WO2013002358A1 - 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板およびその製造方法 - Google Patents

外観均一性に優れた高耐食性溶融亜鉛めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013002358A1
WO2013002358A1 PCT/JP2012/066655 JP2012066655W WO2013002358A1 WO 2013002358 A1 WO2013002358 A1 WO 2013002358A1 JP 2012066655 W JP2012066655 W JP 2012066655W WO 2013002358 A1 WO2013002358 A1 WO 2013002358A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
steel sheet
plating layer
mass
steel plate
Prior art date
Application number
PCT/JP2012/066655
Other languages
English (en)
French (fr)
Inventor
健志 安井
大橋 徹
那由他 河津
田中 曉
秋男 齋藤
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to AU2012276644A priority Critical patent/AU2012276644B2/en
Priority to JP2012555228A priority patent/JP5482914B2/ja
Priority to CN201280030428.XA priority patent/CN103620079B/zh
Priority to CA2838318A priority patent/CA2838318C/en
Priority to US14/127,780 priority patent/US9481148B2/en
Priority to MX2013015130A priority patent/MX2013015130A/es
Priority to KR1020137033480A priority patent/KR101504863B1/ko
Publication of WO2013002358A1 publication Critical patent/WO2013002358A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/026Deposition of sublayers, e.g. adhesion layers or pre-applied alloying elements or corrosion protection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/522Temperature of the bath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a hot dip galvanized steel sheet. Specifically, the present invention has excellent appearance uniformity regardless of the cleanliness uniformity of the base steel sheet, and can be applied as a steel sheet for various uses, for example, home appliances, automobiles, and building materials.
  • the present invention relates to a plated steel sheet.
  • hot-dip galvanized steel sheet to be used as a steel sheet with good corrosion resistance.
  • This hot dip galvanized steel sheet is widely used in various manufacturing industries such as automobiles, home appliances, and building materials.
  • a method for producing a hot-dip galvanized steel sheet a method is generally used in which a cold-rolled steel sheet or a hot-rolled steel sheet is used as a base steel sheet and is passed through a continuous hot-dip galvanizing line (hereinafter referred to as CGL). .
  • CGL continuous hot-dip galvanizing line
  • the base steel plate is subjected to alkaline spray degreasing, followed by brush cleaning, and in the annealing section, after annealing in a reducing atmosphere, it is immersed in a hot dip galvanizing bath. Is generally used.
  • the Sendzimir method has a non-oxidation furnace in the front stage of the annealing section, and the surface-washed base steel sheet is preheated in the non-oxidation furnace, then subjected to reduction annealing in the reduction furnace, and then immersed in a hot dip galvanizing bath. Sometimes used.
  • Patent Document 1 proposes a molten Zn—Al—Mg—Si plated steel sheet. Further, in Patent Document 1, by adding one or more of Ca, Be, Ti, Cu, Ni, Co, Cr, and Mn to the molten Zn—Al—Mg—Si plated steel sheet, the corrosion resistance is further improved. It has been proposed that a coated steel sheet can be obtained.
  • Patent Document 2 discloses that the surface appearance is improved by adding Ti, B, and Si to a molten Zn—Al—Mg plated steel sheet.
  • the Zn—Al—Mg ternary alloy has a ternary eutectic point with a composition of 3 mass% Mg-4 mass% Al-93 mass% Zn, and therefore a plating bath having a higher Al concentration than that is used.
  • the plating layer is mainly composed of three types of phases: an Al phase, an MgZn 2 phase, and an Al / MgZn 2 / Zn ternary eutectic phase.
  • the plating layer contains Si in addition to Zn, Al, and Mg, it is mainly composed of four types of phases including the Mg 2 Si phase in addition to the above three types of phases.
  • FIG. 1 shows an example of a cross-sectional structure of a molten Zn—Al—Mg—Si plating layer composed of the above constituent phases.
  • Reference numeral 1 is a plating original plate
  • 2 is an Al phase
  • 3 is a MgZn 2 phase
  • 4 is an Al / MgZn 2 / Zn ternary eutectic phase
  • 5 is a Mg 2 Si phase.
  • FIG. 2 shows an example of the surface appearance of a molten Zn—Al—Mg—Si plating layer having a cross-sectional structure as shown in FIG.
  • Reference numeral 6 denotes a portion where the surface has many Al / MgZn 2 / Zn ternary eutectic phases and has metallic luster.
  • 7 is a portion where the Al phase is exposed on the surface and has a white appearance.
  • an Mg 2 Si phase is formed on a base steel plate in a plating bath.
  • the Al concentration is higher than the ternary eutectic point composition
  • the Al phase crystallizes in a dendritic form from the liquid phase in the cooling process after the base steel plate is pulled up from the plating bath.
  • the MgZn 2 phase is crystallized, and finally the ternary eutectic phase of Al / MgZn 2 / Zn is solidified to complete the solidification of the liquid phase.
  • a portion where the dendritic portion of the primary Al phase dendrite penetrates the surface of the melt and solidifies on the plating surface during solidification of the ternary eutectic phase of Al / MgZn 2 / Zn is shown by 7 in FIG. It corresponds to the white part made. Further, the surface layer of the plating layer, the solidified portion so as to cover the ternary phase of Al / MgZn 2 / Zn corresponds to the metallic luster portion shown in 6 in FIG. As the dendrite portion of the Al phase exposed on the surface of the plating layer increases, the glossiness in the visual appearance of the entire plating layer decreases and the whiteness increases.
  • the rust preventive oil or rolling oil on the surface of the plating original plate is completely removed in the cleaning section on the CGL containing side, then it is annealed and plated.
  • the solidification reaction from the liquid phase occurs uniformly in the order of the Mg 2 Si phase, Al phase, MgZn 2 phase, and Al / MgZn 2 / Zn ternary eutectic phase as described above.
  • a surface appearance is obtained in which the dendrite dendrites of the Al phase are uniformly dispersed in the Al / MgZn 2 / Zn ternary eutectic phase as shown in FIG.
  • Patent Document 1 does not consider the appearance uniformity when oil stains remain locally on the base material steel plate.
  • one or more of Ca, Be, Ti, Cu, Ni, Co, Cr, and Mn are added for the purpose of improving the corrosion resistance after painting. The problem of deteriorating sex is not considered.
  • Ti and B are added for the purpose of suppressing the formation and growth of a Zn 11 Mg 2 phase that deteriorates the surface appearance. The problem that the appearance uniformity due to the remaining dirt is deteriorated is not considered.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a highly corrosion-resistant hot-dip galvanized steel sheet having excellent appearance uniformity regardless of the cleanliness uniformity of the base steel sheet.
  • the inventors first investigated the cause of the high glossiness of the plating layer in the oil stain remaining portion of the base steel plate.
  • the size of the Al phase which is the primary crystal, did not change from that of the normal part at the time of solidification from the liquid phase after the pulling up from the plating bath immediately above the oil stain remaining part of the base steel plate.
  • the glossiness increases immediately above the remaining portion of the oil stain because the ternary eutectic phase of Al / MgZn 2 / Zn, which is the final solidified phase, becomes finer.
  • the inventors have intensively studied a method that can ensure the appearance uniformity even in the case of a base steel plate in which oil stains remain locally.
  • the presence of a Ca phase containing Ca or a Ca compound as a main component at the interface between the plating layer and the base steel sheet allows the ternary Al / MgZn 2 / Zn to be used regardless of the presence or absence of oil stains on the base steel sheet. It was found that the crystal phase was refined. The present inventors have refined the ternary eutectic phase of Al / MgZn 2 / Zn due to the Ca phase, thereby increasing the overall glossiness of the plating layer and improving the appearance uniformity. The present inventors have found knowledge and have completed the present invention.
  • the gist of the present invention is as follows. [1] Uniform appearance with a plating layer formed on the surface containing Al: 4-22 mass%, Mg: 1-6 mass%, Si: 0.001-1 mass%, the balance being Zn and inevitable impurities High corrosion resistance hot-dip galvanized steel sheet, An Mg 2 Si phase and a Ca phase mainly composed of Ca or a Ca compound are present at the interface between the plating layer and the base steel plate, and at least a part of the Mg 2 Si phase has the Ca phase as a nucleus. Precipitates.
  • the density of Mg 2 Si phases having an equivalent circle diameter of 2 ⁇ m or more is 10 to 1000 per 0.01 mm 2 .
  • the average diameter of the Al / MgZn 2 / Zn ternary eutectic phase present in the plating layer is 5 to 200 ⁇ m.
  • the plating layer further contains 0.000001 to 0.5% by mass of one or more selected from Ti, Ni, Zr, Sr, Hf, Sc, and B alone or in combination.
  • a method for producing a highly corrosion-resistant hot-dip galvanized steel sheet with excellent appearance uniformity Attaching a Ca phase mainly composed of Ca or a Ca compound to the surface of the base steel sheet; Annealing the base steel sheet with the Ca phase attached to the surface; Al: 4 to 22% by mass, Mg: 1 to 6% by mass, Si: 0.001 to 1% by mass, with the balance being immersed in a hot dip galvanizing bath consisting of Zn and inevitable impurities.
  • a step of performing hot dip galvanization [6]
  • the base steel plate is immersed in hot water containing 10 to 40 ppm by mass of Ca and having a temperature of 50 to 90 ° C. for 1 to 100 s.
  • a highly corrosion-resistant hot-dip galvanized steel sheet having excellent appearance uniformity regardless of the cleanliness uniformity of the base steel sheet is provided.
  • FIG. 2 is a diagram showing an example of a cross-sectional structure of a hot-dip Zn—Al—Mg—Si plated steel sheet, where (a) is a micrograph (magnification 2000 times) of the plated layer, and (b) is a distribution of each structure in the photograph It is the figure which showed the state.
  • 4 is a photograph showing an example of the surface appearance of a molten Zn—Al—Mg—Si plated steel sheet. It is a figure which shows an example of the data obtained by implementing cross-sectional EPMA analysis in the hot dip galvanized steel sheet of this invention.
  • (A) shows the result of element distribution of Si.
  • (B) shows the result of element distribution of Mg element distribution.
  • (C) shows the element distribution result of the Ca element distribution.
  • (D) shows the result of the element distribution of the Zn element distribution.
  • (E) shows the cross-sectional structure of each constituent phase estimated from the results of EPMA analysis.
  • a hot-dip galvanized steel sheet of the present invention it is a figure showing an example of a depth direction profile of Zn, Fe, and Ca obtained by carrying out GDS depth direction analysis.
  • the hot dip galvanized steel sheet of the present invention after the plating layer is dissolved with 0.5% hydrochloric acid containing an inhibitor, the surface is photographed with a SEM at a magnification of 2000 times.
