WO2012014375A1 - ガス供給装置用流量制御器の校正方法及び流量計測方法 - Google Patents

ガス供給装置用流量制御器の校正方法及び流量計測方法 Download PDF

Info

Publication number
WO2012014375A1
WO2012014375A1 PCT/JP2011/003679 JP2011003679W WO2012014375A1 WO 2012014375 A1 WO2012014375 A1 WO 2012014375A1 JP 2011003679 W JP2011003679 W JP 2011003679W WO 2012014375 A1 WO2012014375 A1 WO 2012014375A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flow rate
tank
valve
flow
Prior art date
Application number
PCT/JP2011/003679
Other languages
English (en)
French (fr)
Inventor
正明 永瀬
池田 信一
洋平 澤田
暢 平井
和之 森崎
西野 功二
土肥 亮介
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to CN201180037208.5A priority Critical patent/CN103003766B/zh
Priority to US13/813,219 priority patent/US9638560B2/en
Priority to KR1020127030272A priority patent/KR101492460B1/ko
Publication of WO2012014375A1 publication Critical patent/WO2012014375A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters
    • G01F7/005Volume-flow measuring devices with two or more measuring ranges; Compound meters by measuring pressure or differential pressure, created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/001Means for regulating or setting the meter for a predetermined quantity
    • G01F15/002Means for regulating or setting the meter for a predetermined quantity for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/15Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0652Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid

