TWI705318B - 用於以隔離閥進行脈衝氣體輸送的方法及設備 - Google Patents

用於以隔離閥進行脈衝氣體輸送的方法及設備 Download PDF

Info

Publication number
TWI705318B
TWI705318B TW108103082A TW108103082A TWI705318B TW I705318 B TWI705318 B TW I705318B TW 108103082 A TW108103082 A TW 108103082A TW 108103082 A TW108103082 A TW 108103082A TW I705318 B TWI705318 B TW I705318B
Authority
TW
Taiwan
Prior art keywords
fluid
flow
pulse
control
flow rate
Prior art date
Application number
TW108103082A
Other languages
English (en)
Other versions
TW201941011A (zh
Inventor
君華 丁
麥可 雷貝西
高登 希爾
Original Assignee
美商Mks儀器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Mks儀器股份有限公司 filed Critical 美商Mks儀器股份有限公司
Publication of TW201941011A publication Critical patent/TW201941011A/zh
Application granted granted Critical
Publication of TWI705318B publication Critical patent/TWI705318B/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0647Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in series
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一種用於流體的脈衝輸送的流體控制系統包括一流道、一隔離閥,用來開始及終止來自該流道的流體的脈衝、及一脈衝質量流控制器(MFC)。該MFC包括一控制閥,用來控制在該流道內的流體的流量(flow of fluid)、一流量感測器,用來測量該流道內的流率、及一控制器,用來控制流經該控制閥的流體的流量及該隔離閥的開與關(switching),用以控制在該流體的脈衝期間被輸送的流體的質量。流經該控制閥的流體的流量的控制可根據在該隔離閥開始及終止該脈衝的期間來自該流量感測器的回饋。

