WO2006075406A1 - 流量測定方法および流量測定装置 - Google Patents

流量測定方法および流量測定装置 Download PDF

Info

Publication number
WO2006075406A1
WO2006075406A1 PCT/JP2005/000501 JP2005000501W WO2006075406A1 WO 2006075406 A1 WO2006075406 A1 WO 2006075406A1 JP 2005000501 W JP2005000501 W JP 2005000501W WO 2006075406 A1 WO2006075406 A1 WO 2006075406A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
fluid
isothermal
pressure
temperature
Prior art date
Application number
PCT/JP2005/000501
Other languages
English (en)
French (fr)
Inventor
Atsushi Ogura
Toshiya Kobayashi
Original Assignee
Tokyo Meter Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Meter Co., Ltd. filed Critical Tokyo Meter Co., Ltd.
Priority to JP2006552827A priority Critical patent/JP4662372B2/ja
Priority to CNB2005800065664A priority patent/CN100543425C/zh
Priority to EP05703738.4A priority patent/EP1847812B1/en
Priority to PCT/JP2005/000501 priority patent/WO2006075406A1/ja
Publication of WO2006075406A1 publication Critical patent/WO2006075406A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/50Correcting or compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting

Definitions

  • the present invention relates to a flow rate measurement method and a flow rate measurement device that measure flow rate characteristics using an isothermal device.
  • an isothermal container As an example of a method for obtaining a flow characteristic of a hydraulic device represented by a pneumatic device such as a solenoid valve or a joint used in a pneumatic pipe (for example, Patent Document 1).
  • a pneumatic device such as a solenoid valve or a joint used in a pneumatic pipe
  • an isothermal vessel is placed between the source of compressed air and the pneumatic device to be measured, the pressure response in the isothermal vessel is measured, and this pressure response is differentiated to differentiate the compressed air.
  • Calculate the flow rate characteristics of pneumatic equipment by calculating the instantaneous flow rate.
  • the isothermal container is filled with a heat conductive material such as metal, and the contact area is increased by forming the heat conductive material into a cotton shape having a very small wire diameter.
  • the heat transfer rate is getting higher. For this reason, when compressed air flows into the isothermal vessel, the pressure is increased, and the temperature that increases the temperature in the isothermal vessel is absorbed by the heat-conducting material. It is suppressed low. In addition, when compressed air is released, the pressure decreases and the temperature tends to decrease. However, the heat in the heat conductive material is also supplied, so the temperature in the container is stabilized. By such an action, the temperature in the isothermal container is stabilized, so that the flow rate characteristic is measured promptly.
  • Patent Document 1 Japanese Patent No. 2887360
  • the isothermal container becomes expensive and not economical.
  • An object of the present invention is to provide a flow rate measuring method and a flow rate measuring device capable of measuring the flow rate characteristics of a fluid pressure device with high precision even when the exact isothermal state in the isothermal means cannot be maintained! / ⁇ . It is in.
  • the flow rate measurement method of the present invention is a flow rate measurement method for measuring the flow rate characteristics of a fluid pressure device using an isothermal means that suppresses the temperature change of the fluid flowing through the inside.
  • a temperature response determination process for supplying a fluid to the pressure device and obtaining a temperature response of the fluid with respect to time within the isothermal means, and based on the temperature response obtained in the temperature response determination process, the heat of the fluid with respect to time Using the heat transfer coefficient calculation process to obtain the transfer coefficient function and the heat transfer coefficient function obtained in the heat transfer coefficient calculation process, the flow calculation that calculates the flow rate of the fluid flowing through the fluid pressure device from the pressure response over time And a process.
  • a function of the heat transfer coefficient of the fluid with respect to time is obtained based on the temperature response of the fluid with respect to time.
  • the function of the heat transfer coefficient takes into account the temperature change inside the isothermal key means, so the fluid flow rate calculated in the flow rate calculation process takes into account the temperature change inside the isothermal key means. Value. Therefore, even when the strict isothermal state of the isothermal means cannot be maintained, the flow characteristics of the fluid pressure device can be measured with high accuracy.
  • the flow rate of the fluid is calculated in consideration of the temperature change inside the isothermal means, it is possible to use an inexpensive isothermal means that does not need to ensure sufficient performance of suppressing the temperature change of the isothermal means,
  • the flow measuring device is configured at low cost.
  • the isothermal means inside becomes a steady state and the temperature Measurement of temperature response is complicated and takes a long time.
  • a function of heat transfer coefficient with respect to time is preliminarily expressed as isothermal. If it is obtained as a basic characteristic of the converting means, when actually measuring the flow rate of the fluid pressure device, it is only necessary to measure the pressure response with respect to the time of the fluid in the isothermal means.
  • the pressure response can be measured relatively easily and with high accuracy, the flow measurement operation of the fluid pressure device is simplified and the measurement time is shortened.
  • the heat transfer coefficient function h (t) is expressed as h at the time of maximum temperature drop.
  • the fluid heat transfer coefficient does not substantially change when the fluid discharge rate is within a predetermined range, and the approximate expression is used as a function of the heat transfer coefficient by utilizing characteristics such as wrinkles. Therefore, the calculation formula of the function of heat transfer coefficient becomes simple. Therefore, a calculation result with good accuracy in the flow rate calculation process is ensured while allowing easy calculation in the heat transfer coefficient calculation process.
  • the flow rate calculation step includes the mass flow rate G of the fluid flowing through the fluid pressure device, C the constant volume specific heat of air, P the pressure of the fluid in the isothermal means, and V the isothermal means.
  • R is the gas constant
  • is the atmospheric temperature
  • S is the heat transfer area of the isothermal means
  • is the isothermal temperature of the fluid in the ahm means
  • C is the constant pressure specific heat.
  • the first term on the right side is a flow rate calculation formula when it is assumed that the temperature of the fluid inside the isothermal chamber means is isothermal.
  • the second term on the right side is a correction term for the flow rate when the temperature of the fluid inside the isothermal means does not become isothermal. Therefore, even when the temperature change of the isothermal key means is insufficiently suppressed, it is possible to measure the flow rate with good accuracy by using this arithmetic expression.
  • by calculating the flow rate using this arithmetic expression it is not necessary to sufficiently secure the temperature change suppression performance of the isothermal means, so an inexpensive isothermal means can be used, and the flow measuring device Configured inexpensively.
  • the discharge of the fluid from the isothermal unit is stopped every predetermined time, and the discharge stop pressure inside the isothermal unit when the discharge of the fluid is stopped and the predetermined time elapses.
  • Measure the temperature response of the fluid over time by measuring the post-settling pressure inside the isothermal means and determining the pressure at the time of release stop, the pressure after settling, and the temperature of the air at the time when the release of the fluid is stopped. I want to ask.
  • measuring the temperature response over time requires measuring the temperature of the unsteady state fluid, which is difficult to measure, and such a temperature measurement means is expensive and sufficient. It is difficult to obtain accurate accuracy. Further, in order to obtain the average temperature in the isothermal means, it is necessary to measure the temperature at a plurality of measurement points. For example, the structure of the temperature measuring means is complicated and it is difficult to obtain sufficient accuracy.
  • the flow rate measuring device since the temperature is calculated from the pressure by stopping the discharge of the fluid every predetermined time and measuring the pressure, it is not necessary to use the temperature measuring means. Therefore, the flow rate measuring device is constructed at low cost, and the pressure response can be measured relatively easily and with high accuracy, so that a temperature response with sufficient accuracy can be obtained.
  • the flow measurement device of the present invention is a flow measurement device that measures the flow characteristics of a fluid pressure device, and is an isothermal unit that suppresses a temperature change of a fluid that circulates inside, and a pressure inside the isothermal unit.
  • Pressure detecting means for detecting, and calculating means for calculating the flow rate of the fluid flowing through the fluid pressure device from the pressure detection signal obtained by the pressure detecting means, the calculating means is isothermal means force fluid pressure equipment to the fluid pressure equipment
  • the heat transfer coefficient calculation means for obtaining a function of the heat transfer coefficient of the fluid with respect to time based on the temperature response of the fluid with respect to time within the isothermal means when the heat is supplied, and the heat obtained by the heat transfer coefficient calculation means
  • a flow rate calculating means for calculating a flow rate of the fluid flowing through the fluid pressure device from a pressure response with respect to time using a function of the transmissibility.
  • the heat transfer coefficient calculation means obtains a function of the heat transfer coefficient of the fluid with respect to time based on the temperature response of the fluid with respect to time.
  • the function of heat transfer coefficient is Since the temperature change inside the warming means is taken into consideration, the flow rate of the fluid calculated by the flow rate calculating means is a value considering the temperature change inside the isothermal means. Therefore, even if the strict isothermal state in the isothermal means cannot be maintained, the flow characteristics of the fluid pressure device can be measured with high accuracy.
  • the flow rate of the fluid is calculated in consideration of the temperature change inside the isothermal means, it is possible to use an inexpensive isothermal means that does not need to ensure sufficient performance of suppressing the temperature change of the isothermal means,
  • the flow measuring device is configured at low cost.
  • the heat transfer coefficient calculation means uses h0 as the heat transfer coefficient at the time of the maximum temperature drop and ⁇ as the maximum temperature as an expression for obtaining a function h (t) of the heat transfer coefficient of the fluid with respect to time. Descent, a is the correction factor, t is the time,