Definitions

  • the present invention relates to an improvement of a flow rate controller calibration method and a flow rate measurement method of a gas supply device used in a semiconductor manufacturing device, a chemical manufacturing device, etc., and more accurate flow rate calibration and flow rate measurement can be performed in a short time.
  • the present invention relates to a calibration method and a flow rate measurement method for a flow rate controller for a gas supply device that can be quickly performed.
  • a gas supply apparatus such as a semiconductor manufacturing apparatus is generally configured to supply various types of gas to a gas usage target such as a process chamber, and the flow rate is controlled by a flow rate controller provided for each type of supply gas. The gas is supplied to the gas usage target.
  • the flow rate calibration and the flow rate measurement of each flow rate controller are generally performed at appropriate time intervals by the build-up method (or the pressure rise rate (ROR) method), and the set flow rate and build-up of the flow rate controller are performed.
  • a flow rate calibration of a flow rate controller is performed by comparing with an actual control flow rate measured by a method or the like, or a flow rate measurement for obtaining a flow rate from a measured value by a build-up method or the like is performed.
  • FIG. 12 and 13 show an example of a conventional calibration method of the flow controller for the gas supply device. That is, at the calibration method of FIG. 12, first, the flow rate consisting of a build-up tank BT and the inlet shutoff valve V 1 and the outlet on-off valve V 2 and the pressure detector Pd and gas temperature detectors Td constant internal volume
  • the calibration unit U is connected to the gas supply path L in a branched manner.
  • the on-off valves Vo 2 , Von, Vo are closed, the on-off valves Vo 1 , V 1, and V 2 are opened, and the tank BT Gas is circulated to the inside, and the pressure detection value P 1 and the temperature detection value T 1 at time t 1 after the on-off valves V 1 and V 2 are opened or after the on-off valve V 2 is closed are measured.
  • the on-off valve V 2 is closed, and the pressure detection value P 2 and the temperature detection value T 2 after ⁇ t seconds or after ⁇ t seconds from the time t 1 are measured.
  • the flow rate calculation formula calculates the build-up flow rate into the tank BT assuming that the gas is an ideal gas, V is the internal volume of the build-up tank BT, R is a gas constant, and T is the tank BT. The gas temperature inside.
  • the flow rate calibration unit U ′ in which the buildup tank is omitted is connected to the gas supply line L in a branched manner.
  • the on-off valves Vo, Vo 0 , Vo 2 and Von are closed, and the on-off valves Vo 1 , V 1 and V 2 are opened.
  • a gas having a set flow rate is supplied from the flow rate controller MFC 1 to the flow rate calibration unit U ′, and then the on-off valve V 2 is closed.
  • the on-off valve V 2 After closure of the on-off valve V 2, performs a first measurement when the pressure detected value of the pressure detector Pd becomes P 1, the pressure P 1, to measure the temperature T 1.
  • the second measurement is performed when the pressure detection value of the pressure detector P reaches P 2 (or when the set time t seconds elapses), and the pressure P 2 and the temperature T 2 are measured.
  • FIG. 13 has the same technical idea as that of the present invention in that the flow rate Q is obtained from the inflow mass dG.
  • the method of FIG. (Timing) determinants are different. That is, in the present invention, after the gas build-up, the second measurement is performed after the gas temperature T 2 in the build-up tank BT becomes a constant value near the gas temperature T 1 before the build-up.
  • the method of FIG. 12 basically differs in technical idea.
  • the method using the build-up tank BT shown in FIG. 12 described above detects the gas temperature in the tank BT more accurately than before by reducing the heat capacity by thinning the thermocouple as the temperature detector Td. It is coming to be able to do it.
  • the measured value of the gas temperature in the tank BT varies greatly depending on the mounting position of the temperature detector Td to the build-up tank BT, and (2) the gas temperature during the increase of the gas pressure in the tank. T actually fluctuates greatly and does not reach a constant temperature T.
  • (3) When the temperature change of the outside air is large, the gas temperature during pressure detection changes and the fluctuation of the temperature detection value T increases. There is a problem that the reliability of the calculated value of the flow rate Q is low even if the gas is close to the ideal gas.
  • the outlet of the flow rate controller MFC 1 and the downstream side open / close valve of the flow rate calibration unit U ′ are provided without providing the flow rate calibration unit U ′ with the build-up tank BT whose internal volume is known.
  • the flow rate is calculated assuming that the internal volume V of the pipe line between V 2 corresponds to the internal volume of the build-up tank.
  • the flow path volume V must be calculated, and not only is the flow rate calibration of the flow rate controller MFC troublesome, but the calculated value of the control flow rate is set to the temperature T and The measurement error related to the pressure P and the time t and the measurement error related to the flow path volume V are combined to cause a problem that the calculation accuracy of the control flow rate is greatly reduced.
  • the present invention relates to the above-mentioned problems in the flow rate controller calibration method and flow rate measurement method by the conventional build-up or ROR method, that is, (1) using a build-up tank whose internal volume is known in advance, In the method of calibrating the control flow rate based on the pressure increase rate ⁇ P / ⁇ t and the time ⁇ t, the calculation error of the flow rate due to the fluctuation of the gas temperature during the pressure increase is unavoidable, and (2) In this method, a steady flow rate gas is supplied into a flow channel having an internal volume V, and a flow rate Q is calculated by obtaining a difference ⁇ G in the mass of gas flowing into the flow channel V during a certain time interval ⁇ t. First, it is necessary to obtain the flow path volume V by some method. Compared to the case where the build-up tank BT having a known internal volume is used, it takes time to calculate the flow path volume V. There is a problem of passing.
  • the inventors of the present application based on the flow rate calibration method of the flow rate controller by the conventional build-up (or ROR) method, (1) the flow rate calculation based on the labor involved in the calculation of the pipe volume V and the calculation error of the volume V In order to reduce the error in the value, it is inevitable to use a build-up tank having an appropriate capacity with a known internal volume V, and (2) the build-up tank inlet side on-off valve is suddenly increased after the pressure rise due to build-up. It was found that the gas temperature in the tank BT suddenly returned to a constant temperature close to room temperature by closing.
  • the inventors of the present application calculate the number of moles of gas flowing into the build-up tank BT (inflow mass G) from the gas pressure and gas temperature before and after build-up based on the above knowledge, and can be opened and closed at high speed.
  • an on-off valve for example, a solenoid valve
  • the build-up time and the time to close the inlet-side on-off valve of the build-up tank BT after completion of the build-up are accurately controlled, and the gas temperature in the tank after build-up is built up.
  • the second measurement is performed when the gas temperature in the previous tank is approached, so that it is possible to calibrate the flow controller with higher accuracy, and many flow rate calibration tests are performed based on this idea. did.
  • the invention of the calibration method of the present application was invented based on the test result of the flow rate calibration test, and the invention of claim 1 is capable of switching a plurality of types of gas through each flow controller to the gas use location.
  • the flow controller calibration unit 5 consisting of a gas pressure detector Pd and gas temperature detectors Td while connected to branched, connects the outlet side switching valve V 2 of the flow controller calibration unit 5 to the evacuation device first, the outlet-side valve Vo 1 ⁇ Vo n and the outlet side switching valve V 2 and the inlet side of the calibration unit 5 while closing the inlet on-off valve V 0 which gas usages of the flow controller of the flow control device Open Opening valve V 1, then open only the outlet side switching valve of the calibration flow rate controller allowed to flow into a flow rate for the gas to the calibration unit 5,
  • the invention of the flow rate measuring method of the present application is a method for measuring a flow rate of a flow rate controller that controls a fluid flowing from a fluid supply source, and a buildup tank BT having an internal volume V downstream of the flow rate controller and an inlet of the tank BT.
  • the second time measurement by the flow controller calibration unit after the built-up completion (i.e., the closing point t 1 the inlet-side valve V 1) without the, the inlet-side valve V 1
  • the operation is performed at a time t 2 after a certain time from the closing point t 1 .
  • the gas temperature T 2 in the build-up tank BT reaches a temperature very close to the gas temperature To (that is, the room temperature) in the tank before the build-up.
  • the calculation is performed assuming that there is no large difference between the gas temperatures T 0 and T 2 during the first measurement and the second measurement, and the temperature T during the pressure increase is constant. Compared to the build-up method, more accurate flow rate calibration can be performed.
  • the gas supply channel is used as in the case of the method for obtaining the calculated flow rate from the data of the first and second measurements. It is not necessary to measure the internal volume of the material in advance or simultaneously. As a result, flow rate calibration can be performed very easily, and even if the internal volume of the gas supply path changes due to a change in the configuration of the gas supply device, the flow rate controller can be quickly calibrated without any effect. I can do it.
  • FIG. 3 schematically shows the result of FIG. 2.
  • D is a diagram showing the relationship between the set flow rate and the error% R.E.
  • the set flow rate and error% R.R Of the flow rate controller in the second embodiment using the build-up tank with an internal volume of 120.36 cc of the present invention.
  • FIG. 1 is an explanatory diagram of a first embodiment of a calibration method for a flow rate controller for a gas supply device according to the present invention, and shows a case where flow rate calibration of a flow rate controller MFC provided in the gas supply device GF is performed.
  • GF is a gas supply device
  • MFC 1 to MFCn are flow controllers
  • Go to Gn are supply gases
  • L to Ln and Ls are gas supply paths
  • V 00 to V 0n are on-off valves
  • V 0 is an on-off valve.
  • V 1 and V 2 are on-off valves
  • CH is a process chamber
  • VP is a vacuum pump
  • Td is a temperature detector
  • Pd is a pressure detector
  • BT is a build-up tank
  • 1 is a pressure regulator
  • 2 is a pressure gauge
  • 5 is a flow controller calibration unit
  • CP is the arithmetic control unit
  • the gas supply passage from the gas supply device GF L it is supplied switched predetermined gas to the process chamber CH through valve V 0.