Description

用於以隔離閥進行脈衝氣體輸送的方法及設備
本發明係有關於一種用於以隔離閥進行脈衝氣體輸送的方法及設備。
質量流控制器(MFC)是一種用來測量並控制液體及氣體的流動的裝置。通常,MFC包括一入口埠、一出口埠、一質量流感測器及一比例控制閥,其被控制以達到所想要的質量流。
半導體製程(譬如,原子層沉積(ALD)處理)涉及了數種不同的氣體及氣體混合物在數個處理步驟期間不同數量的輸送。通常,氣體被儲存在處理設施的槽罐中,且氣體計量系統被用來將經過計量的氣體量從該槽罐輸送至處理工具(譬如,化學氣相沉積反應器、真空濺鍍機、電漿蝕刻機等等)。典型地,構件(譬如,閥、壓力調節器、質量流控制器(MFC)、質量流比例控制系統)被包括在該氣體計量系統中或在一從該氣體計量系統到一處理工具之間的流路中。
脈衝氣體輸送裝置已被開發出來將氣體的脈衝式質量流輸送至半導體處理工具。高速處理可使用脈衝氣體輸送來製造包括穿透矽介層孔(TSV)的先進的3D積體電路,以提供晶粒對晶粒以及晶圓對晶圓的互連線。
一種用於流體的脈衝輸送的流體控制系統包括一流道、一隔離閥,用來開始及終止來自該流道的流體的脈衝、及一脈衝質量流控制器(MFC)。該MFC包括一控制閥,用來控制在該流道內的流體的流量、一流量感測器,用來測量該流道內的流率、及一控制器,用來控制流經該控制閥的流體的流量及該隔離閥的開與關,用以控制在該流體的脈衝期間被輸送的流體的質量。
該MFC可以是以壓力為主的MFC或以熱為主的MFC。該控制閥較佳地是比例閥,其產生一和控制輸入(如,來自一控制器的電子控制輸入)成比例的流體輸出。該比例控制閥可被用來控制流體的流量的高度。
該控制器可根據在該隔離閥開始及終止該脈衝的期間來自該流量感測器的回饋來控制流經該控制閥的流體的流量。
該流量感測器可包括一在該流道內的流量限制器,其被設置在該控制閥和該隔離閥之間。該流量感測器可進一步包括一上游壓力感測器,其被建構來偵測在該流道內一介於該控制閥和該流量限制器之間的上游位置的上游壓力、及一下游壓力感測器,其被建構來偵測在該流道內一介於該流量限制器和該隔離閥之間的下游位置的下游壓力。用此方式被建構的該流量感測器根據該上游壓力和該下游壓力來測量流率。
該控制器可被建構成以i)該被測得的流率,ii)該被偵測到的壓力,iii)該流體的脈衝的開始時間,及iv)該流體的脈衝的停止時間的函數來決定被輸送的流體的一預估的莫耳數。該控制器可進一步被建構成根據該被輸送的流體的該被預估的莫耳數來控制流經該控制閥的流量以及該隔離閥的開與關。
該控制器可被建構成根據該殘餘流率(residual flow rate)和一被測得的流率的決定來決定該被輸送的流體的該被預估的莫耳數。該控制器可被建構成接收一對應於該上游壓力的上游壓力訊號和一對應於該下游壓力的下游壓力訊號,並以i)該下游壓力及ii)介於流量限制器和該隔離閥之間的滯死體積的函數來決定殘餘流率。
該控制器可被建構成根據在該流體的脈衝期間被輸送的流體的質量的計算來開與關(如,關閉)該隔離閥。詳言之,該控制器可被建構成依據下面的公式來決定被輸送的流體的該被預估的莫耳數:
Figure 02_image001
其中 n 是該被預估的莫耳數,Qm 是該流量感測器測得的流率,Vd2 是介於流量限制器和該隔離閥之間的滯死體積,Pd 是下游壓力,t1 是脈衝開始時間,t2 是脈衝停止時間。
該流率可以該上游壓力、該下游壓力、及該流體的一或多個特性(譬如,分子重量MW及比熱比γ)的一個函數來測量。
該系統可進一步包括一溫度感器,其被建構來測量該流體在該流道內的溫度,在此例子中,該流率可被進一步以該流體溫度的函數來測量。
該控制器可被建構成接收來自一主控制器的控制訊號,該控制訊號包括該流體的身分識別、該流體脈衝的所想要的莫耳數、該流體脈衝的持續時間、及被重複的脈衝數。
該隔離閥可被整合至該脈衝MFC內或可以是在該脈衝MFC的外部。例如,該外部的隔離閥可以是一耦接至一處理室及一傾卸管線的三向閥。該系統可包括多個外部的隔離閥。該等隔離閥中的一個隔離閥可被耦接至一處理室,該等隔離閥中的另一隔離閥可被耦接至一傾卸管線。
一種輸送流體的脈衝的方法包括用一控制閥來控制進入一流道內的流體的流量;用一流量感測器來測量該流道內的流率;控制一隔離閥的開與關以開始及終止來自該流道的一流體的脈衝;及控制流經該控制閥的流體的流量及該隔離閥的開與關用以控制該流體的脈衝期間被輸送的流體的質量。
控制流經該控制閥的流體的流量可根據該脈衝被該隔離閥開始及終止的脈衝期間的回饋,例如來自該流量感測器的回饋。
該方法可進一步包括偵測在該流道中一介於該控制閥和一位在該控制閥和該隔離閥之間的流量限制器之間的上游位置的上游壓力;和偵測在該流道中一介於該流量限制器和該隔離閥之間的下游位置的下游壓力。測量在該流道內的流率可根據該上游壓力和該下游壓力。
該方法可進一步包括以i)該被測得的流率,ii)該被偵測到的壓力,iii)該流體的脈衝的開始時間,及iv)該流體的脈衝的停止時間的函數來決定被輸送的流體的一預估的莫耳數。流經該控制閥的該流體的流量以及該隔離閥的開與關可根據該被輸送的流體的該被預估的莫耳數來控制。
本發明的實施例提供數項好處。包含被該MFC(如,基於該被輸送的流體的該被預估的莫耳數的控制器)控制的隔離閥允許該等實施例加速脈衝氣體輸送,用以改善脈衝氣體輸送的精確度、符合所想要的脈衝形狀、簡化脈衝氣體輸送、節省氣體的使用、將室內的氣體種類交叉污染減至最小、及消除MFC控制閥洩漏的問題。本發明的實施例可提供使用質量流控制器的快速脈衝輸送應用(如,ALD及TSV處理)一全面性的解決方案。
示範性實施例的描述如下。
用於流體(如,在半導體製程中或化學製程中的處理氣體)的脈衝輸送的流體控制系統被提供。該流體控制系統包括一質量流控制器(MFC)和一隔離閥,用以開始及終止來自一流道的流體的一或多個脈衝。
工業製程會要求待輸送的流體的一所想要的流體莫耳數在流體的一脈衝期間被輸送至一處理室。
該‘莫耳’是在國際單位系統(SI)中用於物質數量的測量單位,其單位符號是mol。一‘莫耳’被界定為一包含12克的碳12(12C)這麼多的原子的連續粒子(如,原子、分子、離子、電子、或光子)的物質的數量或樣本,碳12的定義是具有標轉原子重量12的碳的同位素。此數字是用亞佛加厥常數(Avogadro constant)來表示,其具有約6.022140857´1023 mol-1的數值。莫耳被廣泛地用作為表示化學反應的反應物及產物的量的方便的方式。莫耳體積(符號為Vm )是一莫耳的物質在一給定的溫度和壓力下所佔據的體積。它等於莫耳質量(M)除以質量密度(ρ)。
關於脈衝氣體輸送的傳統方法包括用一主控制器來打開及關閉一MFC上的氣體的流動。另種先前技術的方法藉由測量體積壓力使用填充容積(charge volume)和排洩容積(discharge volume)來輸送脈衝。這些之前習知的方法的缺點包括了被加在該主控制器上的高的工作負荷,此工作負荷必須計算並調整流率以輸送所想要的氣體量。隨著脈衝寬度變短,在該主控制器和該MFC之間的溝通劇跳(jittering)降低了脈衝氣體輸送在可重複性及精確性方面的效能。脈衝形狀對於先前技術的MFC而言並不理想,尤其是以壓力為主的脈衝MFC,其傾向於有較長的尾巴(如,參見圖7A及相關的描述)。