  • hot-dip galvanized steel sheet of the present invention performs the EBSD measurement to determine the average diameter of the ternary phase of Al / MgZn 2 / Zn, is a diagram showing an example of data depicting the grain boundary with a solid line.
  • the present invention relates to a high corrosion resistance hot-dip galvanized steel sheet having excellent appearance uniformity, in which a plating layer is formed on the surface of a base steel sheet.
  • Base steel plate As the base steel plate (plating base plate) used for the base of the plating, both hot rolled steel plate and cold rolled steel plate can be used, and the steel grade is an ultra low carbon steel plate to which Al killed steel, Ti, Nb, etc. are added, and to these Various materials such as high-strength steel and stainless steel to which reinforcing elements such as P, Si, and Mn are added can be applied.
  • the hot rolling conditions, cold rolling conditions, etc. may be selected according to the dimensions of the steel sheet and the required strength, and the effect of the steel sheet of the present invention is influenced by the hot rolling conditions, cold rolling conditions, etc. It is not damaged.
  • board thickness of a steel plate is not specifically limited, If this is the plate
  • the plating layer contains Al: 4 to 22% by mass, Mg: 1 to 6% by mass, Si: 0.001 to 1% by mass, with the balance being Zn and inevitable impurities.
  • Al in the plating layer is an element necessary for ensuring the corrosion resistance of the planar portion.
  • the reason why the content of Al in the plating layer is limited to 4 to 22% by mass is that the effect of improving the corrosion resistance is insufficient if it is less than 4% by mass, and the effect of improving the corrosion resistance if it exceeds 22% by mass. This is because is saturated.
  • the content is preferably 5 to 18% by mass. More preferably, the content is 6 to 16% by mass.
  • Mg in the plating layer is an essential element for improving the corrosion resistance of the plane portion and the processed portion.
  • the reason why the content of Mg in the plating layer is limited to 1 to 6% by mass is that if it is less than 1% by mass, the effect of improving the corrosion resistance of the processed part is insufficient. This is because dross generation of this becomes remarkable and it becomes difficult to stably produce a hot-dip galvanized steel sheet.
  • the content is preferably 1.5 to 5% by mass. More preferably, it is in the range of 2 to 4.5% by mass.
  • Si in the plating layer is an element effective for improving plating adhesion. Since the effect of improving plating adhesion is manifested by adding 0.001% by mass or more, 0.001% by mass is set as the lower limit. Moreover, since the effect which improves metal-plating adhesiveness will be saturated even if it contains exceeding 1 mass%, an upper limit shall be 1 mass%. From the viewpoint of plating adhesion, a range of 0.01 to 0.8% by mass is more preferable.
  • 0.000001 to 0.5% by mass of one or more selected from Ti, Ni, Zr, Sr, Hf, Sc, and B may be added alone or in combination.
  • Intermetallic compounds containing these elements act as crystallization strapping primary crystal Al phase, Al / MgZn 2 / finer the ternary phase of Zn, and uniform, the appearance and smoothness of the plated steel sheet Improve.
  • the reason why the amount of addition of one or more selected from Ti, Ni, Zr, Sr, Hf, Sc, and B is 0.000001 to 0.5% by mass is that the addition is less than 0.000001% by mass. This is because the effect of making the solidified structure fine and uniform is insufficient.
  • the content exceeds 0.5% by mass, the effect of miniaturizing the ternary eutectic phase is saturated, and conversely, the surface roughness of the plating layer
  • the upper limit is set to 0.5% by mass.
  • the plating layer may contain one or more of Fe, Sb, Pb, and Sn within 0.5 mass%.
  • a total of 0.5% by mass or less of one or more of Group 3 elements such as Ca, Be, Cu, Co, Cr, Mn, Mo, P, Nb, V, Bi, La, Ce, and Y Even if contained, the effects of the present invention are not impaired, and depending on the amount, the corrosion resistance may be further improved.
  • Ca phase and Mg 2 Si phase In the present invention, the presence of a Ca phase containing Ca or a Ca compound as a main component at the interface between the plating layer and the base steel plate is essential to ensure appearance uniformity.
  • the Ca phase 11 which has a compound as a main component exists.
  • the Ca phase 11 is preliminarily attached to the surface of the base steel plate 9, and then hot dip galvanizing is performed, so that at least a part of the Mg 2 Si phases 10 and 12 is Ca phase 11 Is deposited as a nucleus.
  • the Mg 2 Si phase 10 out of the Mg 2 Si phases 10 and 12 is directly deposited on the surface of the base steel plate 9 in the step of hot dip galvanizing.
  • the Mg 2 Si phase 12 was precipitated with the Ca phase 11 attached to the surface of the base steel plate 9 as a nucleus.
  • the Mg 2 Si phase 12 is precipitated with the Ca phase 11 existing at the interface between the plating layer 8 and the base steel plate 9 as a nucleus. It is considered that the number density of the Mg 2 Si phases 10 and 12 at the interface between the layer 8 and the base steel plate 9 is increased. As described above, the precipitation of the Mg 2 Si phases 10 and 12 at the interface between the plating layer 8 and the base steel plate 9 is promoted and deposited at a high density. The Al / MgZn 2 / Zn ternary eutectic phase in the layer 8 is refined, the overall glossiness of the plating layer 8 is increased, and the appearance uniformity is improved.
  • the Ca phase is mainly composed of Ca or a Ca compound.
  • Ca compound calcium carbonate, calcium oxide, calcium hydroxide, and the like are conceivable, but the type is not particularly limited as long as it contains Ca.
  • interface Ca strength at the interface between the plating layer and the base steel sheet can be used as an example of an index indicating whether or not the Ca phase exists at the interface between the plating layer and the base steel sheet.
  • This “interfacial Ca strength” is defined by the following equation using a Ca profile obtained by GDS analysis in the depth direction from the surface of a hot-dip galvanized steel sheet.
  • Interfacial Ca intensity (Ca peak intensity at the interface between the plating layer and the base steel sheet ⁇ background Ca intensity) / (background Ca intensity)
  • background Ca strength is defined as the Ca strength obtained when GDS analysis is performed on a substance that does not substantially contain Ca, and high purity iron (JSS No. The Ca strength obtained when GDS analysis of 003-6) is adopted.
  • FIG. 4 corresponds to the Ca peak intensity at the interface between the plating layer and the base steel plate.
  • the Ca peak intensity 13 at the interface between the plating layer and the base steel sheet is 0.024, and the background obtained by separately measuring the above-described high-purity iron (JSS No. 003-6) is used. Since the Ca strength was 0.016, the interface Ca strength was 0.5.
  • the interface Ca strength at the interface between the plating layer and the base steel sheet is in the range of 0.1 to 1.0. It is necessary to be. When the interface Ca strength is less than 0.1, the Ca phase is not sufficiently present at the interface between the plating layer and the base steel sheet, and the appearance uniformity cannot be ensured. On the other hand, when the interfacial Ca strength exceeds 1.0, the reaction between the base steel plate and the molten zinc is difficult to occur in the plating bath, and non-plating occurs.
  • the interface Ca strength is in the range of 0.15 to 1.0. More preferably, the range is 0.2 to 1.0.
  • the Ca phase is sufficiently present at the interface between the plating layer and the base steel sheet.
  • an Mg 2 Si phase precipitates at the interface between the plating layer and the base steel plate.
  • the Mg 2 Si phase precipitates at a high density at the interface between the plating layer and the base steel plate, so that the ternary of Al / MgZn 2 / Zn in the plating layer is present regardless of the presence or absence of oil stains on the base steel plate.
  • the eutectic phase is refined, the overall glossiness of the plating layer is increased, and the appearance uniformity is improved.
  • ternary phase of Al / MgZn 2 / Zn increases the gloss of the plated layer, the plated layer similar to the gloss appearance immediately above the oil stains of the base steel sheet results, clean of the base material steel plate Appearance uniformity improves regardless of the degree.
  • the Al / MgZn 2 / Zn ternary eutectic phase is refined, the dendritic portion of the Al phase dendrite, which is the primary crystal, is solidified so that the fine Al / MgZn 2 / Zn ternary eutectic phase is filled.
  • ternary phase of the Al / MgZn 2 / Zn having a metallic luster is considered to cover the plated surface.
  • the plating layer contains Mg and Si
  • the Ca phase existing at the interface between the plating layer and the base steel plate is used as a nucleus
  • the Mg 2 Si phase is formed at the interface between the plating layer and the base steel plate. Is sufficiently precipitated.
  • ternary phase of the Al / MgZn 2 / Zn of the plating layer is finer and appearance uniformity is improved.
  • the Mg 2 Si phase is effective in improving the corrosion resistance of the processed part, the addition amount of Si and Mg is increased, and a metal structure in which the Mg 2 Si phase is formed at the interface between the plating layer and the base steel sheet is used. Is desirable. Incidentally, improvement of the working portion corrosion resistance is improved regardless of the density of the Mg 2 Si phase.
  • Mg 2 in order to refine the ternary phase of Al / MgZn 2 / Zn, among Mg 2 Si phase existing in the interface of the plating layer and the base steel sheet is equivalent circle diameter of 2 ⁇ m or more
  • the density of the Si phase needs to be 10 to 1000 per 0.01 mm 2 . Even if the density of the Mg 2 Si phase having an equivalent circle diameter of 2 ⁇ m or more is less than 10 per 0.01 mm 2 , there is a slight effect of miniaturization, but a particularly high effect can be obtained by using 10 or more. This was the lower limit.
  • the effect to refine the ternary phase of Al / MgZn 2 / Zn is saturated, and 1,000 per square 0.01mm the upper limit.
  • the density of the Mg 2 Si phase is more preferably in the range of 20 to 1000 per 0.01 mm 2 .
  • the Mg 2 Si phase with an equivalent circle diameter of less than 2 ⁇ m has little effect of refining the Al / MgZn 2 / Zn ternary eutectic phase
  • the density is the Mg 2 Si phase with an equivalent circle diameter of 2 ⁇ m or more. It may be limited to.
  • the Mg 2 Si phase having an equivalent circle diameter of 2 ⁇ m or more is a circle having a diameter of 2 ⁇ m when measured from the surface direction of the steel plate among the Mg 2 Si phases formed at the interface between the plating layer and the base steel plate.
  • Al / MgZn 2 / Zn 3 terpolymer phase By increasing the density of the Mg 2 Si phase existing at the interface between the plating layer and the base steel sheet, Al / MgZn 2 / Zn 3 terpolymer phase from increasing the effect of miniaturization of, Mg 2 Si phase This is considered to be due to the effect that the ternary eutectic phase of Al / MgZn 2 / Zn becomes a starting point for solidification. That is, it is considered that by increasing the density of the Mg 2 Si phase, the number of Al / MgZn 2 / Zn ternary eutectic phases increases, and as a result, the ternary eutectic phase is refined.