  • the flow rate controller calibration unit 5 includes a build-up tank BT, an inlet side on-off valve V 1 , an outlet side on-off valve V 2 , a pressure detector Pd and a temperature detector Td provided in the tank BT, and the like.
  • a branch is connected to the gas supply flow path L via the path Ls.
  • a control signal such as on-off valve V 1 and closing valve V 2 is output to the calculation control unit CP, later
  • the inventor of the present application uses the flow rate controller calibration unit 5 in FIG. 1 to close the inlet-side on-off valve V1 after the build-up causes the gas temperature in the tank BT whose gas pressure has been raised by build-up. We investigated how it changed.
  • a standard flow rate regulator is attached in place of the flow rate controller MFC 1, and the on-off valves V 00 , V 02 , V 0n , V 0 are first closed, and the on-off valves V 1 , V 2 is opened and N 2 gas is allowed to flow at a flow rate of 500 sccm for a certain period of time.
  • the outlet side on-off valve V 2 is closed and build-up is performed for 10 seconds. It was carried out, and it closes the inlet-side valve V 1 immediately thereafter, and observe the change state of the gas temperature in the build-up BT.
  • the flow rate controller uses a Fujikin capacity of 100 sccm and 1 SLM, and the internal volume V of the build-up BT is set to 1.0996 L (known).
  • the gas flow rate (N 2 ) is set to 500 sccm, and the build-up time is set to 10 sec.
  • the outside air temperature (indoor temperature) was 21.7 ° C.
  • FIG. 2 shows changes in gas temperature, gas pressure, and the like in the build-up tank BT in the build-up test.
  • Curve A 1 is the flow rate output of the flow controller, and A 2 is the pressure detection in the tank BT. value, a 3 is the gas temperature detection value in the tank BT, a 4 is the outside air temperature (room temperature), a 5 is the control signal of the outlet side valve V 2, a 6 is a control signal of the inlet-side valve V 1 It is shown.
  • the pressure detector Pd is a MKS (baratron) capacitance manometer TYPE 627D (FS 1000 Torr), and the temperature detector Td is a 2.5 mm diameter thermocouple (wire type) as a measuring instrument. Uses the KEYENCE data logger NR500.
  • the outlet opening of the tank BT A certain time (about 1 to 300 seconds, gas type, tank capacity) from the time when valve V 2 is closed (starts build-up) (time to ⁇ 1st measurement) and build-up is completed (inlet side open / close valve V 1 is closed) It depends gas flow rate, etc.) at a time t 2 after a lapse of, by calculating the gas inlet mass performing 2nd measurement, accurate gas than to eliminate the influence of the gas temperature changes during the build-up Flow rate calculation is possible. Because a constant value and becomes nearly room temperature gas temperature in the tank BT at time to and time t 2, the because no calculation error due to a gas temperature change before and after the build-up.
  • Figure 3 is a representation of the test results of FIG. 2 schematically, the closed and the first time detects the outlet-side on-off valve V 2 at time-to, close the inlet-side valve V1 at time t 1, the time t 2 in 2nd detection, the outlet-side on-off valve V 2 and opens at time t 3.
  • the gas flow rate Q into the tank BT is
  • the flow rate controller calibration unit 5 is connected to the gas supply path L in a branched manner.
  • the on-off valves V 00 , V 02 , V 0n , V 0 are closed, the on-off valves V 01 , V 1 , V 2 are opened, and the flow rate controller MFC is opened.
  • a gas flow having a set flow rate Qs is supplied from 1 to the calibration unit 5 and exhausted by the vacuum pump VP.
  • a predetermined set time (approximately 1 to 300 seconds, depending on the type of gas, tank capacity, gas flow rate, etc.) has elapsed from the sudden closing (time t 1 ) of the inlet side opening / closing valve V 1 , and at time t 2 .
  • Itare detects the pressure P 2 and the temperature T 2 in the tank BT, and inputs the detected value to the calculation control unit CP.
  • the opened outlet side valve V 2 in which the same time or time t 3, to discharge the gas in the tank BT.
  • the set flow rate Qs is compared with the calculated flow rate Q, and whether or not the flow rate control performance of the flow rate regulator MFC 1 is appropriate is determined and calibrated based on a predetermined reference.
  • the flow rate regulator of the gas supply device GF is calibrated.
  • Table 1 shows the test results when the flow rate controller under test is a calibrated flow rate controller. Before the build-up (at the first measurement / time to), immediately after the build-up (time t 1 ) And measured values of temperature and pressure at the time of the second measurement (time t 2 ), gas inflow rate Q and flow rate error% R. The calculated value of D is shown.
  • FIG. 4 shows the flow rate error% R.
  • D ( ⁇ mark) and flow rate error% R of the flow rate controller obtained by using a flow rate controller to be calibrated (hereinafter referred to as a T1000 flow rate controller) adjusted by a calibrated flow rate controller, which will be described later, as a reference flow meter .
  • D ( ⁇ mark) is contrasted.
  • the flow rate calibration by the build-up method according to the present invention uses the T1000 flow controller as the reference flow meter.
  • Flow rate error% R It can be seen that D is small.
  • Table 2 shows the flow rate error% R.
  • D the flow rate error% R.
  • the calibrated flow rate controller is calibrated as a reference flow meter. The difference from D is shown.
  • FIG. 5 is a graph showing the difference in error shown in Table 2 above, and it can be seen that the calibration method of the present invention enables highly accurate flow rate calibration even in a small region where the set flow rate is 100 sccm or less.
  • Table 3 shows the test results of the second embodiment of the present invention.
  • a chamber (internal volume of 170.36 cc) having an inner diameter of 20 mm ⁇ is used as the build-up tank BT, and the temperature detector Td is 0.25 ⁇ m. thermocouple, is measured and calculated value when the capacitance of 100Torr pressure detector Pd, the inlet-side valve V 1 and the outlet-side on-off valve V 2 Cv value was fast off valve 0.1.
  • FIG. 6 shows the result of the investigation
  • FIG. 7 is an enlarged view of part A of FIG. 6 and 7, when the internal volume of the build-up tank BT is about 120.36 cc, the gas supply flow rate is 1.6 SLM and the internal pressure is increased to about 100 Torr (the on-off valve V 1 , V 2 is off valve Cv value 0.1).
  • T1000 is a calibrated flow rate controller adjusted by the calibrated flow rate control device or the like.
  • the flow rate controller to be calibrated includes a thermal type flow rate controller and a pressure type flow rate controller.
  • the pressure value on the output side (secondary side) is 100 Torr or less. It is necessary to. Therefore, when the build-up tank volume is 100 to 150 cc, the calibration flow rate must be 1000 sccm or less.
  • the set flow rate of the flow rate controller to be measured is also used in the test of Table 3 above. Is set to 100 sccm to 10 sccm.
  • FIG. 8 shows the flow rate error% R. Calibrated by the build-up method of the present invention shown in Table 3 above. D, and a flow rate error% R.C. Calibrated using a calibrated flow rate controller as a standard flow meter. D is a contrast between the two and the flow rate error% R. It was found to be in the range of D.
  • Table 4 shows the flow rate error% R.
  • Table 5 shows the set flow rate of the flow rate controller to be calibrated (around 10 sccm and 100 sccm), the build-up time ⁇ t, the calculated flow rate, and the flow rate error% R.
  • D indicates a relationship with D. As the build-up time ⁇ t is longer, the error% R. It turns out that D becomes small.
  • FIG. 10 is a diagram obtained by plotting the data in Table 8, where ⁇ represents the flow rate error% R. D and ⁇ indicate the gas pressure Torr in the tank, and ⁇ indicates the gas temperature in the tank ° C.
  • Table 7 shows the relationship between the volume of the build-up tank BT and the actual time from the gas base pressure Po until the tank internal pressure reaches 100 Torr.
  • the set flow rate is 10 to 100 sccm and the internal volume is about 10 to 200 cc. It can be seen that the range is applicable in terms of build-up time.
  • Table 8 shows an actual measurement of the relationship between the internal volume cc of the build-up tank BT, the gas set flow rate, the gas base pressure Po, and the gas pressure increase rate (Torr / sec) in the tank BT.
  • the internal volume of the build-up tank BT is 50 in view of the actual set flow rate of the flow rate controller to be calibrated, the build-up time ⁇ t, the setting location, and the like. It was found that about 200cc was optimal.
  • FIG. 11 is a system diagram of a flow rate controller calibration unit used in the third embodiment of the present invention, where T1000 is a flow rate controller to be calibrated adjusted by a calibrated flow rate control device, ST is a waste chamber, V 1 is an inlet side opening / closing valve of the build-up tank BT, V 1S is an inlet side opening / closing valve of the disposal chamber, and V 2S is an outlet side opening / closing valve of the disposal chamber.
  • the inlet side opening / closing valves V 1 and V 1S may be used in place of the double three-way valve V 3 .
  • the flow rate controller calibration unit is discarded as shown in FIG. 11 and provided with the chamber ST, and flow rate calibration and flow rate measurement are performed by the following operations.
  • the outlet side switching valve V 2S outlet side valve V 2 and discarded chamber ST buildup chamber BT opened, both chambers BT, evacuated through the ST.
  • the inlet side on-off valve V 1 and the inlet side on-off valve V 1S on the upstream side are of course closed.
  • the internal volume of the build-up chamber BT is selected to be 10 L
  • the internal volume of the discard chamber ST is selected to be 80 L.
  • both the outlet side opening / closing valves V 2 and V 2S are closed, the inlet side opening / closing valve V 1 of the buildup chamber BT is closed, the inlet side opening / closing valve V 1S of the discard chamber ST is opened, and the flow rate controller T1000 The gas is discarded through and supplied into the chamber ST.
  • the embodiments The first measurement as described in is started. Further, during the required first measurement, the outlet side opening / closing valve V2S of the waste chamber ST is opened, and the gas in the waste chamber ST is gradually exhausted.
  • the inlet side on-off valve V 1 of the build-up chamber BT is closed and held so that the temperature becomes stable, and then the second necessary measurement as described in the above embodiment is performed. Further, during this time, the gas in the discard chamber ST is gradually exhausted. Thereafter, while gradually evacuating the interior of the gas to the outlet side switching valve V 2 buildup chamber BT to open, if lowered until the gas pressure in the abandoned chamber ST to some extent, then to the once exhausted, Return to the initial state before the measurement.
  • the present invention can be used for calibration tests not only for gas boxes for semiconductor manufacturing apparatuses but also for flow controllers for all gas supply devices and flow controllers for gas supply systems.
  • GF gas supply devices MFC 1 to MFC n flow controllers Go to Gn supply gas types L, L 1 to L n gas supply paths Voo to Von open / close valve CH process chamber VP vacuum pump Td temperature detector Pd pressure detector BT build-up Tank (build-up chamber) DESCRIPTION OF SYMBOLS 1 Pressure regulator 2 Pressure gauge 3, 4 On-off valve 5 Flow controller calibration unit CP Calculation control part T1000 Calibrated flow controller ST adjusted by the calibrated flow controller etc.
  • Throwing chamber V 3 Duplex three-way valve V 1S Disposal chamber inlet side open / close valve V 2S discard chamber outlet side open / close valve