  • the heat transfer coefficient of the fluid does not substantially change when the discharge speed is within a predetermined range, and the approximate expression is used as a function of the heat transfer coefficient by utilizing characteristics such as the heat transfer coefficient.
  • the calculation function of the rate function is simplified. Accordingly, the calculation by the heat transfer coefficient calculating means is facilitated, and the calculation result with good accuracy by the flow rate calculating means is ensured.
  • the flow rate calculation means includes, as an equation for calculating the mass flow rate G of the fluid flowing through the fluid pressure device, C as the constant volume specific heat of air, P as the pressure of the fluid in the isothermal means, V isotherm Volume of fluid in the gasification means, R is the gas constant, ⁇ is the atmospheric temperature, S is the heat transfer of the isothermal means
  • is the average temperature of the fluid in the isothermal means
  • C is the constant pressure specific heat
  • the first term on the right side is an arithmetic expression for the flow rate assuming that the temperature of the fluid inside the isothermal means is isothermal.
  • the second term on the right side is a correction term for the flow rate when the temperature of the fluid inside the isothermal means does not become isothermal. Therefore, even when the temperature change of the isothermal means is insufficiently suppressed, the flow rate can be measured with good accuracy by using this arithmetic expression.
  • FIG. 1 is a block diagram showing a configuration of a measuring apparatus that works according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a pressure response with respect to time in Examples and Comparative Examples of the present invention.
  • FIG. 3 is a graph showing temperature response with respect to time in Examples and Comparative Examples of the present invention.
  • FIG. 4 is a graph showing the flow characteristics in a comparative example of the present invention.
  • FIG. 5 is a diagram showing a change in heat transfer coefficient in a comparative example of the present invention.
  • FIG. 6 is a graph showing flow rate characteristics in a comparative example of the present invention.
  • Fig. 7 is a graph showing flow rate characteristics in the examples of the present invention and comparative examples.
  • FIG. 8 is a diagram showing a comparison of flow rate characteristics between examples of the present invention and comparative examples. Explanation of symbols
  • FIG. 1 shows a block diagram of a configuration of a flow rate measuring apparatus 1 for using a flow rate measuring method that is effective in one embodiment of the present invention.
  • a flow rate measuring device 1 measures the flow characteristics of a test pneumatic device 100 as a fluid pressure device, and an isothermal container 2 that supplies compressed air as a fluid to the test pneumatic device 100.
  • the open / close solenoid 3 provided between the isothermal vessel 2 and the test pneumatic device 100, the pressure sensor 5 as a pressure detection means for measuring the pressure inside the isothermal vessel 2, and the flow measuring device 1
  • a controller 6 as a control means for controlling the operation.
  • test pneumatic device 100 employs a solenoid valve as a typical pneumatic device.
  • the isothermal container 2 has a structure in which the container is filled with compressed air of a predetermined pressure, and the container is filled with a heat conductive material such as metal.
  • the heat conductive material is formed in a cotton shape with a very small wire diameter and rolled up so that a good heat transfer rate can be secured by increasing the contact area with the compressed air in the container.
  • the container is filled.
  • Thermal conductive material force Heat energy is supplied.
  • the temperature inside the vessel is kept approximately isothermal. However, at the initial stage of the compressed air discharge start, the pressure drop is abrupt.
  • the open / close valve 3 is provided so as to be able to open and close a flow path that connects the isothermal container 2 and the test pneumatic device 100, and an arbitrary configuration such as a solenoid valve can be adopted.
  • the pressure sensor 5 measures the pressure in the isothermal vessel 2 and outputs a pressure measurement signal to the controller 6.
  • the pressure sensor 5 it is desirable to employ a pressure sensor having good responsiveness in order to measure the pressure response in the isothermal container 2 when compressed air is discharged from the isothermal container 2.
  • the controller 6 controls opening and closing of the flow path of the compressed air by outputting an opening / closing command signal to the opening / closing valve 3. Further, the pressure measurement signal from the pressure sensor 5 is inputted and accumulated.
  • the controller 6 has a heat transfer coefficient calculating means 61 for obtaining a function of heat transfer coefficient with respect to time from the pressure measurement signal, and the flow rate from the pressure response with respect to time using the heat transfer coefficient function obtained by the heat transfer coefficient calculating means 61
  • a flow rate calculating means 62 for calculating, and a flow rate characteristic calculating means 63 for calculating the flow rate characteristic of the test pneumatic equipment 100 based on the flow rate obtained by the flow rate calculating means 62 are provided.
  • the heat transfer coefficient calculating means 61, the flow rate calculating means 62, and the flow rate characteristic calculating means 63 are included in the calculating means of the present invention.
  • the heat transfer coefficient calculating means 61 stores the following equation (1).
  • the heat transfer coefficient calculating means 61 obtains a function h (t) of the heat transfer coefficient with respect to time according to the equation (1). Where h is isothermal
  • the heat transfer coefficient h is calculated by the following equation (2).
  • C is the constant heat capacity of air
  • P is the pressure in isothermal vessel 2
  • V is the volume of isothermal vessel 2
  • R is the gas constant
  • is the atmospheric temperature a
  • S is the heat transfer area of the isothermal vessel 2
  • is the average temperature in the isothermal vessel 2
  • G is the air h m
  • the mass flow rate G is obtained by the following equation (3) under the condition that the air in the isothermal vessel 2 is in an ideal isothermal state, that is, the temperature in the isothermal vessel 2 coincides with the room temperature. .
  • the flow rate calculation means 62 stores the following equation (4).
  • the flow rate calculation means 62 calculates the flow rate of the compressed air discharged from the isothermal container 2 by this equation (4).
  • C is constant It is pressure specific heat.
  • Equation (4) is the pressure response derivative term so that this Equation (4) is compared with Equation (3) above, and the right side of Equation (3) equal.
  • Equation (4) is derived by introducing the energy equation in the isothermal vessel 2 when the compressed air in the isothermal vessel 2 is released, and the first equation on the right side of Equation (4).
  • the term is a formula for calculating the flow rate under the condition that the temperature in the isothermal vessel 2 is in a steady state and the internal air is in an ideal isothermal state, that is, the temperature in the isothermal vessel 2 matches the room temperature.
  • the second term on the right side of the equation (4) is a flow rate correction term when the temperature in the isothermal vessel 2 is not in an ideal isothermal state.
  • the flow rate characteristic calculation means 63 stores the following equations (5) and (6).
  • the flow rate characteristic calculating means 63 calculates the sonic conductance C by the equation (5) and calculates the critical pressure ratio b by the equation (6).
  • is the reference temperature
  • P is the atmospheric pressure
  • G * is choked
  • a temperature response determination process for obtaining a temperature response with respect to time as a basic characteristic of the isothermal vessel 2
  • a heat transfer coefficient calculation step for obtaining a function of the heat transfer coefficient.
  • the controller 6 In the temperature response determination step, in order to measure the average temperature in the isothermal vessel 2, the temperature distribution in the isothermal vessel 2 needs to be in a steady state. Therefore, the controller 6 outputs an open / close command signal to the open / close valve 4 at predetermined time intervals, thereby stopping the discharge of compressed air from the isothermal container 2 at predetermined time intervals. The controller 6 outputs a pressure measurement command signal at the time of release stop to the pressure sensor 5 simultaneously with the opening / closing command signal. The pressure sensor 5 measures the pressure in the isothermal vessel 2 and outputs this pressure measurement signal to the controller 6 as a measurement signal for the pressure when the discharge is stopped.
  • the controller 6 sends a post-settling pressure measurement command signal to the pressure sensor 5 in a state where the pressure in the isothermal vessel 2 has stabilized stably after a predetermined time has elapsed from the output of the pressure measurement command signal at the time of discharge stop. Output.
  • the pressure sensor 5 measures the pressure in the isothermal vessel 2 based on the pressure measurement command signal after settling, and outputs this pressure measurement signal to the controller 6 as a pressure measurement signal after settling.
  • the controller 6 calculates the temperature in the isothermal container 2 from the discharge stop pressure output from the pressure sensor 5 and the settling pressure. Specifically, the discharge stop pressure and the post-settling pressure are measured while the isothermal container 2 is sealed, so the discharge stop pressure is measured and the post-settling pressure is measured. An equation of state holds between the two states. In addition, since the temperature in the isothermal container 2 is equal to the atmospheric temperature (room temperature) in the state where the pressure is set, the isothermal voltage when the discharge is stopped is calculated from the pressure when the discharge is stopped, the pressure after the settling, and the atmospheric temperature. ⁇ Find the temperature ⁇ in container 2.
  • the temperature response with respect to time is determined by obtaining the temperature ⁇ for each predetermined time.
  • the controller 6 obtains the maximum temperature drop ⁇ from this temperature response, and calculates the heat transfer coefficient h at the maximum temperature drop by the equations (2) and (3).
  • the heat transfer coefficient calculation means 61 calculates a function of the heat transfer coefficient with respect to time by substituting the heat transfer coefficient h at the time of the maximum temperature drop into the equation (1).
  • a flow rate calculation step is performed as an actual measurement step for measuring the flow rate with respect to time when compressed air is released from the isothermal container 2 to the test pneumatic device 100.
  • a function of the heat transfer coefficient with respect to time calculated in the heat transfer coefficient calculation process is used as a basic characteristic of the isothermal vessel 2.