  • the plating layer By dissolving the plating layer with 0.5% hydrochloric acid containing inhibitor, it is possible to dissolve and remove other than the Mg 2 Si phase out of the plating layer constituent phases. For this reason, in the present invention, in order to measure the density of the Mg 2 Si phase present at the interface between the plating layer and the base steel plate, the plating layer is dissolved with 0.5% hydrochloric acid containing inhibitor, Of these, components other than the Mg 2 Si phase are dissolved and removed. Thereafter, the number density of the remaining Mg 2 Si phase may be measured by SEM observation from the surface. Further, in measuring the circle equivalent diameter of Mg 2 Si phase, the SEM pictures taken as described above, determine the projected area of the Mg 2 Si phase of interest image processed to calculate the equivalent circle diameter.
  • FIG. 5 shows a schematic view when the plating layer is dissolved with 0.5% hydrochloric acid containing inhibitor and observed by SEM from the surface and photographed at a magnification of 2000 times.
  • reference numeral 14 is an Mg 2 Si phase having an equivalent circle diameter of 2 ⁇ m or more
  • reference numeral 15 is an Mg 2 Si phase having an equivalent circle diameter of less than 2 ⁇ m.
  • the density of the Mg 2 Si phase 14 having an equivalent circle diameter of 2 ⁇ m or more is 56 per 0.01 mm 2 .
  • the density of the Mg 2 Si phase 14 having an equivalent circle diameter of 2 ⁇ m or more at the interface between the plating layer and the base steel plate needs to be 10 to 1000 per 0.01 mm 2 .
  • the average diameter of the ternary eutectic phase of Al / MgZn 2 / Zn in the plating layer constituting phase is set in the range of 5 to 200 ⁇ m. Even if a Ca phase is present at the interface between the plating layer and the base steel plate, it is difficult to make the average diameter of the ternary eutectic phase of Al / MgZn 2 / Zn less than 5 ⁇ m, which may increase the cost.
  • the average diameter of the Al / MgZn 2 / Zn ternary eutectic phase exceeds 200 ⁇ m, the effect of covering the Al / MgZn 2 / Zn ternary eutectic phase on the dendrite portion of the Al phase becomes small. Unable to ensure uniform appearance. From the viewpoint of appearance uniformity, the average diameter of the ternary eutectic phase is preferably in the range of 10 to 100 ⁇ m, more preferably in the range of 20 to 50 ⁇ m.
  • the method of obtaining the to the data processing EBSD measuring the plating layer from the surface direction it is considered.
  • EBSD measurement is performed assuming that the ternary eutectic phase of Al / MgZn 2 / Zn is the Zn phase.
  • the average diameter by data processing to determine the average diameter of the ternary phase of Al / MgZn 2 / Zn Can do.
  • EBSD measurement is performed from the surface direction of the plating layer, and the boundary where the orientation difference between adjacent crystal grains is 15 ° or more is defined as the grain boundary of the ternary eutectic phase, and crystal grains in grain units surrounded by the grain boundaries Corresponds to one ternary eutectic phase.
  • FIG. 6 shows an example of data obtained by EBSD measurement from the surface direction of the plating layer, assuming that the ternary eutectic phase of Al / MgZn 2 / Zn is a Zn phase.
  • a boundary where the orientation difference between adjacent crystal grains is 15 ° or more is defined as a grain boundary of a ternary eutectic phase, and a crystal unit of a grain unit surrounded by the grain boundary is defined as one ternary eutectic phase. It was judged. It was determined the average diameter of the ternary phase of Al / MgZn 2 / Zn by data processing from such data, in the example shown in FIG. 6, the average diameter of the ternary phase of Al / MgZn 2 / Zn Was 46 ⁇ m.
  • ⁇ Alkaline degreasing and brush cleaning are performed in the CGL in-line cleaning section to clean and remove oil stains on the base steel plate (plating base plate). Then, before performing hot dip galvanization, the Ca phase which has Ca or Ca compound as a main component is made to adhere to the surface of a base material steel plate.
  • the base steel plate As a method for adhering the Ca phase to the surface of the base steel plate, for example, after removing oil stains on the surface of the plating base plate in the cleaning section on the CGL side, the base steel plate is immersed in warm water containing Ca. A method of precipitating Ca in the state of a compound on the surface of the steel sheet can be considered. Note that, during alkali cleaning or degreasing, a Ca phase may be formed on the surface of the base steel plate using a cleaning solution containing Ca, and hot water immersion may be omitted.
  • the Ca concentration is less than 10 ppm, the Ca phase cannot be sufficiently adhered to the surface of the base steel plate, and the appearance uniformity after hot dip galvanization cannot be ensured. Therefore, the lower limit is 10 ppm. Further, when Ca is contained in warm water by 40 ppm or more, not only the effect of improving the appearance uniformity is saturated, but also non-plating occurs, so the upper limit was made 40 ppm. Moreover, although the Ca phase is formed on the surface of the base material steel plate by setting the water temperature of the hot water containing Ca to 50 ° C.
  • the water temperature is set in the range of 50 to 90 ° C.
  • the time for immersing the base material steel plate in warm water containing Ca is in the range of 1 to 100 s. Since the Ca phase is formed on the surface of the base steel sheet by immersion for 1 s or longer, and the Ca phase adhering is saturated even when immersed for more than 100 s, the upper limit is set to 100 s.
  • annealing is performed in the annealing section of CGL.
  • the annealing conditions, the annealing atmosphere, etc. are not particularly limited, and appropriate conditions may be selected from the CGL line configuration, product plate thickness, target mechanical property values, and the like.
  • a hot dip galvanizing bath containing Al: 4 to 22% by mass, Mg: 1 to 6% by mass, Si: 0.001 to 1% by mass, the balance being Zn and inevitable impurities.
  • the base steel plate is immersed and hot dip galvanized.
  • the plating bath temperature is set to a range of 420 to 470 ° C. from the viewpoint of appearance uniformity.
  • the immersion time in a plating bath is not specifically limited, What is necessary is just to ensure predetermined immersion time according to the line speed of a base material steel plate. After pulling out from the plating bath, it is adjusted to a predetermined plating adhesion amount by nitrogen gas wiping.
  • the plating adhesion amount is not particularly limited, but is desirably 10 g / m 2 or more in terms of single-sided adhesion amount from the viewpoint of corrosion resistance. Further, from the viewpoint of workability, it is desirable that the amount of adhesion on one side does not exceed 350 g / m 2 .
  • On the hot dip galvanized steel sheet of the present invention for the purpose of improving paintability and weldability, it is possible to apply upper layer plating and various treatments such as chromate treatment, non-chromate treatment, phosphate treatment, lubricity improvement treatment. Even if the weldability improving process is performed, it does not depart from the present invention.
  • a cold-rolled steel plate having a thickness of 1.6 mm with cold rolling oil attached to the surface was prepared and used as a base material steel plate (plating original plate).
  • the surface was completely cleaned by alkaline spray degreasing and brush cleaning.
  • a base steel plate (plating original plate) in which oil stains remained on the surface without brush cleaning was also produced.
  • these base material steel plates were immersed in warm water containing Ca (mass%). Details of the immersion conditions are shown in Table 1. After that, after annealing in a CGL annealing furnace and performing hot-dip plating for 3 seconds in a hot dip galvanizing bath at 450 ° C. with varying amounts of Al, Mg, Si and Ti in the bath, N 2 gas wiping The amount of adhesion was adjusted with.
  • the plating layer composition For coated steel sheet manufactured using the fully-cleaned be plated, the plating layer composition, the interface between the plating layer and the base steel sheet, the average diameter of the ternary phase interfacial Ca strength, Al / MgZn 2 / Zn The density of the Mg 2 Si phase having an equivalent circle diameter of 2 ⁇ m or more existing at the interface between the plating layer and the base steel sheet was evaluated.
  • the peak intensity was calculated by calculating (background Ca intensity) / (background Ca intensity).
  • the Ca strength obtained by GDS analysis of high-purity iron (JSS No. 003-6) was used as the background Ca strength.
  • the average diameter of the ternary phase of Al / MgZn 2 / Zn, as described above, from the surface of the plating layer performs EBSD measuring ternary phase of Al / MgZn 2 / Zn assuming Zn
  • the average diameter was obtained by data processing of the obtained measurement data.
  • the density of the Mg 2 Si phase having an equivalent circle diameter of 2 ⁇ m or more existing at the interface between the plating layer and the base steel plate is determined by using a diluted hydrochloric acid containing an inhibitor with a phase other than the Mg 2 Si phase. After dissolution and removal, the number of Mg 2 Si phases having an equivalent circle diameter of 2 ⁇ m or more among the remaining Mg 2 Si phases was measured using a SEM photograph taken from the surface, and converted to a density per 0.01 mm 2. Asked.
  • the appearance uniformity of the plated steel sheet was determined by visually checking the appearance of the plating layer on the completely cleaned base steel sheet and the base steel sheet on which the oil stain remained, and scoring the difference in appearance in six stages. . Details of the evaluation are as follows: EX: No difference in appearance can be confirmed at all, VG: Difference in appearance can hardly be confirmed, G: A difference in appearance can be confirmed slightly, but there is no problem in actual use, F: Appearance of appearance Differences can be confirmed, but there is no problem in actual use. P: Clear difference in appearance can be confirmed and problems in actual use. VP: Clear difference in appearance can be confirmed. , And F or higher was accepted.
  • the corrosion resistance of the plated steel sheet was evaluated by the corrosion weight loss after the CCT test.
  • the plated steel sheet was cut into 150 ⁇ 70 mm, and the corrosion weight loss after 30 cycles of CCT was investigated using CCT based on JASO-M609. Evaluation less than the corrosion weight loss 30 g / m 2 F, corrosion weight loss 30 g / m 2 or more 50 g / m less than 2 ⁇ , a ⁇ 70 g / m less than 2 corrosion loss 50 g / m 2 or more P, corrosion weight loss 70 g / m 2
  • the above was set as VP and F or more was set as the pass.
  • Table 2 shows the above evaluation results. From Table 2, all examples of the present invention are excellent in both appearance uniformity and corrosion resistance. On the other hand, the comparative example which deviates from the scope of the present invention is inferior in appearance uniformity and corrosion resistance as compared with the present invention example. In addition, the remainder of the plating composition (mass%) in Table 2 is zinc and inevitable impurities.

Abstract

 Al:4~22質量%、Mg:1~6質量%、Si:0.001~1質量%を含有し、残部がZnおよび不可避的不純物からなるめっき層が表面に形成された、外観均一性に優れた高耐食性溶融亜鉛めっき鋼板であって、前記めっき層と母材鋼板との界面に、MgSi相と、CaもしくはCa化合物を主成分とするCa相が存在し、前記MgSi相の少なくとも一部は、前記Ca相を核として析出している。

Description

外観均一性に優れた高耐食性溶融亜鉛めっき鋼板およびその製造方法
 本発明は、溶融亜鉛めっき鋼板に関する。詳しくは、本発明は、母材鋼板の清浄度の均一性に関わらず優れた外観均一性を有し、種々の用途、例えば家電用や自動車用、建材用鋼板として適用できる、高耐食性溶融亜鉛めっき鋼板に関するものである。
 耐食性の良好な鋼板として使用されるものに溶融亜鉛めっき鋼板がある。この溶融亜鉛めっき鋼板は、自動車、家電、建材分野など種々の製造業において広く使用されている。
 溶融亜鉛めっき鋼板の製造方法としては、冷間圧延鋼板や熱間圧延鋼板を母材鋼板とし、連続溶融亜鉛めっきライン(以下、CGLと称する)に通板して製造する方法が一般的である。CGLのプロセスとしては、入り側の洗浄セクションにおいて、母材鋼板をアルカリスプレー脱脂した後にブラシ洗浄し、焼鈍セクションにおいて、還元雰囲気で焼鈍した後に、溶融亜鉛めっき浴に浸漬するという、全還元炉法を用いるのが一般的である。また、焼鈍セクションの前段に無酸化炉を有し、表面洗浄された母材鋼板を、無酸化炉において予備加熱した後に還元炉において還元焼鈍し、その後溶融亜鉛めっき浴に浸漬する、ゼンジミア法を用いる場合もある。
 上記のようなプロセスで製造される、溶融亜鉛めっき鋼板の耐食性をさらに向上させることを目的として、溶融亜鉛めっき層にAlやMgを添加した高耐食性溶融亜鉛めっき鋼板が提案されている。例えば、特許文献1においては溶融Zn-Al-Mg-Siめっき鋼板が提案されている。さらに、特許文献1では、この溶融Zn-Al-Mg-Siめっき鋼板にCa、Be、Ti、Cu、Ni、Co、Cr、Mnの一種または二種以上を添加することにより、さらに耐食性の優れた塗装鋼板が得られることが提案されている。
 また、特許文献2においては、溶融Zn-Al-Mgめっき鋼板にTi、B、Siを添加することにより表面外観が良好になることが開示されている。
国際公開WO2000/071773号公報 特開2001-295015号公報
 しかしながら、上記及びその他これまで開示されためっき鋼板では、外観均一性が満足できるほど十分に確保されていなかった。
 Zn-Al-Mgの3元系合金は、3質量%Mg-4質量%Al-93質量%Znの組成の3元共晶点を有するため、それよりもAl濃度が高い組成のめっき浴を用いて溶融めっきした場合、めっき層は、Al相、MgZn相、Al/MgZn/Znの3元共晶相、の主に3種類の相から構成される。また、めっき層がZn、Al、Mgに加えてSiを含有する場合は、上記の3種類の相に加え、MgSi相を含めた、主に4種類の相から構成される。
 上記のような構成相から成る、溶融Zn-Al-Mg-Siめっき層の断面組織の例を図1に示す。1がめっき原板、2がAl相、3がMgZn相、4がAl/MgZn/Znの3元共晶相、5がMgSi相である。
 図1のような断面構造を有する溶融Zn-Al-Mg-Siめっき層の表面外観の例を図2に示す。6は表面にAl/MgZn/Znの3元共晶相が多い箇所であり、金属光沢を有している。7はAl相が表面に剥き出しになっている箇所であり、白色外観を有している。
 溶融Zn-Al-Mg-Siめっきにおいて、先ず、めっき浴中で母材鋼板上にMgSi相が形成される。そして、前述したように3元共晶点組成よりもAl濃度が高い場合、母材鋼板をめっき浴から引き上げた後の冷却過程において、液相からAl相がデンドライト状に晶出する。続いてMgZn相が晶出し、最後にAl/MgZn/Znの3元共晶相が凝固して液相の凝固が完了する。初晶であるAl相のデンドライトの樹枝部分が、Al/MgZn/Znの3元共晶相の凝固時に、融液の表面を突き破ってめっき表面に剥き出した箇所が、図2の7で示された白色部分に相当する。また、めっき層の表層を、Al/MgZn/Znの3元共晶相が覆うように凝固した箇所が、図2の6に示された金属光沢部分に相当する。めっき層の表面に剥き出しになったAl相のデンドライトの樹枝部分が多いほど、めっき層全体の目視外観における光沢度は低下し、白色度は高まる。
 前述したような溶融亜鉛めっき鋼板の製造プロセスにおいて、めっき原板表面の防錆油や圧延油が、CGL入り側の洗浄セクションで完全に除去された後に、焼鈍、めっきを施された場合は、めっき原板全面において前述したような、MgSi相、Al相、MgZn相、Al/MgZn/Znの3元共晶相、の順序で液相からの凝固反応が均一に起こる。その結果、めっき層表面の全面において、図2のような、Al/MgZn/Znの3元共晶相に、Al相のデンドライトの樹枝部分が均一に分散した表面外観が得られる。
 ところが、CGL入り側の洗浄セクションにおいて、アルカリ脱脂液中に防錆油や圧延油が蓄積して脱脂液の脱脂能力が低下したり、洗浄ブラシが偏摩耗して洗浄が不十分になる場合がある。洗浄が不十分になると、洗浄セクションを通過した後であっても、母材鋼板上に局所的に油汚れが残存してしまうことがあった。
 このような、CGLにおいて、局所的に油汚れが残存した母材鋼板を用いて、焼鈍、めっきしたところ、油汚れ部直上のめっき表層では、めっき層の光沢度が他の部分に比べて極めて高くなることが判明した。このようなめっき原板の油汚れ残存部は局所的かつ不規則的に発生するため、Al/MgZn/Znの3元共晶相に、Al相のデンドライトの樹枝部分が均一に分散した外観中に、不規則的に光沢度の高い箇所が混在したようなめっき外観となり、外観均一性が劣悪となるという問題があった。
 しかし、前記特許文献1に開示される技術では、母材鋼板に局所的に油汚れが残存している場合の外観均一性に関しては考慮されていない。また、塗装後耐食性向上を目的としてCa、Be、Ti、Cu、Ni、Co、Cr、Mnの一種または二種以上を添加しているが、母材鋼板の局所的な油汚れ残存によって外観均一性が悪化するという問題は考慮されていない。また、前記特許文献2に開示される技術では、表面外観を劣化させるZn11Mg相の生成・成長を抑制する目的としてTiとBを添加しているが、母材鋼板の局所的な油汚れ残存に起因する外観均一性が悪化するという問題は考慮されていない。
 本発明は、上記問題点に鑑みなされたものであり、母材鋼板の清浄度の均一性に関わらず、外観均一性に優れた高耐食性溶融亜鉛めっき鋼板を提供することを目的としている。
 本発明者らは、まず、母材鋼板の油汚れ残存部において、めっき層の光沢度が高くなる原因を調査した。その結果、母材鋼板の油汚れ残存部の直上では、めっき浴からの引き上げ後、液相からの凝固時に、初晶であるAl相のサイズは正常部と変わらなかった。しかし、油汚れ残存部の直上では、最終凝固相であるAl/MgZn/Znの3元共晶相が微細化するために光沢度が増すことを突き止めた。次に、局所的に油汚れが残存するような母材鋼板であっても、外観均一性を確保できる方法について鋭意検討した。その結果、めっき層と母材鋼板の界面にCaもしくはCa化合物を主成分とするCa相を存在させることにより、母材鋼板の油汚れ有無に関わらず、Al/MgZn/Znの3元共晶相が微細化することが判明した。本発明者らは、Ca相を起因としてAl/MgZn/Znの3元共晶相を微細化させることで、全体的にめっき層の光沢度が増し、外観均一性が向上するという新たな知見を見出し、本発明を完成するに至った。
 すなわち、本発明の要旨とするところは、以下の通りである。
[1]
 Al:4~22質量%、Mg:1~6質量%、Si:0.001~1質量%を含有し、残部がZnおよび不可避的不純物からなるめっき層が表面に形成された、外観均一性に優れた高耐食性溶融亜鉛めっき鋼板であって、
 前記めっき層と母材鋼板との界面に、MgSi相と、CaもしくはCa化合物を主成分とするCa相が存在し、前記MgSi相の少なくとも一部は、前記Ca相を核として析出している。
[2]
 [1]に記載の外観均一性に優れた高耐食性溶融亜鉛めっき鋼板において、
 前記めっき層と前記母材鋼板の界面に存在する前記MgSi相のうち円相当径が2μm以上であるMgSi相の密度が、0.01mm当り10~1000個である。
[3]
 [1]に記載の外観均一性に優れた高耐食性溶融亜鉛めっき鋼板において、
 前記めっき層中に存在する、Al/MgZn/Znの3元共晶相の平均径が5~200μmである。
[4]
 [1]に記載の外観均一性に優れた高耐食性溶融亜鉛めっき鋼板において、
 前記めっき層が、さらにTi、Ni、Zr、Sr、Hf、Sc、Bから選ばれる1種又は2種以上を単独あるいは複合で0.000001~0.5質量%含有する。
[5]
 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板の製造方法であって、
 CaもしくはCa化合物を主成分とするCa相を母材鋼板の表面に付着させる工程と、
 前記Ca相を表面に付着させた母材鋼板を焼鈍する工程と、
 Al:4~22質量%、Mg:1~6質量%、Si:0.001~1質量%を含有し、残部がZnおよび不可避的不純物からなる溶融亜鉛めっき浴に母材鋼板を浸漬して溶融亜鉛めっきを行う工程を有する。
[6]
 [5]に記載の外観均一性に優れた高耐食性溶融亜鉛めっき鋼板の製造方法において、
 CaもしくはCa化合物を母材鋼板の表面に付着させる工程で、Caを10~40質量ppm含有し、温度50~90℃の温水中に、母材鋼板を1~100s浸漬させる。
 本発明によれば、母材鋼板の清浄度の均一性に関わらず外観均一性に優れた高耐食性溶融亜鉛めっき鋼板が提供される。
溶融Zn-Al-Mg-Siめっき鋼板の断面組織の一例を示す図で、(a)は、めっき層の顕微鏡写真(倍率2000倍)であり、(b)は該写真中の各組織の分布状態を示した図である。 溶融Zn-Al-Mg-Siめっき鋼板の表面外観の一例を示す写真である。 本発明の溶融亜鉛めっき鋼板において、断面EPMA分析を実施し得られたデータの一例を示す図である。(a)は、Siの元素分布の結果を示す。(b)は、Mgの元素分布の元素分布の結果を示す。(c)は、Caの元素分布の元素分布の結果を示す。(d)は、Znの元素分布の元素分布の結果を示す。(e)は、EPMA分析の結果から推定される、各構成相の断面構造を示す。 本発明の溶融亜鉛めっき鋼板において、GDS深さ方向分析を実施して得られた、Zn、Fe、Caの深さ方向プロファイルの一例を示す図である。 本発明の溶融亜鉛めっき鋼板において、めっき層をインヒビタ入り0.5%塩酸で溶解した後、表面をSEMで倍率2000倍で撮影した写真の模式図である。 本発明の溶融亜鉛めっき鋼板において、Al/MgZn/Znの3元共晶相の平均径を求めるためにEBSD測定を行い、粒界を実線で描いたデータの一例を示す図である。
 以下、本発明を詳細に説明する。本発明は、母材鋼板の表面にめっき層が形成された、外観均一性に優れた高耐食性溶融亜鉛めっき鋼板に関する。
(母材鋼板)
 めっきの下地に用いられる母材鋼板(めっき原板)としては、熱延鋼板、冷延鋼板が共に使用でき、鋼種もAlキルド鋼、Ti、Nb等を添加した極低炭素鋼板、および、これらにP、Si、Mn等の強化元素を添加した高強度鋼、ステンレス鋼等種々のものが適用できる。また、熱間圧延条件、冷間圧延条件等は鋼板の寸法、必要とする強度に応じて所定の条件を選択すれば良く、熱間圧延条件、冷間圧延条件等によって本発明鋼板の効果が損なわれるものではない。また、鋼板の板厚は特に限定されるものでなく、通常用いられている板厚であれば本発明を適用することが可能である。
(めっき層)
 本発明において、めっき層は、Al:4~22質量%、Mg:1~6質量%、Si:0.001~1質量%を含有し、残部がZnおよび不可避的不純物からなる。
 本発明において、めっき層中のAlは、平面部耐食性を確保するために必要な元素である。めっき層中のAlの含有量を4~22質量%に限定したのは、4質量%未満では耐食性を向上させる効果が不十分であるためであり、22質量%を超えると耐食性を向上させる効果が飽和するためである。耐食性の観点から、好ましくは5~18質量%とする。より好ましくは6~16質量%とする。
 本発明において、めっき層中のMgは、平面部耐食性および加工部耐食性を向上させるために必須の元素である。めっき層中のMgの含有量を1~6質量%に限定した理由は、1質量%未満では加工部耐食性を向上させる効果が不十分であるためであり、6質量%を超えるとめっき浴でのドロス発生が著しくなり、安定的に溶融亜鉛めっき鋼板を製造するのが困難となるからである。耐食性とドロス発生のバランスの観点から、好ましくは1.5~5質量%とする。より好ましくは2~4.5質量%の範囲とする。
 本発明において、めっき層中のSiは、めっき密着性を向上させるのに有効な元素である。0.001質量%以上含有させることでめっき密着性を向上させる効果が発現するため、0.001質量%を下限とする。また、1質量%を超えて含有させてもめっき密着性を向上させる効果が飽和するため、上限を1質量%とする。めっき密着性の観点からは、0.01~0.8質量%の範囲とすることがより好ましい。
 また、めっき層中には、Ti、Ni、Zr、Sr、Hf、Sc、Bから選ばれる1種又は2種以上を単独あるいは複合で0.000001~0.5質量%添加しても良い。これらの元素を含む金属間化合物は、初晶Al相の晶出核として作用し、Al/MgZn/Znの3元共晶相をより微細、均一にして、めっき鋼板の外観や平滑性を向上させる。Ti、Ni、Zr、Sr、Hf、Sc、Bから選ばれる1種又は2種以上の添加量を0.000001~0.5質量%とした理由は、0.000001質量%未満では、添加により凝固組織を微細均一にする効果が不十分であるためであり、0.5質量%を超えると、3元共晶相を微細化させる効果が飽和するばかりか、逆にめっき層の表面粗度を大きくして外観が悪くなるため、上限を0.5質量%とした。特に外観向上を目的として添加する場合、0.0001~0.1質量%添加することが望ましい。より好ましくは0.001~0.05質量%の範囲とすることであり、さらに好ましくは0.002~0.01質量%の範囲とすることである。
 めっき層中には、これ以外にFe、Sb、Pb、Snの1種又は2種以上を0.5質量%以内含有してもよい。また、Ca、Be、Cu、Co、Cr、Mn、Mo、P、Nb、V、BiやLa、Ce、Y等の3族元素の1種又は2種以上を合計で0.5質量%以下含有しても本発明の効果を損なわず、その量によってはさらに耐食性が改善される等好ましい場合もある。
(Ca相およびMgSi相)
 本発明において、めっき層と母材鋼板との界面に、CaもしくはCa化合物を主成分とするCa相が存在することは、外観均一性を確保するために必須である。図3の断面EPMA分析データに示されるように、本発明の高耐食性溶融亜鉛めっき鋼板においては、めっき層8と母材鋼板9との界面に、MgSi相10、12と、CaもしくはCa化合物を主成分とするCa相11が存在している。後述するように、本発明では、予めCa相11を母材鋼板9の表面に付着させた後、溶融亜鉛めっきを行うことにより、MgSi相10、12の少なくとも一部は、Ca相11を核として析出する。この図3に示す例では、MgSi相10、12のうち、MgSi相10は、溶融亜鉛めっきを行う工程において母材鋼板9の表面に直接析出したと考えられる。また、MgSi相12は、母材鋼板9の表面に付着したCa相11を核として析出したと考えられる。本発明では、めっき層8にMgとSiを含有していることにより、めっき層8と母材鋼板9との界面に存在するCa相11を核としてMgSi相12が析出するので、めっき層8と母材鋼板9との界面におけるMgSi相10、12の個数密度が高くなると考えられる。このように、めっき層8と母材鋼板9との界面におけるMgSi相10、12の析出が促進されて高密度に析出したことにより、母材鋼板9の油汚れ有無に関わらず、めっき層8中のAl/MgZn/Znの3元共晶相が微細化し、全体的にめっき層8の光沢度が増して、外観均一性が向上する。
 Ca相は、CaもしくはCa化合物を主成分とする。Ca化合物としては、炭酸カルシウム、酸化カルシウム、水酸化カルシウムなどが考えられるが、Caを含有するものであればその種類は特に限定されない。
 めっき層と母材鋼板との界面にCa相が存在していると、必然的に、めっき層と母材鋼板との界面におけるCa濃度は、めっき層中のCa濃度および母材鋼板中のCa濃度に比べて高くなる。したがって、めっき層と母材鋼板との界面にCa相が存在しているか否かを示す指標の一例として、めっき層と母材鋼板の界面における”界面Ca強度”を用いることができる。この”界面Ca強度”は、溶融亜鉛めっき鋼板を表面から深さ方向GDS分析して得られるCaプロファイルを用いて、次式で定義される。
界面Ca強度=(めっき層と母材鋼板の界面におけるCaピーク強度-バックグラウンドのCa強度)/(バックグラウンドのCa強度)
 ここで、“バックグラウンドのCa強度”とは、Caを実質的に含有しない物質をGDS分析した際に得られるCa強度のことと定義し、日本鉄鋼連盟作製の、高純度鉄(JSS No.003-6)をGDS分析した際に得られるCa強度を採用する。
 例えば、溶融亜鉛めっき鋼板において、GDSによって、表面から深さ方向に、Zn強度、Fe強度、Ca強度をそれぞれ分析することにより、図4に示すようなGDSプロファイルが得られる。図4において、13がめっき層と母材鋼板の界面におけるCaピーク強度に相当する。図4に示す例では、めっき層と母材鋼板の界面におけるCaピーク強度13は0.024、また、前述の高純度鉄(JSS No.003-6)を別途測定して得たバックグラウンドのCa強度は0.016であったため、界面Ca強度は、0.5となる。
 本発明において、全体的にめっき層の光沢度が増し、優れた外観均一性を得るためには、めっき層と母材鋼板との界面における界面Ca強度が、0.1~1.0の範囲であることが必要である。界面Ca強度が0.1未満の場合は、めっき層と母材鋼板との界面にCa相が十分に存在せず、外観均一性が確保できない。一方、界面Ca強度が1.0を超えると、めっき浴中において、母材鋼板と溶融亜鉛との反応が起こりにくくなり、不めっきが発生する。好ましくは、界面Ca強度を0.15~1.0の範囲とする。より好ましくは、0.2~1.0の範囲とする。
 めっき層と母材鋼板との界面における界面Ca強度が、0.1~1.0の範囲であれば、めっき層と母材鋼板との界面にCa相が十分に存在し、そのCa相を核として、めっき層と母材鋼板との界面にMgSi相が析出する。結果として、めっき層と母材鋼板との界面にMgSi相が高密度に析出することにより、母材鋼板の油汚れ有無に関わらず、めっき層中のAl/MgZn/Znの3元共晶相が微細化し、全体的にめっき層の光沢度が増して、外観均一性が向上する。Al/MgZn/Znの3元共晶相の微細化により、めっき層の光沢度が増し、母材鋼板の油汚れ部直上のめっき層と類似の光沢外観となる結果、母材鋼板の清浄度に関わらず外観均一性が向上する。Al/MgZn/Znの3元共晶相が微細化すると、初晶であるAl相のデンドライトの樹枝部分を、微細なAl/MgZn/Znの3元共晶相が埋め尽くすように凝固するため、Al相のデンドライト剥き出し部が減り、金属光沢を有したAl/MgZn/Znの3元共晶相がめっき表面を覆うと考えられる。
 本発明では、めっき層にMgとSiを含有していることにより、めっき層と母材鋼板との界面に存在するCa相を核として、めっき層と母材鋼板との界面にMgSi相が十分に析出する。その結果、めっき層中のAl/MgZn/Znの3元共晶相が微細化し、外観均一性が向上する。また、MgSi相は、加工部耐食性向上に効果があるため、Si、Mgの添加量を多くし、めっき層と母材鋼板との界面にMgSi相が形成した金属組織とすることが望ましい。なお、加工部耐食性の向上効果は、MgSi相の密度によらず向上する。
 一方、Al/MgZn/Znの3元共晶相を微細化させるためには、めっき層と母材鋼板の界面に存在するMgSi相のうち、円相当径が2μm以上であるMgSi相の密度が、0.01mm当り10~1000個であることが必要である。円相当径が2μm以上であるMgSi相の密度が、0.01mm当り10個未満でも、微細化させる効果は若干有するものの、10個以上とすることにより特段に高い効果が得られるため、これを下限とした。また、0.01mm当り1000個超としても、Al/MgZn/Znの3元共晶相を微細化させる効果が飽和するため、0.01mm当り1000個を上限とした。3元共晶相をより微細化させるために、MgSi相の密度を0.01mm当り20個~1000個の範囲とすることがより好ましい。また、円相当径が2μm未満のMgSi相はAl/MgZn/Znの3元共晶相を微細化させる効果が小さいため、前記密度は、円相当径が2μm以上のMgSi相に限定してよい。なお、円相当径が2μm以上のMgSi相とは、めっき層と母材鋼板の界面において形成されるMgSi相のうち、鋼板の表面方向から測定した場合に、直径が2μmの円の面積以上となる面積を有するMgSi相を意味する。
 めっき層と母材鋼板との界面に存在するMgSi相の密度を高めることにより、Al/MgZn/Znの3元共晶相を微細化する効果が高まるのは、MgSi相が、Al/MgZn/Znの3元共晶相が凝固する起点となる効果を有するためと考えられる。すなわち、MgSi相の密度を高めることによって、Al/MgZn/Znの3元共晶相の生成数が増加し、結果として3元共晶相が微細化されると考えられる。
 インヒビタ入りの0.5%塩酸でめっき層を溶解させることにより、めっき層構成相のうちMgSi相以外を溶解除去させることができる。このため、本発明において、めっき層と母材鋼板の界面に存在するMgSi相の密度を測定するには、インヒビタ入りの0.5%塩酸でめっき層を溶解させ、めっき層構成相のうちMgSi相以外を溶解除去させる。その後、表面からSEM観察して、残存するMgSi相の個数密度を計測すればよい。また、MgSi相の円相当径を測定するには、前述のように撮影したSEM写真について、対象とするMgSi相を画像処理して投影面積を求め、円相当径を計算する。このような方法を用いることによって、円相当径が2μm以上であるMgSi相の密度を求めることができる。図5に、インヒビタ入り0.5%塩酸でめっき層を溶解した後、表面からSEM観察して2000倍で撮影した時の模式図を示す。図5中、符号14は円相当径が2μm以上のMgSi相であり、符号15は円相当径が2μm未満のMgSi相である。図5の例では、2000倍のSEM写真中に、円相当径が2μm以上のMgSi相14が、17個存在する。この写真は63μm×48μmの領域を撮影したものであるため、図5の例では、円相当径が2μm以上のMgSi相14の密度は、0.01mm当り56個となる。本発明では、めっき層と母材鋼板の界面において、円相当径が2μm以上であるMgSi相14の密度が、0.01mm当り10~1000個であることが必要である。
(Al/MgZn/Znの3元共晶相の平均径)
 本発明では、めっき層構成相のうち、Al/MgZn/Znの3元共晶相の平均径を5~200μmの範囲とする。めっき層と母材鋼板の界面にCa相を存在ても、Al/MgZn/Znの3元共晶相の平均径を5μm未満とすることは難しく、高コストとなる恐れがある。一方、Al/MgZn/Znの3元共晶相の平均径が200μmを超えると、Al相のデンドライトの樹枝部分を、Al/MgZn/Znの3元共晶相が覆う効果が小さくなり、外観均一性を確保できない。外観均一性の観点から、3元共晶相の平均径を10~100μmの範囲とすることが好ましく、さらに20~50μmの範囲とすることがより好ましい。
 Al/MgZn/Znの3元共晶相の平均径を測定する方法としては、めっき層を表面方向からEBSD測定してデータ処理により求める方法が考えられる。EBSD測定は測定速度を向上させるため、Al/MgZn/Znの3元共晶相をZn相と仮定して測定する。Zn相として測定したAl/MgZn/Znの3元共晶相のデータについて、データ処理して平均径を計算すれば、Al/MgZn/Znの3元共晶相の平均径を求めることができる。この場合、めっき層の表面方向からEBSD測定し、隣り合う結晶粒の方位差が15°以上の境界を3元共晶相の粒界と定義し、粒界で囲まれた粒単位の結晶粒が1つの3元共晶相に相当する。
 図6に、Al/MgZn/Znの3元共晶相をZn相と仮定して、めっき層の表面方向からEBSD測定して得られたデータの一例を示す。上述のように、隣り合う結晶粒の方位差が15°以上の境界を3元共晶相の粒界と定義し、粒界で囲まれた粒単位の結晶粒を1つの3元共晶相と判断した。このようなデータからデータ処理によりAl/MgZn/Znの3元共晶相の平均径を求めたところ、図6に示す例では、Al/MgZn/Znの3元共晶相の平均径は46μmであった。
(製造方法)
 次に、溶融亜鉛めっき鋼板の製造方法について説明する。
 CGLインラインの洗浄セクションにおいてアルカリ脱脂、ブラシ洗浄を施して、母材鋼板(めっき原板)の油汚れが洗浄除去される。その後、溶融亜鉛めっきを施す前に、CaもしくはCa化合物を主成分とするCa相を母材鋼板の表面に付着させる。
 母材鋼板の表面にCa相を付着させる方法として、例えば、CGL入り側の洗浄セクションにてめっき原板表面の油汚れを除去した後、Caを含有する温水に母材鋼板を浸漬し、母材鋼板の表面にCaを化合物の状態で析出させる方法が考えられる。なお、アルカリ洗浄や脱脂の際に、Caを含有する洗浄液等を使用して母材鋼板の表面にCa相を形成させ、温水浸漬を省略しても良い。
 この場合、Caを質量%で10~40ppm含有する温水中に浸漬させることが望ましい。Ca濃度が10ppm未満では、母材鋼板の表面にCa相を十分に付着させることができず、溶融亜鉛めっき後の外観均一性を確保することができない。したがって下限を10ppmとする。また、温水中にCaを40ppm以上含有させると、外観均一性を向上させる効果が飽和するばかりか、不めっきが発生するため上限を40ppmとした。また、Caを含有する温水の水温を50℃以上とすることで、母材鋼板の表面にCa相が形成されるが、90℃超とすると、浸漬中に母材鋼板に点錆が発生するため、水温を50~90℃の範囲とする。また、Caを含有する温水に母材鋼板を浸漬する時間は、1~100sの範囲とする。1s以上の浸漬で母材鋼板の表面にCa相が形成され、100sを超えて浸漬させても、付着するCa相が飽和するため、上限を100sとした。
 上記の処理を施したのち、CGLの焼鈍セクションにおいて焼鈍を行なう。焼鈍の条件、焼鈍雰囲気などは特に限定されるものではなく、CGLのライン構成や、製品の板厚、目的とする機械特性値などから適切な条件を選択すればよい。
 焼鈍が完了した後、Al:4~22質量%、Mg:1~6質量%、Si:0.001~1質量%を含有し、残部がZnおよび不可避的不純物からなる溶融亜鉛めっき浴に、母材鋼板を浸漬して、溶融亜鉛めっきを施す。めっき浴温度は、外観均一性の観点から、420~470℃の範囲とする。めっき浴への浸漬時間は特に限定されないが、母材鋼板のラインスピードに応じて所定の浸漬時間を確保すればよい。めっき浴からの引き抜き後、窒素ガスワイピングにより所定のめっき付着量に調整する。
 めっき付着量については、特に制約は設けないが、耐食性の観点から片面付着量で10g/m以上であることが望ましい。また、加工性の観点からは、片面付着量で350g/mを超えないことが望ましい。本発明の溶融亜鉛めっき鋼板上に、塗装性、溶接性を改善する目的で、上層めっきを施すことや、各種の処理、例えば、クロメート処理、非クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施しても、本発明を逸脱するものではない。
 以下、実施例により本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。
 まず、表面に冷間圧延油が付着した状態の厚さ1.6mmの冷延鋼板を準備し、母材鋼板(めっき原板)とした。これをアルカリスプレー脱脂、ブラシ洗浄して表面を完全に清浄化した。加えて、アルカリスプレー脱脂後、ブラシ洗浄を行なわず、表面に油汚れが残存した母材鋼板(めっき原板)も作製した。その後、これらの母材鋼板をCaを含有(質量%)した温水に浸漬した。浸漬条件の詳細を表1に示す。その後、CGLの焼鈍炉にて焼鈍し、浴中のAl量、Mg量、Si量、Ti量を変化させた450℃の溶融亜鉛めっき浴で3秒溶融めっきを行った後、Nガスワイピングで付着量を調整した。
Figure JPOXMLDOC01-appb-T000001
 完全に清浄化しためっき原板を用いて作製しためっき鋼板について、めっき層組成、めっき層と母材鋼板との界面の、界面Ca強度、Al/MgZn/Znの3元共晶相の平均径、めっき層と母材鋼板の界面に存在する円相当径が2μm以上のMgSi相の密度、をそれぞれ評価した。
 めっき層と母材鋼板の界面の、界面Ca強度は、前述したようにめっき層の表層からGDSを用いて深さ方向分析を行い、界面Ca強度=(めっき層と母材鋼板の界面におけるCaピーク強度-バックグラウンドのCa強度)/(バックグラウンドのCa強度)を計算することにより求めた。バックグラウンドのCa強度には、高純度鉄(JSS No.003-6)をGDS分析して得られたCa強度を使用した。
 Al/MgZn/Znの3元共晶相の平均径は、前述したように、めっき層の表面から、Al/MgZn/Znの3元共晶相をZnと仮定してEBSD測定を行い、得られた測定データをデータ処理することによって平均径を求めた。
 めっき層と母材鋼板の界面に存在する円相当径が2μm以上のMgSi相の密度は、前述したように、インヒビタ入りの希塩酸でめっき層構成相のうちMgSi相以外の相を溶解除去した後、残存したMgSi相のうち円相当径が2μm以上のMgSi相の個数を、表面から撮影したSEM写真を用いて計測し、0.01mmあたりの密度に換算して求めた。
 めっき鋼板の外観均一性は、完全に清浄化した母材鋼板と油汚れが残存した母材鋼板についてめっき層の外観をそれぞれ目視確認し、外観の差を6段階で評点付けすることにより行なった。評価の詳細は、EX:外観の差が全く確認できないもの、VG:外観の差がほとんど確認できないもの、G:外観の差が僅かに確認できるが実使用上全く問題ないもの、F:外観の差が確認できるが実使用上全く問題ないもの、P:明確な外観の差が確認でき実使用上問題となるもの、VP:明確な外観の差が確認でき実使用上の価値を著しく損ねるもの、とし、F以上を合格とした。
 めっき鋼板の耐食性は、CCT試験後の腐食減量で評価した。めっき鋼板を150×70mmに切断し、JASO―M609に準拠したCCTを用いて、CCT30サイクル後の腐食減量を調査した。評価は、腐食減量30g/m未満をF、腐食減量30g/m以上50g/m未満を○、腐食減量50g/m以上~70g/m未満をP、腐食減量70g/m以上をVPとし、F以上を合格とした。
 以上の評価結果を表2に示す。表2より、本発明例は全て、外観均一性、および耐食性がともに優れている。これに対し、本発明範囲を逸脱する比較例は、本発明例に比較して外観均一性、耐食性に劣る。なお、表2中のめっき組成(質量%)の残部は、亜鉛および不可避的不純物である。
Figure JPOXMLDOC01-appb-T000002
1 めっき原板
2 Al相
3 MgZn2相
4 Al/MgZn/Znの3元共晶相
5 MgSi相
6 表面にAl/MgZn/Znの3元共晶相が多い箇所
7 Al相が表面に剥き出しになっている箇所
8 Znめっき層
9 めっき原板
10 MgSi相
11 Ca相
12 Ca相を核にして析出したMgSi相
13 めっき層と鋼板の界面のCaピーク強度
14 円相当径が2μm以上のMgSi相
15 円相当径が2μm未満のMgSi相
16 めっき原板

