WO2012176357A1 - トルク検出装置の異常診断方法及び電動パワーステアリング装置 - Google Patents

トルク検出装置の異常診断方法及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2012176357A1
WO2012176357A1 PCT/JP2012/001927 JP2012001927W WO2012176357A1 WO 2012176357 A1 WO2012176357 A1 WO 2012176357A1 JP 2012001927 W JP2012001927 W JP 2012001927W WO 2012176357 A1 WO2012176357 A1 WO 2012176357A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
torque
unit
output
monitoring unit
Prior art date
Application number
PCT/JP2012/001927
Other languages
English (en)
French (fr)
Inventor
昌樹 桑原
敬幸 小林
一弘 吉田
利行 鬼塚
孝義 菅原
信彦 安藤
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP12748639.7A priority Critical patent/EP2559985B1/en
Priority to JP2012530023A priority patent/JP5403163B2/ja
Priority to US13/580,883 priority patent/US9248853B2/en
Priority to KR1020127020994A priority patent/KR101363665B1/ko
Priority to CN201280000762.0A priority patent/CN102959379B/zh
Publication of WO2012176357A1 publication Critical patent/WO2012176357A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • G01L25/006Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency for measuring work or mechanical power or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Definitions

  • the present invention relates to an abnormality diagnosis method for a torque detection device having a monitoring function for constantly monitoring a torque sensor signal and its processing system, and an electric power steering device.
  • the assist force is generally determined based on the steering torque detected by a torque sensor, and the electric motor is driven and controlled.
  • a technique for detecting such a failure of the electric power steering apparatus for example, there is a technique described in Patent Document 1.
  • a control unit that performs motor control is monitored using a failure detection unit, and a failure detected by the failure detection unit is stored in a failure storage unit. Thereby, since necessary failure information can be memorize
  • Patent Document 1 does not consider the diagnosis of the failure detection unit itself. For this reason, when an important failure is detected by the failure detection means, it cannot be determined whether the failure actually occurs or a false detection due to a failure of the failure detection means. Further, even if a failure occurs on the sensor side, there is a possibility that the sensor side is erroneously detected as normal due to a failure of the failure detection means. Therefore, highly reliable motor control cannot be performed. Accordingly, it is an object of the present invention to provide an abnormality diagnosis method for a torque detection device for obtaining a highly reliable torque detection device, and an electric power steering device using the torque detection device.
  • a first aspect of an abnormality diagnosis method for a torque detection device is characterized in that a first rotating shaft and a second shaft connected by a torsion bar that is twisted when torque is input.
  • Signal processing is performed on at least one coil pair that detects a relative displacement with respect to the rotation axis by reflecting the change in impedance, and an output signal of the coil pair when an excitation signal is supplied to the coil pair.
  • a signal processing unit having a torque detection function for outputting a torque detection signal and a monitoring unit for constantly monitoring abnormality of the torque detection function.
  • a diagnostic signal is input to the monitoring unit to confirm that the monitoring unit is operating normally.
  • a normal signal and an abnormal signal are alternately input to the monitoring unit as the diagnostic signal, and the monitoring unit performs normal diagnosis on the input signal when the normal signal is input.
  • the abnormal signal when the abnormal signal is input, when the monitoring unit diagnoses an abnormality with respect to the input signal, it is determined that the monitoring unit is operating normally.
  • the third aspect is characterized in that the diagnostic signal is input to the monitoring unit in the order of the normal signal, the abnormal signal, and the normal signal.
  • the monitoring unit is an excitation signal monitoring unit that monitors the waveform of the excitation signal, and is a monitoring target when determining whether or not the excitation signal monitoring unit is operating normally.
  • a normal signal having an ideal waveform of the excitation signal and an abnormal signal having a frequency different from that of the normal signal are input as the diagnostic signal.
  • a signal whose frequency is 1 ⁇ 2 with respect to the normal signal is input as the abnormal signal. It is a feature.
  • the monitoring unit is a phase monitoring unit that monitors whether the torque detection signal is phase-shifted with respect to the excitation signal, and the phase monitoring unit operates normally. In determining whether or not there is, instead of the torque detection signal to be monitored, the excitation signal and a signal obtained by shifting the phase of the excitation signal via the phase shift circuit are input as the diagnostic signal. It is characterized by that.
  • the signal processing unit is configured to AD-convert and output the torque detection signal, and the monitoring unit outputs the voltage value to be monitored after AD conversion It is an ADC monitoring unit that monitors values.
  • ADC monitoring unit that monitors values. In determining whether the ADC monitoring unit is operating normally, instead of the voltage value to be monitored, in the normal use range of the voltage value of the torque detection signal as the diagnostic signal, A plurality of normal voltage values including a central voltage value in a normal use area and a plurality of abnormal voltage values different from the normal voltage value are input.
  • the signal processing unit includes a counter that divides a clock signal to generate an excitation frequency pulse of the excitation signal
  • the monitoring unit includes a CR oscillator and the CR oscillator in advance.
  • a pulse width storage unit that counts and stores the width of the output pulse of the CR oscillator using the clock signal, and counts the width of the output pulse of the CR oscillator using the clock signal.
  • the clock monitoring unit monitors the abnormality of the clock signal by comparing with the width of the output pulse stored in. Then, when determining whether or not the clock monitoring unit is operating normally, a pulse of the excitation frequency generated by the counter is input as the diagnostic signal instead of the clock signal to be monitored. It is characterized by that.
  • the ninth aspect includes an oscillating unit that generates, based on a clock pulse, the sine wave excitation signal that the signal processing unit supplies to the coil pair
  • the monitoring unit includes:
  • the clock frequency fluctuation monitoring unit includes a monitoring low-pass filter for inputting an excitation signal output from the oscillating unit, and detects amplitude fluctuation of the filter output of the monitoring low-pass filter as frequency fluctuation of the clock pulse.
  • a normal clock signal and an abnormal clock signal having an excitation frequency different from the normal clock signal are input as the diagnostic signal. It is characterized by that.
  • the clock frequency fluctuation monitoring unit determines whether the peak value of at least one of the upper half wave and the lower half wave of the filter output of the monitoring low-pass filter is within a normal amplitude range. Is detected. In determining whether the clock frequency fluctuation monitoring unit is operating normally, as the abnormal clock signal, an abnormal high frequency clock signal having a frequency higher than an allowable upper limit frequency of the normal clock signal, and the normal clock signal It is characterized in that two types of an abnormal low frequency clock signal having a frequency lower than the allowable lower limit frequency are input.
  • the signal processing unit corrects an AD converter that converts an analog signal corresponding to the torque into a digital signal, and a gain and an offset amount of the digital signal converted by the AD converter.
  • a storage unit for preliminarily storing a gain correction value and an offset amount correction value for correcting the digital signal converted by the AD converter with a gain correction value and an offset amount correction value stored in the storage unit,
  • a first correction calculation unit that outputs the torque detection signal; and a second correction calculation unit that performs the same correction calculation process as the first correction calculation unit.
  • the monitoring unit inputs the same signal to the first correction calculation unit and the second correction calculation unit, compares the calculation results of both, and the calculation logic of the first correction calculation unit is It is an arithmetic logic monitoring unit that monitors whether or not it is functioning normally.
  • a signal different from the first correction arithmetic unit is input to the second correction arithmetic unit as the diagnostic signal, It is characterized by confirming that the said arithmetic logic monitoring part is functioning normally by confirming that the calculation results of both differ at that time.
  • the signal when determining whether or not the arithmetic logic monitoring unit is operating normally, the signal is different from the first correction arithmetic unit input to the second correction arithmetic unit, It is characterized by using an inverted signal of the input signal of the first correction calculation unit.
  • the thirteenth aspect is configured such that the signal processing unit is provided corresponding to one set of the coil pairs and outputs a main torque signal and a sub torque signal based on an output signal of the coil pair. And detecting an abnormality of the torque detection device based on diagnostic information including an abnormality diagnosis result by the monitoring unit, the main torque signal, and the sub torque signal.
  • the fourteenth aspect is characterized in that the sub-torque signal when an abnormality is detected by the monitoring unit is a predetermined constant value. Furthermore, in the fifteenth aspect, the signal processing unit is provided corresponding to two sets of the coil pairs, and is configured to output a main torque signal based on output signals of the coil pairs, An abnormality of the torque detection device is detected based on diagnostic information including an abnormality diagnosis result by the monitoring unit and each main torque signal.
  • the sixteenth aspect is configured such that the signal processing unit calculates the main torque signal and the sub torque signal based on an output signal of the coil pair, and outputs only the main torque signal,
  • the abnormality diagnosis result by the monitoring unit is a result of the monitoring unit monitoring an abnormality of the signal processing unit by comparing the main torque signal and the sub torque signal.
  • the diagnosis information indicates that an abnormality diagnosis result by the monitoring unit is normal, an abnormality diagnosis result by the monitoring unit is abnormal, and an initial diagnosis is being performed by the initial diagnosis unit. It is characterized by at least three kinds of information.
  • the diagnosis information includes a pulse signal having a fixed period when the abnormality diagnosis result by the monitoring unit is normal, and an H level when the abnormality diagnosis result by the monitoring unit is abnormal.
  • the signal is an L level signal when an initial diagnosis is being performed by the initial diagnosis unit.
  • a first aspect of the electric power steering device is based on a torque detection device that detects a steering torque input to a steering mechanism, and at least a steering torque detected by the torque detection device.
  • the motor control unit Prior to the drive control of the electric motor by the motor control unit, the motor control unit that drives and controls the electric motor to apply the steering assist force that reduces the steering burden on the driver, the first to eighteenth aspects.
  • an initial diagnosis unit for diagnosing the torque detection device by the abnormality diagnosis method according to any one of the aspects.
  • the abnormality diagnosis method for a torque detection device of the present invention an initial diagnosis for confirming whether the monitoring circuit itself is operating normally can be performed. Therefore, a reliable torque detection device can be obtained by using this abnormality diagnosis method.
  • the initial diagnosis of the torque detection device is performed using the abnormality diagnosis method, and the steering assist control is started after confirming that the torque detection device operates properly. Can do. Therefore, the stability and reliability of the steering assist control can be improved.
  • FIG. 1 is an overall configuration diagram showing an electric power steering apparatus according to the present embodiment.
  • reference numeral 1 denotes a steering wheel, and a steering force applied to the steering wheel 1 from a driver is transmitted to a steering shaft 2 having an input shaft 2a and an output shaft 2b.
  • this steering shaft 2 one end of the input shaft 2a is connected with the steering wheel 1, and the other end is connected with one end of the output shaft 2b via the torque sensor 3 with which the torque detection apparatus 30 mentioned later is provided.
  • the steering force transmitted to the output shaft 2 b is transmitted to the intermediate shaft 5 via the universal joint 4 and further transmitted to the pinion shaft 7 via the universal joint 6.
  • the steering force transmitted to the pinion shaft 7 is transmitted to the tie rod 9 via the steering gear 8 and steers steered wheels (not shown).
  • the steering gear 8 is configured in a rack and pinion type having a pinion 8a connected to the pinion shaft 7 and a rack 8b meshing with the pinion 8a, and the rotational motion transmitted to the pinion 8a is linearly moved by the rack 8b. It has been converted to movement.
  • a steering assist mechanism 10 for transmitting an auxiliary steering force to the output shaft 2b is connected to the output shaft 2b of the steering shaft 2.
  • the steering assist mechanism 10 includes a reduction gear 11 connected to the output shaft 2b, and an electric motor 12 connected to the reduction gear 11 and generating an auxiliary steering force for the steering system.
  • the torque sensor 3 is for detecting a steering torque applied to the steering wheel 1 and transmitted to the input shaft 2a.
  • the relative displacement between the input shaft 2a and the output shaft 2b connected by a torsion bar (not shown). (Rotational displacement) is detected in correspondence with the change in impedance of the coil pair.
  • the torque detection value T output from the torque sensor 3 is input to the controller 15.
  • the controller 15 operates by being supplied with power from a vehicle-mounted battery 17 (for example, the rated voltage is 12V).
  • the negative electrode of the battery 17 is grounded, and the positive electrode thereof is connected to the controller 15 via an ignition switch 18 that starts the engine, and is directly connected to the controller 15 without passing through the ignition switch 18.
  • the controller 15 receives a vehicle speed detection value V detected by the vehicle speed sensor 16 in addition to the torque detection value T, and performs steering assist control for applying a steering assist force corresponding to these to the steering system.
  • a steering assist torque command value for generating the steering assist force by the electric motor 12 is calculated according to a known procedure, and the electric motor 12 is supplied with the calculated steering assist torque command value and the motor current detection value.
  • the drive current to be supplied is feedback controlled.
  • FIG. 2 is a block diagram illustrating a configuration of the torque detection device 30.
  • the torque detection device 30 includes the torque sensor 3 described above.
  • signal processing is performed on the output signal of the coil pair when the excitation signal is supplied to the coil pair constituting the torque sensor 3.
  • 2 shows a signal processing circuit (signal processing unit) 140 that outputs a torque detection signal and a diagnostic device 160 that includes a monitoring unit that monitors an abnormality in each block of the signal processing circuit 140.
  • the torque sensor 3 includes a coil pair in which the first coil 22 ⁇ / b> Aa and the second coil 22 ⁇ / b> Ab are combined, a yoke 81 in which the coils 22 ⁇ / b> Aa and 22 ⁇ / b> Ab are wound, and a cylindrical member 83. And a plurality of windows 831 provided on the outer periphery of the cylindrical member 83 so as to face the coil pair, a torsion bar 84, and a sensor shaft 85.
  • the torsion bar 84, the sensor shaft 85, and the input shaft 2a and the output shaft 2b of the steering shaft 2 are arranged coaxially.
  • the signal processing circuit 140 mainly includes a clock unit, an excitation unit, a sensor unit, a signal processing unit, and a communication output unit.
  • the clock unit includes a CLK 141 configured with, for example, a commercially available clock (such as a crystal oscillator).
  • the clock unit divides the clock signal based on the clock signal output from the CLK 141 and the specified frequency (A [Hz] or B [Hz]) selected by the SEL 142 and outputs the specified frequency ( A counter 143 for converting to an excitation frequency).
  • the excitation pulse output from the counter 143 is input to the excitation waveform generation unit 144 constituting the excitation unit.
  • the excitation waveform generation unit 144 generates an excitation signal having a frequency selected from A [Hz] and B [Hz] based on the excitation pulse input from the counter 143, and outputs the excitation signal to the sensor unit.
  • the generated excitation signal is supplied to a main bridge circuit (bridge MAIN) 145 and a sub-bridge circuit (bridge SUB) 149 constituting the sensor unit.
  • the main bridge circuit 145 includes a coil pair including a first coil and a second coil.
  • the main differential amplifier 146 When an excitation signal is supplied to the coil pair, the main differential amplifier 146 has a terminal voltage between the first coil and the second coil. Difference (terminal voltage difference) is amplified and output. This output signal is input to the main rectifying / smoothing circuit 147, and the main rectifying / smoothing circuit 147 rectifies and smoothes the output.
  • the low-pass filter (LPF) 148 removes noise from the smoothed output and outputs the noise to the torque calculation circuit 153 constituting the signal processing unit.
  • the operations of the sub-bridge circuit 149, the sub-differential amplifier 150, the sub-rectifying / smoothing circuit 151, and the LPF 152 are the same as the operations from the main bridge circuit 145 to LPF 148, and thus the description thereof is omitted here.
  • the torque calculation circuit 153 includes a multiplexer (MUX) and an AD converter (ADC), and obtains a torque detection signal based on signals (MAIN torque value, SUB torque value) output from the LPFs 148 and 152. Is output to the communication output circuit 154 constituting the communication output unit.
  • the communication output circuit 154 outputs the torque detection signal obtained by the torque calculation circuit 153 to the controller (ECU) 15.
  • the monitoring unit of the diagnostic device 160 includes an excitation pulse monitoring unit 161 that monitors the excitation pulse, an excitation signal monitoring unit 162 that monitors the waveform of the excitation signal (frequency, DUTY, shape, offset, reduction, excessive oscillation, etc.) , A phase monitoring unit 163 that monitors the phase of the excitation signal, a differential amplitude monitoring unit 164 that monitors the amplitude of the signal output from the differential amplifier 150, and a MUX / MUX that monitors abnormalities in the MUX and ADC of the torque calculation circuit 153.
  • excitation pulse monitoring unit 161 that monitors the excitation pulse
  • an excitation signal monitoring unit 162 that monitors the waveform of the excitation signal (frequency, DUTY, shape, offset, reduction, excessive oscillation, etc.)
  • a phase monitoring unit 163 that monitors the phase of the excitation signal
  • a differential amplitude monitoring unit 164 that monitors the amplitude of the signal output from the differential amplifier 150
  • An ADC monitoring unit 165 a torque signal monitoring unit 166 that monitors a torque detection signal output from the torque calculation circuit 153, and a communication monitoring unit 167 that monitors an abnormality of the communication output unit 154 are provided. During the execution of the steering assist control, various monitoring processes are regularly performed by these monitoring units, and when any abnormality is detected, these are immediately transmitted to the ECU 15.
  • the diagnosis device 160 includes an initial diagnosis unit 168 for diagnosing each of the monitoring units themselves.
  • This initial diagnosis unit 168 operates immediately after the power is turned on (or immediately after the ignition switch 18 is turned on), before the ECU 15 side starts the steering assist control, and whether or not each monitoring unit itself operates normally. Make an initial diagnosis.
  • each monitoring unit is sequentially subjected to diagnosis.
  • the ECU 15 is disabled from using the torque sensor signal by setting an initial diagnosis flag (to prevent the steering assist control from being performed).
  • the initial diagnosis unit 168 alternately inputs a normal signal and an abnormal signal as initial diagnosis signals to the monitoring unit to be diagnosed, and the monitoring unit is operating normally.
  • the normal signal is a signal in which the diagnosis result by the monitoring block functioning normally is “normal” (normally diagnosed) when the signal is the monitoring target signal, and the abnormal signal is When the signal is a monitoring target signal, the diagnosis result by the monitoring block functioning normally is “abnormal” (abnormal diagnosis is performed).
  • the switch SW1 In the normal monitoring state (steady diagnosis mode), as shown in FIG. 4, the switch SW1 is turned on and a normal monitoring target signal (normal signal) is input to the monitoring block, and the normal signal is diagnosed.
  • signals for initial diagnosis are input to the monitoring block by switching on / off of the switches SW1 to SW3 by a switching signal.
  • normal signals ⁇ abnormal signals ⁇ normal signals are sequentially input as signals for initial diagnosis.
  • the switch SW2 When a normal signal is input, the switch SW2 is turned on.
  • the switch SW3 When an abnormal signal is input, the switch SW3 is turned on.
  • the output of the monitoring block is “0” during normal diagnosis and “1” during abnormality diagnosis, and the output of this monitoring block is input to the AND circuit.
  • the AND circuit takes an AND of the output of the monitoring block and the flag mask Mask, and outputs this as a final output signal of the monitoring unit.
  • the flag mask Mask is for selecting a monitoring unit to be diagnosed.
  • the Mask of all the monitoring blocks is “OFF (1)”.
  • the Mask of other monitoring blocks not to be diagnosed is “ON (0)”.
  • FIG. 5 is a flowchart showing an initial diagnosis processing procedure executed by the initial diagnosis unit 168.
  • this initial diagnosis process is executed immediately after the power is turned on and prior to the steering assist control by the ECU 15.
  • the initial diagnosis unit 168 “OFF (1)” only the flag mask of the monitoring block to be initially diagnosed, and “ON (0)” the flag mask of other monitoring blocks.
  • the output of the other monitoring units (AND output in FIG. 4) is set to “0” regardless of the output of the monitoring block (monitoring).
  • Block monitoring function can be disabled).
  • the monitoring blocks that require the flag mask are the monitoring blocks of the excitation pulse monitoring unit 161, the excitation signal monitoring unit 162, the phase monitoring unit 163, the differential amplitude monitoring unit 164, and the torque signal monitoring unit 166.
  • step S2 the initial diagnosis unit 168 sets the initial diagnosis normal state by inputting a normal signal for initial diagnosis to the monitoring block to be initially diagnosed (turns on the switch SW2 in FIG. 4), and proceeds to step S3. .
  • step S3 the initial diagnosis unit 168 waits until the normal state of the initial diagnosis is stabilized, and then confirms the outputs of all the monitoring units, and can confirm that all outputs are “0” and no abnormality has occurred. It is determined whether or not. At this time, if it is confirmed that an abnormality has occurred, it is determined that there is an abnormality in the monitoring function of the monitoring unit, the process proceeds to step S4, and predetermined abnormality processing (the abnormality of the communication output circuit 154 is detected). Notification etc.) and the initial diagnosis process is terminated.
  • predetermined abnormality processing the abnormality of the communication output circuit 154 is detected. Notification etc.
  • step S3 determines whether abnormality has occurred. If it is confirmed in step S3 that no abnormality has occurred, the process proceeds to step S5, and the initial diagnosis unit 168 inputs an initial diagnosis abnormality signal to the monitoring block to be initially diagnosed (FIG. 4). The switch is switched to the initial diagnosis abnormal state by turning on the switch SW3.
  • step S6 the initial diagnosis unit 168 waits until the initial diagnosis abnormal state is stabilized, then checks the outputs of all the monitoring units, and the output of only the monitoring unit to be diagnosed is “1”. It is determined whether or not the occurrence has been confirmed. At this time, if it cannot be confirmed that an abnormality has occurred, it is determined that there is an abnormality in the monitoring function of the monitoring unit, and the process proceeds to step S4.
  • step S6 determines whether an abnormality has occurred. If it is confirmed in step S6 that an abnormality has occurred, the process proceeds to step S7, and the initial diagnosis unit 168 inputs a normal signal for initial diagnosis to the initial diagnosis target monitoring block (FIG. 4). Is switched to the initial diagnosis normal state.
  • step S8 the initial diagnosis unit 168 waits until the normal state of the initial diagnosis is stabilized, and then confirms the outputs of all the monitoring units. All outputs are “0” and no abnormality has occurred. It is determined whether it has been confirmed. When it is confirmed that an abnormality has occurred, it is determined that there is an abnormality in the monitoring function of the monitoring unit, and the process proceeds to step S4. On the other hand, if it is confirmed in step S8 that no abnormality has occurred, the process proceeds to step S9.
  • step S9 the initial diagnosis unit 168 determines whether or not the initial diagnosis of all the monitoring units has been completed. If there is a monitoring unit that has not executed the initial diagnosis, the initial diagnosis unit 168 switches the initial diagnosis target. If the initial diagnosis of all the monitoring units has been completed, the initial diagnosis process is terminated as it is.
  • the initial diagnosis function for diagnosing the monitoring unit itself is provided, the reliability of the monitoring function of the monitoring unit can be improved. That is, although the signal processing circuit 140 has an abnormality, the monitoring unit cannot detect the abnormality, or the signal processing circuit 140 is normal, but the abnormality has occurred in the monitoring unit. It is possible to prevent a false detection. Therefore, it is possible to prevent the occurrence of problems associated with erroneous detection by the monitoring unit.
  • FIG. 6 is a diagram illustrating a configuration of the excitation signal monitoring unit 162. Here, portions corresponding to the monitoring block and the AND circuit in FIG. 4 are shown.
  • the excitation signal monitoring unit 162 monitors the waveform of the excitation signal.
  • the excitation signal output from the excitation waveform generation unit 144 is input to the input terminal 162a as a normal signal.
  • an excitation signal having an ideal waveform is input to the input terminal 162a as a normal signal for initial diagnosis.
  • an excitation signal for example, a 1/2 frequency
  • an excitation signal for example, a 1/2 frequency
  • FIG. 7 is a diagram showing signal waveforms for initial diagnosis, where (a) shows a normal signal and (b) shows an abnormal signal.
  • the excitation signal monitoring unit 62 counts a period T1 from when the monitored signal becomes equal to or higher than the threshold value V1 until it becomes equal to or lower than the threshold value V2, and a period T2 from when it becomes lower than the threshold value V2 until it becomes equal to or higher than the threshold value V1. Diagnosis is made by comparing these with normal values.
  • the threshold value V1 is 4.25V
  • the threshold value V2 is 0.75V.
  • the signal input to the input terminal 162a is input to the comparators 162b and 162c.
  • the comparator 162b compares the input signal with the threshold value V1, and outputs a signal that becomes H level when the input signal is equal to or higher than the threshold value V1.
  • the comparator 162c compares the input signal with the threshold value V2, and outputs a signal that becomes H level when the input signal is equal to or lower than the threshold value V2.
  • the output signals of the comparators 162b and 162c are input to the counter circuits 162d and 162e, respectively.
  • the counter circuit 162d Based on the output signals of the comparators 162b and 162c, the counter circuit 162d counts a period T1 from when the input signal becomes equal to or higher than the threshold value V1 until it becomes equal to or lower than the threshold value V2, and outputs the result to the comparison circuit 162f. .
  • the counter circuit 162e counts a period T2 from the time when the input signal becomes equal to or lower than the threshold value V2 to the time when the input signal becomes equal to or higher than the threshold value V1, based on the output signals of the comparators 162b and 162c. Output.
  • the comparison circuit 162f compares the period T1 with the normal value T0, and outputs a signal that is “1” when the counted period T1 is different from the normal value T0.
  • the comparison circuit 162g compares the period T2 with the normal value T0, and outputs a signal that is “1” when the counted period T2 is different from the normal value T0.
  • the output signals of the comparison circuits 162f and 162g are input to the OR circuit 162h.
  • the output of the OR circuit 162h is latched by the latch circuit 162i, and input to the AND circuit 162k at the timing specified by the determination timing generation unit 162j.
  • the diagnosis is performed in the initial diagnosis abnormal state.
  • the abnormal signal shown in FIG. 7B is input from the input terminal 162a.
  • a period T1 from the threshold V1 to the threshold V2 and a period T2 from the threshold V2 to the threshold V1. are different from the normal value T0. Therefore, the output of the latch circuit 162i is “1”, and the output of the AND circuit 162k is also “1”.
  • a period T1 from the threshold V1 to the threshold V2 and a period T2 from the threshold V2 to the threshold V1 May be equal to the normal value.
  • the output of the latch circuit 162i is “0”, and the output of the AND circuit 162k is also “0”.
  • the diagnosis in the initial diagnosis normal state is performed, and whether the abnormality is correctly diagnosed when the abnormality signal is input (whether the output of the AND circuit 162k is “1”).
  • the output of the AND circuit 162k is not “1”, it is determined that the excitation signal monitoring unit 162 is not functioning normally.
  • the diagnosis is performed again in the initial diagnosis normal state. That is, the normal signal shown in FIG. 7A is input again from the input terminal 162a, and it is confirmed whether the normal diagnosis is correctly performed (whether the output of the AND circuit 162k is “0”).
  • the normal diagnosis is performed correctly, but the input switching of the initial diagnosis signal is performed normally. If not, normal diagnosis is not performed even if the excitation signal monitoring unit 162 functions normally. Therefore, it is possible to confirm whether the initial diagnosis function is operating normally by inputting the normal signal again and performing the initial diagnosis after the normal signal and the abnormal signal.
  • the threshold value V1 smaller than the maximum value of the monitoring target signal and the threshold value V2 ( ⁇ V1) larger than the minimum value of the monitoring target signal are prepared and become equal to or higher than the threshold value V1.
  • a method is used to determine whether or not a period T1 until the threshold value V2 is equal to or less than the threshold value V2 and a period T2 between the threshold value V2 and the threshold value V1 is equal to or greater than the threshold value V1.
  • a signal having a frequency different from that of the normal signal is used as the abnormal signal for initial diagnosis.
  • the periods T1 and T2 when the abnormal signal is the monitoring target signal can be set to a value different from the normal value. Therefore, by using such a signal, it is possible to appropriately determine whether or not the excitation signal monitoring unit 162 is functioning normally.
  • An abnormal signal for initial diagnosis can be generated by using the 1/2 frequency output function of the excitation pulse generation function. Thus, an appropriate abnormal signal can be generated relatively easily.
  • FIG. 8 is a diagram illustrating a configuration of the phase monitoring unit 163. Here, only the part corresponding to the monitoring block in FIG. 4 is shown.
  • the phase monitoring unit 163 monitors a phase shift between the torque detection signal and the excitation signal in the steady diagnosis mode. Particularly in the case of a coil-type torque sensor, when an abnormality occurs in the coil sensor unit, the torque detection signal may shift in phase with respect to the excitation signal. Therefore, when the excitation signal and the torque detection signal are out of phase and an amplitude greater than a certain level is generated in the torque detection signal, it is determined that an abnormality has occurred in the torque detection signal.
  • the monitoring block includes three comparators 163a to 163c and an AND circuit 163d to which the outputs of the comparators 163a to 163c are input.
  • the comparator 163a compares the excitation signal input from the input terminal 163e with the threshold value V3, and outputs a signal that becomes H level when the excitation signal is equal to or higher than the threshold value V3.
  • the comparator 163b compares the excitation signal input from the input terminal 163e with the threshold value V4, and outputs a signal that becomes H level when the excitation signal is equal to or less than the threshold value V4.
  • the comparator 163c compares the monitoring target signal with the threshold value V3, and outputs a signal that becomes H level when the monitoring target signal is equal to or lower than the threshold value V3.
  • a torque detection signal is input to the comparator 163c as a monitoring target signal (switch SW4 is turned on).
  • the normal signal for the initial diagnosis becomes the monitoring target signal
  • the excitation signal is input to the comparator 163c as the normal signal (switch SW5 is turned on).
  • an abnormal signal for initial diagnosis becomes a monitoring target signal, and a signal obtained by shifting the phase of the excitation signal through the phase shift circuit 163f is input to the comparator 163c as the abnormal signal (switch).
  • SW6 is turned on).
  • the phase shift circuit 163f is a circuit that shifts the phase of the excitation signal by 90 degrees, and is configured by an operational amplifier, for example.
  • the threshold values V3 and V4 are set between the minimum value and the maximum value of the amplitude of the excitation signal, and V3 ⁇ V4.
  • the threshold value V3 is set to 1.75V
  • the threshold value V4 is set to 2.75V.
  • the phase difference may be other than 90 degrees.
  • the output of the AND circuit 163d is counted during the period when it is at the H level and is compared with a normal value.
  • a signal that is “1” indicating that an abnormality has occurred in the torque detection signal is input to a circuit corresponding to the AND circuit in FIG. 4.
  • the output (CP1 output) of the comparator 163a is at the H level only during the period when the excitation signal a is equal to or higher than the threshold value V3.
  • the output of the comparator 163b (CP2 output) is at the H level only during the period when the excitation signal a is equal to or lower than the threshold value V4.
  • the output of the comparator 163c (CP3 output) is at the H level only during the period when the monitoring target signal (torque detection signal b) is equal to or lower than the threshold value V3.
  • the monitoring block is not functioning normally, the monitoring target signal is misrecognized as phase-shifted with respect to the excitation signal, and there is a period during which the output of the AND circuit 163d is at the H level. .
  • the initial diagnosis is performed in the normal state first, and it is confirmed whether the normal diagnosis is correctly performed when the normal signal (excitation signal) is input (whether the output of the AND circuit 163d is always “0”). . At this time, if the output of the AND circuit 163d is not always “0”, it is determined that the phase monitoring unit 163 is not functioning normally.
  • the diagnosis is performed in the initial diagnosis abnormal state.
  • the switch SW6 in FIG. 8 is turned on, and a signal obtained by shifting the phase of the excitation signal is input to the comparator 163c as an abnormal signal for initial diagnosis.
  • the monitoring target signal and the excitation signal have different phases, when the monitoring block functions normally, there is a period during which the output of the AND circuit 163d is at the H level.