  • the controller 6 when compressed air is released from the isothermal vessel 2 to the test pneumatic device 100, the controller 6 outputs a pressure measurement command signal to the pressure sensor 5 at predetermined intervals.
  • the pressure sensor 5 measures the pressure in the isothermal container 2 based on the pressure measurement command signal, and outputs the pressure measurement signal to the controller 6.
  • the flow rate calculation means 62 inputs a pressure measurement signal for every predetermined time, and obtains the mass flow rate G of air by the equation (4).
  • the flow rate of the compressed air released from the isothermal container 2 is nothing but the consumption flow rate of the pneumatic test equipment 100.
  • the flow rate characteristic computing means 63 obtains the sonic conductance C using equation (5) and computes the critical pressure ratio b using equation (6). As a result, the flow characteristics of the test pneumatic equipment 100 are obtained.
  • the flow rate is calculated using a function of heat transfer coefficient with respect to time and a pressure response with respect to time.
  • the temperature response with respect to time is not required in Equation (4) for calculating the flow rate. Therefore, for example, if the temperature response measurement process and the heat transfer coefficient calculation process are performed in advance and the function of the heat transfer coefficient with respect to time is obtained as a basic characteristic of the isothermal vessel 2, the flow characteristics of the test pneumatic equipment 100 can be determined.
  • it is only necessary to measure the pressure response with respect to time so that the measurement work can be simplified and the measurement time can be greatly shortened.
  • the temperature response to the time that requires a relatively long measurement time can be measured in advance prior to measurement, so that work efficiency can be improved.
  • the fluid pressure device is not limited to an electromagnetic valve, but is not limited to one used for a compressed air line, for example, and may be any device used for any fluid such as nitrogen.
  • an isothermal container filled with a cotton-like thermally conductive material such as metal is used.
  • a thermally conductive material other than metal may be used.
  • the material can be arbitrarily adopted.
  • by calculating the flow rate using a function of heat transfer coefficient with respect to time it is necessary to ensure high-precision isothermal performance using a high thermal conductivity material. Therefore, even if an inexpensive material other than a metal whose heat conduction performance is inferior to that of a metal or any other material is adopted, good measurement accuracy can be obtained.
  • the thermally conductive material filled in the isothermal container is not limited to a cotton having a very small wire diameter, and may be formed in, for example, a linear shape or a fibrous shape. If it is a form which becomes large, the shape, dimension, etc. are arbitrary.
  • the isothermal means is not limited to the configuration in which the container is filled with the cotton-like heat conductive material, but the fluid can flow through the container and absorbs the heat energy of the fluid or releases the accumulated heat energy.
  • the configuration is arbitrary as long as it is a means for maintaining the internal isothermal temperature.
  • the temperature response measuring step is performed when the pressure sensor 5 measures the pressure in the isothermal container 2 when the discharge is stopped and after a predetermined time has elapsed from the stop of the discharge. 5 measures pressure response over time by continuously measuring pressure May be.
  • the accuracy is inferior, for example, use a temperature detection means to obtain the temperature response with respect to time.
  • the heat transfer coefficient calculation step not only the expression (1) described above is used as a function of the heat transfer coefficient, but any calculation expression such as an approximate expression or an experimental expression that can ensure sufficient calculation accuracy can be adopted.
  • the flow rate calculation process not only the equation (4) described above is used as the flow rate calculation equation, but also any calculation equation such as an approximate equation or an experimental equation that can ensure sufficient calculation accuracy can be adopted.
  • the volume of the isothermal container 2 was 4.91, and the initial discharge pressure was 0.6 MPa.
  • the thermally conductive material filled inside 0.75kg of copper wire with a wire diameter of 50m was filled, and the weight filling rate was 0.150kg / dm3.
  • VT307-5G-01 As the pneumatic test equipment 100, a solenoid valve of VT307-5G-01 was used.
  • the room temperature (atmospheric temperature 0) was 28 ° C.
  • the open / close valve 3 is closed every 0.5 seconds from the start of the release of compressed air in the isothermal container 2 to stop the release of compressed air, and the pressure at the stop of release (when the release is stopped) Pressure) and the pressure after stabilizing the air condition in the isothermal container 2 (pressure after settling) is measured by the pressure sensor 5, and the temperature in the isothermal container 2 when the discharge is stopped The Asked.
  • a heat transfer coefficient function with respect to time is obtained from the equation (1) by the heat transfer coefficient calculation means 61, and the flow rate G is calculated by the flow rate calculation means 62 in the flow rate calculation process. Then, the sonic conductance C and the critical pressure ratio b were obtained by the flow characteristic calculating means 63.
  • the correction coefficient a in Equation (1) is 1.
  • Comparative Example 1 of the present invention will be described.
  • Comparative Example 1 taking into account that the temperature in the isothermal container 2 changes, use the flow measuring device 1 to measure the flow characteristics of the test pneumatic equipment 100.
  • the controller 6 of the flow rate measuring device 1 is not provided with a heat transfer coefficient calculating means.
  • a flow rate measuring device 1 as in the example, the discharge of compressed air was stopped every predetermined time (0.5 seconds), and the pressure when the discharge was stopped and after the settling were measured by the pressure sensor 5.
  • the temperature response to the pressure when the compressed air was discharged from the isothermal vessel 2 was obtained, and the air flow rate G was calculated by the flow rate calculation means 62 by the following equation (7).
  • This equation (7) is a flow rate calculation formula that takes into account the temperature change in the isothermal vessel 2, so that a relatively highly accurate measurement result can be obtained according to the state in the isothermal vessel 2. Conceivable.
  • Comparative Example 2 of the present invention will be described.
  • the flow rate characteristics of the test pneumatic device 100 were measured using the flow rate measuring device 1 on the assumption that the temperature in the isothermal vessel 2 was always kept isothermal.
  • the controller 6 of the flow rate measuring device 1 is not provided with a heat transfer coefficient calculating means, and it is assumed that the temperature in the isothermal vessel 2 is always isothermal.
  • the pressure when the compressed air is discharged from the isothermal container 2 is measured by the pressure sensor 5.
  • the flow rate G was calculated by the flow rate calculation means 62 according to the above equation (3).
  • FIG. 2 shows the pressure response with respect to time in Example, Comparative Example 1, and Comparative Example 2.
  • FIG. 3 shows the temperature response with respect to time in Example, Comparative Example 1, and Comparative Example 2.
  • FIGS. 2 and 3 when compressed air is released from the isothermal container 2, the temperature in the isothermal container 2 decreases rapidly, and then the thermal conductivity filled in the container The temperature is recovered by supplying heat energy from the material.
  • the maximum temperature drop ⁇ is obtained from the difference between the maximum and minimum temperature values.
  • the heat transfer coefficient at the minimum value of this temperature becomes the heat transfer coefficient h at the time of the maximum temperature drop.
  • FIG. 4 shows the flow rate characteristics in Comparative Example 1.
  • FIG. 5 shows the heat transfer coefficient with respect to time in Comparative Example 1. As shown in FIG. 4, as the compressed air is released from the isothermal container 2, the pressure in the isothermal container 2 decreases and the flow rate G of the test pneumatic equipment 100 decreases. Recognize. In addition, as shown in Fig. 5, the heat transfer coefficient at the beginning of discharge when compressed air is discharged from the isothermal vessel 2 is a very large value, but it decreases rapidly with the passage of time. You can see that
  • FIG. 6 shows the flow rate characteristics of Comparative Example 1 and the flow rate characteristics of Comparative Example 2.
  • Comparative Example 2 shows the temperature of the discharge start force of compressed air from the isothermal container 2 and changes rapidly until the pressure reaches about 500 KPa. It can be seen that the characteristics are significantly different from the flow characteristics of Comparative Example 1.
  • FIG. 7 shows the flow characteristics of Comparative Examples 1 and 2 and the examples. As shown in Figure 7, The flow rate characteristics of the example almost coincide with the flow rate characteristics of Comparative Example 1 over the entire pressure range. In FIG. 7, since the dotted line indicating the flow rate characteristic of Comparative Example 1 and the solid line indicating the flow rate characteristic of the example overlap, only the solid line indicating the flow rate characteristic of the example can be seen.
  • FIG. 8 shows a graph comparing the flow rate characteristics of Comparative Examples 1 and 2 and Examples.
  • the sonic conductance C and the critical pressure ratio b indicating the flow characteristics of Comparative Examples 1 and 2 and the examples are obtained and compared.
  • the error between the sonic conductance C of Comparative Example 1 and the sonic conductance C of the Example is ⁇ 0.4%, while the sonic conductance of Comparative Example 1 is The error between C and the sonic conductance in Comparative Example 2 is 4.5%. From this, it can be seen that the example achieves more accurate measurement than the comparative example 1.
  • the measurement method of the embodiment once a function of heat transfer coefficient with respect to time is obtained as a basic characteristic of the isothermal vessel 2, only the pressure response with respect to time needs to be measured in actual measurement. .
  • pressure response measurement differs from temperature response measurement in that it does not require operations such as stopping the discharge of compressed air and stabilizing the temperature at predetermined intervals, and is relatively accurate during discharge of compressed air. Can be done. Therefore, the measurement method of the embodiment can significantly reduce the measurement time of the flow rate characteristic.
  • the present invention can be used not only to measure the flow characteristics of pneumatic equipment such as solenoid valves, but also to measure the flow characteristics of fluid pressure equipment used for any fluid.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 等温化容器2内の圧縮空気を供試空気圧機器100に放出し、時間に対する温度応答を測定し、時間に対する熱伝達率の関数を求める。流量演算工程では、熱伝達率の関数を用いて、時間に対する圧力応答から供試空気圧機器100の流量を求める。流量演算工程で用いる流量の演算式に、等温化容器2内のエネルギ方程式を導入した補正項を設けたので、等温化容器2内の温度が厳密に等温状態となっていない場合でも、正確な流量を測定できる。

