WO2013031097A1 - 固体撮像装置及び撮像装置 - Google Patents

固体撮像装置及び撮像装置 Download PDF

Info

Publication number
WO2013031097A1
WO2013031097A1 PCT/JP2012/004993 JP2012004993W WO2013031097A1 WO 2013031097 A1 WO2013031097 A1 WO 2013031097A1 JP 2012004993 W JP2012004993 W JP 2012004993W WO 2013031097 A1 WO2013031097 A1 WO 2013031097A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
current source
transistor
voltage
imaging device
Prior art date
Application number
PCT/JP2012/004993
Other languages
English (en)
French (fr)
Inventor
雅史 村上
生熊 誠
阿部 豊
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013531023A priority Critical patent/JP6083611B2/ja
Publication of WO2013031097A1 publication Critical patent/WO2013031097A1/ja
Priority to US14/182,725 priority patent/US9066031B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/625Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels for the control of smear
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/618Noise processing, e.g. detecting, correcting, reducing or removing noise for random or high-frequency noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/628Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels for reducing horizontal stripes caused by saturated regions of CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/677Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction for reducing the column or line fixed pattern noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • the present invention relates to a solid-state imaging device and an imaging device.
  • MOS Metal Oxide Semiconductor
  • This MOS type solid-state imaging device is configured to amplify and take out signal charges photoelectrically converted by a photoelectric conversion element for each pixel.
  • the MOS type solid-state imaging device has a feature that a pixel array driving circuit in which pixels are two-dimensionally arranged in a matrix and a signal processing circuit can be integrated on the same chip as the pixel array.
  • a column parallel output type that selects a plurality of pixels of a pixel array in units of rows and simultaneously reads signals of the plurality of pixels in the selected row in the column direction (direction along the pixel columns).
  • Various configurations have been proposed for the signal output circuit of the column-parallel output type solid-state imaging device.
  • MOS type solid-state imaging device equipped with a column parallel type AD conversion device in which an AD converter is arranged for each column and an analog signal output from a pixel is extracted as a digital signal.
  • FIG. 21 is a block diagram showing a MOS type solid-state imaging device 10 equipped with a column parallel AD converter shown in Patent Document 1.
  • signals generated in the plurality of pixel cells 11 are simultaneously read out to a plurality of vertical signal lines 22-1, 22-2,.
  • the solid-state imaging device 10 includes a comparator 31, and the signal read out to the vertical signal line 22 is arranged for each of the vertical signal lines 22-1, 22-2, ... 22-m.
  • AD conversion is simultaneously performed by the column parallel AD converters 23-1, 23-2,... 23-m.
  • the solid-state imaging device shown in the prior art has a problem that noise characteristics and image quality deteriorate due to noise caused by an amplifier such as a comparator.
  • an object of the present invention is to provide a solid-state imaging device capable of suppressing deterioration of noise characteristics and image quality.
  • a solid-state imaging device includes a photoelectric conversion element that generates a signal charge according to the amount of received light, and an amplification transistor that generates a signal voltage by amplifying the signal charge.
  • a plurality of vertical signal lines to which the signal voltage is output and a plurality of vertical signal lines that are provided for each of one or more columns and to which the signal voltages output to the vertical signal lines arranged in the corresponding columns are input.
  • Each of the plurality of column circuits includes an amplifier that receives an input signal based on the signal voltage and includes a constant current source transistor.
  • the solid-state imaging device further includes: The plurality of A sample-and-hold circuit that includes a reference current source circuit that supplies a first bias voltage to the gates of the plurality of constant current source transistors included in the circuit, and each of the plurality of column circuits further holds the first bias voltage. Is provided.
  • the sample hold circuit provided for each column circuit holds the bias voltage supplied to the gate of the constant current source transistor. Therefore, when the voltage fluctuation of the power supply voltage line or the ground line occurs due to the current fluctuation of one of the plurality of amplifiers, the fluctuation of the current flowing through the other amplifier can be suppressed. Therefore, the solid-state imaging device according to one embodiment of the present invention can suppress deterioration in S / N characteristics and image quality.
  • Each of the plurality of column circuits includes an AD conversion unit that converts the signal voltage into a digital signal.
  • the AD conversion unit includes a comparator that compares the signal voltage with a reference signal.
  • One bias voltage may be held.
  • the solid-state imaging device can be used when the voltage variation of the power supply voltage line or the ground line occurs due to the inversion of the output signal of the amplifier included in a certain comparator.
  • the fluctuation of the current flowing through the amplifier included in the other comparator can be suppressed.
  • the amplifier includes a differential amplifier that compares the signal voltage with a reference signal, and an amplification amplifier that includes the constant current source transistor and amplifies an output signal of the differential amplifier.
  • the first bias voltage may be held in a period in which the differential amplifier compares a reference signal with the signal voltage.
  • Each of the plurality of column circuits includes the amplifier and includes a signal amplifier that amplifies the signal voltage.
  • the sample and hold circuit includes the first bias in a period in which the signal amplifier amplifies the signal voltage. The voltage may be held.
  • the solid-state imaging device can be used when the voltage variation of the power supply voltage line or the ground line occurs due to the change of the output signal of the amplifier included in a certain signal amplifier.
  • the fluctuation of the current flowing through the amplifier included in the other signal amplifier can be suppressed.
  • the sample and hold circuit includes a sample and hold transistor connected between the gate of the constant current source transistor and the reference current source circuit, and a sample and hold capacitor connected to the gate of the constant current source transistor. May be.
  • the timing control of the sample and hold circuit can be easily performed.
  • the sampling capacity can suppress fluctuations in the sample and hold voltage due to the influence of the leakage current of the sample and hold transistor and the influence of the gate leakage of the constant current source transistor during the sample and hold period.
  • the solid-state imaging device further includes a bias line connected to the reference current source circuit and a plurality of the sample hold circuits included in the plurality of column circuits, and the reference current source circuit includes The first bias voltage may be supplied to the gates of the plurality of constant current source transistors via a bias line.
  • the solid-state imaging device can simultaneously apply bias voltages to a plurality of sample and hold circuits.
  • the period during which the bias voltage is supplied to the plurality of sample hold circuits can be shortened, so that the frame rate (frame speed) can be improved.
  • the reference current source circuit may include a transistor that forms a current mirror circuit with the constant current source transistor, and a reference current source that supplies a reference current to the transistor.
  • the solid-state imaging device can supply a constant current to the amplifier according to the current supplied from the reference current source and the mirror ratio of the current mirror circuit.
  • the reference current source circuit includes a plurality of first reference current source units provided for each of the column circuits, and each of the plurality of first reference current source units includes the constant current source transistor and a current.
  • a current mirror transistor that constitutes a mirror circuit and supplies the first bias voltage to the gate of the constant current source transistor, and a reference current source transistor that supplies a reference current to the current mirror transistor may be provided.
  • the reference current source circuit further includes a bias line connected to gates of the plurality of reference current source transistors included in the plurality of first reference current source units, and the plurality of the reference current source circuits via the bias line. And a second reference current source unit for supplying a second bias voltage to the gate of the reference current source transistor.
  • a bias voltage can be simultaneously applied to a plurality of sample and hold circuits.
  • the period for supplying the bias voltage to the plurality of sample and hold circuits can be shortened, so that the frame rate (frame speed) can be improved.
  • sample hold circuit may capture and hold the first bias voltage outside the period when the comparator compares the reference signal and the signal voltage.
  • the timing control of the sample and hold circuit can be easily performed.
  • the sample and hold circuit may capture and hold the first bias voltage outside the period in which the signal amplifier amplifies the signal voltage.
  • the timing control of the sample and hold circuit can be easily performed.
  • the amplifier may be a common source amplifier.
  • the column circuit may further include a power-down control unit that stops the amplifier.
  • the solid-state imaging device can achieve low power consumption by stopping the amplifier that has completed the operation. Furthermore, when a voltage variation of the power supply voltage line or the ground line occurs due to the stop of a certain amplifier, it is possible to suppress the fluctuation of the current flowing through another amplifier.
  • the present invention can be realized not only as such a solid-state imaging device but also as a control method or a driving method of the solid-state imaging device using characteristic means included in the solid-state imaging device as steps.
  • the present invention can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such a solid-state imaging device, or as an imaging device (camera) including such a solid-state imaging device. it can.
  • LSI semiconductor integrated circuit
  • imaging device camera
  • the present invention can provide a solid-state imaging device capable of suppressing deterioration of noise characteristics and image quality.
  • FIG. 1 is a block diagram illustrating a configuration example of a solid-state imaging apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of the pixel cell according to the first embodiment of the present invention.
  • FIG. 3 is a circuit diagram of the comparator according to the first embodiment of the present invention.
  • FIG. 4 is a timing chart showing the operation of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a comparator according to a comparative example of the first embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of an image according to the first embodiment of the present invention.
  • FIG. 7A is a diagram illustrating an example of noise generation according to the first embodiment of the present invention.
  • FIG. 7B is a diagram illustrating an example of noise generation according to the first embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of noise generation according to the first embodiment of the present invention.
  • FIG. 9 is a circuit diagram of a comparator according to the second embodiment of the present invention.
  • FIG. 10 is a circuit diagram of a modification of the comparator according to the second embodiment of the present invention.
  • FIG. 11 is a circuit diagram of a comparator according to the third embodiment of the present invention.
  • FIG. 12 is a circuit diagram of a modification of the comparator according to the third embodiment of the present invention.
  • FIG. 13 is a block diagram showing a configuration of a solid-state imaging apparatus according to the fourth embodiment of the present invention.
  • FIG. 14 is a circuit diagram of a signal amplifier according to the fourth embodiment of the present invention.
  • FIG. 15 is a timing chart showing the operation of the solid-state imaging device according to the fourth embodiment of the present invention.
  • FIG. 16A is a diagram illustrating an example of noise generation according to the fourth embodiment of the present invention.
  • FIG. 16B is a diagram illustrating an example of noise generation according to the fourth embodiment of the present invention.
  • FIG. 17 is a block diagram showing a configuration of a solid-state imaging apparatus according to the fifth embodiment of the present invention.
  • FIG. 18 is a circuit diagram of a comparator according to the fifth embodiment of the present invention.
  • FIG. 19 is a circuit diagram of a modification of the comparator according to the fifth embodiment of the present invention.
  • FIG. 20 is a block diagram illustrating a configuration example of an imaging apparatus according to the sixth embodiment of the present invention.
  • FIG. 21 is a circuit diagram showing a circuit configuration example of a conventional comparator.
  • the solid-state imaging device includes an amplifier provided for each column and a sample-and-hold circuit that holds (samples and holds) a gate voltage of a constant current source transistor included in the amplifier. Thereby, when the voltage fluctuation of the power supply voltage line occurs due to the current fluctuation of one of the plurality of amplifiers, the fluctuation of the current flowing through the other amplifier can be suppressed. As described above, the solid-state imaging device can suppress deterioration in S / N characteristics and image quality.
  • FIG. 1 is a block diagram showing a configuration of a solid-state imaging device 10A according to the first embodiment of the present invention.
  • a solid-state imaging device 10A includes a pixel array 12 in which pixel cells 11 as repeating units including at least one photoelectric conversion element are two-dimensionally arranged in a matrix (matrix shape), and a row scanning circuit. 13, a column processing unit 14 ⁇ / b> A, a reference signal generation unit 15, a column scanning circuit 16, a horizontal output line 17, and a timing control circuit 18.
  • the timing control circuit 18 is based on a master clock MCK, such as a clock signal and a control signal that serve as a reference for operations of the row scanning circuit 13, the column processing unit 14A, the reference signal generation unit 15, the column scanning circuit 16, and the like. Is generated. Then, the timing control circuit 18 supplies the generated clock signal and control signal to the row scanning circuit 13, the column processing unit 14A, the reference signal generation unit 15, the column scanning circuit 16, and the like.
  • a master clock MCK such as a clock signal and a control signal that serve as a reference for operations of the row scanning circuit 13, the column processing unit 14A, the reference signal generation unit 15, the column scanning circuit 16, and the like.
  • the row scanning circuit 13, the column processing unit 14A, the reference signal generation unit 15, the column scanning circuit 16, the horizontal output line 17, and the timing control circuit 18 are a peripheral drive system that drives and controls each pixel cell 11 of the pixel array 12, and It is a signal processing system. These drive system and signal processing system are integrated on the same chip (semiconductor substrate) as the pixel array 12.
  • pixel cells 11 of m columns and n rows are two-dimensionally arranged.
  • row control lines 21 (21-1 to 21-n) are arranged for each row
  • vertical signal lines 22 (22-1 to 22-m) are arranged for each column.
  • One end of each of the row control lines 21-1 to 21-m is connected to each output terminal corresponding to each row of the row scanning circuit 13.
  • the row scanning circuit 13 includes a shift register, an address decoder, and the like, and controls the row address and row scanning of the pixel array 12 via row control lines 21-1 to 21-n.
  • the column processing unit 14A includes, for example, an AD converter (analog-digital converter) 23A provided with a one-to-one correspondence for each pixel column of the pixel array 12, that is, for each of the vertical signal lines 22-1 to 22-m. -1 to 23A-m.
  • the AD converter 23A converts an analog signal (also referred to as a pixel signal or a signal voltage) output from the pixel cell 11 arranged in the corresponding column into a digital signal, and outputs the converted digital signal.
  • the solid-state imaging device 10A includes a plurality of column circuits 20 (20-1 to 20-m) provided one for each column.
  • Each of the column circuits 20-1 to 20-m includes an AD converter 23 arranged in a corresponding column.
  • the reference signal generation unit 15 includes, for example, a DAC (digital-analog converter) 151 as means for generating a reference signal Vref having a so-called ramp (RAMP) waveform in which the voltage value changes stepwise as time passes. ing.
  • the means for generating the ramp waveform reference signal Vref is not limited to the DAC 151.
  • the DAC 151 generates the ramp waveform reference signal Vref based on the clock CK supplied from the timing control circuit 18 in accordance with the control by the control signal CS1 supplied from the timing control circuit 18.
  • the DAC 151 supplies the generated reference signal Vref to the AD converters 23A-1 to 23A-m included in the column processing unit 14A.
  • the AD converters 23A-1 to 23A-m all have the same configuration, and the AD converter 23A-m will be described as an example here.
  • the AD converter 23A-m includes a comparator 31A, for example, an up / down counter (denoted as “U / DCNT” in the figure) 32 that is a counting means, a transfer switch 33, and a memory 34.
  • the comparator 31A includes the signal voltage Vx of the vertical signal line 22-m corresponding to the pixel signal output from each pixel cell 11 in the m-th column of the pixel array 12, and the ramp waveform supplied from the reference signal generation unit 15.
  • the reference signal Vref is compared.
  • the comparator 31A sets the output signal Vco to the H level when the reference signal Vref is larger than the signal voltage Vx, and sets the output signal Vco to the L level when the reference signal Vref is equal to or lower than the signal voltage Vx.
  • the up / down counter 32 is an asynchronous counter and operates according to control by the control signal CS2 supplied from the timing control circuit 18.
  • the up / down counter 32 is supplied with the clock CK from the timing control circuit 18 simultaneously with the DAC 151.
  • the up / down counter 32 measures the comparison period from the start of the comparison operation to the end of the comparison operation in the comparator 31A by performing a down (DOWN) count or an up (UP) count in synchronization with the clock CK. To do.
  • the transfer switch 33 is turned on (closed) when the count operation of the up / down counter 32 for the pixel cells 11 in a certain row is completed in accordance with the control by the control signal CS3 given from the timing control circuit 18. As a result, the count result of the up / down counter 32 is transferred to the memory 34.
  • the analog signal supplied for each column from each pixel cell 11 of the pixel array 12 via the vertical signal lines 22-1 to 22-m is converted into the AD converter 23A (23A-1 to 23A-m).
  • the AD converter 23A are converted into an N-bit digital signal by the operations of the comparator 31A and the up / down counter 32 included in FIG.
  • the converted N-bit digital signal is stored in the memory 34.
  • the column scanning circuit 16 includes a shift register, an address decoder, and the like, and controls column addresses and column scanning of the AD converters 23A-1 to 23A-m in the column processing unit 14A. Under the control of the column scanning circuit 16, the N-bit digital signals AD-converted by each of the AD converters 23A-1 to 23A-m are sequentially read out to the N-bit width horizontal output line 17. The read digital signal is output to the outside as imaging data via the horizontal output line 17.
  • the count result of the up / down counter 32 can be selectively transferred to the memory 34 via the transfer switch 33. Thereby, the count operation of the up / down counter 32 and the operation of reading the count result of the up / down counter 32 to the horizontal output line 17 can be controlled independently.
  • FIG. 2 is a circuit diagram showing the circuit configuration of the pixel cell 11 and the constant current source 35.
  • FIG. 3 is a circuit diagram showing a circuit configuration example of the comparator 31A according to the first embodiment of the present invention. 2 and FIG. 3, specific examples of the pixel cell 11 (11-x, 11-i) in the i column adjacent to the x column and the x column and the comparator 31A (31A-x, 31A-i) are shown. The circuit configuration is shown.
  • the pixel cell 11 has a three-transistor configuration including a photoelectric conversion element 101, an FD (floating diffusion) 105, a transfer transistor 102, a reset transistor 103, and an amplification transistor 104.
  • the photoelectric conversion element 101 is a photodiode, for example, and generates a signal charge according to the amount of received light.
  • the transfer transistor 102 transfers signal charges obtained by photoelectric conversion by the photoelectric conversion element 101 to the FD 105.
  • the reset transistor 103 controls (resets) the voltage Vfd of the FD 105.
  • the amplification transistor 104 generates a signal voltage Vx by amplifying the signal charge generated by the photoelectric conversion element 101. Specifically, the amplification transistor 104 generates a signal voltage Vx corresponding to the voltage Vfd of the FD 105, and outputs the generated signal voltage Vx to the vertical signal line 22 of the corresponding column.
  • the pixel cell 11 is not limited to the above-described three-transistor configuration.
  • the pixel cell 11 it is possible to use a four-transistor configuration having a selection transistor for performing pixel selection in addition to the above three transistors.
  • the vertical signal line 22 is provided for each column, and the signal voltage Vx generated by the plurality of pixel cells 11 arranged in the corresponding column is output.
  • One end of the vertical signal line 22 is connected to a constant current source 35.
  • the constant current source 35 includes a constant current source transistor 142.
  • the solid-state imaging device 10A includes a diode-connected transistor 141 in which a gate and a drain are commonly connected.
  • the constant current source transistor 142 is connected between each end of the vertical signal line 22 and the ground (ground potential), and the gate is connected to the gate of the transistor 141. That is, the constant current source transistor 142 forms a current mirror circuit together with the transistor 141.
  • the transistor 141 is commonly connected to the gates of the plurality of constant current source transistors 142.
  • the comparator 31A compares the signal voltage Vx with the reference signal Vref.
  • the comparator 31A includes an amplifier 40 and an inverter 43.
  • the amplifier 40 receives an input signal based on the signal voltage Vx.
  • the amplifier 40 includes a differential amplifier 41 and an inverting amplifier 42.
  • the differential amplifier 41 includes differential pair transistors 111 and 112, active load transistors 113 and 114, a constant current source transistor 115, capacitive elements 116 and 117, and switch transistors 118 and 119.
  • the sources of the differential pair transistors 111 and 112 are connected in common and form a differential pair.
  • the reference signal Vref is input to the gate of one differential pair transistor 111 through the capacitor 116.
  • the signal voltage Vx is input to the gate of the other differential pair transistor 112 via the capacitive element 117.
  • the switch transistor 118 is connected between the gate and drain of the differential transistor 111, and a set signal PSET is selectively given to the gate.
  • the switch transistor 119 is connected between the gate and drain of the differential pair transistor 112, and the set signal PSET is selectively given to the gate.
  • the active load transistor 113 is connected between the drain of the differential pair transistor 111 and the power supply voltage line L11.
  • the active load transistor 114 is connected between the drain of the differential pair transistor 112 and the power supply voltage line L11.
  • the active load transistors 113 and 114 have gates commonly connected to each other.
  • the active load transistor 113 has a diode connection configuration in which a gate and a drain are connected in common, and forms a current mirror circuit together with the active load transistor 114.
  • the power supply voltage Vdda is applied to the power supply voltage line L11, and the ground potential Vss (ground potential) is applied to the ground line L12.
  • the constant current source transistor 115 is connected between the common source connection node of the differential pair transistors 111 and 112 and the ground line L12, and a constant voltage VG1 is applied to the gate.
  • the inverting amplifier 42 is a common source inverting amplifier, and includes an inverting transistor 121, a constant current source transistor 122, a switch transistor 123, and a capacitor element 124.
  • the inverting transistor 121 has a source connected to the power supply voltage line L11 and a gate connected to the drain of the differential pair transistor 112 that is the output terminal of the differential amplifier 41.
  • the inversion transistor 121 inverts the polarity of the output signal from the differential amplifier 41.
  • the constant current source transistor 122 is connected between the drain of the inverting transistor 121 and the ground line L12, and a constant voltage VG1 is applied to the gate.
  • the switch transistor 123 is connected between the gate and drain of the inverting transistor 121, and a set signal PSET is selectively given to the gate.
  • a set signal PSET is supplied to the gate of the switch transistor 123, the gate and drain of the inverting transistor 121 are electrically connected. Thereby, the input / output of the inverting amplifier 42 can be reset to a predetermined level.
  • the capacitive element 124 is provided between the differential amplifier 41 and the inverting amplifier 42 and has an action of separating the output terminal of the differential amplifier 41 and the input terminal of the inverting amplifier 42 in a DC manner. Specifically, the capacitive element 124 has an action of separating the reset voltage of the differential amplifier 41 and the reset voltage of the inverting amplifier 42 so as not to be short-circuited when the set signal PSET is given.
  • the solid-state imaging device 10A includes a reference current source circuit 80 including a transistor 161 that forms a current mirror circuit together with the constant current source transistors 115 and 122, and a reference current source 181 that supplies a reference current to the transistor 161. It is characterized by having.
  • the reference current source circuit 80 supplies a bias voltage Vbiasa to the gates of the constant current source transistors 115 and 122 of the plurality of comparators 31A arranged for each column.
  • the solid-state imaging device 10A is connected to the gates of the constant current source transistors 115 and 122 of the amplifier 40 in the comparator 31, and has a plurality of samples that hold the bias voltage Vbiasa supplied from the reference current source circuit 80 for each column. It is characterized by having a sample hold circuit 50.
  • the sample hold circuit 50 includes a sample hold transistor 170 and a sample hold capacitor 173.
  • the sample hold transistor 170 is connected between the gates of the constant current source transistors 115 and 122 and the bias line L14 to which the bias voltage Vbiasa is supplied from the reference current source circuit 80.
  • a control signal SH1 is applied to the gate of the sample hold transistor 170.
  • the control signal SH1 controls whether or not the bias line L14 and the gate of the constant current source transistor are electrically connected.