  • the monitoring block is not functioning normally, the monitoring target signal and the excitation signal may be erroneously recognized as having the same phase, and the output of the AND circuit 163d may always be “0”.
  • the diagnosis in the initial diagnosis abnormal state is performed following the diagnosis in the normal initial diagnosis state, and whether the abnormality is correctly diagnosed when the abnormality signal is input (whether the output of the AND circuit 163d is at the H level). Confirm.
  • the output of the AND circuit 163d is always “0”, it is determined that the phase monitoring unit 163 is not functioning normally.
  • phase monitoring method there are three phases in which the output becomes H level during the period in which the excitation signal is greater than or equal to the threshold value V3, the period in which the excitation signal is less than or equal to the threshold value V4, Comparators 163a to 163c are prepared, and a method of determining whether or not the period during which all the outputs of the three comparators 163a to 163c are at the H level is a normal value or more is used.
  • a signal having a phase different from that of the normal signal is used as the abnormal signal for initial diagnosis.
  • the phase difference between the normal signal and the abnormal signal is set to, for example, 90 degrees, when the abnormal signal is the monitoring target signal, it is possible to ensure a period in which all the outputs of the three comparators 163a to 163c are at the H level.
  • the normal value can be exceeded. Therefore, by using such a signal, it is possible to appropriately determine whether or not the phase monitoring unit 163 functions normally.
  • the abnormal signal is generated by shifting the phase of the normal signal via the phase shift circuit, an appropriate abnormal signal can be obtained relatively easily.
  • FIG. 10 is a diagram illustrating a configuration of the MUX / ADC monitoring unit 165. Here, only the part corresponding to the monitoring block in FIG. 4 is shown.
  • the MUX / ADC monitoring unit 165 determines that an abnormality has occurred in the MUX and ADC when the ADC output value is different from the expected value, and outputs a signal that is “1”.
  • a plurality of voltage values (VCC * 1/2, VCC * 1/3, VCC * 2/3, VCC * 3/3, VCC * 0 /) in the normal use range (0 to VCC) are monitored signals. Using 3), these ADC output values are compared with their respective expected values.
  • the monitoring block includes a MUX 165a and an ADC 165b.
  • VCC * 1/3, VCC * 2/3, VCC * 1/2, VCC * 3/3, and VCC * 0/3 are input to the MUX 165a.
  • the MUX 165a sequentially selects these signals according to the Mux selection signal and outputs them to the ADC 165b.
  • the ADC 165b performs AD conversion on the signal input from the MUX 165a and outputs the AD signal to the latch circuit 165c corresponding to the input signal.
  • the main torque value and the sub torque value latched by the latch circuit 165c are output to the communication output circuit 154 described above.
  • the ADC output value of each voltage value latched by the latch circuit 165c is output to the comparison circuit 165d.
  • the comparison circuit 165d compares each ADC output value with the expected value, and outputs the result to the OR circuit 165e.
  • the output of the OR circuit 165e is “1” when at least one of the ADC output values is “1”.
  • the output of the OR circuit 165e is latched by the latch circuit 165f, and is input to a circuit corresponding to the AND circuit of FIG. 4 at a timing specified by the determination timing generation unit 165g.
  • the input signal selection command is a command signal that turns on the lower stage of each switch in the normal diagnosis mode and the initial diagnosis normal state, and turns on the upper stage of each switch in the initial diagnosis abnormal state.
  • VCC * 1/3 and VCC * 2/3, VCC * 3/3 and VCC * 0/3 are interchanged and input to MUX 165a, and VCC * 1 / VCC * 2/3 is input from the second input terminal. Therefore, when the ADC output value is monitored in this state, the output value of the comparison circuit 165d becomes “1” indicating abnormality, and the output of the OR circuit 165e also becomes “1” indicating abnormality.
  • the torque output value is equal to 1/2 VCC. Even if an abnormality occurs in the MUX 165a or the ADC 165b, the ADC output value is the same as that at the neutral time. For this reason, when an abnormality occurs in the MUX 165a or the ADC 165b, there is a possibility that the neutral state is erroneously detected even if the torque output is actually made. Further, in the initial diagnosis, when only 1 ⁇ 2 VCC is used as a normal signal, it is erroneously determined to be normal even if an abnormality occurs in the MUX 165a or the ADC 165b.
  • initial diagnosis is performed not only in 1/2 VCC but also in a normal use area such as 1/3 VCC or 2/3 VCC. Therefore, it is possible to appropriately diagnose whether or not the MUX / ADC monitoring unit 165 is functioning normally. Therefore, it can be prevented that the neutral state is erroneously detected although the torque output is actually performed.
  • the initial diagnosis method of the monitoring unit a method of inputting a normal signal and an abnormal signal alternately and confirming that the normal diagnosis is performed when the normal signal is input and the abnormal diagnosis is performed when the abnormal signal is input is adopted. It is possible to appropriately check whether the unit is operating normally. Furthermore, after normal signals and abnormal signals are input, normal signals are input again and initial diagnosis is performed, so that the initial diagnosis function operates normally, such as whether input switching of the initial diagnosis signals is performed normally. Can also be confirmed appropriately. (Modification) In the first embodiment, when a redundant system such as a backup function is configured, a selection function such as not using the system on the side where an abnormality has occurred can be provided.
  • FIG. 11 is a block diagram illustrating a configuration of the torque detection device 30.
  • the torque detection device 30 includes the torque sensor 20 described above.
  • the torque sensor 20 includes two pairs of coils 22A and 22B. Further, as shown in FIG. 12, the torque sensor 20 has a first yoke 81 ⁇ / b> A, a second yoke 81 ⁇ / b> B, a cylindrical member 83, and a coil member 22 ⁇ / b> A, 22 ⁇ / b> B facing the outer peripheral portion of the cylindrical member 83.
  • a plurality of windows 831, a torsion bar 84, and a sensor shaft 85 are provided.
  • the torsion bar 84, the sensor shaft 85, and the input shaft 2a and the output shaft 2b of the steering shaft 2 are arranged coaxially.
  • the coil pair (first coil pair) 22A is formed by combining a pair of coils 22Aa and 22Ab of the same standard to form a coil pair, and is arranged in a cylindrical first yoke 81A as shown in FIG. .
  • the coil pair (second coil pair) 22B is formed by combining a pair of coils 22Ba and 22Bb of the same standard to form a coil pair. As shown in FIG. Be placed.
  • the torque detection device 30 includes signal processing circuits (signal processing units) 59A and 59B that are provided corresponding to the first coil pair 22A and the second coil pair 22B, respectively, and that process the output signals of the coil pairs.
  • the signal processing circuits 59A and 59B are provided in the controller 15.
  • the torque detection device 30 includes clock signal generation circuits (CLK) 62A and 62B that output clock signals that are sources of sine waves generated by the excitation signal generation units 60A and 60B. Clock signals generated by the clock signal generation circuits 62A and 62B are supplied to the excitation signal generation units 60A and 60B.
  • CLK clock signal generation circuits
  • the clock signal generation circuits 62A and 62B for example, an inexpensive clock oscillator such as a CR oscillator is applied.
  • a frequency fluctuation exceeding an allowable frequency range for example, ⁇ 20%
  • the abnormality detectors 64A and 64B for detecting whether or not the frequency fluctuation of the clock signal generated by the clock signal generation circuits 62A and 62B is within an allowable range are required.
  • each of the abnormality detection units 64A and 64B includes a low-pass filter (monitoring low-pass filter) 68 to which the sine wave signals output from the excitation signal generation units 60A and 60B are supplied, and the low bus
  • a clock frequency fluctuation monitoring unit 69 that detects amplitude fluctuation of the filter output VF output from the filter 68 to detect the frequency fluctuation of the clock signal is provided.
  • the low pass filter 68 includes a resistor R1 and a capacitor C1.
  • the cut-off frequency fc of the low-pass filter 68 is set to a value in the vicinity of 6 kHz, for example, and attenuates a sine wave signal based on a clock signal set to a frequency of 9 kHz, for example.
  • the reason why the cut-off frequency fc of the low-pass filter 68 is set to a value in the vicinity of 6 kHz is that, for example, when a frequency fluctuation width of ⁇ 20% is monitored with respect to an excitation signal of 9 kHz,
  • the relationship between the cut-off frequency fc and the differential voltage between the peak value at 9 kHz is as shown in FIG.
  • the characteristic curve L1 in the range from 7.2 kHz to 9 kHz, which is ⁇ 20% of 9 kHz.
  • the difference voltage peaks at 5895 Hz.
  • the differential voltage peaks at 6631 Hz as shown by the characteristic curve L2.
  • the frequency fluctuation is changed to the amplitude fluctuation by selecting 6 kHz, which is approximately between the peaks of the characteristic curves L1 and L2, as the cut-off frequency fc of the low-pass filter 68 when monitoring the frequency fluctuation width of ⁇ 20%. Can be replaced efficiently.
  • the filter output VF of the low-pass filter 68 has the frequency of the clock signal. Variation appears as amplitude variation. That is, if it is set that the frequency variation of the clock signal is within ⁇ 20%, when the frequency variation of the clock signal is within ⁇ 20%, as shown in FIG. 15B, the filter output VF The peak value in the upper half wave falls within the range of the upper limit voltage set value VH (eg, 3.87 V) and the lower limit voltage set value VL (eg, 3.55 V).
  • the peak value of the filter output VF is the upper limit voltage as shown in FIG.
  • the upper limit error exceeds the set value VH.
  • the peak value of the filter output VF becomes lower than the lower limit voltage setting value VL as shown in FIG.
  • the lower limit is abnormal.
  • the clock frequency fluctuation monitoring unit 69 determines whether or not the peak voltage of the filter output VF of the low-pass filter 68 is within the normal range of the upper limit voltage setting value VH and the lower limit voltage setting value VL. It is possible to accurately detect whether or not the frequency fluctuation is within an allowable range. Therefore, as shown in FIG. 13, the clock frequency fluctuation monitoring unit 69 includes a window comparator 69a and a logic circuit 69b connected to the output side of the window comparator 69a.
  • the window comparator 69a includes a voltage dividing circuit VD that divides a DC power supply and two comparators CP1 and CP2.
  • the voltage dividing circuit VD has three resistors R1, R2, and R3 connected in series between the DC power supply terminal VDD and the ground.
  • the aforementioned upper limit voltage set value VH is obtained from the connection point of the resistors R1 and R2, and the aforementioned lower limit voltage set value VL is obtained from the connection point of the resistors R2 and R3.
  • the filter output VF of the low-pass filter 68 is input to the non-inverting input side, and the upper limit voltage setting value VH output from the voltage dividing circuit VD is input to the inverting input side.
  • the comparator CP2 receives the filter output VF of the low-pass filter 68 on the inverting input side and the lower limit voltage setting value VL output from the voltage dividing circuit VD on the non-inverting input side.
  • the output signal Scp1 of the comparator CP1 is set to the upper limit voltage. While the value VH is exceeded, the output signal Scp2 of the comparator CP2 becomes high level while the filter output VF exceeds the lower limit voltage set value VL.
  • the output signal Scp1 of the comparator CP1 and the output signal Scp2 of the comparator CP2 are Both maintain the low level.
  • the output signal Scp1 of the comparator CP1 is at a low level and the output signal Scp2 of the comparator CP2 is at a high level.
  • the logic circuit 69b includes a NAND gate NG1 to which the output signal Scp1 of the comparator CP1 is input to the two input sides, a NAND gate NG2 to which the output signal of the NAND gate NG1 and the output signal Scp2 of the comparator CP2 are input to the two input sides. It consists of Therefore, the logic circuit 69b outputs a low level detection signal from the NAND gate NG2 when the frequency component of the clock signal is within the normal range, and an abnormal state in which the frequency fluctuation of the clock signal is below or above the normal range is large. When this happens, a high level detection signal is output from the NAND gate NG2.
  • one terminal of the coils 22Aa and 22Ab constituting the first coil pair 22A is connected to the excitation signal generator 60A via the electric resistors 61Aa and 61Ab, respectively.
  • the other terminals of the coils 22Aa and 22Ab constituting the first coil pair 22A are grounded. Accordingly, a bridge circuit is configured by the coils 22Aa and 22Ab and the resistors 61Aa and 61Ab.
  • one terminal of the coils 22Ba and 22Bb constituting the second coil pair 22B is connected to the excitation signal generator 60B via the electric resistors 61Ba and 61Bb, respectively.
  • the other terminals of the coils 22Ba and 22Bb constituting the second coil pair 22B are grounded.
  • a bridge circuit is comprised by coil 22Ba, 22Bb and resistance 61Ba, 61Bb.
  • the output signal of the first coil pair 22A that is, the difference signal of the bridge circuit is output to the signal processing circuit 59A.
  • the output signal of the second coil pair 22B that is, the difference signal of the bridge circuit is output to the signal processing circuit 59B.
  • the signal processing circuit 59A includes a differential amplifier 51A, a rectifying / smoothing circuit 52A, and a noise removal filter 54A.
  • the signal processing circuit 59B includes a differential amplifier 51B, a rectifying / smoothing circuit 52B, and a noise removal filter 54B.
  • the differential amplifier 51A amplifies and outputs the output difference between the coils 22Aa and 22Ab constituting the first coil pair 22A, that is, the difference between the terminal voltages of the coils 22Aa and 22Ab (terminal voltage difference).
  • the rectification / smoothing circuit 52A rectifies and smoothes the output of the differential amplifier 51A and outputs the result.
  • the output of the rectification / smoothing circuit 52A passes through the noise removal filter 54A to remove noise, and the result is input to the torque calculation unit 56A.
  • the torque calculators 56A and 56B perform a predetermined calculation based on outputs (for example, average values) of the noise removal filter 54A and the noise removal filter 54B to obtain a steering torque generated in the steering system.
  • the electric motor control unit 57 is provided in the ECU, and supplies the electric motor 12 with a drive current that can generate a steering assist torque that reduces the steering torque by the driver based on the calculation results of the torque calculation units 56A and 56B.
  • the torque detection device 30 is made redundant by a first torque detection system using the first coil pair 22A and the signal processing circuit 59A and a second torque detection system using the second coil pair 22B and the signal processing circuit 59B.
  • the electric motor 12 is controlled to perform steering assist control based on the steering torque detected by the first torque detection system or the second torque detection system.
  • the system is switched to the system in which the problem does not occur, and the detection of the steering torque is continued, and the steering assist control is continued.
  • the abnormality detectors 64A and 64B described above regularly change the frequency of the clock signal. Monitor for abnormalities.
  • the abnormality detection units 64A and 64B include the clock frequency fluctuation monitoring unit 69 having the low-pass filter 68 and the window comparator 69a.
  • the clock frequency fluctuation monitoring unit 69 detects the frequency fluctuation of the clock signal as the amplitude fluctuation of the filter output VF of the low-pass filter 68.
  • the output signal output from the clock frequency fluctuation monitoring unit 69 is at a low level.
  • the output signal output from the clock frequency fluctuation monitoring unit 69 becomes high level.
  • a method of separately providing a monitoring clock signal generation circuit and monitoring the correctness of the clock frequency from the difference between the two is used.
  • this method in order to monitor the accuracy of the clock frequency of the clock signal generation circuits 62A and 62B, a highly accurate clock must be prepared as a monitoring clock, which increases costs and increases the cost.
  • an abnormality occurs in the precision clock signal generation circuit, the abnormality in the high precision clock signal generation circuit cannot be detected.
  • an inexpensive CR oscillator can be applied as the clock signal generation circuits 62A and 62B.
  • the clock frequency is monitored by a clock constituted by the low-pass filter 68 and the window comparator 69a. This can be performed with the frequency fluctuation monitoring unit 69. Therefore, it is not necessary to provide an expensive clock signal generation circuit for monitoring, and the cost can be reduced accordingly.
  • the low-pass filter 68 has a primary filter configuration using the resistor RO and the capacitor C0 has been described.
  • the present invention is not limited to this, and has a second or higher filter order.
  • the filter configuration With the filter configuration, the attenuation characteristic shown in FIG. 15A can be made steeper, and the amplitude fluctuation range of the filter output VF due to the frequency fluctuation and the design value of the element accuracy constituting the low-pass filter can be reduced. The degree of freedom can be further improved.
  • the abnormality detection units 64A and 64B include monitoring unit diagnosis units 71A and 71B having an initial diagnosis function for diagnosing whether or not the clock frequency fluctuation monitoring unit 69 is operating normally. Prepare. This initial diagnosis is activated immediately after the controller 15 is turned on (or immediately after the ignition switch 18 is turned on), and before the controller 15 starts the steering assist control. During the initial diagnosis, the controller 15 is disabled from using the torque sensor signal by setting an initial diagnosis flag (to prevent the steering assist control from being performed).
  • the monitoring unit diagnosis unit 71A includes a clock frequency selection circuit 72A (or 72B) between the clock signal generation circuit 62A (or 62B) and the excitation signal generation unit 60A (or 60B).
  • the clock frequency selection circuit 72A includes three switches SWa, SWb, and SWc that are connected in parallel and connected at one end to the clock signal generation circuit 62A (or 62B), in addition to the switches SWa, SWb, and SWc.
  • Dividing circuits 73a, 73b and 73c individually connected to the ends are provided.
  • the clock signals output from the frequency dividing circuits 73a, 73b, and 73c are input to the excitation signal generation unit 60A (or 60B).
  • the frequency dividing circuit 73a forms the above-described normal clock signal CPu having the reference frequency fb of 9 kHz, which is used at the normal time. Further, the frequency dividing circuit 73b forms an abnormal low frequency clock signal CPaL set to a frequency lower than the allowable lower limit range ( ⁇ 20%) lower than the normal clock signal CPu. Further, the frequency dividing circuit 73c forms an abnormal high frequency clock signal CPaH whose frequency is set to be higher than the allowable upper limit range (+ 20%) than the normal clock signal CPu.
  • the monitoring unit diagnosis unit 71A includes comparators CP1 and CP2 of the window comparator 69a of the clock frequency fluctuation monitoring unit 69.
  • the comparator CP1 includes a peak value of the upper half wave of the filter output VF output from the low pass filter 68 after the abnormal low frequency clock signal CPaL is converted into a sine wave by the excitation signal generators 60A and 60B.
  • the predetermined high set voltage V1 shown in FIG. 15B is input which is lower than the lower limit voltage set value VL and lower than the lower limit voltage set value VL.
  • the comparator CP2 receives the peak value of the lower half wave of the filter output VF output from the low-pass filter 68 after the abnormal high frequency clock signal CPaH is converted into a sine wave by the excitation signal generators 60A and 60B. Is inputted with a predetermined low set voltage V2 shown in FIG.
  • the comparison output of the comparator CP1 is input to the upper half-wave diagnostic unit 74U that diagnoses based on the upper side of the amplitude of the excitation signal, and the comparison output of the comparator CP2 is diagnosed based on the lower side of the amplitude of the excitation signal.
  • the signal is input to the side half-wave diagnostic unit 74L.
  • the upper half-wave diagnostic unit 74U includes a counter 75U that receives the comparison output of the comparator CP1 and counts the clock signal during the high level period.
  • the upper half wave of the filter output VF output from the low pass filter 68 is An abnormal clock period T1 that is a count value CU corresponding to a period when the voltage is equal to or higher than a predetermined high setting voltage V1 is input to the comparators CPU1 and CPU2.
  • the comparator CPU1 outputs a high-level comparison signal when the abnormal clock period T1 is larger than the count value CU.
  • the comparator CPU2 outputs a high level comparison signal when the normal clock period T1 is smaller than the count value CU.
  • the comparison signals output from the comparators CPU1 and CPU2 are supplied to the latch circuit 77U, and the comparison signal is latched by the latch circuit 77U based on the timing signal supplied from the determination timing generation circuit 78U.
  • the latch signal latched by the latch circuit 77U is supplied to an AND gate 79U to which a mask signal that becomes a high level only at the time of initial diagnosis is input.
  • the normal flag Fn1 is abnormal.
  • the normal flag Fn1 is set to “1” indicating normal.
  • the lower half-wave diagnostic unit 74L has a counter 75L that receives the comparison output of the comparator CP2 and counts the clock signal during the high level period. After the count value CL of the counter 75L converts the abnormal high frequency clock signal CPaH described above into a sine wave by the excitation signal generator 60A (or 60B), the lower half wave of the filter output VF output from the low pass filter 68 is obtained.
  • An abnormal clock period T2 that is a count value CL corresponding to a period during which the voltage is equal to or lower than a predetermined low set voltage V2 is input to the comparators CPL1 and CPL2.
  • the comparator CPL1 outputs a high-level comparison signal when the abnormal clock period T2 is larger than the count value CL.
  • the comparator CPL2 outputs a high level comparison signal when the abnormal clock period T2 is smaller than the count value CL.
  • the comparison signals output from the comparators CPL1 and CPL2 are supplied to the latch circuit 77L, and the comparison signal is latched by the latch circuit 77L based on the timing signal supplied from the determination timing generation circuit 78L.
  • the latch signal latched by the latch circuit 77L is supplied to an AND gate 79L to which a mask signal that becomes a high level only at the time of initial diagnosis is input.
  • the normal flag Fn2 is abnormal.
  • the normal flag Fn2 is set to “1” indicating normal.
  • the switch SWa In the normal monitoring state (steady state diagnostic mode), as shown in FIG. 16, the switch SWa is turned on and the normal clock signal is input to the excitation signal generator 60A (or 60B) to monitor the frequency variation of the clock signal. .
  • a signal for initial diagnosis is input to the monitoring unit diagnosis unit 71A (or 71B) by switching on / off of the switches SWa to SWc by a switching signal.
  • normal signals ⁇ abnormal signals ⁇ normal signals are sequentially input as signals for initial diagnosis.
  • the switch SWa When a normal signal is input, the switch SWa is turned on.
  • the switch SWb and the switch SWc are sequentially turned on.
  • FIG. 17 is a flowchart illustrating an initial diagnosis processing procedure executed by the monitoring unit diagnosis units 71A and 71B. As described above, this initial diagnosis process is executed immediately after the power is turned on and prior to the steering assist control by the ECU 15. First, in step S11, the monitoring unit diagnosis units 71A and 71B set the flag mask to “OFF (high level)”.
  • step S12 the monitoring unit diagnosis units 71A and 71B select the normal clock signal CPu (turn on the switch SWa in FIG. 16) by the clock signal selection units 72A and 72B to set the initial diagnosis normal state, and then in step S13 Transition.
  • step S13 the monitoring unit diagnosis units 71A and 71B wait until the normal state of the initial diagnosis is stabilized, and then determine whether or not the normal state is that the normal flags Fn1 and Fn1 are both set to “1”. To do.
  • the abnormal clock period T2 (or the count value CL (or CU) of the counter 75L (or 75U) is supplied to the comparators CPL1 and CPL2 (or CPU1 and CPU2).
  • the value is larger (or smaller) than T1).
  • the comparison output of the comparator CPU1 (or CPL2) becomes a high level. Therefore, the high-level comparison output is latched in the latch circuit 77L (or 77U) by the timing signal from the determination timing generation circuit 78L (or 78U).
  • the output of the AND gate 79L (or 79U) becomes high level, and the normal flag Fn1 (or Fn2) is set to “1” indicating normal.
  • the normal flag Fn1 (or Fn2) is reset to “0” and the normal flag Fn2 (or Fn1) is set to “1”, so that the monitoring function of the clock frequency fluctuation monitoring unit 69 has a high frequency abnormality (or It is determined that there is a low-frequency abnormality), the process proceeds to step S14, and after initial abnormality processing (such as notification of abnormality by the communication output circuit) is performed, the initial diagnosis processing is terminated.
  • initial abnormality processing such as notification of abnormality by the communication output circuit
  • step S15 the monitoring unit diagnosis units 71A and 71B select the abnormal low frequency clock signal CPaL for initial diagnosis (turn on the switch SWb in FIG. 16) in the clock signal selection circuits 72A and 72B. Switch to the initial diagnosis low frequency abnormal state.
  • step S16 the monitoring unit diagnosis units 71A and 71B wait until the initial diagnosis low frequency abnormal state is stabilized, and then read the normal flag Fn1 of the lower half-wave diagnosis unit 74H. It is determined whether or not it has been reset to 0 "and it has been confirmed that an abnormality has occurred. At this time, if the normal flag Fn1 is set to “1” and it cannot be confirmed that an abnormality has occurred, it is determined that there is an abnormality in the monitoring function of the clock frequency fluctuation monitoring unit 69, and the process proceeds to step S14. Transition.
  • step S17 the monitoring unit diagnosis units 71A and 71B select the abnormal high frequency clock signal CPaH for initial diagnosis (turn on the switch SWc in FIG. 16) by the clock signal selection circuits 72A and 72B, thereby initial diagnosis high frequency. Switch to abnormal state.
  • step S18 the monitoring unit diagnosis units 71A and 71B wait until the initial diagnosis high frequency abnormal state is stabilized, and then read the normal flag Fn2 of the upper half-wave diagnosis unit 74L, and the normal flag F QN2 is set to “ It is determined whether or not it has been reset to 0 "and it has been confirmed that an abnormality has occurred. At this time, when the normal flag Fn2 is reset to “1” and it cannot be confirmed that an abnormality has occurred, it is determined that there is an abnormality in the monitoring function of the clock frequency fluctuation monitoring unit 69, and the process proceeds to step S14. Transition.
  • step S18 if the normal flag Fn2 is set to “0” in step S18 and it is confirmed that an abnormality has occurred, the process proceeds to step S19, where the monitoring unit diagnosis units 71A and 71B In the signal selection circuits 72A and 72B, the normal clock signal CPu is selected (switch SWa in FIG. 16 is turned on) to switch to the initial diagnosis normal state.
  • step S20 the monitoring unit diagnosis units 71A and 71B wait until the initial diagnosis normal state is stabilized, and then the normal flags Fn1 and Fn2 are both set to “1” as in step S13. It is determined whether or not it has been confirmed that no abnormality has occurred. When the normal flag Fn1 (or Fn2) is reset to “0” and it is confirmed that an abnormality has occurred, it is determined that the monitoring function of the clock frequency fluctuation monitoring unit 69 is abnormal. Control goes to step S14.
  • step S21 the monitoring unit diagnosis units 71A and 71B determine whether or not all the initial diagnoses have been completed. If all the initial diagnoses have not been completed, the process returns to step S11 and the initial diagnosis is completed. If so, the initial diagnosis process is terminated.
  • the initial diagnosis function for diagnosing the clock frequency fluctuation monitoring unit 69 itself is provided, the reliability of the monitoring function of the clock frequency fluctuation monitoring unit 69 can be improved.
  • the diagnosis in the initial diagnosis abnormal state is performed, and whether the abnormality is correctly diagnosed when the abnormal clock signal CPaL (or CPaH) is input (and gate 79U (or 79L)) Check if the output is low. At this time, if the output of the AND gate 79U (or 79L) is not at a low level but at a high level, it is determined that the clock frequency fluctuation monitoring unit 69 is not functioning normally.
  • the operation is repeated. Diagnose in the normal state of initial diagnosis. That is, the normal clock signal CPu is input again from the clock frequency selection circuits 72A and 72B, and it is confirmed whether the normal diagnosis is correctly performed (whether the outputs of the AND gates 79U and 79L are at a high level). At this time, if the input switching of the initial diagnosis signal is performed normally and the clock frequency fluctuation monitoring unit 69 functions normally, the normal diagnosis is performed correctly, but the selection of the initial diagnosis signal is performed normally.
  • the lower set voltage V1 than the peak value in the normal range of the upper half wave of the input filter output VF and the input of the filter output VF are below.
  • a set voltage V2 higher than the peak value at the time of abnormality of the side half-wave is prepared, and a normal clock signal CPu and abnormal clock signals CPaL and CPaH are prepared.
  • the clock frequency fluctuation monitoring unit 69 is normal.
  • the abnormal low frequency clock signal CPaL it is determined that the clock frequency fluctuation monitoring unit 69 is normal if the period in which the set voltage V1 or higher is not equal to the preset abnormal clock period T1.
  • the abnormal high frequency clock signal CPaH it is determined that the clock frequency monitoring unit 65 is normal if the period when the set voltage V2 or lower is not equal to the preset abnormal clock period T2.
  • the comparator CPL1 has an abnormal clock cycle of T2 + ⁇ ( ⁇ is a predetermined value for determining the dead band width), the abnormal clock cycle input to the comparator CPL2 is T2- ⁇ , and the abnormal clock cycle is ⁇ ⁇ .
  • a dead zone may be provided.
  • the present invention is not limited to this.
  • One of the abnormal low frequency clock signal CPaL and the abnormal high frequency clock signal CPaH is omitted, and it is simply determined whether the monitoring unit diagnosis units 71A and 71B are normal or abnormal. You may make it determine.
  • the excitation signal generation units 60A and 60B may be generated and supplied to the bridge circuit.
  • the rectification / smoothing circuits 52A and 52B of the signal processing circuits 57A and 57B and the noise removal filters 54A and 54B are provided.
  • a low-pass filter for preventing interference may be provided to remove electromagnetic interference in the coil pair.
  • FIG. 19 is a block diagram illustrating a configuration of the torque detection device 30.
  • the torque detection device 30 includes signal processing circuits 59A and 59B that are provided corresponding to the first coil pair 22A and the second coil pair 22B, respectively, and that process the output signals of the coil pairs.
  • the signal processing circuits 59A and 59B are provided in the controller 15.
  • the excitation signal generator 60A is connected to the first coil pair 22A, and an excitation current is supplied to the coils 22Aa and 22Ab constituting the first coil pair 22A by the excitation signal generator 60A.
  • the excitation signal generator 60B is connected to the second coil pair 22B, and an excitation current is supplied to the coils 22Ba and 22Bb constituting the second coil pair 22B by the excitation signal generator 60B. In this manner, the first coil pair 22A and the second coil pair 22B are supplied with excitation currents from different excitation signal generation units.
  • the excitation signal generators 60A and 60B each generate an alternating current having a predetermined excitation frequency.
  • the excitation frequency (first excitation frequency f1) of the excitation signal generator 60A is A [Hz]
  • the excitation frequency (second excitation frequency f2) of the excitation signal generator 60B is B [Hz].
  • the excitation frequencies of the excitation signals generated by the excitation signal generation units 60A and 60B may be different from each other or may be common.
  • the torque detection device 30 when generating the excitation signal, a method of dividing the clock signal by counting the clock frequency and converting it to the excitation frequency is used. That is, the torque detection device 30 includes CLKs 62A and 62B that output clock signals and counters 63A and 63B that count clock frequencies.
  • CLK62A and 62B for example, a commercially available clock such as a crystal oscillator is used. Since such a commercially available clock has a high accuracy of about 2% in frequency error, it has a great effect on stabilizing the performance of the sensor system.
  • the excitation signal generators 60A and 60B, CLK 62A and 62B, and counters 63A and 63B constitute an oscillation circuit.
  • One terminal of the coils 22Aa and 22Ab constituting the first coil pair 22A is connected to the excitation signal generator 60A via the electric resistors 61Aa and 61Ab, respectively.
  • the other terminals of the coils 22Aa and 22Ab constituting the first coil pair 22A are grounded.
  • one terminal of the coils 22Ba and 22Bb constituting the second coil pair 22B is connected to the excitation signal generator 60B via the electric resistors 61Ba and 61Bb, respectively.
  • the other terminals of the coils 22Ba and 22Bb constituting the second coil pair 22B are grounded.
  • the output signal of the first coil pair 22A is the terminal voltage of the coils 22Aa and 22Ab constituting the first coil pair 22A
  • the output signal of the second coil pair 22B is the coils 22Ba and 22Bb constituting the second coil pair 22B. Terminal voltage.
  • These output signals are output to signal processing circuits 59A and 59B, respectively.
  • the signal processing circuit 59A includes a differential amplifier 51A, a rectifying / smoothing circuit 52A, a low-pass filter 53A, and a noise removal filter 54A.
  • the signal processing circuit 59B includes a differential amplifier 51B, a rectifying / smoothing circuit 52B, a low-pass filter 53B, and a noise removal filter 54B.
  • the low-pass filters 53A and 53B may be incorporated in the rectifying / smoothing circuits 52A and 52B, respectively.
  • the differential amplifier 51A amplifies and outputs the output difference between the coils 22Aa and 22Ab constituting the first coil pair 22A, that is, the difference between the terminal voltages of the coils 22Aa and 22Ab (terminal voltage difference).
  • the rectification / smoothing circuit 52A rectifies and smoothes the output of the differential amplifier 51A and outputs the result.
  • the output of the rectifying / smoothing circuit 52A passes through the low-pass filter 53A and the noise removal filter 54A to remove noise, and the result is input to the torque calculation unit 56.
  • the torque calculation unit 56 performs a predetermined calculation based on the output (for example, average value) of the noise removal filter 54A or the noise removal filter 54B to obtain a steering torque generated in the steering system. Based on the calculation result of the torque calculation unit 56, the electric motor control unit 57 supplies the electric motor 12 with a drive current that can generate a steering assist torque that reduces the steering torque by the driver.
  • the torque detection device 30 is made redundant by a first torque detection system using the first coil pair 22A and the signal processing circuit 59A and a second torque detection system using the second coil pair 22B and the signal processing circuit 59B.
  • the electric motor 12 is controlled to perform steering assist control based on the steering torque detected by the first torque detection system or the second torque detection system.
  • the system is switched to the system in which the problem does not occur, and the detection of the steering torque is continued, and the steering assist control is continued.
  • clock monitoring units 65A and 65B are provided to monitor whether or not the CLKs 62A and 62B for generating the excitation signals are operating normally.