Description

明 細 書
流量測定方法および流量測定装置
技術分野
[0001] 本発明は、等温化装置を用いて流量特性を測定する流量測定方法および流量測 定装置に関する。
背景技術
[0002] 従来より、空気圧管路で使用される電磁弁、継手などの空気圧機器に代表される 流体圧機器の流量特性を求める方法としては、等温ィ匕容器を用いた方法がある(例 えば、特許文献 1参照)。この方法では、等温化容器を圧縮空気の供給源と測定され る空気圧機器との間に配置し、等温ィ匕容器内の圧力応答を測定し、この圧力応答を 微分することによって、圧縮空気の瞬時流量を算出して、空気圧機器の流量特性を 求める。この際、等温ィ匕容器内には、金属等の熱伝導性材料が充填されており、熱 伝導性材料が線径が非常に小さい綿状に形成されることにより、接触面積が大きくな り、熱伝達率が高くなつている。このため、等温化容器内に圧縮空気が流入すると圧 力が高くなることにより等温ィ匕容器内の温度が上昇しょうとする力 この熱エネルギが 熱伝導性材料に吸収されるため、温度上昇が低く抑制される。また、圧縮空気が放 出されると圧力が低下して温度が低下しょうとするが、熱伝導性材料力も熱が供給さ れるため、容器内の温度が安定する。このような作用により、等温ィ匕容器内の温度が 安定するため流量特性の測定が速やかに行われる。
[0003] 特許文献 1:特許第 2887360号公報
発明の開示
発明が解決しょうとする課題
[0004] ところが、このように等温ィ匕容器を用いた流量特性の算出手法では、等温化容器内 の温度が常に等温であると仮定して算出を行うが、実際には、等温化容器内から空 気が流出する際および等温ィ匕容器内に空気が流入する際には、その変化が大きい ため、温度の低下または温度の上昇が生じる。このため、等温ィ匕容器内の温度が変 化してしまい、この時、つまり、特に空気の流入開始初期および空気の流出開始初 期における流量特性を高精度に測定できな 、と 、う問題がある。
ここで、等温ィ匕容器内の温度の等温ィ匕をより高精度に実現するために、充填材とし てより熱伝達率の高い材料を使用することも考えられるが、十分な精度を確保するた めには、等温ィ匕容器が高価となってしまい、経済的でない。
[0005] 本発明の目的は、等温化手段における厳密な等温状態を保持できな!/ヽ場合でも流 体圧機器の流量特性を高精度に測定できる流量測定方法および流量測定装置を提 供することにある。
課題を解決するための手段
[0006] 本発明の流量測定方法は、内部を流通する流体の温度変化を抑制する等温化手 段を用いて流体圧機器の流量特性を測定する流量測定方法であって、等温化手段 から流体圧機器に流体を供給し、等温化手段内部での時間に対する流体の温度応 答を求める温度応答決定工程と、温度応答決定工程で得られた温度応答に基づ 、 て、時間に対する流体の熱伝達率の関数を求める熱伝達率演算工程と、熱伝達率 演算工程で得られた熱伝達率の関数を用いて、時間に対する圧力応答から流体圧 機器に流通する流体の流量を演算する流量演算工程とを備えたことを特徴とする。
[0007] この発明によれば、熱伝達率演算工程において、時間に対する流体の温度応答に 基づいて、時間に対する流体の熱伝達率の関数を求める。つまり、熱伝達率の関数 は、等温ィ匕手段内部の温度変化が考慮されたものとなるので、流量演算工程で演算 される流体の流量は、等温ィ匕手段内部の温度変化が考慮された値となる。したがつ て、等温ィ匕手段における厳密な等温状態を保持できない場合でも、流体圧機器の流 量特性が高精度に測定される。
また、流体の流量が等温化手段内部の温度変化を考慮して演算されるので、等温 化手段の温度変化の抑制性能を十分に確保する必要がなぐ安価な等温化手段を 用いることができ、流量測定装置が安価に構成される。
ここで、通常、非定常状態での正確な温度測定は困難であるため、時間に対する 温度応答を測定するには、例えば所定時間経過した後に等温ィ匕手段内部が定常状 態となつて力 温度を測定するなど、温度応答の測定作業が繁雑で測定時間がかか る。これに対して、本発明では、例えば予め時間に対する熱伝達率の関数を、等温 化手段の基本特性として得ておけば、実際に流体圧機器の流量を測定する場合に は、等温ィ匕手段内の流体の時間に対する圧力応答を測定するだけでよい。ここで、 圧力応答は比較的簡単かつ高精度に測定できるので、流体圧機器の流量測定作業 が簡略ィ匕するとともに、測定時間が短縮される。
[0008] 本発明では、熱伝達率演算工程は、熱伝達率の関数 h(t)を、 hを最大温度降下時
0
の熱伝達率、 Δ Θを最大温度降下、 aを修正係数、 tを時間とすると、
[数 1] h(t) = h0e一 at で求めることが望ましい。
[0009] この発明によれば、例えば流体の放出速度が所定範囲内では流体の熱伝達率が ほぼ変化しな ヽ等の特性を利用して熱伝達率の関数として近似式を用いて ヽるので 、熱伝達率の関数の演算式が簡単となる。したがって、熱伝達率演算工程での容易 な演算を可能にしながら、流量演算工程での良好な精度の演算結果が確保される。
[0010] 本発明では、流量演算工程は、流体圧機器に流通する流体の質量流量 Gを、 C を空気の定積比熱、 Pを等温化手段内の流体の圧力、 Vを等温化手段内の流体の 体積、 Rを気体定数、 Θ を大気温度、 Sを等温化手段の熱伝達面積、 Θ を等温ィ匕 a h m 手段内の流体の平均温度、 Cを定圧比熱とすると、
P
[数 2]
Figure imgf000005_0001
で求めることが望ましい。
[0011] この発明によれば、流量演算工程で用いる演算式において、右辺の第 1項は、等 温ィ匕手段内部の流体の温度が等温であると仮定した場合の流量の演算式であり、右 辺の第 2項は、等温化手段内部の流体の温度が等温とならない場合の流量の補正 項となっている。したがって、等温ィ匕手段の温度変化の抑制が不十分である場合で も、この演算式を用いることにより、良好な精度の流量測定が可能となる。 また、この演算式を用いて流量を算出することにより、等温化手段の温度変化の抑 制性能を十分に確保する必要がないので、安価な等温化手段を用いることができ、 流量測定装置が安価に構成される。
[0012] 本発明では、温度応答決定工程は、所定時間毎に等温化手段からの流体の放出 を停止して、流体の放出停止時の等温化手段内部の放出停止時圧力と、所定時間 経過後の等温化手段内部の整定後圧力とを測定し、放出停止時圧力、整定後圧力 、および大気温度力 流体の放出停止時の流体の温度を求めることにより、時間に 対する流体の温度応答を求めることが望まし 、。
通常、時間に対する温度応答を測定するには、非定常状態の流体の温度を測定し なければならず、測定が困難であり、このような温度測定手段は高価なものとなるとと もに、十分な精度を得ることが難しい。また、等温化手段内の平均温度を求めるため には、複数の測定点で温度を測定しなければならないなど、温度測定手段の構成が 複雑になる上、十分な精度を得ることが難しい。
これに対して本発明では、所定時間毎に流体の放出を停止して圧力を測定するこ とにより、圧力から温度を演算して温度応答を得るので、温度測定手段を用いる必要 がない。したがって、流量測定装置が安価に構成されるとともに、圧力応答は比較的 簡単かつ高精度に測定できるので、十分な精度の温度応答が得られる。
[0013] 本発明の流量測定装置は、流体圧機器の流量特性を測定する流量測定装置であ つて、内部を流通する流体の温度変化を抑制する等温化手段と、等温化手段内部 の圧力を検出する圧力検出手段と、圧力検出手段で得られた圧力検出信号から流 体圧機器に流通する流体の流量を演算する演算手段とを備え、演算手段は、等温 化手段力 流体圧機器に流体を供給したときの等温ィ匕手段内部での時間に対する 流体の温度応答に基づいて、時間に対する流体の熱伝達率の関数を求める熱伝達 率演算手段と、熱伝達率演算手段で得られた熱伝達率の関数を用いて、時間に対 する圧力応答から流体圧機器に流通する流体の流量を演算する流量演算手段とを 有することを特徴とする。
[0014] この発明によれば、熱伝達率演算手段が、時間に対する流体の温度応答に基づい て、時間に対する流体の熱伝達率の関数を求める。つまり、熱伝達率の関数は、等 温化手段内部の温度変化が考慮されたものとなるので、流量演算手段で演算される 流体の流量は、等温ィ匕手段内部の温度変化が考慮された値となる。したがって、等 温化手段における厳密な等温状態を保持できな!ヽ場合でも、流体圧機器の流量特 性が高精度に測定される。
