下流側にマスフローメータ9を設けているが、両者の位置を入れ換えしてマスフローメータ9の下流側に自動圧力調整装置8を設けるようにしても良い。また、圧力検出器Pとコントロールバルブ8aとの間にマスフローメータ9を設けるようにしても良い。
 図1のように自動圧力調整装置8をマスフローメータ9の上流側に設けた場合には、自動圧力調整装置8の制御圧とソースタンク内圧とが一致するため、タンク内圧を正確に制御することができるが、マスフローメータ9の供給圧が2次側(プロセスチャンバ側)の影響を受けると云う問題がある。
 これに対して、マスフローメータ9を自動圧力調整装置8の上流側に設けた場合には、マスフローメータ9が自動圧力調整装置8の圧力制御範囲内に属することになり、マスフローメータ9への供給圧が安定して高精度な流量測定が可能となるものの、マスフローメータ9に圧力損失が生ずるため、自動圧力調整装置8の制御圧とソースタンク内圧との間に差異が生じることになる。
 また、圧力検出器Pとコントロールバルブ8aとの間にマスフローメータ9が設けた場合には、自動圧力調整装置8の制御圧とソースタンク内圧とが一致し、且つマスフローメータ9が自動圧力調整装置8の圧力制御範囲内に属することになり、マスフローメータ9への供給圧が安定して高精度な流量測定が可能となるが、マスフローメータ9により、圧力検出器Pとコントロールバルブ8aとの間に圧力損失が生ずるため、圧力制御の応答性に影響を与えるという問題がある。
 図2は、上記(1)式及び(2)式の関係の成立を確認するために行った実験装置の説明図であり、原料4としてアセトン(蒸気圧曲線がTMGaに近い)、恒温部6としてウォータバス、キャリアガスGとしてNを使用し、タンク温度tをパラメータ(-10℃、0℃、10℃、20℃)として、タンク内圧力Pと混合ガスGの流量Qとの関係を調整した。
 図3は、図2の試験装置により実施したテストの結果を示すものであり、また、下記の表1は、前記式(2)を用いて原料アセトンとした場合の原料ガス流量Qを演算した結果である。
Figure JPOXMLDOC01-appb-T000001
 表2は、原料としたアセトンの蒸気圧と、一般的なMO材料であるTMGaの蒸気圧との比較を示すものであり、両者の蒸気圧は極く近似しているため、アセトンを用いた前記表1の計算値はTMGaを原料としたものを表すということができる。
Figure JPOXMLDOC01-appb-T000002
 図4は、図2のテスト装置に於いて、キャリアガス流量(Q)を一定とし、タンク温度t(-10℃~20℃)をパラメータとしてマスフローメータで測定した混合ガスGのN換算検出流量Q’とキャリアガス流量Qとの差Q’-Q(即ち、N2換算の原料ガス流量Q’=Q’-Q)と、前記式(2)により計算したアセトン流量(Q sccm)との関係を図示したものであり、(a)はキャリアガス流量Q=50sccmの場合、(b)はQ=100sccmの場合、(c)はQ=10sccmの場合を示すものである。
 図4の(a)~(c)からも明らかなように、マスフローメータによる測定値(混合ガス流量Q’-キャリアガス流量Q)と計算したアセトン流量Qとの間には正比例関係が認められる。その結果、キャリアガス流量Qをマスフローコントローラ3により、また、マスフローメータ9により混合ガス流量Qを夫々測定し、Q-Qを求めることにより、原料ガス流量Qを算出することが可能となる。
 次に、原料ガス流量Q並びに混合ガスGs内の原料ガスGの濃度Kの算定について説明する。
 いま、原料ガス供給系を図5のように表現すると、濃度Kに相当する流量Qの原料ガスGと流量QのキャリアガスG(N)(即ち、Q+Qsccm)をマスフローメータ9へ供給した際の混合ガスGsの検出流量(N換算)をQ’(sccm)とすると、原料ガス流量Q及び混合ガス内の原料ガス濃度Kは下式より求められる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 上記式(3)に於けるCFは、熱式質量流量計に於ける所謂混合ガスGsのコンバージョンファクターであり、下記の式(5)により求められる。
Figure JPOXMLDOC01-appb-M000005
 但し、式(5)に於いてCFはガスAのコンバージョンファクター、CFはガスBのコンバージョンファクター、CはガスAの容積比率(濃度)、(1-C)はガスBの容積比率(濃度)である(流量計測AtoZ、日本計量機器工業連合会編、工業技術社発光(176~178頁)。