  • the clock monitoring units 65A and 65B count the output pulses (CR oscillation pulses) of the CR oscillators 66A and 66B that oscillate using the capacitor (C) and the resistor (R) using the clock signal output from the CLKs 62A and 62B. Then, the result is compared with the initial values stored in the CR pulse width storage units (pulse width storage units) 67A and 67B to determine whether or not the clock frequency is normal.
  • the initial value is calculated in advance by counting the output pulses of the CR oscillators 66A and 66B including initial variations using the clock signals output from the CLKs 62A and 62B, and storing them in the CR pulse width storage units 67A and 67B. deep.
  • FIG. 20 is a block diagram illustrating a configuration of the clock monitoring unit 65A.
  • the clock monitoring unit 65A includes a counter 65Aa that counts CR oscillation pulses with a clock, and a comparison circuit that compares the pulse count value counted by the counter 65Aa with the pulse count value of the CR oscillator 66A stored in the CR pulse width storage unit 67A.
  • 65Ab and 65Ac and an OR circuit 65Ad to which the outputs of the comparison circuits 65Ab and 65Ac are input.
  • the output signal of the OR circuit 65Ad has a normal clock frequency when the pulse count value counted by the counter 65Aa is equal to the pulse count value of the CR oscillator 66A stored in the CR pulse width storage section 67A. "0" indicating that When the pulse count value counted by the counter 65Aa is different from the pulse count value of the CR oscillator 66A stored in the CR pulse width storage section 67A, the clock frequency becomes “1” indicating that the clock frequency is abnormal.
  • a method of separately providing a monitoring clock and monitoring the correctness of the clock frequency from the difference between the two is used.
  • a highly accurate clock such as CLK62A in advance
  • a highly accurate clock is prepared as a monitoring clock. It must be expensive.
  • the output pulse of the CR oscillator including variation is always counted by a clock, and compared with a value (initial value) previously counted by a similar method during production, Monitor the clock frequency.
  • the monitoring accuracy can be improved up to the portion that takes into account the change in the temperature characteristic of the CR. That is, the monitoring accuracy can be improved to about 3%. In reality, it is considered that it is sufficient that the double of 6% is acceptable.
  • the clock monitoring unit 65A has an initial diagnosis function for diagnosing whether or not the clock frequency monitoring function is operating normally. This initial diagnosis is activated immediately after the power is turned on (or immediately after the ignition switch 18 is turned on) and before the controller 15 starts the steering assist control. During the initial diagnosis, the controller 15 is disabled from using the torque sensor signal by setting an initial diagnosis flag (to prevent the steering assist control from being performed).
  • the clock monitoring unit 65A includes switches SW1 and SW2 in the preceding stage of the clock input terminal of the counter 65Aa as an initial diagnosis unit.
  • One of these switches SW1 and SW2 is configured to be turned on in accordance with a signal selection command.
  • the switch SW1 is turned on in the normal clock frequency monitoring state (steady diagnostic mode), and the switch SW2 is turned on in the initial diagnostic mode. Shall be.
  • the clock pulses output from the CLKs 62A and 62B are input as clocks used by the counter 65Aa.
  • the clock used by the counter 65Aa is replaced by the counter 63A instead of the clock pulse output from the CLK 62A and 62B.
  • the counter pulse output from is input.
  • the pulse count value of the CR oscillator 66A is obtained by using an abnormal signal.
  • the abnormal signal is input, it is confirmed that the output signal of the OR circuit 65Ad becomes “1”, thereby confirming that the clock frequency monitoring function is operating normally.
  • a normal signal and an abnormal signal may be alternately input as a diagnostic signal.
  • the normal signal is an ideal clock pulse output from CLK 62A and 62B.
  • the abnormal signal is a counter pulse output from the counter 63A. Furthermore, the normal signal may be input again after the normal signal and the abnormal signal in the initial diagnosis mode.
  • the function of monitoring the clock frequency is confirmed by confirming that the output signal of the OR circuit 65Ad is “0” when a normal signal is input and the output signal of the OR circuit 65Ad is “1” when an abnormal signal is input. Check that it is operating normally. Thereby, it can be confirmed whether the initial diagnosis function is operating normally. Further, it can be confirmed whether or not a diagnostic signal can be normally input.
  • a more reliable redundant torque sensor system can be realized by realizing and adding the monitoring function of the excitation frequency itself at a low cost.
  • the torque sensor 20 is a dual torque sensor system having two pairs of coils 22A and 22B has been described.
  • a single-system torque sensor system may be used in which the coils 22Aa and 22Ab are wound around to form a pair of coils.
  • FIG. 21 is a block diagram illustrating a configuration of the torque detection device 30.
  • the torque detection device 30 includes a signal processing circuit 59 that performs signal processing on the output signal of the coil pair 22.
  • the signal processing circuit 59 is provided in the controller 15.
  • the output signal of the coil pair 22 is a terminal voltage of the coils 22 a and 22 b constituting the coil pair 22.
  • the signal processing circuit 59 includes a differential amplifier 51, a rectifying / smoothing circuit 52, a low-pass filter 53, a noise removal filter 54, an AD conversion unit (AD converter) 55, a correction value storage unit (storage unit) 58, and a torque calculation unit 56. And an electric motor control unit 57.
  • the low-pass filter 53 may be incorporated in the rectification / smoothing circuit 52.
  • the components other than the AD conversion unit 55 and the correction value storage unit 58 have the same configuration as the signal processing circuits 59A and 59B in FIG.
  • the AD converter 55 converts the analog signal output from the noise removal filter 54 into a digital signal, and outputs the result to a torque calculator 56 described later.
  • the correction value storage unit 58 stores an offset correction value and a tilt amount correction value in advance.
  • the offset correction value and the inclination amount correction value are an offset amount and an inclination amount for making a digital torque waveform obtained by converting an analog torque signal into a digital value by AD conversion match a predetermined torque waveform.
  • the corrected digital torque waveform is as indicated by the broken line c1 in FIG. Become.
  • the corrected digital torque waveform is indicated by a one-dot chain line c2 in FIG. 22A. It becomes like this.
  • the corrected digital torque waveform is as indicated by the broken line b1 in FIG. 22B. Become.
  • the corrected digital torque waveform is indicated by a one-dot chain line b2 in FIG. 22B. It becomes like this.
  • FIG. 22 shows the case where the midpoint output voltage is 2.5 V in the 0 to 5 V system.
  • the analog torque signal output from the noise removal filter 54 is converted into a digital torque signal by the AD converter 55, and the converted digital torque signal is converted into a digital torque signal.
  • the gain and offset are adjusted by the torque calculation unit 56.
  • the numerical value in the vertical axis () in FIG. 22 indicates the conversion value when converted by the AD conversion unit 55 in 12 bits. That is, in a production process or the like, an analog torque signal is converted into a digital value by an AD converter to obtain a digital torque waveform, and an offset amount and an inclination amount (gain) with respect to a desired torque waveform are obtained from the digital torque waveform before correction. And ask. Next, an offset amount correction value and an inclination amount correction value for correcting these are obtained and stored in the correction value storage unit 58.
  • FIG. 23 is a block diagram illustrating a configuration of the torque calculation unit 56.
  • the torque calculator 56 includes a calculator (first correction calculator) 56a.
  • the computing unit 56a includes an AD output value (AD value) output from the AD conversion unit 55, an inclination amount correction value (gain setting value) and an offset amount correction value (offset setting value) stored in the correction value storage unit 58. ) And.
  • the calculator 56a performs a correction calculation for correcting the pre-correction AD value with the gain setting value and the offset setting value. Specifically, (AD value before correction) ⁇ (gain setting value) + (offset setting value) is set as an AD output value after correction.
  • the correction calculation logic for correcting the gain and offset amount of the AD output value with the previously stored gain setting value and offset setting value is provided, the torque characteristics can be kept uniform without adjusting the trimmer.
  • the correction calculation logic is configured in duplicate, the same calculation is performed sequentially, and the results of the two comparisons are compared to make the correction calculation logic abnormal.
  • Monitoring function (arithmetic logic monitoring unit) is provided. Then, if the two calculation results are equal (or the difference between the two calculation results is within a predetermined range), it is determined that the correction calculation logic is normal.
  • the torque calculation unit 56 includes a calculation unit (second correction calculation unit) 56b that performs the same calculation process as the calculation unit 56a.
  • the output of the multiplexer (MUX) 56c is input to the arithmetic unit 56b as an AD value before correction.
  • the selection signal (InItCalibSel) which is normally “1” is input to the MUX 56c, and the AD output value output from the AD conversion unit 55 is input as it is as an uncorrected AD value.
  • the calculation result of the calculator 56a and the calculation result of the calculator 56b are compared by the comparator 56d, and the result is latched by the latch circuit 56e.
  • the comparator 56d outputs a signal that is “0” when both are equal and “1” when they are different.
  • the signal latched by the latch circuit 56e is output at a predetermined timing as an abnormality detection flag (CalibNGFlg).
  • the correction calculation logic is normal, and the corrected AD output value calculated by the calculator 56a is adopted, and this is output to the motor controller 57. . In this way, the torque detection function is continued.
  • the abnormality detection flag is “1”
  • an abnormality processing such as stopping the torque detection function is performed. Thereby, it is possible to prevent a torque detection signal having low reliability from being output from the torque calculation unit 56.
  • the torque calculation unit 56 is provided with an initial diagnosis function (initial diagnosis unit) for confirming in advance whether or not the correction calculation logic monitoring function itself is functioning normally.
  • an initial diagnosis function initial diagnosis unit
  • a selection signal InItCalibSel
  • an inverted signal of the AD output value output from the AD conversion unit 55 is used as an uncorrected AD value. Is input.
  • the AD output value output from the AD conversion unit 55 is directly input to the calculation unit 56a.
  • an abnormal signal inverted signal of the input signal of the arithmetic unit 57a
  • the abnormal signal and the normal signal are input to the arithmetic unit 56b.
  • Input signal may be alternately input.
  • the normal signal may be input again after the normal signal and the abnormal signal.
  • an error detection flag (CalibNGFlg) that is “0” is output when a normal signal is input
  • an error detection flag (CalibNGFlg) that is “1” is output when an abnormal signal is input. Check that the logic function is working properly.
  • the electric motor control unit 57 supplies the electric motor 12 with a drive current Ic that can generate a steering assist torque that reduces the steering torque by the driver, based on the calculation result of the torque calculation unit 56.
  • the torque characteristics can be made uniform without using a trimmer. Therefore, it is possible to reduce the number of parts and the cost due to the abolition of the trimmer and to improve the temperature characteristics of the signal processing circuit.
  • the storage unit that stores the gain setting value and the offset setting value in advance is provided, the gain and offset amount of the digital torque signal can be adjusted by a simple calculation, and appropriate torque characteristics can be obtained.
  • an initial diagnosis function is provided to determine whether or not the monitoring function itself is functioning properly in advance. At this time, it is determined that the monitoring function is functioning normally when the comparison results are different when different signals are input to the arithmetic logic configured in a double manner. In this way, since it can be properly confirmed that the monitoring function is functioning normally, a more reliable torque detection signal can be obtained.
  • FIG. 24 is a block diagram illustrating a configuration of the torque detection device 30.
  • One terminal of the coils 22Aa and 22Ab constituting the coil pair 22A is connected to the oscillating unit 60A via electric resistors 61Aa and 61Ab, respectively.
  • the other terminals of the coils 22Aa and 22Ab are grounded.
  • the output signal of the coil pair 22A is the terminal voltage of the coils 22Aa and 22Ab, and this output signal is output to the signal processing circuit 31A.
  • the signal processing circuit 31A includes a main amplification / full wave rectification unit 32A, a main smoothing unit 33A, a main output unit 34A, a sub amplification / full wave rectification unit 35A, a sub smoothing unit 36A, a sub output unit 37A, Is provided.
  • the torque detection device 30 includes a monitoring unit 38A, a diagnostic output unit 39A, an initial diagnostic unit 40A, a noise filter 41A, and a connector 42A.
  • the torque detection device 30 is connected to a controller (ECU) 15 via a connector 42A.
  • the ECU 15 supplies the power supply voltage Vcc to each element of the torque detection device 30 via the connector 42A and the noise filter 41A.
  • the torque detection device 30 processes the output signal of the coil pair 22A and outputs a main torque signal Tm, a sub torque signal Ts, and a diagnosis signal S, which will be described later, to the ECU 15.
  • the ECU 15 determines whether or not an abnormality has occurred in the torque detection device 30 based on the various signals that are input, and performs steering assist control according to the determination result.
  • the main amplification / full-wave rectification unit 32A receives an output signal of the coil pair 22A (terminal voltages of the coils 22Aa and 22Ab), amplifies and rectifies the difference between these two input voltages.
  • the main smoothing unit 33A smoothes the output waveform of the main amplifying / full wave rectifying unit 32A, and the main output unit 34A outputs this as a main torque signal Tm to the ECU 15 via the noise filter 41A and the connector 42A.
  • the sub-amplification / full-wave rectification unit 35A receives the output signal of the coil pair 22A (terminal voltages of the coils 22Aa and 22Ab), amplifies and rectifies the difference between these two input voltages.
  • the sub-smoothing unit 36A smoothes the output waveform of the sub-amplification / full-wave rectification unit 35A, and the sub-output unit 37A outputs this to the ECU 15 as a sub-torque signal Ts via the noise filter 41A and the connector 42A.
  • the output waveform of the sub-amplification / full-wave rectification unit 35A is also input to the monitoring unit 38A described later.
  • the monitoring unit 38A detects, for example, a contact failure between the coil 22Aa or 22Ab and the electric resistor 61Aa or 61Ab by a change in the differential voltage of the bridge circuit, and a phase shift with respect to a reference voltage (sine wave) (not shown) supplied from the ECU 15.
  • An abnormality of the circuit system is detected based on the above. That is, the monitoring unit 38A detects the phase difference between the waveform of the applied AC signal and the waveform of the differential voltage of the bridge circuit, and when the phase difference exceeds a predetermined value, the coil, electrical resistance, or circuit is abnormal. judge.
  • the diagnosis output unit 39A generates a diagnosis signal S indicating the diagnosis information of the monitoring unit 38A, and outputs this to the ECU 15 via the noise filter 41A and the connector 42A.
  • the diagnostic signal S is a pulse signal having a fixed period as shown in FIG. 25A when the monitoring unit 38A does not detect an abnormality, and the initial diagnosis of the monitoring unit 38A by the initial diagnostic unit 40A described later.
  • the signal is in the middle, the signal is constant at the L level as shown in FIG. 25B, and when the abnormality is detected by the monitoring unit 38A, the H level as shown in FIG. The signal becomes constant at.
  • the initial diagnosis unit 40A operates immediately after the power is turned on (or immediately after the ignition switch 18 is turned on), before the ECU 15 side starts the steering assist control, and determines whether or not the monitoring unit 38A itself is operating normally. Perform initial diagnosis to diagnose.
  • the initial diagnosis unit 40A alternately inputs a normal signal and an abnormal signal as initial diagnosis signals to the monitoring unit 38A to confirm that the monitoring unit 38A is operating normally.
  • the normal signal is a signal in which the abnormality detection result by the monitoring unit 38A functioning normally is “normal” when abnormality detection is performed using the signal, and the abnormality signal is the signal.
  • the abnormality detection result by the monitoring unit 38A functioning normally is “abnormal”.
  • the ECU 15 determines whether or not an abnormality has occurred in the torque detection device 30 based on the main torque signal Tm and the sub torque signal Ts. Specifically, a disconnection or a ground fault is detected based on whether the main torque signal Tm is a predetermined value (for example, 0.3 V) or less, and a power fault is detected based on whether the main torque signal Tm is a predetermined value (for example, 4.7 V) or more. Further, a disconnection or a ground fault is detected based on whether or not the sub torque signal Ts is a predetermined value (for example, 0.3 V) or less, and a power fault is detected based on whether or not the sub torque signal Ts is a predetermined value (for example, 4.7 V) or more.
  • the cross characteristic shown in FIG. Detect anomalies that come off.
  • the ECU 15 determines that the torque detection device 30 is normal based on the main torque signal Tm and the sub torque signal Ts, and when the diagnostic signal S is a pulse signal shown in FIG. Normal steering assist control is performed using Tm, and the electric motor 12 is driven. On the other hand, the ECU 15 determines that an abnormality has occurred in the torque detection device 30 based on the main torque signal Tm and the sub torque signal Ts, and the diagnostic signal S is an L level signal shown in FIG. Sometimes, it is determined that the initial diagnosis by the initial diagnosis unit 40A is being performed, and the steering assist control is not performed.
  • the ECU 15 determines that an abnormality has occurred in the torque detection device 30 based on the main torque signal Tm and the sub torque signal Ts, and the diagnostic signal S is an H level signal shown in FIG.
  • the electric motor 12 is driven using the normal past torque value to perform the gradual reduction of the assist, and the mode is shifted to the fail safe mode in which the assist is safely stopped.
  • the torque detection device 30 comprises the signal processing circuit 31A with double processing circuits (32A to 34A and 35A to 37A), and outputs two analog signals (main torque signal Tm and sub torque signal Ts). To do.
  • the torque detection device 30 also includes an initial diagnosis unit 40A that monitors whether or not the monitoring unit 38A itself is operating normally. In addition to the abnormality detection result (normal / abnormal) of the monitoring unit 38A, the diagnosis signal S is provided. In addition, a signal indicating that the initial diagnosis is being performed by the initial diagnosis unit 40A is output. On the ECU 15 side, an abnormality of the torque detection device 30 is detected based on the diagnostic signal S in addition to the two torque signals Tm and Ts output from the torque detection device 30.
  • the initial diagnosis unit 40A performs the initial diagnosis of the monitoring unit 38A itself.
  • an L level diagnostic signal S shown in FIG. 25B is output from the diagnostic output unit 39A to the ECU 15, and the main torque signal Tm shown in FIG. 26B is output from the signal processing circuit 31A.
  • the sub torque signal Ts is output to the ECU 15.
  • the ECU 15 can recognize from the diagnostic signal S that the monitoring unit 38A is currently undergoing initial diagnosis, and disable the use of the main torque signal Tm so that the steering assist control is not performed.
  • the torque detection device 30 outputs information during initial diagnosis as the diagnostic signal S
  • the ECU 15 determines from the diagnostic signal S that the torque sensor system is before normal operation and the main torque signal Tm cannot be used. You can recognize that there is.
  • the initial diagnosis unit 40A As a result of the initial diagnosis by the initial diagnosis unit 40A, when the monitoring unit 38A itself is diagnosed as normal, the torque output function of the torque detection device 30 is activated. At this time, when the monitoring unit 38A detects that the torque detection device 30 is normal, the diagnosis output unit 39A outputs a pulse signal having a constant cycle shown in FIG. Further, the signal processing circuit 31A outputs a main torque signal Tm and a sub torque signal Ts corresponding to the output signal of the coil pair 22A to the ECU 15 as shown in FIG.
  • the diagnosis output unit 39A outputs an H-level diagnosis signal S shown in FIG. Further, the signal processing circuit 31A outputs the main torque signal Tm and the sub torque signal Ts shown in FIG. At this time, since the main torque signal Tm and the sub torque signal Ts deviate from the cross characteristics shown in FIG. 26A, the ECU 15 monitors the main torque signal Tm and the sub torque signal Ts, thereby Whether or not an abnormality has occurred can be determined. Further, since the information indicating the abnormality diagnosis result of the monitoring unit 38A is output as the diagnostic signal S, the ECU 15 can also determine from the diagnostic signal S whether or not an abnormality has occurred in the torque sensor system.
  • the diagnosis signal S is set to three types of abnormality diagnosis result (normal / abnormal) of the monitoring unit 38A and during initial diagnosis, and each is output as a simple signal, a large load is placed on the ECU 15 side.
  • a simple and reliable transmission function can be configured without giving
  • the diagnostic signal S is a pulse signal having a fixed period at the normal time, when the diagnostic signal S is disconnected, an abnormality in the diagnostic signal S can be detected by the fact that the diagnostic signal S is not output. it can.
  • the normal diagnostic signal S is an L level signal, this cannot be detected when the sensor has a low fixed failure, but by using pulse output as described above, Faults can also be detected. As described above, it is possible to minimize the I / F load on the ECU side and satisfy functional safety.
  • FIG. 27 is a block diagram illustrating a configuration of the torque detection device 30 according to the sixth embodiment.
  • the torque detection device 30 has the same configuration as the signal processing circuit 31A of FIG. 24 except that the configuration of the sub output unit 37A and the monitoring unit 38A of the signal processing circuit 31A shown in FIG. 24 is different. Therefore, here, the description will focus on parts having different configurations.
  • the monitoring unit 38A When the monitoring unit 38A detects an abnormality, the monitoring unit 38A outputs an abnormality signal AB1 to the sub output unit 37A. That is, the monitoring unit 38A detects the phase difference between the waveform of the applied AC signal and the waveform of the differential voltage of the bridge circuit, and when the phase difference exceeds a predetermined value, the coil, electrical resistance, or circuit is abnormal. Determination is made and an abnormal signal AB1 is output.
  • the torque detection device 30 includes the signal processing circuit 31A as a double processing circuit that outputs two analog signals (main torque signal Tm and sub torque signal Ts).
  • main torque signal Tm main torque signal Tm and sub torque signal Ts.
  • the initial diagnosis unit 40A immediately after the power is turned on and before the ECU 15 side starts the steering assist control, the initial diagnosis unit 40A performs the initial diagnosis of the monitoring unit 38A itself.
  • the initial diagnosis (function normal diagnosis) of the 0v function of the sub output can be performed. That is, when the sub output 0v function is not operating normally, the ECU 15 can recognize this. This is the same when an abnormality occurs in the diagnostic signal S.
  • the initial diagnosis unit 40A when the monitoring unit 38A itself is diagnosed as normal, the torque output function of the torque detection device 30 is activated. At this time, when the monitoring unit 38A detects that the torque detection device 30 is normal, the diagnosis output unit 39A outputs a pulse signal having a constant cycle shown in FIG. Further, as shown in FIG. 28A, the signal processing circuit 31A outputs a main torque signal Tm and a sub torque signal Ts corresponding to the output signals of the coil pair 22A to the ECU 15.
  • the function of transmitting abnormality information from the torque detection device 30 to the ECU 15 can be duplicated by the 0v function of the sub torque signal Ts and the output function of the diagnosis signal S, and more reliable diagnosis information can be output. It becomes possible. That is, even when the sub-output 0v function is not operating normally, the diagnosis signal S can be appropriately determined to be abnormal and the mode can be shifted to the fail-safe mode. For this reason, it is possible to prevent the ECU 15 from continuing normal steering assist control even when an abnormality has occurred, and to improve the reliability.
  • FIG. 29 is a block diagram illustrating a configuration of the torque detection device 30 according to the seventh embodiment.
  • the output signal of the coil pair 22A is the terminal voltage of the coils 22Aa and 22Ab
  • the output signal of the coil pair 22B is the terminal voltage of the coils 22Ba and 22Bb.
  • the first system of the torque detector 30 includes a signal processing circuit 31A, a monitoring unit 38A, a diagnostic output unit 39A, an initial diagnostic unit 40A, a noise filter 41A, and a connector 42A.
  • the signal processing circuit 31A includes a main amplification / full wave rectification unit 32A, a main smoothing unit 33A, a main output unit 34A, a sub amplification / full wave rectification unit 35A, a sub smoothing unit 36A, a sub output unit 37A, Is provided.
  • the second system of the torque detection device 30 includes a signal processing circuit 31B, a monitoring unit 38B, a diagnostic output unit 39B, an initial diagnostic unit 40B, a noise filter 41B, and a connector 42B. Is provided.
  • the signal processing circuit 31B includes a main amplification / full wave rectification unit 32B, a main smoothing unit 33B, a main output unit 34B, a sub amplification / full wave rectification unit 35B, a sub smoothing unit 36B, a sub output unit 37B, Is provided.
  • the torque detection device 30 is connected to a controller (ECU) 15 via connectors 42A and 42B.
  • the ECU 15 supplies the power supply voltage Vcc to each element of the torque detection device 30 via the connectors 42A and 42B and the noise filters 41A and 41B.
  • the torque detection device 30 processes the output signals of the coil pairs 22A and 22B and outputs main torque signals Tm1 and Tm2 and diagnostic signals S1 and S2 described later to the ECU 15.
  • the ECU 15 determines whether or not an abnormality has occurred in the torque detection device 30 based on the various signals that are input, and performs steering assist control according to the determination result.
  • the main amplification / full-wave rectification unit 32A receives an output signal of the coil pair 22A (terminal voltages of the coils 22Aa and 22Ab), amplifies and rectifies the difference between these two input voltages.
  • the main smoothing unit 33A smoothes the output waveform of the main amplification / full wave rectification unit 32A, and the main output unit 34A outputs this as a main torque signal Tm1 to the ECU 15 via the noise filter 41A and the connector 42A.
  • the sub-amplification / full-wave rectification unit 35A receives the output signal of the coil pair 22A (terminal voltages of the coils 22Aa and 22Ab), amplifies and rectifies the difference between these two input voltages.
  • the sub-smoothing unit 36A smoothes the output waveform of the sub-amplification / full-wave rectification unit 35A, and the sub-output unit 37A sets this as the sub-torque signal Ts1 via the noise filter 41A and the connector 42A.
  • the sub output unit 37A does not output the sub torque signal Ts1 to the ECU 15.
  • the output waveform of the sub-amplification / full-wave rectification unit 35A is also input to the monitoring unit 38A described later.
  • the monitoring unit 38A detects, for example, a contact failure between the coil 22Aa or 22Ab and the electric resistor 61Aa or 61Ab by a change in the differential voltage of the bridge circuit, and a phase shift with respect to a reference voltage (sine wave) (not shown) supplied from the ECU 15.
  • An abnormality of the circuit system is detected based on the above. That is, the monitoring unit 38A detects the phase difference between the waveform of the applied AC signal and the waveform of the differential voltage of the bridge circuit, and when the phase difference exceeds a predetermined value, the coil, electrical resistance, or circuit is abnormal. judge.
  • the monitoring unit 38A compares the main torque signal Tm1 output from the main smoothing unit 33A with the sub torque signal Ts1 output from the sub smoothing unit 36A.
  • the abnormality of the signal processing circuit 31A is monitored, and when the abnormality occurs, the abnormality signal AB1 is output to the sub output unit 37A.
  • the sub output unit 37A receives an abnormality signal AB1 described later from the monitoring unit 38A, and sets the sub torque signal Ts1 to zero.
  • the diagnosis output unit 39A generates a diagnosis signal S1 indicating the diagnosis information of the monitoring unit 38A, and outputs this to the ECU 15 via the noise filter 41A and the connector 42A.
  • the initial diagnosis unit 40A operates immediately after the power is turned on (or immediately after the ignition switch 18 is turned on), before the ECU 15 side starts the steering assist control, and determines whether or not the monitoring unit 38A itself is operating normally. Perform initial diagnosis to diagnose.
  • the initial diagnosis unit 40A alternately inputs a normal signal and an abnormal signal as initial diagnosis signals to the monitoring unit 38A to confirm that the monitoring unit 38A is operating normally.
  • the normal signal may be input again after the normal signal and the abnormal signal.
  • the normal signal is a signal in which the abnormality detection result by the monitoring unit 38A functioning normally is “normal” when abnormality detection is performed using the signal, and the abnormality signal is the signal.
  • the abnormality detection result by the monitoring unit 38A functioning normally is “abnormal”.
  • the main torque signal Tm1 and the diagnostic signal S1 are output from the signal processing circuit 31A to the ECU 15, and the main torque signal Tm2 and the diagnostic signal S2 are output from the signal processing circuit 31B to the ECU 15.
  • the diagnostic signals S1 and S2 are pulse signals having a constant cycle as shown in FIG. 30A when the monitoring units 38A and 38B are not detecting an abnormality, and are monitored by the initial diagnosis units 40A and 40B. , 38B during initial diagnosis, the signal becomes constant at the L level as shown in FIG. 30B, and when the abnormality is detected by the monitoring units 38A, 38B, the signal shown in FIG. The signal becomes constant at the H level as shown in FIG. Further, as shown in FIGS. 31A to 31C, the main torque signal Tm1 and the main torque signal Tm2 have a characteristic that when one increases due to the action of torque, the other decreases.
  • the ECU 15 compares the main torque signal Tm1 and the main torque signal Tm2, and determines whether or not an abnormality has occurred in the torque detection device 30 depending on whether or not the normal cross characteristic is deviated.
  • the ECU 15 determines that the torque detection device 30 is normal based on the main torque signals Tm1 and Tm2, and when the diagnosis signals S1 and S2 are pulse signals shown in FIG. Normal steering assist control is performed using the output main torque signal Tm1, and the electric motor 12 is driven.
  • the ECU 15 determines that the initial diagnosis is being performed by the initial diagnosis units 40A and 40B, and does not perform the steering assist control. To do. Further, the ECU 15 determines that an abnormality has occurred in the torque detection device 30 based on the main torque signals Tm1 and Tm2, and one of the diagnostic signals S1 and S2 is at the H level shown in FIG.
  • the signal is a signal
  • normal steering assist control is performed using the main torque signal output from the torque detection system in which no abnormality has occurred, and the electric motor 12 is driven.
  • both of the diagnostic signals S1 and S2 are H level signals shown in FIG. 30C, the assist motor is gradually reduced by driving the electric motor 12 using a normal past torque value, and the assist is safely stopped. Switch to fail-safe mode.
  • the system on the side where the abnormality has occurred can be determined based on the diagnostic signals S1 and S2 from each system. Therefore, even when an abnormality occurs in any one of the systems, the function of the torque sensor can be continued by system discrimination, and a more stable redundant torque sensor system can be constructed. Furthermore, since the diagnostic signals S1 and S2 are output as simple signals from each system, the system on the side where the abnormality has occurred is detected by a simple method without applying a large load to the ECU side. It becomes possible to do.
  • the function of outputting diagnostic information in the fifth to seventh embodiments can also be applied to the torque detection device 30 in the first to fourth embodiments.
  • a main torque signal and a sub torque signal are output from the signal processing unit.
  • the main torque signal and the sub torque signal are output in each signal processing unit. And only the main torque signal is output.
  • the number of coil pairs can be three or more.
  • the case where a coil-type torque sensor is used has been described.
  • a configuration using, for example, a magnetically sensitive element that outputs two torque signals can also be applied.
  • the abnormality diagnosis method for a torque detection device it is possible to perform an initial diagnosis for confirming whether the monitoring circuit itself that monitors the torque detection function of the torque detection device is operating normally. Therefore, by using this abnormality diagnosis method, a highly reliable torque detection device can be obtained and useful. Further, according to the electric power steering apparatus of the present invention, the initial diagnosis of the torque detection device is performed using the abnormality diagnosis method, and the steering assist control is started after confirming that the torque detection device operates properly. can do. Therefore, the stability and reliability of the steering assist control can be improved, which is useful.
  • SYMBOLS 1 Steering wheel, 2 ... Steering shaft, 10 ... Steering assist mechanism, 11 ... Reduction gear, 12 ... Electric motor, 15 ... Controller, 16 ... Vehicle speed sensor, 17 ... Battery, 18 ... Ignition switch, 20 ... Torque sensor, 22A ... 1st coil pair, 22Aa, 22Ab, 22Ba, 22Bb ... Coil, 22B ... 2nd coil pair, 30 ... Torque detection device, 32A, 32B ... Main amplification / full wave rectification part, 33A, 33B ... Main smoothing part, 34A , 34B ... main output unit, 35A, 35B ...
  • sub-amplification / full wave rectification unit 36A, 36B ... sub-smoothing unit, 37A, 37B ... sub-output unit, 38A, 38B ... monitoring unit, 39A, 39B ... diagnostic output unit, 40A, 40B ... initial diagnosis unit, 41A, 41B ... noise filter, 42A, 42B ... connector, 51A, DESCRIPTION OF SYMBOLS 1B ... Differential amplifier, 52A, 52B ... Rectification / smoothing circuit, 53A, 53B ... Low-pass filter, 54A, 54B ... Noise removal filter, 55 ... AD converter, 56 ... Torque calculator, 56a ... Calculator (first Correction calculation unit), 56b ...
  • CR Width storage unit 68 ... low-pass filter, 69 ... clock frequency fluctuation monitoring unit, 69a ... voltage dividing circuit, 69b ... window comparator, 69c ... logic circuit, 71A, 71B ... monitoring unit diagnosis unit, 72A, 72B ... clock signal selection Circuits, SWa to SWc, switches, 73a to 73c, frequency dividing circuits, 75U, 75L, counters, 76U, 76L, OR gates, 77U, 77L, latch circuits, 78U, 78L, determination timing generation circuits, 79U, 79L, AND gates 140 ... signal processing circuit, 160 ... diagnostic device, 161 ... excitation pulse monitoring unit, 162 ...
  • excitation signal monitoring unit 162a ... input terminal, 162b, 162c ... comparator, 162d, 162e ... counter circuit, 162f, 162g ... comparison Circuit 162h... OR circuit 162i... Latch circuit 162j.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