  • the bias voltage Vbiasa supplied from the reference current source circuit 80 is supplied to the gates of the constant current source transistors 115 and 122.
  • the control signal SH1 is at L (low) level
  • the gates of the constant current source transistors 115 and 112 and the bias line L14 are electrically separated.
  • the sample hold circuit 50 samples and holds the bias voltage Vbias supplied to the constant current source transistor 115 and the constant current source transistor 122.
  • the sample hold capacitor 173 is connected between the gates of the constant current source transistors 115 and 122 and the ground line L12.
  • the sample hold capacitor 173 holds the bias voltage Vbiasa supplied from the reference current source circuit 80.
  • the inverter 43 is connected in series between the power supply voltage line L11 and the ground line L12.
  • the inverter 43 is a CMOS inverter and includes reverse-conductivity type transistors 131 and 132 each having a gate connected in common to the drain of the inverting transistor 121 that is the output terminal of the inverting amplifier 42.
  • the pixel cell 11 in the pixel cell 11, a reset operation by the reset transistor 103 and a transfer operation by the transfer transistor 102 are performed.
  • the reset operation the voltage of the FD 105 when reset to a predetermined voltage is output from the pixel cell 11 to the vertical signal lines 22-1 to 22-m as a reset component.
  • the transfer operation the voltage of the FD 105 when the signal charge due to photoelectric conversion is transferred from the photoelectric conversion element 101 is output as a signal component from the pixel cell 11 to the vertical signal lines 22-1 to 22-m.
  • a row k is selected by row scanning by the row scanning circuit 13. After the first read operation from the pixel cell 11 of the selected row k to the vertical signal lines 22-1 to 22-m is stabilized, the set signal PSET becomes active (L (low) level). Thereby, the operating points of the differential pair transistors 111 and 112 are determined. Thereafter, the set signal PSET becomes inactive (H (high) level), and the reference signal Vref of the staircase wave is supplied from the DAC 151 to each comparator 31A of the AD converters 23A-1 to 23A-m.
  • the differential amplifier 41 has the input voltage of the differential pair transistor 112 determined by the gate voltage of the amplification transistor 104 of the pixel cell 11 and the differential pair transistor 111 determined by the reference signal Vref which is a staircase wave. Comparison operation with input voltage is performed.
  • a reference signal Vref which is a staircase wave is input to the comparator 31A, and at the same time, a clock CK is supplied from the timing control circuit 18 to the up / down counter 32.
  • the up / down counter 32 measures the comparison time in the comparator 31A during the first read operation by the down-count operation.
  • the output signal Vco of the comparator 31A is inverted from the H level to the L level.
  • the up / down counter 32 stops the down-count operation and holds the count value corresponding to the first comparison period in the comparator 31A.
  • the reset component ⁇ V of the pixel cell 11 is read.
  • the reset component ⁇ V includes fixed pattern noise that varies from pixel cell 11 to pixel cell 11 as an offset.
  • the signal voltage Vx of the vertical signal lines 22-1 to 22-m is approximately known. Therefore, when the reset component ⁇ V is read for the first time, the comparison period can be shortened by adjusting the reference signal Vref.
  • the reset component ⁇ V is compared in a 7-bit count period (128 clocks).
  • the signal component Vsig corresponding to the amount of incident light for each pixel cell 11 is read by the same operation as the first read operation of the reset component ⁇ V. That is, after the second reading from the pixel cell 11 of the selected row k to the vertical signal lines 22-1 to 22-m is stabilized, the reference signal Vref from the DAC 151 is compared with each of the AD converters 23A-1 to 23A-m. Is provided to the container 31A.
  • the comparator 31A performs a comparison operation between each signal voltage Vx of the vertical signal lines 22-1 to 22-m and the reference signal Vref.
  • the up / down counter 32 measures the second comparison time in the comparator 31A by the up-counting operation contrary to the first time.
  • the up / down counter 32 performs a down-count operation for the first time and performs an up-count operation for the second time, so that the up / down counter 32 automatically (second comparison period) ⁇ (1 Subtraction processing for the second comparison period) is performed.
  • the reference signal Vref becomes equal to the signal voltage Vx of the vertical signal lines 22-1 to 22-m
  • the polarity of the output signal Vco of the comparator 31A is inverted.
  • the counting operation of the up / down counter 32 is stopped.
  • the up / down counter 32 holds a count value corresponding to the result of the subtraction process of (second comparison period)-(first comparison period).
  • the process of removing the reset component ⁇ V including the variation for each pixel cell 11 is a so-called CDS (Correlated Double Sampling) process.
  • the signal component Vsig is read out in a 10-bit count period (1024 clocks).
  • the accuracy of AD conversion can be made equal by making the slope of the ramp waveform of the reference signal Vref the same between the first time and the second time.
  • a correct subtraction result is obtained as a result of the subtraction process of (second comparison period) ⁇ (first comparison period) by the up / down counter 32.
  • the up / down counter 32 holds an N-bit digital value.
  • the N-bit digital values (digital signals) AD-converted by the AD converters 23A-1 to 23A-m of the column processing unit 14A are converted into N-bit horizontal output lines by column scanning by the column scanning circuit 16. Then, the data is sequentially output to the outside through 17. Thereafter, the same operation is sequentially repeated for each row to generate a two-dimensional image.
  • each of the AD converters 23A-1 to 23A-m has a memory 34.
  • the digital value after AD conversion for the pixel cell 11 in the i-th row is transferred to the memory 34, the transferred digital value is output from the horizontal output line 17 to the outside, and the pixel cell 11 in the i + 1-th row.
  • the read operation and the up / down count operation can be executed in parallel.
  • the feature of this embodiment is that the bias voltage Vbiasa supplied to the plurality of comparators 31A arranged for each column is sampled and held in accordance with the control signal SH1 at least within the AD conversion period.
  • the sample hold circuit 50 holds (samples and holds) the bias voltage Vbiasa during a period in which the differential amplifier 41 included in the comparator 31A compares the reference signal Vref and the signal voltage Vx.
  • the sample hold circuit 50 captures and holds the bias voltage Vbias outside the period in which the comparator 31A compares the reference signal Vref and the signal voltage Vx.
  • the control signal SH1 is controlled to H level before the start of pixel signal readout in which the signal voltage Vx changes.
  • the sample hold transistor 170 is turned on. Therefore, the bias voltage Vbias is supplied from the reference current source circuit 80 to the gates of the constant current source transistors 115 and 122 in the comparator 31A and the sample hold capacitor 173 connected to the gates.
  • the transistor 161 for supplying the bias voltage Vbias constitutes a current mirror circuit with the constant current source transistors 115 and 122. Therefore, a constant current is supplied to the differential amplifier 41 and the inverting amplifier 42 by mirroring the current supplied from the reference current source 181 constituting the reference current source circuit 80. For example, by setting the W / L size ratio of the transistor 161 and the constant current source transistor 115 to m: 1, the differential amplifier 41 passes a constant current that is 1 / m of the current supplied from the reference current source 181. be able to.
  • the inverting amplifier 42 for example, by setting the W / L size ratio of the transistor 161 and the constant current source transistor 122 to n: 1, the inverting amplifier 42 has 1 of the current supplied from the reference current source 181. / N constant current can flow.
  • the transistor 161 forms a current mirror circuit with the constant current source transistors 115 and 122. Therefore, even when the characteristics of the constant current source transistor 115 of the differential amplifier 41 and the constant current source transistor 122 of the inverting amplifier 42 change due to manufacturing variations and temperature changes, the currents flowing in the differential amplifier 41 and the inverting amplifier 42 respectively. Can be set with high accuracy. That is, the solid-state imaging device 10A can reduce characteristic fluctuations of the differential amplifier 41 and the inverting amplifier 42 due to manufacturing variations and temperature changes.
  • the bias voltage Vbiasa can be simultaneously supplied to the gates of the constant current source transistors 115 and 122 arranged in the plurality of columns. . Thereby, the bias voltage Vbiasa can be supplied to the plurality of constant current source transistors 115 and 122 in a short period.
  • a solid-state imaging device suitable for application to a digital video camera or a digital still camera has thousands of sample and hold circuits 50 in the column direction. Therefore, when the bias voltage is sequentially held for each column, there is a problem that the frame rate (number of frames) for outputting the image signal is extremely lowered.
  • the bias voltage Vbiasa can be supplied simultaneously for a plurality of columns, so that a drop in the frame rate (the number of frames) can be greatly reduced.
  • the sample hold transistor 170 is turned off by controlling the control signal SH1 from the H level to the L level.
  • the bias voltage Vbiasa supplied from the reference current source circuit 80 is electrically separated for each column.
  • the bias voltage Vbiasa is sampled and held in the sample and hold capacitor 173.
  • the voltage VG1 in the x and i columns shown in FIG. 3 maintains the voltage level of the bias voltage Vbiasa.
  • the constant current can be continuously supplied to the differential amplifier 41 and the inverting amplifier 42.
  • the control signal SH1 is controlled from the L level to the H level.
  • the sample hold transistor 170 is turned on again. Therefore, the bias voltage Vbiasa can be supplied from the reference current source circuit 80 to the gates of the constant current source transistors 115 and 122 and the sample hold capacitor 173.
  • a differential amplifier 41, an inverting amplifier 42, and an inverter 43 are used as a comparator constituting the AD converter 23A arranged for each column.
  • a differential amplifier 41, an inverting amplifier 42, and an inverter 43 are used as a comparator constituting the AD converter 23A arranged for each column.
  • the comparator 31B shown in FIG. 5 differs from the comparator 31A shown in FIG. 2 in that the reference current source transistor 171 and the current mirror transistor 172, which are features of the present embodiment, are not provided. That is, the voltage VG is applied to the gates of the constant current source transistors 115 and 122 from the common bias line for all the columns.
  • W is the gate width of the constant current source transistor 115
  • L is the gate length
  • Cox is the gate oxide film capacitance
  • is the mobility.
  • Equation 1 the current shown in (Equation 1) fluctuates in the inverting amplifier 42 as well.
  • the AD converter 23A is an AD conversion means that converts an analog signal in the time direction based on the output signal Vco of the comparator 31B, and obtains a digital signal by measuring the time.
  • the currents of the comparators 31B in a plurality of columns arranged from the i-th column to the j-th column vary as shown in FIG. 7A. Accordingly, the voltages of the power supply voltage line and the ground line that are commonly connected to the first column to the m-th column including the i-th column to the j-th column vary. As a result, the ground potential of the amplifier 40 in the plurality of non-inverted comparators 31B arranged with respect to the dark subject 200 from the first column to the (i-1) th column and the j + 1th column to the mth column. Fluctuates. When the ground potential fluctuates, as described above, the output signal of the non-inverting amplifier 40 fluctuates, so that the inversion time of the non-inverting comparator 31B varies.
  • the black and white of the band-like noise is common to the current fluctuations of the plurality of comparators 31B arranged from the first column to the (i ⁇ 1) th column and the j + 1th column to the mth column arranged for the regions 201 and 202.
  • the voltage fluctuation of the power supply voltage line or the ground line connected to, and the polarity of the signal input to the differential amplifier 41 is influenced by the voltage fluctuation of the power supply voltage line or the ground line connected to, and the polarity of the signal input to the differential amplifier 41.
  • a current flows from the power supply voltage line L11 to the inverting transistor 121 included in the inverting amplifier 42 during the comparison operation between the reference signal Vref and the signal voltage Vx.
  • the drain voltage of the constant current source transistor 122 increases.
  • the current flowing from the drain of the constant current source transistor 122 to the ground line L12 increases. Therefore, the voltage of the power supply voltage line L11 or the ground line L12 in the corresponding column varies.
  • the voltage of the ground line L12 varies greatly. Specifically, when the operating region of the constant current source transistor 122 changes from the non-saturated region to the saturated region when the magnitude relationship between the signal voltage Vx and the reference signal Vref is reversed, the current flowing through the constant current source transistor 122 is It fluctuates greatly. Due to this current variation, the voltage of the ground line L12 varies greatly.
  • the offset voltage of the reference signal Vref smaller than the voltage width of Vref that varies during the downcount period, the magnitude relationship between the reference signal Vref and the signal voltage Vx is reliably reversed during the downcount period. It becomes possible.
  • the offset voltage is amplified by the differential amplifier 41 and the inverting amplifier 42, respectively.
  • the output signal Vz of the inverting amplifier 42 drops to near Vss.
  • the constant current source transistor 122 operates in the non-saturated region, so that the current flowing from the constant current source transistor 122 to the ground line L12 decreases.
  • the voltage of the output signal Vy of the differential amplifier 41 is lowered, so that a current is supplied to the inverting transistor 121 from the power supply voltage line L11. Flowing. Further, as the voltage of the output signal Vz of the inverting amplifier 42 increases, the constant current source transistor 122 operates in the saturation region. As a result, the current flowing through the ground line L12 increases.
  • the solid-state imaging device 10A includes a reference current source circuit 80 that supplies a bias voltage Vbiasa to a plurality of comparators 31 arranged for each column by using circuit noise due to voltage fluctuations of the power supply voltage line and the ground line. This is reduced by providing a sample and hold circuit 50 provided for each comparator 31A. Specifically, the solid-state imaging device 10A reduces the circuit noise by sample-holding the bias voltage Vbiasa supplied from the reference current source circuit 80 for each column. This action will be specifically described.
  • noise reduction for example, a case is assumed in which the output signal of the comparator 31A-i in the adjacent i column is inverted in the situation where the output signal of the comparator 31A-x in the x column has not yet been inverted. Assuming that the voltage fluctuation amount of the ground line L12 when the output signal of the comparator 31A-i in the i column is inverted is ⁇ V, the voltage of the ground line L12 of the comparator 31A-x in the x column also varies by ⁇ V.
  • the bias voltage Vbiasa is held in the x-column sample hold circuit 50 before the output signal of the i-column comparator 31A-i is inverted.
  • the control signal SH1 is controlled to the L level during the AD conversion period. Therefore, the sample and hold transistor 170 in the x column is turned off, and the voltage Vbiasa ⁇ Vss is held in the sample and hold capacitor 173 in the x column. That is, even if the voltage of the ground line L12 connected to the sample and hold capacitor 173 varies by ⁇ V, the voltage difference between both ends of the sample and hold capacitors 173 in the x column is held. Therefore, the voltage VG1 of the bias line L15 connected to the sample and hold capacitor 173 in the x column is Vbiasa + ⁇ V.
  • the gate voltage VG1 of the constant current source transistors 115 and 122 in the x column becomes Vbiasa + ⁇ V.
  • the constant current source transistors 115 and 122 supply current depending on the voltage difference Vgs between the gate and the source as shown in (Equation 1). Since the gate voltage Vg is Vbiasa + ⁇ V and the source voltage Vs is Vss + ⁇ V, the gate-source voltage Vgs is expressed by the following (formula 3).
  • the solid-state imaging device 10A according to the present embodiment can continue to supply a constant current to the differential amplifier 41 and the inverting amplifier 42 even if the voltage of the ground line L12 varies by ⁇ V. That is, the solid-state imaging device 10A according to the present embodiment is not affected by the voltage fluctuation ⁇ V of the ground line L12 due to the action of the sample hold transistor 170 and the sample hold capacitor 173 included in the sample hold circuit 50.
  • the constant current can be continuously supplied to the amplifier 41 and the inverting amplifier 42.
  • the current of the comparator 31-x does not change even if the voltage of the ground line L12 changes due to the output signal of the comparator 31-i being inverted.
  • the constant current can be continuously supplied to the non-inverting differential amplifier 41 and the inverting amplifier 42. As a result, it is possible to reduce the horizontal band noise as shown in FIGS. 7A and 7B.
  • control signal SH1 is controlled to the L level during the AD conversion period.
  • noise generated by the transistor 161 constituting the reference current source circuit 80 and the reference current source 181 that supplies the reference current can be canceled. This operation will be described with reference to the timing chart of FIG.
  • the voltage VG1 shown in FIG. 4 indicates a bias voltage supplied to the gates of the constant current source transistors 115 and 122.
  • a solid line indicates the voltage VG1 in this embodiment, and a dotted line indicates the voltage VG1 when the sample hold circuit 50 is not used.
  • the bias voltage VG1 fluctuates during the AD conversion period due to the noise of the reference current source circuit 80.
  • high-frequency noise includes thermal noise and 1 / f noise of the transistors constituting the reference current source circuit 80.
  • the bias voltage Vbias fluctuates due to the fluctuation of the ground potential of the reference current source circuit 80 during the AD conversion period.
  • a variation factor of the ground potential for example, current variation due to the AD conversion operation of the comparator 31A during the AD conversion period, and current variation due to the pixel signal readout circuit including the amplification transistor 104 and the constant current source transistor 142 are included. Can be mentioned.
  • FIG. 8 shows an example of the horizontal streak noises 206 and 207. As shown in FIG.
  • the horizontal streak-like noises 206 and 207 are generated as a horizontal streak as an image, so that they are easier to visually recognize than noise randomly generated in space. Therefore, the horizontal stripe noises 206 and 207 cause the image quality to deteriorate greatly even when the noise level is low.
  • the bias voltage Vbiasa is sampled and held by the sample and hold circuit 50 provided in each column.
  • the gate voltage VG1 of each column is electrically separated from the bias voltage Vbiasa supplied from the reference current source circuit 80.
  • the influence of the noise of the bias voltage supplied from the reference current source circuit 80 on the constant current source transistors 115 and 122 in each column can be suppressed.
  • the gates of the constant current source transistors 115 and 122 in each column are electrically separated for each column, even when noise occurs in the bias voltage held in the sample hold circuit 50 in a certain column, It is possible to suppress the noise from affecting the bias voltages of other columns. Thereby, generation
  • the bias voltage Vbiasa supplied from the reference current source circuit 80 is supplied to the gate electrodes of the constant current source transistors 115 and 122. At this time, it is assumed that noise ⁇ VN1 is generated in the bias voltage Vbiasa supplied from the reference current source circuit 80.
  • control signal SH1 is switched from H level to L level.
  • the bias voltage Vbiasa + ⁇ VN1 is held in the sample hold circuit 50.
  • the up / down counter 32 performs the down-count operation as the first count operation and performs the up-count operation as the second count operation.
  • the subtraction process of (second comparison period) ⁇ (first comparison period) is automatically performed in the up / down counter 32.
  • (second comparison period) (signal component Vsig + reset component ⁇ V + ⁇ VN2 + AD converter 23A offset component)
  • ⁇ (reset component ⁇ V + ⁇ VN2 + AD converter 23A offset component) (signal Component Vsig). That is, the noise ⁇ VN2 is also removed by the two read operations and the subtraction process by the up / down counter 32.
  • noise is generated in the bias voltage supplied from the reference current source circuit 80 by sample-holding the bias voltage supplied from the reference current source circuit 80 during the AD conversion period. Even in this case, the influence of this noise can be reduced by the CDS process.
  • the solid-state imaging device 10A has an advantage that the drive circuit and the signal processing circuit of the pixel array in which the pixels are two-dimensionally arranged in a matrix can be integrated on the same chip as the pixel array.
  • the solid-state imaging device 10A can select each pixel of the pixel array in units of rows and simultaneously read out the signals of the pixels in the selected row in the column direction (direction along the pixel column). (Reading) speed can be increased. Accordingly, the solid-state imaging device 10A can improve the moving image shooting function and can cope with high-speed autofocus.
  • the solid-state imaging device 10A suppresses fluctuations in the current flowing through the comparator 31A-x when the voltage of the ground line or the power supply voltage line fluctuates due to the output signal of the comparator 31A-i being inverted. it can. As a result, the solid-state imaging device 10A can reduce the lateral band noise as shown in FIGS. 7A and 7B. As described above, the solid-state imaging device 10A can simultaneously achieve downsizing of the device, high-speed signal readout, and high image quality at a high level.
  • the gate of the constant current source transistor 115 of the differential amplifier 41 and the gate of the constant current source transistor 122 of the inverting amplifier 42 are connected in common.
  • the configuration in which the sample and hold circuit 50 is provided in common for the constant current source transistors 115 and 122 has been described.
  • a sample hold circuit is provided for each of the constant current source transistors 115 and 122.
  • FIG. 9 is a circuit diagram showing a configuration of a comparator 31C (31C-x, 31C-i) according to the second embodiment of the present invention.
  • the comparator 31C shown in FIG. 9 includes a sample hold circuit 50A that holds the bias voltage applied to the gate of the constant current source transistor 115, and a sample hold circuit that holds the bias voltage applied to the gate of the constant current source transistor 122. 50B.
  • the sample hold circuit 50A includes a sample hold transistor 170 and a sample hold capacitor 173.
  • the sample hold transistor 170 is connected between the gate (bias line L15) of the constant current source transistor 115 and the bias line L14.
  • a control signal SH1 is applied to the gate of the sample hold transistor.
  • the sample hold capacitor 173 is connected between the gate of the constant current source transistor 115 and the ground line L12. The sample hold capacitor 173 holds the bias voltage Vbiasa supplied from the reference current source circuit 80.
  • the sample and hold circuit 50B includes a sample and hold transistor 176 and a sample and hold capacitor 177.
  • the sample hold transistor 176 is connected between the gate (bias line L16) of the constant current source transistor 122 and the bias line L14.
  • a control signal SH1 is applied to the gate of the sample hold transistor 176.
  • the sample hold capacitor 177 is connected between the gate of the constant current source transistor 122 and the ground line L12.
  • the sample hold capacitor 177 holds the bias voltage Vbiasa supplied from the reference current source circuit 80.
  • sample and hold circuits are provided in both constant current source transistors 115 and 122, but at least for the constant current source transistors of one or more amplifiers provided in the column.
  • One or more bias sample and hold circuits may be provided.
  • sample hold circuit 50B may be provided only for the gate of the constant current source transistor 122 of the inverting amplifier 42 as in the comparator 31D (31D-x, 31D-i) shown in FIG.
  • the gates of the constant current source transistors 122 are electrically separated between the plurality of columns. Therefore, when the output level of the inverting amplifier 42 in a certain column varies, the variation in the gate voltage of the constant current source transistor 122 in another column can be reduced. Specifically, even when the output signal of the comparator 31-i is inverted and the gate voltage of the constant current source transistor 122 in the i column varies, the gate voltage of the constant current source transistors 115 and 122 in the x column varies. do not do. Therefore, it is possible to reduce the horizontal band noise as shown in FIGS. 7A and 7B.
  • the output level of the inverting amplifier 42 varies greatly as compared with the differential amplifier 41. That is, the amount of change in the gate voltage of the constant current source transistor 122 is larger than the amount of change in the gate voltage of the constant current source transistor 115.
  • the sample-and-hold circuit only for the constant current source transistors 122 having a great influence on the constant current source transistors 115 and 122 in the other columns, it is possible to achieve both a reduction in circuit scale and a high noise reduction effect. it can.
  • FIG. 11 is a circuit diagram showing a configuration of a comparator 31E (31E-x, 31E-i) according to the third embodiment of the present invention.
  • the comparator 31E shown in FIG. 9 further includes a reference current source transistor 171 and a current mirror transistor 172 in addition to the configuration of the comparator 31A shown in FIG.
  • the solid-state imaging device according to the third embodiment includes a reference current source circuit 81 instead of the reference current source circuit 80 shown in FIG.
  • the reference current source circuit 81 corresponds to the second reference current source unit of the present invention, generates the voltage Vbiasb, and outputs the generated voltage Vbiasb to the bias line L17.
  • the reference current source circuit 81 includes a transistor 162 and a reference current source 182 that supplies a reference current to the transistor 162.
  • a ground potential Vssb is applied to the reference current source 182.
  • a current mirror circuit is provided in the comparator 31E.
  • a reference current source circuit is provided in the comparator 31E.
  • the reference current source circuit in the comparator 31E corresponds to the first reference current source unit of the present invention, and includes a reference current source transistor 171 and a current mirror transistor 172.
  • the reference current source transistor 171 forms a current mirror circuit with the transistor 162 that supplies the bias voltage Vbiasb.
  • the reference current source transistor 171 supplies a current to the current mirror transistor 172.