また、流体の流量が等温化手段内部の温度変化を考慮して演算されるので、等温 化手段の温度変化の抑制性能を十分に確保する必要がなぐ安価な等温化手段を 用いることができ、流量測定装置が安価に構成される。
[0015] ここで、通常、非定常状態での正確な温度測定は困難であるため、時間に対する 温度応答を測定するには、例えば所定時間経過した後に等温ィ匕手段内部が定常状 態となつて力 温度を測定するなど、温度応答の測定作業が繁雑で測定時間がかか る。これに対して、本発明では、例えば予め時間に対する熱伝達率の関数を、等温 化手段の基本特性として得ておけば、実際に流体圧機器の流量を測定する場合に は、等温ィ匕手段内の流体の時間に対する圧力応答を測定するだけでよい。ここで、 圧力応答は比較的簡単かつ高精度に測定できるので、流体圧機器の流量測定作業 が簡略ィ匕するとともに、測定時間が短縮される。
[0016] 本発明では、熱伝達率演算手段には、時間に対する流体の熱伝達率の関数 h(t)を 求める式として、 h 0を最大温度降下時の熱伝達率、 Δ Θを最大温度降下、 aを修正係 数、 tを時間として、
[数 3] h (t) = h0e_at が記憶されて 、ることが望まし 、。
この発明によれば、例えば放出速度が所定範囲内では流体の熱伝達率がほぼ変 化しな 、等の特性を利用して熱伝達率の関数として近似式を用いて 、るので、熱伝 達率の関数の演算式が簡単となる。したがって、熱伝達率演算手段での演算が容易 となり、流量演算手段による良好な精度の演算結果が確保される。
[0017] 本発明では、流量演算手段には、流体圧機器に流通する流体の質量流量 Gを演 算する式として、 C を空気の定積比熱、 Pを等温化手段内の流体の圧力、 Vを等温 化手段内の流体の体積、 Rを気体定数、 Θ を大気温度、 Sを等温化手段の熱伝達
a h
面積、 Θ を等温化手段内の流体の平均温度、 Cを定圧比熱として、
m p
[数 4]
G =丄. + ^A . h (t)
R a α ί θ3し ρ が記憶されて 、ることが望まし 、。
[0018] この発明によれば、流量演算手段に記憶される演算式において、右辺の第 1項は、 等温化手段内部の流体の温度が等温であると仮定した場合の流量の演算式であり、 右辺の第 2項は、等温化手段内部の流体の温度が等温とならない場合の流量の補 正項となっている。したがって、等温化手段の温度変化の抑制が不十分である場合 でも、この演算式を用いることにより、良好な精度の流量測定が可能となる。
また、この演算式を用いて流量を算出することにより、等温化手段の温度変化の抑 制性能を十分に確保する必要がないので、安価な等温化手段を用いることができ、 流量測定装置が安価に構成される。
図面の簡単な説明
[0019] [図 1]図 1は、本発明の一実施形態に力かる測定装置を示す構成ブロック図である。
[図 2]図 2は、本発明の実施例および比較例における時間に対する圧力応答を示す 図である。
[図 3]図 3は、本発明の実施例および比較例における時間に対する温度応答を示す 図である。
[図 4]図 4は、本発明の比較例における流量特性を示す図である。
[図 5]図 5は、本発明の比較例における熱伝達率の変化を示す図である。
[図 6]図 6は、本発明の比較例における流量特性を示す図である。
[図 7]図 7は、本発明の実施例および比較例における流量特性を示す図である。
[図 8]図 8は、本発明の実施例および比較例の流量特性の比較を示す図である。 符号の説明
[0020] 1…流量測定装置、 2…等温化容器 (等温化手段)、 3…開閉バルブ、 5…圧力セン サ (圧力検出手段)、 6· ··コントローラ (制御手段)、 61 · ··熱伝達率演算手段、 62· ··流 量演算手段、 63…流量特性演算手段、 100…供試空気圧機器 (流体圧機器)。 発明を実施するための最良の形態
[0021] 以下、本発明の一実施形態を図面に基づいて説明する。
図 1には、本発明の一実施形態に力かる流量測定方法を使用するための流量測定 装置 1の構成ブロック図が示されている。この図 1において、流量測定装置 1は、流体 圧機器としての供試空気圧機器 100の流量特性を測定するものであり、供試空気圧 機器 100に流体としての圧縮空気を供給する等温化容器 2と、等温化容器 2と供試 空気圧機器 100との間に設けられる開閉ノ レブ 3と、等温ィ匕容器 2の内部の圧力を 測定する圧力検出手段としての圧力センサ 5と、流量測定装置 1の動作を制御する 制御手段としてのコントローラ 6とを備えて 、る。
[0022] 供試空気圧機器 100は、本実施形態では代表的な空気圧機器として電磁弁が採 用されている。
等温化容器 2は、容器内に所定圧力の圧縮空気が充填された構造となっており、 容器内には、金属等の熱伝導性材料が充填されている。本実施形態では、熱伝導 性材料は、容器内の圧縮空気との接触面積を大きくして良好な熱伝達率が確保でき るように、線径が非常に小さい綿状に形成され、丸めて容器内に充填されている。等 温ィ匕容器 2から圧縮空気が放出される際には、容器内の圧力が減少するため、容器 内の温度が低下しょうとする力 熱伝導性材料力 熱エネルギが供給されるので、容 器内の温度がほぼ等温に保持される。し力しながら、圧縮空気の放出開始初期には 、圧力低下が急激であるため、厳密には等温を保持できない場合がある。
[0023] 開閉バルブ 3は、等温ィ匕容器 2と供試空気圧機器 100とを連通する流路を開閉可 能に設けられ、電磁弁など任意の構成のものが採用できる。
圧力センサ 5は、等温ィ匕容器 2内の圧力を測定し、圧力測定信号をコントローラ 6に 出力する。圧力センサ 5は、等温化容器 2から圧縮空気が放出される際の等温化容 器 2内の圧力応答を測定するため、応答性が良好なものを採用することが望ましい。
[0024] コントローラ 6は、開閉バルブ 3に開閉指令信号を出力することにより圧縮空気の流 路を開閉制御する。また、圧力センサ 5からの圧力測定信号を入力して蓄積する。 コントローラ 6は、圧力測定信号から時間に対する熱伝達率の関数を求める熱伝達 率演算手段 61と、熱伝達率演算手段 61で得られた熱伝達率の関数を用いて時間 に対する圧力応答から流量を演算する流量演算手段 62と、流量演算手段 62で得ら れた流量に基づいて供試空気圧機器 100の流量特性を演算する流量特性演算手 段 63とを備えている。これらの熱伝達率演算手段 61と、流量演算手段 62と、流量特 性演算手段 63とを含んで、本発明の演算手段が構成されている。
[0025] 熱伝達率演算手段 61には、次の式 (1)が記憶されている。熱伝達率演算手段 61は 、この式 (1)により、時間に対する熱伝達率の関数 h(t)を求める。ここで、 hは、等温ィ匕
0 容器 2から供試空気圧機器 100に圧縮空気を供給した際に発生する温度応答にお ける最大温度降下時の熱伝達率であり、 Δ Θは最大温度降下であり、 aは修正係数 、 tは時間である。
[0026] [数 5] h (t) = h。e_at (1 )
[0027] なお、熱伝達率 hは、次の式 (2)により算出される。ここで、 C は空気の定積比熱、 P は等温化容器 2内の圧力、 Vは等温化容器 2の体積、 Rは気体定数、 Θ は大気温度 a
、 Sは等温化容器 2の熱伝達面積、 Θ は等温化容器 2内の平均温度、 Gは空気の h m
質量流量である。
[0028] [数 6] h = CVPV άθ_ _ R0 c (2)
R h 0m ( 9 a - 0m ) dt Sh ( 0a - Θ )
[0029] また質量流量 Gは、等温化容器 2内の空気が理想的な等温状態、つまり等温化容 器 2内の温度が室温と一致する条件下において、次の式 (3)により求められる。
[0030] [数 7]
G =丄. …- . (3)
R0a dt
[0031] 流量演算手段 62には、次の式 (4)が記憶されて 、る。流量演算手段 62は、この式( 4)により、等温化容器 2から放出される圧縮空気の流量を演算する。ここで、 Cは定 圧比熱である。
なお、この式 (4)を前述の式 (3)と比較して分力るように、式 (4)の右辺の第 1項は圧 力応答微分項であり、式 (3)の右辺と等しい。つまり、式 (4)は、等温化容器 2内の圧 縮空気を放出するときの等温ィ匕容器 2内のエネルギ方程式を導入して導き出したも のであり、式 (4)の右辺の第 1項は、等温ィ匕容器 2内の温度が定常状態であり、内部 の空気が理想的な等温状態、つまり等温化容器 2内の温度が室温と一致する条件下 における流量の算出式である。また、式 (4)の右辺の第 2項は、等温化容器 2内の温 度が理想的な等温状態でない場合の流量の補正項である。