 信頼性の高いトルク検出装置を得るためのトルク検出装置の異常診断方法、およびそのトルク検出装置を用いた電動パワーステアリング装置を提供する。電源が投入された直後、操舵補助制御が開始される前に、トルク検出装置(30)を構成する信号処理回路(40)の異常を監視する各監視部(監視ブロック)が正常に動作することを確認する初期診断を行う。初期診断に際し、監視ブロックに対して正常信号と異常信号とを交互に入力し、正常信号入力時に監視ブロックが正常診断し、異常信号入力時に監視ブロックが異常診断することをもって、監視ブロックが正常に動作していると判断する。そして、全ての監視ブロックが正常に動作することを確認したうえで、トルク検出装置(30)で検出した操舵トルクに基づく操舵補助制御を開始する。

Description

トルク検出装置の異常診断方法及び電動パワーステアリング装置
 本発明は、常時トルクセンサ信号とその処理系を監視する監視機能を有するトルク検出装置の異常診断方法、及び電動パワーステアリング装置に関するものである。
 電動モータによって操舵力をアシストする電動パワーステアリング装置では、トルクセンサで検出した操舵トルクに基づいてアシスト力を決定し、電動モータを駆動制御するのが一般的である。
 このような電動パワーステアリング装置の故障を検出するものとして、例えば特許文献1に記載の技術がある。この技術は、モータ制御を行う制御手段を、故障検知手段を用いて監視すると共に、故障検知手段によって検知された故障を故障記憶手段に記憶するものである。これにより、必要な故障情報を漏れなく記憶することができるので、適切に故障解析を行うことができる。
特開2010-30393号公報
 しかしながら、上記特許文献1に記載の技術にあっては、故障検知手段そのものの診断については考慮していない。そのため、故障検知手段によって重要な故障を検知した場合、その故障が実際に発生しているのか、故障検知手段の故障による誤検知であるかの判別ができない。また、センサ側に故障が発生しても、故障検知手段の故障により、センサ側が正常であると誤検知されるおそれがある。そのため、信頼性の高いモータ制御を行うことができない。
 そこで、本発明は、信頼性の高いトルク検出装置を得るためのトルク検出装置の異常診断方法、およびそのトルク検出装置を用いた電動パワーステアリング装置を提供することを課題としている。
 上記目的を達成するために、本発明に係るトルク検出装置の異常診断方法の第1の態様は、トルクが入力されることでねじれが発生するトーションバーで連結された第1回転軸と第2回転軸との相対的な変位を、インピーダンスの変化に反映させて検出する少なくとも1組のコイル対と、前記コイル対に対して励磁信号を供給したときの当該コイル対の出力信号を信号処理してトルク検出信号を出力するトルク検出機能を有する信号処理部と、前記トルク検出機能の異常を定常的に監視する監視部とを備えるトルク検出装置の前記トルク検出機能が作動する前に、前記監視部に対して診断用の信号を入力し、前記監視部が正常に動作していることを確認することを特徴としている。
 また、第2の態様は、前記監視部に対し、前記診断用の信号として正常信号と異常信号とを交互に入力し、前記正常信号の入力時に、前記監視部が入力信号に対して正常診断し、前記異常信号の入力時に、前記監視部が入力信号に対して異常診断したとき、前記監視部が正常に動作していると判断することを特徴としている。
 さらに、第3の態様は、前記監視部に対し、前記診断用の信号を、前記正常信号、前記異常信号、前記正常信号の順に入力することを特徴としている。
 また、第4の態様は、前記監視部が、前記励磁信号の波形を監視する励磁信号監視部であり、前記励磁信号監視部が正常に動作しているか否かの判断に際し、監視対象である前記励磁信号に代えて、前記診断用の信号として、前記励磁信号の理想波形を有する正常信号と、当該正常信号とは周波数の異なる異常信号とを入力することを特徴としている。
 さらに、第5の態様は、前記励磁信号監視部が正常に動作しているか否かの判断に際し、前記異常信号として、前記正常信号に対して周波数が1/2となる信号を入力することを特徴としている。
 また、第6の態様は、前記監視部が、前記トルク検出信号が前記励磁信号に対して移相しているか否かを監視する位相監視部であり、前記位相監視部が正常に動作しているか否かの判断に際し、監視対象である前記トルク検出信号に代えて、前記診断用の信号として、前記励磁信号と、移相回路を介して前記励磁信号を移相させた信号とを入力することを特徴としている。
 さらにまた、第7の態様は、前記信号処理部が、前記トルク検出信号をAD変換して出力するように構成されており、前記監視部が、監視対象の電圧値をAD変換した後の出力値を監視するADC監視部である。そして、前記ADC監視部が正常に動作しているか否かの判断に際し、前記監視対象の電圧値に代えて、前記診断用の信号として、前記トルク検出信号の電圧値の通常使用域において、当該通常使用域の中央電圧値を含む複数の正常電圧値と、前記正常電圧値とは異なる複数の異常電圧値とを入力することを特徴としている。
 また、第8の態様は、前記信号処理部が、クロック信号を分周して前記励磁信号の励磁周波数のパルスを生成するカウンタを有し、前記監視部が、CR発振器と、予め前記CR発振器の出力パルスの幅を前記クロック信号で計数し、記憶しておくパルス幅記憶部とを備え、前記CR発振器の出力パルスの幅を前記クロック信号で計数し、その計数値を前記パルス幅記憶部に記憶された出力パルスの幅と比較することで、前記クロック信号の異常を監視するクロック監視部である。そして、前記クロック監視部が正常に動作しているか否かの判断に際し、監視対象である前記クロック信号に代えて、前記診断用の信号として、前記カウンタが生成した前記励磁周波数のパルスを入力することを特徴としている。
 さらに、第9の態様は、前記信号処理部が、前記コイル対に対して供給する正弦波の前記励磁信号を、クロックパルスに基づいて生成する発振部を備えており、前記監視部が、前記発振部から出力される励磁信号を入力する監視用ローパスフィルタを備え、該監視用ローパスフィルタのフィルタ出力の振幅変動を前記クロックパルスの周波数変動として検出するクロック周波数変動監視部である。そして、前記クロック周波数変動監視部が正常に動作しているか否かの判断に際し、前記診断用の信号として、通常クロック信号と、当該通常クロック信号とは異なる励磁周波数の異常クロック信号とを入力することを特徴としている。
 また、第10の態様は、前記クロック周波数変動監視部が、前記監視用ローパスフィルタのフィルタ出力の上側半波及び下側半波の少なくとも一方のピーク値が、正常振幅範囲内にあるか否かを検出する構成を有している。そして、前記クロック周波数変動監視部が正常に動作しているか否かの判断に際し、前記異常クロック信号として、前記通常クロック信号の許容上限周波数より高い周波数の異常高周波数クロック信号と、前記通常クロック信号の許容下限周波数より低い周波数の異常低周波数クロック信号との2種類を入力することを特徴としている。
 さらにまた、第11の態様は、前記信号処理部が、前記トルクに対応するアナログ信号をデジタル信号に変換するAD変換器と、前記AD変換器で変換されたデジタル信号のゲイン及びオフセット量を補正するためのゲイン補正値及びオフセット量補正値を予め記憶する記憶部と、前記AD変換器で変換されたデジタル信号を、前記記憶部に記憶されたゲイン補正値及びオフセット量補正値で補正し、前記トルク検出信号として出力する第1の補正演算部と、前記第1の補正演算部と同一の補正演算処理を行う第2の補正演算部を備える。また、前記監視部は、前記第1の補正演算部と前記第2の補正演算部とに同一信号を入力し、両者の演算結果を比較して、前記第1の補正演算部の演算ロジックが正常に機能しているか否かを監視する演算ロジック監視部である。そして、前記演算ロジック監視部が正常に動作しているか否かの判断に際し、前記診断用の信号として、前記第2の補正演算部に前記第1の補正演算部とは異なる信号を入力し、そのときの両者の演算結果が異なることを確認することで、前記演算ロジック監視部が正常に機能していることを確認することを特徴としている。
 また、第12の態様は、前記演算ロジック監視部が正常に動作しているか否かの判断に際し、前記第2の補正演算部に入力する前記第1の補正演算部とは異なる信号として、前記第1の補正演算部の入力信号の反転信号を用いることを特徴としている。
 さらに、第13の態様は、前記信号処理部が、1組の前記コイル対に対応して設けられ、前記コイル対の出力信号に基づいてメイントルク信号及びサブトルク信号を出力するように構成されており、前記監視部による異常診断結果を含む診断情報、前記メイントルク信号及び前記サブトルク信号に基づいて、前記トルク検出装置の異常を検出することを特徴としている。
 また、第14の態様は、前記監視部で異常を検出したときの前記サブトルク信号は、予め設定された一定値であることを特徴としている。
 さらに、第15の態様は、前記信号処理部は、2組の前記コイル対に対応して設けられ、それぞれ前記コイル対の出力信号に基づいてメイントルク信号を出力するように構成されており、前記監視部による異常診断結果を含む診断情報、及び前記各メイントルク信号に基づいて、前記トルク検出装置の異常を検出することを特徴としている。
 また、第16の態様は、前記信号処理部が、前記コイル対の出力信号に基づいて前記メイントルク信号及びサブトルク信号を演算し、前記メイントルク信号のみを出力するように構成されており、前記監視部による異常診断結果は、前記監視部が、前記メイントルク信号と前記サブトルク信号との比較によって、前記信号処理部の異常を監視した結果であることを特徴としている。
 さらにまた、第17の態様は、前記診断情報が、前記監視部による異常診断結果が正常であること、前記監視部による異常診断結果が異常であること、及び前記初期診断部による初期診断中であることの少なくとも3種の情報であることを特徴としている。
 また、第18の態様は、前記診断情報が、前記監視部による異常診断結果が正常である場合には一定周期のパルス信号、前記監視部による異常診断結果が異常である場合にはHレベルの信号、前記初期診断部による初期診断中である場合にはLレベルの信号であることを特徴としている。
 さらに、本発明に係る電動パワーステアリング装置の第1の態様は、ステアリング機構に入力される操舵トルクを検出するトルク検出装置と、少なくとも前記トルク検出装置で検出した操舵トルクに基づいて、操舵系に運転者の操舵負担を軽減する操舵補助力を付与すべく、電動モータを駆動制御するモータ制御部と、前記モータ制御部による前記電動モータの駆動制御に先立って、前記第1の態様~第18の態様の何れかの異常診断方法によって前記トルク検出装置を診断する初期診断部と、を備えることを特徴としている。
 本発明のトルク検出装置の異常診断方法では、監視回路そのものが正常に動作しているかを確認する初期診断を行うことができる。そのため、この異常診断方法を用いることで、信頼性の高いトルク検出装置を得ることができる。
 また、本発明の電動パワーステアリング装置では、上記異常診断方法を用いてトルク検出装置の初期診断を行って、トルク検出装置が確実に正常動作することを確認したうえで操舵補助制御を開始することができる。したがって、操舵補助制御の安定性及び信頼性を向上させることができる。
本実施形態の電動パワーステアリング装置を示す全体構成図である。 トルク検出装置の構成を示すブロック図である。 トルクセンサを構成するコイル周辺図である。 初期診断方法の概念を説明するためのブロック図である。 初期診断部が実行する初期診断処理手順を示すフローチャートである。 励磁信号監視部の構成を示す図である。 励磁信号監視部の初期診断用の信号波形例を示す図である。 位相監視部の構成を示す図である。 位相監視部の初期診断時の信号波形例を示す図である。 トルク信号監視部の構成を示す図である。 第2の実施形態のトルク検出装置の構成を示すブロック図である。 トルクセンサを構成するコイル周辺図である。 異常検出部の具体的構成を示すブロック図である。 ローパスフィルタのカットオフ周波数と9kHz時ピーク値との差電圧との関係を示す特性線図である。 ローパスフィルタのフィルタ出力の説明図である。 第3の実施形態における監視部診断部を示すブロック図である。 監視部診断部で実行する初期診断処理を示すフローチャートである。 トルク検出装置の別の構成を示すブロック図である。 第4の実施形態のトルク検出装置の構成を示すブロック図である。 クロック監視部の構成を示すブロック図である。 第5の実施形態のトルク検出装置の構成を示すブロック図である。 ゲイン設定値及びオフセット設定値を示す図である。 トルク演算部の構成を示すブロック図である。 第6の実施形態のトルク検出装置の構成を示すブロック図である。 診断信号Sを示す図である。 第6の実施形態のトルク信号Tm,Tsを示す図である。 第7の実施形態のトルク検出装置の構成を示すブロック図である。 第7の実施形態のトルク信号Tm,Tsを示す図である。 第8の実施形態のトルク検出装置の構成を示すブロック図である。 第8の実施形態の診断信号S1,S2を示す図である。 第8の実施形態のトルク信号Tm1,Tm2を示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
(第1の実施の形態)
(構成)
 図1は、本実施形態に係る電動パワーステアリング装置を示す全体構成図である。
 図中、符号1は、ステアリングホイールであり、このステアリングホイール1に運転者から作用される操舵力が入力軸2aと出力軸2bとを有するステアリングシャフト2に伝達される。このステアリングシャフト2は、入力軸2aの一端がステアリングホイール1に連結され、他端は後述するトルク検出装置30が備えるトルクセンサ3を介して出力軸2bの一端に連結されている。
 そして、出力軸2bに伝達された操舵力は、ユニバーサルジョイント4を介して中間シャフト5に伝達され、さらに、ユニバーサルジョイント6を介してピニオンシャフト7に伝達される。このピニオンシャフト7に伝達された操舵力はステアリングギヤ8を介してタイロッド9に伝達され、図示しない転舵輪を転舵させる。ここで、ステアリングギヤ8は、ピニオンシャフト7に連結されたピニオン8aとこのピニオン8aに噛合するラック8bとを有するラックアンドピニオン形式に構成され、ピニオン8aに伝達された回転運動をラック8bで直進運動に変換している。
 ステアリングシャフト2の出力軸2bには、補助操舵力を出力軸2bに伝達する操舵補助機構10が連結されている。この操舵補助機構10は、出力軸2bに連結された減速ギヤ11と、減速ギヤ11に連結されて操舵系に対して補助操舵力を発生する電動モータ12とを備えている。
 トルクセンサ3は、ステアリングホイール1に付与されて入力軸2aに伝達された操舵トルクを検出するためのもので、図示しないトーションバーで連結された入力軸2aと出力軸2bとの相対的な変位(回転変位)を、コイル対のインピーダンスの変化に対応させて検出するように構成されている。このトルクセンサ3から出力されるトルク検出値Tはコントローラ15に入力される。
 コントローラ15は、車載のバッテリ17(例えば、定格電圧が12Vである)から電源供給されることによって作動する。バッテリ17の負極は接地され、その正極はエンジンを始動するイグニッションスイッチ18を介してコントローラ15に接続されると共に、イグニッションスイッチ18を介さず直接コントローラ15に接続されている。
 コントローラ15には、トルク検出値Tの他に車速センサ16で検出した車速検出値Vが入力され、これらに応じた操舵補助力を操舵系に付与する操舵補助制御を行う。具体的には、上記操舵補助力を電動モータ12で発生するための操舵補助トルク指令値を公知の手順で算出し、算出した操舵補助トルク指令値とモータ電流検出値とにより、電動モータ12に供給する駆動電流をフィードバック制御する。
 次に、トルク検出装置30の構成について詳細に説明する。
 図2は、トルク検出装置30の構成を示すブロック図である。トルク検出装置30は、上述したトルクセンサ3を備えるものであり、この図2では、トルクセンサ3を構成するコイル対に励磁信号を供給したときの当該コイル対の出力信号に対して信号処理を行ってトルク検出信号を出力する信号処理回路(信号処理部)140と、当該信号処理回路140の各ブロックにおける異常を監視する監視部を備える診断装置160とを示している。
 トルクセンサ3は、図3にそのコイル周辺図を示すように、第1コイル22Aa及び第2コイル22Abが組み合わされたコイル対と、コイル22Aa及び22Abが捲回されたヨーク81と、円筒部材83と、円筒部材83の外周部に上記コイル対と対向するように設けられた複数の窓831と、トーションバー84と、センサシャフト85とを含む。なお、トーションバー84と、センサシャフト85と、ステアリングシャフト2の入力軸2a及び出力軸2bとは、同軸に配置される。
 信号処理回路140は、主にクロック部、励磁部、センサ部、信号処理部及び通信出力部で構成されている。
 クロック部は、例えば市販のクロック(水晶発振器など)で構成されるCLK141を備える。またクロック部は、CLK141から出力されるクロック信号と、SEL142で選択された指定周波数(A[Hz]又はB[Hz])とをもとに、上記クロック信号を分周して上記指定周波数(励磁する周波数)へ変換するカウンタ143を備える。カウンタ143が出力した励磁パルスは、励磁部を構成する励磁波形生成部144に入力される。
 励磁波形生成部144は、カウンタ143から入力された励磁パルスに基づいて、A[Hz]とB[Hz]のうち選択された周波数の励磁信号を生成し、センサ部に出力する。ここで、生成した励磁信号は、センサ部を構成するメインブリッジ回路(ブリッジMAIN)145とサブブリッジ回路(ブリッジSUB)149とに供給される。
 メインブリッジ回路145は第1コイルと第2コイルとからなるコイル対を備え、当該コイル対に励磁信号が供給されると、メイン差動増幅器146は、第1コイルと第2コイルとの端子電圧の差(端子電圧差)を増幅して出力する。この出力信号はメイン整流平滑回路147に入力され、メイン整流平滑回路147はこれを整流及び平滑して出力する。ローパスフィルタ(LPF)148は、平滑化された出力からノイズを除去し、信号処理部を構成するトルク演算回路153に出力する。なお、サブブリッジ回路149、サブ差動増幅器150、サブ整流平滑回路151及びLPF152の動作は、メインブリッジ回路145~LPF148までの動作と同様であるため、ここでは説明を省略する。
 トルク演算回路153は、マルチプレクサ(MUX)とAD変換器(ADC)とを備えており、LPF148及び152から出力された信号(MAINトルク値、SUBトルク値)に基づいてトルク検出信号を求め、これを、通信出力部を構成する通信出力回路154に出力する。通信出力回路154は、トルク演算回路153で求めたトルク検出信号をコントローラ(ECU)15に出力する。
 また、診断装置160の監視部は、励磁パルスを監視する励磁パルス監視部161と、励磁信号の波形(周波数、DUTY、形状、オフセット、縮小、過大発振など)を監視する励磁信号監視部162と、励磁信号の位相を監視する位相監視部163と、差動増幅器150が出力する信号の振幅を監視する差動振幅監視部164と、トルク演算回路153のMUXとADCの異常を監視するMUX/ADC監視部165と、トルク演算回路153が出力するトルク検出信号を監視するトルク信号監視部166と、通信出力部154の異常を監視する通信監視部167とを備える。そして、操舵補助制御の実施中は、これらの監視部で定常的に各種監視処理が行われ、何らかの異常が検出されると直ちにこれがECU15に伝達される。
 さらに、診断装置160は、上記各監視部そのものを診断するための初期診断部168を備える。この初期診断部168は、電源が投入された直後(又はイグニッションスイッチ18をオンした直後)、ECU15側が操舵補助制御を開始する前に作動し、各監視部そのものが正常に動作しているか否かを診断する初期診断を行う。この初期診断は、各監視部を順次診断対象として行う。また、初期診断中は、初期診断中フラグを立てるなどにより、ECU15がトルクセンサ信号を使用できないようにする(操舵補助制御を実施できないようにする)。
 初期診断部168は、初期診断を開始すると、初期診断用の信号として正常信号と異常信号とを、診断対象である監視部に対して交互に入力し、当該監視部が正常に動作していることを確認する。ここで、正常信号とは、当該信号を監視対象信号としたとき、正常に機能している監視ブロックによる診断結果が「正常」となる(正常診断される)信号であり、異常信号とは、当該信号を監視対象信号としたとき、正常に機能している監視ブロックによる診断結果が「異常」となる(異常診断される)信号である。
 通常の監視状態(定常診断モード)では、図4に示すように、スイッチSW1をオンして通常の監視対象信号(通常信号)を監視ブロックに入力し、当該通常信号を診断する。
 一方、初期診断時には、切換信号によって各スイッチSW1~SW3のオンオフを切り換えることで、監視ブロックに初期診断用の信号を入力する。本実施形態では、初期診断用の信号として、正常信号→異常信号→正常信号を順に入力するものとする。正常信号を入力する場合にはスイッチSW2をオンし、異常信号を入力する場合にはスイッチSW3をオンする。
 監視ブロックの出力は、正常診断時に“0”、異常診断時に“1”となり、この監視ブロックの出力はAND回路に入力される。AND回路は、監視ブロックの出力とフラグマスクMaskとのANDをとり、これを監視部の最終的な出力信号として出力する。ここで、フラグマスクMaskは、診断対象とする監視部を選定するためのものであり、定常診断モードでは全ての監視ブロックのMaskは“OFF(1)”となる。そして、初期診断モードでは、診断対象とする監視ブロックのMaskのみが“OFF(1)”となり、それ以外の診断対象としない監視ブロックのMaskは“ON(0)”となる。
 図5は、初期診断部168が実行する初期診断処理手順を示すフローチャートである。この初期診断処理は、上述したように、電源が投入された直後、ECU15による操舵補助制御に先立って実行される。
 先ずステップS1で、初期診断部168は、初期診断対象の監視ブロックのフラグマスクのみ“OFF(1)”し、他の監視ブロックのフラグマスクを“ON(0)”する。このように、対象監視ブロックのフラグマスクのみを“OFF(1)”することで、他の監視部の出力(図4のAND出力)を監視ブロックの出力にかかわらず“0”とする(監視ブロックの監視機能を無効にする)ことができる。なお、フラグマスクを必要とする監視ブロックは、励磁パルス監視部161、励磁信号監視部162、位相監視部163、差動振幅監視部164、及びトルク信号監視部166の監視ブロックとする。
 次にステップS2で、初期診断部168は、初期診断対象の監視ブロックに初期診断用の正常信号を入力(図4のスイッチSW2をオン)することで初期診断正常状態とし、ステップS3に移行する。
 ステップS3では、初期診断部168は、初期診断正常状態が安定するまで待機してから、全監視部の出力を確認し、全出力が“0”であり、異常発生していないことを確認できたか否かを判定する。このとき、異常が発生していることを確認した場合には、その監視部の監視機能に異常があると判断してステップS4に移行し、所定の異常時処理(通信出力回路154による異常の通知など)を行ってから初期診断処理を終了する。
 一方、前記ステップS3で異常発生していないことが確認できた場合には、ステップS5に移行し、初期診断部168は、初期診断対象の監視ブロックに初期診断用の異常信号を入力(図4のスイッチSW3をオン)することで初期診断異常状態に切り替える。
 次にステップS6では、初期診断部168は、初期診断異常状態が安定するまで待機してから、全監視部の出力を確認し、診断対象の監視部のみの出力が“1”であり、異常発生していることを確認できたか否かを判定する。このとき、異常が発生していることを確認できない場合には、その監視部の監視機能に異常があると判断して前記ステップS4に移行する。
 一方、前記ステップS6で異常発生していることが確認できた場合には、ステップS7に移行し、初期診断部168は、初期診断対象の監視ブロックに初期診断用の正常信号を入力(図4のスイッチSW2をオン)することで初期診断正常状態に切り替える。
 次にステップS8では、初期診断部168は、初期診断正常状態が安定するまで待機してから、全監視部の出力を確認し、全出力が“0”であり、異常発生していないことを確認できたか否かを判定する。そして、異常が発生していることを確認した場合には、その監視部の監視機能に異常があると判断して前記ステップS4に移行する。一方、前記ステップS8で異常発生していないことが確認できた場合には、ステップS9に移行する。
 ステップS9では、初期診断部168は、全監視部の初期診断が終了したか否かを判定し、初期診断を実行していない監視部が存在する場合には、初期診断対象を切り替えるべく前記ステップS1に移行し、全監視部の初期診断が終了している場合にはそのまま初期診断処理を終了する。
 このように、監視部そのものを診断する初期診断機能を備えるため、監視部の監視機能の信頼性を向上させることができる。すなわち、信号処理回路140に異常が発生しているにもかかわらず、監視部で当該異常を検知できなかったり、信号処理回路140が正常であるにもかかわらず、監視部で異常が発生していると誤検知してしまったりするのを防止することができる。したがって、監視部の誤検知に伴う不具合の発生を防止することができる。
(励磁信号監視部162の初期診断)
 次に、励磁信号監視部162の初期診断方法について、詳細に説明する。
 図6は、励磁信号監視部162の構成を示す図である。ここでは、図4における監視ブロックとAND回路に対応する部分について示している。
 励磁信号監視部162は励磁信号の波形を監視するものであり、定常診断モードでは、励磁波形生成部144が出力する励磁信号が、通常信号として入力端子162aに入力される。また、初期診断正常状態では、理想波形を有する励磁信号が、初期診断用の正常信号として入力端子162aに入力される。そして、初期診断異常状態では、上記正常信号とは周波数の異なる励磁信号(例えば、1/2周波数)が、初期診断用の異常信号として入力端子162aに入力される。
 図7は、初期診断用の信号波形を示す図であり、(a)は正常信号、(b)は異常信号を示している。この励磁信号監視部62では、監視対象信号が閾値V1以上となってから閾値V2以下となるまでの期間T1と、閾値V2以下となってから閾値V1以上となるまでの期間T2とをそれぞれカウントし、これらを正常値と比較することで診断する。ここでは、例えば、閾値V1を4.25V、閾値V2を0.75Vとする。
 すなわち、図7に示すように、入力端子162aに入力された信号は、比較器162b及び162cに入力される。比較器162bは入力信号と閾値V1とを比較し、入力信号が閾値V1以上となるときにHレベルとなる信号を出力する。また、比較器162cは入力信号と閾値V2とを比較し、入力信号が閾値V2以下となるときにHレベルとなる信号を出力する。比較器162b,162cの出力信号は、それぞれカウンタ回路162d,162eに入力される。
 カウンタ回路162dは、比較器162b,162cの出力信号をもとに、入力信号が閾値V1以上となってから閾値V2以下となるまでの期間T1をカウントし、その結果を比較回路162fに出力する。また、カウンタ回路162eは、比較器162b,162cの出力信号をもとに、入力信号が閾値V2以下となってから閾値V1以上となるまでの期間T2をカウントし、その結果を比較回路162gに出力する。
 比較回路162fは、期間T1と正常値T0とを比較し、カウントした期間T1が正常値T0とは異なる場合に“1”となる信号を出力する。同様に、比較回路162gは、期間T2と正常値T0とを比較し、カウントした期間T2が正常値T0とは異なる場合に“1”となる信号を出力する。比較回路162f,162gの出力信号はOR回路162hに入力される。OR回路162hの出力はラッチ回路162iでラッチされ、判定タイミング生成部162jによって指定されたタイミングでAND回路162kに入力される。
 このような構成により、上述した図5の初期診断処理が実行され、励磁信号監視部162のAND回路162kにフラグマスク=OFF(1)が入力されると、先ず入力端子162aから図7(a)に示す正常信号が入力される。このとき、監視ブロックが正常に機能している場合には、閾値V1以上となってから閾値V2以下となるまでの期間T1と、閾値V2以下となってから閾値V1以上となるまでの期間T2とは、それぞれ正常値T0と等しくなる。したがって、ラッチ回路162iの出力は“0”となり、AND回路162kの出力も“0”となる。
 一方、監視ブロックが正常に機能していない場合には、閾値V1以上となってから閾値V2以下となるまでの期間T1と、閾値V2以下となってから閾値V1以上となるまでの期間T2とは、正常値T0とは異なる。したがって、ラッチ回路162iの出力は“1”となり、AND回路162kの出力も“1”となってしまう。
 このように、はじめに初期診断正常状態での診断を行い、正常信号を入力したときに正しく正常診断されるか(AND回路162kの出力が“0”となるか)を確認する。その際、AND回路162kの出力が“0”でない場合には、励磁信号監視部162が正常に機能していないと判断する。
 この正常信号入力時に、AND回路162kの出力が“0”であり、励磁信号監視部162が正常に機能していると判断されると、次に、初期診断異常状態で診断する。この場合には、入力端子162aから図7(b)に示す異常信号が入力される。このとき、監視ブロックが正常に機能している場合には、閾値V1以上となってから閾値V2以下となるまでの期間T1と、閾値V2以下となってから閾値V1以上となるまでの期間T2とは、それぞれ正常値T0とは異なる値となる。したがって、ラッチ回路162iの出力は“1”となり、AND回路162kの出力も“1”となる。
 一方、監視ブロックが正常に機能していない場合には、閾値V1以上となってから閾値V2以下となるまでの期間T1と、閾値V2以下となってから閾値V1以上となるまでの期間T2とは、正常値と等しくなる場合がある。その場合、ラッチ回路162iの出力は“0”となり、AND回路162kの出力も“0”となってしまう。
 このように、初期診断正常状態での診断に続いて初期診断異常状態での診断を行い、異常信号を入力したときに正しく異常診断されるか(AND回路162kの出力が“1”となるか)を確認する。その際、AND回路162kの出力が“1”でない場合に、励磁信号監視部162が正常に機能していないと判断する。
 そして、この異常信号入力時に、AND回路162kの出力が“1”であり、励磁信号監視部162が正常に機能していると判断されると、再度、初期診断正常状態で診断する。すなわち、入力端子162aから再度図7(a)に示す正常信号を入力し、正しく正常診断されるか(AND回路162kの出力が“0”となるか)を確認する。このとき、初期診断用の信号の入力切替が正常に行われており励磁信号監視部162が正常に機能していれば、正しく正常診断されるが、初期診断用の信号の入力切替が正常に行われていないと、励磁信号監視部162が正常に機能していても正常診断されない。したがって、正常信号、異常信号の後に、再度正常信号を入力して初期診断することで、初期診断機能が正常に動作しているかを確認することができる。