  • the current mirror transistor 172 is connected to the reference current source transistor 171 and constitutes a current mirror circuit with the constant current source transistors 115 and 122.
  • the current mirror transistor 172 generates a predetermined bias voltage based on the current supplied from the reference current source transistor 171. Then, the bias voltage is supplied to the gates of the constant current source transistors 115 and 122. Thus, a constant current is supplied to the differential amplifier 41 and the inverting amplifier 42.
  • one end of the sample hold transistor 170 is connected to the current mirror transistor 172. Therefore, not only in the state where the control signal SH1 is at the L level but also in the state where the control signal SH1 before the pixel signal reading is started is at the H level, the gates of the constant current source transistors 115 and 122 are connected between a plurality of columns. Is electrically separated. Thereby, the influence of horizontal stripe noise can be further reduced.
  • the solid-state imaging device can reduce noise generated in common to a plurality of columns, it can reduce horizontal streak noise as shown in FIG.
  • sample and hold transistor 170 is provided between the gate of the constant current source transistor 115 and the gate of the current mirror transistor 172 is shown.
  • a means for sample-holding the bias voltage with respect to the gate may be provided.
  • a sample and hold transistor 170 may be provided at the source and gate of the current mirror transistor 172 as in the comparator 31F (31F-x, 31F-i) shown in FIG.
  • the bias voltage is applied to the gate of the constant current source transistor 115 by setting the control signal SH1 to the H level. Thereafter, the bias voltage is held in the sample hold circuit 50 by setting the control signal SH1 to the L level.
  • FIG. 13 is a block diagram showing a configuration of a solid-state imaging device 10G according to the fourth embodiment of the present invention.
  • FIG. 14 is a circuit diagram showing a circuit configuration example of the signal amplifier 24 according to the fourth embodiment of the present invention.
  • a feature of the solid-state imaging device 10G according to the fourth embodiment is that the column circuit 20G outputs an analog signal (signal voltage Vx) output from the pixel between the vertical signal line 22 and the column parallel AD converter 23A.
  • Vx analog signal
  • the signal amplifier 24 to be amplified is provided, and the point that the sample and hold circuit 70 is provided for the constant current source in the signal amplifier 24 as shown in FIG.
  • the signal amplifier 24 (24-x, 24-i) includes an amplifier 45 and a sample hold circuit 70.
  • the amplifier 45 is, for example, a single-ended type grounded source inverting amplifier.
  • the amplifier 45 includes an input capacitor 216 to which the signal voltage Vx is input, a feedback capacitor 217, an amplification transistor 211 that amplifies the input signal, a constant current source transistor 215 that supplies current to the amplification transistor, and a signal amplifier 24. And a reset transistor 218 for resetting the input and output.
  • the reset transistor 218 is connected between the gate and drain of the amplification transistor 211, and a set signal PSETc is selectively given to the gate.
  • the signal amplifier 24 includes a sample hold circuit 70 that samples and holds the bias voltage Vbiasd supplied to the gate electrode of the constant current source transistor 215.
  • the sample and hold circuit 70 includes a sample and hold transistor 270 and a sample and hold capacitor 273.
  • the sample hold circuit 70 holds the bias voltage Vbiasd during the period when the signal amplifier 24 amplifies the signal voltage Vx.
  • the sample hold circuit 70 takes in and holds the bias voltage Vbiasd outside the period in which the signal amplifier 24 amplifies the signal voltage Vx.
  • the sample hold capacitor 273 is connected between the bias line L25 electrically connected to the gate of the constant current source transistor 215 and the power supply voltage line L21.
  • the sample hold transistor 270 is connected between the gates of the constant current source transistors 215 and 215 and the bias line L24 to which the voltage Vbiasd is supplied.
  • a control signal SH2 is applied to the gate of the sample hold transistor 270.
  • the solid-state imaging device 10G includes a reference current source circuit 82.
  • the reference current source circuit 82 generates a voltage Vbiasd and outputs the generated voltage Vbiasd to the bias line L24.
  • the reference current source circuit 82 includes a transistor 261 and a reference current source 281 that supplies a reference current to the transistor 261.
  • the power supply voltage Vddc is applied to the power supply voltage line L21, and the ground potential Vssc is applied to the ground line L22.
  • the set signal PSETc becomes active (H level). Thereby, the operating point of the amplification transistor 211 is determined.
  • the set signal PSETc becomes inactive (L level).
  • the signal amplifier 24 amplifies the analog signal output from the pixel cell 11.
  • the amplifier 45 of this embodiment is an inverting amplifier. As shown in FIG. 15, the output signal Vo of the amplifier 45 is inverted and amplified with respect to fluctuations in the signal voltage Vx. Therefore, the polarity of the timing chart according to the comparator 31A is inverted with respect to the first embodiment.
  • a staircase reference signal Vref is supplied from the DAC 151 to each comparator 31A of the AD converters 23-1 to 23-m.
  • the differential amplifier 41 performs a comparison operation between the input voltage of the differential pair transistor 112 determined by the signal amplifier 24 and the input voltage of the differential pair transistor 111 determined by the staircase reference signal Vref. Is called.
  • the AD conversion operation is the same as the operation when the signal voltage Vx is replaced with the output signal Vo of the signal amplifier 24 in the description of the first embodiment described above, and thus the description thereof is omitted.
  • a feature of this embodiment is that the bias voltage Vbiasd supplied to the plurality of signal amplifiers 24 arranged for each column is sampled and held by the control signal SH2 at least within the AD conversion period.
  • the sample and hold transistor 270 is turned on by controlling the control signal SH2 to the L level before the start of pixel signal reading in which the signal voltage Vx changes.
  • the bias voltage Vbiasd is supplied from the reference current source circuit 82 to the gate of the constant current source transistor 215 and the sample hold capacitor 273.
  • the transistor 261 that supplies the bias voltage Vbiasd constitutes a current mirror circuit with the constant current source transistor 215. Therefore, a constant current is supplied to the signal amplifier 24 in a manner that mirrors the current supplied from the reference current source 281. For example, by setting the W / L size ratio of the transistor 261 and the constant current source transistor 215 to m: 1, the signal amplifier 24 allows a constant current that is 1 / m of the current supplied from the reference current source 281 to flow. Can do.
  • the transistor 261 forms a current mirror circuit with the constant current source transistor 215. Therefore, even when the characteristics of the constant current source transistor 215 of the signal amplifier 24 fluctuate due to manufacturing variations and temperature changes, the current flowing through the signal amplifier 24 can be accurately set. That is, the solid-state imaging device 10G can reduce the characteristic variation of the signal amplifier 24 due to manufacturing variations and temperature changes.
  • the bias voltage Vbiasd can be simultaneously supplied to the gates of the constant current source transistors 215 arranged in the plurality of columns. Thereby, the bias voltage Vbiasd can be supplied to the plurality of constant current source transistors 215 in a short period of time.
  • a solid-state imaging device suitable for application to a digital video camera or a digital still camera has thousands of sample and hold circuits 70 in the column direction. Therefore, when the bias voltage is sequentially held for each column, there is a problem that the frame rate (number of frames) for outputting the image signal is extremely lowered.
  • the bias voltage Vbiasd can be supplied simultaneously for a plurality of columns, so that the drop in the frame rate (the number of frames) can be greatly reduced.
  • the sample hold transistor 270 is turned off by controlling the control signal SH2 from the H level to the L level.
  • the bias voltage Vbiasd supplied from the reference current source circuit 82 is electrically separated for each column.
  • the bias voltage Vbiasd is sampled and held in the sample and hold capacitor 273.
  • the voltage VG2 in the x and i columns shown in FIG. 14 maintains the voltage level of the bias voltage Vbiasd, respectively.
  • the signal amplifier 24 can continue to supply a constant current.
  • the control signal SH2 is controlled from the H level to the L level.
  • the sample hold transistor 270 is turned on again. Therefore, the bias voltage Vbiasd can be supplied from the reference current source circuit 82 to the gate of the constant current source transistor 215 and the sample hold capacitor 273.
  • noise reduction for example, a situation is assumed in which the input signal of the i-row signal amplifier 24-i varies and the input signal of the x-column does not vary.
  • FIGS. 16A and 16B an example of an image in which a subject 203 brighter than the surroundings exists in the i-th to j-th columns will be described.
  • the output signals of the signal amplifiers 24 in the i-th to j-th columns vary greatly.
  • the constant current source transistors 215 or the amplification transistors 211 in the i-th to j-th columns cannot operate in the saturation region, so that the current flowing through these transistors greatly fluctuates.
  • the voltage of the ground line L22 or the power supply voltage line L21 varies.
  • white stripes are formed from the first column to the (i ⁇ 1) th column region 204 and from the j + 1th column to the mth column region 205 located on the left and right of the bright subject 203. Noise or black band noise occurs.
  • the common-source signal amplifier 24 having a large gain when used, the influence of the horizontal band circuit noise as shown in FIGS. 16A and 16B becomes more remarkable. The reason is that, first, when the gain of the signal amplifier 24 is high, even when the input level is low, the output signal of the amplifier 45 varies greatly. Therefore, even when strong light is not incident, the constant current source transistor 215 or the amplification transistor 211 cannot operate in the saturation region.
  • the band becomes narrower when the gain is increased. That is, even when the constant current source transistor 215 or the amplification transistor 211 does not operate in the saturation region, the period required for the output signal to become stable becomes longer due to the narrow band. Therefore, the period during which the voltage of the ground line L12 varies, that is, the period during which the current flowing through the amplifier 45 changes becomes longer. Thereby, the influence of the horizontal band-like circuit noise becomes more remarkable.
  • the circuit noise due to the voltage fluctuation of the power supply / ground is reduced by including the reference current source circuit 82 and the sample hold circuit 70 provided for each signal amplifier 24.
  • the solid-state imaging device 10G reduces this circuit noise by sample-holding the bias voltage Vbiasd supplied from the reference current source circuit 82 for each column. This action will be specifically described.
  • the output signal of the i column fluctuates greatly and the voltage level of the signal voltage of the x column is small.
  • the voltage of the power supply voltage line L21 fluctuates. If this variation is ⁇ V, the voltage of the power supply voltage line L21 of the signal amplifier 24-x in the x column also varies by ⁇ V.
  • the bias voltage Vbiasd is held in the x-column sample hold circuit 70 before the output signal of the i-column signal amplifier 24-i greatly fluctuates.
  • the control signal SH2 is controlled to the H level during the AD conversion period. Therefore, the sample hold transistor 270 in the x column is OFF, and the voltage Vbias ⁇ Vddc is held in the sample hold capacitor 273 in the x column. That is, even if the power supply voltage line L21 connected to the sample and hold capacitor 273 fluctuates by ⁇ V, the voltage difference between both ends of the x and column sample and hold capacitors 273 is held. Therefore, the voltage VG2 of the bias line L25 connected to the sample hold capacitor 273 in the x column is Vbiasd + ⁇ V.
  • the gate voltage VG2 of the constant current source transistor 215 in the x column becomes Vbiasd + ⁇ V.
  • the constant current source transistor 215 supplies a current depending on the voltage difference Vgs between the gate and the source as shown in (Formula 1). Since the gate voltage Vg is Vbiasd + ⁇ V and the source voltage Vs is Vddc + ⁇ V, the gate-source voltage Vgs is expressed by the following (formula 4).
  • the solid-state imaging device 10G according to the present embodiment can continue to supply a constant current to the signal amplifier 24 even when the voltage of the power supply voltage line L21 varies by ⁇ V. That is, the solid-state imaging device 10G according to the present embodiment receives the signal without being affected by the voltage fluctuation ⁇ V of the power supply voltage line L21 due to the action of the sample hold transistor 270 and the sample hold capacitor 273 included in the sample hold circuit 70.
  • the constant current can be continuously supplied to the amplifier 24.
  • the signal amplifier 24-x Since the current does not fluctuate, the constant current can be continuously supplied to the signal amplifier 24-x having a small output signal. Thereby, it is possible to reduce the lateral band-like noise as shown in FIGS. 16A and 16B.
  • control signal SH2 is controlled to the H level during the AD conversion period.
  • noise generated by the transistor 261 constituting the reference current source circuit 82 and the reference current source 281 that supplies the reference current can be canceled. This operation will be described with reference to the timing chart of FIG.
  • a voltage VG2 shown in FIG. 15 indicates a bias voltage supplied to the gate of the constant current source transistor 215.
  • a solid line indicates the bias voltage VG2 in the present embodiment, and a dotted line indicates the voltage VG2 when the sample hold circuit 70 is not used.
  • the bias voltage VG2 fluctuates during the AD conversion period due to the influence of the noise of the reference current source circuit 82.
  • high-frequency noise includes thermal noise and 1 / f noise of the transistors constituting the reference current source circuit 82.
  • low-frequency noise includes fluctuation of the bias voltage Vbiasd due to fluctuation of the ground potential of the reference current source circuit 82 during the AD conversion period.
  • the ground potential fluctuation factors include, for example, current fluctuation due to current fluctuation of the signal amplifier 24 during the AD conversion period, and current fluctuation due to the pixel signal readout circuit configured by the amplification transistor 104 and the constant current source transistor 142. It is done.
  • the bias voltage Vbiasd is commonly applied to the gates of the constant current source transistors 215 in a plurality of columns. Accordingly, a common noise is generated in the signal amplifiers 24 in a plurality of columns, thereby generating a horizontal stripe noise. As shown in FIG. 8, the horizontal streak noise is generated as a horizontal streak as an image, and thus is easier to visually recognize than noise generated randomly in space. Therefore, this noise is a factor that greatly deteriorates the image quality even when the noise level is low.
  • the bias voltage Vbiasd is sampled and held by the sample and hold circuit 70 provided in each column. Further, the gate voltage VG2 of each column is electrically separated from the bias voltage Vbiasd supplied from the reference current source circuit 82. Thereby, during the AD conversion period, the influence of the noise of the bias voltage supplied from the reference current source circuit 82 on the constant current source transistors 215 in each column can be suppressed. In addition, since the gates of the constant current source transistors 215 in each column are electrically separated from each other, even if noise occurs in the bias voltage held in the sample hold circuit 70 in a certain column, the noise is not generated in the other column. The influence of the bias voltage on the bias voltage can be suppressed. Thereby, generation
  • the bias voltage Vbiasd supplied from the reference current source circuit 82 is supplied to the gate of the constant current source transistor 215 by the control signal SH2 becoming L level before the pixel signal readout is started. At this time, it is assumed that noise ⁇ VN1 is generated in the bias voltage Vbiasd supplied from the reference current source circuit 82.
  • control signal SH2 is switched from the L level to the H level.
  • the bias voltage Vbiasd + ⁇ VN1 is held in the sample hold circuit 70.
  • the up / down counter 32 performs the down-count operation as the first count operation and performs the up-count operation as the second count operation.
  • the subtraction process of (second comparison period) ⁇ (first comparison period) is automatically performed in the up / down counter 32.
  • (second comparison period) (signal component Vsig + reset component ⁇ V + ⁇ VN2 + AD converter 23A offset component)
  • ⁇ (reset component ⁇ V + ⁇ VN2 + AD converter 23A offset component) (signal Component Vsig). That is, the noise ⁇ VN2 is also removed by the two read operations and the subtraction process by the up / down counter 32.
  • noise is generated in the bias voltage supplied from the reference current source circuit 80 by sample-holding the bias voltage supplied from the reference current source circuit 80 during the AD conversion period. Even in this case, the influence of this noise can be reduced by the CDS process.
  • the solid-state imaging device In addition to the characteristics of the solid-state imaging device according to the first embodiment described above, the solid-state imaging device according to the fifth embodiment of the present invention puts the comparator that has finished the comparison operation into a power-down state. Thereby, the power consumed by the comparator can be reduced.
  • FIG. 17 is a block diagram showing a configuration of a solid-state imaging device 10H according to the fifth embodiment of the present invention.
  • the solid-state imaging device 10H according to the fifth embodiment of the present invention further includes an AD converter 23H (column circuit) included in the column processing unit 14H.
  • 20H includes a power-down control unit 51.
  • the power down control unit 51 is disposed between the comparator 31H and the up / down counter 32, and controls the current flowing through the comparator 31H.
  • FIG. 18 is a circuit diagram of the comparator 31H and the power-down control unit 51.
  • the 18 includes a transistor 175 for controlling the current of the comparator 31H in addition to the configuration of the comparator 31A according to the first embodiment.
  • the transistor 175 is connected between the gates of the constant current source transistor 115 and 122 and the ground line L12.
  • the power-down control unit 51 includes a flip-flop 511 and sets the power-down signal Vpd to the H level at the timing when the output signal Vco from the comparator 31H is inverted from the L level to the H level.
  • the power down signal Vpd is input to the comparator 31H.
  • the comparator 31H is in an operating state, and when the power down signal Vpd is at H level, the comparator 31H is stopped (power down state). That is, the power-down control unit 51 stops supplying power to the comparator 31H at the timing when the output signal Vco is inverted from the H level to the L level. Specifically, the power down control unit 51 stops the supply of the drive current to the comparator 31H.
  • the transistor 175 is turned on. As a result, the constant current source transistors 115 and 122 are turned off. Therefore, since the drive current is not supplied to the differential amplifier 41 and the inverting amplifier 42 that constitute the comparator 31H, the comparator 31H is stopped.
  • the gate of the constant current source transistor 115 in the x column and the gate of the constant current source transistor 115 in the i column are electrically separated.
  • the voltages VG1 of the gates i column and x column are sampled and held, respectively.
  • the current mirror circuit formed by the reference current source transistor 171 and the current mirror transistor 172 in the x column is not affected by the voltage fluctuation of the ground line L12 by the i column amplifier 40, and the x column amplifier 40 is not affected.
  • the configuration of the comparator 31H is not limited to the configuration shown in FIG. 18 and may be any configuration having the same function.
  • a transistor 178 may be provided in the current mirror circuit as in the comparator 31I illustrated in FIG. In this configuration, when the power down signal Vpd becomes H level, the transistor 175 is turned on and the transistor 178 is turned off. As a result, the current mirror transistor 172 and the constant current source transistors 115 and 122 are turned off. Therefore, since the drive current is not supplied to the amplifier 40 included in the comparator 31I, the comparator 31I is stopped.
  • the sample and hold unit includes the sample and hold capacitor that holds the bias voltage
  • the sample and hold capacitor may be a dedicated capacitor.
  • a parasitic capacitance may be used as the sample hold capacitance.
  • the parasitic capacitance is a sample-and-hold capacitance that is a capacitance between the gate and the substrate of the constant current transistor and a capacitance between the gate and the source.
  • the AD converters including the comparators are arranged in the number of pixel columns in accordance with the pixel pitch, that is, in a one-to-one correspondence relationship with the pixel columns.
  • the present invention is not limited to this application example. That is, one AD converter may be arranged for a plurality of vertical signal lines 22. In this case, the AD converter AD converts the signal voltage output to the plurality of vertical signal lines 22 corresponding to the time division.
  • pixel signals (analog signals) output from the pixel cells 11 through the vertical signal lines 22-1, 22-2,..., 22-m are AD converted or signal amplified in the column circuit.
  • this is only an example.
  • the present invention can be applied to a case where at least one of a signal amplifier and an AD converter is incorporated in each of the plurality of pixel cells 11.
  • a technique similar to that of the above-described AD converter and signal amplifier may be applied to at least one of the signal amplifier and AD converter incorporated in the pixel cell 11.
  • the example has been described in which the AD converter obtains a digital signal by measuring time.
  • the present invention can be applied to AD converters having other configurations.
  • the present invention is applied to signal amplifiers and AD converters in general that include one or a plurality of amplifiers arranged for each column, and the sources of the constant current source transistors in the amplifier are commonly connected between the columns. Is possible.
  • the solid-state imaging device that detects the light quantity distribution of the image light from the subject as a physical quantity distribution in units of pixels has been described as an example.
  • the present invention is limited to this application example. It is not something that can be done.
  • the present invention can be similarly applied to all solid-state imaging devices using an XY address system other than a MOS image sensor and mounted with a column parallel amplifier or a column parallel AD converter.
  • the present invention can be applied to all physical quantity distribution detection devices that detect a physical quantity distribution using the XY address system and mounting a column parallel amplifier or a column parallel AD converter.
  • This imaging device is, for example, a digital video camera, a digital still camera, or a camera module for mobile devices such as a mobile phone.
  • FIG. 20 is a block diagram showing an example of the configuration of the imaging apparatus according to the present invention.
  • the imaging apparatus according to the present embodiment includes an optical system including a lens 61, an imaging device 62, a camera signal processing circuit 63, and a system controller 64.
  • the lens 61 forms image light from the subject on the imaging surface of the imaging device 62.
  • the imaging device 62 converts the image light imaged on the imaging surface by the lens 61 into an electrical signal for each pixel, and outputs an image signal obtained by the conversion.
  • the imaging device 62 the solid-state imaging device according to each embodiment described above is used.
  • the camera signal processing circuit 63 performs various signal processing on the image signal output from the imaging device 62.
  • the system controller 64 controls the imaging device 62 and the camera signal processing circuit 63.
  • the imaging device 62 has a normal frame rate mode and a high-speed frame rate mode. Further, the imaging device 62 controls the AD conversion operation according to these modes.
  • the normal frame rate mode is an operation mode in the progressive scanning method for reading out information of all pixels.
  • the high-speed frame rate mode is an operation mode in which the frame rate is increased M times by setting the pixel exposure time to 1 / M compared to the normal frame rate mode. In such a case, the system controller 64 performs this operation mode switching control in accordance with an external command.
  • the imaging apparatus according to the sixth embodiment of the present invention can reduce noise that cannot be removed by the CDS process by using the solid-state imaging apparatus according to each of the embodiments described above as the imaging device 62. Thereby, the imaging apparatus can improve the S / N as an image sensor, and thus has an advantage that the image quality can be greatly improved.
  • each processing unit included in the solid-state imaging device according to the embodiment is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • a part of the functions of the solid-state imaging device or the imaging device according to the embodiment of the present invention may be realized by a processor such as a CPU executing a program.
  • the present invention may be the above program or a non-transitory computer-readable recording medium on which the above program is recorded.
  • the program can be distributed via a transmission medium such as the Internet.
  • division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be.
  • functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
  • MOS transistors In the above description, an example using MOS transistors is shown, but other transistors may be used.
  • the circuit configuration shown in the circuit diagram is an example, and the present invention is not limited to the circuit configuration. That is, like the above circuit configuration, a circuit that can realize a characteristic function of the present invention is also included in the present invention.
  • the present invention includes a device in which a device such as a switching device (transistor), a resistor, or a capacitor is connected in series or in parallel to a certain device within a range in which a function similar to the above circuit configuration can be realized. It is.
  • “connected” in the above-described embodiment is not limited to the case where two terminals (nodes) are directly connected, and the two terminals (nodes) can be realized within a range in which a similar function can be realized. ) Is connected via an element.
  • the present invention can be applied to a solid-state imaging device.
  • the present invention can be applied to a digital video camera, a digital still camera, a mobile phone device, and the like that use a solid-state imaging device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 本発明に係る固体撮像装置(10A)は、行列状に配置された複数の画素セル(11)と、列毎に一つ設けられており、複数の垂直信号線(22)と、1以上の列毎に一つ設けられており、対応する列に配置された垂直信号線(22)に出力された信号電圧が入力される複数の列回路(20)とを備え、列回路(20)の各々は、定電流源トランジスタ(115及び122)を含むアンプ(40)を備え、固体撮像装置(10A)は、さらに、複数の列回路(20)に含まれる複数の定電流源トランジスタ(115及び122)のゲートに第1バイアス電圧を供給する基準電流源回路(80)を備え、列回路(20)の各々は、さらに、第1バイアス電圧を保持するサンプルホールド回路(50)を備える。