[0032] [数 8]
Figure imgf000011_0001
[0033] 流量特性演算手段 63には、次の式 (5)および式 (6)が記憶されている。流量特性演 算手段 63は、式 (5)により音速コンダクタンス Cを演算し、式 (6)により臨界圧力比 bを 演算する。ここで、 は基準密度、 Θ は基準温度、 Pは大気圧力、 G*はチョーク状
0 0 a
態の質量流量である。
[0034] [数 9]
Figure imgf000011_0002
[0035] このような流量測定装置 1を用いて、供試空気圧機器 100の流量特性を測定する 場合には、次のような流量測定方法にて行う。
まず、供試空気圧機器 100の流量特性を測定する準備段階として、等温化容器 2 の基本特性として時間に対する温度応答を求める温度応答決定工程と、温度応答 決定工程で得られた温度応答から時間に対する熱伝達率の関数を求める熱伝達率 演算工程とを行う。 温度応答決定工程では、等温化容器 2から供試空気圧機器 100へ圧縮空気が放 出される際の、時間に対する等温化容器 2内の平均温度を測定して、時間に対する 温度応答を測定する。
[0036] 温度応答決定工程において、等温化容器 2内の平均温度を測定するためには、等 温ィ匕容器 2内の温度分布を定常状態にする必要がある。そこで、コントローラ 6は、所 定時間毎に開閉バルブ 4に開閉指令信号を出力することにより、等温ィ匕容器 2からの 圧縮空気の放出を所定時間毎に停止する。そして、コントローラ 6は、この開閉指令 信号と同時に、圧力センサ 5に放出停止時圧力測定指令信号を出力する。圧力セン サ 5は、等温ィ匕容器 2内の圧力を測定し、この圧力測定信号を放出停止時圧力の測 定信号として、コントローラ 6に出力する。また、コントローラ 6は、放出停止時圧力測 定指令信号の出力から所定時間経過後、等温化容器 2内の圧力が安定して整定し た状態で、圧力センサ 5に整定後圧力測定指令信号を出力する。圧力センサ 5は整 定後圧力測定指令信号に基づいて、等温化容器 2内の圧力を測定し、この圧力測 定信号を整定後圧力の測定信号としてコントローラ 6に出力する。
[0037] コントローラ 6では、圧力センサ 5から出力された放出停止時圧力と整定後圧力とか ら、等温化容器 2内の温度を算出する。具体的には、放出停止時圧力と整定後圧力 とは、等温ィ匕容器 2が密閉された状態で測定されるから、放出停止時圧力が測定さ れた状態と、整定後圧力が測定された状態との間には状態方程式が成り立つ。また 、圧力が整定した状態では等温ィ匕容器 2内の温度は大気温度 (室温)に等しいから、 これらの放出停止時圧力と、整定後圧力と、大気温度とから、放出停止時の等温ィ匕 容器 2内の温度 Θを求めればよい。
以上のようにして所定時間毎の温度 Θを求めることにより、時間に対する温度応答 を決定する。コントローラ 6は、この温度応答により、最大温度降下 Δ Θを求め、また 、式 (2)および式 (3)により最大温度降下時の熱伝達率 hを算出する。
0
[0038] 熱伝達演算工程では、熱伝達率演算手段 61が、式 (1)に最大温度降下時の熱伝 達率 hを代入することにより、時間に対する熱伝達率の関数を算出する。
0
この関数により、等温化容器 2から圧縮空気が放出される際の熱伝達率変化の基 本特性が求められる。 [0039] 次に、等温化容器 2から供試空気圧機器 100へ圧縮空気が放出される際の時間に 対する流量を測定する実際の測定工程として、流量演算工程を行う。この流量演算 工程では、熱伝達率演算工程で演算された、時間に対する熱伝達率の関数を等温 化容器 2の基本特性として用いる。
流量演算工程では、等温化容器 2から供試空気圧機器 100に圧縮空気が放出さ れると、コントローラ 6は、圧力センサ 5に所定時間毎に圧力測定指令信号を出力す る。圧力センサ 5は、この圧力測定指令信号に基づいて等温ィ匕容器 2内の圧力を測 定し、圧力測定信号をコントローラ 6に出力する。
流量演算手段 62は、所定時間毎の圧力測定信号を入力し、式 (4)により、空気の 質量流量 Gを求める。ここで、等温ィ匕容器 2から放出された圧縮空気の流量は、供試 空気圧機器 100の消費流量にほかならな 、。
流量特性演算手段 63は、流量演算手段 62で求められた流量 Gより、式 (5)を用い て音速コンダクタンス Cを求め、また式 (6)を用いて臨界圧力比 bを演算する。これによ り、供試空気圧機器 100の流量特性が求められる。
[0040] このような一実施形態によれば、次のような効果が得られる。
(1)流量演算工程で、式 (4)により流量を演算するので、等温化容器 2内の温度が厳 密に等温に保たれない場合でも、式 (4)の右辺第 2項の流量の補正によって、正確な 流量特性を測定できる。
また、式 (4)によって流量を演算するので、等温ィ匕容器 2内の温度の等温が保持さ れなくても正確な流量特性が測定できるから、等温化容器 2内に充填される熱伝導 性材料に高価なものを使用する必要がなぐ流量測定装置 1を安価に構成できる。
[0041] (2)流量演算工程では、時間に対する熱伝達率の関数と、時間に対する圧力応答と を用いて流量を演算する。つまり、流量を演算する式 (4)では、時間に対する温度応 答が不要となる。したがって、例えば予め温度応答測定工程および熱伝達率演算ェ 程を行っておき、等温化容器 2の基本特性として時間に対する熱伝達率の関数を得 ておけば、供試空気圧機器 100の流量特性を測定する際には、時間に対する圧力 応答のみを測定すればよいので、測定作業を簡略ィ匕できるとともに、測定時間を大 幅に短縮できる。また、この場合に比較的測定時間を要する時間に対する温度応答 を、測定に先立って予め測定しておくことができるので、作業の効率化を図れる。
[0042] (3)通常、時間に対する温度を測定しなければならない場合、十分な応答性を有す る温度測定手段を得ることが困難であり、このような温度測定手段は高価となる。本 実施形態では、温度応答測定工程では、所定時間毎に等温化容器 2内の圧縮空気 の放出を停止し、所定時間経過前後の圧力を測定し、これらの圧力から温度を算出 するので、温度測定手段を使用する必要がない。したがって、流量演算工程で圧力 応答を測定するための圧力センサ 5を共通で用いて温度応答を得ることができるから 、流量測定装置 1を安価に構成できる。また、温度ではなく圧力を測定することによつ て温度応答を算出するので、より高精度な温度応答を得ることができる。
[0043] なお、本発明は前述の実施形態に限定されるものではなぐ本発明の目的を達成 できる範囲での変形、改良等は本発明に含まれるものである。
流体圧機器としては、電磁弁に限らず、例えば圧縮空気管路に使用されるものに 限らず、例えば窒素など、任意の流体に使用する機器であればよい。
等温化手段は、前記実施形態では、内部に金属等の綿状の熱伝導性材料が充填 された等温化容器が使用されていたが、熱伝導性材料は金属以外のものを使用して もよぐその材料は任意に採用できる。また、特に、本発明においては、時間に対す る熱伝達率の関数を用いて流量を演算することによって、必ずしも高い熱伝導性材 料を用いて高精度な等温ィ匕性能を確保する必要がな 、ので、熱伝導性能が金属よ り劣る金属以外の安価な材料やその他任意の材料を採用しても、良好な測定精度を 得ることができる。なお、等温化容器内に充填される熱伝導性材料は、線径が非常に 小さい綿状に形成されるものに限らず、例えば線状、繊維状に形成されていてもよく 、接触面積が大きくなる形態であれば、その形状、寸法などは任意である。
等温化手段は、容器に綿状の熱伝導性材料が充填されている構成に限らず、内部 を流体が流通可能で、その流体の熱エネルギを吸収、または蓄積した熱エネルギを 放出することによって内部の等温を保持する手段であれば、その構成は任意である。
[0044] 温度応答測定工程は、前記実施形態では圧力センサ 5が放出停止時および放出 停止から所定時間経過後に等温ィ匕容器 2内の圧力を測定したが、これに限らず、例 えば圧力センサ 5が圧力を連続的に測定することで、時間に対する圧力応答を測定 してもよい。また、温度応答測定工程では、精度が劣るものの、例えば温度検出手段 を用いて時間に対する温度応答を求めてもょ 、。
熱伝達率演算工程では、熱伝達率の関数として前述の式 (1)を用いるものに限らず 、十分な演算精度を確保できる近似式、実験式などの任意の演算式を採用できる。 流量演算工程では、流量の演算式として前述の式 (4)を用いるものに限らず、十分 な演算精度を確保できる近似式、実験式などの任意の演算式を採用できる。