 以上のように、励磁信号監視方法として、監視対象信号の最大値よりも小さい閾値V1と、監視対象信号の最小値よりも大きい閾値V2(<V1)とを用意し、閾値V1以上となってから閾値V2以下となるまでの期間T1と、閾値V2以下となってから閾値V1以上となるまでの期間T2とが、それぞれ正常値と等しいか否かを判定する方法を用いる。そして、初期診断用の異常信号としては、正常信号とは周波数の異なる信号を用いる。このように、異常信号として正常信号とは周波数の異なる信号を用いることで、異常信号を監視対象信号とした場合の上記期間T1及びT2を正常値とは異なる値とすることができる。したがって、このような信号を用いることで、励磁信号監視部162が正常に機能しているか否かを適切に判別することができる。
 また、初期診断用の異常信号は、励磁パルス生成機能の1/2周波数出力機能を使用して生成することができる。このように、比較的簡易に適切な異常信号を生成することができる。
(位相監視部163の初期診断)
 次に、位相監視部163の初期診断方法について、詳細に説明する。
 図8は、位相監視部163の構成を示す図である。ここでは、図4における監視ブロックに対応する部分についてのみ示している。
 この位相監視部163では、定常診断モードでは、トルク検出信号と励磁信号との位相のズレを監視する。コイル式のトルクセンサでは特に、コイルセンサ部に異常が発生した場合、トルク検出信号が励磁信号に対して移相する場合がある。そこで、励磁信号とトルク検出信号との位相がずれ、且つトルク検出信号にある一定以上の振幅が発生しているとき、トルク検出信号に異常が発生していると判断する。
 すなわち、図8に示すように、当該監視ブロックは、3つの比較器163a~163cと、比較器163a~163cの出力が入力されるAND回路163dとを備える。比較器163aは、入力端子163eから入力される励磁信号と閾値V3とを比較し、励磁信号が閾値V3以上となるときにHレベルとなる信号を出力する。また、比較器163bは、入力端子163eから入力される励磁信号と閾値V4とを比較し、励磁信号が閾値V4以下となるときにHレベルとなる信号を出力する。
 さらに、比較器163cは、監視対象信号と閾値V3とを比較し、監視対象信号が閾値V3以下となるときにHレベルとなる信号を出力する。定常診断モードでは、監視対象信号としてトルク検出信号を比較器163cに入力する(スイッチSW4をオン)。また、初期診断正常状態では、初期診断用の正常信号が監視対象信号となり、当該正常信号として励磁信号を比較器163cに入力する(スイッチSW5をオン)。そして、初期診断異常状態では、初期診断用の異常信号が監視対象信号となり、当該異常信号として、励磁信号を、移相回路163fを介して移相させた信号を比較器163cに入力する(スイッチSW6をオン)。移相回路163fは、励磁信号の位相を90度ずらす回路であり、例えばオペアンプで構成する。
 なお、閾値V3及びV4は、それぞれ励磁信号の振幅の最小値から最大値までの間で設定し、V3<V4とする。ここでは、例えば、閾値V3を1.75V、閾値V4を2.75Vとする。
 さらに、ここでは、正常信号(励磁信号)と異常信号との位相差を90度とする場合について説明するが、位相差は90度以外であってもよい。
 また、AND回路163dの出力は、Hレベルとなる期間がカウントされ、これが正常値と比較される。そして、Hレベルとなる期間が正常値以上であるとき、トルク検出信号に異常が発生していることを示す“1”となる信号が図4のAND回路に相当する回路に入力される。
 このような構成により、定常診断モードでは、スイッチSW4がオンし、比較器163cにトルク検出信号が入力される。このとき、トルク検出信号が励磁信号に対して移相していない正常時には、AND回路163dの出力は“0”となる。以下、この正常時の動作について詳細に説明する。
 図9(a)に示すように、比較器163aの出力(CP1出力)は、励磁信号aが閾値V3以上となる期間のみHレベルとなる。また、比較器163bの出力(CP2出力)は、励磁信号aが閾値V4以下となる期間のみHレベルとなる。さらに、比較器163cの出力(CP3出力)は、監視対象信号(トルク検出信号b)が閾値V3以下となる期間のみHレベルとなる。そのため、トルク検出信号bが励磁信号aに対して移相していない正常時には、図9(a)の最下段に示すように、3つの出力CP1~CP3がすべてHレベルとなる期間は存在しない。したがって、AND回路163dの出力は常に“0”となり、トルク検出信号bが正常であると判断される。
 一方、トルク検出信号が励磁信号に対して移相している異常発生時には、AND回路163dの出力がHレベルとなる期間が存在する。図9(b)に示すように、監視対象信号(トルク検出信号b´)が励磁信号aに対して90度移相している場合、比較器163cの出力(CP3出力)は正常時とは異なるタイミングでHレベルとなる。この場合、3つの比較器163a~163cの出力CP1~CP3がすべてHレベルとなる期間が存在し、図9(b)の最下段の領域αに示すように、AND回路163dの出力がHレベルとなる期間が発生する。そして、この期間が正常値以上であると、トルク検出信号b´に異常が発生していると判断される。
 このように、AND回路163dの出力を監視することで、監視対象信号が励磁信号に対して移相しているか否かを適切に判断することができる。
 上述した図5の初期診断処理が実行され、位相監視部163にフラグマスク=OFF(1)が入力されると、先ず、図8のスイッチSW5がオンし、比較器163cに初期診断用の正常信号として励磁信号が入力される。すなわち、励磁信号が監視対象信号となる。当然ながら、監視対象信号と励磁信号とは位相が等しいため、監視ブロックが正常に機能している場合には、AND回路163dの出力は常に“0”となる。
 一方、監視ブロックが正常に機能していない場合には、監視対象信号が励磁信号に対して移相していると誤認識してしまい、AND回路163dの出力にHレベルとなる期間が存在する。
 このように、はじめに初期診断正常状態での診断を行い、正常信号(励磁信号)を入力したときに正しく正常診断されるか(AND回路163dの出力が常に“0”となるか)を確認する。その際、AND回路163dの出力が常に“0”でない場合に、位相監視部163が正常に機能していないと判断する。
 この正常信号入力時に、AND回路163dの出力が常に“0”であり、位相監視部163が正常に機能していると判断されると、次に、初期診断異常状態で診断する。この場合には、図8のスイッチSW6をオンし、比較器163cに初期診断用の異常信号として励磁信号を移相させた信号を入力する。このとき、監視対象信号と励磁信号とは位相が異なるため、監視ブロックが正常に機能している場合には、AND回路163dの出力にHレベルとなる期間が存在する。
 一方、監視ブロックが正常に機能していない場合には、監視対象信号と励磁信号の位相が等しいと誤認識し、AND回路163dの出力が常に“0”となる場合がある。
 このように、初期診断正常状態での診断に続いて初期診断異常状態での診断を行い、異常信号を入力したときに正しく異常診断されるか(AND回路163dの出力がHレベルとなるか)を確認する。その際、AND回路163dの出力が常に“0”である場合に、位相監視部163が正常に機能していないと判断する。
 そして、この異常信号入力時に、AND回路163dの出力にHレベルとなる期間が存在し、位相監視部163が正常に機能していると判断されると、再度、初期診断正常状態で診断する。すなわち、図8のスイッチSW5をオンし、比較器163cに再度初期診断用の正常信号として励磁信号を入力し、正しく正常診断されるか(AND回路163dの出力が常に“0”となるか)を確認する。
 以上のように、位相監視方法として、励磁信号が閾値V3以上となる期間、励磁信号が閾値V4以下となる期間、監視対象信号が閾値V3以下となる期間にそれぞれ出力がHレベルとなる3つの比較器163a~163cを用意し、3つの比較器163a~163cの出力が全てHレベルとなる期間が正常値以上であるか否かを判定する方法を用いる。そして、初期診断用の異常信号としては、正常信号とは位相の異なる信号を用いる。このように、異常信号として正常信号とは位相の異なる信号を用いることで、異常信号を監視対象信号とした場合に、3つの比較器163a~163cの出力が全てHレベルとなる期間を発生させることができる。
 このとき、正常信号と異常信号との位相差を例えば90度とすることで、異常信号を監視対象信号とした場合に、3つの比較器163a~163cの出力が全てHレベルとなる期間を確実に正常値以上とすることができる。したがって、このような信号を用いることで、位相監視部163が正常に機能しているか否かを適切に判別することができる。また、正常信号を、移相回路を介して移相させることで異常信号を生成するので、比較的簡易に適切な異常信号を得ることができる。
(MUX/ADC監視部165の初期診断)
 次に、MUX/ADC監視部165の初期診断方法について、詳細に説明する。
 図10は、MUX/ADC監視部165の構成を示す図である。ここでは、図4における監視ブロックに対応する部分についてのみ示している。
 このMUX/ADC監視部165では、ADC出力値が期待値とは異なる場合に、MUX及びADCに異常が発生していると判断して“1”となる信号を出力する。ここでは、監視対象信号として、通常使用域(0~VCC)における複数の電圧値(VCC*1/2、VCC*1/3、VCC*2/3、VCC*3/3、VCC*0/3)を用い、これらのADC出力値をそれぞれの期待値と比較する。
 すなわち、図10に示すように、当該監視ブロックは、MUX165aと、ADC165bとを備える。MUX165aには、メイントルク値及びサブトルク値の他に、定常診断モードではVCC*1/3、VCC*2/3、VCC*1/2、VCC*3/3、VCC*0/3が入力される。そして、MUX165aは、これらの信号をMux選択信号にしたがって順次選択し、ADC165bに出力する。ADC165bは、MUX165aから入力された信号をAD変換し、入力信号に対応するラッチ回路165cに出力する。
 ラッチ回路165cでラッチしたメイントルク値及びサブトルク値は、前述した通信出力回路154に出力する。一方、ラッチ回路165cでラッチした各電圧値のADC出力値は、比較回路165dに出力される。比較回路165dは、各ADC出力値と期待値とを比較し、その結果をOR回路165eに出力する。OR回路165eの出力は、各ADC出力値の少なくとも1つが“1”であるときに“1”となる。OR回路165eの出力はラッチ回路165fでラッチされ、判定タイミング生成部165gによって指定されたタイミングで図4のAND回路に相当する回路に入力される。
 初期診断正常状態では、初期診断用の正常信号として、MUX165aの各入力端子に定常診断モードと等しい電圧値(VCC*1/3、VCC*2/3、VCC*1/2、VCC*3/3、VCC*0/3)を入力し、これらを監視対象信号としてADC出力値を監視する。
 一方、初期診断異常状態では、初期診断用の異常信号として、MUX165aの各入力端子から定常診断モードとは異なる電圧値を入力し、これらを監視対象信号としてADC出力値を監視する。
 すなわち、MUX165aの前段には、異常発生回路として、入力信号選択指令に応じてオンオフが切替可能なスイッチSW7~SW11が設けられている。ここで、上記入力信号選択指令は、定常診断モード及び初期診断正常状態では各スイッチの下段をオン、初期診断異常状態では各スイッチの上段をオンするような指令信号である。
 このような構成により、初期診断異常状態では、MUX165aにVCC*1/3とVCC*2/3、VCC*3/3とVCC*0/3とが入れ替わって入力されると共に、VCC*1/2の入力端子からはVCC*2/3が入力されることになる。したがって、この状態でADC出力値を監視すると、比較回路165dの出力値は異常を示す“1”となり、OR回路165eの出力も異常を示す“1”となる。
 トルク出力がゼロのとき(中立時)、トルク出力値は1/2VCCと等しい。また、MUX165aやADC165bに異常が発生していても、ADC出力値は中立時と同じになる。そのため、MUX165aやADC165bに異常が発生している場合、実際にはトルク出力がなされていても、中立状態であると誤検知されてしまうおそれがある。また、初期診断において、正常信号として1/2VCCのみを使用した場合、MUX165aやADC165bに異常が発生していても、正常であると誤判断されてしまう。
 そこで、本実施形態では、1/2VCCのみではなく、1/3VCCや2/3VCCなどの通常使用する領域での初期診断を実施する。これにより、MUX/ADC監視部165が正常に機能しているか否かを適切に診断することができる。そのため、実際にはトルク出力がなされているにもかかわらず、中立状態であると誤検知されてしまうのを防止することができる。
 以上のように、電源が投入された直後、ECU側が制御を開始する前に、信号処理回路140を監視する監視部そのものの初期診断を実施し、全ての監視部が正常に動作することを確認したことをECU側に通知したうえで、トルクセンサ20の機能とECU側の操舵補助制御とを開始する。これにより、監視部の信頼性を高め、監視部による誤検知を抑制することができる。したがって、信頼性の高いトルク検出装置30を用いた操舵補助制御を行うことができ、制御の安定性及び信頼性を向上させることができる。
 また、監視部の初期診断方法として、正常信号と異常信号とを交互に入力し、正常信号入力時に正常診断され、異常信号入力時に異常診断されることを確認する方法を採用するので、当該監視部が正常に動作しているかを適切に確認することができる。さらに、正常信号、異常信号の入力の後に、再度正常信号を入力して初期診断を行うので、初期診断用の信号の入力切替が正常に行われているか等、初期診断機能が正常に動作しているかをも適切に確認することができる。
(変形例)
 なお、上記第1の実施形態においては、バックアップ機能のような冗長系が構成されている場合には、異常が発生した側の系統を採用しないようにするなどの選択機能を設けることもできる。
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。
 この第2の実施形態は、上述した第1の実施形態において、トルク検出装置30の構成が異なるものである。
 図11は、トルク検出装置30の構成を示すブロック図である。トルク検出装置30は、上述したトルクセンサ20を備える。このトルクセンサ20は、2組のコイル対22A,22Bを備える。また、トルクセンサ20は、図12にそのコイル周辺図を示すように、第1ヨーク81Aと、第2ヨーク81Bと、円筒部材83と、円筒部材83の外周部にコイル対22A,22Bと対向するように設けられた複数の窓831と、トーションバー84と、センサシャフト85とを含む。なお、トーションバー84と、センサシャフト85と、ステアリングシャフト2の入力軸2a及び出力軸2bとは、同軸に配置される。
 コイル対(第1コイル対)22Aは、同一規格の一対のコイル22Aa及び22Abが組み合わされてコイル対を構成しており、図12に示すように円筒形状の第1ヨーク81A内に配置される。同様に、コイル対(第2コイル対)22Bは、同一規格の一対のコイル22Ba及び22Bbが組み合わされてコイル対を構成しており、図12に示すように円筒形状の第2ヨーク81B内に配置される。
 トルク検出装置30は、第1コイル対22A及び第2コイル対22Bにそれぞれ対応して設けられ、各コイル対の出力信号を信号処理する信号処理回路(信号処理部)59A及び59Bを備える。信号処理回路59A及び59Bは、コントローラ15内に設けられている。
 また、トルク検出装置30は、励磁信号生成部60A及び60Bで生成する正弦波の元となるクロック信号を出力するクロック信号発生回路(CLK)62A及び62Bを備えている。このクロック信号発生回路62A及び62Bで発生するクロック信号が励磁信号生成部60A及び60Bに供給される。
 ここで、クロック信号発生回路62A及び62Bとしては、例えばCR発振器のような安価なクロック発振器を適用する。このCR発振器では、許容周波数範囲(例えば±20%)を超える周波数変動を生じる場合がある。
 このため、クロック信号発生回路62A及び62Bで発生するクロック信号の周波数変動が許容範囲内であるか否かを検出する異常検出部64A及び64Bが必要となる。
 この異常検出部64A及び64Bのそれぞれは、図13に示すように、励磁信号生成部60A及び60Bから出力される正弦波信号が供給されるローパスフィルタ(監視用ローパスフィルタ)68と、このローバスフィルタ68から出力されるフィルタ出力VFの振幅変動を検出してクロック信号の周波数変動を検出するクロック周波数変動監視部69とを備えている。
 ローパスフィルタ68は、抵抗R1及びコンデンサC1で構成されている。このローパスフィルタ68のカットオフ周波数fcは、例えば6kHz近傍の値に設定され、例えば9kHzの周波数に設定されたクロック信号に基づく正弦波信号を減衰させる。ここで、ローパスフィルタ68のカットオフ周波数fcを6kHz近傍の値に設定する理由は、例えば9kHzの励磁信号に対して、±20パーセントの周波数変動幅を監視する場合、1次のローパスフィルタ68のカットオフ周波数fcと9kHz時のピーク値との差電圧との関係は、図14に示すようになり、9kHzの-20%である7.2kHzから9kHzまでの範囲では、特性曲線L1で示すように5895Hzで差電圧がピークとなる。一方、9kHzから9kHzの+20%である10.8kHzまでの範囲では特性曲線L2で示すように6631Hzで差電圧がピークとなる。このため、±20%の周波数変動幅を監視する場合のローパスフィルタ68のカットオフ周波数fcとしては特性曲線L1及びL2のピークの略中間である6kHzを選択することにより、周波数変動を振幅変動に効率よく置き換えることができる。
 このように、ローパスフィルタ68で高周波数の正弦波でなる励磁信号を減衰させることにより、図15(a)~(d)に示すように、ローパスフィルタ68のフィルタ出力VFは、クロック信号の周波数変動が振幅変動として現れる。すなわち、クロック信号の周波数変動が±20%以内が許容範囲であるものと設定すると、クロック信号の周波数変動が±20%以内であるときには、図15(b)に示すように、フィルタ出力VFの上側半波におけるピーク値が上限電圧設定値VH(例えば3.87V)及び下限電圧設定値VL(例えば3.55V)の範囲内に収まる。これに対して、クロック信号の周波数が基準周波数fbに対して20%以上低い場合(fb-fb×20%)には、図15(c)に示すようにフィルタ出力VFのピーク値が上限電圧設定値VHを上回る上限異常となる。逆に、クロック信号の周波数が基準周波数fbに対して20%以上高い場合(fb+fb×20%)には、図15(d)に示すようにフィルタ出力VFのピーク値が下限電圧設定値VLを下回る下限異常となる。
 したがって、クロック周波数変動監視部69で、ローバスフィルタ68のフィルタ出力VFのピーク電圧が上限電圧設定値VH及び下限電圧設定値VLの正常範囲内であるか否かを判定することにより、クロック信号の周波数変動が許容範囲内であるか否かを正確に検出することができる。
 このため、クロック周波数変動監視部69は、図13に示すように、ウインドコンパレータ69aと、このウインドコンパレータ69aの出力側に接続されたロジック回路69bとで構成されている。
 ウインドコンパレータ69aは、直流電源を分圧する分圧回路VDと、2つのコンパレータCP1及びCP2とを有する。分圧回路VDは、直流電源端子VDDと接地との間に直列に接続された3つの抵抗R1、R2及びR3を有する。抵抗R1及びR2の接続点から前述した上限電圧設定値VHが得られ、抵抗R2及びR3の接続点から前述した下限電圧設定値VLが得られる。
 コンパレータCP1は、非反転入力側にローパスフィルタ68のフィルタ出力VFが入力され、反転入力側に分圧回路VDから出力される上限電圧設定値VHが入力されている。また、コンパレータCP2は、反転入力側にローパスフィルタ68のフィルタ出力VFが入力され、非反転入力側に分圧回路VDから出力される下限電圧設定値VLが入力されている。
 このため、ウインドコンパレータ69aからフィルタ出力VFの上側半波のピーク値が上限電圧設定値VH及び下限電圧設定値VL間の正常電圧範囲内に入っているときには、図15(b)に示すように、コンパレータCP1の出力信号Scp1が、フィルタ出力VFが下限電圧設定値VLを超えている間ローレベルとなり、コンパレータCP2の出力信号Scp2が、上限電圧設定値VH未満であるのでハイレベルとなる。
 また、フィルタ出力VFの上側半波のピーク値が上限電圧設定値VHを超えている場合には、図15(c)に示すように、コンパレータCP1の出力信号Scp1はフィルタ出力VFが上限電圧設定値VHを超えている間ハイレベルとなり、コンパレータCP2の出力信号Scp2もフィルタ出力VFが下限電圧設定値VLを超えている間ハイレベルとなる。
 さらに、フィルタ出力VFの上側半波のピーク値が上限電圧設定値VHを下回っている場合には、図15(d)に示すように、コンパレータCP1の出力信号Scp1及びコンパレータCP2の出力信号Scp2がともにローレベルを維持する。
 このように、クロック信号の周波数成分が正常範囲内にあるときは、コンパレータCP1の出力信号Scp1がローレベル、コンパレータCP2の出力信号Scp2がハイレベルとなる。
 そして、ロジック回路69bは、コンパレータCP1の出力信号Scp1が2つの入力側に入力されるナンドゲートNG1と、ナンドゲートNG1の出力信号及びコンパレータCP2の出力信号Scp2が2つの入力側に入力されるナンドゲートNG2とで構成されている。
 したがって、ロジック回路69bでは、クロック信号の周波数成分が正常範囲内であるときにはナンドゲートNG2からローレベルの検出信号を出力し、クロック信号の周波数成分が正常範囲を下回るか上回る周波数変動が大きい異常状態となったときに、ナンドゲートNG2からハイレベルの検出信号を出力する。
 一方、第1コイル対22Aを構成するコイル22Aa、22Abの一方の端子は、それぞれ電気抵抗61Aa、61Abを介して励磁信号生成部60Aに接続される。また、第1コイル対22Aを構成するコイル22Aa、22Abの他方の端子は接地される。これにより、コイル22Aa、22Ab及び抵抗61Aa、61Abでブリッジ回路が構成される。
 同様に、第2コイル対22Bを構成するコイル22Ba、22Bbの一方の端子は、それぞれ電気抵抗61Ba、61Bbを介して励磁信号生成部60Bに接続される。また、第2コイル対22Bを構成するコイル22Ba、22Bbの他方の端子は接地される。これにより、コイル22Ba、22Bb及び抵抗61Ba、61Bbでブリッジ回路が構成される。
 第1コイル対22Aの出力信号すなわちブリッジ回路の差分信号は、信号処理回路59Aに出力される。第2コイル対22Bの出力信号すなわちブリッジ回路の差分信号は信号処理回路59Bに出力される。
 信号処理回路59Aは、差動アンプ51A、整流・平滑回路52A及びノイズ除去フィルタ54Aを有する。また、信号処理回路59Bは、差動アンプ51B、整流・平滑回路52B及びノイズ除去フィルタ54Bを有する。
 差動アンプ51Aは、第1コイル対22Aを構成するコイル22Aa、22Abの出力差、すなわち、コイル22Aa、22Abの端子電圧の差(端子電圧差)を増幅して出力する。整流・平滑回路52Aは、差動アンプ51Aの出力を整流、及び平滑して出力する。整流・平滑回路52Aの出力は、ノイズ除去フィルタ54Aを通過することでノイズが除去され、その結果がトルク演算部56Aに入力される。
 なお、信号処理回路59Bは信号処理回路59Aと同一構成を有するため、ここでは説明を省略する。
 また、トルク演算部56A及び56Bは、ノイズ除去フィルタ54A及びノイズ除去フィルタ54Bの出力(例えば、平均値)に基づいて、所定の演算を行って操舵系に発生している操舵トルクを求める。電動機制御部57は、ECU内に設けられ、トルク演算部56A及び56Bの演算結果に基づいて、運転者による操舵トルクを軽減する操舵補助トルクを発生できる駆動電流を電動モータ12に供給する。
 トルク検出装置30は、第1コイル対22A及び信号処理回路59Aによる第1トルク検出系統と、第2コイル対22B及び信号処理回路59Bによる第2トルク検出系統とによって冗長化されている。図1に示す電動パワーステアリング装置では、通常は、第1トルク検出系統又は第2トルク検出系統で検出した操舵トルクに基づいて、操舵補助制御を行うべく電動モータ12を制御する。一方、第1トルク検出系統又は第2トルク検出系統に不具合が生じた場合には、不具合が生じていない方の系統に切り替えて操舵トルクの検出を継続し、操舵補助制御を継続する。
 また、操舵トルクを検出する機能の異常は操舵補助制御に大きな影響を与えるため、コントローラ15による操舵補助制御の実施中は、定常的に前述した異常検出部64A及び64Bでクロック信号の周波数変動の異常を監視する。
 この異常検出部64A及び64Bでは、上述したように、ローパスフィルタ68及びウインドコンパレータ69aを有するクロック周波数変動監視部69とを備えている。そして、クロック周波数変動監視部69で、クロック信号の周波数変動をローパスフィルタ68のフィルタ出力VFの振幅変動として検出する。クロック周波数が正常であるときには、クロック周波数変動監視部69から出力される出力信号がローレベルとなる。そして、クロック周波数が正常範囲を逸脱すると、クロック周波数変動監視部69から出力される出力信号がハイレベルとなる。
 一般に、クロック周波数の精度を監視するためには、監視用のクロック信号発生回路を別に設け、両者の差からクロック周波数の正しさを監視する手法が用いられる。ところが、この手法を用いた場合、クロック信号発生回路62A及び62Bのクロック周波数の精度を監視するために、精度の高いクロックを監視用のクロックとして用意しなければならず、コストが嵩むとともに、高精度のクロック信号発生回路に異常が生じた場合に、この高精度のクロック信号発生回路の異常を検出することができない。
 これに対して、本実施形態では、クロック信号発生回路62A及び62Bとして安価なCR発振器を適用することができ、この場合のクロック周波数の監視をローパスフィルタ68とウインドコンパレータ69aで構成されているクロック周波数変動監視部69とで行うことが可能である。そのため、監視用として高価なクロック信号発生回路を別に設ける必要がなくなり、その分のコストを削減することができる。
 なお、上記第2の実施形態においては、ローパスフィルタ68として抵抗RO及びコンデンサC0による一次のフィルタ構成を有する場合について説明したが、これに限定されるものではなく、二次以上のフィルタ次数を有するフィルタ構成とすることにより、図15(a)に示す減衰特性をさらに急峻な減衰特性とすることができ、周波数変動によるフィルタ出力VFの振幅変動幅やローパスフィルタを構成する素子精度の設計値の自由度をさらに向上させることができる。
 また、異常検出部64A及び64Bは、図16に示すように、クロック周波数変動監視部69が正常に動作しているか否かを診断するための初期診断機能を有する監視部診断部71A及び71Bを備える。
 この初期診断は、コントローラ15に電源が投入された直後(又はイグニッションスイッチ18をオンした直後)、コントローラ15側が操舵補助制御を開始する前に作動する。なお、初期診断中は、初期診断中フラグを立てるなどにより、コントローラ15がトルクセンサ信号を使用できないようにする(操舵補助制御を実施できないようにする)。
 監視部診断部71A(又は71B)は、図16に示すように、クロック信号発生回路62A(又は62B)と励磁信号生成部60A(又は60B)との間にクロック周波数選択回路72A(又は72B)を有する。このクロック周波数選択回路72A(又は72B)は、並列接続されて一端がクロック信号発生回路62A(又は62B)に接続された3つのスイッチSWa、SWb及びSWcと、これらスイッチSWa、SWb及びSWcの他端に個別に接続された分周回路73a、73b及び73cとを備えている。そして、分周回路73a、73b及び73cから出力されるクロック信号が励磁信号生成部60A(又は60B)に入力されている。
 ここで、分周回路73aは、通常時に使用する前述した9kHzの基準周波数fbの通常クロック信号CPuを形成する。また、分周回路73bは、通常クロック信号CPuより低い許容下限範囲(-20%)より低い周波数に設定された異常低周波数クロック信号CPaLを形成する。さらに、分周回路73cは、通常クロック信号CPuより周波数が許容上限範囲(+20%)より高い周波数に設定された異常高周波数クロック信号CPaHを形成する。
 また、監視部診断部71A(又は71B)は、クロック周波数変動監視部69のウインドコンパレータ69aのコンパレータCP1及びCP2を含んでいる。ここで、コンパレータCP1には、前述した異常低周波数クロック信号CPaLを励磁信号生成部60A,60Bで正弦波に変換した後に、ローパスフィルタ68から出力されるフィルタ出力VFの上側半波のピーク値(上限電圧設定値VHよりは低い)よりは低く下限電圧設定値VLよりは高い図15(b)に示す所定の高設定電圧V1が入力されている。また、コンパレータCP2には、前述した異常高周波数クロック信号CPaHを励磁信号生成部60A,60Bで正弦波に変換した後に、ローパスフィルタ68から出力されるフィルタ出力VFの下側半波のピーク値よりは高い図15(b)に示す所定の低設定電圧V2が入力されている。
 そして、コンパレータCP1の比較出力は、励磁信号の振幅の上側に基づいて診断する上側半波診断部74Uに入力され、コンパレータCP2の比較出力は、励磁信号の振幅の下側に基づいて診断する下側半波診断部74Lに入力されている。
 上側半波診断部74Uは、コンパレータCP1の比較出力が入力されてそのハイレベルの期間クロック信号をカウントするカウンタ75Uを有する。このカウンタ75Uのカウント値CUが前述した異常低高周波数クロック信号CPaLを励磁信号生成部60A(又は60B)で正弦波に変換した後に、ローパスフィルタ68から出力されるフィルタ出力VFの上側半波が所定の高設定電圧V1以上となっている期間に対応するカウント値CUとなる異常クロック期間T1が入力されたコンパレータCPU1及びCPU2に入力されている。
 ここで、コンパレータCPU1では、異常クロック期間T1がカウント値CUより大きいときにハイレベルの比較信号を出力する。コンパレータCPU2では、正常クロック期間T1がカウント値CUより小さいときにハイレベルの比較信号を出力する。
 コンパレータCPU1及びCPU2から出力される比較信号はラッチ回路77Uに供給され、このラッチ回路77Uで、比較信号が判定タイミング生成回路78Uから供給されるタイミング信号に基づいてラッチされる。
 このラッチ回路77Uでラッチされたラッチ信号は初期診断時にのみハイレベルとなるマスク信号が入力されたアンドゲート79Uに供給され、このアンドゲート79Uの出力がローレベルであるときに正常フラグFn1が異常を表す“0”にリセットされ、アンドゲート79Uの出力がハイレベルであるときに正常フラグFn1が正常を表す“1”にセットされる。