Abstract

 被校正流量制御器の出口側開閉弁のみを開放して設定流量のガスを校正ユニット(5)へ流入させ、タンク内ガス圧力及びガス温度が安定した時刻t0に於いて第1回のタンク内のガス温度T0及びガス圧力P0を計測し、その後校正ユニット(5)の出口側開閉弁V2を閉鎖してタンクBT内へのガスのビルドアップを行い、時刻t1に於いて入口側開閉弁V1を閉鎖すると共に、当該入口側開閉弁V1の閉鎖の後の時刻t2において第2回のガス温度T2及びガス圧力P2を計測し、各計測値からガス流量QをQ=(22.4V/R・Δt)×(P2/T2-P0/T0)(但し、VはタンクBTの内容積、Rはガス定数、Δtはビルドアップ時間t1-t0である)として演算し、設定ガス流量と演算ガス流量Qとの対比により流量校正を行う。

Description

ガス供給装置用流量制御器の校正方法及び流量計測方法
 本発明は、半導体製造装置や薬品製造装置等で使用されるガス供給装置の流量制御器の校正方法及び流量計測方法の改良に関するものであり、より高精度な流量校正や流量計測を短時間で迅速に行えるようにしたガス供給装置用流量制御器の校正方法及び流量計測方法に関するものである。
 半導体製造装置等のガス供給装置は、一般に多種類のガスをプロセスチャンバ等のガス使用対象へ切換へ供給する構成となっており、各供給ガスの種類毎に設けた流量制御器により流量制御されたガスが、ガス使用対象へ供給されて行く。
 また、上記各流量制御器の流量校正やその流量計測は、一般にビルドアップ法(若しくは圧力上昇率(ROR)法)により適宜の時間間隔で行われており、流量制御器の設定流量とビルドアップ法等により計測した現実の制御流量とを対比して流量制御器の流量校正を行ったり、ビルドアップ法等による計測値から流量を求める流量計測が行われている。
 図12及び図13は従前のガス供給装置用流量制御器の校正方法の例を示すものである。即ち、図12の校正方法に於いては、先ず、一定の内容積のビルドアップタンクBTと入口開閉弁Vと出口開閉弁Vと圧力検出器Pd及びガス温度検出器Tdとから成る流量校正ユニットUをガス供給路Lへ分岐状に連結する。次に、例えばガス供給装置GFの流量制御器MFCを校正する場合には、先ず開閉弁Vo、Von、Voを閉、開閉弁Vo、V及びVを開にして、タンクBT内へガスを流通させ、開閉弁V及びVが開放時又は開閉弁Vを閉鎖後の時刻tにおける圧力検出値P、温度検出値Tを計測する。次に、開閉弁Vを閉にしてそのΔt秒後又は前記時刻tからΔt秒後の圧力検出値P、温度検出値Tを計測する。
 そして、上記各計測値から圧力上昇率ΔP/Δtを求め、流量QをQ=(ΔP/Δt)×(V/RT)として算出すると共に、当該算出値を基準にして流量制御器MFCの流量制御値の適否を判断する。尚、前記流量計算式は、ガスを理想気体と仮定してタンクBT内へのビルドアップ流量を演算するものであり、VはビルドアップタンクBTの内容積、Rはガス常数、TはタンクBT内のガス温度である。
 一方、図13の校正方法に於いては、ビルドアップタンクを省略した流量校正ユニットU´をガス供給ラインLへ分岐状に連結する。そして、例えばガス供給装置GFの流量制御器MFCを校正する場合には、先ず、開閉弁Vo、Vo、Vo、Vonを閉、開閉弁Vo、V、Vを開にして流量校正ユニットU´へ流量制御器MFCから設定流量のガスを流し、次に開閉弁Vを閉にする。開閉弁Vの閉鎖後、圧力検出器Pdの圧力検出値がPになった時に第1計測を行い、圧力P、温度Tを測定する。その後、圧力検出器Pの圧力検出値がPになったとき(又は設定時間t秒が経過したとき)に第2計測を行い、圧力P、温度Tを測定する。
 また、予め、流量校正ユニットU´の上流側の開閉弁Vo、開閉弁Vo、開閉弁Vo、開閉弁Vonから開閉弁Vまでのガス供給ラインL、Lsの部分の管路内容積Veと、流量校正ユニットU´の開閉弁Vと開閉弁V間の流路内容積Vtとの和Vを、上記図12場合と同一の測定方法により求めた圧力上昇率ΔP/Δtと、その時の流量制御器MFCの流量値Q及び流量式Q=(ΔP/Δt)×(V/RT)とから演算し、前記管路全内容積Vを求めておく。
 そして、上記各測定値から、流量制御器MFCからの温度0℃、1atmに於けるガスの絶対流量Qoを、ガスの流入質量dGと経過(流入)時間dtとの関係で求める。即ち、流入質量dGは、dG=ro・Qo・dt(但し、dtは経過(流入)時間、roは比重量である)で表すことができる。また、第1計測時及び第2計測時の圧力P、温度Tから理想気体についてはPV=nRTの関係が成立するため、モル数nに代えて質量Gを用いれば、PV=GRTの関係が成立する。
 従って、今、第1計測時に計測したガス圧力P、ガス温度T、ガス質量Gと、第2計測時のガス圧力P、ガス温度T、ガス質量Gとすれば、質量Gの差分(流入質量dG)はdG=G-G=P/T・V/R-P/T・V/R=(P/T-P/T)・V/R・・・・(1)式となり、上記dG=ro・Qo・dtの式から、ガスの絶対流量Qoは、Qo=(P/T-P/T)・V/R・1/roとして算出することができ、当該算出値Qoを基準として流量制御器MFCの流量制御性の適否を判定する。
 尚、図13の方法は、(1)ガス種によっては理想気体方程式の適用が困難になるため、圧縮因子なる係数を上記(1)式に持ち込んで算定した基準流量の誤差を少なくすること、及び(2)第1計測のあと第2計測を開始するタイミングを、制御流量が1000~2000SCCMの範囲では圧力上昇値を基準にして、また、制御流量が2~1000SCCMの範囲では経過時間を基準にして決定するようにしたことを、発明の主たる内容とするものである。
 また、図13の方法は流入質量dGから流量Qを求めると云う点では本願発明と共通の技術思想を有するものであるが、図13の方法と本願発明とは、第2計測を開始する時刻(タイミング)の決定要因を異にするものである。即ち、本願発明では、ガスのビルドアップ後にビルドアップタンクBT内のガス温度Tが、ビルドアップ前のガス温度T近傍の一定値になるのを待って第2計測を行うという点で、図12の方法とは基本的に技術的思想を異にするものである。
 上記図12に示したビルドアップタンクBTを用いる方法は、温度検出器Tdである熱電対の細線化によりその熱容量を小さくすることにより、従前に比較してタンクBT内のガス温度を精度良く検出できるようになって来ている。しかし、(1)タンクBT内のガス温度の計測値が、ビルドアップタンクBTへの温度検出器Tdの取付位置によって大きく変動すること、(2)タンク内ガス圧力の上昇中に於けるガス温度Tが現実には大きく変動し、一定温度Tにはならないこと、(3)外気の温度変化が大きい場合には、圧力検出中のガス温度が変化して温度検出値Tの変動が大きくなる点に問題があり、ガスが理想気体に近いものであっても流量Qの算出値の信頼性が低いと云う問題がある。
 また、図13の方法にあっては、流量校正ユニットU´に内容積の判明したビルドアップタンクBTを設けることなしに、流量制御器MFCの出口と流量校正ユニットU´の下流側開閉弁Vとの間の配管路内容積Vをビルドアップタンクの内容積に相当するものとして、流量の演算を行うようにしている。そのため、流量校正に際しては、先ず最初に、上記流路内容積Vを算出しなければならず、流量制御器MFCの流量校正に手数が掛かるだけでなく、制御流量の演算値に、温度Tと圧力Pと時間tに係る測定誤差と、流路内容積Vに係る測定誤差とが相乗されることになり、制御流量の演算精度が大幅に低下すると云う問題がある。
特開2006-337346号公報 国際公開WO2007/102319号公報
 本願発明は、従前のビルドアップ又はROR法による流量制御器の校正方法や流量計測方法に於ける上述の如き問題、即ち、(1)内容積が予め判明しているビルドアップタンクを用いて、圧力上昇率ΔP/Δt及び時間Δtに基づいて制御流量を校正する方法にあっては、圧力上昇中のガス温度の変動に起因する流量の演算誤差が避けられないこと、また、(2)総内容積がVの流路内へ定常流量のガスを供給し、一定の時間間隔Δtの間に前記流路V内へ流入したガス質量の差分ΔGを求めて流量Qを演算する方法にあっては、先ず流路内容積Vを何等かの方法により求めておく必要があり、内容積が既知のビルドアップ用タンクBTを用いる場合に比較して、流路内容積Vの算出に手数が掛かり過ぎるという問題がある。
 本願発明者等は、上記従前のビルドアップ(又はROR)法による流量制御器の流量校正方法から、(1)管路内容積Vの演算に係る手数や内容積Vの演算誤差に基づく流量演算値の誤差を少なくするためには、内容量Vが既知の適宜容量のビルドアップタンクの使用が不可避であること、及び(2)ビルドアップタンクの入口側開閉弁をビルドアップによる圧力上昇後に急閉することにより、タンクBT内のガス温度が急激に室温に近い一定温度に戻ることを知得した。
 また、本願発明者等は上記知得に基づいて、ビルドアップ前後のガス圧力及びガス温度からビルドアップタンクBTへのガスの流入モル数(流入質量G)を演算すると共に、高速開閉が可能な開閉弁(例えば電磁弁)を用いて、ビルドアップ時間及びビルドアップの完了後にビルドアップタンクBTの入口側開閉弁を閉鎖する時間を正確に制御し、ビルドアップ後のタンク内ガス温度がビルドアップ前のタンク内ガス温度に近づいた時点で第2計測を行うことにより、流量制御器のより高精度な流量校正が可能になることを着想し、当該着想に基づいて数多くの流量校正試験を実施した。