 今、図5に於いて、キャリアガスG(N)のCFを1、原料ガスGのCFをαとすると、原料ガス濃度はQ2/(Q+Q)、キャリアガス濃度はQ/(Q+Q)となり、混合ガスQのCFは、(5)式より
Figure JPOXMLDOC01-appb-M000006
となり、
Figure JPOXMLDOC01-appb-M000007
となる。
 従って、マスフローメータ9で検出された混合ガスGのN換算検出流量Q’は、
Figure JPOXMLDOC01-appb-M000008
となる。
 これにより、原料ガスGの流量QはQ=α(QS’-Q)として求められる。但し、ここでαは上記原料ガスGのコンバージョンファクターである。
 下記の表3は、前記(5)式で求めたコンバージョンファクターCFを用いて計算した原料ガス流量Qと、前記(1)及び(2)式を用いて演算した原料ガス流量Qとの対比をした結果を示すものであり、(1)・(2)式で算出した値と、(5)式で算出した値とは、よく合致するものであることが判る。
 尚、表1では原料ガスGとしてアセトンを、キャリアガスGとしてNを流量Q=500sccmで供給し、温度tをパラメータにして計算をしており、(1)・(2)式の圧力比から求めた原料ガス流量Q2と(5)式のコンバージョンファクターCFより求めた原料ガス流量Qは近似した流量値となっている。
 下記の表4、表5、表6は、圧力比(式(1)・(2))を用いて求めたアセトン流量と、コンバージョンファクターCF(式5)を用いて求めたアセトン流量の対比を示すものであり、キャリアガスGとしてのN流量Qを変えた場合を夫々示している。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記の説明からも明らかなように、式(1)、(2)をベースにした分圧法により原料ガス蒸気流量Q及び原料ガス蒸気濃度Kを求める場合には、図1に示したマスフローコントローラ3からの流量計測値Q、自動圧力調整装置8からのタンク内圧力Pの計測値及びマスフローメータ9からの流量測定値Q’の他に原料材料の蒸気圧曲線(温度tと蒸気圧PMOの関係)を必要とすることは勿論であり、図1の原料濃度演算部10に原料4の温度tと蒸気PMOの曲線を予め記憶させて置く必要があることは勿論である。
 また、式(5)のCF法を用いて原料ガス流量Q及び原料ガス蒸気濃度Kを求める場合に於いても、予め各種原料ガス各種混合ガスGに対するコンバージョンファクターCFをテーブル化しておくのが望ましい。
 尚、前述した原料ガス蒸気流量Qや原料ガス蒸気濃度Kの演算並びに表示等は、全て図1の原料濃度演算部10でCPU等を用いて行われることは勿論である。
 又、原料ガス蒸気濃度Kそのもの上昇又は下降がタンク圧力P及び又はタンク温度tの制御により可能なことは勿論である。
 本発明は、MOCVD法やCVD法に用いる原料気化供給装置としてだけでなく、半導体や化学品製造装置等において、加圧貯留源からプロセスチャンバへ気体を供給する構成の全ての気体供給装置に適用することができる。
1はキャリアガス供給源
2は減圧装置
3は質量流量制御装置
3aはマスフローコントローラのセンサ部
3bはマスフローコントローラの流量演算制御部
3eは流量表示信号
4は原料(有機金属化合物等のMO材料)
5はソースタンク(容器)
6は恒温部
7は導入管
8はソースタンク内の自動圧力調整装置
8aはコントロールバルブ
8bは圧力演算制御部
8cは圧力検出信号
8dはコントロールバルブ制御信号
8eは圧力表示信号
8fは温度検出信号
9はマスフローメータ
9aはマスフローメータのセンサ部
9bはマスフローメータの演算制御部
9cは混合ガス流量検出信号
9eは混合ガス流量の表示信号
10は原料濃度演算部
10は濃度検出信号
CFは混合ガスのコンバージョンファクター
CFはガスAのコンバージョンファクター
CFはガスBのコンバージョンファクター
CはガスAの容積比率
はキャリアガス
Gは原料ガス
は混合ガス
はソースタンク内圧
PMはソースタンク内の原料蒸気分圧力
はキャリアガス流量
は混合ガス流量
’はマスフローメータの検出流量(N換算)
は原料ガス流量
’は原料ガス流量(N換算)
Kは原料ガス蒸気濃度
Pは圧力計
Tは温度計
tはタンク温度(原料温度)