圖1例示一先前技術的脈衝氣體輸送系統100,其使用熱質量流控制器(MFC)110、一主控制器120及一連接至一轉接管線和一處理室的三向閥130。主控制器120包括該MFC110用以從一氣體源提供一固定的氣體流率並啟動該三向閥130用以根據所想要的脈衝持續時間來切換流到該處理室或流到該轉接管線的流動。該系統100並不使用有多少氣體被實際輸送至該處理室的回饋。該等脈衝氣體輸送系統(譬如,系統100)的一項缺點是,脈衝精確度和可靠度係取決於截斷閥(譬如,三向閥130)。此外,在此一系統中的MFC永遠都是讓氣體、消耗性的處理氣體(wasting process gas)流經該轉接管線,這是所不想要的,因為處理氣體是很昂貴的。
圖2A例示一種先前技術的脈衝氣體輸送系統200,其使用一快速反應的熱MFC210,譬如基於微機電系統(MEMS)技術的熱MFC。一主控制器220使用標準的流率控制來直接控制該脈衝輸送。該標準的流率控制模式可包括下列處理步驟: a)開始流動,該主控制器在所想要的脈衝開始時間(t1 )送出流量設定點Q。 b)停止流動,該主控制器在所想要的停止時間(t2 )送出一零(“0”)流量設定點。 c)在時間(t3 )開始重複以上步驟“n”次以實施所想要的脈衝次數。
圖2B是一圖表,其例示在一標準流率控制模式中使用圖2A的系統200的所想要的流率(“設定點”)和實際流率(“流動”)的一個例子。
例示於圖2A-2B中的先前技術有數項缺點。該MFC顯示快速控制(如,<500msec),但對於某些ALD及TSV處理要求而言,這並不夠快速。該MFC回應該等設定點,但並沒有將初始氣體線性變化(initial gas ramp)調整至該設定點。該輸送只依據時間而已。其並沒有被輸送氣體的實際數量的回饋。此外,在該主控制器220和該MFC210之間的數位溝通“劇跳(jitter)”會影響到該脈衝輸送的可重複性。而且,一快速但以MEMS技術為主之熱MFC可能無法與腐蝕性氣體相容。
圖3A例示一種使用以壓力為主的脈衝氣體輸送之先前技術的脈衝氣體輸送裝置300。該以壓力為主的莫耳測量技術在此領域中是已知的並利用一被導入一已知的體積內的氣體的壓力(P)vs.時間(t)反應305,如圖3B所示。裝置300包括一提供已知體積的室350、一位在該室350的上游(“Vin ”)的閥340、及一位該室350的下游(“Vout ”)的閥345。一位在該室350的壓力感測器365和一溫度感測器360亦被提供。
一開始,該裝置300可藉由在關閉下游閥345的同時打開上游閥340用以在一段時間(圖3B的“改變”期間Δt=(t1 -t0 ))讓一氣體流(Qi )進入該裝置並填滿該室350而被填充且發生壓力的改變。在時間t1 及壓力P2 時,該上游閥340被關閉(“Vin 關閉”)。該處理然後包括一期間(t2 -t1 ),在此期間中在室350中的氣體被允許穩定在一設定點。在此期間,壓力和溫度測量值被獲得,如藉由壓力感測器365和溫度感測器360。在打開該下游閥345時(在圖3B的時間t2 的“Vout 打開”),一氣體流(Q0 )離開該裝置300直到閥345再次被關閉為止(在時間t4 的“Vout 關閉”),這在一時間期間內(在“輸送”期間Δt=(t4 -t2 ))從該裝置輸送一氣體的脈衝到一處理工具且壓力改變(ΔP=P1 -P2 )。
基於莫耳測量的壓力的方法及裝置被進一步描述於美國專利申請案第13/626,432號中,其在2014年3月27日被公開為發明人Ding的美國專利公開案第2014/0083514 A1號,該專利案的全部內容藉此參照而被併於本文中。一使用基於一輸送室內的壓降所決定的流率的多通道脈衝氣體輸送被描述於2016年5月24日頒授給Ding等人的美國專利第9,348,339 B2號專利中,該專利的全部內容藉此參照而被併於本文中。
例示於圖3B中的該脈衝氣體輸送可被一執行輸送配方(recipe)的裝置300的控制器上的程式來實施。該脈衝輸送是被一啟動訊號(如,來自主控制器的控制訊號)所啟動。被輸送的氣體可根據理想氣體的原理,Δn=(ΔP*V)/(R*T),來預估。
例示於圖3A-3B中的方法有數個限制。脈衝輸送的精確度及可重複性取決於下游關閉閥的速度和可靠性。具有快速反應時間的關閉閥是所想要的。然而,如果該閥老化的話,吾人必須實施自適性調整(adaptive adjusting),這將增加複雜性,或者吾人必須更換該閥,這典型地必須中斷該處理。通常,脈衝形狀(如,脈衝寬度)並不如期待或者脈衝未能充分地符合所想要的方形波。此外,用一體積的氣體來填充該室350須要時間。在每一脈衝之前的該氣體填充時間和穩定時間侷限了快速氣體輸送循環時間。
然而,一壓力為主的莫耳測量技術的一個優點是,該技術可在不知道將被測量的特定氣體或氣體混合物下被使用。氣體流率(它是從室體積的質量平衡和理想氣體定律的應用推導出來)是不受氣體限制的,其仰賴壓力(P)、溫度(T)、及體積(V)這三個狀態變數來特徵化該將被測量的氣體的行為。
圖4例示使用氣體劑量(它是由理想方形波流量設定點(Q)和輸送時間(Δt)的乘積所界定)的脈衝輸送。氣體輸送循環400可用一‘脈衝發生(pulse-on)’時期(t2 -t1 )、脈衝停止(pulse-off)’時期(t3 -t2 )、氣體劑量(如,每脈衝的氣體莫耳數)、及每循環的脈衝數來描述。對於脈衝輸送而言,氣體莫耳劑量可被界定為:理想流量設定點(Q)´輸送時間(Δt=t2 -t1 )。
如圖4中所例示的流動的步進函數輸送(step function delivery)是理想的,但因為實際感測器和閥時間常數的關係而變成不現實。對於實際的應用而言,在被要求的時間範圍內的劑量的精確性和可重複性是關鍵的目標。因此,氣體的精確的及可重複的輸送是所想要的。為此,吾人可使用MFC的運送能力來計算並調整流率用以來被界定的時間內輸送被要求的氣體數量。詳言之,該MFC可被建構來計算實際被輸送的氣體劑量並將它調整至目標脈衝氣體劑量。
圖5例示用於氣體輸送的一先前技術系統500。該系統500包括一被建構來用於脈衝輸送的以壓力為主的MFC510。一主控制器520和該MFC510溝通,例如,用以將所想要的脈衝輸送資訊(譬如,脈衝莫耳設定點、脈衝發生時期、脈衝停止時間及被重複的脈衝數)提供至該MFC510。為了要開始一脈衝輸送循環,該主控制器520將一啟動訊號送至該MFC510。該MFC510包括一控制閥580(如,比例控制閥),用來控制從一氣體源進入到一流道515內的流體的流量。MFC510的一控制器505被建構來控制流經該控制閥580的流體的流量,用以控制在該流體的脈衝期間被輸送至一處理室的流體。該控制器505係基於一來自流量感測器525的回饋來控制流經該控制閥580的流體的流量,該流量感測器525被設置來測量在該流道內的流率(Q)。該流量感測器525包括一在該流道515內的流量限制器570及上游壓力感測器555和下游壓力感測器565。該控制閥580是在該限制器570和該等壓力感測器上游。
圖5的裝置的脈衝氣體輸送量可用下面的等式來計算:
Figure 02_image003
其中Δn是以莫耳為單位的被輸送的氣體,Q是被流量感測器測得的流率,t1 是脈衝的開始時間,t2 是脈衝的終止時間。
以壓力為主的脈衝MFC氣體輸送被進一步描述在由Junhua Ding等人申請的名稱為“System for and Method of Fast Pulse Gas Delivery”的國際專利公開案WO 2012/116281 A1號中,該專利案的全部內容藉此參照而被併於本文中。