 本願校正方法の発明は、上記流量校正試験のテスト結果を基にして創案されたものであり、請求項1の発明は、複数の種類のガスを各流量制御器を通して切換え可能にガス使用箇所へ供給するガス供給装置に於いて、前記ガス供給装置のガス供給路Lに、内容積VのビルドアップタンクBTとタンクBTの入口側開閉弁V及び出口側開閉弁VとタンクBT内ガスのガス圧力検出器Pd及びガス温度検出器Tdとから成る流量制御器校正ユニット5を分岐状に連結すると共に、当該流量制御器校正ユニット5の出口側開閉弁Vを真空排気装置に接続し、先ず、前記流量制御装置の各流量制御器の出口側開閉弁Vo~Vo及びガス使用箇所の入口開閉弁Vを閉鎖すると共に前記校正ユニット5の出口側開閉弁V及び入口側開閉弁Vを開放し、次に、被校正流量制御器の出口側開閉弁のみを開放して設定流量のガスを前記校正ユニット5へ流入させ、前記タンク内のガス圧力及びガス温度が安定した時刻に第1回のタンク内のガス温度T及びガス圧力Pを計測し、そして、時刻tに於いて前記校正ユニット5の出口側開閉弁Vを閉鎖してタンクBT内へのガスのビルドアップを行い、その後、時刻tに於いて入口側開閉弁Vを閉鎖すると共に、当該入口側開閉弁Vの閉鎖後の時刻tに於いて第2回のガス温度T及びガス圧力Pを計測し、前記各計測値からガス流量QをQ=(22.4V/R・Δt)×(P/T-P/T)(但し、VはタンクBTの内容積、Rはガス定数、Δtはビルドアップ時間t-tである)として演算し、前記の設定ガス流量と演算ガス流量Qとの対比により被校正流量制御器の流量校正を行うことを発明の基本構成とするものである。
 本願流量計測方法の発明は、流体供給源から流れる流体を制御する流量制御器の流量を計測する方法において、前記流量制御器の下流にある内容積VのビルドアップタンクBTと、タンクBTの入口側及び出口側に配置される入口側開閉弁V及び出口側開閉弁と、タンクBT内に配置されるガス圧力検出器Pd及び温度検出器Tdとからなり、前記流量制御器から流体を流した状態で入口側開閉弁V及び出口側開閉弁Vを開放してガスをタンクBT内に流入させるステップ、ガス圧力及びガス温度が安定した時のガス圧力P及びガス温度Tを測定するステップ、時刻tに於いて出口側開閉弁Vのみを閉鎖してタンクBT内へガスを充填するステップ、時刻tに入口側開閉弁Vを閉鎖するステップ、その後時刻tまで前記入口側開閉弁V及び出口側開閉弁Vの閉鎖を保持するステップ、前記入口側開閉弁V及び出口側開閉弁Vの閉鎖中に再びガス温度T及びガス圧力Pを計測するステップ、各計測結果からガス流量QをQ=(22.4V/R・Δt)×(P/T-P/T)(但し、VはタンクBTの内容積、Rはガス定数、Δtはビルドアップ時間t-tである)として演算するステップ、を備えることを発明の基本構成とするものである。
 本発明に於いては、流量制御器校正ユニットによる第2回計測を、ビルトアップ完了後(即ち、入口側開閉弁Vの閉鎖点t)に行わずに、入口側開閉弁Vの閉鎖点tから一定時間後の時刻tに於いて行うようにしている。その結果、第2回計測の時刻tに於いては、ビルドアップタンクBT内のガス温度Tはビルドアップ前のタンク内のガス温度To(即ち、室内温度)に極く近い温度にまで低下しており、第1回計測と第2回計測時のガス温度T、Tの間に大きな差が無くなり、圧力上昇中の温度Tが一定であると仮定して演算をする従前のビルドアップ法の場合に比較して、より高精度な流量校正を行える。
 また、本発明では、予め内容積が判明しているビルドアップタンクBTを使用するため、従前の第1回及び第2回測定のデータから演算流量を求める方法の場合のように、ガス供給路の内容積を予め前もって若しくは同時に測定しておく必要がない。その結果、流量校正が極く簡単に行え、しかもガス供給路の内容積がガス供給装置の構成の変更によって変化しても、何等影響を受けることなく迅速に流量制御器の流量校正を行うことが出来る。
本発明による流量制御器の校正方法の実施の説明図である。 ビルドアップタンク内のガス温度やガス圧力等の変化状況を示す曲線である。 図2の結果を模式的に表したものである。 本発明の内容積1.0996lのビルドアップタンクBTを用いた流量制御器の設定流量と誤差%R.Dとの関係を示す線図であり、本願方法発明による場合と校正済みの標準流量計を使用した場合との設定流量と誤差%R.Dの関係を示す線図である。 本発明の内容積120.36ccのビルドアップタンクを用いた第2実施形態に於ける流量制御器の設定流量と誤差%R.Dの関係を示す線図である。 本発明の第2実施形態における設定流量とビルドアップタンク内圧との関係を示す線図である。 図6のA部の拡大図である。 本発明の第2実施形態における本発明による場合の流量誤差%R.Dと校正済みの流量制御器を基準流量計とした場合の流量誤差%R.Dとの対比を示す線図である。 表4における設定流量と、本方法発明による場合と校正済みの流量制御器を基準流量計とした場合の流量測定誤差%R.Dの差との関係を示す線図である。 本発明の第2実施形態に於ける繰り返し計測試験(5分間隔で30回繰り返し)の結果を示す線図である。 本発明の第3実施形態の説明図である。 従前のビルドアップ法による流量校正方法の説明図である。 従前の他のビルドアップ法による流量校正方法の説明図である。
 図1は、本発明によるガス供給装置用流量制御器の校正方法の第1実施形態の説明図であり、ガス供給装置GFに設けた流量制御器MFCの流量校正を行う場合を示している。
 図1において、GFはガス供給装置、MFC~MFCnは流量制御器、Go~Gnは供給ガス、L~Ln、Lsはガス供給路、V00~V0nは開閉弁、Vは開閉弁、V及びVは開閉弁、CHはプロセスチャンバ、VPは真空ポンプ、Tdは温度検出器、Pdは圧力検出器、BTはビルドアップタンク、1は圧力調整器、2は圧力計、3・4は弁、5は流量制御器校正ユニット、CPは演算制御部であり、ガス供給装置GFからガス供給流路L、弁Vを通してプロセスチャンバCHへ所定のガスが切替え供給されている。
 流量制御器校正ユニット5は、ビルドアップタンクBTと入口側開閉弁V、出口側開閉弁V、タンクBTに設けた圧力検出器Pd及び温度検出器Td等から形成されており、ガス流路Lsを介してガス供給流路Lへ分岐状に接続されている。
 また、流量制御器校正ユニット5の圧力検出器Pd及び温度検出器Tdの各検出出力、開閉弁V及び開閉弁Vの制御信号等は演算制御部CPへ入出力されており、後述するようにガス流量値の演算や流量校正、流量制御精度の演算及び表示等が行われる。
 先ず、本願発明者は、図1の流量制御器校正ユニット5を用いて、ビルドアップによりガス圧力を上昇せしめたタンクBT内のガス温度が、ビルドアップ後に入口側開閉弁Vを閉めることによりどのように変化するかを調査した。
 即ち、図1の実施形態に於いて、流量制御器MFCに代えて標準流量調整器を取り付け、先ず開閉弁V00、V02、V0n、Vを閉に、開閉弁V、Vを開にして、Nガスを500sccmの流量で一定時間流通させ、Nガスの流量、圧力、温度の安定を確認したあと、出口側開閉弁Vを閉にして10秒間のビルドアップを行い、且つその直後に入口側開閉弁Vを閉して、ビルドアップBT内のガス温度の変化状態を観察した。
 尚、流量制御器にはフジキン製の容量100sccm及び1SLMのものを使用しており、ビルドアップBTの内容積Vは1.0996L(既知)に設定されている。また、ガス流量(N)は500sccm、ビルドアップ時間は10secに設定している。更に外気温度(室内温度)は21.7℃であった。
 図2は、上記ビルドアップテストにおけるビルドアップタンクBT内のガス温度やガス圧力等の変化状態を示すものであり、曲線Aは流量制御器の流量出力、AはタンクBT内の圧力検出値、AはタンクBT内のガス温度検出値、Aは外気温度(室内温度)、Aは出口側開閉弁Vの制御信号、Aは入口側開閉弁Vの制御信号を示すものである。
 尚、圧力検出器PdにはMKS製の(バラトロン)キャパシタンスマノメーターTYPE627D(F.S.1000Torr)を、また温度検出器Tdには2.5mm径の熱電対(素線タイプ)を、測定機器にはキーエンス製のデータロガーNR500を使用している。
 即ち、図2に於いて、to点に於いて出口側開閉弁Vを閉にしてビルドアップを始めると、t1点に於いてタンク内のガス圧力は30.6Torrから94.1Torrにまで上昇し、且つt1点に於いて入口側開閉弁Vを急閉することにより、タンク内ガス温度は急激に21.9℃(室内温度約22℃)にまで低下することが判る。
 上記試験結果からも明らかなように、ビルドアップ後に入口側開閉弁Vを急閉することにより、タンク内ガス温度が室温にまで急低下することが確認できたので、タンクBTの出口側開閉弁Vの閉鎖(ビルドアップ開始)時(時刻to・第1回計測)と、ビルドアップ完了(入口側開閉弁V閉鎖)から一定時間(約1~300秒、ガスの種類、タンク容量、ガス流量等によって異なる)経過した後の時刻tに於いて、第2回計測を行ってガス流入質量を演算することにより、ビルドアップ中のガス温度変化の影響を排除したより正確なガス流量演算が可能になる。何故なら、時刻toと時刻tにおけるタンクBT内のガス温度がほぼ室内温度に近い一定値となり、ビルドアップ前後におけるガス温度変化による演算誤差を生じないからである。
 図3は前記図2の試験結果を模式的に表したものであり、時間toで出口側開閉弁Vを閉及び第1回検出、時間tで入口側開閉弁V1を閉、時間tで第2回検出、時間tで出口側開閉弁Vを開とする。ビルドアップ中に流入したガスのモル数Δn
Figure JPOXMLDOC01-appb-M000001
を標準状態(0℃、1atm)におけるガス体積Vに換算すると、
Figure JPOXMLDOC01-appb-M000002
となり、タンクBT内へのガス流量Qは
Figure JPOXMLDOC01-appb-M000003
として演算できる。但しΔtはビルドアップ時間であり、Δt=t-tである。
第1実施形態
 図1及び図2を参照して、ガス供給装置GFの流量制御器の流量校正に際しては、先ず流量制御器校正ユニット5をガス供給路Lへ分岐状に接続する。次に、流量制御器MFCを校正する場合は、開閉弁V00、V02、V0n、Vを閉鎖し、開閉弁V01、V、Vを開にして、流量制御器MFCから設定流量Qsのガス流を校正ユニット5へ供給し、真空ポンプVPにより排気する。
 次に、校正ユニット5のビルトアップタンクBT内のガス温度To及びガス圧力Poが落ちつくと、時刻toに於いて出口側開閉弁Vを閉鎖してガスのビルドアップを開始すると共に、タンク内のガス温度To及びガス圧力Poを検出し、これを演算制御部CPへ入力する。