[0045] 本発明を実施するための最良の構成、方法などは、以上の記載で開示されている
1S 本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実 施形態に関して特に図示され、かつ、説明されているが、本発明の技術的思想およ び目的の範囲力 逸脱することなぐ以上述べた実施形態に対し、形状、材質、数量 、その他の詳細な構成において、当業者が様々な変形を加えることができるものであ る。
したがって、上記に開示した形状、材質などを限定した記載は、本発明の理解を容 易にするために例示的に記載したものであり、本発明を限定するものではな 、から、 それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での 記載は、本発明に含まれるものである。
実施例 1
[0046] 本発明の実施例について説明する。この実施例では前記実施形態の流量測定装 置 1を用いて供試空気圧機器 100の流量特性を測定した。
等温ィ匕容器 2の容積は 4.91とし、放出初期圧力は 0.6MPaとした。内部に充填された 熱伝導性材料としては線径 50 mの銅線を 0.75kg充填し、重量充填率 0.150kg/dm3 とした。
供試空気圧機器 100としては、 VT307-5G-01の電磁弁を用いた。また、室温(大気 温度 0 )は 28°Cであった。
a
[0047] 温度応答決定工程では、等温ィ匕容器 2内の圧縮空気の放出開始から 0.5秒毎に開 閉バルブ 3を閉じて圧縮空気の放出を停止し、放出停止時の圧力 (放出停止時圧力 )および所定時間放置して等温化容器 2内の空気の状態を安定させた後の圧力 (整 定後圧力)を圧力センサ 5によって測定し、等温ィ匕容器 2内の放出停止時の温度を 求めた。
そして、熱伝達率演算工程では、熱伝達率演算手段 61により式 (1)より時間に対す る熱伝達率の関数を求め、流量演算工程において流量演算手段 62によって流量 G を、流量特性演算工程において流量特性演算手段 63によって音速コンダクタンス C および臨界圧力比 bを求めた。式 (1)における修正係数 aは、 1とした。
比較例 1
[0048] 本発明の比較例 1について説明する。比較例 1では、等温ィ匕容器 2内の温度が変 化することを考慮し、流量測定装置 1を用いて供試空気圧機器 100の流量特性を測 し 7こ。
流量測定装置 1のコントローラ 6には、熱伝達率演算手段が設けられていない。この ような流量測定装置 1において、実施例と同様に、圧縮空気の放出を所定時間 (0.5 秒)毎に停止し、圧力センサ 5で放出停止時および整定後の圧力を測定した。この測 定により、等温化容器 2から圧縮空気を放出する際の圧力に対する温度応答を得て 、流量演算手段 62で次の式 (7)によって空気の流量 Gを演算した。この式 (7)は、等温 化容器 2内の温度変化を考慮した流量算出式となっているため、等温ィ匕容器 2内の 状態に応じた、比較的高精度な測定結果が得られると考えられる。
その他の条件は実施例と同じである。
[0049] [数 10] — V dp pv aem C7
R0m dt R0m 2 dt 比較例 2
[0050] 本発明の比較例 2について説明する。比較例 2では、等温化容器内 2の温度が常 に等温に保持されることを仮定して、流量測定装置 1を用いて供試空気圧機器 100 の流量特性を測定した。
流量測定装置 1のコントローラ 6には、熱伝達率演算手段が設けられておらず、また 、等温ィ匕容器 2内の温度は常に等温であると仮定されている。このような流量測定装 置 1において、圧力センサ 5で等温ィ匕容器 2から圧縮空気が放出する際の圧力を測 定し、流量演算手段 62で前述の式 (3)によって流量 Gを演算した。
その他の条件は実施例と同じである。
実施例および比較例の測定結果
[0051] 図 2には、実施例、比較例 1、および比較例 2における時間に対する圧力応答を示 す。また図 3には実施例、比較例 1、および比較例 2における時間に対する温度応答 を示す。これらの図 2および図 3に示されるように、等温化容器 2から圧縮空気が放出 されると、等温ィ匕容器 2内の温度は急激に減少する力 その後容器内に充填された 熱伝導性材料からの熱エネルギの供給により、温度が回復する。
このように、等温化容器 2を用いても、圧縮空気の放出開始直後には、温度の低下 が起こり、等温状態が保持できないことがわかる。また、図 3により、温度の最大値と 最小値との差によって最大温度降下 Δ Θが求められる。そして、この温度の最小値 における熱伝達率が最大温度降下時の熱伝達率 hとなる。
0
[0052] 図 4には、比較例 1における流量特性を示す。また図 5には、比較例 1における時間 に対する熱伝達率を示す。この図 4に示されるように、等温化容器 2から圧縮空気が 放出されるのに伴い、等温化容器 2内の圧力が減少するとともに、供試空気圧機器 1 00の流量 Gが減少することがわかる。また図 5に示されるように、等温化容器 2から圧 縮空気を放出する際の放出初期は、熱伝達率が非常に大きな値となっているが、時 間の経過に伴って急激に減少していることがわかる。
[0053] 図 6には、比較例 1の流量特性と比較例 2の流量特性とを示す。この図 6に示される ように、比較例 2は、等温ィ匕容器 2からの圧縮空気の放出開始力も圧力が約 500KPa となるまで温度が急激に変化するので、この領域における比較例 2の流量特性は、 比較例 1の流量特性と大きなずれが生じていることがわかる。
その後、等温化容器 2内の熱伝導性材料からの熱エネルギにより、等温化容器 2内 の温度が安定するため、圧力が約 500KPa以下の領域では、比較例 1の流量特性と 比較例 2の流量特性とはほぼ一致することがわかる。
なお、圧縮空気の放出速度が最大圧力降下で lOOKPa/s前後である場合には、等 温ィ匕容器 2内の熱伝導率はほぼ変化がないと考えられる。
[0054] 図 7には、比較例 1, 2および実施例の流量特性を示す。この図 7に示されるように、 実施例の流量特性は、圧力範囲の全域にぉ 、て比較例 1の流量特性とほぼ一致し ている。なお、図 7では、比較例 1の流量特性を示す点線と実施例の流量特性を示 す実線とが重なっているため、実施例の流量特性を示す実線のみが見えるようにな つている。
[0055] 図 8には、比較例 1, 2および実施例の流量特性を比較した図を示す。この図 8では 、比較例 1, 2および実施例の流量特性を示す音速コンダクタンス Cおよび臨界圧力 比 bを求め、それぞれ比較している。この図 8に示されるように、比較例 1を基準とする と、比較例 1の音速コンダクタンス Cと実施例の音速コンダクタンス Cとの誤差は- 0.4% であり、一方、比較例 1の音速コンダクタンス Cと比較例 2の音速コンダクタンスじとの 誤差は 4.5%である。これより、比較例 1よりも実施例の方が高精度な測定が実現され ていることがわ力る。
また、臨界圧力比 bについても、比較例 1との比較において、実施例の臨界圧力比 bとの誤差は- 0.068であり、一方比較例 2の臨界圧力比 bとの誤差は- 0.176である。こ れによっても、比較例 1よりも実施例の方が高精度な測定が実現されていることがわ かる。
[0056] ここで、実施例の測定方法と比較例 1の測定方法とを比較すると、比較例 1では、時 間に対する圧力応答とこの圧力応答に対応する温度応答の測定値が必要となる。し たがって、実際の測定に際しては、温度応答を測定するために、所定時間毎に圧縮 空気の放出を停止して等温化容器 2内の温度を安定させた後に温度を演算しなけれ ばならず、測定作業が繁雑となるとともに、測定時間が長くなる。
これに対して実施例の測定方法では、一度、等温化容器 2の基本特性として時間 に対する熱伝達率の関数が得られれば、実際の測定に際しては、時間に対する圧 力応答のみを測定すればよい。ここで、圧力応答の測定は、温度応答の測定とは異 なり所定時間毎に圧縮空気の放出を停止して温度を安定させるなどの作業が不要で 、圧縮空気の放出中に比較的高精度に行える。したがって、実施例の測定方法の方 が流量特性の測定時間を大幅に短縮できる。
以上のように実施例の測定方法による流量特性の測定の妥当性が確認でき、本発 明の有用性が確認できた。 産業上の利用可能性
本発明は、電磁弁などの空気圧機器の流量特性を測定するために利用できる他、 任意の流体に使用する流体圧機器の流量特性を測定するためにも利用することが できる。