圖7A顯示使用圖5的系統500的脈衝輸送的圖表。用於一實際的脈衝形狀704的流率被標畫成一時間的函數,其被疊置在一理想脈衝形狀702上。該理想脈衝具有300ms的脈衝寬度。在該曲線下的面積代表被輸送的氣體的莫耳數。在被輸送的該實際脈衝內有一很大的瞬變反應(transient response)(如,一尾巴),其可被歸因於在感測器(如,下游壓力感測器565)和控制閥580之間的體積。當該控制閥580關閉以終止一脈衝時,在該流道515內的氣體繼續流動以流至該處理室。
如果該等將被輸送的脈衝的持續時間相當地長的話,瞬變流(transient flow)不會如此地重要。然而如果脈衝很短的話,則瞬變流會是一個問題。MFC典型地是在穩態中被校準的。然而,MFC控制閥的瞬變反應每一個閥都不相同。
圖6例示依據本發明的實施例的一用於流體的脈衝輸送的改良式流體輸送系統600。系統600包括一具有一整合式隔離閥690之以壓力為主的脈衝MFC610。該MFC610包括一控制閥680(如,一比例控制閥)以控制在一流道615內的流體的流量。該隔離閥690被建構來開始及終止一從該流道615例如流至一處理室的流體的脈衝。一脈衝MFC控制器605被建構來控制流經該控制閥680的流體的流量以及該隔離閥690的開與關,用以控制在該流體的脈衝期間被輸送的流體的質量。控制器605在被該隔離閥690開始及終止的脈衝期間可根據來自一流量感測器625的回饋來控制該控制閥680的流體的流量。
在圖6中,該控制閥680被顯示為設置在該流量感測器625之前,用以控制流入到該流道615內的流動,但該控制閥亦可被放置在該流量感測器之後。
流量感測器625被設置來測量在該流道615內的流率(Q)。在圖6所示的實施例中,該流量感測器625包括在該流道615內的流量限制器670,其被設置在該控制閥680和該隔離閥690之間。該流量感測器625進一步包括上游壓力感測器655和下游壓力感測器665。該上游壓力感測器655被建構來偵測在該流道615內一介於該控制閥680和該流量限制器670之間的上游位置的上游壓力(Pu)。該下游壓力感測器665被建構來偵測在該流道615內一介於該流量限制器670和該隔離閥690之間的下游位置的下游壓力(Pd)。如此技術領域中所習知的,該流量感測器被建構來根據該上游壓力及該下游壓力來測量流率。該系統可進一步包括一溫度感測器660,其被建構來測量在該流道615內的流體的溫度,在此例子中,該流率可如此技術領域中所習知地被進一步測量為該流體的溫度的函數。
如圖6所示,該脈衝MFC控制器605和該主控制器620溝通以送出及接收和該流體輸送處理有關的數據。該控制器605可被建構來接收一來自主控制器620的控制訊號,例如用以明確描述用於流體脈衝輸送的參數。該控制訊號可包括該流體的識別、該流體脈衝的所想要的莫耳數、該流體脈衝的所想要的持續時間、脈衝與脈衝之間的中斷時間及脈衝數。該控制器605可被建構來控制流經該控制閥680的流量及根據預估的被輸送的流體的莫耳數來開與關該隔離閥690。該控制器605被建構來調整該控制閥680的流量設定點,用以控制在脈衝輸送期間流經該閥的流量。該控制器605亦可被建構來根據預估的被輸送的莫耳數來控制該流量設定點以及在脈衝輸送期間的脈衝的持續時間(如,實際的脈衝發生時期)。在一實施例中,該控制器將該預估的被輸送的流體的莫耳數決定為i)該被測得的流率,ii)殘餘流率,iii)該流體脈衝的開始時間,及iv)該流體脈衝的停止時間的一個函數。該控制器605被建構來接受一和該上游壓力(Pu)相對應的上游壓力訊號以及一和該下游壓力(Pd)相對應的下游壓力訊號,用以將該殘餘流率決定為i)該下游壓力和ii)介於該流量限制器與該隔離閥之間的滯死體積的一個函數。
在圖6所示的系統中,該快速反應隔離閥690被添加到該以壓力為主的脈衝MFC610中,用以讓該脈衝形狀更為方形或理想。沒有該隔離閥,則該流動的一長的衰減傾向於對於在該控制閥被關閉之後的該脈衝形狀以及對於輸送精確性有不利的影響。使用該隔離閥690亦改善了輸送速度,使得該系統600可輸送短的持續時間(100-200ms)的脈衝。該控制閥680和該隔離閥690可在一脈衝的末了被同時關閉,因而消除對該處理室的任何流體滲漏。
示於圖6中的實施例包括一整合至該脈衝MFC610內的隔離閥690。該隔離閥亦可被安裝在脈衝MFC (包括熱脈MFC在內)的外面,如圖8-10所示。此解決方式可和具有脈衝氣體輸送能力的既有的脈衝MFC(譬如,MKS P9B MFC(MKS Instrument Inc.))相容。
當使用外部隔離閥時,一傾卸管線(如,轉接管線)可被使用(如,圖9-10所示),用以讓該脈衝MFC具有一用於每一脈衝輸送的命定的(deterministic)初始條件。該傾卸管線允許在脈衝開始之前將流體從該流道內清除。
本發明的實施例是既有脈衝MFC的延伸,尤其是對於以壓力為主的脈衝MFC而言。當該脈衝輸送時期(脈衝發生時期)的終了時,該下游的隔離閥被立即關閉,用以將輸出流量降至零。用於圖6的裝置的脈衝氣體輸送量∆n(以莫耳為單位)可根據等式1計算出來,其在此處被再次被提出:
Figure 02_image005
其中Qm 是該流量感測器測得的流率(其為來自該流量限制器的上游壓力Pu 及下游壓力Pd 以及氣體溫度T及氣體特性(譬如,氣體分子重量MW及比熱比γ的一個函數)),Vd2 是介於該流量限制器和該隔離閥之間的滯死體積,Pd 是下游壓力測量值,t1 是脈衝的開始時間,t2 是脈衝的終止時間。
包括該滯死體積Vd2 和下游壓力Pd
Figure 02_image007
這項係根據質量守恆定律。該項被提供在等式1中用來補償出現在介於該流量限制器和該隔離閥之間的空間內的任何流體。它可被界定為殘餘流率。如果在該流道內的該上游壓力感測器和該下游壓力感測器之間有壓力差的話,則該流量感測器可在該隔離閥被關閉之後產生一流量訊號。然而,此流量不會流到該處理室,因為該隔離閥被關閉。然而,在該流道內留有流體且在等式1中的該項即是為了補償此流體。
在操作時,使用者可為該以莫耳為主的脈衝輸送明確地指明下列參數:(1)莫耳輸送設定點(nsp )、(2)該脈衝發生時期的所想要的(如,目標)時間長度(Ton )、(3)總脈衝發生-及停止時期(Ttotal )、及(4)脈衝數(N)。此資訊可經由該主控制器620被傳遞至該MFC610。基於此資訊,該MFC610的控制器605被建構來依據等式1自動地調整該流量設定點及非必要地該脈衝發生時期,用以根據一流量感測器(如,流量感測器625)測得的流率在所想要的脈衝發生時期內精準地輸送所想要的氣體莫耳數量。
藉由使用以莫耳為主的脈衝輸送,該MFC610控制並且在必要時調整控制閥680的流量設定點以及,非必要地,該實際的脈衝發生時期,用以控制每一脈衝所輸送的莫耳數。根據這些參數,該MFC610以精準的時間順序(即,在每一總脈衝時期內該MFC是開動的期間部分中,每一脈衝輸送Δn莫耳、及在該總脈衝發生-及停止時期(Ttotal )的其餘時間將該MFC關掉並關閉該隔離閥)自動地輸送N個流量脈衝。在脈衝輸送期間,該MFC610根據在該脈衝期間預估的被輸送的莫耳數的回饋來自動地調整控制閥680流量設定點(Qsp ),用以在每一脈衝的目標脈衝發生時期(Ton )內精確地輸送所想要的莫耳數。該MFC610亦可根據前一個脈衝輸送的回饋來調整控制閥680的流量設定點以及非必要地該實際的脈衝發生時期。