Claims (6)

  1.  Al:4~22質量%、Mg:1~6質量%、Si:0.001~1質量%を含有し、残部がZnおよび不可避的不純物からなるめっき層が表面に形成された、外観均一性に優れた高耐食性溶融亜鉛めっき鋼板であって、
     前記めっき層と母材鋼板との界面に、MgSi相と、CaもしくはCa化合物を主成分とするCa相が存在し、前記MgSi相の少なくとも一部は、前記Ca相を核として析出している。
  2.  請求項1に記載の外観均一性に優れた高耐食性溶融亜鉛めっき鋼板において、
     前記めっき層と前記母材鋼板の界面に存在する前記MgSi相のうち円相当径が2μm以上であるMgSi相の密度が、0.01mm当り10~1000個である。
  3.  請求項1に記載の外観均一性に優れた高耐食性溶融亜鉛めっき鋼板において、
     前記めっき層中に存在する、Al/MgZn/Znの3元共晶相の平均径が5~200μmである。
  4.  請求項1に記載の外観均一性に優れた高耐食性溶融亜鉛めっき鋼板において、
     前記めっき層が、さらにTi、Ni、Zr、Sr、Hf、Sc、Bから選ばれる1種又は2種以上を単独あるいは複合で0.000001~0.5質量%含有する。
  5.  外観均一性に優れた高耐食性溶融亜鉛めっき鋼板の製造方法であって、
     CaもしくはCa化合物を主成分とするCa相を母材鋼板の表面に付着させる工程と、
     前記Ca相を表面に付着させた母材鋼板を焼鈍する工程と、
     Al:4~22質量%、Mg:1~6質量%、Si:0.001~1質量%を含有し、残部がZnおよび不可避的不純物からなる溶融亜鉛めっき浴に母材鋼板を浸漬して溶融亜鉛めっきを行う工程を有する。
  6.  請求項5に記載の外観均一性に優れた高耐食性溶融亜鉛めっき鋼板の製造方法において、
     CaもしくはCa化合物を母材鋼板の表面に付着させる工程で、Caを10~40質量ppm含有し、温度50~90℃の温水中に、母材鋼板を1~100s浸漬させる。
PCT/JP2012/066655 2011-06-30 2012-06-29 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板およびその製造方法 WO2013002358A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2012276644A AU2012276644B2 (en) 2011-06-30 2012-06-29 High-corrosion-resistance hot-dip galvanized steel sheet having excellent appearance uniformity and manufacturing method thereof
JP2012555228A JP5482914B2 (ja) 2011-06-30 2012-06-29 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板およびその製造方法
CN201280030428.XA CN103620079B (zh) 2011-06-30 2012-06-29 外观均匀性优良的高耐蚀性热浸镀锌钢板及其制造方法
CA2838318A CA2838318C (en) 2011-06-30 2012-06-29 High-corrosion-resistance hot-dip galvanized steel sheet having excellent appearance uniformity and manufacturing method thereof
US14/127,780 US9481148B2 (en) 2011-06-30 2012-06-29 High-corrosion-resistance hot-dip galvanized steel sheet having excellent appearance uniformity and manufacturing method thereof
MX2013015130A MX2013015130A (es) 2011-06-30 2012-06-29 Lamina de acero galvanizado por inmersion en caliente de alta resistencia a la corrosion que tiene excelente uniformidad de apariencia y metodo para fabricar la misma.
KR1020137033480A KR101504863B1 (ko) 2011-06-30 2012-06-29 외관 균일성이 우수한 고내식성 용융 아연 도금 강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-146572 2011-06-30
JP2011146572 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002358A1 true WO2013002358A1 (ja) 2013-01-03

Family

ID=47424243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066655 WO2013002358A1 (ja) 2011-06-30 2012-06-29 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板およびその製造方法

Country Status (9)

Country Link
US (1) US9481148B2 (ja)
JP (1) JP5482914B2 (ja)
KR (1) KR101504863B1 (ja)
CN (1) CN103620079B (ja)
AU (1) AU2012276644B2 (ja)
CA (1) CA2838318C (ja)
MX (1) MX2013015130A (ja)
MY (1) MY166781A (ja)
WO (1) WO2013002358A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526075A (zh) * 2013-09-30 2014-01-22 苏州利达铸造有限公司 一种新型轴承用锌合金
WO2018139620A1 (ja) 2017-01-27 2018-08-02 新日鐵住金株式会社 めっき鋼材
WO2019221193A1 (ja) * 2018-05-16 2019-11-21 日本製鉄株式会社 めっき鋼材
WO2019230894A1 (ja) * 2018-05-30 2019-12-05 日本製鉄株式会社 Zn-Al-Mg系溶融めっき鋼板及びその製造方法
JP2021508779A (ja) * 2017-12-26 2021-03-11 ポスコPosco 耐食性及び表面平滑性に優れた亜鉛合金めっき鋼材及びその製造方法
JP2021508771A (ja) * 2017-12-26 2021-03-11 ポスコPosco 加工後耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
WO2021106260A1 (ja) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn-Al-Mg系溶融めっき鋼板
WO2021106259A1 (ja) * 2019-11-29 2021-06-03 日本製鉄株式会社 溶融めっき鋼板
JP2021085088A (ja) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn−Al−Mg系溶融めっき鋼板
JP2021085089A (ja) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn−Al−Mg系溶融めっき鋼板
WO2022085386A1 (ja) * 2020-10-21 2022-04-28 日本製鉄株式会社 めっき鋼材
KR20220152301A (ko) 2020-04-21 2022-11-15 닛폰세이테츠 가부시키가이샤 용융 도금 강판, 및 그 제조 방법
JP7328543B2 (ja) 2019-11-29 2023-08-17 日本製鉄株式会社 溶融めっき鋼板
JP7328541B2 (ja) 2019-11-29 2023-08-17 日本製鉄株式会社 溶融めっき鋼板
JP7339531B2 (ja) 2019-11-29 2023-09-06 日本製鉄株式会社 溶融めっき鋼板
JP7415194B2 (ja) 2020-03-30 2024-01-17 日本製鉄株式会社 溶融めっき鋼板

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105714230A (zh) * 2016-04-13 2016-06-29 苏州大学 一种钢材热浸镀锌镍锆合金镀层的方法
CN106893888B (zh) * 2017-02-13 2019-08-06 上海大学 复合锌铝合金镀层材料及热浸镀方法
CN107142438B (zh) * 2017-06-28 2019-11-08 过冬 一种热镀锌抗氧化剂及其制备方法和应用
KR102109242B1 (ko) * 2017-12-26 2020-05-11 주식회사 포스코 점용접성 및 내식성이 우수한 다층 아연합금도금강재
CN108642493B (zh) * 2018-05-15 2021-02-19 首钢集团有限公司 一种改善锌铝镁合金镀层表面色差缺陷的方法
CN109161728A (zh) * 2018-09-06 2019-01-08 靖江新舟合金材料有限公司 一种含镍的锌铝合金锭及其制备方法
CN115461487B (zh) * 2020-02-27 2024-04-16 日本制铁株式会社 热冲压成形体
JP7415193B2 (ja) 2020-03-30 2024-01-17 日本製鉄株式会社 溶融めっき鋼板
JP7040695B1 (ja) * 2020-11-18 2022-03-23 日本製鉄株式会社 めっき鋼材
CN113046672A (zh) * 2021-03-11 2021-06-29 江苏中远稀土新材料有限公司 一种金属支吊架表面用稀土多元合金镀层及其热镀锌工艺
CN113846256A (zh) * 2021-08-16 2021-12-28 株洲冶炼集团股份有限公司 一种高铝热镀锌多元合金
CN115491544A (zh) * 2022-09-15 2022-12-20 首钢集团有限公司 一种锌铝镁镀层、锌铝镁镀层钢板
CN115948677A (zh) * 2022-12-26 2023-04-11 首钢集团有限公司 合金及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170160A (ja) * 1994-12-19 1996-07-02 Sumitomo Metal Ind Ltd Si含有高張力(合金化)溶融亜鉛めっき鋼板の製造方法
WO2000071773A1 (fr) * 1999-05-24 2000-11-30 Nippon Steel Corporation Produit d'acier plaque, feuille d'acier plaquee et feuille d'acier prerevetue possedant une excellente resistance a la corrosion
JP2001355055A (ja) * 2000-04-11 2001-12-25 Nippon Steel Corp 未塗装加工部ならびに塗装端面部の耐食性に優れた溶融Zn−Al−Mg−Siめっき鋼材
JP2007169752A (ja) * 2005-12-26 2007-07-05 Jfe Steel Kk めっき密着性に優れた溶融亜鉛めっき鋼板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295015A (ja) 2000-02-09 2001-10-26 Nisshin Steel Co Ltd 高Al含有溶融Zn−Al−Mg系めっき鋼板
JP3779941B2 (ja) * 2002-01-09 2006-05-31 新日本製鐵株式会社 塗装後耐食性と塗装鮮映性に優れた亜鉛めっき鋼板
EP1489195A4 (en) 2002-03-08 2011-11-02 Nippon Steel Corp HIGHLY CORROSION-RESISTANT METAL-COATED STEEL PLATE WITH OUTSTANDING SURFACE SLATS
CN101260502A (zh) 2008-04-25 2008-09-10 常州常松讯汇镀锌板有限公司 多金属复合板复合用多金属熔液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170160A (ja) * 1994-12-19 1996-07-02 Sumitomo Metal Ind Ltd Si含有高張力(合金化)溶融亜鉛めっき鋼板の製造方法
WO2000071773A1 (fr) * 1999-05-24 2000-11-30 Nippon Steel Corporation Produit d'acier plaque, feuille d'acier plaquee et feuille d'acier prerevetue possedant une excellente resistance a la corrosion
JP2001355055A (ja) * 2000-04-11 2001-12-25 Nippon Steel Corp 未塗装加工部ならびに塗装端面部の耐食性に優れた溶融Zn−Al−Mg−Siめっき鋼材
JP2007169752A (ja) * 2005-12-26 2007-07-05 Jfe Steel Kk めっき密着性に優れた溶融亜鉛めっき鋼板の製造方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526075A (zh) * 2013-09-30 2014-01-22 苏州利达铸造有限公司 一种新型轴承用锌合金
WO2018139620A1 (ja) 2017-01-27 2018-08-02 新日鐵住金株式会社 めっき鋼材
KR20190104619A (ko) 2017-01-27 2019-09-10 닛폰세이테츠 가부시키가이샤 도금 강재
US11555235B2 (en) 2017-01-27 2023-01-17 Nippon Steel Corporation Metallic coated steel product
JP7060693B2 (ja) 2017-12-26 2022-04-26 ポスコ 亜鉛合金めっき鋼材及びその製造方法
JP7244722B2 (ja) 2017-12-26 2023-03-23 ポスコ カンパニー リミテッド 加工後耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
US11572607B2 (en) 2017-12-26 2023-02-07 Posco Co., Ltd Zinc alloy-plated steel having excellent corrosion resistance and surface smoothness
JP2021508779A (ja) * 2017-12-26 2021-03-11 ポスコPosco 耐食性及び表面平滑性に優れた亜鉛合金めっき鋼材及びその製造方法
JP2021508771A (ja) * 2017-12-26 2021-03-11 ポスコPosco 加工後耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
WO2019221193A1 (ja) * 2018-05-16 2019-11-21 日本製鉄株式会社 めっき鋼材
JP6687175B1 (ja) * 2018-05-16 2020-04-22 日本製鉄株式会社 めっき鋼材
CN111989420A (zh) * 2018-05-16 2020-11-24 日本制铁株式会社 镀覆钢材
KR20210005220A (ko) 2018-05-30 2021-01-13 닛폰세이테츠 가부시키가이샤 Zn-Al-Mg계 용융 도금 강판 및 그 제조 방법
JP6648871B1 (ja) * 2018-05-30 2020-02-14 日本製鉄株式会社 Zn−Al−Mg系溶融めっき鋼板及びその製造方法
WO2019230894A1 (ja) * 2018-05-30 2019-12-05 日本製鉄株式会社 Zn-Al-Mg系溶融めっき鋼板及びその製造方法
KR20220084134A (ko) 2019-11-29 2022-06-21 닛폰세이테츠 가부시키가이샤 용융 도금 강판
JP2021085089A (ja) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn−Al−Mg系溶融めっき鋼板
CN114729439B (zh) * 2019-11-29 2024-01-12 日本制铁株式会社 热浸镀钢板
JP2021085088A (ja) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn−Al−Mg系溶融めっき鋼板
KR20220084142A (ko) 2019-11-29 2022-06-21 닛폰세이테츠 가부시키가이샤 Zn-Al-Mg계 용융 도금 강판
CN114729439A (zh) * 2019-11-29 2022-07-08 日本制铁株式会社 热浸镀钢板
JP7381865B2 (ja) 2019-11-29 2023-11-16 日本製鉄株式会社 Zn-Al-Mg系溶融めっき鋼板
WO2021106260A1 (ja) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn-Al-Mg系溶融めっき鋼板
WO2021106259A1 (ja) * 2019-11-29 2021-06-03 日本製鉄株式会社 溶融めっき鋼板
JP7381864B2 (ja) 2019-11-29 2023-11-16 日本製鉄株式会社 Zn-Al-Mg系溶融めっき鋼板
JP7328543B2 (ja) 2019-11-29 2023-08-17 日本製鉄株式会社 溶融めっき鋼板
JP7328541B2 (ja) 2019-11-29 2023-08-17 日本製鉄株式会社 溶融めっき鋼板
TWI813903B (zh) * 2019-11-29 2023-09-01 日商日本製鐵股份有限公司 熔融鍍敷鋼板
JP7339531B2 (ja) 2019-11-29 2023-09-06 日本製鉄株式会社 溶融めっき鋼板
JP7415194B2 (ja) 2020-03-30 2024-01-17 日本製鉄株式会社 溶融めっき鋼板
KR20220152301A (ko) 2020-04-21 2022-11-15 닛폰세이테츠 가부시키가이샤 용융 도금 강판, 및 그 제조 방법
WO2022085386A1 (ja) * 2020-10-21 2022-04-28 日本製鉄株式会社 めっき鋼材
JP7063431B1 (ja) * 2020-10-21 2022-05-09 日本製鉄株式会社 めっき鋼材

Also Published As

Publication number Publication date
AU2012276644B2 (en) 2014-09-25
MX2013015130A (es) 2014-03-31
CN103620079A (zh) 2014-03-05
MY166781A (en) 2018-07-23
KR101504863B1 (ko) 2015-03-20
US9481148B2 (en) 2016-11-01
KR20140007964A (ko) 2014-01-20
CA2838318A1 (en) 2013-01-03
JPWO2013002358A1 (ja) 2015-02-23
JP5482914B2 (ja) 2014-05-07
US20140127531A1 (en) 2014-05-08
CA2838318C (en) 2015-11-17
CN103620079B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5482914B2 (ja) 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板およびその製造方法
JP6715399B1 (ja) 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
JP6687175B1 (ja) めっき鋼材
CN113557318B (zh) 镀层钢板
KR101368990B1 (ko) 내식성이 우수한 용융 Zn-Al-Mg-Si-Cr 합금 도금 강재
JP5672178B2 (ja) 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板
JP6025980B2 (ja) 耐食性及び表面外観に優れた溶融亜鉛合金めっき鋼板及びその製造方法
CN117026132A (zh) 熔融Al-Zn-Mg-Si-Sr镀覆钢板及其制造方法
JP6350780B1 (ja) 塗装後耐食性に優れた溶融Zn系めっき鋼板
EP2957648B1 (en) Hot-dip al-zn alloy coated steel sheet and method for producing same
CN113508186B (zh) 熔融Al-Zn-Mg-Si-Sr镀覆钢板及其制造方法
JP5556186B2 (ja) 高耐食性溶融亜鉛めっき鋼板
WO2020179147A1 (ja) 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
TWI521092B (zh) 熔融Al-Zn系鍍覆鋼板及其製造方法
JP2016153539A (ja) 溶融Al−Zn系めっき鋼板とその製造方法
JP7360082B2 (ja) めっき鋼板
TW202407116A (zh) Zn-Al-Mg系熔融鍍敷鋼板
JP6242576B6 (ja) 溶融Al−Zn系めっき鋼板とその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012555228

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2838318

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012276644

Country of ref document: AU

Date of ref document: 20120629

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137033480

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/015130

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14127780

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803723

Country of ref document: EP

Kind code of ref document: A1