Claims

請求の範囲
[1] 内部を流通する流体の温度変化を抑制する等温化手段を用いて流体圧機器の流 量特性を測定する流量測定方法であって、
前記等温化手段から前記流体圧機器に前記流体を供給し、前記等温化手段内部 での時間に対する前記流体の温度応答を求める温度応答決定工程と、
前記温度応答決定工程で得られた前記温度応答に基づ 、て、時間に対する前記 流体の熱伝達率の関数を求める熱伝達率演算工程と、
前記熱伝達率演算工程で得られた前記熱伝達率の関数を用いて、時間に対する 圧力応答から前記流体圧機器に流通する前記流体の流量を演算する流量演算ェ 程とを備えた
ことを特徴とする流量測定方法。
[2] 請求項 1に記載の流量測定方法にお!、て、
前記熱伝達率演算工程は、前記熱伝達率の関数 h(t)を、 hを最大温度降下時の熱
0
伝達率、 Δ Θを最大温度降下、 aを修正係数、 tを時間とすると、
[数 1] h (t) = h0e - a t で求める
ことを特徴とする流量測定方法。
[3] 請求項 2に記載の流量測定方法にお 、て、
前記流量演算工程は、前記流体圧機器に流通する前記流体の質量流量 Gを、 C を空気の定積比熱、 Pを等温化手段内の前記流体の圧力、 Vを等温化手段内の前 記流体の体積、 Rを気体定数、 Θ を大気温度、 Sを等温化手段の熱伝達面積、 Θ a h m を等温化手段内の前記流体の平均温度、 Cを定圧比熱とすると、
P
[数 2]
Γ _ V dP S h A 6 h ( + . で求める ことを特徴とする流量測定方法。
[4] 請求項 1から請求項 3の 、ずれかに記載の流量測定方法にお!、て、
前記温度応答決定工程は、所定時間毎に前記等温化手段からの前記流体の放出 を停止して、前記流体の放出停止時の前記等温化手段内部の放出停止時圧力と、 所定時間経過後の前記等温化手段内部の整定後圧力とを測定し、前記放出停止時 圧力、前記整定後圧力、および大気温度から、前記流体の放出停止時の前記流体 の温度を求めることにより、時間に対する前記流体の温度応答を求める
ことを特徴とする流量測定方法。
[5] 流体圧機器の流量特性を測定する流量測定装置であって、
内部を流通する流体の温度変化を抑制する等温化手段と、
前記等温化手段内部の圧力を検出する圧力検出手段と、
前記圧力検出手段で得られた圧力検出信号から前記流体圧機器に流通する前記 流体の流量を演算する演算手段とを備え、
前記演算手段は、前記等温化手段から前記流体圧機器に前記流体を供給したと きの前記等温化手段内部での時間に対する前記流体の温度応答に基づいて、時間 に対する前記流体の熱伝達率の関数を求める熱伝達率演算手段と、前記熱伝達率 演算手段で得られた前記熱伝達率の関数を用いて、時間に対する圧力応答から前 記流体圧機器に流通する前記流体の流量を演算する流量演算手段とを有する ことを特徴とする流量測定装置。
[6] 請求項 5に記載の流量測定装置において、
前記熱伝達率演算手段には、時間に対する前記流体の熱伝達率の関数 h(t)を求 める式として、 hを最大温度降下時の熱伝達率、 Δ Θを最大温度降下、 aを修正係数
0
、 tを時間として、
[数 3] h (t) = h0e- at が記憶されている
ことを特徴とする流量測定装置。
[7] 請求項 6に記載の流量測定装置において、 前記流量演算手段には、前記流体圧機器に流通する前記流体の質量流量 Gを演 算する式として、 を空気の定積比熱、 Pを等温化手段内の前記流体の圧力、 Vを 等温化手段内の前記流体の体積、 Rを気体定数、 Θ を大気温度、 Sを等温化手段
a h
の熱伝達面積、 Θ を等温化手段内の前記流体の平均温度、 Cを定圧比熱として、
m p 画
U - ΘΆ + 1^ h(t) が記憶されている
ことを特徴とする流量測定装置。
PCT/JP2005/000501 2005-01-17 2005-01-17 流量測定方法および流量測定装置 WO2006075406A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006552827A JP4662372B2 (ja) 2005-01-17 2005-01-17 流量測定方法および流量測定装置
CNB2005800065664A CN100543425C (zh) 2005-01-17 2005-01-17 流量测定方法以及流量测定装置
EP05703738.4A EP1847812B1 (en) 2005-01-17 2005-01-17 Flow rate measuring method and flow rate measuring device
PCT/JP2005/000501 WO2006075406A1 (ja) 2005-01-17 2005-01-17 流量測定方法および流量測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/000501 WO2006075406A1 (ja) 2005-01-17 2005-01-17 流量測定方法および流量測定装置

Publications (1)

Publication Number Publication Date
WO2006075406A1 true WO2006075406A1 (ja) 2006-07-20

Family

ID=36677442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000501 WO2006075406A1 (ja) 2005-01-17 2005-01-17 流量測定方法および流量測定装置

Country Status (4)

Country Link
EP (1) EP1847812B1 (ja)
JP (1) JP4662372B2 (ja)
CN (1) CN100543425C (ja)
WO (1) WO2006075406A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524052A (ja) * 2006-01-20 2009-06-25 フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー プロセスコントロール流体消費の測定システム
WO2012014375A1 (ja) * 2010-07-30 2012-02-02 株式会社フジキン ガス供給装置用流量制御器の校正方法及び流量計測方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498595B (zh) * 2008-10-23 2011-03-02 蔡茂林 一种利用压力波传播的气体管道流量计
JP5864849B2 (ja) 2010-10-20 2016-02-17 株式会社堀場エステック 流体計測システム
CN102072143B (zh) * 2010-12-02 2012-07-25 中国人民解放军空军工程大学 一种耦合计算恒压柱塞泵压力、流量和温度的方法
CN106133483B (zh) * 2014-03-31 2019-11-22 日立金属株式会社 质量流量的测定方法、使用该方法的热式质量流量计

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312346B2 (ja) * 1992-03-12 2002-08-05 ジェイ アンド ダブリュ・サイアンティフィック・インコーポレーテッド ボイルの法則を利用した気体流量を決定する方法及び装置
JP2003065814A (ja) * 2001-08-28 2003-03-05 Rikogaku Shinkokai 気体用機器の流量特性計測装置および流量特性計測方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT215688B (de) * 1960-03-22 1961-06-12 Balzers Hochvakuum Meßanordnung zur fortlaufenden digitalen Messung von Gasmengen
TW218410B (ja) * 1992-05-15 1994-01-01 Thieruvi Kk
AU1678595A (en) * 1994-01-14 1995-08-01 Unit Instruments, Inc. Flow meter
FR2767206B1 (fr) * 1997-08-05 1999-10-01 Luc Heliot Generateur de faibles quantites de gaz et procede de generation d'un debit constant de gaz au moyen de ce generateur
US6813943B2 (en) * 2003-03-19 2004-11-09 Mks Instruments, Inc. Method and apparatus for conditioning a gas flow to improve a rate of pressure change measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312346B2 (ja) * 1992-03-12 2002-08-05 ジェイ アンド ダブリュ・サイアンティフィック・インコーポレーテッド ボイルの法則を利用した気体流量を決定する方法及び装置
JP2003065814A (ja) * 2001-08-28 2003-03-05 Rikogaku Shinkokai 気体用機器の流量特性計測装置および流量特性計測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1847812A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524052A (ja) * 2006-01-20 2009-06-25 フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー プロセスコントロール流体消費の測定システム
US8483998B2 (en) 2006-01-20 2013-07-09 Fisher Controls International Llc In situ emission measurement for process control equipment
WO2012014375A1 (ja) * 2010-07-30 2012-02-02 株式会社フジキン ガス供給装置用流量制御器の校正方法及び流量計測方法
JP2012032983A (ja) * 2010-07-30 2012-02-16 Fujikin Inc ガス供給装置用流量制御器の校正方法及び流量計測方法
US9638560B2 (en) 2010-07-30 2017-05-02 Fujikin Incorporated Calibration method and flow rate measurement method for flow rate controller for gas supply device

Also Published As

Publication number Publication date
EP1847812B1 (en) 2013-04-10
CN1926406A (zh) 2007-03-07
JPWO2006075406A1 (ja) 2008-06-12
EP1847812A1 (en) 2007-10-24
EP1847812A4 (en) 2008-04-02
JP4662372B2 (ja) 2011-03-30
CN100543425C (zh) 2009-09-23

Similar Documents

Publication Publication Date Title
WO2006075406A1 (ja) 流量測定方法および流量測定装置
WO2012014375A1 (ja) ガス供給装置用流量制御器の校正方法及び流量計測方法
KR101737373B1 (ko) 빌드다운 방식 유량 모니터 장착 유량 제어 장치
KR100731146B1 (ko) 수소 저장체의 수소 저장 성능 평가 장치
US10646844B2 (en) Vaporization supply apparatus
JP5133242B2 (ja) 偏光解析法によって多孔度を測定する方法、および1つのそのような方法を実施するためのデバイス
US9810377B2 (en) System and method for improving the accuracy of a rate of decay (ROD) measurement in a mass flow controller
JPWO2003034169A1 (ja) パルスショット式流量調整装置とパルスショット式流量調整方法
JP6426475B2 (ja) 熱モデルを用いてrod測定における熱に起因する誤差を最小にすることによって質量流量制御器または質量流量計における実時間補正のための減衰速度測定の精度を改善するためのシステムおよび方法
JP2012032983A5 (ja)
TW201303196A (zh) 氣體減壓供應裝置、具備其之壓缸櫃、閥箱及基板處理裝置,以及氣體減壓供應方法
JP2012141254A (ja) ガス供給装置用流量制御器の流量測定装置及び流量測定方法
JP6212467B2 (ja) 液面計及び液体原料気化供給装置
TWI642912B (zh) 用於暫態氣流之度量衡方法
JP2019144275A (ja) 可撓性容器の完全性試験のためのシステム及び方法
JP3684307B2 (ja) ガス供給制御装置
JP2021523356A (ja) 流動ガスを用いた多孔質固体及び粉末材料の表面特性評価のためのシステム及び動的容量法
JP2010282243A (ja) 真空容器のシミュレーション装置
JP2008159875A (ja) 基板吸着システムおよび半導体製造装置
JP2021050971A (ja) 熱量計、熱量計測方法
JPS62204528A (ja) ドライプロセス処理装置
JP5575579B2 (ja) 蒸気の乾き度測定装置
JP2016176867A (ja) リーク検査装置リーク検査方法
JP5575580B2 (ja) 蒸気の乾き度測定装置
US10107711B2 (en) Reducing thermal effects during leak testing

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006552827

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005703738

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580006566.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005703738

Country of ref document: EP