在某些情況中(如,在該系統已待機一陣子之後的處理啟動期間),莫耳輸送的要求可小於在該流道空間內的流體質量。這亦被稱為‘第一晶圓’問題。例如,該控制閥可以有一滲漏,這導致壓力累積在該流道內。該壓力會大到足以產生脈衝中需要的莫耳數。在此情況中,該MFC只需要打開該隔離閥而不需要打開該控制閥就能輸送所想要的流體脈衝。在此脈衝期間,下游壓力Pd 可被測量,且如果已達到用等式1計算出來的所想要的流體的莫耳數的話,則該脈衝被終止。
如此技術領域中所習知的,流經該流道的該流量限制器的流量(Q)可被表示成該限制器的上游壓力及下游壓力(Pu 及Pd )(即,緊鄰該限制器的壓力)、穿過該限制器的流路的截面積(A)、及氣體特性(譬如,比熱比γ及分子重量MW)的函數,如下面的等式所示:
Figure 02_image009
該函數fQ 可用經驗數據或實驗來獲得。在用一流量噴嘴作為流量限制器的例子中,下面的等式可被使用:
Figure 02_image011
, 其中C是該流量限制器的排放係數,R是通用氣體常數,及T是氣體溫度。
其它流量限制器及描述流經這些流量限制器的質量流之相應的等式都可被使用且在此技術領域中是已知的。
本發明的實施例相對於先前技術方法所獲得的特殊優點包括了更好的氣體脈衝輸送精確性;藉由消除長的脈衝尾(pulse tail)來符合所想要的脈衝形狀;及提高輸送速度,尤其是用於短持續時間的脈衝。圖7A及7B顯示具有及不具有整合的下游隔離閥的脈衝氣體輸送效能比較。
如上所述,圖7A是一顯示使用不具有整合的隔離閥的系統(譬如,圖5的系統500)所獲得之脈衝形狀的圖表,圖7B是一顯示使用具有整合的快速回應隔離閥的系統(譬如,圖6的系統600)所獲得之脈衝形狀的圖表。和圖7A一樣,兩條曲線被示於圖7B中,理想的脈衝形狀706具有300ms的脈衝寬度且實際的脈衝形狀708係使用系統600所獲得。圖7A和圖7B的實際的脈衝形狀之間的比較顯示出的是,圖7B的脈衝形狀提供精確的氣體脈衝輸送並且藉由消除長的脈衝尾來符合該理想脈衝形狀。消除脈衝尾能夠提供更快的輸送速度。
對於具有一或多個外部的隔離閥的脈衝MFC(圖8-10)而言,脈衝MFC仍根據脈衝輸送要求直接控制下游隔離閥。如果傾卸管線被使用的話(如,圖9及10中所示),脈衝MFC可在該脈衝輸送結束且新的脈衝輸送開始之前快速地清空被陷在該脈衝MFC和該下游隔離閥之間的殘餘氣體。
圖8例示一脈衝輸送系統800的例子,其包括一具有外部隔離閥890的脈衝MFC810。該脈衝MFC810根據接收自一主控制器820的脈衝輸送要求控制來自氣體源的氣體的流量以及該隔離閥890的打開和關閉。
圖9例示一脈衝輸送系統900的例子,其包括一具有外部三向隔離閥930和一傾卸管線的脈衝MFC910。和圖1的三向隔離閥130不同的是,該隔離閥930直接被該脈衝MFC910控制,而不是被主控制器920控制。
一具有外部隔離閥的既有系統(譬如,圖1所示者)可用一改良的脈衝MFC(譬如,MFC610)來改造,用以控制該隔離閥以使用描述於本文中的方法來提供更好的脈衝輸送。該改良的脈衝MFC將不會如同標準的MFC般單純地透過時間來控制流量,而是會以莫耳的等級計算在一脈衝期間被輸送的流體的質量。該主控制器明確指明將在每一脈衝中被輸送的莫耳數以及其它所想要的處理參數。然而,該MFC本地地(locally)控制該脈衝輸送週期。在此例子中,該控制閥和該隔離閥係根據預估的被輸送莫耳數的計算來控制,這與根據時間來調整的方式相反。該預估的被輸送莫耳數的計算必須夠快該控制訊號快到足以關閉該隔離閥以終止該脈衝。這表示該計算是被本地地在MFC完成。
圖10例示一脈衝輸送系統1000的例子,其包括一脈衝MFC1010、兩個外部隔離閥1090,1092和一傾卸管線。兩個隔離閥1090,1092係根據脈衝輸送要求被該脈衝MFC1010控制。如圖所示,隔離閥1090被建構來打開及關閉流至一處理室的流動,而隔離閥1092則被建構來打開及關閉流至該傾卸管線的流動。該等脈衝輸送要求被主控制器1020送至該MFC1010。
本文中所參考的所有專利、公開的申請案及參考文獻的教示的全部內容都藉由參照而被併於本文中。
雖然示範性實施例已被特別地顯示及描述,但將被熟習此技藝者瞭解的是,在形式及細節上的各種改變可在不偏離由下面的申請專利範圍所涵蓋的該等實施例的範圍下被達成。
100‧‧‧先前技術的脈衝氣體輸送系統 110‧‧‧質量流控制器(MFC) 120‧‧‧主控制器 130‧‧‧三向閥 200‧‧‧先前技術的脈衝氣體輸送系統 210‧‧‧熱MFC 220‧‧‧主控制器 300‧‧‧先前技術的脈充氣體輸送系統 350‧‧‧室 360‧‧‧溫度感測器 365‧‧‧壓力感測器 340‧‧‧上游閥 345‧‧‧下游閥 500‧‧‧先前技術系統 510‧‧‧以壓力為主的MFC 520‧‧‧主控制器 580‧‧‧控制閥 505‧‧‧控制器 525‧‧‧流量感測器 515‧‧‧流道 570‧‧‧流量限制器 555‧‧‧上游壓力感測器 565‧‧‧下游壓力感測器 702‧‧‧理想脈衝形狀 704‧‧‧實際脈衝形狀 600‧‧‧改良的流體輸送系統 610‧‧‧以壓力為主的MFC 690‧‧‧整合式隔離閥 680‧‧‧控制閥 615‧‧‧流道 605‧‧‧控制器 625‧‧‧流量感測器 655‧‧‧上游壓力感測器 665‧‧‧下游壓力感測器 670‧‧‧流量限制器 660‧‧‧溫度感測器 620‧‧‧主控制器 706‧‧‧理想的脈衝形狀 708‧‧‧實際的脈衝形狀 800‧‧‧脈衝輸送系統 810‧‧‧脈衝MFC 890‧‧‧三向隔離閥 820‧‧‧主控制器 900‧‧‧脈衝輸送系統 910‧‧‧脈衝MFC 930‧‧‧外部三向隔離閥 1000‧‧‧脈衝輸送系統 1010‧‧‧脈衝MFC 1090‧‧‧外部隔離閥 1092‧‧‧外部隔離閥 1020‧‧‧主控制器 400‧‧‧氣體輸送循環
上文所述從示於附圖中的示範性實施例的下面更詳細的描述中將會變得明顯,在附圖中相同的元件標號代表在不同的視圖中相同的部件。該等圖式不必然是按比例繪製,相反地,在例示實施例時重點將被放入圖中。
圖1例示例示一使用熱質量流控制器(MFC)和轉接管線(divert line)的先前技術的脈衝氣體輸送系統。
圖2A-2B例示一使用快速反應MFC的先前技術的脈衝氣體輸送系統。
圖3A-3B例示一使用衰變脈衝輸送率(rate of decay pulse delivery)的先前技術的脈衝氣體輸送系統。
圖4例示使用流量設定點(Q)與輸送時間(∆t)的乘積(product)所界定的氣體劑量的脈衝輸送。
圖5是先前技術的一種以壓力為主的脈衝MFC裝置的示意圖。
圖6是一具有整合的隔離閥的以壓力為主的脈衝MFC的示意圖。
圖7A是一圖表,其例示一用沒有整合的隔離閥的MFC輸送的氣體脈衝的脈衝形狀。
圖7B是一圖表,其例示一用具有整合的隔離閥的MFC輸送的氣體脈衝的脈衝形狀。
圖8例示一具有外部隔離閥的示範性脈衝MFC系統。
圖9例示一具有外部隔離閥和傾卸管線的示範性脈衝MFC系統。
圖10例示一具有兩個外部隔離閥和傾卸管線的示範性脈衝MFC系統。
600‧‧‧改良的流體輸送系統
605‧‧‧控制器
610‧‧‧以壓力為主的MFC
615‧‧‧流道
620‧‧‧主控制器
625‧‧‧流量感測器
655‧‧‧上游壓力感測器
660‧‧‧溫度感測器
665‧‧‧下游壓力感測器
670‧‧‧流量限制器
680‧‧‧控制閥
690‧‧‧整合式隔離閥