 下側半波診断部74Lは、コンパレータCP2の比較出力が入力されてそのハイレベルの期間クロック信号をカウントするカウンタ75Lを有する。このカウンタ75Lのカウント値CLが前述した異常高周波数クロック信号CPaHを励磁信号生成部60A(又は60B)で正弦波に変換した後に、ローパスフィルタ68から出力されるフィルタ出力VFの下側半波が所定の低設定電圧V2以下となっている期間に対応するカウント値CLとなる異常クロック期間T2が入力されたコンパレータCPL1及びCPL2に入力されている。
 ここで、コンパレータCPL1では、異常クロック期間T2がカウント値CLより大きいときにハイレベルの比較信号を出力する。コンパレータCPL2では、異常クロック期間T2がカウント値CLより小さいときにハイレベルの比較信号を出力する。
 コンパレータCPL1及びCPL2から出力される比較信号はラッチ回路77Lに供給され、このラッチ回路77Lで、比較信号が判定タイミング生成回路78Lから供給されるタイミング信号に基づいてラッチされる。
 このラッチ回路77Lでラッチされたラッチ信号は初期診断時にのみハイレベルとなるマスク信号が入力されたアンドゲート79Lに供給され、このアンドゲート79Lの出力がローレベルであるときに正常フラグFn2が異常を表す“0”にリセットされ、アンドゲート79Lの出力がハイレベルであるときに正常フラグFn2が正常を表す“1”にセットされる。
 通常の監視状態(定常診断モード)では、図16に示すように、スイッチSWaをオンして通常クロック信号を励磁信号生成部60A(又は60B)に入力して、クロック信号の周波数変動を監視する。
 一方、初期診断時には、切換信号によって各スイッチSWa~SWcのオンオフを切り換えることで、監視部診断部71A(又は71B)に初期診断用の信号を入力する。本実施形態では、初期診断用の信号として、正常信号→異常信号→正常信号を順に入力するものとする。正常信号を入力する場合にはスイッチSWaをオンし、異常信号を入力する場合にはスイッチSWbとスイッチSWcとを順にオンする。
 図17は、監視部診断部71A及び71Bが実行する初期診断処理手順を示すフローチャートである。この初期診断処理は、上述したように、電源が投入された直後、ECU15による操舵補助制御に先立って実行される。
 先ずステップS11で、監視部診断部71A及び71Bは、フラグマスクを“OFF(ハイレベル)”とする。
 次にステップS12で、監視部診断部71A及び71Bは、クロック信号選択部72A及び72Bで通常クロック信号CPuを選択(図16のスイッチSWaをオン)することで初期診断正常状態とし、ステップS13に移行する。
 ステップS13では、監視部診断部71A及び71Bは、初期診断正常状態が安定するまで待機してから、正常フラグFn1及びFn1が共に“1”にセットされている正常状態であるか否かを判定する。
 このとき、低周波数異常(又は高周波数異常)が発生しているときには、上側半波診断部74U(又は下側半波診断部74L)でカウンタ75U(又は75L)のカウント値CU(又はCL)とコンパレータCPU1及びCPU2(又はCPL1及びCPL2)に供給された異常クロック期間T1(又はT2)とが等しくなる。このため、コンパレータCPU1及びCPU2(又はCPL1及びCPL2)の比較出力がローレベルとなる。したがって、このローレベルの比較出力が判定タイミング生成回路78U(又は78L)からのタイミング信号によって、ラッチ回路77U(又は77L)にラッチされる。この結果、アンドゲート79U(又は79L)の出力がローレベルとなって正常フラグFn1(又はFn2)が異常を表す“0”にリセットされる。
 逆に、下側半波診断部74L(又は74U)では、カウンタ75L(又は75U)のカウント値CL(又はCU)がコンパレータCPL1及びCPL2(又はCPU1及びCPU2)に供給された異常クロック期間T2(又はT1)より大きな値(又は小さな値)となる。このため、コンパレータCPU1(又はCPL2)の比較出力がハイレベルとなる。したがって、このハイレベルの比較出力が判定タイミング生成回路78L(又は78U)からのタイミング信号によって、ラッチ回路77L(又は77U)にラッチされる。この結果、アンドゲート79L(又は79U)の出力がハイレベルとなって正常フラグFn1(又はFn2)が正常を表す“1”にセットされる。
 このため、正常フラグFn1(又はFn2)が“0”にリセットされ、正常フラグFn2(又はFn1)が“1”にセットされるので、クロック周波数変動監視部69の監視機能に高周波数異常(又は低周波数異常)があると判断してステップS14に移行し、所定の異常時処理(通信出力回路による異常の通知など)を行ってから初期診断処理を終了する。
 一方、上側半波診断部74U及び下側半波診断部74Lの正常フラグFn1及びFn2が共に“1”にセットされることにより、前記ステップS13で異常が発生していないことが確認できた場合には、ステップS15に移行し、監視部診断部71A及び71Bは、クロック信号選択回路72A及び72Bで初期診断用の異常低周波数クロック信号CPaLを選択(図16のスイッチSWbをオン)することで初期診断低周波数異常状態に切り替える。
 次にステップS16では、監視部診断部71A及び71Bは、初期診断低周波数異常状態が安定するまで待機してから、下側半波診断部74Hの正常フラグFn1を読込み、この正常フラグFn1が“0”にリセットされていて、異常が発生していることを確認できたか否かを判定する。このとき、正常フラグFn1が“1”にセットされていて異常が発生していることを確認できない場合には、クロック周波数変動監視部69の監視機能に異常があると判断して前記ステップS14に移行する。
 一方、前記ステップS16で正常フラグFn1が“0”にリセットされていて、異常が発生していることが確認できた場合には、ステップS17に移行する。このステップS17では、監視部診断部71A及び71Bは、クロック信号選択回路72A及び72Bで初期診断用の異常高周波数クロック信号CPaHを選択(図16のスイッチSWcをオン)することで初期診断高周波数異常状態に切り替える。
 次にステップS18では、監視部診断部71A及び71Bは、初期診断高周波数異常状態が安定するまで待機してから、上側半波診断部74Lの正常フラグFn2を読込み、この正常フラグF QN2が“0”にリセットされていて、異常が発生していることを確認できたか否かを判定する。このとき、正常フラグFn2が“1”にリセットされていて異常が発生していることを確認できない場合には、クロック周波数変動監視部69の監視機能に異常があると判断して前記ステップS14に移行する。
 一方、前記ステップS18で正常フラグFn2が“0”にセットされていて、異常が発生していることが確認できた場合には、ステップS19に移行し、監視部診断部71A及び71Bは、クロック信号選択回路72A及び72Bで、通常クロック信号CPuを選択(図16のスイッチSWaをオン)することで初期診断正常状態に切り替える。
 次にステップS20では、監視部診断部71A及び71Bは、初期診断正常状態が安定するまで待機してから、前記ステップS13と同様に正常フラグFn1及びFn2が共に“1”にセットされており、異常が発生していないことを確認できたか否かを判定する。そして、正常フラグFn1(又はFn2)が“0”にリセットされており、異常が発生していることを確認した場合には、クロック周波数変動監視部69の監視機能に異常があると判断して前記ステップS14に移行する。
 一方、前記ステップS20で正常フラグFn1及びFn2が共に“1”にセットされていて、異常が発生していないことが確認できた場合には、ステップS21に移行する。
 ステップS21では、監視部診断部71A及び71Bは、全ての初期診断が終了したか否かを判定し、全ての初期診断が終了していない場合には、前記ステップS11に戻り、初期診断が終了している場合にはそのまま初期診断処理を終了する。
 このように、クロック周波数変動監視部69そのものを診断する初期診断機能を備えているため、クロック周波数変動監視部69の監視機能の信頼性を向上させることができる。
 また、初期診断正常状態での診断に続いて初期診断異常状態での診断を行い、異常クロック信号CPaL(又はCPaH)を入力したときに正しく異常診断されるか(アンドゲート79U(又は79L)の出力がローレベルとなるか)を確認する。その際、アンドゲート79U(又は79L)の出力がローレベルではなくハイレベルである場合に、クロック周波数変動監視部69が正常に機能していないと判断する。
 そして、この異常クロック信号CPaL(又はCPaH)の入力時に、アンドゲート79U(又は79L)の出力がローレベルであり、クロック周波数変動監視部69が正常に機能していると判断されると、再度、初期診断正常状態で診断する。すなわち、クロック周波数選択回路72A及び72Bから再度通常クロック信号CPuを入力し、正しく正常診断されるか(アンドゲート79U及び79Lの出力がハイレベルとなるか)を確認する。このとき、初期診断用の信号の入力切替えが正常に行われておりクロック周波数変動監視部69が正常に機能していれば、正しく正常診断されるが、初期診断用の信号の選択が正常に行われていないと、クロック周波数変動監視部69が正常に機能していても正常診断されない。この場合には、通常クロック信号CPu、異常クロック信号CPaL及びCPaHの後に、再度通常クロック信号CPuを入力して初期診断することで、初期診断機能が正常に動作しているかを確認することができる。
 以上のように、クロック周波数変動監視部69の診断方法として、入力されるフィルタ出力VFの上側半波の正常範囲のピーク値よりも高目の設定電圧V1と、入力されるフィルタ出力VFの下側半波の異常時のピーク値よりも高い設定電圧V2とを用意するとともに、通常クロック信号CPu及び異常クロック信号CPaL,CPaHを用意する。
 そして、通常クロック信号CPuを選択したときに、設定電圧V1以上となる期間が予め設定した異常クロック期間T1と一致せず、設定電圧V2以下となる期間が予め設定した異常クロック期間T2とも一致しない場合には、クロック周波数変動監視部69が正常であると判断する。また、異常低周波数クロック信号CPaLを選択したときには、設定電圧V1以上となる期間が予め設定した異常クロック期間T1と一致しない場合にはクロック周波数変動監視部69が正常であると判断する。また、異常高周波数クロック信号CPaHを選択したときには、設定電圧V2以下となる期間が予め設定した異常クロック期間T2と一致しない場合にはクロック周波数監視部65が正常であると判断する。
 この診断方法を適用することにより、クロック周波数変動監視部69が正常に機能しているか否かを適切に判別することができる。また、クロック周波数変動監視部69が異常であるときに、許容範囲を正側に超える高周波数異常であるか許容範囲を負側に超える低周波数異常であるかを適切に判別することができる。
(変形例)
 なお、上記第2の実施形態においては、コンパレータCPU1,CPU2に互いに等しい正常クロック周期T1を入力する場合について説明したが、これに限定されるものではなく、コンパレータCPU1に入力する正常クロック周期をT1+α(αは不感帯幅を決定する所定値)とし、コンパレータCPU2に入力する正常クロック周期をT1-αとして正常クロック周期に±αの不感帯を設けるようにしてもよい。同様に、コンパレータCPL1,CPL2についてもコンパレータCPL1に異常クロック周期をT2+β(βは不感帯幅を決定する所定値)とし、コンパレータCPL2に入力する異常クロック周期をT2-βとして異常クロック周期に±βの不感帯を設けるようにしてもよい。
 また、上記第2の実施形態において、監視部診断部71A及び71Bで診断する場合に、異常低周波数クロック信号CPaL及び異常高周波数クロック信号CPaHの2つの異常クロック信号を適用した場合について説明したが、これに限定されるものではなく、異常低周波数クロック信号CPaL及び異常高周波数クロック信号CPaHの一方を省略するようにして、単に監視部診断部71A及び71Bが正常であるか異常であるかを判定するようにしてもよい。
 また、コイル対を含むブリッジ回路に供給する励磁信号としては、上述したように励磁信号生成部60A及び60Bから共通の周波数の励磁信号を供給する場合に代えて、励磁信号生成部60A及び60Bから異なる周波数の励磁信号を生成してブリッジ回路に供給するようにしてもよく、この場合には、信号処理回路57A及び57Bの整流・平滑回路52A及び52Bとノイズ除去フィルタ54A及び54Bとの間に干渉防止用のローパスフィルタを介装し、コイル対での電磁干渉を除去するようにしてもよい。
 また、上記第2の実施形態においては、トルクセンサ20が2組のコイル対22A及び22Bを有して二重系に構成されている場合について説明したが、これに限定されるものではなく、図3に示すように、磁気ヨーク81Aにコイル22Aa及び22Abを巻装して1組のコイル対とし、これに応じて、トルク検出回路30を、図18に示すように、ブリッジ回路の一方を省略すると共に、信号処理回路59A及び59Bの一方例えば59Bを省略して1重系に構成するようにしてもよい。
(第3の実施形態)
 次に、本発明の第3の実施形態について説明する。
 この第3の実施形態は、上述した第1の実施形態において、トルク検出装置30の構成が異なるものである。
 図19は、トルク検出装置30の構成を示すブロック図である。トルク検出装置30は、第1コイル対22A及び第2コイル対22Bにそれぞれ対応して設けられ、各コイル対の出力信号を信号処理する信号処理回路59A及び59Bを備える。信号処理回路59A及び59Bは、コントローラ15内に設けられている。
 第1コイル対22Aには、励磁信号生成部60Aが接続され、励磁信号生成部60Aによって第1コイル対22Aを構成するコイル22Aa、22Abに励磁電流が供給される。また、第2コイル対22Bには、励磁信号生成部60Bが接続され、励磁信号生成部60Bによって第2コイル対22Bを構成するコイル22Ba、22Bbに励磁電流が供給される。このように、第1コイル対22Aと第2コイル対22Bとは、それぞれ異なる励磁信号生成部から励磁電流が供給される。
 励磁信号生成部60A及び60Bは、それぞれ所定の励磁周波数の交流電流を生成する。ここでは、励磁信号生成部60Aの励磁周波数(第1の励磁周波数f1)をA[Hz]、励磁信号生成部60Bの励磁周波数(第2の励磁周波数f2)をB[Hz]とする。なお、励磁信号生成部60A及び60Bが生成する励磁信号の励磁周波数は、それぞれ異なっていてもよいし共通でもよい。
 また、本実施形態では、励磁信号の生成に際し、クロック周波数をカウントすることでクロック信号を分周し、上記励磁周波数に変換する手法を用いる。
 すなわち、トルク検出装置30は、クロック信号を出力するCLK62A,62Bと、クロック周波数をカウントするカウンタ63A,63Bと、を備える。ここで、CLK62A,62Bとしては、例えば水晶発振器などの市販のクロックを用いる。このような市販のクロックは、その周波数誤差が約2%程度と精度が高いため、センサシステムの性能安定化に大きな効果がある。
 なお、この励磁信号生成部60A,60B、CLK62A,62B及びカウンタ63A,63Bで発振回路を構成している。
 第1コイル対22Aを構成するコイル22Aa、22Abの一方の端子は、それぞれ電気抵抗61Aa、61Abを介して励磁信号生成部60Aに接続される。また、第1コイル対22Aを構成するコイル22Aa、22Abの他方の端子は接地される。同様に、第2コイル対22Bを構成するコイル22Ba、22Bbの一方の端子は、それぞれ電気抵抗61Ba、61Bbを介して励磁信号生成部60Bに接続される。また、第2コイル対22Bを構成するコイル22Ba、22Bbの他方の端子は接地される。
 第1コイル対22Aの出力信号は、第1コイル対22Aを構成するコイル22Aa、22Abの端子電圧であり、第2コイル対22Bの出力信号は、第2コイル対22Bを構成するコイル22Ba、22Bbの端子電圧である。これらの出力信号は、それぞれ信号処理回路59A、59Bに出力される。
 信号処理回路59Aは、差動アンプ51A、整流・平滑回路52A、ローパスフィルタ53A及びノイズ除去フィルタ54Aを有する。また、信号処理回路59Bは、差動アンプ51B、整流・平滑回路52B、ローパスフィルタ53B及びノイズ除去フィルタ54Bを有する。なお、ローパスフィルタ53A、53Bは、それぞれ整流・平滑回路52A、52Bに組み込んでもよい。
 差動アンプ51Aは、第1コイル対22Aを構成するコイル22Aa、22Abの出力差、すなわち、コイル22Aa、22Abの端子電圧の差(端子電圧差)を増幅して出力する。整流・平滑回路52Aは、差動アンプ51Aの出力を整流、及び平滑して出力する。整流・平滑回路52Aの出力は、ローパスフィルタ53A及びノイズ除去フィルタ54Aを通過することでノイズが除去され、その結果がトルク演算部56に入力される。
 なお、信号処理回路59Bは信号処理回路59Aと同一構成を有するため、ここでは説明を省略する。
 トルク演算部56は、ノイズ除去フィルタ54A又はノイズ除去フィルタ54Bの出力(例えば、平均値)に基づいて、所定の演算を行って操舵系に発生している操舵トルクを求める。電動機制御部57は、トルク演算部56の演算結果に基づいて、運転者による操舵トルクを軽減する操舵補助トルクを発生できる駆動電流を電動モータ12に供給する。
 トルク検出装置30は、第1コイル対22A及び信号処理回路59Aによる第1トルク検出系統と、第2コイル対22B及び信号処理回路59Bによる第2トルク検出系統とによって冗長化されている。図1に示す電動パワーステアリング装置では、通常は、第1トルク検出系統又は第2トルク検出系統で検出した操舵トルクに基づいて、操舵補助制御を行うべく電動モータ12を制御する。一方、第1トルク検出系統又は第2トルク検出系統に不具合が生じた場合には、不具合が生じていない方の系統に切り替えて操舵トルクの検出を継続し、操舵補助制御を継続する。
 また、操舵トルクを検出する機能の異常は操舵補助制御に大きな影響を与えるため、コントローラ15による操舵補助制御の実施中は、定常的に当該トルク検出機能の異常を監視する。ここでは、クロック監視部65A,65Bを設け、励磁信号を生成するためのCLK62A,62Bが正常に動作しているか否かを監視する。
 クロック監視部65A,65Bは、コンデンサ(C)と抵抗(R)とを用いて発振させるCR発振器66A,66Bの出力パルス(CR発振パルス)を、CLK62A,62Bが出力するクロック信号を用いて計数し、その結果をCRパルス幅記憶部(パルス幅記憶部)67A,67Bに記憶された初期値と比較することで、クロック周波数が正常であるか否かを判断する。上記初期値は、予め生産時に、初期のばらつきを含むCR発振器66A,66Bの出力パルスを、CLK62A,62Bが出力するクロック信号を用いて計数し、CRパルス幅記憶部67A,67Bに記憶しておく。
 図20は、クロック監視部65Aの構成を示すブロック図である。なお、クロック監視部65Bの構成は、クロック監視部65Aの構成と同一であるため、ここでは説明を省略する。
 クロック監視部65Aは、CR発振パルスをクロックで計数するカウンタ65Aaと、カウンタ65Aaで計数したパルス計数値とCRパルス幅記憶部67Aに記憶されたCR発振器66Aのパルス計数値とを比較する比較回路65Ab,65Acと、比較回路65Ab,65Acの出力が入力されるOR回路65Adと、を備える。
 このような構成により、OR回路65Adの出力信号は、カウンタ65Aaで計数したパルス計数値とCRパルス幅記憶部67Aに記憶されたCR発振器66Aのパルス計数値とが等しいときに、クロック周波数が正常であることを示す“0”となる。そして、カウンタ65Aaで計数したパルス計数値とCRパルス幅記憶部67Aに記憶されたCR発振器66Aのパルス計数値とが異なるときに、クロック周波数が異常であることを示す“1”となる。
 一般に、クロック周波数の精度を監視するためには、監視用のクロックを別に設け、両者の差からクロック周波数の正しさを監視する手法が用いられる。ところが、この手法を用いた場合、CLK62Aのように予め精度の高いクロックを用いたセンサシステムでは、そのクロック周波数の精度を監視するために、同様に精度の高いクロックを監視用のクロックとして用意しなければならず、コストが嵩む。
 これに対して、本実施形態では、安価なCR発振器66Aとの組合せで高精度なCLK62Aのクロック周波数の監視が可能である。そのため、監視用として高価なクロックを別に設ける必要がなくなり、その分のコストを削減することができる。
 また、市販の抵抗は、高精度品であれば誤差は1%程度であるが、市販のコンデンサは高精度品を用いても誤差が5%程度ある。そのため、これらの誤差を含むことによるCR発振器のばらつきを勘案すると、CR発振器の出力パルスとクロック信号との単純な比較では、約2%以下等の高精度な監視は行えない。
 これに対して、本実施形態では、ばらつきを含むCR発振器の出力パルスを、常時、クロックで計数し、生産時に同様の方法で予め計数しておいた値(初期値)と比較することで、クロック周波数を監視する。これにより、CRの温度特性分の変化を考慮した部分まで監視精度が上げられることになる。すなわち、監視精度は3%程度まで向上できる。なお、現実的には、2倍の6%程度が許容できれば良いと考えられる。
 また、クロック監視部65Aは、クロック周波数の監視機能が正常に動作しているか否かを診断するための初期診断機能を有する。この初期診断は、電源が投入された直後(又はイグニッションスイッチ18をオンした直後)、コントローラ15側が操舵補助制御を開始する前に作動する。なお、初期診断中は、初期診断中フラグを立てるなどにより、コントローラ15がトルクセンサ信号を使用できないようにする(操舵補助制御を実施できないようにする)。
 クロック監視部65Aは、初期診断部として、カウンタ65Aaのクロック入力端子の前段にスイッチSW1及びSW2を備える。これらスイッチSW1及びSW2は、信号選択指令に従って何れか一方がオンされるように構成されており、通常のクロック周波数監視状態(定常診断モード)ではスイッチSW1がオン、初期診断モードではスイッチSW2がオンされるものとする。
 すなわち、定常診断モードでは、カウンタ65Aaで用いるクロックとしてCLK62A,62Bが出力するクロックパルスが入力される。そして、トルク検出装置30によるトルク検出機能が作動する前(特に発振回路が作動する前)の初期診断モードでは、カウンタ65Aaで用いるクロックとして、CLK62A,62Bが出力するクロックパルスに代えて、カウンタ63Aが出力するカウンタパルスが入力される。
 このように、初期診断モードでは、敢えて異常な信号を用いてCR発振器66Aのパルス計数値を求める。そして、この異常信号入力時に、OR回路65Adの出力信号が“1”となることを確認することで、クロック周波数の監視機能が正常に動作していることを確認する。
 また、この初期診断モードでは、診断用の信号として、正常信号と異常信号とを交互に入力するようにしてもよい。正常信号とは、CLK62A,62Bが出力する理想的なクロックパルスである。異常信号とは、カウンタ63Aが出力するカウンタパルスである。更には、初期診断モードにおいて、正常信号、異常信号の後に、再度正常信号を入力するようにしてもよい。
 この場合、正常信号の入力時にOR回路65Adの出力信号が“0”となり、異常信号の入力時にOR回路65Adの出力信号が“1”となることを確認することで、クロック周波数の監視機能が正常に動作していることを確認する。これにより、初期診断機能が正常に動作しているかを確認することができる。また、診断用の信号が正常に入力できているかも確認することができる。
 以上のように、励磁周波数そのものの監視機能を、安価に実現・付加したことにより、より信頼性の高い冗長型トルクセンサシステムが実現できる。
 なお、上記第3の実施形態においては、トルクセンサ20が2組のコイル対22A及び22Bを有する二重系のトルクセンサシステムとする場合について説明したが、図3に示すように、磁気ヨーク81Aにコイル22Aa及び22Abを巻装して1組のコイル対とする1重系のトルクセンサシステムであってもよい。
(第4の実施形態)
 次に、本発明の第4の実施形態について説明する。
 この第4の実施形態は、上述した第1の実施形態において、トルク検出装置30の構成が異なるものである。
 図21は、トルク検出装置30の構成を示すブロック図である。
 トルク検出装置30は、コイル対22の出力信号を信号処理する信号処理回路59を備える。信号処理回路59は、コントローラ15内に設けられている。ここで、コイル対22の出力信号は、コイル対22を構成するコイル22a、22bの端子電圧である。
 信号処理回路59は、差動アンプ51、整流・平滑回路52、ローパスフィルタ53、ノイズ除去フィルタ54、AD変換部(AD変換器)55、補正値記憶部(記憶部)58、トルク演算部56及び電動機制御部57を有する。なお、ローパスフィルタ53は、整流・平滑回路52に組み込んでもよい。ここで、AD変換部55及び補正値記憶部58以外は、図11の信号処理回路59A,59Bと同一構成を有するため、説明を省略し、構成の異なる部分を中心に説明する。
 AD変換部55は、ノイズ除去フィルタ54から出力されたアナログ信号をデジタル信号に変換し、その結果を後述するトルク演算部56に出力する。また、補正値記憶部58は、予めオフセット補正値及び傾き量補正値を記憶している。
 ここで、オフセット補正値及び傾き量補正値は、アナログトルク信号をAD変換によりデジタル値に変換して得られるデジタルトルク波形を、所定のトルク波形に一致させるためのオフセット量及び傾き量である。
 すなわち、図22(a)の実線cに示す補正前のデジタルトルク波形に対して、プラス側のオフセット量を与えると、補正後のデジタルトルク波形は図22(a)の破線c1に示すようになる。同様に、図22(a)の実線cに示す補正前のデジタルトルク波形に対して、マイナス側のオフセット量を与えると、補正後のデジタルトルク波形は図22(a)の一点鎖線c2に示すようになる。
 また、図22(b)の実線bに示す補正前のデジタルトルク波形に対して、プラス側の傾き量を与えると、補正後のデジタルトルク波形は図22(b)の破線b1に示すようになる。同様に、図22(b)の実線bに示す補正前のデジタルトルク波形に対して、マイナス側の傾き量を与えると、補正後のデジタルトルク波形は図22(b)の一点鎖線b2に示すようになる。
 なお、図22は、0~5V系で中点出力電圧が2.5Vの場合について示している。
 本実施形態では、トルク検出装置30のトルク特性を均一に保つために、ノイズ除去フィルタ54から出力されるアナログトルク信号をAD変換部55によってデジタルトルク信号に変換し、変換後のデジタルトルク信号のゲインとオフセットとをトルク演算部56で調整する。
 図22の縦軸( )内数値は、AD変換部55によって変換された場合の変換値を12bitで示したものである。
 すなわち、予め生産工程等において、アナログトルク信号をAD変換器によりデジタル値に変換してデジタルトルク波形を求め、この補正前のデジタルトルク波形から、所望のトルク波形に対するオフセット量と傾き量(ゲイン)とを求める。次に、これらを補正するためのオフセット量補正値及び傾き量補正値を求め、補正値記憶部58に記憶しておく。
 そして、トルク演算部56では、AD変換部55の出力信号であるAD出力値を、補正値記憶部58に記憶されたオフセット量補正値及び傾き量補正値を用いて補正する。補正後のAD出力値は、トルク検出信号として電動機制御部57に出力する。
 図23は、トルク演算部56の構成を示すブロック図である。
 この図23に示すように、トルク演算部56は演算器(第1の補正演算部)56aを備える。演算器56aには、AD変換部55から出力されたAD出力値(AD値)と、補正値記憶部58に記憶された傾き量補正値(ゲイン設定値)及びオフセット量補正値(オフセット設定値)とが入力される。
 そして、演算器56aで、補正前のAD値をゲイン設定値及びオフセット設定値で補正する補正演算を行う。具体的には、(補正前のAD値)×(ゲイン設定値)+(オフセット設定値)を補正後のAD出力値とする。このように、AD出力値のゲイン及びオフセット量を、予め記憶したゲイン設定値及びオフセット設定値で補正する補正演算ロジックを設けるので、トリマ調整することなくトルク特性を均一に保つことができる。
 また、ここでは、より信頼性の高いシステムとするために、補正演算ロジックを2重で構成して逐次同じ演算を実施し、両者の演算結果を比較することで当該補正演算ロジックの異常を定常的に監視する監視機能(演算ロジック監視部)を設ける。そして、両者の演算結果が等しい(若しくは、両者の演算結果の差が所定範囲内である)場合には、補正演算ロジックが正常であると判断する。
 すなわち、トルク演算部56は、演算器56aと同一演算処理を行う演算器(第2の補正演算部)56bを備える。演算器56bには、マルチプレクサ(MUX)56cの出力が補正前のAD値として入力される。MUX56cには、通常時は“1”となる選択信号(InItCalibSel)が入力されて、AD変換部55から出力されたAD出力値がそのまま補正前のAD値として入力される。
 演算器56aの演算結果と演算器56bの演算結果とは、比較器56dで比較され、その結果がラッチ回路56eでラッチされる。比較器56dからは、両者が等しい場合には“0”、異なる場合には“1”となる信号が出力される。ラッチ回路56eでラッチされた信号は、異常検知フラグ(CalibNGFlg)として所定のタイミングで出力される。
 この異常検知フラグが“0”である場合には、補正演算ロジックが正常であるため、演算器56aで演算した補正後のAD出力値を採用するものとして、これを電動機制御部57に出力する。このようにして、トルク検出機能が継続される。一方、異常検知フラグが“1”である場合には、トルク検出機能を停止するなどの異常時処理を行う。これにより、トルク演算部56から信頼性の低いトルク検出信号が出力されるのを防止することができる。
 さらに、トルク演算部56は、補正演算ロジックの監視機能そのものが正常に機能しているか否かを事前に確認する初期診断機能(初期診断部)を設ける。ここでは、演算器56aと演算器56bとで異なる信号を入力し、両者の比較結果が異なることを確認することで、補正演算ロジックの監視機能が正常に機能していると判断する。
 具体的には、初期診断時には、MUX56cに“0”となる選択信号(InItCalibSel)が入力されて、AD変換部55から出力されたAD出力値の反転信号が補正前のAD値として演算部56bに入力される。一方、演算部56aには、AD変換部55から出力されたAD出力値をそのまま入力する。
 そして、このときの演算器56aの演算結果と演算器56bの演算結果とを比較器56dで比較した結果、“1”となる異常検知フラグ(CalibNGFlg)が出力されることを確認することで、補正演算ロジックの機能が正常に動作していることを確認する。この初期診断は、例えば、電源が投入された直後(又はイグニッションスイッチ18をオンした直後)、コントローラ15側が操舵補助制御を開始する前に作動する。