Description

固体撮像装置及び撮像装置
 本発明は、固体撮像装置及び撮像装置に関する。
 近年、デジタルビデオカメラ及びデジタルスチルカメラ等への応用に適した固体撮像装置として、MOS(Metal Oxide Semiconductor)型の固体撮像装置の開発が活発に進められている。このMOS型固体撮像装置は、画素毎に光電変換素子で光電変換された信号電荷を増幅して取り出すよう構成されている。また、MOS型固体撮像装置は、画素が行列状に2次元配置されてなる画素アレイの駆動回路、及び信号処理回路を、当該画素アレイと同一チップ上に集積できるという特長を持つ。
 また、その信号出力系としては、画素アレイの複数の画素を行単位で選択し、その選択行の複数の画素の信号を同時に列方向(画素列に沿った方向)へと読み出す列並列出力型が主流である。この列並列出力型の固体撮像装置の信号出力回路については様々な構成が提案されている。その最も進んだ形態の一つとして、例えば列毎にAD変換器を配置し、画素から出力されるアナログ信号をデジタル信号として取り出す構成の列並列型AD変換装置を搭載したMOS型固体撮像装置が知られている。
 図21は、特許文献1に示された列並列型AD変換装置を搭載したMOS型固体撮像装置10を示すブロック図である。
 図21に示すように、複数の画素セル11で生成された信号は、列毎に配置される複数の垂直信号線22-1、22-2、・・・22-mへ同時に読み出される。また、固体撮像装置10は、比較器31を備え、垂直信号線22に読み出された信号は、各々の垂直信号線22-1、22-2、・・・22-mに対して配置されている列並列型のAD変換器23-1、23-2、・・・23-mにより、同時にAD変換される。
特開2007-281540号公報
 しかし、従来技術で示された固体撮像装置は、比較器等のアンプに起因するノイズにより、ノイズ特性の劣化及び画質が劣化するという課題を有していた。
 上記課題に鑑み、本発明は、ノイズ特性及び画質の劣化を抑制できる固体撮像装置を提供することを目的とする。
 上記目的を達成するために、本発明の一形態に係る固体撮像装置は、受光量に応じて信号電荷を生成する光電変換素子と、前記信号電荷を増幅することで信号電圧を生成する増幅トランジスタとを各々が含み、行列状に配置された複数の画素セルと、列毎に一つ設けられており、前記複数の画素セルのうち対応する列に配置された複数の画素セルにより生成された前記信号電圧が出力される複数の垂直信号線と、1以上の列毎に一つ設けられており、対応する列に配置された前記垂直信号線に出力された前記信号電圧が入力される複数の列回路とを備える固体撮像装置であって、前記複数の列回路の各々は、前記信号電圧に基づく入力信号が入力され、定電流源トランジスタを含むアンプを備え、前記固体撮像装置は、さらに、前記複数の列回路に含まれる複数の前記定電流源トランジスタのゲートに第1バイアス電圧を供給する基準電流源回路を備え、前記複数の列回路の各々は、さらに、前記第1バイアス電圧を保持するサンプルホールド回路を備える。
 この構成によれば、列回路ごとに設けられたサンプルホールド回路は、定電流源トランジスタのゲートに供給するバイアス電圧を保持する。これにより、複数のアンプのうちのいずれかのアンプの電流変動に起因して電源電圧線又はグランド線の電圧変動が発生した場合の、他のアンプに流れる電流の変動を抑制できる。よって、本発明の一形態に係る固体撮像装置は、S/N特性及び画質の劣化を抑制できる。
 また、前記複数の列回路の各々は、前記信号電圧をデジタル信号に変換するAD変換部を備え、前記AD変換部は、前記信号電圧と参照信号とを比較する比較器を備え、前記アンプは、前記比較器に含まれ、前記信号電圧と前記参照信号とが入力されるアンプであり、前記サンプルホールド回路は、前記比較器が前記参照信号と前記信号電圧とを比較する期間において、前記第1バイアス電圧を保持してもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、ある比較器に含まれるアンプの出力信号が反転したことに起因して電源電圧線又はグランド線の電圧変動が発生した場合の、他の比較器に含まれるアンプに流れる電流の変動を抑制できる。
 また、前記アンプは、前記信号電圧と参照信号とを比較する差動アンプと、前記定電流源トランジスタを含み、前記差動アンプの出力信号を増幅する増幅アンプとを備え、前記サンプルホールド回路は、前記差動アンプが参照信号と前記信号電圧とを比較する期間において、前記第1バイアス電圧を保持してもよい。
 この構成によれば、電流変動が大きい増幅アンプの電流変動に起因するノイズを低減できる。
 また、前記複数の列回路の各々は、前記アンプを含み、前記信号電圧を増幅する信号増幅器を備え、前記サンプルホールド回路は、前記信号増幅器が前記信号電圧を増幅する期間において、前記第1バイアス電圧を保持してもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、ある信号増幅器に含まれるアンプの出力信号が変化したことに起因して電源電圧線又はグランド線の電圧変動が発生した場合の、他の信号増幅器に含まれるアンプに流れる電流の変動を抑制できる。
 また、前記サンプルホールド回路は、前記定電流源トランジスタのゲートと前記基準電流源回路との間に接続されたサンプルホールドトランジスタと、前記定電流源トランジスタのゲートに接続されたサンプルホールド容量とを備えてもよい。
 この構成によれば、サンプルホールド回路のタイミング制御を容易に行うことができる。
 また、サンプリング容量により、サンプルホールド期間中における、サンプルホールドトランジスタのリーク電流の影響、及び定電流源トランジスタのゲートリークの影響に伴う、サンプルホールド電圧の変動を抑制することができる。
 また、前記固体撮像装置は、さらに、前記基準電流源回路と、前記複数の列回路に含まれる複数の前記サンプルホールド回路とに接続されているバイアス線を備え、前記基準電流源回路は、前記バイアス線を介して、前記複数の定電流源トランジスタのゲートに前記第1バイアス電圧を供給してもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、複数のサンプルホールド回路にバイアス電圧を同時に印加することができる。これにより、複数のサンプルホールド回路にバイアス電圧を供給する期間を短くできるので、フレームレート(コマ速)を向上できる。
 また、前記基準電流源回路は、前記定電流源トランジスタとカレントミラー回路を形成するトランジスタと、前記トランジスタに基準電流を供給する参照電流源とを備えてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、参照電流源から供給される電流とカレントミラー回路のミラー比とに応じて、アンプに定電流を供給することができる。
 また、前記基準電流源回路は、前記列回路ごとに一つ設けられた複数の第1基準電流源部を備え、前記複数の第1基準電流源部の各々は、前記定電流源トランジスタとカレントミラー回路を構成し、前記定電流源トランジスタのゲートに前記第1バイアス電圧を供給するカレントミラートランジスタと、前記カレントミラートランジスタに対して基準電流を供給する参照電流源トランジスタとを備えてもよい。
 この構成によれば、サンプルホールドトランジスタの両端子がそれぞれ、複数の列間で電気的に分離されるので、複数列で共通に発生するノイズを低減することができる。これにより、横筋状のノイズを低減することができる。
 また、前記基準電流源回路は、さらに、前記複数の第1基準電流源部に含まれる複数の前記参照電流源トランジスタのゲートに接続されているバイアス線と、前記バイアス線を介して、前記複数の参照電流源トランジスタのゲートに第2バイアス電圧を供給する第2基準電流源部とを備えてもよい。
 この構成によれば、複数のサンプルホールド回路にバイアス電圧を同時に印加することができる。これにより、複数のサンプルホールド回路にバイアス電圧を供給する期間を短くできるので、フレームレート(コマ速)を向上できる。
 また、前記サンプルホールド回路は、前記比較器が参照信号と前記信号電圧とを比較する期間外に、前記第1バイアス電圧を取り込み保持してもよい。
 この構成によれば、サンプルホールド回路のタイミング制御を容易に行うことができる。
 また、前記サンプルホールド回路は、前記信号増幅器が前記信号電圧を増幅する期間外に、前記第1バイアス電圧を取り込み保持してもよい。
 この構成によれば、サンプルホールド回路のタイミング制御を容易に行うことができる。
 また、前記アンプはソース接地型アンプであってもよい。
 この構成によれば、電流変動が大きいソース接地型アンプの電流変動に起因するノイズを低減できる。
 また、前記列回路は、さらに、前記アンプを停止させるパワーダウン制御部を備えてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、動作が完了したアンプを停止させることで低消費電力化を実現できる。さらに、あるアンプを停止させたことにより電源電圧線又はグランド線の電圧変動が発生した場合の、他のアンプに流れる電流の変動を抑制できる。
 なお、本発明は、このような固体撮像装置として実現できるだけでなく、固体撮像装置に含まれる特徴的な手段をステップとする固体撮像装置の制御方法又は駆動方法として実現できる。
 さらに、本発明は、このような固体撮像装置の機能の一部又は全てを実現する半導体集積回路(LSI)として実現したり、このような固体撮像装置を備える撮像装置(カメラ)として実現したりできる。
 以上より、本発明は、ノイズ特性及び画質の劣化を抑制できる固体撮像装置を提供できる。
図1は、本発明の第1の実施形態に係る固体撮像装置の構成例を示すブロック図である。 図2は、本発明の第1の実施形態に係る画素セルの回路図である。 図3は、本発明の第1の実施形態に係る比較器の回路図である。 図4は、本発明の第1の実施形態に係る固体撮像装置の動作を示すタイミングチャートである。 図5は、本発明の第1の実施形態の比較例に係る比較器の回路図である。 図6は、本発明の第1の実施形態に係る画像の一例を示す図である。 図7Aは、本発明の第1の実施形態に係るノイズ発生例を示す図である。 図7Bは、本発明の第1の実施形態に係るノイズ発生例を示す図である。 図8は、本発明の第1の実施形態に係るノイズ発生例を示す図である。 図9は、本発明の第2の実施形態に係る比較器の回路図である。 図10は、本発明の第2の実施形態に係る比較器の変形例の回路図である。 図11は、本発明の第3の実施形態に係る比較器の回路図である。 図12は、本発明の第3の実施形態に係る比較器の変形例の回路図である。 図13は、本発明の第4の実施形態に係る固体撮像装置の構成を示すブロック図である。 図14は、本発明の第4の実施形態に係る信号増幅器の回路図である。 図15は、本発明の第4の実施形態に係る固体撮像装置の動作を示すタイミングチャートである。 図16Aは、本発明の第4の実施形態に係るノイズ発生例を示す図である。 図16Bは、本発明の第4の実施形態に係るノイズ発生例を示す図である。 図17は、本発明の第5の実施形態に係る固体撮像装置の構成を示すブロック図である。 図18は、本発明の第5の実施形態に係る比較器の回路図である。 図19は、本発明の第5の実施形態に係る比較器の変形例の回路図である。 図20は、本発明の第6の実施形態に係る撮像装置の構成例を示すブロック図である。 図21は、従来の比較器の回路構成例を示す回路図である。
 以下、本発明の実施形態について図面を参照して詳細に説明する。なお、以下で説明する実施形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 (第1の実施形態)
 本発明の第1の実施形態に係る固体撮像装置は、列毎に設けられたアンプと、当該アンプに含まれる定電流源トランジスタのゲート電圧を保持(サンプルホールド)するサンプルホールド回路とを備える。これにより、複数のアンプのうちのいずれかのアンプの電流変動に起因して電源電圧線の電圧変動が発生した場合の、他のアンプに流れる電流の変動を抑制できる。このように、当該固体撮像装置は、S/N特性及び画質の劣化を抑制できる。
 まず、本発明の第1の実施形態に係る固体撮像装置10Aの構成を説明する。
 図1は、本発明の第1の実施形態に係る固体撮像装置10Aの構成を示すブロック図である。図1に示すように、固体撮像装置10Aは、少なくとも1つの光電変換素子を含む繰返し単位である画素セル11が行列状(マトリックス状)に2次元配置されている画素アレイ12と、行走査回路13と、カラム処理部14Aと、参照信号生成部15と、列走査回路16と、水平出力線17と、タイミング制御回路18とを備える。
 この構成において、タイミング制御回路18は、マスタークロックMCKに基づいて、行走査回路13、カラム処理部14A、参照信号生成部15及び列走査回路16などの動作の基準となるクロック信号及び制御信号などを生成する。そして、タイミング制御回路18は、生成したクロック信号及び制御信号を、行走査回路13、カラム処理部14A、参照信号生成部15及び列走査回路16などに供給する。
 行走査回路13、カラム処理部14A、参照信号生成部15、列走査回路16、水平出力線17及びタイミング制御回路18は、画素アレイ12の各画素セル11を駆動及び制御する周辺の駆動系及び信号処理系である。これら駆動系及び信号処理系は、画素アレイ12と同一のチップ(半導体基板)上に集積される。
 画素アレイ12には、m列n行の画素セル11が2次元配置されている。このm列n行の画素配置に対して行毎に行制御線21(21-1~21-n)が配置され、列毎に垂直信号線22(22-1~22-m)が配置されている。行制御線21-1~21-mの各一端は、行走査回路13の各行に対応した各出力端子に接続されている。行走査回路13は、シフトレジスタ及びアドレスデコーダなどによって構成され、行制御線21-1~21-nを介して画素アレイ12の行アドレス及び行走査の制御を行う。
 カラム処理部14Aは、例えば、画素アレイ12の画素列毎、即ち垂直信号線22-1~22-m毎に1対1の対応関係をもって設けられたAD変換器(アナログ-デジタル変換器)23A-1~23A-mを有する。このAD変換器23Aは、対応する列に配置されている画素セル11から出力されるアナログ信号(画素信号又は信号電圧とも呼ぶ)をデジタル信号に変換し、変換したデジタル信号を出力する。
 また、固体撮像装置10Aは、列毎に一つ設けられた複数の列回路20(20-1~20-m)を備える。この列回路20~1~20-mの各々は、対応する列に配置されているAD変換器23を含む。
 参照信号生成部15は、時間が経過するにつれて電圧値が階段状に変化する、いわゆるランプ(RAMP)波形の参照信号Vrefを生成する手段として、例えばDAC(デジタル-アナログ変換器)151を有している。なお、ランプ波形の参照信号Vrefを生成する手段は、DAC151に限られるものではない。
 DAC151は、タイミング制御回路18から与えられる制御信号CS1による制御に従い、タイミング制御回路18から与えられるクロックCKに基づいてランプ波形の参照信号Vrefを生成する。また、DAC151は、生成した参照信号Vrefをカラム処理部14Aに含まれるAD変換器23A-1~23A-mに供給する。
 AD変換器23A-1~23A-mは全て同じ構成となっており、ここでは、AD変換器23A-mを例に挙げて説明する。AD変換器23A-mは、比較器31Aと、計数手段である例えばアップ/ダウンカウンタ(図中、「U/DCNT」と記している)32と、転送スイッチ33と、メモリ34とを有する。
 比較器31Aは、画素アレイ12のm列目の各画素セル11から出力される画素信号に応じた垂直信号線22-mの信号電圧Vxと、参照信号生成部15から供給されるランプ波形の参照信号Vrefとを比較する。そして、比較器31Aは、例えば、参照信号Vrefが信号電圧Vxよりも大きい場合に出力信号VcoをHレベルにし、参照信号Vrefが信号電圧Vx以下の場合に出力信号VcoをLレベルにする。
 アップ/ダウンカウンタ32は、非同期カウンタであり、タイミング制御回路18から与えられる制御信号CS2による制御に従い動作する。また、アップ/ダウンカウンタ32には、タイミング制御回路18からクロックCKがDAC151と同時に与えられる。アップ/ダウンカウンタ32は、当該クロックCKに同期してダウン(DOWN)カウント又はアップ(UP)カウントを行うことにより、比較器31Aでの比較動作の開始から比較動作の終了までの比較期間を計測する。
 転送スイッチ33は、タイミング制御回路18から与えられる制御信号CS3による制御に従い、ある行の画素セル11についてのアップ/ダウンカウンタ32のカウント動作が完了した時点でオン(閉)状態になる。これにより、当該アップ/ダウンカウンタ32のカウント結果がメモリ34に転送される。
 このようにして、画素アレイ12の各画素セル11から垂直信号線22-1~22-mを経由して列毎に供給されるアナログ信号が、AD変換器23A(23A-1~23A-m)に含まれる比較器31A及びアップ/ダウンカウンタ32の各動作により、Nビットのデジタル信号に変換される。そして、変換されたNビットのデジタル信号がメモリ34に格納される。
 列走査回路16は、シフトレジスタ及びアドレスデコーダなどによって構成され、カラム処理部14AにおけるAD変換器23A-1~23A-mの列アドレス及び列走査の制御を行う。この列走査回路16による制御に従い、AD変換器23A-1~23A-mの各々でAD変換されたNビットのデジタル信号は、順にNビット幅の水平出力線17に読み出される。そして、読み出されたデジタル信号は、当該水平出力線17を経由して撮像データとして外部に出力される。
 なお、本発明には直接関連しないため特に図示しないが、水平出力線17を経由して出力される撮像データに対して各種の信号処理を施す回路等を、上記構成要素以外に設けることも可能である。
 上記構成の本実施形態に係る固体撮像装置10Aにおいては、アップ/ダウンカウンタ32のカウント結果を、転送スイッチ33を介して選択的にメモリ34に転送することができる。これにより、アップ/ダウンカウンタ32のカウント動作と、当該アップ/ダウンカウンタ32のカウント結果の水平出力線17への読み出し動作とを独立して制御することが可能である。
 図2は、画素セル11及び定電流源35の回路構成を示す回路図である。図3は、本発明の第1の実施形態に係る比較器31Aの回路構成例を示す回路図である。図2及び図3には、x列及びx列の隣のi列の画素セル11(11-x、11-i)と、比較器31A(31A-x、31A-i)との具体的な回路構成を示している。
 画素セル11は、光電変換素子101と、FD(フローティングディフュージョン)105と、転送トランジスタ102と、リセットトランジスタ103と、増幅トランジスタ104とを有する3トランジスタ構成である。
 光電変換素子101は、例えばフォトダイオードであり、受光量に応じて信号電荷を生成する。転送トランジスタ102は、光電変換素子101で光電変換して得られる信号電荷をFD105に転送する。リセットトランジスタ103は、FD105の電圧Vfdを制御(リセット)する。増幅トランジスタ104は、光電変換素子101で生成された信号電荷を増幅することで信号電圧Vxを生成する。具体的には、増幅トランジスタ104は、FD105の電圧Vfdに応じた信号電圧Vxを生成し、生成した信号電圧Vxを、対応する列の垂直信号線22に出力する。
 なお、画素セル11は、上記3トランジスタ構成のものに限られるものではない。例えば、画素セル11として、上記3つのトランジスタに加えて、画素選択を行うための選択トランジスタを別に有する4トランジスタ構成を用いることも可能である。
 垂直信号線22は、列毎に一つ設けられており、対応する列に配置された複数の画素セル11により生成された信号電圧Vxが出力される。この垂直信号線22の一端は、定電流源35に接続されている。
 定電流源35は、定電流源トランジスタ142を備える。また、固体撮像装置10Aは、ゲートとドレインとが共通接続されたダイオード接続構成のトランジスタ141を備える。定電流源トランジスタ142は、垂直信号線22の各一端とグランド(接地電位)との間に接続され、ゲートがトランジスタ141のゲートに接続されている。つまり、定電流源トランジスタ142はトランジスタ141と共にカレントミラー回路を形成する。また、トランジスタ141は、複数の定電流源トランジスタ142のゲートに共通に接続されている。
 比較器31Aは、信号電圧Vxと参照信号Vrefとを比較する。この比較器31Aは、アンプ40と、インバータ43とを有する。
 アンプ40には、信号電圧Vxに基づく入力信号が入力される。この、アンプ40は、差動アンプ41と、反転アンプ42とを有する。
 差動アンプ41は、差動対トランジスタ111及び112と、能動負荷トランジスタ113及び114と、定電流源トランジスタ115と、容量素子116及び117と、スイッチトランジスタ118及び119とを備える。
 差動対トランジスタ111及び112は、ソースが共通に接続されており、差動対を形成している。一方の差動対トランジスタ111のゲートには、容量素子116を介して参照信号Vrefが入力される。他方の差動対トランジスタ112のゲートには、容量素子117を介して信号電圧Vxが入力される。
 スイッチトランジスタ118は、差動対トランジスタ111のゲートとドレインとの間に接続され、ゲートにはセット信号PSETが選択的に与えられる。同様に、スイッチトランジスタ119は、差動対トランジスタ112のゲートとドレインとの間に接続され、ゲートにはセット信号PSETが選択的に与えられる。
 能動負荷トランジスタ113は、差動対トランジスタ111のドレインと、電源電圧線L11との間に接続されている。能動負荷トランジスタ114は、差動対トランジスタ112のドレインと、電源電圧線L11との間に接続されている。この能動負荷トランジスタ113及び114は、ゲートが互いに共通に接続されている。能動負荷トランジスタ113は、ゲートとドレインとが共通に接続されたダイオード接続構成となっており、能動負荷トランジスタ114と共にカレントミラー回路を形成している。
 また、電源電圧線L11には電源電圧Vddaが印加されており、グランド線L12には接地電位Vss(グランド電位)が印加されている。
 定電流源トランジスタ115は、差動対トランジスタ111及び112のソース共通接続ノードと、グランド線L12との間に接続され、ゲートには一定の電圧VG1が与えられる。
 反転アンプ42は、ソース接地型の反転アンプであり、反転トランジスタ121と、定電流源トランジスタ122と、スイッチトランジスタ123と、容量素子124とを備える。反転トランジスタ121は、ソースが電源電圧線L11に、ゲートが差動アンプ41の出力端子である差動対トランジスタ112のドレインにそれぞれ接続されている。この反転トランジスタ121は、差動アンプ41の出力信号の極性を反転する。定電流源トランジスタ122は、反転トランジスタ121のドレインとグランド線L12との間に接続され、ゲートに一定の電圧VG1が与えられている。
 スイッチトランジスタ123は、反転トランジスタ121のゲートとドレインとの間に接続され、ゲートにはセット信号PSETが選択的に与えられる。スイッチトランジスタ123のゲートにセット信号PSETが与えられると、反転トランジスタ121のゲートとドレインとが電気的に接続される。これにより、反転アンプ42の入出力を所定のレベルにリセットすることができる。
 容量素子124は、差動アンプ41と反転アンプ42との間に設けられ、差動アンプ41の出力端子と反転アンプ42の入力端子とをDC的に分離する作用を有する。具体的には、容量素子124は、セット信号PSETが与えられたときに、差動アンプ41のリセット電圧と反転アンプ42のリセット電圧とが電気的にショートしないよう、分離させる作用を有する。
 本実施形態に係る固体撮像装置10Aは、定電流源トランジスタ115及び122と共にカレントミラー回路を形成するトランジスタ161と、トランジスタ161に基準電流を供給する参照電流源181とを備える基準電流源回路80を有する点を特徴とする。この基準電流源回路80は列毎に配置される複数の比較器31Aの定電流源トランジスタ115及び122のゲートにバイアス電圧Vbiasaを供給する。
 さらに、固体撮像装置10Aは、比較器31内のアンプ40の定電流源トランジスタ115及び122のゲートに接続され、基準電流源回路80から供給されるバイアス電圧Vbiasaを列毎にサンプルホールドする複数のサンプルホールド回路50を有する点を特徴とする。
 サンプルホールド回路50は、サンプルホールドトランジスタ170と、サンプルホールド容量173とを備える。サンプルホールドトランジスタ170は、定電流源トランジスタ115及び122のゲートと基準電流源回路80からバイアス電圧Vbiasaが供給されるバイアス線L14との間に接続されている。サンプルホールドトランジスタ170のゲートには制御信号SH1が印加される。この制御信号SH1は、バイアス線L14と定電流源トランジスタのゲートとを電気的に接続する/しないを制御する。
 制御信号SH1がH(ハイ)レベルの場合、基準電流源回路80から供給されるバイアス電圧Vbiasaが定電流源トランジスタ115及び122のゲートに供給される。一方、制御信号SH1がL(ロー)レベルの場合、定電流源トランジスタ115及び112のゲートと、バイアス線L14とが電気的に分離される。これにより、サンプルホールド回路50は、定電流源トランジスタ115及び定電流源トランジスタ122に供給されていたバイアス電圧Vbiasaをサンプルホールドする。
 サンプルホールド容量173は定電流源トランジスタ115及び122のゲートとグランド線L12との間に接続されている。このサンプルホールド容量173は、基準電流源回路80から供給されるバイアス電圧Vbiasaを保持する。
 なお、本実施形態の作用の詳細については後述する。
 インバータ43は、電源電圧線L11とグランド線L12との間に直列に接続されている。このインバータ43は、CMOSインバータであり、各ゲートが反転アンプ42の出力端子である反転トランジスタ121のドレインに共通に接続された逆導電型のトランジスタ131及び132を含む。
 次に、上記構成の比較器31Aを用いた固体撮像装置10Aの動作について、図4のタイミングチャートを用いて説明する。
 ここでは、画素セル11の具体的な動作については説明を省略するが、周知のように、画素セル11では、リセットトランジスタ103によるリセット動作と、転送トランジスタ102による転送動作とが行われる。そして、リセット動作では、所定の電圧にリセットされたときのFD105の電圧がリセット成分として画素セル11から垂直信号線22-1~22-mに出力される。また、転送動作では、光電変換素子101から光電変換による信号電荷が転送されたときのFD105の電圧が信号成分として画素セル11から垂直信号線22-1~22-mに出力される。
 行走査回路13による行走査によってある行kが選択される。その選択行kの画素セル11から垂直信号線22-1~22-mへの1回目の読み出し動作が安定した後、セット信号PSETがアクティブ状態(L(ロー)レベル)になる。これにより、差動対トランジスタ111及び112の動作点が決定される。その後、セット信号PSETが非アクティブ状態(H(ハイ)レベル)になり、DAC151から階段波の参照信号VrefがAD変換器23A-1~23A-mの各比較器31Aに与えられる。これにより、差動アンプ41は、画素セル11の増幅トランジスタ104のゲート電圧で決定される差動対トランジスタ112の入力電圧と、階段波である参照信号Vrefで決定される差動対トランジスタ111の入力電圧との比較動作を行う。
 動作シーケンスとしては、階段波である参照信号Vrefが比較器31Aに入力されると同時に、タイミング制御回路18からアップ/ダウンカウンタ32に対してクロックCKが与えられる。これにより、当該アップ/ダウンカウンタ32は、1回目の読み出し動作時の比較器31Aでの比較時間をダウンカウント動作によって計測する。そして、参照信号Vrefと垂直信号線22-1~22-mの信号電圧Vxとが等しくなったときに比較器31Aの出力信号VcoはHレベルからLレベルへ反転する。この比較器31Aの出力信号Vcoの極性反転を受けて、アップ/ダウンカウンタ32は、ダウンカウント動作を停止して比較器31Aでの1回目の比較期間に応じたカウント値を保持する。
 この1回目の読み出し動作では、先述したように、画素セル11のリセット成分ΔVが読み出される。このリセット成分ΔV内には、画素セル11毎にばらつく固定パターンノイズがオフセットとして含まれている。しかし、このリセット成分ΔVのばらつきは一般に小さく、またリセットレベルは全画素共通であるため、垂直信号線22-1~22-mの信号電圧Vxはおおよそ既知である。したがって、1回目のリセット成分ΔVの読み出し時には、参照信号Vrefを調整することにより比較期間を短くすることが可能である。
 本実施形態では、7ビット分のカウント期間(128クロック)でリセット成分ΔVの比較を行っている。2回目の読み出し動作では、リセット成分ΔVに加えて、画素セル11毎の入射光量に応じた信号成分Vsigが、1回目のリセット成分ΔVの読み出し動作と同様の動作によって読み出される。すなわち、選択行kの画素セル11から垂直信号線22-1~22-mへの2回目の読み出しが安定した後、DAC151から参照信号VrefがAD変換器23A-1~23A-mの各比較器31Aに与えられる。これにより、比較器31Aは、垂直信号線22-1~22-mの各信号電圧Vxと参照信号Vrefとの比較動作を行う。これと同時に、アップ/ダウンカウンタ32は、この比較器31Aでの2回目の比較時間を、1回目とは逆にアップカウント動作によって計測する。
 このように、アップ/ダウンカウンタ32は、1回目にダウンカウント動作し、2回目にアップカウント動作することにより、当該アップ/ダウンカウンタ32内で自動的に(2回目の比較期間)-(1回目の比較期間)の減算処理が行われる。そして、参照信号Vrefと垂直信号線22-1~22-mの信号電圧Vxとが等しくなったときに比較器31Aの出力信号Vcoが極性反転する。この極性反転を受けてアップ/ダウンカウンタ32のカウント動作が停止する。その結果、アップ/ダウンカウンタ32には、(2回目の比較期間)-(1回目の比較期間)の減算処理の結果に応じたカウント値が保持される。
 つまり、(2回目の比較期間)-(1回目の比較期間)=(信号成分Vsig+リセット成分ΔV+AD変換器23Aのオフセット成分)-(リセット成分ΔV+AD変換器23Aのオフセット成分)=(信号成分Vsig)である。よって、以上の2回の読み出し動作とアップ/ダウンカウンタ32での減算処理とにより、画素セル11毎のばらつきを含んだリセット成分ΔVに加えて、AD変換器23A(23A-1~23A-m)毎のオフセット成分も除去される。このように、固体撮像装置10Aは、画素セル11毎の入射光量に応じた信号成分Vsigのみを取り出すことができる。ここで、画素セル11毎のばらつきを含んだリセット成分ΔVを除去する処理は、いわゆるCDS(CorrelatedDoubleSampling:相関二重サンプリング)処理である。
 また、2回目の読み出し時には、入射光量に応じた信号成分Vsigが読み出されるので、光量の大小を広い範囲で判定するために参照信号Vrefを大きく変化させる必要がある。そこで、本実施形態に係る固体撮像装置10Aでは、信号成分Vsigの読み出しを10ビット分のカウント期間(1024クロック)で行うようにしている。この場合、1回目と2回目との比較ビット数が異なるが、参照信号Vrefのランプ波形の傾きを1回目と2回目とで同じにすることにより、AD変換の精度を等しくできる。これにより、アップ/ダウンカウンタ32による(2回目の比較期間)-(1回目の比較期間)の減算処理の結果として正しい減算結果が得られる。
 上述した一連のAD変換動作の終了後、アップ/ダウンカウンタ32にはNビットのデジタル値が保持される。そして、カラム処理部14Aの各AD変換器23A-1~23A-mでAD変換されたNビットのデジタル値(デジタル信号)は、列走査回路16による列走査により、Nビット幅の水平出力線17を経て順次外部へ出力される。その後、同様の動作が順次行毎に繰り返されることによって2次元画像が生成される。
 また、本実施形態に係る固体撮像装置10Aでは、AD変換器23A-1~23A-mの各々がメモリ34を有している。これにより、i行目の画素セル11についてのAD変換後のデジタル値をメモリ34に転送するとともに、転送したデジタル値を水平出力線17から外部へ出力する動作と、i+1行目の画素セル11についての読み出し動作及びアップ/ダウンカウント動作とを並行して実行することができる。
 本実施形態の特徴するところは、制御信号SH1に従い、少なくともAD変換期間内に、列毎に配置される複数の比較器31Aに供給されるバイアス電圧Vbiasaをサンプルホールドする点である。言い換えると、サンプルホールド回路50は、比較器31Aに含まれる差動アンプ41が参照信号Vrefと信号電圧Vxとを比較する期間において、バイアス電圧Vbiasaを保持(サンプルホールド)する。また、サンプルホールド回路50は、比較器31Aが参照信号Vrefと信号電圧Vxとを比較する期間外に、バイアス電圧Vbiasaを取り込み保持する。
 具体的には、図4に示すように、信号電圧Vxが変化する画素信号読み出し開始前に制御信号SH1をHレベルに制御する。これにより、サンプルホールドトランジスタ170がオンする。よって、基準電流源回路80から、比較器31A内の定電流源トランジスタ115及び122のゲートと、当該ゲートに接続されるサンプルホールド容量173とにバイアス電圧Vbiasaが供給される。
 ここで、バイアス電圧Vbiasaを供給するトランジスタ161は、定電流源トランジスタ115及び122とカレントミラー回路を構成する。よって、基準電流源回路80を構成する参照電流源181から供給される電流をミラーする形で、差動アンプ41及び反転アンプ42に定電流が供給される。例えば、トランジスタ161と定電流源トランジスタ115とのW/Lサイズ比をm:1にすることで、差動アンプ41は、参照電流源181から供給される電流の1/mの定電流を流すことができる。反転アンプ42についても同様に、例えば、トランジスタ161と定電流源トランジスタ122とのW/Lサイズ比をn:1にすることで、反転アンプ42は、参照電流源181から供給される電流の1/nの定電流を流すことができる。
 このように本実施形態に係る固体撮像装置10Aでは、トランジスタ161は定電流源トランジスタ115及び122とカレントミラー回路を構成する。よって、製造ばらつき及び温度変化により、差動アンプ41の定電流源トランジスタ115及び反転アンプ42の定電流源トランジスタ122の特性が変動した場合においても、差動アンプ41及び反転アンプ42それぞれに流れる電流を精度よく設定することができる。つまり、固体撮像装置10Aは、製造ばらつき及び温度変化による、差動アンプ41及び反転アンプ42の特性変動を低減することができる。
 さらに、複数列に供給される制御信号SH1を同時にHレベルに制御することで、複数列に配置される定電流源トランジスタ115及び122のゲートに、複数列同時にバイアス電圧Vbiasaを供給することができる。これにより、複数の定電流源トランジスタ115及び122に短い期間でバイアス電圧Vbiasaを供給することかできる。
 特にデジタルビデオカメラ又はデジタルスチルカメラ等への応用に適した固体撮像装置では列方向に数千個のサンプルホールド回路50を有することになる。よって、列毎にバイアス電圧を順次保持していく場合、画像信号を出力するフレームレート(コマ数)が極端に落ちるという課題を有する。本実施形態では、上記のとおり、複数列同時にバイアス電圧Vbiasaを供給することができるため、フレームレート(コマ数)の落ちを大幅に低減することができる。
 次に、制御信号SH1をHレベルからLレベルに制御することで、サンプルホールドトランジスタ170をオフする。サンプルホールドトランジスタ170がオフすると、基準電流源回路80から供給されるバイアス電圧Vbiasaは列毎に電気的に分離される。これにより、サンプルホールド容量173にバイアス電圧Vbiasaがサンプルホールドされる。例えば、図3に示す、x列及びi列の電圧VG1がそれぞれバイアス電圧Vbiasaの電圧レベルを維持する。これにより、差動アンプ41及び反転アンプ42に定電流を供給し続けることができる。
 次に、図4に示すようにAD変換が終了すると、制御信号SH1をLレベルからHレベルに制御する。これにより、再びサンプルホールドトランジスタ170がオンする。よって、基準電流源回路80から、定電流源トランジスタ115及び122のゲートと、サンプルホールド容量173とにバイアス電圧Vbiasaを供給することができる。
 次に、電源電圧線及びグランド線の電圧変動による回路ノイズについて考える。
 まず、本発明の理解を容易とするため、図5に示すような、列毎に配されるAD変換器23Aを構成する比較器として、差動アンプ41、反転アンプ42及びインバータ43を有する差動アンプ型の比較器31Bの構成について考察する。
 図5に示す比較器31Bは、図2に示す比較器31Aに対して、本実施形態の特徴である基準電流源トランジスタ171及びカレントミラートランジスタ172を備えない点が異なる。つまり、定電流源トランジスタ115及び122のゲートには、全列に対して共通のバイアス線から電圧VGが印加されている。
 ここで、差動アンプ41において信号電圧Vxと参照信号Vrefとの大小関係が反転するときに、反転アンプ42において電源電圧線L11からグランド線L12へ電流が流れる。これにより、対応する列において電源電圧線L11の電圧降下、又はグランド線L12の電圧上昇が発生する。
 ここで、ある列の比較器31Bの出力信号がまだ反転していない状況において、その隣の列の比較器31Bの出力信号が反転した場合を想定する。この未反転の比較器31Bにおいては、グランド線L12の電圧上昇に対応して、当該未反転の比較器31Bの電流が変動する。電流変動の一例として、差動アンプ41の例に示す。グランド線L12の電圧上昇をΔV、差動アンプ41の変動前の電流をI、電流変動をΔI、定電流源トランジスタ115のgmをgm1とすると、下記(式1)の関係が成り立つ。
 ΔI=gm1×ΔV、gm1=√(2βI)、β=W/L×μCox (式1)
 ここで、Wは定電流源トランジスタ115のゲート幅、Lはゲート長、Coxはゲート酸化膜容量、μは移動度である。
 また、反転アンプ42についても同様に(式1)に示す電流が変動する。
 差動アンプ41及び反転アンプ42に流れる電流が変動するとその変動量に応じて差動アンプ41の出力信号Vy及び反転アンプ42の出力信号Vzが変動する。これにより、当該未反転の比較器31Bの反転時間がその変動量に応じて変化する。また、差動アンプ41及び反転アンプ42に流れる電流が変動することで、差動アンプ41及び反転アンプ42のゲイン及び帯域が変動する。これにより、当該未反転の比較器31Bの反転時間がその変動量に応じて変化する。AD変換器23Aは比較器31Bの出力信号Vcoを基準にアナログ信号を時間方向に変換し、その時間を計測することによってデジタル信号を得るAD変換手段である。よって、当該未反転の比較器31Bの反転時間が変動すると、その影響が回路ノイズとして画像上に現れる。特に、列並列型AD変換装置を備えるMOS型固体撮像装置においては、1列につき例えば比較器が1つずつ存在する。これにより、比較器の出力信号が一斉に反転したときのグランド線L12の電圧変動が大きくなり、このノイズが問題となる。
 このノイズの一例として、図6に示すような横方向に長く、周囲より暗い被写体200が存在する画像を例に説明する。
 周囲より暗い被写体200に対応する光が撮像面に照射された場合、図7Aに示すように第i列から第j列に対して配される複数列の比較器31Bの電流が変動する。これにより、第i列から第j列を含む第1列から第m列に対して共通に接続される電源電圧線及びグランド線の電圧が変動する。その結果、暗い被写体200の左右に位置する第1列から第i-1列、及び第j+1列から第m列に対して配置される未反転の複数の比較器31B内のアンプ40の接地電位が変動する。当該接地電位が変動すると、上記のとおり、当該未反転のアンプ40の出力信号が変動することで、当該未反転の比較器31Bの反転時間が変動する。
 当該未反転の比較器31Bの反転時間が長い方向に変動すると、図7Aに示すように、暗い被写体200の左右に位置する第1列から第i-1列の領域201と、第j+1列から第m列の領域202とに白い帯状のノイズが発生する。一方、当該未反転の比較器31Bの反転時間が短い方向に変動すると、図7Bに示すように、上記領域201及び202に黒い帯状のノイズが発生する。なお、帯状のノイズの白黒は、上記領域201及び202に対して配置される第1列から第i-1列、及び第j+1列から第m列の複数の比較器31Bの電流変動と、共通に接続される電源電圧線又はグランド線の電圧変動と、差動アンプ41に入力される信号の極性とに依存する。
 次に、これまで図1から図4までを用いて説明した固体撮像装置10Aにおける、電源電圧線及びグランド線の電圧変動による回路ノイズについて考える。
 本実施形態に係る比較器31Aにおいては、参照信号Vrefと信号電圧Vxとの比較動作時に、反転アンプ42に含まれる反転トランジスタ121には電源電圧線L11から電流が流れる。反転トランジスタ121に電流が流れると、定電流源トランジスタ122のドレイン電圧が高くなる。これにより、定電流源トランジスタ122のドレインからグランド線L12に流れる電流が増加する。そのため、対応する列の電源電圧線L11又はグランド線L12の電圧が変動する。
 また、信号電圧Vxと参照信号Vrefとの大小関係が反転したときに、反転アンプ42の定電流源トランジスタ122のドレイン電圧が大きく変動する場合、グランド線L12の電圧は大きく変動する。具体的には信号電圧Vxと参照信号Vrefとの大小関係が反転したときに、定電流源トランジスタ122の動作領域が非飽和領域から飽和領域に変化する場合、定電流源トランジスタ122に流れる電流が大きく変動する。この電流変動により、グランド線L12の電圧は大きく変動する。
 例えば図4に示すように、ダウンカウント開始前に誤反転が発生しないように、t=aのタイミングで参照信号Vrefにオフセットを設ける。このように信号電圧Vxに対して高い方向に、参照信号Vrefの電圧にオフセットを設けることで、ダウンカウント前に参照信号Vrefと信号電圧Vxとの大小関係が反転しないようにすることができる。すなわちダウンカウント開始前に誤反転が発生しないようにできる。
 また、参照信号Vrefのオフセット電圧を、ダウンカウント期間中に変動させるVrefの電圧幅よりも小さくすることで、ダウンカウント期間中に、参照信号Vrefと信号電圧Vxとの大小関係を確実に反転させることが可能になる。
 また、t=aのタイミングで参照信号Vrefにオフセット電圧を設けると、オフセット電圧は差動アンプ41及び反転アンプ42でそれぞれ増幅される。これにより、反転アンプ42の出力信号VzはVssの近くまで低下する。反転アンプ42の出力信号VzがVssの近くまで低下すると、定電流源トランジスタ122は非飽和領域で動作するので、定電流源トランジスタ122からグランド線L12に流れる電流が減少する。また、ダウンカウントが開始された後の参照信号Vrefと信号電圧Vxとの比較動作時には、差動アンプ41の出力信号Vyの電圧が下がることで、反転トランジスタ121には電源電圧線L11から電流が流れる。また、反転アンプ42の出力信号Vzの電圧が高くなることで、定電流源トランジスタ122は飽和領域で動作する。これにより、グランド線L12に流れる電流が増加する。
 先ほど定電流源トランジスタ122の電流が大きく変動する場合の例を説明したが、ダウンカウント開始前に参照信号Vrefにオフセットを設けない場合においても、信号電圧Vxと参照信号Vrefとの大小関係が反転するときに、定電流源トランジスタ122の電流は変動する。例えば、信号電圧Vxと参照信号Vrefとの大小関係が反転する前に、定電流源トランジスタ122のドレイン電圧がVss近くまで下がっていない場合においても、信号電圧Vxと参照信号Vrefとの大小関係が反転すると、反転トランジスタ121には電源電圧線L11から電流が流れる。これにより、反転アンプ42の出力信号Vzが高くなる。反転アンプ42の出力信号Vzが高くなると、定電流源トランジスタ122のドレイン-ソース間電圧Vdsが高くなる。これにより、(式2)に示すチャネル長変調効果(1+λVds)により、定電流源トランジスタ122からグランド線L12に流れる電流が増加する。
 Id=β/2×(Vgs-Vt)×(1+λVds) (式2)
 上述したように、列並列型AD変換装置を備えるMOS型固体撮像装置においては、1列につき例えば比較器が1つずつ存在する。よって、比較器が一斉に反転したときの定電流源トランジスタ122の電流変動に伴うグランド線L12の電圧変動が大きくなる。そしてこの電圧変動に伴うノイズが問題となる。
 具体的には、ある列の比較器31Aの出力信号がまだ反転していない状況において、その隣の列の比較器31Aの出力信号が反転した場合を想定する。この場合、未反転の比較器31Aにおいて、グランド線L12の電圧変動の影響を受け、当該比較器の差動アンプ41及び反転アンプ42に流れる電流が変化すると、この影響が回路ノイズとして画像に現れる。例えば、図7A及び図7Bに示すような横帯状の回路ノイズが発生する。
 本実施形態に係る固体撮像装置10Aは、この電源電圧線及びグランド線の電圧変動による回路ノイズを、列毎に配置される複数の比較器31にバイアス電圧Vbiasaを供給する基準電流源回路80と、比較器31Aごとに設けられたサンプルホールド回路50とを備えることによって低減する。具体的には、固体撮像装置10Aは、基準電流源回路80から供給されるバイアス電圧Vbiasaを列毎にサンプルホールドすることによって、この回路ノイズを低減する。この作用について具体的に説明する。
 ノイズ低減の一例として、例えば、x列の比較器31A-xの出力信号がまだ反転していない状況において、その隣のi列の比較器31A-iの出力信号が反転した場合を想定する。i列の比較器31A-iの出力信号が反転した際の、グランド線L12の電圧の変動量をΔVとすると、x列の比較器31A-xのグランド線L12の電圧もΔV変動する。
 ここで、本実施形態に係る比較器31Aでは、i列の比較器31A-iの出力信号が反転する前に、x列のサンプルホールド回路50にはバイアス電圧Vbiasaが保持される。これにより、x列の定電流源トランジスタ115及び122のゲートにはバイアス電圧Vbiasaが印加され、ソースには接地電位Vssが印加される。よって、定電流源トランジスタ115及び122は(式1)に示すようにゲート-ソース間の電圧差Vgs=(Vbaisa-Vss)に依存して電流を生成する。
 本実施形態では、AD変換期間中には、制御信号SH1はLレベルに制御される。よって、x列のサンプルホールドトランジスタ170はOFFされており、x列のサンプルホールド容量173にはVbiasa-Vssの電圧がホールドされている。つまり、サンプルホールド容量173に接続されるグランド線L12の電圧がΔV変動しても、x列のサンプルホールド容量173の両端の電圧差は保持される。よって、x列のサンプルホールド容量173に接続されるバイアス線L15の電圧VG1は、Vbiasa+ΔVとなる。つまり、x列の定電流源トランジスタ115及び122のソース電圧がVssからVss+ΔVに変動した場合、上記の通り、x列の定電流源トランジスタ115及び122のゲート電圧VG1はVbiasa+ΔVとなる。ここで、定電流源トランジスタ115及び122は、(式1)に示すようにゲート-ソース間の電圧差Vgsに依存して電流を供給する。また、ゲート電圧VgはVbiasa+ΔVであり、ソース電圧VsはVss+ΔVであることから、ゲート-ソース間電圧Vgsは、下記(式3)で表される。
 Vgs=Vg-Vs=(Vbiasa+ΔV)-(Vss+ΔV)=Vbias-Vss (式3)
 つまり、グランド線L12の電圧がΔV変動しても、x列の定電流源トランジスタ115及び122のゲート-ソース間電圧Vgsは変化しない。このように、本実施形態に係る固体撮像装置10Aは、グランド線L12の電圧がΔV変動しても、差動アンプ41及び反転アンプ42に定電流を供給し続けることができる。つまり、本実施形態に係る固体撮像装置10Aは、サンプルホールド回路50に含まれるサンプルホールドトランジスタ170とサンプルホールド容量173との作用により、グランド線L12の電圧変動ΔVの影響を受けずに、差動アンプ41及び反転アンプ42に定電流を供給し続けることができる。
 このように、本実施形態に係る固体撮像装置10Aは、比較器31-iの出力信号が反転したことによりグランド線L12の電圧が変動しても、比較器31―xの電流は変動しないので、未反転の差動アンプ41及び反転アンプ42に定電流を供給し続けることができる。これにより、図7A及び図7Bに示すような横帯状のノイズを低減することができる。
 さらに、本実施形態では、AD変換期間中に制御信号SH1がLレベルに制御される。これにより、基準電流源回路80を構成するトランジスタ161及び基準電流を供給する参照電流源181が発生するノイズをキャンセルすることができる。この作用について図4のタイミングチャートを用いて説明する。
 図4に示す電圧VG1は定電流源トランジスタ115及び122のゲートに供給されるバイアス電圧を示す。実線は本実施形態における電圧VG1を示し、点線はサンプルホールド回路50を用いない場合の電圧VG1を示す。
 図4に示すようにサンプルホールド回路50を用いない場合、基準電流源回路80のノイズの影響を受けて、AD変換期間中にバイアス電圧VG1が変動する。電圧VG1の変動要因のうち高周波のノイズとしては、基準電流源回路80を構成するトランジスタの熱ノイズ及び1/fノイズが挙げられる。また、当該変動要因のうち低周波のノイズとしては、AD変換期間中に基準電流源回路80の接地電位が変動することにより、バイアス電圧Vbiasaが変動することが挙げられる。この接地電位の変動要因としては、例えば、AD変換期間中における、比較器31AのAD変換動作による電流変動、及び増幅トランジスタ104及び定電流源トランジスタ142で構成される画素信号読み出し回路による電流変動が挙げられる。
 AD変換期間中に、定電流源トランジスタ115及び定電流源トランジスタ122のゲートに供給される電圧VG1が変動した場合、差動アンプ41及び反転アンプ42に供給される電流が変動することで、ノイズが発生する。具体的には、定電流源トランジスタ115及び122のゲートに供給されるバイアス電圧をサンプルホールドしない場合、バイアス電圧Vbiasaは複数列の定電流源トランジスタのゲートに共通に印加される。よって、複数列の比較器31Aに共通のノイズが発生することで横筋状のノイズが発生する。図8に横筋状のノイズ206及び207の一例を示す。横筋状のノイズ206及び207は図8に示すように、画像として横筋状に発生することから、空間にランダムに発生するノイズよりも視認しやすいノイズである。よって、横筋状のノイズ206及び207は、ノイズレベルが小さい場合においても、画質を大きく劣化させる要因となる。
 これに対して、本実施形態では、各列に設けられたサンプルホールド回路50によりバイアス電圧Vbiasaはサンプルホールドされる。また、各列のゲート電圧VG1は、基準電流源回路80から供給されるバイアス電圧Vbiasaと電気的に分離される。これにより、AD変換期間中に、基準電流源回路80から供給されるバイアス電圧のノイズが各列の定電流源トランジスタ115及び122に与える影響を抑制することができる。また、各列の定電流源トランジスタ115及び122のゲートは、列毎に電気的に分離されることから、ある列のサンプルホールド回路50に保持されているバイアス電圧にノイズが発生した場合でも、当該ノイズが他の列のバイアス電圧に影響をあたえることを抑制できる。これにより、視認しやすい横筋状のノイズの発生が低減される。
 さらに、本実施形態では、サンプルホールド前に基準電流源回路80から供給されるバイアス電圧のノイズの影響を低減することができる。図4を用いて本作用について説明する。
 画素の信号読み出しが開始される前に制御信号SH1がHレベルになることにより、基準電流源回路80から供給されるバイアス電圧Vbiasaが定電流源トランジスタ115及び122のゲート電極に供給される。このとき、基準電流源回路80から供給されるバイアス電圧VbiasaにノイズΔVN1が発生したとする。
 次に、制御信号SH1をHレベルからLレベルに切り替える。これにより、サンプルホールド回路50にバイアス電圧Vbiasa+ΔVN1が保持される。
 このノイズΔVN1により、リセット成分ΔVがΔV+ΔVN2に変動したとする。
 本実施形態では、上述のとおり、AD変換動作において、アップ/ダウンカウンタ32は、1回目のカウント動作としてダウンカウント動作を行い、2回目のカウント動作としてアップカウント動作を行う。これにより、アップ/ダウンカウンタ32内で自動的に(2回目の比較期間)-(1回目の比較期間)の減算処理が行われる。
 具体的には、(2回目の比較期間)-(1回目の比較期間)=(信号成分Vsig+リセット成分ΔV+ΔVN2+AD変換器23Aのオフセット成分)-(リセット成分ΔV+ΔVN2+AD変換器23Aのオフセット成分)=(信号成分Vsig)である。つまり、この2回の読み出し動作とアップ/ダウンカウンタ32での減算処理とにより、ノイズΔVN2も除去される。
 このように、本実施形態では、基準電流源回路80から供給されるバイアス電圧をAD変換期間中に、サンプルホールドすることにより、例え基準電流源回路80から供給されるバイアス電圧にノイズが発生した場合においても、CDS処理によりこのノイズの影響を低減することができる。
 以上のように、本実施形態に係る固体撮像装置10Aは、画素が行列状に2次元配置されてなる画素アレイの駆動回路及び信号処理回路を、当該画素アレイと同一チップ上に集積できるという利点を有する。さらに、固体撮像装置10Aは、画素アレイの各画素を行単位で選択し、その選択行の各画素の信号を同時に列方向(画素列に沿った方向)へと読み出すことができるので、信号出力(読み出し)の高速化を実現できる。これにより、固体撮像装置10Aは、動画撮影機能の向上できるとともに、高速オートフォーカスに対応できる。
 さらに、固体撮像装置10Aは、比較器31A-iの出力信号が反転したことに起因してグランド線又は電源電圧線の電圧が変動した場合の、比較器31A-xに流れる電流の変動を抑制できる。これにより、固体撮像装置10Aは、図7A及び図7Bに示すような横帯状のノイズを低減できる。このように、固体撮像装置10Aは、装置の小型化、信号の高速読み出し、及び高画質化を高い次元で両立させることができる。
 (第2の実施形態)
 本発明の第2の実施形態では、上述した第1の実施形態に係る固体撮像装置10Aの変形例について説明する。なお、以下では、第1の実施形態との違いを中心に説明し、重複する説明は省略する。
 第1の実施形態では図3に示すように、差動アンプ41の定電流源トランジスタ115のゲートと、反転アンプ42の定電流源トランジスタ122のゲートとを共通に接続し、かつ、こられの定電流源トランジスタ115と122とにサンプルホールド回路50を共通に設ける構成を説明した。第2の実施形態では、定電流源トランジスタ115と122とに個別にサンプルホールド回路を設ける。
 図9は、本発明の第2の実施形態に係る比較器31C(31C-x、31C-i)の構成を示す回路図である。図9に示す比較器31Cは、定電流源トランジスタ115のゲートに印加されるバイアス電圧を保持するサンプルホールド回路50Aと、定電流源トランジスタ122のゲートに印加されるバイアス電圧を保持するサンプルホールド回路50Bとを備える。
 サンプルホールド回路50Aは、サンプルホールドトランジスタ170と、サンプルホールド容量173とを備える。サンプルホールドトランジスタ170は、定電流源トランジスタ115のゲート(バイアス線L15)と、バイアス線L14との間に接続されている。サンプルホールドトランジスタのゲートには制御信号SH1が印加される。サンプルホールド容量173は定電流源トランジスタ115のゲートと、グランド線L12との間に接続されている。このサンプルホールド容量173は、基準電流源回路80から供給されるバイアス電圧Vbiasaを保持する。
 サンプルホールド回路50Bは、サンプルホールドトランジスタ176と、サンプルホールド容量177とを備える。サンプルホールドトランジスタ176は、定電流源トランジスタ122のゲート(バイアス線L16)と、バイアス線L14との間に接続されている。サンプルホールドトランジスタ176のゲートには制御信号SH1が印加される。サンプルホールド容量177は定電流源トランジスタ122のゲートと、グランド線L12との間に接続されている。このサンプルホールド容量177は、基準電流源回路80から供給されるバイアス電圧Vbiasaを保持する。
 以上の構成により、本実施形態に係る固体撮像装置は、反転アンプ42の出力レベルの変動により、反転アンプ42の定電流源トランジスタ122のゲート電圧が変動した場合における、その変動が入力段である差動アンプ41の定電流源トランジスタ115のゲート電圧に戻る影響(キックバック効果)を低減することができる。
 なお、図9に示す例では、定電流源トランジスタ115と122との両方にサンプルホールド回路を設けているが、少なくとも、列内に設けられる1以上のアンプの定電流源トランジスタに対して、少なくとも1つ以上のバイアスサンプルホールド回路を設ければよい。
 例えば、図10に示す比較器31D(31D-x、31D-i)のように、反転アンプ42の定電流源トランジスタ122のゲートに対してのみ、サンプルホールド回路50Bを設けてもよい。
 この構成により、複数の列間で定電流源トランジスタ122のゲートは電気的に分離される。よって、ある列の反転アンプ42の出力レベルの変動した際の、他の列の定電流源トランジスタ122のゲート電圧が変動を低減することができる。具体的には、比較器31-iの出力信号が反転し、i列の定電流源トランジスタ122のゲート電圧が変動した場合においても、x列の定電流源トランジスタ115及び122のゲート電圧は変動しない。よって、図7A及び図7Bに示すような横帯状のノイズを低減することができる。
 ここで、反転アンプ42は、差動アンプ41に比べて、その出力レベルが大きく変動する。つまり、定電流源トランジスタ122のゲート電圧の変動量は、定電流源トランジスタ115のゲート電圧の変動量より大きい。このように、他の列の定電流源トランジスタ115及び122への影響が大きい定電流源トランジスタ122に対してのみサンプルホールド回路を設けることで、回路規模を縮小と、高いノイズ低減効果とを両立できる。
 (第3の実施形態)
 本発明の第3の実施形態では、上述した第1の実施形態に係る固体撮像装置10Aの変形例について説明する。
 図11は、本発明の第3の実施形態に係る比較器31E(31E-x、31E-i)の構成を示す回路図である。図9に示す比較器31Eは、図3に示す比較器31Aの構成に加え、さらに、基準電流源トランジスタ171及びカレントミラートランジスタ172を備える。また、第3の実施形態に係る固体撮像装置は、図3に示す基準電流源回路80の代わりに、基準電流源回路81を備える。
 基準電流源回路81は、本発明の第2基準電流源部に相当し、電圧Vbiasbを生成し、生成した電圧Vbiasbをバイアス線L17に出力する。この基準電流源回路81は、トランジスタ162と、トランジスタ162に基準電流を供給する参照電流源182とを備える。参照電流源182には接地電位Vssbが印加されている。
 第3の実施形態では、比較器31E内にカレントミラー回路を設ける。また、比較器31E内に基準電流源回路が設けられる。この比較器31E内の基準電流源回路は、本発明の第1基準電流源部に相当し、基準電流源トランジスタ171とカレントミラートランジスタ172とで構成される。
 基準電流源トランジスタ171は、バイアス電圧Vbiasbを供給するトランジスタ162とカレントミラー回路を構成する。この基準電流源トランジスタ171は、カレントミラートランジスタ172に電流を供給する。
 カレントミラートランジスタ172は、基準電流源トランジスタ171に接続されており、定電流源トランジスタ115及び122とカレントミラー回路を構成する。このカレントミラートランジスタ172は、基準電流源トランジスタ171から電流を供給される電流に基づき所定のバイアス電圧を発生させる。そして、そのバイアス電圧が、定電流源トランジスタ115及び122のゲートに供給される。このように、差動アンプ41及び反転アンプ42に定電流が供給される。
 また、本実施形態では、サンプルホールドトランジスタ170の一端がカレントミラートランジスタ172に接続されている。よって、制御信号SH1がLレベルの状態のみならず、画素の信号読み出しが開始される前の制御信号SH1がHレベルの状態においても、定電流源トランジスタ115及び122のゲートは、複数の列間で電気的に分離される。これにより、横筋状のノイズの影響を更に低減することができる。
 また、AD変換期間における制御信号SH1がLレベルの状態においても、定電流源トランジスタ115及び122のゲートが、複数の列間で電気的に分離される。これにより、複数列共通に発生するノイズを低減することができる。このように、本実施形態に係る固体撮像装置は、複数列共通に発生するノイズを低減することができるため、図8に示すような横筋状のノイズを低減することができる。
 なお、本実施形態では図11に示すように、サンプルホールドトランジスタ170を、定電流源トランジスタ115のゲートとカレントミラートランジスタ172のゲートとの間に設ける例を示したが、定電流源トランジスタ115のゲートに対してバイアス電圧をサンプルホールドする手段を設ければよい。
 例えば、図12に示す比較器31F(31F-x、31F-i)ように、カレントミラートランジスタ172のソースとゲートとにサンプルホールドトランジスタ170を設けてもよい。この場合、制御信号SH1をHレベルにすることで定電流源トランジスタ115のゲートにバイアス電圧が印加される。その後、制御信号SH1をLレベルにすることで、サンプルホールド回路50にバイアス電圧が保持される。
 (第4の実施形態)
 上記第1~第3の実施形態では、AD変換器に含まれる比較器に対して本発明を適用した例を述べたが、第4の実施形態では、列毎に設けられた信号増幅器に同様の技術を適用する例を説明する。なお、本発明は、ソースが共通に接続される定電流源トランジスタを備えるアンプ全般に適用可能である。
 図13は、本発明の第4の実施形態に係る固体撮像装置10Gの構成を示すブロック図である。図14は、本発明の第4の実施形態に係る信号増幅器24の回路構成例を示す回路図である。
 第4の実施形態に係る固体撮像装置10Gの特徴は、列回路20Gが、垂直信号線22と列並列型AD変換器23Aとの間に、画素から出力されるアナログ信号(信号電圧Vx)を増幅する信号増幅器24を備える点と、図14に示すように信号増幅器24内の定電流源に対してサンプルホールド回路70を設ける点とである。
 信号増幅器24(24-x、24-i)は、アンプ45と、サンプルホールド回路70とを備える。
 アンプ45は、例えば、シングルエンドタイプのソース接地型の反転アンプである。このアンプ45は、信号電圧Vxが入力される入力容量216と、フィードバック容量217と、入力信号を増幅する増幅トランジスタ211と、増幅トランジスタに電流を供給する定電流源トランジスタ215と、信号増幅器24の入出力をリセットするリセットトランジスタ218とを備える。
 リセットトランジスタ218は、増幅トランジスタ211のゲートとドレインとの間に接続され、ゲートにはセット信号PSETcが選択的に与えられる。
 この信号増幅器24は、定電流源トランジスタ215のゲート電極に供給されるバイアス電圧Vbiasdをサンプルホールドするサンプルホールド回路70を備える点である。このサンプルホールド回路70は、サンプルホールドトランジスタ270とサンプルホールド容量273とを備える。このサンプルホールド回路70は、信号増幅器24が信号電圧Vxを増幅する期間においてバイアス電圧Vbiasdを保持する。また、サンプルホールド回路70は、信号増幅器24が信号電圧Vxを増幅する期間外に、バイアス電圧Vbiasdを取り込み保持する。
 サンプルホールド容量273は定電流源トランジスタ215のゲートに電気的に接続されるバイアス線L25と、電源電圧線L21との間に接続されている。サンプルホールドトランジスタ270は、定電流源トランジスタ215及び215のゲートと、電圧Vbiasdが供給されるバイアス線L24との間に接続されている。また、サンプルホールドトランジスタ270のゲートには制御信号SH2が印加される。
 また、固体撮像装置10Gは、基準電流源回路82を備える。この基準電流源回路82は、電圧Vbiasdを生成し、生成した電圧Vbiasdをバイアス線L24に出力する。この基準電流源回路82は、トランジスタ261と、トランジスタ261に基準電流を供給する参照電流源281とを備える。
 また、電源電圧線L21には電源電圧Vddcが印加されており、グランド線L22には接地電位Vsscが印加されている。
 次に、この固体撮像装置10Gの動作を、図15に示すタイミングチャートを用いて説明する。
 なお、画素セル11及び行走査回路13の具体的な動作は第1の実施形態と同様なので、説明は省略する。
 行走査回路13による行走査によってある行kが選択されると、セット信号PSETcがアクティブ状態(Hレベル)になる。これにより、増幅トランジスタ211の動作点が決定される。その選択行kの画素セル11から垂直信号線22-1~22-mへの1回目の読み出し動作が安定した後、セット信号PSETcが非アクティブ状態(Lレベル)になる。セット信号PSETcが非アクティブ状態(Lレベル)において、信号増幅器24は、画素セル11から出力されるアナログ信号を増幅する。本実施形態のアンプ45は反転アンプであり、図15に示すように、信号電圧Vxの変動に対して、アンプ45の出力信号Voは反転増幅される。そのため、比較器31Aに係るタイミングチャートの極性は第1の実施形態に対して極性が反転となる。
 次に、信号増幅器24の出力信号VoをAD変換するタイミングについて説明する。DAC151から階段波の参照信号VrefがAD変換器23-1~23-mの各比較器31Aに与えられる。これにより、差動アンプ41において、信号増幅器24で決定される差動対トランジスタ112の入力電圧と、階段波の参照信号Vrefで決定される差動対トランジスタ111の入力電圧との比較動作が行われる。
 なお、このAD変換動作は、上述した第1の実施形態の説明において、信号電圧Vxを、信号増幅器24の出力信号Voに置き換えた場合の動作と同様なので説明は省略する。
 本実施形態の特徴するところは、制御信号SH2により、少なくともAD変換期間内に、列毎に配置される複数の信号増幅器24に供給されるバイアス電圧Vbiasdをサンプルホールドする点である。
 そして図15に示すように、信号電圧Vxが変化する画素信号読み出し開始前に制御信号SH2をLレベルに制御することで、サンプルホールドトランジスタ270がオンする。これにより、基準電流源回路82から、定電流源トランジスタ215のゲート及びサンプルホールド容量273にバイアス電圧Vbiasdが供給される。
 ここで、バイアス電圧Vbiasdを供給するトランジスタ261は定電流源トランジスタ215とカレントミラー回路を構成する。よって、参照電流源281から供給される電流をミラーする形で、信号増幅器24に定電流が供給される。例えば、トランジスタ261と定電流源トランジスタ215とのW/Lサイズ比をm:1にすることで、信号増幅器24は、参照電流源281から供給される電流の1/mの定電流を流すことができる。
 このように本実施形態に係る固体撮像装置10Gでは、トランジスタ261は定電流源トランジスタ215とカレントミラー回路を構成する。よって、製造ばらつき及び温度変化により、信号増幅器24の定電流源トランジスタ215の特性が変動した場合においても、信号増幅器24に流れる電流を精度よく設定することができる。つまり、固体撮像装置10Gは、製造ばらつき及び温度変化による、信号増幅器24の特性変動を低減することができる。
 さらに、複数列に供給される制御信号SH2を同時にLレベルに制御することで、複数列に配置される定電流源トランジスタ215のゲートに、複数列同時にバイアス電圧Vbiasdを供給することができる。これにより、複数の定電流源トランジスタ215に短い期間でバイアス電圧Vbiasdを供給することかできる。
 特にデジタルビデオカメラ又はデジタルスチルカメラ等への応用に適した固体撮像装置では列方向に数千個のサンプルホールド回路70を有することになる。よって、列毎にバイアス電圧を順次保持していく場合、画像信号を出力するフレームレート(コマ数)が極端に落ちるという課題を有する。本実施形態では、上記のとおり、複数列同時にバイアス電圧Vbiasdを供給することができるため、フレームレート(コマ数)の落ちを大幅に低減することができる。
 次に、制御信号SH2をHレベルからLレベルに制御することで、サンプルホールドトランジスタ270をオフする。サンプルホールドトランジスタ270がオフすると、基準電流源回路82から供給されるバイアス電圧Vbiasdは列毎に電気的に分離される。これにより、サンプルホールド容量273にバイアス電圧Vbiasdがサンプルホールドされる。例えば、図14に示す、x列及びi列の電圧VG2がそれぞれバイアス電圧Vbiasdの電圧レベルを維持する。これにより、信号増幅器24は定電流を供給し続けることができる。
 次に、図15に示すようにAD変換が終了すると、制御信号SH2をHレベルからLレベルに制御する。これにより、再びサンプルホールドトランジスタ270がオンする。よって、基準電流源回路82から、定電流源トランジスタ215のゲート及びサンプルホールド容量273にバイアス電圧Vbiasdを供給することができる。
 ここで、電源電圧線及びグランド線の電圧変動による回路ノイズについて考える。
 ノイズ低減の一例として、例えば、i列の信号増幅器24-iの入力信号が変動し、x列の入力信号が変動しない状況を想定する。
 信号増幅器24-iに入力される信号の電圧レベルが変動すると、電圧レベルに応じて、信号増幅器24-iに含まれる定電流源トランジスタ215、又は増幅トランジスタ211に充放電電流が発生する。
 ここで、図16A及び図16Bに示すように、第iから第j列に周囲よりも明るい被写体203が存在する画像の例を説明する。この場合、第iから第j列の信号増幅器24の出力信号は大きく変動する。これにより、第iから第j列の定電流源トランジスタ215、又は増幅トランジスタ211が飽和領域で動作することができなくなるので、これらのトランジスタに流れる電流が大きく変動する。これにより、グランド線L22又は電源電圧線L21の電圧が変動する。その結果、図16A及び図16Bに示すように、明るい被写体203の左右に位置する第1列から第i-1列の領域204と、第j+1列から第m列の領域205とに白い帯状のノイズ、又は黒い帯状のノイズが発生する。
 上述したように、ある列での信号増幅器24の出力信号が大きく変動し、すぐ隣の信号増幅器24の出力レベルが小さい状況を想定した場合、出力レベルが小さい信号増幅器24において、グランド線L22の電圧変動の影響を受け、当該信号増幅器24のアンプ45に流れる電流が変化する。この影響が回路ノイズとして画像に現れる。特に、列並列型AD変換装置を備えるCMOS固体撮像装置では、1列につき例えば比較器が1つずつ存在する。よって、比較器が一斉に反転したときの電源電圧線L21の変動が大きくなるため、例えば図16A及び図16Bに示すような横帯状の回路ノイズとして問題となる。
 また、利得の大きくいソース接地型の信号増幅器24を用いた場合、図16A及び図16Bに示すような横帯状の回路ノイズの影響がより顕著になる。その理由は、まず信号増幅器24の利得が高い場合、低い入力レベルの場合においても、アンプ45の出力信号は大きく変動する。よって、強い光が入射されない場合においても、定電流源トランジスタ215、又は増幅トランジスタ211が飽和領域で動作することができなくなるからである。
 また、ソース接地型の信号増幅器24の場合、利得を大きくすると、帯域が狭くなる。つまり、定電流源トランジスタ215、又は増幅トランジスタ211が飽和領域で動作しない場合においても、帯域が狭くなることで出力信号が安定するまでにかかる期間が長くなる。よって、グランド線L12の電圧が変動する期間、つまりアンプ45に流れる電流が変化する期間が長くなる。これにより、横帯状の回路ノイズの影響がより顕著になる。
 本実施形態に係る信号増幅器24においては、この電源/グランドの電圧変動による回路ノイズを、基準電流源回路82と、信号増幅器24ごとに設けられたサンプルホールド回路70とを備えることによって低減する。具体的には、固体撮像装置10Gは、基準電流源回路82から供給されるバイアス電圧Vbiasdを列毎にサンプルホールドすることによって、この回路ノイズを低減する。この作用について具体的に説明する。
 ノイズ低減の一例として、i列の出力信号が大きく変動し、x列の信号電圧の電圧レベルが小さい状況を想定する。i列の出力信号が大きく変動することで、電源電圧線L21の電圧が変動する。この変動量をΔVとすると、x列の信号増幅器24-xの電源電圧線L21の電圧もΔV変動する。
 これに対して、本実施形態では、i列の信号増幅器24-iの出力信号が大きく変動する前に、x列のサンプルホールド回路70にバイアス電圧Vbiasdが保持される。これにより、x列の定電流源トランジスタ215のゲートにはバイアス電圧Vbiasdが印加され、ソースには電源電圧Vddcが印加される。よって、定電流源トランジスタ215は、(式1)に示すようにゲート-ソース間の電圧差Vgs=(Vbaisd-Vddc)に依存して電流を生成する。
 本実施形態では、AD変換期間中には、制御信号SH2はHレベルに制御される。よって、x列のサンプルホールドトランジスタ270はOFFされており、x列のサンプルホールド容量273にはVbiasdの-Vddcの電圧がホールドされている。つまり、サンプルホールド容量273に接続される電源電圧線L21がΔV変動しても、x列のサンプルホールド容量273の両端の電圧差は保持される。よって、x列のサンプルホールド容量273に接続されるバイアス線L25の電圧VG2はVbiasd+ΔVとなる。つまり、x列の定電流源トランジスタ215のソース電圧がVddcからVddc+ΔVに変動した場合、上記の通り、x列の定電流源トランジスタ215のゲート電圧VG2はVbiasd+ΔVとなる。ここで、定電流源トランジスタ215は、(式1)に示すようにゲート-ソース間の電圧差Vgsに依存して電流を供給する。ゲート電圧VgはVbiasd+ΔVであり、ソース電圧VsはVddc+ΔVでることから、ゲート-ソース間電圧Vgsは、下記(式4)で表される。
 Vgs=Vg-Vs=(Vbiasd+ΔV)-(Vddc+ΔV)=Vbias-Vddc (式4)
 つまり、電源電圧線L21の電圧がΔV変動しても、x列の定電流源トランジスタ215のゲート-ソース間電圧Vgsは変化しない。このように、本実施形態に係る固体撮像装置10Gは、電源電圧線L21の電圧がΔV変動しても、信号増幅器24に定電流を供給し続けることができる。つまり、本実施形態に係る固体撮像装置10Gは、サンプルホールド回路70に含まれるサンプルホールドトランジスタ270とサンプルホールド容量273との作用により、電源電圧線L21の電圧変動ΔVの影響を受けずに、信号増幅器24に定電流を供給し続けることができる。
 このように、本実施形態に係る固体撮像装置10Gは、信号増幅器24-iの出力信号の電圧レベルが大きく変動したことにより電源電圧線L21の電圧が変動しても、信号増幅器24-xの電流は変動しないので、出力信号が小さい信号増幅器24-xに対して定電流を供給し続けることができる。これにより、図16A及び図16Bに示すような横帯状のノイズを低減することができる。
 さらに、本実施形態では、AD変換期間中に制御信号SH2がHレベルに制御される。これにより、基準電流源回路82を構成するトランジスタ261及び基準電流を供給する参照電流源281が発生するノイズをキャンセルすることができる。この作用について図15のタイミングチャートを用いて説明する。
 図15に示す電圧VG2は定電流源トランジスタ215のゲートに供給されるバイアス電圧を示す。実線は本実施形態におけるバイアス電圧VG2を示し、点線はサンプルホールド回路70を用いない場合の電圧VG2を示す。
 図15に示すようにサンプルホールド回路70を用いない場合、基準電流源回路82のノイズの影響を受けて、AD変換期間中にバイアス電圧VG2が変動する。電圧VG2の変動要因のうち高周波のノイズとしては、基準電流源回路82を構成するトランジスタの熱ノイズ及び1/fノイズが挙げられる。また、当該変動要因のうち低周波のノイズとしては、AD変換期間中に基準電流源回路82の接地電位が変動することにより、バイアス電圧Vbiasdが変動することが挙げられる。この接地電位の変動要因としては、例えば、AD変換期間中における、信号増幅器24の電流変動による電流変動、及び増幅トランジスタ104及び定電流源トランジスタ142で構成される画素信号読み出し回路による電流変動が挙げられる。
 AD変換期間中に、定電流源トランジスタ215のゲートに供給される電圧VG2が変動した場合、信号増幅器24に供給される電流が変動することで、ノイズが発生する。具体的には、定電流源トランジスタ215のゲートに供給されるバイアス電圧をサンプルホールドしない場合、バイアス電圧Vbiasdは複数列の定電流源トランジスタ215のゲートに共通に印加される。よって、複数列の信号増幅器24に共通のノイズが発生することで横筋状のノイズが発生する。横筋状のノイズは図8に示すように、画像として横筋状に発生することから、空間にランダムに発生するノイズよりも視認しやすいノイズである。よって、このノイズは、ノイズレベルが小さい場合においても、画質を大きく劣化させる要因となる。
 これに対して、本実施形態では、各列に設けられたサンプルホールド回路70によりバイアス電圧Vbiasdはサンプルホールドされる。また、各列のゲート電圧VG2は、基準電流源回路82から供給されるバイアス電圧Vbiasdと電気的に分離される。これにより、AD変換期間中に、基準電流源回路82から供給されるバイアス電圧のノイズが各列の定電流源トランジスタ215に与える影響を抑制することができる。また、各列の定電流源トランジスタ215のゲートは各々電気的に分離されることから、ある列のサンプルホールド回路70に保持されるバイアス電圧にノイズが発生した場合でも、当該ノイズが他の列のバイアス電圧に影響をバイアス電圧に影響をあたることを抑制できる。これにより、視認しやすい横筋状のノイズの発生が低減される。
 さらに、本実施形態では、サンプルホールド前に基準電流源回路82から供給されるバイアス電圧のノイズの影響を低減することができる。図15を用いて本作用について説明する。
 画素の信号読み出しが開始される前に制御信号SH2がLレベルになることにより、基準電流源回路82から供給されるバイアス電圧Vbiasdが定電流源トランジスタ215のゲートに供給される。このとき、基準電流源回路82から供給されるバイアス電圧VbiasdにノイズΔVN1が発生したとする。
 次に、制御信号SH2をLレベルからHレベルに切り替える。これにより、サンプルホールド回路70にバイアス電圧Vbiasd+ΔVN1が保持される。
 このノイズΔVN1により、リセット成分ΔVがΔV+ΔVN2に変動したとする。
 本実施形態では、上述のとおり、AD変換動作において、アップ/ダウンカウンタ32は、1回目のカウント動作としてダウンカウント動作を行い、2回目のカウント動作としてアップカウント動作を行う。これにより、アップ/ダウンカウンタ32内で自動的に(2回目の比較期間)-(1回目の比較期間)の減算処理が行われる。
 具体的には、(2回目の比較期間)-(1回目の比較期間)=(信号成分Vsig+リセット成分ΔV+ΔVN2+AD変換器23Aのオフセット成分)-(リセット成分ΔV+ΔVN2+AD変換器23Aのオフセット成分)=(信号成分Vsig)である。つまり、この2回の読み出し動作とアップ/ダウンカウンタ32での減算処理とにより、ノイズΔVN2も除去される。
 このように、本実施形態では、基準電流源回路80から供給されるバイアス電圧をAD変換期間中に、サンプルホールドすることにより、例え基準電流源回路80から供給されるバイアス電圧にノイズが発生した場合においても、CDS処理によりこのノイズの影響を低減することができる。
 (第5の実施形態)
 本発明の第5の実施形態に係る固体撮像装置は、上述した第1の実施形態に係る固体撮像装置の特徴に加え、比較動作が終わった比較器をパワーダウン状態にする。これにより、比較器で消費される電力を低減できる。
 図17は、本発明の第5の実施形態に係る固体撮像装置10Hの構成を示すブロック図である。本発明の第5の実施形態に係る固体撮像装置10Hは、上述した第1の実施形態に係る固体撮像装置10Aの構成に加え、さらに、カラム処理部14Hに含まれるAD変換器23H(列回路20H)がパワーダウン制御部51を備える点を特徴とする。このパワーダウン制御部51は、比較器31Hとアップ/ダウンカウンタ32との間に配置されており、比較器31Hを流れる電流を制御する。
 図18は、比較器31H及びパワーダウン制御部51の回路図である。
 図18に示す比較器31Hは、第1の実施形態に係る比較器31Aの構成に加え、さらに、比較器31Hの電流を制御するためのトランジスタ175を備える。トランジスタ175は、定電流源トランジスタ115のゲート及び122のゲートと、グランド線L12との間に接続されている。
 パワーダウン制御部51は、フリップフロップ511を含み、比較器31Hからの出力信号VcoがLレベルからHレベルに反転したタイミングで、パワーダウン信号VpdをHレベルにする。パワーダウン信号Vpdは、比較器31Hに入力される。パワーダウン信号VpdがLレベルの場合、比較器31Hは動作状態であり、パワーダウン信号VpdがHレベルの場合、比較器31Hは停止(パワーダウン状態)である。つまり、パワーダウン制御部51は、出力信号VcoがHレベルからLレベルに反転したタイミングで、比較器31Hへの電力の供給を停止する。具体的には、パワーダウン制御部51は比較器31Hへの駆動電流の供給を停止する。
 より具体的には、パワーダウン信号VpdがHレベルになると、トランジスタ175がオンする。これにより、定電流源トランジスタ115及び122がオフする。よって、比較器31Hを構成する差動アンプ41及び反転アンプ42に駆動電流が供給されないので、比較器31Hは停止状態となる。
 ノイズ低減の一例として、x列の比較器31H-xの出力信号がまだ反転しない状況において、i列の比較器31H-iの出力信号が反転した場合を想定する。i列の比較器31H-iの出力信号が反転することにより、i列のアンプ40の電流が停止する。これにより、グランド線L12の電圧が変動する。この変動量をΔVとすると、隣のx列の比較器31H-xのグランド線L12の電圧もΔV変動する。
 このような場合でも、上述した第1の実施形態と同様に、AD変換期間において、x列の定電流源トランジスタ115のゲートと、i列の定電流源トランジスタ115のゲートとは電気的に分離されおり、i列及びx列のゲートの電圧VG1が各々サンプルホールドされる。これにより、x列の基準電流源トランジスタ171とカレントミラートランジスタ172とで形成されるカレントミラー回路は、i列のアンプ40によるグランド線L12の電圧変動の影響を受けずに、x列のアンプ40に定電流を供給することができる。これにより、図7A及び図7Bに示すようなノイズを低減することができる。
 なお、比較器31Hの構成は、図18に示す構成に限定されるものではなく、同様の機能を有する構成であればよい。例えば、図19に示す比較器31Iのように、トランジスタ178をカレントミラー回路内に設けてもよい。この構成では、パワーダウン信号VpdがHレベルになると、トランジスタ175がオンし、トランジスタ178がオフする。これにより、カレントミラートランジスタ172と、定電流源トランジスタ115及び122とがオフする。よって、比較器31Iに含まれるアンプ40に駆動電流が供給されないので、比較器31Iは停止状態となる。
 なお、上記第1~第5の実施形態では、サンプルホールド部が、バイアス電圧を保持するサンプルホールド容量を備える例を説明したが、このサンプルホールド容量は、専用の容量素子であってもよいし、寄生容量をサンプルホールド容量として用いてもよい。この寄生容量とは、定電流トランジスタのゲートと基板との間の容量及びゲート-ソース間容量をサンプルホールド容量である。
 また、上記第1~第5の実施形態では、比較器を含むAD変換器が画素ピッチに合わせて画素列の数だけ、即ち画素列に対して1対1の対応関係で配置されている場合を例に説明したが、本発明はこの適用例に限られるものではない。つまり、複数本の垂直信号線22に対して1つのAD変換器を配置してもよい。この場合、このAD変換器は、時分割で対応する複数本の垂直信号線22に出力された信号電圧をAD変換する。
 また、上記各実施形態では、画素セル11から垂直信号線22-1、22-2、…、22-mを通して出力される画素信号(アナログ信号)を、列回路において、AD変換、又は信号増幅する例を説明したが、これは一例に過ぎない。例えば、複数の画素セル11の各々に、信号増幅器及びAD変換器の少なくとも一方が内蔵される場合にも本発明を適用できる。この場合、当該画素セル11に内蔵される信号増幅器及びAD変換器の少なくとも一方に、上述したAD変換器及び信号増幅器と同様の技術を適用すればよい。
 また、上記実施形態では、AD変換器が、時間を計測することによってデジタル信号を得る例に説明したが、これは一例にすぎず、本発明は、他の構成のAD変換器にも適用できる。さらに、本発明は、列毎に1又は複数配置されるアンプを含み、当該アンプ内の定電流源トランジスタのソースが複数列間で共通に接続される信号増幅器及びAD変換器全般に対して適用可能である。
 さらに、上記各実施形態では、被写体からの像光の光量分布を画素単位で物理量分布として検知する固体撮像装置、例えばMOSイメージセンサを例に挙げて説明したが、本発明はこの適用例に限られるものではない。例えば、本発明は、MOSイメージセンサ以外の、X-Yアドレス方式を用い、かつ、列並列アンプ、又は列並列型AD変換装置を搭載した固体撮像装置全般に対して同様に適用可能である。さらに、本発明は、X-Yアドレス方式を用い、かつ、列並列アンプ、又は列並列型AD変換装置を搭載した、物理量分布を検知する物理量分布検出装置全般に適用で可能である。
 (第6の実施形態)
 本発明の第6の実施形態では、上記した第1~第5まで実施形態に係る固体撮像装置を備える撮像装置について説明する。この撮像装置は、例えば、デジタルビデオカメラ、デジタルスチルカメラ、又は、携帯電話等のモバイル機器向けカメラモジュール等である。
 図20は、本発明に係る撮像装置の構成の一例を示すブロック図である。図20に示すように、本実施形態に係る撮像装置は、レンズ61を含む光学系と、撮像デバイス62と、カメラ信号処理回路63と、システムコントローラ64とを備える。
 レンズ61は、被写体からの像光を撮像デバイス62の撮像面に結像する。撮像デバイス62は、レンズ61によって撮像面に結像された像光を画素単位で電気信号に変換し、変換することで得られた画像信号を出力する。この撮像デバイス62として、上述した各実施形態に係る固体撮像装置が用いられる。
 カメラ信号処理回路63は、撮像デバイス62から出力される画像信号に対して種々の信号処理を行う。
 システムコントローラ64は、撮像デバイス62及びカメラ信号処理回路63を制御する。例えば、撮像デバイス62は、通常フレームレートモードと高速フレームレートモードとを有する。さらに、撮像デバイス62はこれらのモードに応じて、AD変換動作を制御する。ここで、通常フレームレートモードとは、全ての画素の情報を読み出すプログレッシブ走査方式における動作モードである。また、高速フレームレートモードとは、通常フレームレートモード時に比べて、画素の露光時間を1/Mに設定することでフレームレートをM倍に上げる動作モードである。このような場合には、システムコントローラ64は、外部からの指令に応じてこの動作モードの切り替え制御を行う。
 以上により、本発明の第6の実施形態に係る撮像装置は、撮像デバイス62として上述した各実施形態に係る固体撮像装置を用いることで、CDS処理では除去できないノイズをも比較器で低減できる。これにより、当該撮像装置は、イメージセンサとしてのS/Nを向上できるので、画質を大幅に向上できる利点がある。
 以上、本発明の実施形態に係る固体撮像装置及び撮像装置について説明したが、本発明は、この実施形態に限定されるものではない。
 また、上記実施形態に係る固体撮像装置に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 また、本発明の実施形態に係る、固体撮像装置又は撮像装置の機能の一部を、CPU等のプロセッサがプログラムを実行することにより実現してもよい。
 さらに、本発明は上記プログラムであってもよいし、上記プログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体であってもよい。また、上記プログラムは、インターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
 また、上記実施形態1~6に係る、固体撮像装置、撮像装置、及びそれらの変形例の機能のうち少なくとも一部を組み合わせてもよい。
 また、上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。さらに、ハイ/ローにより表される論理レベル又はオン/オフにより表されるスイッチング状態は、本発明を具体的に説明するために例示するものであり、例示された論理レベル又はスイッチング状態の異なる組み合わせにより、同等な結果を得ることも可能である。また、トランジスタ等のn型及びp型等は、本発明を具体的に説明するために例示するものであり、これらを反転させることで、同等の結果を得ることも可能である。また、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
 また、上記説明では、MOSトランジスタを用いた例を示したが、他のトランジスタを用いてもよい。
 また、上記回路図に示す回路構成は、一例であり、本発明は上記回路構成に限定されない。つまり、上記回路構成と同様に、本発明の特徴的な機能を実現できる回路も本発明に含まれる。例えば、上記回路構成と同様の機能を実現できる範囲で、ある素子に対して、直列又は並列に、スイッチング素子(トランジスタ)、抵抗素子、又は容量素子等の素子を接続したものも本発明に含まれる。言い換えると、上記実施形態における「接続される」とは、2つの端子(ノード)が直接接続される場合に限定されるものではなく、同様の機能が実現できる範囲において、当該2つの端子(ノード)が、素子を介して接続される場合も含む。
 更に、本発明の主旨を逸脱しない限り、本実施形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本発明に含まれる。
 本発明は、固体撮像装置に適用できる。また、本発明は固体撮像装置を用いるデジタルビデオカメラ、デジタルスチルカメラ及び携帯電話機器等に適用できる。
 10、10A、10G、10H 固体撮像装置
 11、11-i、11-x 画素セル
 12 画素アレイ
 13 行走査回路
 14、14A、14H カラム処理部
 15 参照信号生成部
 16 列走査回路
 17 水平出力線
 18 タイミング制御回路
 20、20-1~20-m、20G、20G-1~20G-m、20H、20H-1~20H-m 列回路
 21、21-1~21-n 行制御線
 22、22-1~22-m、22-i、22-x 垂直信号線
 23、23-1~23-m、23A、23A-1~23A-m、23H、23H-1~23H-m AD変換器
 24、24-i、24-x 信号増幅器
 31、31A、31A-i、31A-x、31B、31B-i、31B-x、31C、31C-i、31C-x、31D、31D-i、31D-x、31E、31E-i、31E-x、31F、31F-i、31F-x、31H、31H-i、31H-x、31I、31I-i、31I-x 比較器
 32 アップ/ダウンカウンタ
 33 転送スイッチ
 34 メモリ
 35、35-1~35-m、35-i、35-x 定電流源
 40、45 アンプ
 41 差動アンプ
 42 反転アンプ
 43 インバータ
 50、50A、50B、70 サンプルホールド回路
 51 パワーダウン制御部
 61 レンズ
 62 撮像デバイス
 63 カメラ信号処理回路
 64 システムコントローラ
 80、81、82 基準電流源回路
 101 光電変換素子
 102 転送トランジスタ
 103、218 リセットトランジスタ
 104、211 増幅トランジスタ
 105 フローティングディフュージョン(FD)
 111、112 差動対トランジスタ
 113、114 能動負荷トランジスタ
 115、122、142、215 定電流源トランジスタ
 116、117、124 容量素子
 118、119、123 スイッチトランジスタ
 121 反転トランジスタ
 131、132、141、161、162、175、178、261 トランジスタ
 170、176、270 サンプルホールドトランジスタ
 171 基準電流源トランジスタ
 172 カレントミラートランジスタ
 173、177、273 サンプルホールド容量
 181、182、281 参照電流源
 200、203 被写体
 201、202、204、205 領域
 206、207 ノイズ
 216 入力容量
 217 フィードバック容量
 511 フリップフロップ
 CK クロック
 CS1、CS2、CS3 制御信号
 L11、L21 電源電圧線
 L12、L22 グランド線
 L14、L15、L16、L17、L24、L25 バイアス線
 MCK マスタークロック
 PSET、PSETc セット信号
 SH1、SH2 制御信号
 Vbiasa、Vbiasb、Vbiasd、VG、VG1、VG2 電圧
 Vdd、Vdda、Vddc 電源電圧
 Vfd 電圧
 Vref 参照信号
 Vsig 信号成分
 Vss、Vssb、Vssc接地電位
 Vx 信号電圧
 Vco、Vo、Vy、Vz 出力信号

Claims (14)

  1.  受光量に応じて信号電荷を生成する光電変換素子と、前記信号電荷を増幅することで信号電圧を生成する増幅トランジスタとを各々が含み、行列状に配置された複数の画素セルと、
     列毎に一つ設けられており、前記複数の画素セルのうち対応する列に配置された複数の画素セルにより生成された前記信号電圧が出力される複数の垂直信号線と、
     1以上の列毎に一つ設けられており、対応する列に配置された前記垂直信号線に出力された前記信号電圧が入力される複数の列回路とを備える固体撮像装置であって、
     前記複数の列回路の各々は、
     前記信号電圧に基づく入力信号が入力され、定電流源トランジスタを含むアンプを備え、
     前記固体撮像装置は、さらに、
     前記複数の列回路に含まれる複数の前記定電流源トランジスタのゲートに第1バイアス電圧を供給する基準電流源回路を備え、
     前記複数の列回路の各々は、さらに、
     前記第1バイアス電圧を保持するサンプルホールド回路を備える
     固体撮像装置。
  2.  前記複数の列回路の各々は、前記信号電圧をデジタル信号に変換するAD変換部を備え、
     前記AD変換部は、前記信号電圧と参照信号とを比較する比較器を備え、
     前記アンプは、前記比較器に含まれ、前記信号電圧と前記参照信号とが入力されるアンプであり、
     前記サンプルホールド回路は、前記比較器が前記参照信号と前記信号電圧とを比較する期間において、前記第1バイアス電圧を保持する
     請求項1記載の固体撮像装置。
  3.  前記アンプは、
     前記信号電圧と参照信号とを比較する差動アンプと、
     前記定電流源トランジスタを含み、前記差動アンプの出力信号を増幅する増幅アンプとを備え、
     前記サンプルホールド回路は、前記差動アンプが参照信号と前記信号電圧とを比較する期間において、前記第1バイアス電圧を保持する
     請求項2記載の固体撮像装置。
  4.  前記複数の列回路の各々は、前記アンプを含み、前記信号電圧を増幅する信号増幅器を備え、
     前記サンプルホールド回路は、前記信号増幅器が前記信号電圧を増幅する期間において、前記第1バイアス電圧を保持する
     請求項1記載の固体撮像装置。
  5.  前記サンプルホールド回路は、
     前記定電流源トランジスタのゲートと前記基準電流源回路との間に接続されたサンプルホールドトランジスタと、
     前記定電流源トランジスタのゲートに接続されたサンプルホールド容量とを備える
     請求項1~4のいずれか1項に記載の固体撮像装置。
  6.  前記固体撮像装置は、さらに、前記基準電流源回路と、前記複数の列回路に含まれる複数の前記サンプルホールド回路とに接続されているバイアス線を備え、
     前記基準電流源回路は、前記バイアス線を介して、前記複数の定電流源トランジスタのゲートに前記第1バイアス電圧を供給する
     請求項1~5のいずれか1項に記載の固体撮像装置。
  7.  前記基準電流源回路は、
     前記定電流源トランジスタとカレントミラー回路を形成するトランジスタと、
     前記トランジスタに基準電流を供給する参照電流源とを備える
     請求項6記載の固体撮像装置。
  8.  前記基準電流源回路は、前記列回路ごとに一つ設けられた複数の第1基準電流源部を備え、
     前記複数の第1基準電流源部の各々は、
     前記定電流源トランジスタとカレントミラー回路を構成し、前記定電流源トランジスタのゲートに前記第1バイアス電圧を供給するカレントミラートランジスタと、
     前記カレントミラートランジスタに対して基準電流を供給する参照電流源トランジスタとを備える
     請求項1~5のいずれか1項に記載の固体撮像装置。
  9.  前記基準電流源回路は、さらに、
     前記複数の第1基準電流源部に含まれる複数の前記参照電流源トランジスタのゲートに接続されているバイアス線と、
     前記バイアス線を介して、前記複数の参照電流源トランジスタのゲートに第2バイアス電圧を供給する第2基準電流源部とを備える
     請求項8記載の固体撮像装置。
  10.  前記サンプルホールド回路は、前記比較器が参照信号と前記信号電圧とを比較する期間外に、前記第1バイアス電圧を取り込み保持する
     請求項2記載の固体撮像装置。
  11.  前記サンプルホールド回路は、前記信号増幅器が前記信号電圧を増幅する期間外に、前記第1バイアス電圧を取り込み保持する
     請求項4記載の固体撮像装置。
  12.  前記アンプはソース接地型アンプである
     請求項1~11のいずれか1項に記載の固体撮像装置。
  13.  前記列回路は、さらに、
     前記アンプを停止させるパワーダウン制御部を備える
     請求項1~12のいずれか1項に記載の固体撮像装置。
  14.  請求項1~13のいずれか1項に記載の固体撮像装置を備える
     撮像装置。
PCT/JP2012/004993 2011-08-30 2012-08-06 固体撮像装置及び撮像装置 WO2013031097A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013531023A JP6083611B2 (ja) 2011-08-30 2012-08-06 固体撮像装置及び撮像装置
US14/182,725 US9066031B2 (en) 2011-08-30 2014-02-18 Solid-state imaging device and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011187847 2011-08-30
JP2011-187847 2011-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/182,725 Continuation US9066031B2 (en) 2011-08-30 2014-02-18 Solid-state imaging device and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2013031097A1 true WO2013031097A1 (ja) 2013-03-07

Family

ID=47755629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004993 WO2013031097A1 (ja) 2011-08-30 2012-08-06 固体撮像装置及び撮像装置

Country Status (3)

Country Link
US (1) US9066031B2 (ja)
JP (1) JP6083611B2 (ja)
WO (1) WO2013031097A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121353A1 (ja) * 2015-01-28 2016-08-04 パナソニックIpマネジメント株式会社 固体撮像装置およびカメラ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808162B2 (ja) * 2011-06-23 2015-11-10 キヤノン株式会社 撮像素子、撮像装置及び撮像素子の駆動方法
WO2013179573A1 (ja) * 2012-05-30 2013-12-05 パナソニック株式会社 固体撮像装置およびカメラ
JP6527713B2 (ja) * 2015-02-24 2019-06-05 ルネサスエレクトロニクス株式会社 固体撮像装置
JP6494335B2 (ja) * 2015-03-05 2019-04-03 キヤノン株式会社 光電変換装置、光電変換装置の駆動方法、および、光電変換システム
JP5941577B1 (ja) * 2015-05-11 2016-06-29 力晶科技股▲ふん▼有限公司 半導体記憶装置
US10742920B2 (en) 2015-09-30 2020-08-11 Nikon Corporation Image sensor, image-capturing apparatus, and electronic device
KR20240051317A (ko) 2016-07-07 2024-04-19 코어포토닉스 리미티드 폴디드 옵틱용 선형 볼 가이드 보이스 코일 모터
JP2018082261A (ja) * 2016-11-15 2018-05-24 キヤノン株式会社 撮像素子
JP6868381B2 (ja) 2016-12-09 2021-05-12 ローム株式会社 電圧変動検知回路、半導体集積回路、車両
TWI755462B (zh) * 2017-03-02 2022-02-21 日商索尼半導體解決方案公司 影像感測器、控制影像感測器之方法及電子裝置
KR20190012659A (ko) * 2017-07-28 2019-02-11 에스케이하이닉스 주식회사 저 밴딩 노이즈를 위한 비교 장치 및 그에 따른 씨모스 이미지 센서
US10809792B2 (en) * 2018-08-16 2020-10-20 Analog Devices, Inc. Correlated double sampling amplifier for low power
KR20210128147A (ko) * 2020-04-16 2021-10-26 에스케이하이닉스 주식회사 이미지 센싱 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281540A (ja) * 2006-04-03 2007-10-25 Sony Corp 物理量分布検出装置および撮像装置
JP2009159271A (ja) * 2007-12-26 2009-07-16 Panasonic Corp 固体撮像装置
JP2010268440A (ja) * 2009-04-17 2010-11-25 Canon Inc 光電変換装置及び撮像システム
JP2011109282A (ja) * 2009-11-13 2011-06-02 Sony Corp 固体撮像素子およびその駆動方法、カメラシステム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488415A (en) * 1993-07-09 1996-01-30 Olympus Optical Co., Ltd. Solid-state image pickup device having a photoelectric conversion detection cell with high sensitivity
US5982318A (en) * 1997-10-10 1999-11-09 Lucent Technologies Inc. Linearizing offset cancelling white balancing and gamma correcting analog to digital converter for active pixel sensor imagers with self calibrating and self adjusting properties
JP5005179B2 (ja) * 2005-03-23 2012-08-22 ソニー株式会社 固体撮像装置
US20100289932A1 (en) * 2005-12-09 2010-11-18 Omron Corporation Solid-state imaging device
JP2008017288A (ja) * 2006-07-07 2008-01-24 Rohm Co Ltd 光電変換回路及びこれを用いた固体撮像装置
JP5167677B2 (ja) * 2007-04-12 2013-03-21 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法、固体撮像装置の信号処理方法および撮像装置
JP2008271159A (ja) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd 固体撮像装置
JP5106092B2 (ja) * 2007-12-26 2012-12-26 パナソニック株式会社 固体撮像装置およびカメラ
US8072525B1 (en) * 2008-06-18 2011-12-06 Infrared Newco, Inc. Imaging signal processing methods and apparatus
JP5431771B2 (ja) * 2009-04-07 2014-03-05 浜松ホトニクス株式会社 固体撮像装置
JP2012010008A (ja) * 2010-06-23 2012-01-12 Sony Corp 撮像素子及び撮像装置
JP5751766B2 (ja) * 2010-07-07 2015-07-22 キヤノン株式会社 固体撮像装置および撮像システム
JP2012034350A (ja) * 2010-07-07 2012-02-16 Canon Inc 固体撮像装置及び撮像システム
JP2012019411A (ja) * 2010-07-08 2012-01-26 Toshiba Corp 固体撮像装置
JP5152272B2 (ja) * 2010-08-16 2013-02-27 株式会社ニコン 固体撮像素子
JP5500007B2 (ja) * 2010-09-03 2014-05-21 ソニー株式会社 固体撮像素子およびカメラシステム
JP5524028B2 (ja) * 2010-11-22 2014-06-18 株式会社東芝 固体撮像装置
JP2013088192A (ja) * 2011-10-14 2013-05-13 Toshiba Corp 赤外線固体撮像装置
JP5954997B2 (ja) * 2012-01-18 2016-07-20 キヤノン株式会社 固体撮像装置及びその駆動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281540A (ja) * 2006-04-03 2007-10-25 Sony Corp 物理量分布検出装置および撮像装置
JP2009159271A (ja) * 2007-12-26 2009-07-16 Panasonic Corp 固体撮像装置
JP2010268440A (ja) * 2009-04-17 2010-11-25 Canon Inc 光電変換装置及び撮像システム
JP2011109282A (ja) * 2009-11-13 2011-06-02 Sony Corp 固体撮像素子およびその駆動方法、カメラシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121353A1 (ja) * 2015-01-28 2016-08-04 パナソニックIpマネジメント株式会社 固体撮像装置およびカメラ
US10116887B2 (en) 2015-01-28 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device and camera

Also Published As

Publication number Publication date
JP6083611B2 (ja) 2017-02-22
JPWO2013031097A1 (ja) 2015-03-23
US20140160331A1 (en) 2014-06-12
US9066031B2 (en) 2015-06-23

Similar Documents

Publication Publication Date Title
JP6083611B2 (ja) 固体撮像装置及び撮像装置
JP4935486B2 (ja) 固体撮像装置、固体撮像装置の駆動方法、固体撮像装置の信号処理方法および撮像装置
US7755686B2 (en) Physical quantity distribution detecting apparatus and imaging apparatus
JP5858695B2 (ja) 固体撮像装置及び固体撮像装置の駆動方法
JP4529834B2 (ja) 固体撮像装置、固体撮像装置の駆動方法および撮像装置
JP4442515B2 (ja) 固体撮像装置、固体撮像装置におけるアナログ−デジタル変換方法および撮像装置
JP6319946B2 (ja) 固体撮像装置及び撮像システム
JP2013051527A (ja) 固体撮像装置及び撮像装置
JP2016201649A (ja) 撮像装置、撮像システム、および撮像装置の駆動方法
WO2011104783A1 (ja) 固体撮像装置およびその駆動方法、カメラ
JP2011004390A (ja) 撮像装置、撮像システム、及び撮像装置の駆動方法
JP6561315B2 (ja) 固体撮像装置
JP2008053959A (ja) 固体撮像装置
US9344652B2 (en) Photoelectric conversion apparatus and image pickup system including an ad conversion unit to convert a signal into a digital signal
JP2011109486A (ja) 固体撮像装置、負荷電流源回路
JP6152992B2 (ja) 固体撮像装置およびカメラ
US20220046197A1 (en) Image sensor and photodetector
US20150172581A1 (en) Driving method for photoelectric conversion apparatus, photoelectric conversion apparatus, and image pickup system
JP2009290703A (ja) 固体撮像装置およびカメラ
US9800810B2 (en) Imaging apparatus and imaging system
WO2015111371A1 (ja) 固体撮像装置及び撮像装置
JP6422319B2 (ja) 撮像装置、及びそれを用いた撮像システム
JP5018539B2 (ja) 撮像装置
JP6370135B2 (ja) 撮像装置、撮像システム、撮像装置の駆動方法
JP2012199731A (ja) 撮像素子、負荷電流源回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531023

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828765

Country of ref document: EP

Kind code of ref document: A1