Claims (22)

  1. 一種用於流體的脈衝輸送的流體控制系統,該系統包含:一流道;一隔離閥,用來開始及終止來自該流道的流體的脈衝;及一質量流控制器(MFC),其包括一控制閥,用來控制在該流道內的流體的流量、一流量感測器,用來測量該流道內的流率、及一專屬的控制器,用來根據來自該流量感測器的回饋來控制流經該控制閥的流體的流量,該專屬的控制器被連接至該隔離閥用來控制該隔離閥的開與關用以開始及終止該脈衝,以及用以控制在該流體的脈衝期間被輸送的流體的質量,其中該專屬的控制器被建構成以i)該被測得的流率,ii)該流體的脈衝的開始時間,及iii)該流體的脈衝的停止時間的函數來決定被輸送的流體的一預估的莫耳數,及其中該專屬的控制器被建構成根據該被輸送的流體的該被預估的莫耳數來控制流經該控制閥的該流體的流量以及該隔離閥的開與關。
  2. 如申請專利範圍第1項之流體控制系統,其中該專屬的控制器藉由該隔離閥來控制在開始及終止該脈衝的期間流經該控制閥的流體的流量。
  3. 如申請專利範圍第1項之流體控制系統,其中該流量感測器包含:一流量限制器,其在該流道內且被設置在該控制閥和該隔離閥之間;一上游壓力感測器,其被建構來偵測在該流道內一介於該控制閥和該流量限制器之間的上游位置的上游壓力;及一下游壓力感測器,其被建構來偵測在該流道內一介於該流量限制器和該隔離閥之間的下游位置的下游壓力,該流量感測器根據該上游壓力和該下游壓力來測量流率。
  4. 如申請專利範圍第3項之流體控制系統,其中該專屬的控制器可被建構成根據流體的該脈衝期間該輸送的流體的質量的計算來關閉該隔離閥。
  5. 如申請專利範圍第1項之流體控制系統,其中該專屬的控制器被建構成根據一殘餘流率(residual flow rate)的決定和該被測得的流率來決定該被輸送的流體的該被預估的莫耳數。。
  6. 如申請專利範圍第3項之流體控制系統,其中該專屬的控制器被建構成根據一殘餘流率(residual flow rate)的決定和該被測得的流率來決定該被輸送的流體的該被預估的莫耳數。
  7. 如申請專利範圍第6項之流體控制系統,其中該專屬的控制器被建構成接收一對應於該上游壓力的上游壓力訊號和一對應於該下游壓力的下游壓力訊號,並以i)該下游壓力及ii)介於流量限制器和該隔離閥之間的滯死體積的函數來決定該殘餘流率,該隔離閥被表示為
    Figure 108103082-A0305-02-0030-4
    其中Vd2是介於流量限制器和該隔離閥之間的該滯死體積,Pd是該下游壓力。
  8. 如申請專利範圍第6項之流體控制系統,其中該專屬的控制器可被建構成依據下面的公式來決定被輸送的流體的該被預估的莫耳數:
    Figure 108103082-A0305-02-0030-2
    其中△n是該被預估的莫耳數,Q m 是該流量感測器測得的流率,V d2 是介於流量限制器和該隔離閥之間的滯死體積,P d 是下游壓力,t 1 是脈衝開始時間,t2是脈衝停止時間。
  9. 如申請專利範圍第3項之流體控制系統,其中該流率係以該上游壓力、該下游壓力、及該流體的一或多個特性的函數來測量。
  10. 如申請專利範圍第9項之流體控制系統,其中該流體的一或多個特性包括分子重量MW及比熱比γ。
  11. 如申請專利範圍第9項之流體控制系統,更包含一溫度感器,其被建構來測量該流體在該流道內的溫度,及其中該流率可被進一步以該流體溫度的函數來測量。
  12. 如申請專利範圍第1項之流體控制系統,其中該專屬的控制器被建構成接收來自一主控制器的控制訊號,該控制訊號包括該流體的身分識別、該流體脈衝的所想要的莫耳數、及該流體脈衝的持續時間。
  13. 如申請專利範圍第1項之流體控制系統,其中該隔離閥被整合至該MFC中。
  14. 如申請專利範圍第1項之流體控制系統,其中該隔離閥是在該MFC的外部。
  15. 如申請專利範圍第14項之流體控制系統,其中該隔離閥是一三向閥,其被耦合至一處理室和一傾卸管線。
  16. 如申請專利範圍第14項之流體控制系統,其中該系統包括多個隔離閥,及其中該等隔離閥的一者被耦合至一處理室且該等隔離閥的另一者被耦合至一傾卸管線。
  17. 一種輸送流體的脈衝的方法,該方法包含:用一質量流控制器(MFC)的控制閥來控制進入一流道內的流體的流量;用該MFC的一流量感測器來測量該流道內的流率;控制一隔離閥的開與關以開始及終止來自該流道的一流體的脈衝;及用該MFC內的一專屬控制器來決定被輸送的流體的一預估的莫耳數、來根據來自該流量感測器的回饋控制流經該控制閥的流體的流量、及該隔離閥的開與關,用以控制該流體的脈衝期間被輸送的流體的質量,其中該被輸送的流體的該被預估的莫耳數是用i)該被測得的流率、ii)該流體的脈衝的開始時間、及iii)該流體的脈衝的停止時間的函數來決定,及其中流經該控制閥的該流體的流量以及該隔離閥的開與關係根據該被輸送的流體的該被預估的莫耳數來控制。
  18. 如申請專利範圍第17項之輸送流體的脈衝的方法,其中控制流經該控制閥的流體的流量係根據該脈衝被該隔離閥開始及終止的脈衝期間來自該流量感測器的回饋。
  19. 如申請專利範圍第17項之輸送流體的脈衝的方法,更包含:偵測該流道中一位於該控制閥和一流量限制器之間的 上游位置的上游壓力,該流量限制器係位在該控制閥和該隔離閥之間;及偵測該流道中一介於該流量限制器和該隔離閥之間的下游位置的下游壓力;和其中測量在該流道內的流率係根據該上游壓力和該下游壓力。
  20. 如申請專利範圍第17項之方法,其中該被輸送的流體的一預估的莫耳數係根據一殘餘流率的決定和該被測得的流率來決定。
  21. 如申請專利範圍第19項之方法,更包含以i)該下游壓力及ii)介於流量限制器和該隔離閥之間的滯死體積的函數來決定殘餘流率,其中該被輸送的流體的該被預估的莫耳數是根據該殘餘流率和一被測得的流率來決定。
  22. 一種用於流體的脈衝輸送的流體控制系統,該系統包含:一流道;多個隔離閥,用來開始及終止來自該流道的流體的脈衝,該等隔離閥的一者被耦接至一處理室及該等隔離閥的另一者被耦接至傾卸管線;及一質量流控制器(MFC),其包括一控制閥,用來控制在該流道內的流體的流量、一流量感測器,用來測量該流 道內的流率、及一控制器,用來控制流經該控制閥的流量及該等隔離閥的開及關,用以控制該流體的脈衝期間該被輸送的流體的質量。
TW108103082A 2018-02-02 2019-01-28 用於以隔離閥進行脈衝氣體輸送的方法及設備 TWI705318B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/887,447 2018-02-02
US15/887,447 US10649471B2 (en) 2018-02-02 2018-02-02 Method and apparatus for pulse gas delivery with isolation valves

Publications (2)

Publication Number Publication Date
TW201941011A TW201941011A (zh) 2019-10-16
TWI705318B true TWI705318B (zh) 2020-09-21

Family

ID=65433745

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108103082A TWI705318B (zh) 2018-02-02 2019-01-28 用於以隔離閥進行脈衝氣體輸送的方法及設備

Country Status (8)

Country Link
US (1) US10649471B2 (zh)
EP (1) EP3746861B1 (zh)
JP (1) JP6916964B2 (zh)
KR (1) KR102239901B1 (zh)
CN (1) CN111670420B (zh)
SG (1) SG11202007123YA (zh)
TW (1) TWI705318B (zh)
WO (1) WO2019152301A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164938B2 (ja) * 2017-07-31 2022-11-02 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
US11079774B2 (en) * 2017-11-30 2021-08-03 Fujikin Incorporated Flow rate control device
US10698426B2 (en) * 2018-05-07 2020-06-30 Mks Instruments, Inc. Methods and apparatus for multiple channel mass flow and ratio control systems
JP2020021176A (ja) * 2018-07-30 2020-02-06 株式会社堀場エステック 流量制御装置
US10725484B2 (en) 2018-09-07 2020-07-28 Mks Instruments, Inc. Method and apparatus for pulse gas delivery using an external pressure trigger
JP7120036B2 (ja) * 2019-01-16 2022-08-17 トヨタ自動車株式会社 自動駐車管理装置
US11150120B2 (en) 2019-09-22 2021-10-19 Applied Materials, Inc. Low temperature thermal flow ratio controller
US11513108B2 (en) 2020-01-14 2022-11-29 Mks Instruments, Inc. Method and apparatus for pulse gas delivery with concentration measurement
JP7122335B2 (ja) * 2020-03-30 2022-08-19 Ckd株式会社 パルスショット式流量調整装置、パルスショット式流量調整方法、及び、プログラム
GB2594488B (en) * 2020-04-29 2022-09-07 Bramble Energy Ltd Fuel pressure regulator, method of regulating fuel pressure and method of measuring a volume of fluid flow
JP2023550129A (ja) * 2020-11-20 2023-11-30 エム ケー エス インストルメンツ インコーポレーテッド 圧力制御を有するパルスガス供給のための方法及び装置
KR102438237B1 (ko) * 2021-01-26 2022-08-30 엠케이피 주식회사 액체 소스 공급 시스템 및 이를 이용한 액체 소스 공급 방법
JP2022144207A (ja) * 2021-03-18 2022-10-03 東京エレクトロン株式会社 成膜装置および成膜方法
WO2024057731A1 (ja) * 2022-09-16 2024-03-21 株式会社プロテリアル マスフローコントローラ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865205A (en) * 1997-04-17 1999-02-02 Applied Materials, Inc. Dynamic gas flow controller
CN1178115C (zh) * 1999-07-31 2004-12-01 亨特莱佛技术公司 用于压缩机的气体流动控制系统
US20140238498A1 (en) * 2011-02-25 2014-08-28 Mks Instruments, Inc. System for and Method of Multiple Channel Fast Pulse Gas Delivery
WO2015138085A1 (en) * 2014-03-11 2015-09-17 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US20160216713A1 (en) * 2011-08-20 2016-07-28 Reno Technologies, Inc. Flow control system, method, and apparatus

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154022A (ja) * 1997-04-08 1999-06-08 Hitachi Metals Ltd マスフローコントローラ及びその運転制御方法
JP3586075B2 (ja) * 1997-08-15 2004-11-10 忠弘 大見 圧力式流量制御装置
JP3932389B2 (ja) * 1998-01-19 2007-06-20 Smc株式会社 マスフローコントローラの自己診断方法
US6363958B1 (en) * 1999-05-10 2002-04-02 Parker-Hannifin Corporation Flow control of process gas in semiconductor manufacturing
US6782906B2 (en) * 2000-12-28 2004-08-31 Young-Chul Chang Time based mass flow controller and method for controlling flow rate using it
US6913031B2 (en) * 2001-10-18 2005-07-05 Ckd Corporation Pulse shot type flow controller and pulse shot type flow controlling method
US6924235B2 (en) * 2002-08-16 2005-08-02 Unaxis Usa Inc. Sidewall smoothing in high aspect ratio/deep etching using a discrete gas switching method
US7335396B2 (en) * 2003-04-24 2008-02-26 Micron Technology, Inc. Methods for controlling mass flow rates and pressures in passageways coupled to reaction chambers and systems for depositing material onto microfeature workpieces in reaction chambers
US7740024B2 (en) * 2004-02-12 2010-06-22 Entegris, Inc. System and method for flow monitoring and control
US7412986B2 (en) * 2004-07-09 2008-08-19 Celerity, Inc. Method and system for flow measurement and validation of a mass flow controller
JP2007058336A (ja) * 2005-08-22 2007-03-08 Asahi Organic Chem Ind Co Ltd 流体制御装置
JP4788920B2 (ja) * 2006-03-20 2011-10-05 日立金属株式会社 質量流量制御装置、その検定方法及び半導体製造装置
CN101369514B (zh) * 2007-08-16 2013-06-05 北京北方微电子基地设备工艺研究中心有限责任公司 半导体加工设备的供气系统及其气体流量校准的方法
JP5372353B2 (ja) * 2007-09-25 2013-12-18 株式会社フジキン 半導体製造装置用ガス供給装置
JP5395451B2 (ja) * 2009-02-10 2014-01-22 サーパス工業株式会社 流量コントローラ
TWI435196B (zh) * 2009-10-15 2014-04-21 Pivotal Systems Corp 氣體流量控制方法及裝置
JP5442413B2 (ja) * 2009-12-03 2014-03-12 ルネサスエレクトロニクス株式会社 半導体製造装置および流量制御装置
US9348339B2 (en) 2010-09-29 2016-05-24 Mks Instruments, Inc. Method and apparatus for multiple-channel pulse gas delivery system
US10353408B2 (en) 2011-02-25 2019-07-16 Mks Instruments, Inc. System for and method of fast pulse gas delivery
KR101378478B1 (ko) * 2011-03-23 2014-03-27 가부시키가이샤 히다치 고쿠사이 덴키 반도체 장치의 제조 방법, 기판 처리 방법 및 기판 처리 장치
US8642454B2 (en) * 2011-05-19 2014-02-04 International Business Machines Corporation Low temperature selective epitaxy of silicon germanium alloys employing cyclic deposit and etch
JP5686487B2 (ja) * 2011-06-03 2015-03-18 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US9151731B2 (en) * 2012-01-19 2015-10-06 Idexx Laboratories Inc. Fluid pressure control device for an analyzer
US9557744B2 (en) * 2012-01-20 2017-01-31 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
KR102088498B1 (ko) * 2012-03-07 2020-03-13 일리노이즈 툴 워크스 인코포레이티드 자가 확증형 질량 유량 제어기 및 질량 유량계를 제공하는 시스템 및 방법
US10031005B2 (en) * 2012-09-25 2018-07-24 Mks Instruments, Inc. Method and apparatus for self verification of pressure-based mass flow controllers
JP6448502B2 (ja) * 2015-09-09 2019-01-09 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置及びプログラム
JP6604801B2 (ja) * 2015-09-29 2019-11-13 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP6606476B2 (ja) * 2016-08-02 2019-11-13 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865205A (en) * 1997-04-17 1999-02-02 Applied Materials, Inc. Dynamic gas flow controller
CN1178115C (zh) * 1999-07-31 2004-12-01 亨特莱佛技术公司 用于压缩机的气体流动控制系统
US20140238498A1 (en) * 2011-02-25 2014-08-28 Mks Instruments, Inc. System for and Method of Multiple Channel Fast Pulse Gas Delivery
US20160216713A1 (en) * 2011-08-20 2016-07-28 Reno Technologies, Inc. Flow control system, method, and apparatus
WO2015138085A1 (en) * 2014-03-11 2015-09-17 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time

Also Published As

Publication number Publication date
TW201941011A (zh) 2019-10-16
CN111670420A (zh) 2020-09-15
CN111670420B (zh) 2021-09-21
EP3746861A1 (en) 2020-12-09
KR20200105532A (ko) 2020-09-07
US10649471B2 (en) 2020-05-12
JP6916964B2 (ja) 2021-08-11
JP2021508129A (ja) 2021-02-25
US20190243392A1 (en) 2019-08-08
EP3746861B1 (en) 2023-08-23
SG11202007123YA (en) 2020-08-28
WO2019152301A1 (en) 2019-08-08
KR102239901B1 (ko) 2021-04-14

Similar Documents

Publication Publication Date Title
TWI705318B (zh) 用於以隔離閥進行脈衝氣體輸送的方法及設備
KR101961782B1 (ko) 펄스 가스의 고속 전달 방법
TWI818066B (zh) 用於使用外部壓力觸發儀輸送脈衝氣體的方法和裝置
WO2012014375A1 (ja) ガス供給装置用流量制御器の校正方法及び流量計測方法
KR101523976B1 (ko) 펄스형 가스 운반 제어 및 방법
US10031004B2 (en) Methods and apparatus for wide range mass flow verification
US11404290B2 (en) Method and apparatus for pulse gas delivery
TWI839497B (zh) 用於脈衝氣體輸送之方法及裝置
TW202235669A (zh) 用於具有壓力控制之脈衝氣體輸送的方法及設備