 なお、ここでは、初期診断に際し、演算器56bに異常信号(演算器57aの入力信号の反転信号)を入力する場合について説明したが、演算器56bに上記異常信号と正常信号(演算器57aの入力信号)とを交互に入力するようにしてもよい。更には、正常信号、異常信号の後に、再度正常信号を入力するようにしてもよい。この場合、正常信号入力時に“0”となる異常検知フラグ(CalibNGFlg)が出力され、異常信号入力時に“1”となる異常検知フラグ(CalibNGFlg)が出力されることを確認することで、補正演算ロジックの機能が正常に動作していることを確認する。
 図21に戻って、電動機制御部57は、トルク演算部56の演算結果に基づいて、運転者による操舵トルクを軽減する操舵補助トルクを発生できる駆動電流Icを電動モータ12に供給する。
 ところで、コイル式トルクセンサのトルク特性を均一に保つ手法としては、アナログ信号のゲイン調整及びオフセット調整を、トリマを用いて行う手法が一般的である。しかしながら、この場合、トリマ設置に伴い部品点数が増加すると共に、生産工程におけるトリマ調整に熟練した作業を要する。また、その温度特性は一般的に大きいため、信号処理回路の温度特性を大きく支配してしまう。
 これに対して、本実施形態では、上述したように、トリマを用いることなくトルク特性を均一化することができる。そのため、トリマ廃止に伴う部品点数及びコストの削減と、信号処理回路の温度特性の向上化とを図ることができる。
 また、ゲイン設定値及びオフセット設定値を予め記憶する記憶部を備えるので、簡易な演算でデジタルトルク信号のゲインとオフセット量とを調整することができ、適切なトルク特性を得ることができる。
 さらに、演算ロジックを2重で構成し、両者の比較によって常時演算ロジックの異常を監視する監視機能を備える。これにより、演算ロジックに異常が発生している場合にはトルク検出機能を停止するなどの処置を行うことができる。したがって、信頼性のあるトルク検出信号のみを出力することができる。また、2つの演算ロジックに同一信号を入力し、両者の演算結果が等しいか否かを確認するので、比較的簡易な手法で、演算ロジックが正常に機能していることを適切に確認することができる。
 また、事前に上記監視機能そのものが正常に機能しているか否かを判断する初期診断機能を備える。このとき、2重で構成した演算ロジックにそれぞれ異なる信号を入力したときの両者の比較結果が異なる場合に、監視機能が正常に機能していると判断する。このように、監視機能が正常に機能していることを適切に確認することができるので、より信頼性の高いトルク検出信号とすることができる。
 さらにまた、初期診断に際し、一方の演算ロジックには他方の演算ロジックに入力する信号の反転信号を入力する。したがって、比較的容易に異常信号を生成することができ、簡易な構成で初期診断を実施することができる。
 なお、上記第4の実施形態においては、トルクセンサ20が1組のコイル対22を有する1重系のトルクセンサシステムとする場合について説明したが、図12に示すように、磁気ヨーク81A、81Bにそれぞれコイル22A、22Bを巻装して2組のコイル対とし、二重系のトルクセンサシステムとしてもよい。
(第5の実施形態)
 次に、本発明の第5の実施形態について説明する。
 この第5の実施形態は、上述した実施形態において、トルク検出装置30の構成が異なると共に、ECUへ診断情報を出力する機能を設けたものである。
 図24は、トルク検出装置30の構成を示すブロック図である。
 コイル対22Aを構成するコイル22Aa、22Abの一方の端子は、それぞれ電気抵抗61Aa、61Abを介して発振部60Aに接続される。また、コイル22Aa、22Abの他方の端子は接地される。コイル対22Aの出力信号は、コイル22Aa、22Abの端子電圧であり、この出力信号は信号処理回路31Aに出力される。
 信号処理回路31Aは、メイン増幅・全波整流部32Aと、メイン平滑部33Aと、メイン出力部34Aと、サブ増幅・全波整流部35Aと、サブ平滑部36Aと、サブ出力部37Aと、を備える。また、トルク検出装置30は、この他に、監視部38Aと、診断出力部39Aと、初期診断部40Aと、ノイズフィルタ41Aと、コネクタ42Aとを備える。このトルク検出装置30は、コネクタ42Aを介してコントローラ(ECU)15に接続されている。
 ECU15は、コネクタ42A及びノイズフィルタ41Aを介してトルク検出装置30の各要素に電源電圧Vccを供給する。これに対して、トルク検出装置30は、コイル対22Aの出力信号を処理し、後述するメイントルク信号Tm、サブトルク信号Ts、及び診断信号SをECU15に出力する。ECU15は、入力された各種信号に基づいてトルク検出装置30の異常発生の有無を判定し、その判定結果に応じて操舵補助制御を実施する。
 以下、トルク検出装置30の具体的構成について説明する。
 メイン増幅・全波整流部32Aは、コイル対22Aの出力信号(コイル22Aa、22Abの端子電圧)を入力し、これら2つの入力電圧の差分を増幅すると共に整流する。メイン平滑部33Aは、メイン増幅・全波整流部32Aの出力波形を平滑化し、メイン出力部34Aは、これをノイズフィルタ41A及びコネクタ42Aを介してメイントルク信号Tmとして、ECU15に出力する。
 同様に、サブ増幅・全波整流部35Aは、コイル対22Aの出力信号(コイル22Aa、22Abの端子電圧)を入力し、これら2つの入力電圧の差分を増幅すると共に整流する。サブ平滑部36Aは、サブ増幅・全波整流部35Aの出力波形を平滑化し、サブ出力部37Aは、これをノイズフィルタ41A及びコネクタ42Aを介してサブトルク信号Tsとして、ECU15に出力する。また、サブ増幅・全波整流部35Aの出力波形は、後述する監視部38Aにも入力される。
 監視部38Aは、例えばコイル22Aa又は22Abと電気抵抗61Aa又は61Abとの接触不良等をブリッジ回路の差分電圧の変化で検出すると共に、ECU15から供給される図示しない基準電圧(正弦波)に対する位相ずれに基づいて回路系の異常を検出する。即ち、監視部38Aは印加した交流信号の波形と、ブリッジ回路の差分電圧の波形との位相差を検出し、位相差が所定値を超えたときにコイル、電気抵抗若しくは回路が異常であると判定する。
 また、診断出力部39Aは、監視部38Aの診断情報を示す診断信号Sを生成し、これをノイズフィルタ41A及びコネクタ42Aを介してECU15に出力する。ここで、診断信号Sは、監視部38Aが異常を検出していない正常時には図25(a)に示すような一定周期のパルス信号であり、後述する初期診断部40Aによる監視部38Aの初期診断中である場合には、図25(b)に示すようなLレベルで一定となる信号であり、監視部38Aが異常を検出している異常検出時には図25(c)に示すようなHレベルで一定となる信号である。
 初期診断部40Aは、電源が投入された直後(又はイグニッションスイッチ18をオンした直後)、ECU15側が操舵補助制御を開始する前に作動し、監視部38Aそのものが正常に動作しているか否かを診断する初期診断を行う。
 初期診断部40Aは、初期診断を開始すると、初期診断用の信号として正常信号と異常信号とを監視部38Aに対して交互に入力し、監視部38Aが正常に動作していることを確認する。ここで、正常信号とは、当該信号を用いて異常検出を行ったとき、正常に機能している監視部38Aによる異常検出結果が「正常」となる信号であり、異常信号とは、当該信号を用いて異常検出を行ったとき、正常に機能している監視部38Aによる異常検出結果が「異常」となる信号である。
 ECU15は、メイントルク信号Tm及びサブトルク信号Tsに基づいて、トルク検出装置30の異常発生の有無を判定する。
 具体的には、メイントルク信号Tmが所定値(例えば0.3V)以下か否かで断線や地絡を検出し、所定値(例えば4.7V)以上か否かで天絡を検出する。また、サブトルク信号Tsが所定値(例えば0.3V)以下か否かで断線や地絡を検出し、所定値(例えば4.7V)以上か否かで天絡を検出する。更に、メイントルク信号Tmとサブトルク信号Tsとの加算値が所定値以上(例えば5.3V)以上若しくは所定値(例えば4.7V)以下か否かで、図25(a)に示すクロス特性から外れる異常を検出する。
 そして、ECU15は、メイントルク信号Tmとサブトルク信号Tsとに基づいてトルク検出装置30が正常であると判定し、且つ診断信号Sが図25(a)に示すパルス信号であるとき、メイントルク信号Tmを用いて通常の操舵補助制御を実施し、電動モータ12を駆動する。
 一方、ECU15は、メイントルク信号Tmとサブトルク信号Tsとに基づいてトルク検出装置30に異常が発生していると判定し、且つ診断信号Sが図25(b)に示すLレベルの信号であるときには、初期診断部40Aによる初期診断中であると判断し、操舵補助制御を実施しないようにする。
 また、ECU15は、メイントルク信号Tmとサブトルク信号Tsとに基づいてトルク検出装置30に異常が発生していると判定し、且つ診断信号Sが図25(c)に示すHレベルの信号であるときには、正常な過去トルク値を使用して電動モータ12を駆動してアシスト漸減を行い、安全にアシストを停止させるフェールセーフモードに移行する。
 このように、トルク検出装置30は、信号処理回路31Aを、2重の処理回路(32A~34Aと35A~37A)で構成し、2つのアナログ信号(メイントルク信号Tm、サブトルク信号Ts)を出力する。
 また、トルク検出装置30は、監視部38Aそのものが正常に動作しているか否かを監視する初期診断部40Aを備え、診断信号Sとして、監視部38Aの異常検出結果(正常/異常)の他に、初期診断部40Aによる初期診断中を示す信号を出力する。
 そして、ECU15側では、トルク検出装置30が出力した2つのトルク信号Tm,Tsに加え、診断信号Sに基づいて、トルク検出装置30の異常を検出する。
 以上の構成により、電源が投入された直後、ECU15側が操舵補助制御を開始する前に、初期診断部40Aは、監視部38Aそのものの初期診断を実施する。この初期診断中は、診断出力部39Aから図25(b)に示すLレベルの診断信号SがECU15に出力されると共に、信号処理回路31Aからは、図26(b)に示すメイントルク信号Tm及びサブトルク信号TsがECU15に出力される。
 これにより、ECU15は、診断信号Sから監視部38Aの初期診断中であることを認識することができ、メイントルク信号Tmの使用を不可として操舵補助制御を実施しない状態とすることができる。
 このように、トルク検出装置30は、診断信号Sとして初期診断中の情報を出力するので、ECU15はその診断信号Sから、トルクセンサシステムが正常動作前でありメイントルク信号Tmの使用が不可であることを認識することができる。
 初期診断部40Aによる初期診断の結果、監視部38Aそのものが正常であると診断されると、トルク検出装置30のトルク出力機能が作動する。このとき、監視部38Aでトルク検出装置30が正常であることを検出すると、診断出力部39Aは図25(a)に示す一定周期のパルス信号を診断信号SとしてECU15に出力する。また、信号処理回路31Aは、図26(a)に示すようにコイル対22Aの出力信号に応じたメイントルク信号Tm及びサブトルク信号TsをECU15に出力する。
 一方、監視部38Aでトルク検出装置30に異常が発生していることを検出すると、診断出力部39Aは図25(c)に示すHレベルの診断信号SをECU15に出力する。また、信号処理回路31Aは、図26(c)に示すメイントルク信号Tm及びサブトルク信号TsをECU15に出力する。
 このとき、メイントルク信号Tmとサブトルク信号Tsとは、図26(a)に示すクロス特性から外れるため、ECU15は、メイントルク信号Tmとサブトルク信号Tsとを監視することで、トルク検出装置30の異常発生の有無を判断することができる。また、診断信号Sとして監視部38Aの異常診断結果を示す情報を出力するので、ECU15はその診断信号Sからもトルクセンサシステムに異常が発生しているか否かを判断することができる。
 このように、2種のトルク信号(メイントルク信号Tm及びサブトルク信号Ts)の出力機能に加えて、診断信号Sの出力機能を有するので、トルク検出装置30からECU15へ信頼性の高い診断情報を出力することができる。すなわち、何れか一方の出力機能が正常に作動していない場合であっても、適切に異常と判断してフェールセーフモードに移行することができる。そのため、異常が発生しているにもかかわらず、正常と判断してECU15側が通常の操舵補助制御を継続してしまうのを防止することができ、信頼性を向上させることができる。
 例えば、信号待ち等でのアイドリングストップ仕様車両における再イグニッションON時の瞬時バッテリ電圧低下が発生した場合に、トルク信号の出力機能は継続させるが、電源電圧低下に伴ってトルク信号の性能が劣化していることをECU15に伝達する必要がある場合に有効である。また、電源供給側とトルク検出装置側の電源電位が一致していない場合などの不具合発生時にも有効である。
 また、診断信号Sを、監視部38Aの異常診断結果(正常/異常)と初期診断中との3種に設定し、それぞれを簡単な信号で出力することとしているため、ECU15側には大きな負荷を与えることなく、簡素かつ信頼性の高い伝達機能を構成することができる。
 さらに、正常時には、診断信号Sを一定周期のパルス信号とするので、診断信号Sが断線している場合には、診断信号Sが出力していないことをもって診断信号Sの異常を検出することができる。また、仮に、正常時の診断信号SをLレベルの信号とした場合、センサがLow固定故障となった場合にはこれを検出することができないが、上記のようにパルス出力とすることでその故障も検出可能となる。
 以上のように、ECU側のI/Fの負荷を最低限に抑え、且つ機能安全を満たすことができる。
(第6の実施形態)
 次に、本発明の第6の実施形態について説明する。
 この第6の実施形態は、前述した第5の実施形態において、監視部38Aによる異常検出時にサブトルク信号Tsを予め設定した一定値に固定する機能を備えるようにしたものである。
 図27は、第6の実施形態のトルク検出装置30の構成を示すブロック図である。
 このトルク検出装置30は、図24に示す信号処理回路31Aのサブ出力部37Aと監視部38Aの構成と異なることを除いては、図24の信号処理回路31Aと同一構成を有する。したがって、ここでは、構成の異なる部分を中心に説明する。
 監視部38Aは、異常を検出したとき、異常信号AB1をサブ出力部37Aに出力する。即ち、監視部38Aは印加した交流信号の波形と、ブリッジ回路の差分電圧の波形との位相差を検出し、位相差が所定値を超えたときにコイル、電気抵抗若しくは回路が異常であると判定して異常信号AB1を出力する。
 そして、サブ出力部37Aは、監視部38Aから異常信号AB1を入力すると、サブトルク信号Tsを0Vとして出力する。また、サブ出力部37Aは、初期診断部40Aによる監視部38Aの初期診断中にも、サブトルク信号Tsを一定値(ここでは、0V)として出力するようになっている。
 このように、トルク検出装置30は、信号処理回路31Aを、2つのアナログ信号(メイントルク信号Tm、サブトルク信号Ts)を出力する2重の処理回路で構成する。そして、監視部38Aにより異常を検出した場合には、サブ側のアナログ信号の出力を遮断する(サブトルク信号Ts=0とする)。
 以上の構成により、電源が投入された直後、ECU15側が操舵補助制御を開始する前に、初期診断部40Aは、監視部38Aそのものの初期診断を実施する。この初期診断中は、診断出力部39Aから図25(b)に示すLレベルの診断信号SがECU15に出力されると共に、サブ出力部56Aからは、図28(b)に示すようにサブトルク信号Ts=0がECU15に出力される。
 このように、トルク検出装置30は、診断信号Sとして初期診断中の情報を出力するので、ECU15はその診断信号Sから、トルクセンサシステムが正常動作前でありメイントルク信号Tmの使用が不可であることを認識することができる。
 さらに、初期診断中、サブ出力部37Aがサブトルク信号Ts=0を出力する、所謂サブ出力の0v機能を作動するので、初期診断中であることを伝達する機能の二重化を実現することができると共に、サブ出力の0v機能の初期診断(機能正常診断)を行うことができる。すなわち、サブ出力の0v機能が正常に作動していない場合には、ECU15側でこれを認識することができる。これは、診断信号Sに異常が発生した場合も同様である。
 初期診断部40Aによる初期診断の結果、監視部38Aそのものが正常であると診断されると、トルク検出装置30のトルク出力機能が作動する。このとき、監視部38Aでトルク検出装置30が正常であることを検出すると、診断出力部39Aは図25(a)に示す一定周期のパルス信号を診断信号SとしてECU15に出力する。また、信号処理回路31Aは、図28(a)に示すようにコイル対22Aの出力信号に応じたメイントルク信号Tm及びサブトルク信号TsをECU15に出力する。
 一方、監視部38Aでトルク検出装置30に異常が発生していることを検出すると、診断出力部39Aは図25(c)に示すHレベルの診断信号SをECU15に出力する。また、信号処理回路31Aは、図28(c)に示すようにサブトルク信号Ts=0をECU15に出力する。
 したがって、ECU15は、メイントルク信号Tmとサブトルク信号Tsとを監視することで、トルク検出装置30の異常発生の有無を判断することができる。また、診断信号Sとして監視部38Aの異常診断結果を示す情報を出力するので、ECU15はその診断信号Sからもトルクセンサシステムに異常が発生しているか否かを判断することができる。
 このように、サブトルク信号Tsの0v機能と診断信号Sの出力機能とによって、トルク検出装置30からECU15への異常情報の伝達機能を二重化することができ、より信頼性の高い診断情報の出力が可能となる。すなわち、サブ出力の0v機能が正常に作動していない場合であっても、診断信号Sから適切に異常と判断してフェールセーフモードに移行することができる。そのため、異常が発生しているにもかかわらず、正常と判断してECU15側が通常の操舵補助制御を継続してしまうのを防止することができ、信頼性を向上させることができる。
(第7の実施形態)
 次に、本発明の第7の実施形態について説明する。
 この第7の実施形態は、トルク検出装置30にコイル対を2組設け、トルク検出系統を2系統としたものである。
 図29は、第7の実施形態のトルク検出装置30の構成を示すブロック図である。
 コイル対22Aの出力信号は、コイル22Aa、22Abの端子電圧であり、コイル対22Bの出力信号は、コイル22Ba、22Bbの端子電圧である。これらの出力信号は、それぞれ信号処理回路31A、31Bに出力される。
 トルク検出装置30の第1系統は、信号処理回路31Aと、監視部38Aと、診断出力部39Aと、初期診断部40Aと、ノイズフィルタ41Aと、コネクタ42Aとを備える。信号処理回路31Aは、メイン増幅・全波整流部32Aと、メイン平滑部33Aと、メイン出力部34Aと、サブ増幅・全波整流部35Aと、サブ平滑部36Aと、サブ出力部37Aと、を備える。
 また、トルク検出装置30の第2系統は、第1系統と同様に、信号処理回路31Bと、監視部38Bと、診断出力部39Bと、初期診断部40Bと、ノイズフィルタ41Bと、コネクタ42Bとを備える。信号処理回路31Bは、メイン増幅・全波整流部32Bと、メイン平滑部33Bと、メイン出力部34Bと、サブ増幅・全波整流部35Bと、サブ平滑部36Bと、サブ出力部37Bと、を備える。
 このトルク検出装置30は、コネクタ42A,42Bを介してコントローラ(ECU)15に接続されている。
 ECU15は、コネクタ42A,42B及びノイズフィルタ41A,41Bを介してトルク検出装置30の各要素に電源電圧Vccを供給する。これに対して、トルク検出装置30は、コイル対22A,22Bの出力信号を処理し、後述するメイントルク信号Tm1,Tm2、及び診断信号S1,S2をECU15に出力する。ECU15は、入力された各種信号に基づいてトルク検出装置30の異常発生の有無を判定し、その判定結果に応じて操舵補助制御を実施する。
 以下、トルク検出装置30の具体的構成について説明する。トルク検出装置30の第1系統と第2系統とは同一構成を有するため、ここでは、第1系統を例に挙げて説明する。
 メイン増幅・全波整流部32Aは、コイル対22Aの出力信号(コイル22Aa、22Abの端子電圧)を入力し、これら2つの入力電圧の差分を増幅すると共に整流する。メイン平滑部33Aは、メイン増幅・全波整流部32Aの出力波形を平滑化し、メイン出力部34Aは、これをノイズフィルタ41A及びコネクタ42Aを介してメイントルク信号Tm1として、ECU15に出力する。
 同様に、サブ増幅・全波整流部35Aは、コイル対22Aの出力信号(コイル22Aa、22Abの端子電圧)を入力し、これら2つの入力電圧の差分を増幅すると共に整流する。サブ平滑部36Aは、サブ増幅・全波整流部35Aの出力波形を平滑化し、サブ出力部37Aは、これをノイズフィルタ41A及びコネクタ42Aを介してサブトルク信号Ts1とする。ただし、サブ出力部37Aは、ECU15に対してサブトルク信号Ts1は出力しない。また、サブ増幅・全波整流部35Aの出力波形は、後述する監視部38Aにも入力される。
 監視部38Aは、例えばコイル22Aa又は22Abと電気抵抗61Aa又は61Abとの接触不良等をブリッジ回路の差分電圧の変化で検出すると共に、ECU15から供給される図示しない基準電圧(正弦波)に対する位相ずれに基づいて回路系の異常を検出する。即ち、監視部38Aは印加した交流信号の波形と、ブリッジ回路の差分電圧の波形との位相差を検出し、位相差が所定値を超えたときにコイル、電気抵抗若しくは回路が異常であると判定する。
 また、監視部38Aは、信号処理回路31Aの異常検出処理に加えて、メイン平滑部33Aから出力されるメイントルク信号Tm1と、サブ平滑部36Aから出力されるサブトルク信号Ts1とを比較することで、信号処理回路31Aの異常を監視し、異常発生時には異常信号AB1をサブ出力部37Aに出力する。
 このとき、サブ出力部37Aは、監視部38Aからの後述する異常信号AB1を受けて、サブトルク信号Ts1を0に設定する。
 診断出力部39Aは、監視部38Aの診断情報を示す診断信号S1を生成し、これをノイズフィルタ41A及びコネクタ42Aを介してECU15に出力する。
 初期診断部40Aは、電源が投入された直後(又はイグニッションスイッチ18をオンした直後)、ECU15側が操舵補助制御を開始する前に作動し、監視部38Aそのものが正常に動作しているか否かを診断する初期診断を行う。
 初期診断部40Aは、初期診断を開始すると、初期診断用の信号として正常信号と異常信号とを監視部38Aに対して交互に入力し、監視部38Aが正常に動作していることを確認する。このとき、正常信号、異常信号の後に、再度正常信号を入力するようにしてもよい。ここで、正常信号とは、当該信号を用いて異常検出を行ったとき、正常に機能している監視部38Aによる異常検出結果が「正常」となる信号であり、異常信号とは、当該信号を用いて異常検出を行ったとき、正常に機能している監視部38Aによる異常検出結果が「異常」となる信号である。
 すなわち、信号処理回路31AからECU15へは、メイントルク信号Tm1と診断信号S1とが出力され、信号処理回路31BからECU15へは、メイントルク信号Tm2と診断信号S2とが出力されることになる。
 ここで、診断信号S1及びS2は、監視部38A,38Bが異常を検出していない正常時には図30(a)に示すような一定周期のパルス信号となり、初期診断部40A,40Bによる監視部38A,38Bの初期診断中である場合には、図30(b)に示すようなLレベルで一定となる信号となり、監視部38A,38Bが異常を検出している異常検出時には図30(c)に示すようなHレベルで一定となる信号となる。また、メイントルク信号Tm1とメイントルク信号Tm2とは、図31(a)~(c)に示すように、トルクの作用によって一方が増加すると他方が減少する特性を持つ。
 ECU15は、メイントルク信号Tm1とメイントルク信号Tm2とを比較し、正常なクロス特性から外れているか否かに応じてトルク検出装置30の異常発生の有無を判定する。
 そして、ECU15は、メイントルク信号Tm1及びTm2に基づいてトルク検出装置30が正常であると判定し、診断信号S1及びS2が図30(a)に示すパルス信号であるとき、信号処理回路31Aから出力されたメイントルク信号Tm1を用いて通常の操舵補助制御を実施し、電動モータ12を駆動する。
 一方、ECU15は、診断信号S1及びS2が図30(b)に示すLレベルの信号であるときには、初期診断部40A及び40Bによる初期診断中であると判断し、操舵補助制御を実施しないようにする。
 また、ECU15は、メイントルク信号Tm1及びTm2に基づいてトルク検出装置30に異常が発生していると判定し、且つ診断信号S1,S2の何れか一方が図30(c)に示すHレベルの信号であるときには、異常が発生していない方のトルク検出系統が出力したメイントルク信号を用いて通常の操舵補助制御を実施し、電動モータ12を駆動する。
 なお、診断信号S1及びS2が共に図30(c)に示すHレベルの信号であるときには、正常な過去トルク値を使用して電動モータ12を駆動してアシスト漸減を行い、安全にアシストを停止させるフェールセーフモードに移行する。
 ところで、トルク検出系統を2系統有するトルクセンサシステムの場合、ECU側では2系統分の信号処理が必要となる。特に、処理回路を二重化し、メイントルク信号とサブトルク信号の2種の信号を出力すると、ECU側では合計4種類の信号を処理する必要があり、トルク検出系統を1系統のみ有する場合と比較して倍の処理量になる。また、信号出力をアナログ出力で実施する場合には、ECU側のADCに倍の処理を求める必要があり、処理能力によってはADCを2個用意する考慮を要する場合がある。このように、ECUでは信号処理のための制御回路に大きな負荷がかかり、処理能力に影響が出るうえにコストも嵩む。
 これに対して、本実施形態では、2系統の各系統から各々1種のアナログ信号を出力するため、ECU15の処理は2つの信号で済み、2種のアナログ信号を出力するトルク検出系統を1系統のみ有するシステムと同等の処理量で済む。したがって、ADCの増設を必要としない。
 また、各系統から1つのメイントルク信号を出力するので、系統間の異常は、各系統からのメイントルク信号Tm1,Tm2を比較することで監視することができる。このように、信号処理を複雑化することなく、2つの信号の比較処理によってセンサの異常を検出可能となる。
 さらに、上記比較の結果、異常が発生していると判断した場合には、各系統からの診断信号S1,S2によって異常が発生した側の系統を判別することができる。したがって、何れか一方の系統に異常が発生した場合であっても、トルクセンサの機能を系統判別によって継続することが可能となり、より安定した冗長型トルクセンサシステムを構築することが可能となる。
 さらに、各々の系統からは、診断信号S1,S2を簡単な信号で出力することとしているため、ECU側に大きな負荷を与えることなく、簡素な方法で異常が発生している側の系統を検出することが可能となる。
(変形例)
 なお、上記第5~第7の実施形態における診断情報を出力する機能を、上記第1~第4の実施形態のトルク検出装置30に適用することもできる。この場合、1重系のトルクセンサシステムの場合は、信号処理部からメイントルク信号とサブトルク信号を出力し、2重系のトルクセンサシステムの場合は、各信号処理部でメイントルク信号とサブトルク信号とを演算し、メイントルク信号のみを出力するようにする。
(応用例)
 なお、上記各実施形態においては、コイル対を3組以上とすることもできる。
 また、上記各実施形態においては、コイル式のトルクセンサを用いる場合について説明したが、2つのトルク信号を出力する例えば磁気感応式素子などを用いた構成を適用することもできる。
産業上の利用の可能性
 本発明に係るトルク検出装置の異常診断方法によれば、トルク検出装置のトルク検出機能を監視する監視回路そのものが正常に動作しているかを確認する初期診断を行うことができる。そのため、この異常診断方法を用いることで、信頼性の高いトルク検出装置を得ることができ、有用である。
 また、本発明の電動パワーステアリング装置によれば、上記異常診断方法を用いてトルク検出装置の初期診断を行って、トルク検出装置が確実に正常動作することを確認したうえで操舵補助制御を開始することができる。したがって、操舵補助制御の安定性及び信頼性を向上させることができ、有用である。
 1…ステアリングホイール、2…ステアリングシャフト、10…操舵補助機構、11…減速ギヤ、12…電動モータ、15…コントローラ、16…車速センサ、17…バッテリ、18…イグニッションスイッチ、20…トルクセンサ、22A…第1コイル対、22Aa,22Ab,22Ba,22Bb…コイル、22B…第2コイル対、30…トルク検出装置、32A,32B…メイン増幅・全波整流部、33A,33B…メイン平滑部、34A,34B…メイン出力部、35A,35B…サブ増幅・全波整流部、36A,36B…サブ平滑部、37A,37B…サブ出力部、38A,38B…監視部、39A,39B…診断出力部、40A,40B…初期診断部、41A,41B…ノイズフィルタ、42A,42B…コネクタ、51A,51B…差動アンプ、52A,52B…整流・平滑回路、53A,53B…ローパスフィルタ、54A,54B…ノイズ除去フィルタ、55…AD変換部、56…トルク演算部、56a…演算器(第1の補正演算部)、56b…演算器(第2の補正演算部)、56c…MUX、56d…比較器、56e…ラッチ回路、57…電動機制御部、58…補正値補正部、59A,59B…信号処理回路、60A,60B…励磁信号生成部、61Aa,61Ab,61Ba,61Bb…電気抵抗、62A,62B…CLK、63A,63B…カウンタ、64A,64B…異常検出部、65A,65B…クロック監視部、65Aa…カウンタ、65Ab,65Ac…比較回路、65Ad…OR回路、66A,66B…CR発振器、67A,67B…CRパルス幅記憶部、68…ローパスフィルタ、69…クロック周波数変動監視部、69a…分圧回路、69b…ウインドコンパレータ、69c…ロジック回路、71A,71B…監視部診断部、72A,72B…クロック信号選択回路、SWa~SWc…スイッチ、73a~73c…分周回路、75U,75L…カウンタ、76U,76L…オアゲート、77U,77L…ラッチ回路、78U,78L…判定タイミング生成回路、79U,79L…アンドゲート、140…信号処理回路、160…診断装置、161…励磁パルス監視部、162…励磁信号監視部、162a…入力端子、162b,162c…比較器、162d,162e…カウンタ回路、162f,162g…比較回路、162h…OR回路、162i…ラッチ回路、162j…判定タイミング生成部、162k…AND回路、163…位相監視部、163a~163c…比較器、163d…AND回路、163e…入力端子、163f…移相回路、164…差動振幅監視部、165…MUX/ADC監視部、165a…MUX、165b…ADC、165c…ラッチ回路、165d…比較回路、165e…OR回路、165f…ラッチ回路、165g…判定タイミング生成部、166…トルク信号監視部、167…通信監視部