 タンクBT内へのガスのビルドアップが進行し、ガス圧力が設定値P(又は設定時間t)に達すると、入口側開閉弁Vを急閉する。
 更に、入口側開閉弁Vの急閉(時刻t)から予め定めた設定時間(約1~300秒間、ガスの種類、タンク容量、ガス流量等によって異なる)が経過して時刻tに到れば、タンクBT内の圧力P及び温度Tを検出し、その検出値を演算制御部CPへ入力する。
 尚、時刻tにおける第2回目の圧力及び温度の検出が終れば、これと同時又は時刻tにおいて出口側開閉弁Vを開放して、タンクBT内のガスを排出する。
 一方、演算制御部CPでは、前記検出値P、To、P、T及びビルドアップ時間Δt(Δt=t-t)を用いて流量Qが演算され、前記流量調整器MFCの設定流量Qsと演算流量Qとが対比され、所定の基準に基づいて流量調整器MFCの流量制御性能の適否の判定や校正が行われる。
 上記の如き校正操作を各流量制御器MFC~MFCについて行うことにより、ガス供給装置GFの流量調整器の校正が行われる。
 表1は、被試験流量制御器を校正済みの流量制御器とした場合の試験結果を示すものであり、ビルトアップ前(第1回計測時・時刻to)、ビルドアップ直後(時刻t)及び第2回計測時(時刻t)に於ける温度・圧力の測定値と、Δt時間内のガス流入流量Q及び流量誤差%R.Dの演算値を示すものである。
Figure JPOXMLDOC01-appb-T000001
 図4は、上記表1に示した本発明のビルドアップ法により求めた流量制御器の流量誤差%R.D(●印)と、後述する校正済みの流量制御器等によって調整された被校正流量制御器(以下、T1000流量制御器と呼ぶ)を基準流量計として求めた流量制御器の流量誤差%R.D(■印)とを対比したものであり、被測定流量制御器の設定流量の大小に拘わらず、本発明に係るビルドアップ法による流量校正の方が、T1000流量制御器を基準流量計とした場合よりも流量誤差%R.Dが小さいことが判る。
 表2は、被測定流量制御器を本発明に係るビルドアップ法により校正した場合の流量誤差%R.Dと、校正済みの流量制御器を基準流量計として校正した場合の流量誤差%R.Dとの差を示すものである。
Figure JPOXMLDOC01-appb-T000002
 図5は、上記表2の誤差の差をグラフ化したものであり、本発明の校正方法は、設定流量が100sccm以下の小さい領域に於いても高精度な流量校正の可能なことが判る。
 表3は、本発明の第2実施形態の試験結果を示すものであり、ビルドアップタンクBTとして内径20mmφのチャンバー(内容積170.36cc)を使用し、且つ温度検出器Tdを0.25μmの熱電対、圧力検出器Pdを100Torrのキャパシタンス、入口側開閉弁V及び出口側開閉弁VをCv値が0.1の高速開閉弁とした場合の測定及び演算値である。
Figure JPOXMLDOC01-appb-T000003
第2実施形態
 第2実施形態においては、ビルドアップタンクBTの内容量が120.36ccと小さいため、先ず、供給流量とタンク内圧との関係を調査した。
 図6は、その調査結果を示すものであり、また、図7は図6のA部の拡大図である。
 図6及び図7からも明らかなように、ビルドアップタンクBTの内容積が120.36cc程度の場合には、ガス供給流量が1.6SLMで内圧が100Torr程度に上昇する(開閉弁V、VはCv値0.1の開閉弁)。尚、T1000は前記校正済みの流量制御機器等によって調整された被校正流量制御器である。
 一方、校正の対象となる流量制御器には熱式流量制御器や圧力式流量制御器があり、且つ圧力式流量制御器の場合には、出力側(2次側)の圧力値は100Torr以下とする必要がある。そのため、ビルドアップタンク容積が100~150ccの場合には、校正流量は1000sccm以下の流量にする必要があり、これ等のことから前記表3のテストに於いても被測定流量制御器の設定流量を100sccm~10sccmとしている。
 図8は、上記表3に示した本発明のビルドアップ法により校正した流量誤差%R.Dと、校正済みの流量制御器を標準流量計として校正した流量誤差%R.Dとを対比したものであり、両者は略同じ流量誤差%R.Dの範囲にあることが判明した。
 表4は、被校正流量制御器を本発明により校正した場合の流量誤差%R.Dと、校正済みの流量制御器を基準器として測定した流量誤差%R.Dとの差とを示すものである。
Figure JPOXMLDOC01-appb-T000004
 また、図9は前記表4に於ける被校正流量制御器の設定流量と両者の流量誤差%R.Dの差との関係を示すものであり、設定流量により流量誤差%R.Dの差が大きく変化することは無いことが判る。
 表5は、被校正流量制御器の設定流量(10sccm及び100sccm近傍)とビルドアップ時間Δtと演算流量及び流量誤差%R.Dとの関連を示すものであり、ビルドアップ時間Δtが長いほど、誤差%R.Dが小さくなることが判る。
Figure JPOXMLDOC01-appb-T000005
 表6は、被校正流量制御器を校正済みの流量制御機器によって調整されたT1000とし、N2ガス100sccmを容積120.36ccのビルドアップタンクへ供給し、ビルドアップ時間Δt=t-tを7.5secとして5分間隔で30回繰り返して校正測定を行った場合の結果を示すものである。又、図10は、表8のデータを線図化したものであって、●は流量誤差%R.D、□はタンク内ガス圧力Torr、△はタンク内ガス温度℃と示すものである。
Figure JPOXMLDOC01-appb-T000006
 図10からも明らかなように、校正試験での流量誤差%R.Dは略一定値であることが判る。
Figure JPOXMLDOC01-appb-T000007
 表7は、ビルドアップタンクBTの容積と、ガスベース圧力Poからタンク内圧100Torrに到達するまでの実時間との関係を実測したものであり、設定流量10~100sccm及び内容積10~200cc位の範囲がビルドアップ時間の点から適用可能な範囲であることが判る。
 同様に、表8は、ビルドアップタンクBTの内容積ccとガスの設定流量とガスのベース圧力Poと、タンクBT内のガス圧力上昇率(Torr/sec)の関係を実測したものであり、一般的な半導体製造装置用のガス供給装置(ガスBOX)に於いては、被校正流量制御器の実設定流量やビルドアップ時間Δt、設定場所等の点からビルドアップタンクBTの内容積は50~200cc位が最適なことが判明した。
Figure JPOXMLDOC01-appb-T000008
第3実施形態
 図11は、本発明の第3実施形態で使用する流量制御器校正ユニットの系統図であり、T1000は校正済みの流量制御機器等によって調整された被校正流量制御器、STは捨てチャンバ、V1はビルドアップタンクBTの入口側開閉弁、V1Sは捨てチャンバの入口側開閉弁、V2Sは捨てチャンバの出口側開閉弁である。なお、入口側開閉弁V1及びV1Sを二連三方バルブV3に置き換えて使用しても良いことは勿論である。
 流量制御器の流量校正や流量計測に際しては、真空状態から流量、圧力、温度が安定するまで一定時間ガスを流し続ける必要があるが、このガスが安定するまでに長い時間がかかる上、ガス流量が多い場合、例えば流量が数LSM~数十LSMのガスを流すような場合には、ガスの消耗費や排ガスの処理設備等の点で問題が発生する。
そのため、流量制御器校正ユニットを図11のように捨てチャンバSTを備えたユニットとして、下記の如き操作により流量校正や流量計測を行う。
 先ず、ビルドアップチャンバBTの出口側開閉弁V及び捨てチャンバSTの出口側開閉弁V2Sを開にして、両チャンバBT,ST内を真空引きする。この際、上流側の入口側開閉弁V1及び入口側開閉弁V1Sは勿論閉鎖する。尚、本実施形態では、ビルドアップチャンバBTの内容量を10Lに、捨てチャンバSTの内容量を80Lに夫々選択している。
 次に、両出口側開閉弁V2,V2Sを閉にし、ビルドアップチャンバBTの入口側開閉弁V1を閉、捨てチャンバSTの入口側開閉弁V1Sを開にして、流量制御器T1000を通してガスを捨てチャンバST内へ供給する。この流量制御器T1000を通して供給中のガス供給の状態が安定すると、捨てチャンバSTの入口側開閉弁V1Sを閉に、ビルドアップチャンバBTの入口側開閉弁V1を開にして、前記実施形態で記載したような第1回目の測定を開始する。又、必要な第1回目の測定を行っている間に捨てチャンバSTの出口側開閉弁V2Sを開にして、捨てチャンバST内のガスを徐々に排気する。
 その後、ビルドアップチャンバBTの入口側開閉弁V1を閉にし、温度が安定するように保持したあと前記実施形態で記載したような第2回目の必要な測定を行う。又、その間も捨てチャンバST内のガスを徐々に排気する。
 その後、ビルドアップチャンバBTの出口側開閉弁Vを開にして内部のガスを徐々に排気すると共に、捨てチャンバST内のガス圧がある程度にまで下降すれば、その後は一気に排気をして、前記測定前の初期状態に戻る。
 本発明は、半導体製造装置用のガスボックスのみならず、あらゆるガス供給装置用の流量制御器やガス供給系の流量制御器の校正試験に利用できるものである。
GF       ガス供給装置
MFC~MFC 流量制御器
Go~Gn    供給ガス種
L,L~L   ガス供給路
Voo~Von  開閉弁
CH       プロセスチャンバ
VP       真空ポンプ
Td       温度検出器
Pd       圧力検出器
BT       ビルドアップタンク(ビルドアップチャンバ)
1        圧力調整器
2        圧力計
3,4      開閉弁
5        流量制御器校正ユニット
CP       演算制御部
T1000    校正済みの流量制御機器等によって調整された被校正流量制御器
ST       捨てチャンバ
3        二連三方バルブ
1S        捨てチャンバの入口側開閉弁
2S        捨てチャンバの出口側開閉弁

Claims (3)

  1.  複数の種類のガスを各流量制御器を通して切換え可能にガス使用箇所へ供給するガス供給装置に於いて、前記ガス供給装置のガス供給路Lに、内容積VのビルドアップタンクBTとタンクBTの入口側開閉弁V及び出口側開閉弁VとタンクBT内ガスのガス圧力検出器Pd及びガス温度検出器Tdとから成る流量制御器校正ユニット5を分岐状に連結すると共に、当該流量制御器校正ユニット5の出口側開閉弁Vを真空排気装置に接続し、先ず、前記流量制御装置の各流量制御器の出口側開閉弁Vo~Vo及びガス使用箇所の入口開閉弁Vを閉鎖すると共に前記校正ユニット5の出口側開閉弁V及び入口側開閉弁Vを開放し、次に、被校正流量制御器の出口側開閉弁のみを開放して設定流量のガスを前記校正ユニット5へ流入させ、前記タンク内のガス圧力及びガス温度が安定した時刻に第1回のタンク内のガス温度T及びガス圧力Pを計測し、そして、時刻tに於いて前記校正ユニット5の出口側開閉弁Vを閉鎖してタンクBT内へのガスのビルドアップを行い、その後、時刻tに於いて入口側開閉弁Vを閉鎖すると共に、前記入口側開閉弁Vの閉鎖後の時刻tに於いて第2回のガス温度T及びガス圧力Pを計測し、前記各計測値からガス流量QをQ=(22.4V/R・Δt)×(P/T-P/T)(但し、VはタンクBTの内容積、Rはガス定数、Δtはビルドアップ時間t-tである)として演算し、前記設定ガス流量と演算ガス流量Qとの対比により被校正流量制御器の流量校正を行うことを特徴とするガス供給装置用流量制御器の校正方法。
  2.  ガス供給装置を半導体製造装置用のガスボックスとすると共に、校正ユニット5をガス供給装置のガスボックス内に設けるようにした請求項1に記載のガス供給装置用流量制御器の校正方法。
  3.  流体供給源から流れる流体を制御する流量制御器の流量を計測する方法において、前記流量制御器の下流にある内容積VのビルドアップタンクBTと、タンクBTの入口側及び出口側に配置される入口側開閉弁V及び出口側開閉弁Vと、タンクBT内に配置されるガス圧力検出器Pd及び温度検出器Tdとからなり、前記流量制御器から流体を流した状態で入口側開閉弁V及び出口側開閉弁Vを開放してガスをタンクBT内に流入させるステップ、ガス圧力及びガス温度が安定した時のガス圧力P及びガス温度Tを測定するステップ、時刻tに於いて出口側開閉弁Vのみを閉鎖してタンクBT内へガスを充填するステップ、時刻tに入口側開閉弁Vを閉鎖するステップ、その後時刻tまで前記入口側開閉弁V及び出口側開閉弁Vの閉鎖を保持するステップ、前記入口側開閉弁V及び出口側開閉弁Vの閉鎖中に再びガス温度T及びガス圧力Pを計測するステップ、各計測結果からガス流量QをQ=(22.4V/R・Δt)×(P/T-P/T)(但し、VはタンクBTの内容積、Rはガス定数、Δtはビルドアップ時間t-tである)として演算するステップ、とを備える流量計測方法。
PCT/JP2011/003679 2010-07-30 2011-06-28 ガス供給装置用流量制御器の校正方法及び流量計測方法 WO2012014375A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180037208.5A CN103003766B (zh) 2010-07-30 2011-06-28 气体供给装置用流量控制器的校正方法及流量计测方法
US13/813,219 US9638560B2 (en) 2010-07-30 2011-06-28 Calibration method and flow rate measurement method for flow rate controller for gas supply device
KR1020127030272A KR101492460B1 (ko) 2010-07-30 2011-06-28 가스 공급 장치용 유량 제어기의 교정 방법 및 유량 계측 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-171626 2010-07-30
JP2010171626A JP5538119B2 (ja) 2010-07-30 2010-07-30 ガス供給装置用流量制御器の校正方法及び流量計測方法

Publications (1)

Publication Number Publication Date
WO2012014375A1 true WO2012014375A1 (ja) 2012-02-02

Family

ID=45529614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003679 WO2012014375A1 (ja) 2010-07-30 2011-06-28 ガス供給装置用流量制御器の校正方法及び流量計測方法

Country Status (6)

Country Link
US (1) US9638560B2 (ja)
JP (1) JP5538119B2 (ja)
KR (1) KR101492460B1 (ja)
CN (1) CN103003766B (ja)
TW (1) TWI444800B (ja)
WO (1) WO2012014375A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113893B2 (en) 2013-09-13 2018-10-30 Air Products And Chemicals, Inc. Method of, and apparatus for, monitoring the available resources of a gas cylinder
JP2021025789A (ja) * 2019-07-31 2021-02-22 株式会社フジキン 流量測定システムおよび流量測定方法
CN112945326A (zh) * 2021-02-23 2021-06-11 吉林大学 气体流量测量装置及方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9334069B1 (en) * 2012-10-23 2016-05-10 The Boeing Company Propellant gauging at microgravity within the pressure—temperature—density inflection zone of xenon
US10810634B2 (en) * 2013-02-08 2020-10-20 The Nielsen Company (Us), Llc Methods and apparatus for efficient execution of modules
JP5797246B2 (ja) * 2013-10-28 2015-10-21 株式会社フジキン 流量計及びそれを備えた流量制御装置
CN103730392A (zh) * 2013-11-15 2014-04-16 中微半导体设备(上海)有限公司 一种半导体处理装置的供气系统
CN104733347B (zh) * 2013-12-24 2018-03-09 北京北方华创微电子装备有限公司 半导体加工设备中气体切换的装置、方法及系统
CN103900665B (zh) * 2014-03-25 2016-08-31 重庆市计量质量检测研究院 容器组合及换向阀式pVTt法气体流量装置
CN103954711A (zh) * 2014-04-01 2014-07-30 聚光科技(杭州)股份有限公司 一种质谱检测器标定装置及方法
JP6541584B2 (ja) * 2015-09-16 2019-07-10 東京エレクトロン株式会社 ガス供給系を検査する方法
JP6554404B2 (ja) 2015-11-25 2019-07-31 東京エレクトロン株式会社 ガス温度測定方法及びガス導入システム
CN108496064B (zh) * 2016-01-15 2020-05-22 株式会社富士金 能够测定流量的气体供给装置、流量计以及流量测定方法
JP6647905B2 (ja) * 2016-02-17 2020-02-14 株式会社日立ハイテクノロジーズ 真空処理装置
US10453721B2 (en) * 2016-03-15 2019-10-22 Applied Materials, Inc. Methods and assemblies for gas flow ratio control
CN105841781B (zh) * 2016-03-16 2018-09-28 中国大唐集团科学技术研究院有限公司华东分公司 一种标定汽轮机供热蒸汽流量的方法
CN105865586B (zh) * 2016-04-26 2018-12-28 中国大唐集团科学技术研究院有限公司华东分公司 一种汽轮机中排供热蒸汽流量在线标定方法
JP6795832B2 (ja) * 2016-07-05 2020-12-02 株式会社フジキン 流量制御機器、流量制御機器の流量校正方法、流量測定機器および流量測定機器を用いた流量測定方法
JP6754648B2 (ja) * 2016-09-15 2020-09-16 東京エレクトロン株式会社 ガス供給系の検査方法、流量制御器の校正方法、及び、二次基準器の校正方法
JP6767232B2 (ja) * 2016-10-14 2020-10-14 東京エレクトロン株式会社 基板処理装置の流量制御器によって出力されるガスの出力流量を求める方法
JP6775403B2 (ja) * 2016-12-14 2020-10-28 株式会社堀場エステック 流体特性測定システム
CN110234965B (zh) 2017-02-10 2020-10-27 株式会社富士金 流量测定方法以及流量测定装置
JP6670791B2 (ja) * 2017-03-30 2020-03-25 東京エレクトロン株式会社 流量制御器を検査する方法及び被処理体を処理する方法
JP7105765B2 (ja) * 2017-05-11 2022-07-25 株式会社堀場エステック 液体材料気化供給装置及び制御プログラム
KR102250969B1 (ko) * 2017-07-31 2021-05-12 가부시키가이샤 후지킨 유체 제어 시스템 및 유량 측정 방법
CN107421608A (zh) * 2017-08-18 2017-12-01 北京首钢自动化信息技术有限公司 一种气体流量计的系统校准方法
CN107355681B (zh) * 2017-08-23 2019-09-10 兰州空间技术物理研究所 一种用于多工质气体微流量校准的供气装置及供气方法
JP6960278B2 (ja) 2017-08-31 2021-11-05 東京エレクトロン株式会社 流量測定システムを検査する方法
JP6851953B2 (ja) * 2017-10-30 2021-03-31 アークレイ株式会社 ポンプ駆動方法
CN108121370B (zh) * 2017-12-23 2020-06-02 东北大学 一种真空环境气体流量的测控方法及测控系统
JP6956014B2 (ja) 2018-01-09 2021-10-27 東京エレクトロン株式会社 ガスの流量を求める方法
CN108286625A (zh) * 2018-01-22 2018-07-17 博纳斯威阀门股份有限公司 一种排气阀的检测装置
CN111788534A (zh) * 2018-02-26 2020-10-16 株式会社富士金 流量控制装置以及流量控制方法
JP7042134B2 (ja) 2018-03-29 2022-03-25 東京エレクトロン株式会社 基板処理システム及びガスの流量を求める方法
KR102443580B1 (ko) 2018-04-28 2022-09-16 어플라이드 머티어리얼스, 인코포레이티드 가스 펄싱 기반 공유 전구체 분배 시스템 및 사용 방법들
JP7061932B2 (ja) 2018-06-08 2022-05-02 東京エレクトロン株式会社 流量測定方法および流量測定装置
JP7296699B2 (ja) * 2018-07-02 2023-06-23 東京エレクトロン株式会社 ガス供給システム、プラズマ処理装置およびガス供給システムの制御方法
KR102545945B1 (ko) 2018-07-30 2023-06-21 가부시키가이샤 후지킨 유량 제어 시스템 및 유량 측정 방법
US10760944B2 (en) 2018-08-07 2020-09-01 Lam Research Corporation Hybrid flow metrology for improved chamber matching
CN109297703A (zh) * 2018-11-30 2019-02-01 博纳斯威阀门股份有限公司 一种多级调压的检测装置
JP2020139864A (ja) * 2019-02-28 2020-09-03 株式会社堀場エステック 流量算出システム、流量算出システム用プログラム、流量算出方法、及び、流量算出装置
JP7273596B2 (ja) * 2019-04-08 2023-05-15 株式会社堀場エステック 流量算出装置、流量算出システム、及び、流量算出装置用プログラム
JP7413073B2 (ja) 2020-02-21 2024-01-15 東京エレクトロン株式会社 流量測定方法および流量測定装置
JP7432400B2 (ja) 2020-03-11 2024-02-16 東京エレクトロン株式会社 基板処理方法及び基板処理システム
JP7306300B2 (ja) * 2020-03-13 2023-07-11 株式会社島津製作所 推定器および真空バルブ
JP2022076382A (ja) * 2020-11-09 2022-05-19 東京エレクトロン株式会社 処理装置及び処理方法
CN112903058A (zh) * 2021-01-25 2021-06-04 北京中建建筑科学研究院有限公司 一种容积检测装置及检测方法
CN113959533B (zh) * 2021-09-16 2023-08-11 张家港氢芯电气系统科技有限公司 一种高精度高压氢气质量流量计标定方法
CN116149385B (zh) * 2022-12-03 2024-04-09 中国科学院力学研究所 一种高精度微流量气体控制装置和标定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247827A (ja) * 1995-03-09 1996-09-27 Agency Of Ind Science & Technol 臨界ノズルの簡易校正装置及びその方法
JP2003065814A (ja) * 2001-08-28 2003-03-05 Rikogaku Shinkokai 気体用機器の流量特性計測装置および流量特性計測方法
WO2005123236A1 (ja) * 2004-06-22 2005-12-29 Tokyo Electron Limited 基板処理装置
WO2006075406A1 (ja) * 2005-01-17 2006-07-20 Tokyo Meter Co., Ltd. 流量測定方法および流量測定装置
JP2007214406A (ja) * 2006-02-10 2007-08-23 Hitachi Metals Ltd 流量検定機能付質量流量制御装置を搭載した半導体製造装置
JP2009145986A (ja) * 2007-12-11 2009-07-02 Fujikin Inc 圧力制御式流量基準器及びこれに用いる耐食性圧力式流量制御器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1574200A (zh) * 2003-05-12 2005-02-02 艾格瑞系统有限公司 质量流控制流量检定和校准的方法
US7137400B2 (en) * 2003-09-30 2006-11-21 Agere Systems Inc. Bypass loop gas flow calibration
US7082826B2 (en) * 2004-10-14 2006-08-01 Battelle Energy Alliance, Llc Gas flow meter and method for measuring gas flow rate
JP4648098B2 (ja) 2005-06-06 2011-03-09 シーケーディ株式会社 流量制御機器絶対流量検定システム
WO2007102319A1 (ja) * 2006-03-07 2007-09-13 Ckd Corporation ガス流量検定ユニット
CN100473956C (zh) * 2006-11-09 2009-04-01 北京北方微电子基地设备工艺研究中心有限责任公司 气体流量校准的方法
CN100468016C (zh) * 2006-11-10 2009-03-11 北京北方微电子基地设备工艺研究中心有限责任公司 气体流量控制装置校验的方法
KR101840047B1 (ko) * 2008-01-18 2018-03-19 피포탈 시스템즈 코포레이션 가스 유동 제어기의 인 시투 시험을 위한 방법 및 장치
US7891228B2 (en) * 2008-11-18 2011-02-22 Mks Instruments, Inc. Dual-mode mass flow verification and mass flow delivery system and method
US9057636B2 (en) * 2012-09-21 2015-06-16 Horiba Stec, Co. Ltd. Self-calibrating mechanism and self-calibrating method for flow rate sensor, and diagnostic mechanism and diagnostic method for fluid sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247827A (ja) * 1995-03-09 1996-09-27 Agency Of Ind Science & Technol 臨界ノズルの簡易校正装置及びその方法
JP2003065814A (ja) * 2001-08-28 2003-03-05 Rikogaku Shinkokai 気体用機器の流量特性計測装置および流量特性計測方法
WO2005123236A1 (ja) * 2004-06-22 2005-12-29 Tokyo Electron Limited 基板処理装置
WO2006075406A1 (ja) * 2005-01-17 2006-07-20 Tokyo Meter Co., Ltd. 流量測定方法および流量測定装置
JP2007214406A (ja) * 2006-02-10 2007-08-23 Hitachi Metals Ltd 流量検定機能付質量流量制御装置を搭載した半導体製造装置
JP2009145986A (ja) * 2007-12-11 2009-07-02 Fujikin Inc 圧力制御式流量基準器及びこれに用いる耐食性圧力式流量制御器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113893B2 (en) 2013-09-13 2018-10-30 Air Products And Chemicals, Inc. Method of, and apparatus for, monitoring the available resources of a gas cylinder
JP2021025789A (ja) * 2019-07-31 2021-02-22 株式会社フジキン 流量測定システムおよび流量測定方法
JP7251786B2 (ja) 2019-07-31 2023-04-04 株式会社フジキン 流量測定システムおよび流量測定方法
CN112945326A (zh) * 2021-02-23 2021-06-11 吉林大学 气体流量测量装置及方法

Also Published As

Publication number Publication date
TW201229704A (en) 2012-07-16
US20130186471A1 (en) 2013-07-25
JP5538119B2 (ja) 2014-07-02
US9638560B2 (en) 2017-05-02
CN103003766B (zh) 2016-01-27
KR20130031260A (ko) 2013-03-28
TWI444800B (zh) 2014-07-11
CN103003766A (zh) 2013-03-27
JP2012032983A (ja) 2012-02-16
KR101492460B1 (ko) 2015-02-11

Similar Documents

Publication Publication Date Title
WO2012014375A1 (ja) ガス供給装置用流量制御器の校正方法及び流量計測方法
JP5703032B2 (ja) ガス供給装置用流量制御器の流量測定方法
TWI705318B (zh) 用於以隔離閥進行脈衝氣體輸送的方法及設備
US7461549B1 (en) Mass flow verifiers capable of providing different volumes, and related methods
KR101840047B1 (ko) 가스 유동 제어기의 인 시투 시험을 위한 방법 및 장치
JP7296726B2 (ja) 流体制御システム
JP4421393B2 (ja) 基板処理装置
JP2008170410A (ja) 質量流量制御装置、その検定方法及び半導体製造装置
TWI642912B (zh) 用於暫態氣流之度量衡方法
JP7149444B1 (ja) 圧力減衰速度に基づく質量流量点検の方法、システム、及び装置
TWI837862B (zh) 用於基於壓力衰減速率來進行質量流驗證的方法、電子裝置製造系統及非暫態電腦可讀儲存媒體
CN117810130A (zh) 测量气体流量的方法和校准流量控制器的方法
CN114375347A (zh) 气体供给装置和气体供给方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037208.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127030272

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13813219

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11811982

Country of ref document: EP

Kind code of ref document: A1