Claims (10)

  1.  マスフローコントローラ3を通してキャリアガスGをソースタンク5内へ供給し、ソースタンク5内よりキャリアガスGを放出すると共に、ソースタンク5を恒温部6により一定温度に保持して発生せしめた原料4の飽和蒸気Gと前記キャリアガスGとの混合ガスGをプロセスチャンバへ供給するようにした原料気化供給装置において、前記ソースタンク5からの混合ガスGの流出通路に自動圧力調整装置8およびマスフローメータ9を設け、前記自動圧力調整装置8のコントロールバルブ8aを開閉制御することによりソースタンク5の内部圧力Poを所定値に制御し、前記マスフローコントローラ3によるキャリアガスGの流量Qと前記タンク内圧Poと前記マスフローメータ9の混合ガスGsの流量Qの各検出値を原料濃度演算部10へ入力し、当該原料濃度演算部10に於いて原料流量QをQ=Q×PMO/Pとして演算し(但し、PMOはソースタンク内の温度t℃に於ける原料ガスGの飽和蒸気圧)、当該原料流量Qを用いて前記プロセスチャンバへ供給する混合ガスGの原料濃度KをK=Q/Qとして演算、表示する構成としたことを特徴とする原料濃度検出機構を備えた原料気化供給装置。
  2.  原料濃度演算部10にソースタンク5内の原料の飽和蒸気圧データの記憶装置を設けると共に、自動圧力制御装置8からソースタンク5の内圧P及び温度tの検出信号を原料濃度演算部10へ入力する構成とした請求項1に記載の原料濃度検出機構を備えた原料気化供給装置。
  3.  マスフローコントローラ3を通してキャリアガスGをソースタンク5内へ供給し、ソースタンク5内よりキャリアガスGを放出すると共に、ソースタンク5を恒温部6により一定温度に保持して発生せしめた原料4の飽和蒸気Gと前記キャリアガスGとの混合ガスGをプロセスチャンバへ供給するようにした原料気化供給装置において、前記ソースタンク5からの混合ガスGの流出通路に自動圧力調整装置8およびマスフローメータ9を設け、前記自動圧力調整装置8のコントロールバルブ8aを開閉制御することによりソースタンク5の内部圧力Pを所定値に制御し、前記マスフローコントローラ3によるキャリアガスGの流量Qと前記タンク内圧Pと前記マスフローメータ9の混合ガスGの流量Qの検出値とを原料濃度演算部10へ入力し、当該原料濃度演算部10に於いて原料流量QをQ=CF×Q’-Q(但し、CFは混合ガスQのコンバージョンファクター)として求め、当該原料流量Qを用いてプロセスチャンバへ供給する混合ガスGの原料濃度KをK=Q/(Q+Q)として演算、表示する構成としたことを特徴とする原料濃度検出機構を備えた原料気化供給装置。
  4.  混合ガスQのコンバージョンファクターCFを、
    1/CF=C/CF+(1-C)/CF(但し、CFはキャリアガスGのコンバージョンファクター、CFは原料ガスGのコンバージョンファクター、Cはキャリアガスの容積比率(Q/(Q+Q)である)とするようにした請求項3に記載の原料濃度検出機構を備えた原料気化供給装置。
  5.  原料濃度検出部10とマスフローコントローラ3の流量演算制御部3bと自動制御装置の圧力演算制御部8bとマスフローメータ9の流量演算制御部9bとを一体的に集合化する構成とした請求項1又は請求項3に記載の原料濃度検出機構を備えた原料気化供給装置。
  6.  原料濃度演算部10にソースタンク内の原料ガスGのコンバージョンファクター及びキャリアガスGのコンバージョンファクターの各データの記憶装置を設けるようにした請求項3に記載の原料濃度検出機構を備えた原料気化供給装置。
  7.  自動圧力調整装置8の下流側にマスフローメータ9を設けるようにした請求項1から請求項6の何れかに記載の原料濃度検出機構を備えた原料気化供給装置。
  8.  自動圧力調整装置8の上流側にマスフローメータ9を設けるようにした請求項1から請求項6の何れかに記載の原料濃度検出機構を備えた原料気化供給装置。
  9.  自動圧力調整装置8が、温度検出器T、圧力検出器P、圧力検出器Pより下流側に設けられたコントロールバルブ8a、圧力演算部8bを備えた圧力調整装置である、請求項1から請求項6の何れかに記載の原料濃度検出機構を備えた原料気化供給装置。
  10.  圧力検出器Pとコントロールバルブ8aとの間にマスフローメータ9を設けるようにした請求項9に記載の原料濃度検出機構を備えた原料気化供給装置。
PCT/JP2012/004559 2011-09-06 2012-07-17 原料濃度検出機構を備えた原料気化供給装置 WO2013035232A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/343,226 US9631777B2 (en) 2011-09-06 2012-07-17 Raw material vaporizing and supplying apparatus equipped with raw material concentration
CN201280043162.2A CN103797563B (zh) 2011-09-06 2012-07-17 具备原料浓度检测结构的原料气化供给装置
KR1020147005952A KR101525142B1 (ko) 2011-09-06 2012-07-17 원료 농도 검출 기구를 구비한 원료 기화 공급 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-194285 2011-09-06
JP2011194285A JP5647083B2 (ja) 2011-09-06 2011-09-06 原料濃度検出機構を備えた原料気化供給装置

Publications (1)

Publication Number Publication Date
WO2013035232A1 true WO2013035232A1 (ja) 2013-03-14

Family

ID=47831713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004559 WO2013035232A1 (ja) 2011-09-06 2012-07-17 原料濃度検出機構を備えた原料気化供給装置

Country Status (6)

Country Link
US (1) US9631777B2 (ja)
JP (1) JP5647083B2 (ja)
KR (1) KR101525142B1 (ja)
CN (1) CN103797563B (ja)
TW (1) TWI482876B (ja)
WO (1) WO2013035232A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145115A (ja) * 2013-01-29 2014-08-14 Tokyo Electron Ltd 原料ガス供給装置、成膜装置、流量の測定方法及び記憶媒体

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243325B2 (en) 2012-07-18 2016-01-26 Rohm And Haas Electronic Materials Llc Vapor delivery device, methods of manufacture and methods of use thereof
JP5548292B1 (ja) * 2013-05-30 2014-07-16 株式会社堀場エステック 加熱気化システムおよび加熱気化方法
JP6627474B2 (ja) * 2015-09-30 2020-01-08 東京エレクトロン株式会社 原料ガス供給装置、原料ガス供給方法及び記憶媒体
US10256101B2 (en) * 2015-09-30 2019-04-09 Tokyo Electron Limited Raw material gas supply apparatus, raw material gas supply method and storage medium
US10852282B2 (en) * 2015-12-14 2020-12-01 Hitachi Metals, Ltd. System and method for determining a concentration of a constituent gas in a gas stream using pressure measurements
US10295518B2 (en) * 2015-12-14 2019-05-21 Hitachi Metals, Ltd. System and method for detecting concentration of a gas in a gas stream
JP6706121B2 (ja) * 2016-03-30 2020-06-03 株式会社フジキン 圧力制御装置および圧力制御システム
CN106011775B (zh) * 2016-06-29 2018-09-07 中国工程物理研究院激光聚变研究中心 超薄自支撑聚合物薄膜的制备方法
CN105887046B (zh) * 2016-06-29 2018-07-31 中国工程物理研究院激光聚变研究中心 激光诱导cvd设备
JP6600854B2 (ja) * 2016-08-24 2019-11-06 株式会社フジキン 圧力式流量制御装置、その流量算出方法および流量制御方法
JP6938036B2 (ja) * 2016-09-28 2021-09-22 株式会社フジキン 濃度検出方法および圧力式流量制御装置
JP6948803B2 (ja) * 2017-03-02 2021-10-13 東京エレクトロン株式会社 ガス供給装置、ガス供給方法及び成膜方法
JP6914063B2 (ja) * 2017-03-10 2021-08-04 株式会社堀場エステック ガス制御システム、該ガス制御システムを備えた成膜装置、該ガス制御システムに用いるプログラム及びガス制御方法。
JP6811147B2 (ja) * 2017-06-23 2021-01-13 東京エレクトロン株式会社 ガス供給系を検査する方法
CN109423622B (zh) * 2017-08-29 2020-10-13 胜高股份有限公司 气体供给装置、气体供给方法
US20200297982A1 (en) * 2017-11-20 2020-09-24 The Regents Of The University Of Michigan Digital external ventricular drain with integrated intracranial pressure monitor and cerebral spinal fluid monitor/pressure regulator
PL239633B1 (pl) * 2018-02-14 2021-12-20 Politechnika Lodzka Układ do zasilania w pary prekursora reaktorów do nakładania powłok metodami próżniowymi
JP7129798B2 (ja) * 2018-03-16 2022-09-02 東京エレクトロン株式会社 流量制御方法及び成膜装置
US10914521B2 (en) * 2019-01-24 2021-02-09 Versum Materials Us, Llc System and method for drying and analytical testing of containers
JP7356237B2 (ja) * 2019-03-12 2023-10-04 株式会社堀場エステック 濃度制御装置、原料消費量推定方法、及び、濃度制御装置用プログラム
CN112144038B (zh) * 2019-06-27 2023-06-27 张家港恩达通讯科技有限公司 一种用于MOCVD设备GaAs基外延掺杂源供给系统
CN110331382A (zh) * 2019-07-04 2019-10-15 暨南大学 液态反应溶液微流注入式真空气相沉积装置及方法
CN110836946B (zh) * 2019-11-19 2024-03-29 中国科学技术大学 一种可定量及可控制蒸气浓度的鼓泡装置及浓度测量方法
KR20210063564A (ko) * 2019-11-25 2021-06-02 삼성전자주식회사 기판 처리 장치
US11873916B2 (en) * 2020-06-29 2024-01-16 Fujikin Incorporated Fluid control device, fluid supply system, and fluid supply method
CN112538615A (zh) * 2020-11-16 2021-03-23 武汉新芯集成电路制造有限公司 一种液态源存储系统
DE102021117457A1 (de) * 2021-07-06 2023-01-12 Aixtron Se Verdampfungsquelle für einen CVD-Reaktor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104155A (ja) * 1992-09-22 1994-04-15 M C Electron Kk 半導体製造プロセスにおける中間制御装置
JP2001258184A (ja) * 2000-03-09 2001-09-21 Fuji Xerox Co Ltd 自己電力供給型カード型情報記録媒体、カード型情報記録媒体入出力装置、電力供給方法、及び通信方法
JP2003286573A (ja) * 2002-03-27 2003-10-10 Horiba Ltd 薄膜堆積方法とその装置および薄膜堆積方法に用いる混合ガス供給装置並びに薄膜堆積方法に用いる赤外線ガス分析計
JP2004091917A (ja) * 2002-07-10 2004-03-25 Tokyo Electron Ltd 成膜装置及びこれに使用する原料供給装置、ガス濃度測定方法
JP2004256864A (ja) * 2003-02-26 2004-09-16 Benesol Inc Mocvd装置における原料供給フィードバック制御システム
JP2007250803A (ja) * 2006-03-15 2007-09-27 Hitachi Kokusai Electric Inc 基板処理装置
JP2009076807A (ja) * 2007-09-25 2009-04-09 Fujikin Inc 半導体製造装置用ガス供給装置

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393013A (en) 1970-05-20 1983-07-12 J. C. Schumacher Company Vapor mass flow control system
JPS60244333A (ja) 1984-05-21 1985-12-04 Sumitomo Electric Ind Ltd 原料液補給装置
US4787254A (en) 1987-02-20 1988-11-29 Briggs Technology, Inc. Mass flow meter
JP2538042B2 (ja) 1989-03-29 1996-09-25 株式会社エステック 有機金属化合物の気化供給方法とその装置
JPH0472717A (ja) * 1990-07-13 1992-03-06 Matsushita Electric Ind Co Ltd 半導体製造装置
US5288325A (en) 1991-03-29 1994-02-22 Nec Corporation Chemical vapor deposition apparatus
JP2893148B2 (ja) 1991-10-08 1999-05-17 東京エレクトロン株式会社 処理装置
JPH07118862A (ja) * 1993-10-19 1995-05-09 Hitachi Electron Eng Co Ltd Cvd装置の反応ガス濃度制御方法
US5451258A (en) 1994-05-11 1995-09-19 Materials Research Corporation Apparatus and method for improved delivery of vaporized reactant gases to a reaction chamber
JP3291161B2 (ja) 1995-06-12 2002-06-10 株式会社フジキン 圧力式流量制御装置
JP3580645B2 (ja) 1996-08-12 2004-10-27 忠弘 大見 圧力式流量制御装置
US5865205A (en) 1997-04-17 1999-02-02 Applied Materials, Inc. Dynamic gas flow controller
US6205409B1 (en) 1998-06-26 2001-03-20 Advanced Micro Devices, Inc. Predictive failure monitoring system for a mass flow controller
JP3522544B2 (ja) 1998-08-24 2004-04-26 忠弘 大見 流体可変型流量制御装置
JP4439030B2 (ja) 1999-04-01 2010-03-24 東京エレクトロン株式会社 気化器、処理装置、処理方法、及び半導体チップの製造方法
US6210482B1 (en) 1999-04-22 2001-04-03 Fujikin Incorporated Apparatus for feeding gases for use in semiconductor manufacturing
TW466593B (en) 1999-04-27 2001-12-01 Tokyo Electron Ltd CVD TiN plug formation from titanium halide precursors
US6119710A (en) 1999-05-26 2000-09-19 Cyber Instrument Technologies Llc Method for wide range gas flow system with real time flow measurement and correction
GB9929279D0 (en) 1999-12-11 2000-02-02 Epichem Ltd An improved method of and apparatus for the delivery of precursors in the vapour phase to a plurality of epitaxial reactor sites
JP2001313288A (ja) 2000-04-28 2001-11-09 Ebara Corp 原料ガス供給装置
US6539968B1 (en) 2000-09-20 2003-04-01 Fugasity Corporation Fluid flow controller and method of operation
US6564824B2 (en) 2001-04-13 2003-05-20 Flowmatrix, Inc. Mass flow meter systems and methods
JP2003013233A (ja) 2001-07-04 2003-01-15 Horiba Ltd 液体原料気化供給装置
US6656282B2 (en) 2001-10-11 2003-12-02 Moohan Co., Ltd. Atomic layer deposition apparatus and process using remote plasma
US6701066B2 (en) 2001-10-11 2004-03-02 Micron Technology, Inc. Delivery of solid chemical precursors
JP4082901B2 (ja) 2001-12-28 2008-04-30 忠弘 大見 圧力センサ、圧力制御装置及び圧力式流量制御装置の温度ドリフト補正装置
JP2003323217A (ja) 2002-05-01 2003-11-14 Stec Inc 流量制御システム
CN101109470A (zh) 2002-07-19 2008-01-23 诚实公司 液体流动控制器和精密分配设备及系统
JP4137666B2 (ja) 2003-02-17 2008-08-20 株式会社堀場エステック マスフローコントローラ
JP2004256764A (ja) * 2003-02-27 2004-09-16 Denki Kagaku Kogyo Kk ポリビニルアセタール樹脂と製造方法
JP4298476B2 (ja) 2003-11-14 2009-07-22 株式会社フジキン 流体制御装置
US20050221004A1 (en) 2004-01-20 2005-10-06 Kilpela Olli V Vapor reactant source system with choked-flow elements
JP4086057B2 (ja) 2004-06-21 2008-05-14 日立金属株式会社 質量流量制御装置及びこの検定方法
US7204158B2 (en) 2004-07-07 2007-04-17 Parker-Hannifin Corporation Flow control apparatus and method with internally isothermal control volume for flow verification
JP4856905B2 (ja) 2005-06-27 2012-01-18 国立大学法人東北大学 流量レンジ可変型流量制御装置
JP4866682B2 (ja) 2005-09-01 2012-02-01 株式会社フジキン 圧力センサを保有する流量制御装置を用いた流体供給系の異常検出方法
US20070254093A1 (en) * 2006-04-26 2007-11-01 Applied Materials, Inc. MOCVD reactor with concentration-monitor feedback
JP4605790B2 (ja) 2006-06-27 2011-01-05 株式会社フジキン 原料の気化供給装置及びこれに用いる圧力自動調整装置。
US7640078B2 (en) 2006-07-05 2009-12-29 Advanced Energy Industries, Inc. Multi-mode control algorithm
US7833353B2 (en) 2007-01-24 2010-11-16 Asm Japan K.K. Liquid material vaporization apparatus for semiconductor processing apparatus
DE102007011589A1 (de) 2007-03-08 2008-09-11 Schott Ag Fördereinrichtung für Precursor
JP5050739B2 (ja) 2007-08-31 2012-10-17 住友化学株式会社 有機金属化合物供給容器
US7874208B2 (en) 2007-10-10 2011-01-25 Brooks Instrument, Llc System for and method of providing a wide-range flow controller
US20090214777A1 (en) 2008-02-22 2009-08-27 Demetrius Sarigiannis Multiple ampoule delivery systems
JP5461786B2 (ja) 2008-04-01 2014-04-02 株式会社フジキン 気化器を備えたガス供給装置
KR101578220B1 (ko) * 2008-10-31 2015-12-16 가부시키가이샤 호리바 세이샤쿠쇼 재료가스 농도 제어 시스템
JP2010109303A (ja) * 2008-10-31 2010-05-13 Horiba Ltd 材料ガス濃度制御装置
JP5281363B2 (ja) * 2008-10-31 2013-09-04 株式会社堀場製作所 材料ガス濃度制御システム
JP2010153741A (ja) 2008-12-26 2010-07-08 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
US8151814B2 (en) 2009-01-13 2012-04-10 Asm Japan K.K. Method for controlling flow and concentration of liquid precursor
JP5787488B2 (ja) 2009-05-28 2015-09-30 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
JP4941514B2 (ja) 2009-06-30 2012-05-30 東京エレクトロン株式会社 処理ガス供給装置及び成膜装置
TWI435196B (zh) 2009-10-15 2014-04-21 Pivotal Systems Corp 氣體流量控制方法及裝置
JP5419276B2 (ja) * 2009-12-24 2014-02-19 株式会社堀場製作所 材料ガス濃度制御システム及び材料ガス濃度制御システム用プログラム
JP5562712B2 (ja) 2010-04-30 2014-07-30 東京エレクトロン株式会社 半導体製造装置用のガス供給装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104155A (ja) * 1992-09-22 1994-04-15 M C Electron Kk 半導体製造プロセスにおける中間制御装置
JP2001258184A (ja) * 2000-03-09 2001-09-21 Fuji Xerox Co Ltd 自己電力供給型カード型情報記録媒体、カード型情報記録媒体入出力装置、電力供給方法、及び通信方法
JP2003286573A (ja) * 2002-03-27 2003-10-10 Horiba Ltd 薄膜堆積方法とその装置および薄膜堆積方法に用いる混合ガス供給装置並びに薄膜堆積方法に用いる赤外線ガス分析計
JP2004091917A (ja) * 2002-07-10 2004-03-25 Tokyo Electron Ltd 成膜装置及びこれに使用する原料供給装置、ガス濃度測定方法
JP2004256864A (ja) * 2003-02-26 2004-09-16 Benesol Inc Mocvd装置における原料供給フィードバック制御システム
JP2007250803A (ja) * 2006-03-15 2007-09-27 Hitachi Kokusai Electric Inc 基板処理装置
JP2009076807A (ja) * 2007-09-25 2009-04-09 Fujikin Inc 半導体製造装置用ガス供給装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145115A (ja) * 2013-01-29 2014-08-14 Tokyo Electron Ltd 原料ガス供給装置、成膜装置、流量の測定方法及び記憶媒体

Also Published As

Publication number Publication date
TW201319305A (zh) 2013-05-16
US9631777B2 (en) 2017-04-25
CN103797563A (zh) 2014-05-14
JP5647083B2 (ja) 2014-12-24
KR20140046475A (ko) 2014-04-18
JP2013055303A (ja) 2013-03-21
CN103797563B (zh) 2016-08-31
KR101525142B1 (ko) 2015-06-03
US20140299206A1 (en) 2014-10-09
TWI482876B (zh) 2015-05-01

Similar Documents

Publication Publication Date Title
JP5647083B2 (ja) 原料濃度検出機構を備えた原料気化供給装置
JP2017076800A (ja) ガス制御システム、及び、ガス制御システム用プログラム
CN101760727B (zh) 材料气体浓度控制装置
KR101052156B1 (ko) 가스 공급 방법 및 가스 공급 장치
JP5949586B2 (ja) 原料ガス供給装置、成膜装置、原料の供給方法及び記憶媒体
JP5652960B2 (ja) 原料気化供給装置
TWI525734B (zh) And a raw material gas supply device for a semiconductor manufacturing apparatus
US11631596B2 (en) Concentration control apparatus, source consumption quantity estimation method, and program recording medium on which a program for a concentration control apparatus is recorded
WO2012014375A1 (ja) ガス供給装置用流量制御器の校正方法及び流量計測方法
US20090183548A1 (en) Method and apparatus for in situ testing of gas flow controllers
CN101724828A (zh) 材料气体浓度控制系统
JP2007244946A (ja) 混合ガス供給システム
WO2018062270A1 (ja) 濃度検出方法および圧力式流量制御装置
KR20140097011A (ko) 원료 가스 공급 장치, 성막 장치, 유량의 측정 방법 및 기억 매체
JP2006241516A (ja) 混合ガスによる薄膜作製方法とその装置
US8571817B2 (en) Integrated vapor delivery systems for chemical vapor deposition precursors
US8925481B2 (en) Systems and methods for measuring, monitoring and controlling ozone concentration
JPS61277030A (ja) 真空計校正装置
JPH0642938B2 (ja) 気化ガスの流量制御装置
JPS59185772A (ja) 高融点金属化合物における蒸発ガスの流量制御装置
US20230285911A1 (en) Facility and method for distributing a gas mixture for doping silicon wafers
JP2023130036A (ja) 推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147005952

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14343226

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12830297

Country of ref document: EP

Kind code of ref document: A1