Claims (19)

  1.  トルクが入力されることでねじれが発生するトーションバーで連結された第1回転軸と第2回転軸との相対的な変位を、インピーダンスの変化に反映させて検出する少なくとも1組のコイル対と、前記コイル対に対して励磁信号を供給したときの当該コイル対の出力信号を信号処理してトルク検出信号を出力するトルク検出機能を有する信号処理部と、前記トルク検出機能の異常を定常的に監視する監視部とを備えるトルク検出装置の前記トルク検出機能が作動する前に、前記監視部に対して診断用の信号を入力し、前記監視部が正常に動作していることを確認することを特徴とするトルク検出装置の異常診断方法。
  2.  前記監視部に対し、前記診断用の信号として正常信号と異常信号とを交互に入力し、
     前記正常信号の入力時に、前記監視部が入力信号に対して正常診断し、前記異常信号の入力時に、前記監視部が入力信号に対して異常診断したとき、前記監視部が正常に動作していると判断することを特徴とする請求項1に記載のトルク検出装置の異常診断方法。
  3.  前記監視部に対し、前記診断用の信号を、前記正常信号、前記異常信号、前記正常信号の順に入力することを特徴とする請求項2に記載のトルク検出装置の異常診断方法。
  4.  前記監視部は、前記励磁信号の波形を監視する励磁信号監視部であり、
     前記励磁信号監視部が正常に動作しているか否かの判断に際し、監視対象である前記励磁信号に代えて、前記診断用の信号として、前記励磁信号の理想波形を有する正常信号と、当該正常信号とは周波数の異なる異常信号とを入力することを特徴とする請求項1~3の何れか1項に記載のトルク検出装置の異常診断方法。
  5.  前記励磁信号監視部が正常に動作しているか否かの判断に際し、前記異常信号として、前記正常信号に対して周波数が1/2となる信号を入力することを特徴とする請求項4に記載のトルク検出装置の異常診断方法。
  6.  前記監視部は、前記トルク検出信号が前記励磁信号に対して移相しているか否かを監視する位相監視部であり、
     前記位相監視部が正常に動作しているか否かの判断に際し、監視対象である前記トルク検出信号に代えて、前記診断用の信号として、前記励磁信号と、移相回路を介して前記励磁信号を移相させた信号とを入力することを特徴とする請求項1~5の何れか1項に記載のトルク検出装置の異常診断方法。
  7.  前記信号処理部は、前記トルク検出信号をAD変換して出力するように構成されており、
     前記監視部は、監視対象の電圧値をAD変換した後の出力値を監視するADC監視部であり、
     前記ADC監視部が正常に動作しているか否かの判断に際し、前記監視対象の電圧値に代えて、前記診断用の信号として、前記トルク検出信号の電圧値の通常使用域において、当該通常使用域の中央電圧値を含む複数の正常電圧値と、前記正常電圧値とは異なる複数の異常電圧値とを入力することを特徴とする請求項1~6の何れか1項に記載のトルク検出装置の異常診断方法。
  8.  前記信号処理部は、クロック信号を分周して前記励磁信号の励磁周波数のパルスを生成するカウンタを有し、
     前記監視部は、CR発振器と、予め前記CR発振器の出力パルスの幅を前記クロック信号で計数し、記憶しておくパルス幅記憶部とを備え、前記CR発振器の出力パルスの幅を前記クロック信号で計数し、その計数値を前記パルス幅記憶部に記憶された出力パルスの幅と比較することで、前記クロック信号の異常を監視するクロック監視部であり、
     前記クロック監視部が正常に動作しているか否かの判断に際し、監視対象である前記クロック信号に代えて、前記診断用の信号として、前記カウンタが生成した前記励磁周波数のパルスを入力することを特徴とする請求項1~7の何れか1項に記載のトルク検出装置の異常診断方法。
  9.  前記信号処理部は、前記コイル対に対して供給する正弦波の前記励磁信号を、クロックパルスに基づいて生成する発振部を備えており、
     前記監視部は、前記発振部から出力される励磁信号を入力する監視用ローパスフィルタを備え、該監視用ローパスフィルタのフィルタ出力の振幅変動を前記クロックパルスの周波数変動として検出するクロック周波数変動監視部であり、
     前記クロック周波数変動監視部が正常に動作しているか否かの判断に際し、前記診断用の信号として、通常クロック信号と、当該通常クロック信号とは異なる励磁周波数の異常クロック信号とを入力することを特徴とする請求項1~8の何れか1項に記載のトルク検出装置の異常診断方法。
  10.  前記クロック周波数変動監視部は、前記監視用ローパスフィルタのフィルタ出力の上側半波及び下側半波の少なくとも一方のピーク値が、正常振幅範囲内にあるか否かを検出する構成を有しており、
     前記クロック周波数変動監視部が正常に動作しているか否かの判断に際し、前記異常クロック信号として、前記通常クロック信号の許容上限周波数より高い周波数の異常高周波数クロック信号と、前記通常クロック信号の許容下限周波数より低い周波数の異常低周波数クロック信号との2種類を入力することを特徴とする請求項9に記載のトルク検出装置の異常診断方法。
  11.  前記信号処理部は、
     前記トルクに対応するアナログ信号をデジタル信号に変換するAD変換器と、
     前記AD変換器で変換されたデジタル信号のゲイン及びオフセット量を補正するためのゲイン補正値及びオフセット量補正値を予め記憶する記憶部と、
     前記AD変換器で変換されたデジタル信号を、前記記憶部に記憶されたゲイン補正値及びオフセット量補正値で補正し、前記トルク検出信号として出力する第1の補正演算部と、
     前記第1の補正演算部と同一の補正演算処理を行う第2の補正演算部を備え、
     前記監視部は、前記第1の補正演算部と前記第2の補正演算部とに同一信号を入力し、両者の演算結果を比較して、前記第1の補正演算部の演算ロジックが正常に機能しているか否かを監視する演算ロジック監視部であり、
     前記演算ロジック監視部が正常に動作しているか否かの判断に際し、前記診断用の信号として、前記第2の補正演算部に前記第1の補正演算部とは異なる信号を入力し、そのときの両者の演算結果が異なることを確認することで、前記演算ロジック監視部が正常に機能していることを確認することを特徴とする請求項1~10の何れか1項に記載のトルク検出装置の異常診断方法。
  12.  前記演算ロジック監視部が正常に動作しているか否かの判断に際し、前記第2の補正演算部に入力する前記第1の補正演算部とは異なる信号として、前記第1の補正演算部の入力信号の反転信号を用いることを特徴とする請求項11に記載のトルク検出装置の異常診断方法。
  13.  前記信号処理部は、1組の前記コイル対に対応して設けられ、前記コイル対の出力信号に基づいてメイントルク信号及びサブトルク信号を出力するように構成されており、
     前記監視部による異常診断結果を含む診断情報、前記メイントルク信号及び前記サブトルク信号に基づいて、前記トルク検出装置の異常を検出することを特徴とする請求項1~12の何れか1項に記載のトルク検出装置の異常診断方法。
  14.  前記監視部で異常を検出したときの前記サブトルク信号は、予め設定された一定値であることを特徴とする請求項13に記載のトルク検出装置の異常診断方法。
  15.  前記信号処理部は、2組の前記コイル対に対応して設けられ、それぞれ前記コイル対の出力信号に基づいてメイントルク信号を出力するように構成されており、
     前記監視部による異常診断結果を含む診断情報、及び前記各メイントルク信号に基づいて、前記トルク検出装置の異常を検出することを特徴とする請求項1~12の何れか1項に記載のトルク検出装置の異常診断方法。
  16.  前記信号処理部は、前記コイル対の出力信号に基づいて前記メイントルク信号及びサブトルク信号を演算し、前記メイントルク信号のみを出力するように構成されており、
     前記監視部による異常診断結果は、前記監視部が、前記メイントルク信号と前記サブトルク信号との比較によって、前記信号処理部の異常を監視した結果であることを特徴とする請求項15に記載のトルク検出装置の異常診断方法。
  17.  前記診断情報は、前記監視部による異常診断結果が正常であること、前記監視部による異常診断結果が異常であること、及び前記初期診断部による初期診断中であることの少なくとも3種の情報であることを特徴とする請求項13~16の何れか1項に記載のトルク検出装置の異常診断方法。
  18.  前記診断情報は、前記監視部による異常診断結果が正常である場合には一定周期のパルス信号、前記監視部による異常診断結果が異常である場合にはHレベルの信号、前記初期診断部による初期診断中である場合にはLレベルの信号であることを特徴とする請求項17に記載のトルク検出装置の異常診断方法。
  19.  ステアリング機構に入力される操舵トルクを検出するトルク検出装置と、
     少なくとも前記トルク検出装置で検出した操舵トルクに基づいて、操舵系に運転者の操舵負担を軽減する操舵補助力を付与すべく、電動モータを駆動制御するモータ制御部と、
     前記モータ制御部による前記電動モータの駆動制御に先立って、前記請求項1~13の何れか1項に記載の異常診断方法によって前記トルク検出装置を診断する初期診断部と、を備えることを特徴とする電動パワーステアリング装置。
PCT/JP2012/001927 2011-06-21 2012-03-21 トルク検出装置の異常診断方法及び電動パワーステアリング装置 WO2012176357A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12748639.7A EP2559985B1 (en) 2011-06-21 2012-03-21 Abnormality diagnosis method for torque detection device, and electric power steering device
JP2012530023A JP5403163B2 (ja) 2011-06-21 2012-03-21 トルク検出装置の異常診断方法、電動パワーステアリング装置及びアイドリングストップ仕様車両
US13/580,883 US9248853B2 (en) 2011-06-21 2012-03-21 Abnormality diagnosing method for torque detecting device and electric power steering device
KR1020127020994A KR101363665B1 (ko) 2011-06-21 2012-03-21 토오크 검출장치의 이상 진단방법 및 전동파워 스티어링 장치
CN201280000762.0A CN102959379B (zh) 2011-06-21 2012-03-21 转矩检测装置的异常诊断方法以及电动助力转向装置

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011137119 2011-06-21
JP2011137120 2011-06-21
JP2011-137118 2011-06-21
JP2011137118 2011-06-21
JP2011-137120 2011-06-21
JP2011-137119 2011-06-21
JP2011201217 2011-09-14
JP2011-201217 2011-09-14
JP2012005502 2012-01-13
JP2012-005502 2012-01-13

Publications (1)

Publication Number Publication Date
WO2012176357A1 true WO2012176357A1 (ja) 2012-12-27

Family

ID=47422223

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/001927 WO2012176357A1 (ja) 2011-06-21 2012-03-21 トルク検出装置の異常診断方法及び電動パワーステアリング装置
PCT/JP2012/001928 WO2012176358A1 (ja) 2011-06-21 2012-03-21 トルク検出装置及び電動パワーステアリング装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001928 WO2012176358A1 (ja) 2011-06-21 2012-03-21 トルク検出装置及び電動パワーステアリング装置

Country Status (6)

Country Link
US (2) US9254863B2 (ja)
EP (2) EP2559986B1 (ja)
JP (2) JP5403163B2 (ja)
KR (2) KR101363665B1 (ja)
CN (2) CN102959376B (ja)
WO (2) WO2012176357A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032386A (ja) * 2015-07-31 2017-02-09 株式会社デンソー センサ装置、および、これを用いた電動パワーステアリング装置
JP2017520224A (ja) * 2014-06-04 2017-07-20 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツングConti Temic microelectronic GmbH ブラシレスdcモータを駆動制御および/または監視する装置
JP2017167024A (ja) * 2016-03-17 2017-09-21 株式会社デンソー センサ装置、および、これを用いた電動パワーステアリング装置
WO2019017302A1 (ja) * 2017-07-19 2019-01-24 株式会社デンソー 制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
WO2019017308A1 (ja) * 2017-07-19 2019-01-24 株式会社デンソー センサユニット、制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
JP2019021605A (ja) * 2017-07-19 2019-02-07 株式会社デンソー センサユニット、制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
JP2019021604A (ja) * 2017-07-19 2019-02-07 株式会社デンソー 制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
JP2019199140A (ja) * 2018-05-15 2019-11-21 株式会社ジェイテクト 車両用制御装置
US11595138B2 (en) 2019-12-23 2023-02-28 Fanuc Corporation Monitoring device, motor driving apparatus, and monitoring method

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102959376B (zh) * 2011-06-21 2015-02-04 日本精工株式会社 转矩检测装置及电动助力转向装置
JP5961566B2 (ja) * 2012-03-13 2016-08-02 Kyb株式会社 トルクセンサの異常診断装置及び異常診断方法
JP6239895B2 (ja) * 2013-08-08 2017-11-29 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
US9170290B1 (en) * 2013-08-23 2015-10-27 Audyssey Laboratories, Inc. Method for asynchronous impulse response measurement between separately clocked systems
CN105899419B (zh) * 2013-11-22 2017-11-28 日本精工株式会社 中途故障诊断系统及安装了该中途故障诊断系统的电动助力转向装置
JP6362349B2 (ja) * 2014-02-19 2018-07-25 日立オートモティブシステムズ株式会社 電動モータの駆動制御装置
JP2015210193A (ja) * 2014-04-25 2015-11-24 株式会社ジェイテクト トルク検出システム、および、このシステムを備える電動パワーステアリング装置
GB201411298D0 (en) * 2014-06-25 2014-08-06 Trw Ltd An electric power assisted steering system
GB201411294D0 (en) * 2014-06-25 2014-08-06 Trw Ltd An electric power assisted steering system
GB201411300D0 (en) * 2014-06-25 2014-08-06 Trw Ltd An electric power assisted steering system
GB201411297D0 (en) * 2014-06-25 2014-08-06 Trw Ltd An electric power assisted steering system
DE102014225867A1 (de) * 2014-12-15 2016-06-16 Dr. Johannes Heidenhain Gmbh Vorrichtung und Verfahren zur Überprüfung eines Arbeitstaktsignals einer Positionsmesseinrichtung
WO2016129572A1 (ja) * 2015-02-10 2016-08-18 日本精工株式会社 トルクセンサ及びそれを搭載した電動パワーステアリング装置
JP6327198B2 (ja) * 2015-04-30 2018-05-23 株式会社デンソー 電動パワーステアリング制御装置
JP6540227B2 (ja) * 2015-05-21 2019-07-10 株式会社ジェイテクト 車両用制御装置
JP6459827B2 (ja) * 2015-07-28 2019-01-30 株式会社デンソー センサ装置
JP2017077830A (ja) * 2015-10-21 2017-04-27 Kyb株式会社 電動パワーステアリング装置
US10583859B2 (en) * 2015-12-02 2020-03-10 Mitsubishi Electric Corporation Electric power steering apparatus
DE102016102259A1 (de) 2016-02-10 2017-08-10 Hella Kgaa Hueck & Co. Rechner- und Funktionsarchitektur zur Erhöhung der Ausfallsicherheit einer Hilfskraftlenkung
CN109477733B (zh) * 2016-05-13 2021-05-18 日本精工株式会社 马达驱动控制装置、电动助力转向装置和车辆
CN109313006B (zh) 2016-05-17 2021-02-02 康斯博格股份有限公司 用于高准确度磁位置感测的系统、方法和物体
WO2017200531A1 (en) * 2016-05-17 2017-11-23 Intel Corporation Characterization of transmission media
JP2017214049A (ja) * 2016-05-27 2017-12-07 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング セキュリティ検査システム、セキュリティ検査方法、機能評価装置、及びプログラム
JP6584662B2 (ja) * 2016-06-07 2019-10-02 三菱電機株式会社 異常診断装置及び異常診断方法
KR101835406B1 (ko) * 2016-08-26 2018-03-09 현대모비스 주식회사 전동식 파워 스티어링 시스템의 제어 장치
GB201619479D0 (en) * 2016-11-17 2017-01-04 Trw Ltd Electric power assisted steering system
JP7017851B2 (ja) 2016-12-01 2022-02-09 住友重機械工業株式会社 故障診断システムおよび処理ユニット
CA3046180C (en) 2016-12-12 2023-01-03 Kongsberg Inc. Dual-band magnetoelastic torque sensor
JP6536559B2 (ja) * 2016-12-27 2019-07-03 トヨタ自動車株式会社 トルク制御装置
GB201715000D0 (en) * 2017-09-18 2017-11-01 Trw Ltd A timer circuit for a dual lane motor controller
JP6514295B2 (ja) * 2017-10-02 2019-05-15 株式会社ショーワ 故障検出装置、電動パワーステアリング装置
JP6730350B2 (ja) * 2018-03-19 2020-07-29 ファナック株式会社 制御装置
US11524395B2 (en) * 2018-04-10 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Signal processing apparatus and electric tool
US11084526B2 (en) * 2018-05-24 2021-08-10 GM Global Technology Operations LLC System for passively and actively monitoring and evaluating an electric power steering system
US10969246B2 (en) * 2018-07-27 2021-04-06 Samsung Electro-Mechanics Co., Ltd. Apparatus for sensing rotating device
JP7141893B2 (ja) * 2018-09-04 2022-09-26 日立Astemo株式会社 ステアリング装置
US11204258B2 (en) * 2018-09-14 2021-12-21 Samsung Electro-Mechanics Co., Ltd. Apparatus for sensing rotating device
US10921160B2 (en) * 2018-11-22 2021-02-16 Samsung Electro-Mechanics Co., Ltd. Sensing circuit of moving body and moving body sensing device
EP3663164B1 (en) * 2018-12-03 2022-04-27 Jtekt Corporation Steering control device
JP2020100274A (ja) * 2018-12-21 2020-07-02 株式会社ジェイテクト 操舵システム
US10983019B2 (en) * 2019-01-10 2021-04-20 Ka Group Ag Magnetoelastic type torque sensor with temperature dependent error compensation
JP7306648B2 (ja) * 2019-03-28 2023-07-11 日立Astemo株式会社 トルク検出装置及びパワーステアリング装置
KR20210013913A (ko) * 2019-07-29 2021-02-08 삼성전기주식회사 회전 감지 장치
JP7324997B2 (ja) * 2019-07-30 2023-08-14 パナソニックIpマネジメント株式会社 トルク検出器、モータユニット及び電動自転車
DE102019134143A1 (de) * 2019-12-12 2021-06-17 Zf Automotive Germany Gmbh Steer-by-Wire-Lenksystem und Verfahren zum Betreiben eines Steer-by-Wire-Lenksystems
US11787434B2 (en) 2021-04-19 2023-10-17 Toyota Motor North America, Inc. Modification of transport functionality based on modified components
US11962306B2 (en) 2021-06-29 2024-04-16 Nvidia Corporation Clock anomaly detection
US20230244264A1 (en) * 2022-01-31 2023-08-03 Nvidia Corporation Fast Clock Detection

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048656A (ja) * 2000-08-04 2002-02-15 Nsk Ltd トルクセンサ制御装置
JP2002148128A (ja) * 2000-11-10 2002-05-22 Showa Corp トルクセンサの異常検出装置
JP2006011576A (ja) * 2004-06-23 2006-01-12 Hitachi Ltd 高信頼性制御装置
JP2006267045A (ja) * 2005-03-25 2006-10-05 Nsk Ltd トルクセンサ
JP2007225388A (ja) * 2006-02-22 2007-09-06 Nsk Ltd 電動パワーステアリング装置
JP2009073446A (ja) * 2007-09-25 2009-04-09 Nsk Ltd 電動パワーステアリング装置
JP2010030393A (ja) 2008-07-28 2010-02-12 Mitsubishi Electric Corp 電動パワーステアリング制御装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86100634A (zh) * 1986-01-21 1987-01-31 强大应 高精度扭矩测量仪及标准相位差信号源
DE3751439T2 (de) * 1986-09-26 1996-03-07 Nissan Motor Drehmoment-Detektorvorrichtungen.
US5062306A (en) * 1989-04-20 1991-11-05 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Apparatus for detecting torque of rotating shaft
JP2811980B2 (ja) * 1991-03-04 1998-10-15 松下電器産業株式会社 トルクセンサ
JPH0534220A (ja) 1991-07-29 1993-02-09 Kubota Corp トルクセンサの零点ドリフトの補償装置
EP0659628B1 (en) * 1993-12-27 1999-03-10 Nsk Ltd Power steering apparatus
JPH0897774A (ja) 1994-09-29 1996-04-12 Fujitsu Ltd 自己監視機能付き光端局装置
JP3309604B2 (ja) * 1994-11-14 2002-07-29 日本精工株式会社 トルクセンサ
JP3521245B2 (ja) 1994-11-21 2004-04-19 光洋精工株式会社 電動パワーステアリング装置
JPH10208177A (ja) 1997-01-16 1998-08-07 Matsushita Electric Works Ltd セキュリティーシステム
JP4026247B2 (ja) 1998-10-01 2007-12-26 日本精工株式会社 トルクセンサ
JP2000121305A (ja) 1998-10-12 2000-04-28 Mitsubishi Heavy Ind Ltd 差動変圧器を利用した位置検出装置
US6456090B1 (en) 1999-09-27 2002-09-24 Nsk Ltd. Torque sensor
KR20020040241A (ko) * 2000-11-24 2002-05-30 밍 루 전동식 파워 스티어링 장치의 토오크 센서
JP4639483B2 (ja) 2001-02-02 2011-02-23 日本精工株式会社 電動パワーステアリング装置の制御装置
JP3874110B2 (ja) 2002-08-30 2007-01-31 日本精工株式会社 異常診断システム
US6925893B2 (en) * 2002-09-17 2005-08-09 The Furukawa Electric Co., Ltd. Rotation sensor
US6851324B2 (en) * 2002-12-16 2005-02-08 Delphi Technologies, Inc. Non-contacting compliant torque sensor
KR100779487B1 (ko) * 2003-07-16 2007-11-26 주식회사 만도 토크 검출 장치
JP2005287222A (ja) * 2004-03-30 2005-10-13 Toshiba Corp 車載用モータの通電制御装置,パワーステアリング装置及び車載用モータの通電制御方法
JP4517734B2 (ja) 2004-06-03 2010-08-04 日本精工株式会社 電動パワーステアリング装置
JP4539217B2 (ja) 2004-07-30 2010-09-08 日本精工株式会社 電動パワーステアリング装置
JP2006077938A (ja) 2004-09-13 2006-03-23 Nsk Ltd 異常診断装置
JP2008058108A (ja) * 2006-08-30 2008-03-13 Honda Motor Co Ltd 磁歪式トルクセンサの製造方法と電動パワーステアリング装置
JP2008068777A (ja) * 2006-09-15 2008-03-27 Toyota Motor Corp 電動パワーステアリング装置
JPWO2008081571A1 (ja) * 2007-01-02 2010-04-30 株式会社アヅマシステムズ 金属状態検出装置及び金属状態検出方法
JP2008298534A (ja) 2007-05-30 2008-12-11 Honda Motor Co Ltd 磁歪式トルクセンサ及び磁歪式トルクセンサを搭載した電動パワーステアリング装置
JP5091555B2 (ja) * 2007-06-22 2012-12-05 本田技研工業株式会社 磁歪式トルクセンサおよび電動パワーステアリング装置
US8651744B2 (en) * 2007-11-06 2014-02-18 Nsk Ltd. Roller bearing device having radial-plane arrangement structure of rotation sensor
US8584533B2 (en) * 2008-03-03 2013-11-19 Honda Motor Co., Ltd. Magnetostrictive torque sensor device, manufacturing method thereof, and vehicle steering apparatus
US8069736B2 (en) * 2008-09-30 2011-12-06 Ono Sokki Co., Ltd. Torque sensor
JP2010190674A (ja) * 2009-02-17 2010-09-02 Nsk Ltd トルク検出装置及び電動パワーステアリング装置
US9048852B2 (en) * 2011-03-01 2015-06-02 National Research Council Of Canada Frequency stabilization of an atomic clock against variations of the C-field
JP2012224298A (ja) * 2011-04-22 2012-11-15 Honda Motor Co Ltd 電動パワーステアリング装置
CN102959376B (zh) * 2011-06-21 2015-02-04 日本精工株式会社 转矩检测装置及电动助力转向装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048656A (ja) * 2000-08-04 2002-02-15 Nsk Ltd トルクセンサ制御装置
JP2002148128A (ja) * 2000-11-10 2002-05-22 Showa Corp トルクセンサの異常検出装置
JP2006011576A (ja) * 2004-06-23 2006-01-12 Hitachi Ltd 高信頼性制御装置
JP2006267045A (ja) * 2005-03-25 2006-10-05 Nsk Ltd トルクセンサ
JP2007225388A (ja) * 2006-02-22 2007-09-06 Nsk Ltd 電動パワーステアリング装置
JP2009073446A (ja) * 2007-09-25 2009-04-09 Nsk Ltd 電動パワーステアリング装置
JP2010030393A (ja) 2008-07-28 2010-02-12 Mitsubishi Electric Corp 電動パワーステアリング制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2559985A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017520224A (ja) * 2014-06-04 2017-07-20 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツングConti Temic microelectronic GmbH ブラシレスdcモータを駆動制御および/または監視する装置
US10020769B2 (en) 2014-06-04 2018-07-10 Conti Temic Microelectronic Gmbh Apparatus for actuating and/or monitoring a brushless DC motor
JP2017032386A (ja) * 2015-07-31 2017-02-09 株式会社デンソー センサ装置、および、これを用いた電動パワーステアリング装置
JP2017167024A (ja) * 2016-03-17 2017-09-21 株式会社デンソー センサ装置、および、これを用いた電動パワーステアリング装置
WO2019017302A1 (ja) * 2017-07-19 2019-01-24 株式会社デンソー 制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
WO2019017308A1 (ja) * 2017-07-19 2019-01-24 株式会社デンソー センサユニット、制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
JP2019021605A (ja) * 2017-07-19 2019-02-07 株式会社デンソー センサユニット、制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
JP2019021604A (ja) * 2017-07-19 2019-02-07 株式会社デンソー 制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
JP2019199140A (ja) * 2018-05-15 2019-11-21 株式会社ジェイテクト 車両用制御装置
JP7102923B2 (ja) 2018-05-15 2022-07-20 株式会社ジェイテクト 車両用制御装置
US11595138B2 (en) 2019-12-23 2023-02-28 Fanuc Corporation Monitoring device, motor driving apparatus, and monitoring method

Also Published As

Publication number Publication date
EP2559985A1 (en) 2013-02-20
EP2559986A1 (en) 2013-02-20
CN102959376A (zh) 2013-03-06
CN102959379A (zh) 2013-03-06
US9248853B2 (en) 2016-02-02
JPWO2012176358A1 (ja) 2015-02-23
JP5454691B2 (ja) 2014-03-26
KR20130028706A (ko) 2013-03-19
US9254863B2 (en) 2016-02-09
JPWO2012176357A1 (ja) 2015-02-23
US20140102219A1 (en) 2014-04-17
EP2559986A4 (en) 2015-01-28
EP2559985A4 (en) 2014-07-09
KR20130009946A (ko) 2013-01-24
KR101414963B1 (ko) 2014-07-25
EP2559985B1 (en) 2016-10-19
JP5403163B2 (ja) 2014-01-29
EP2559986B1 (en) 2016-04-06
CN102959376B (zh) 2015-02-04
KR101363665B1 (ko) 2014-02-14
CN102959379B (zh) 2014-07-23
US20140195117A1 (en) 2014-07-10
WO2012176358A1 (ja) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5403163B2 (ja) トルク検出装置の異常診断方法、電動パワーステアリング装置及びアイドリングストップ仕様車両
JP6098513B2 (ja) トルク検出装置、電動パワーステアリング装置及び車両
WO2015040961A1 (ja) パワーステアリング装置および車両搭載機器の制御装置
CN103080715B (zh) 扭矩检测装置
JP2012046047A (ja) 電動パワーステアリングの制御装置
WO2012086045A1 (ja) トルク検出装置
US10913489B2 (en) Electric power steering system
US20230093616A1 (en) Rotation angle detection device
US20030217607A1 (en) Rotational angle detecting apparatus and torque detecting apparatus
US7201070B2 (en) Rotational angle detecting apparatus and torque detecting apparatus
JP2017024556A (ja) 操舵制御装置
WO2021166648A1 (ja) 電子制御装置、電動パワーステアリング装置、及び電動パワーステアリング装置の制御装置
JP6048060B2 (ja) トルク検出装置及び電動パワーステアリング装置
JP2020165708A (ja) トルク検出装置及びパワーステアリング装置
JP2012158196A (ja) パワーステアリング装置
JP2004276827A (ja) パワーステアリング装置
JP2000283863A (ja) トルクセンサ
JP2005219652A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000762.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012530023

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127020994

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1976/MUMNP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2012748639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012748639

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12748639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13580883

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE