WO2019017302A1 - 制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム - Google Patents

制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム Download PDF

Info

Publication number
WO2019017302A1
WO2019017302A1 PCT/JP2018/026553 JP2018026553W WO2019017302A1 WO 2019017302 A1 WO2019017302 A1 WO 2019017302A1 JP 2018026553 W JP2018026553 W JP 2018026553W WO 2019017302 A1 WO2019017302 A1 WO 2019017302A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
steering
motor
connector
connector portion
Prior art date
Application number
PCT/JP2018/026553
Other languages
English (en)
French (fr)
Inventor
研介 小林
深谷 繁利
智 神野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017192711A external-priority patent/JP6747412B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019017302A1 publication Critical patent/WO2019017302A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/639Additional means for holding or locking coupling parts together, after engagement, e.g. separate keylock, retainer strap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present disclosure relates to a control unit, an electric power steering apparatus, a steering system, and a steer-by-wire system.
  • Patent Document 1 a motor and an ECU are integrally provided.
  • the ECU is provided with a power supply connector and a signal connector.
  • An object of the present disclosure is to provide a control unit, an electric power steering apparatus, a steering system, and a steer-by-wire system capable of ensuring the waterproofness of a connector.
  • the control unit of the present disclosure includes a controller unit, a first connector unit, a second connector unit, a plurality of seal members, and a lock unit.
  • the controller unit has an inverter circuit and a control unit.
  • the inverter circuit converts the power of a motor having a motor winding.
  • the control unit controls the on / off operation of the switching element constituting the inverter circuit.
  • the first connector portion is provided to the controller portion.
  • the second connector portion is connected to the sensor portion via the harness and fitted to the first connector portion.
  • the seal member is provided between the first connector portion and the second connector portion. The lock portion is fixed in a state in which the first connector portion and the second connector portion are fitted.
  • One of the first connector portion and the second connector portion is a male connector, and a terminal storage chamber provided with a male terminal is partitioned into a plurality of partitions by a partition portion inside the male connector housing.
  • the other of the first connector portion and the second connector portion is a female connector, in which female terminals connected to male terminals are embedded, and a terminal formation portion inserted into each of the terminal accommodating chambers is inside the female connector housing And divided.
  • the sealing member is provided for each terminal accommodating chamber.
  • a plurality of terminal storage chambers and terminal formation portions are independent of each other in the housing of the first connector portion and the second connector portion, and seal members are respectively provided.
  • seal members are respectively provided.
  • FIG. 1 is a schematic configuration view showing a steering system according to a first embodiment
  • Fig. 2 is a block diagram showing a drive device according to the first embodiment
  • FIG. 3 is a cross-sectional view showing the drive device according to the first embodiment
  • 4 is a cross-sectional view taken along line IV-IV of FIG. 5 is a view in the direction of arrow V in FIG. 3
  • 6 is a perspective view showing the connector unit according to the first embodiment
  • FIG. 7 is a perspective view showing a first connector portion according to the first embodiment
  • 8 is a cross-sectional view taken along line VIII-VIII of FIG.
  • FIG. 9 is a cross-sectional view taken along line IX-IX of FIG.
  • FIG. 10 is a perspective view showing a second connector portion according to the first embodiment
  • 11 is a cross-sectional view taken along line XI-XI of FIG. 12 is a cross-sectional view taken along line XII-XII of FIG. 13 is a cross-sectional view of the connector unit according to the first embodiment
  • Fig. 14 is a cross-sectional view of the connector unit according to the first embodiment
  • FIG. 15 is a schematic view showing a state of the seal member in a state in which the first connector portion and the second connector portion are connected according to the first embodiment
  • FIG. 16 is a perspective view showing a connector unit according to a second embodiment
  • FIG. 17 is a perspective view for explaining the drive device according to the third embodiment
  • FIG. 18 is a perspective view for explaining the drive device according to the fourth embodiment
  • FIG. 19 is a perspective view showing a sensor connector unit according to a fifth embodiment
  • FIG. 20 is a cross-sectional view showing a sensor connector unit according to a fifth embodiment
  • FIG. 21 is a perspective view showing a sensor connector unit according to a sixth embodiment
  • FIG. 22 is a schematic configuration view showing a steering system according to a seventh embodiment
  • FIG. 23 is a schematic configuration view showing a steering system according to a seventh embodiment
  • FIG. 24 is a schematic configuration view showing a steering system according to an eighth embodiment
  • 25 is a schematic block diagram showing a steering system according to a ninth embodiment
  • FIG. 26 is a schematic configuration view showing a steering system according to a tenth embodiment
  • FIG. 27 is a schematic block diagram showing a steer-by-wire system according to an eleventh embodiment
  • FIG. 28 is a block diagram showing a steer-by-wire system according to an eleventh embodiment
  • FIG. 29 is a block diagram showing a steer-by-wire system according to an eleventh embodiment
  • FIG. 30 is a schematic configuration view showing a steer-by-wire system according to a twelfth embodiment
  • 31 is a schematic configuration view showing a steer-by-wire system according to a thirteenth embodiment
  • 32 is a schematic block diagram showing a steer-by-wire system according to a fourteenth embodiment
  • FIG. 33 is a schematic configuration view showing a modified example of the steer-by-wire system
  • FIG. 34 is a schematic configuration view showing a modified example of the steer-by-wire system
  • FIG. 35 is a schematic configuration view showing a modified example of the steer-by-wire system
  • FIG. 36 is a schematic configuration view showing a modified example of the steer-by-wire system.
  • a steering system 90 provided with an electric power steering device 901 is shown in FIG.
  • the steering system 90 includes a steering wheel 91 as a steering member, a steering shaft 92, a pinion gear 96, a rack shaft 97, wheels 98, an electric power steering device 901, and the like.
  • the steering wheel 91 is connected to the steering shaft 92.
  • the steering shaft 92 is provided with a torque sensor 30 as a sensor unit that detects a torque input to the steering shaft 92.
  • a pinion gear 96 is provided at the tip of the steering shaft 92.
  • the pinion gear 96 meshes with the rack shaft 97.
  • a pair of wheels 98 are provided at both ends of the rack shaft 97 via tie rods or the like.
  • the steering shaft 92 connected to the steering wheel 91 is rotated.
  • the rotational movement of the steering shaft 92 is converted to the linear movement of the rack shaft 97 by the rack and pinion, and the pair of wheels 98 is steered at an angle corresponding to the displacement amount of the rack shaft 97.
  • the steering shaft 92 has a first shaft 93 connected to the steering wheel 91 and a second shaft 94 connected to the pinion gear 96.
  • the first shaft 93 and the second shaft 94 are connected by a torsion bar not shown. Ru.
  • the torque sensor 30 detects a change in the magnetic field in accordance with the torsional displacement of the torsion bar.
  • the torque sensor 30 is connected to the ECU 45 via the harness 39.
  • the torque sensor 30 and the ECU 45 connected via the harness 39 are referred to as a control unit 46 (see FIG. 6).
  • the electric power steering device 901 includes a torque sensor 30, a drive device 40, and the like.
  • the electric power steering apparatus 901 is configured of a steering wheel 91 based on signals S1 and S2 related to the steering torque acquired from the torque sensor 30, and signals such as the vehicle speed acquired from the vehicle communication networks 195 and 295 (see FIG. 2).
  • An auxiliary torque for assisting the steering is output from the motor 80.
  • the torque output from the motor 80 is transmitted to the rack shaft 97 via the power transmission unit 910.
  • the motor 80 of the present embodiment is an EPS motor.
  • the power transmission unit 910 includes a belt drive mechanism, and includes an output shaft 911, a belt 912, a bearing 913, and a ball screw 914.
  • the output shaft 911 rotates integrally with the shaft 870 (see FIG. 3) of the motor 80.
  • the rotation of the output shaft 911 is transmitted to the ball screw 914 via the belt 912 and the bearing 913 and converted into linear motion by the ball screw 914.
  • the linear motion of the rack shaft 97 is assisted.
  • the electric power steering apparatus 901 of the present embodiment is a so-called rack assist type that transmits torque generated by the motor 80 to the rack shaft 97, and more specifically, a rack parallel assist type.
  • the rack shaft 97 corresponds to the “drive target”.
  • the drive device 40 includes a motor 80 and an ECU 45 as a controller unit.
  • the motor 80 outputs an auxiliary torque that assists the driver in steering the steering wheel 91.
  • the motor 80 is driven by power supplied from the batteries 101 and 201, which are power supplies, and rotates the output shaft 911 forward and reverse.
  • the motor 80 is, for example, a three-phase brushless motor, and has a stator 840 and a rotor 860.
  • the motor 80 has a first motor winding 180 and a second motor winding 280.
  • the combination of the second inverter circuit 220 and the second control unit 250, etc., provided corresponding to the second motor winding 280 and the second motor winding 280 and involved in the energization control of the second motor winding 280 It is referred to as strain L2.
  • the configuration according to the first system L1 is numbered in the 100s and the configuration according to the second system L2 is numbered in the 200s. Further, in the first system L1 and the second system L2, similar components are numbered so that the lower two digits are the same, and the description will be appropriately omitted.
  • the first motor winding 180 is referred to as “motor winding 1”
  • the second motor winding 280 is referred to as “motor winding 2”.
  • “first" indicating a system is described as "1" subscript and "second” as "2" subscript.
  • the ECU 45 includes inverter circuits 120 and 220, power supply relays 122 and 222, control units 150 and 250, and the like.
  • the ECU 45 is provided with a connector unit 50, power supply connectors 111 and 211, and vehicle communication connectors 112 and 212.
  • the connectors 111, 112, 211, 212 are integrally provided as the collective connector 462 (see FIG. 5), but may be divided into a plurality.
  • the first power supply connector 111 is connected to the first battery 101.
  • the power of the first battery 101 is supplied to the first motor winding 180 via the first power supply connector 111, the first power supply relay 122, the first inverter circuit 120, and the first motor relay 123.
  • the power of the first battery 101 is also supplied to the sensors of the first control unit 150 and the first system L1.
  • the second power supply connector 211 is connected to the second battery 201.
  • the power of the second battery 201 is supplied to the second motor winding 280 via the power supply connector 211, the second power supply relay 222, the second inverter circuit 220, and the second motor relay 223.
  • the power of the second battery 201 is also supplied to the sensors of the second control unit 250 and the second system L2.
  • the batteries 101 and 201 may be similar or may have different performances such as output voltage.
  • a DCDC converter or the like may be provided between the batteries 101 and 201 and the connectors 111 and 211 according to the output voltage or the like. Further, the power supply connectors 111 and 211 may be connected to the same battery and share the battery in the systems L1 and L2.
  • the first vehicle communication connector 112 is connected to the first vehicle communication network 195, and the second vehicle communication connector 212 is connected to the vehicle communication network 295.
  • the vehicle communication connectors 112, 212 may be connected to the same vehicle communication network.
  • CAN Controller Area Network
  • CAN-FD CAN with Flexible Data rate
  • FlexRay FlexRay
  • the torque sensor 30 includes a magnetic signal conversion unit 31 and encoders 132 and 232, and detects a steering torque input to the steering shaft 92.
  • the magnetic signal conversion unit 31 converts the torsional displacement of the torsion bar according to the torque input to the steering shaft 92 into a magnetic signal.
  • the encoders 132 and 232 convert the detection signal of the magnetic signal conversion unit 31 into an electrical signal.
  • the signal S1 of the first encoder 132 is input to the first control unit 150 via the connector unit 50 and the first interface circuit 133.
  • the signal S2 of the second encoder 232 is input to the second control unit 250 via the connector unit 50 and the second interface circuit 233.
  • the interface circuits 133 and 233 include noise filters.
  • the signals S1 and S2 are both signals related to the steering torque and can be said to be redundant signals.
  • signals S1 and S2 which are two redundant signals, are input to the control units 150 and 250, respectively.
  • the signals S1 and S2 do not have to be completely identical, and if the control units 150 and 250 include values that can be converted into steering torque, they are regarded as "redundant signals" related to the steering torque.
  • the first inverter circuit 120 is a three-phase inverter having six switching elements 121 (see FIG. 4), and converts the power supplied to the first motor winding 180.
  • the on / off operation of the switching element 121 of the first inverter circuit 120 is controlled based on the control signal output from the first control unit 150.
  • the second inverter circuit 220 is a three-phase inverter having six switching elements 221 (see FIG. 4), and converts the power supplied to the second motor winding 280.
  • the on / off operation of the switching element 221 of the second inverter circuit 220 is controlled based on the control signal output from the second control unit 250.
  • the first power supply relay 122 is provided between the first power supply connector 111 and the first inverter circuit 120.
  • the first power supply relay 122 is controlled by the first control unit 150, and when it is on, energization between the first battery 101 side and the first inverter circuit 120 is allowed, and when it is off, the first battery 101 side And the current supply to the first inverter circuit 120 side is prohibited.
  • the second power supply relay 222 is provided between the second power supply connector 211 and the second inverter circuit 220.
  • the second power supply relay 222 is controlled by the second control unit 250, and when it is on, energization between the second battery 201 side and the second inverter circuit 220 side is permitted, and when it is off, the second battery 201 side And the second inverter circuit 220 are inhibited from being energized.
  • the first motor relay 123 is provided in each phase between the first inverter circuit 120 and the first motor winding 180.
  • the first motor relay 123 is controlled by the first control unit 150, and when it is on, energization between the first inverter circuit 120 side and the first motor winding 180 is allowed, and when it is off, the first inverter circuit Energization between the 120 side and the first motor winding 180 is prohibited.
  • the second motor relay 223 is provided in each phase between the second inverter circuit 220 and the second motor winding 280.
  • the second motor relay 223 is controlled by the second control unit 250, and when it is on, energization between the second inverter circuit 220 side and the second motor winding 280 is allowed, and when it is off, the second inverter circuit Energization between the 220 side and the second motor winding 280 is prohibited.
  • the first current sensor 125 detects the current supplied to each phase of the first motor winding 180, and outputs a detected value to the first control unit 150.
  • Second current sensor 225 detects the current supplied to each phase of second motor winding 280, and outputs a detected value to second control unit 250.
  • the first rotation angle sensor 126 detects the rotation angle of the motor 80 and outputs the detected rotation angle to the first control unit 150.
  • the second rotation angle sensor 226 detects the rotation angle of the motor 80 and outputs the detected rotation angle to the second control unit 250.
  • the first driver circuit 140 uses drive signals for driving the switching elements of the first inverter circuit 120, the first power supply relay 122, and the first motor relay 123 based on the control signal from the first control unit 150 to each element.
  • the second driver circuit 240 uses drive signals for driving the switching elements of the second inverter circuit 220, the second power supply relay 222, and the second motor relay 223 based on the control signal from the second control unit 250 to the respective elements. Output.
  • the first control unit 150 includes a decoder 151, a feedback control unit 155, and the like.
  • the second control unit 250 includes a decoder 251, a feedback control unit 255, and the like.
  • the control units 150 and 250 are mainly configured by a microcomputer or the like, and internally include a CPU, a ROM, a RAM, an I / O, and a bus line connecting these components, which are not shown.
  • Each processing in the ECU 45 may be software processing by executing a program stored in advance in a tangible memory device (i.e., a readable non-transitory tangible recording medium) such as a ROM by the CPU, or may be dedicated It may be hardware processing by an electronic circuit. The same applies to the control units 160 and 260 described later.
  • the decoder 151 decodes the signal S1, which is an electrical signal input from the encoder 132, into a steering torque signal that can be used for various operations, which is a signal corresponding to the steering torque.
  • the decoder 251 decodes the signal S2, which is an electrical signal input from the encoder 232, into a steering torque signal that can be used for various operations, which is a signal corresponding to the steering torque.
  • the feedback control unit 155 detects detected values of the current sensor 125 and the rotation angle sensor 126, vehicle signals such as a vehicle speed signal obtained from the vehicle communication network 195 via the vehicle communication circuit 117, and steering obtained from the decoder 151. A feedback operation based on a torque signal or the like is performed to generate a control signal for controlling driving of the switching element 121.
  • the feedback control unit 255 detects the detection values of the current sensor 225 and the rotation angle sensor 226, vehicle signals such as a vehicle speed signal obtained from the vehicle communication network 295 via the vehicle communication circuit 217, and steering obtained from the decoder 251.
  • a feedback operation based on a torque signal or the like is performed to generate a control signal for controlling the driving of the switching element 221.
  • the configuration of the drive device 40 will be described based on FIGS. 3 to 5.
  • the drive device 40 of the present embodiment is provided with an ECU 45 integrally on one side in the axial direction of the motor 80, and is a so-called "machine-electric integrated type".
  • the ECU 45 is disposed coaxially with the axis Ax of the shaft 870 on the side opposite to the output shaft 911 (see FIG. 1) of the motor 80.
  • the ECU 45 may be provided on the output shaft 911 side of the motor 80.
  • the motor 80 includes a stator 840, a rotor 860, and a housing 830 for accommodating them.
  • the stator 840 is fixed to the housing 830, and the motor windings 180, 280 are wound.
  • the rotor 860 is provided radially inward of the stator 840, and is provided so as to be rotatable relative to the stator 840.
  • the shaft 870 is inserted into the rotor 860 and rotates integrally with the rotor 860.
  • the shaft 870 is rotatably supported by the housing 830 by bearings 835, 836.
  • the end of the shaft 870 on the ECU 45 side protrudes from the housing 830 to the ECU 45 side.
  • a magnet 875 is provided at the end of the shaft 870 on the ECU 45 side.
  • the housing 830 has a bottomed cylindrical case 834 including a rear frame end 837, and a front frame end 838 provided on the open side of the case 834.
  • the case 834 and the front frame end 838 are fastened to each other by bolts or the like.
  • a lead wire insertion hole 839 is formed in the rear frame end 837. Lead wires 181 and 281 connected to the respective phases of the motor windings 180 and 280 are inserted through the lead wire insertion holes 839. The lead wires 181 and 281 are taken out from the lead wire insertion hole 839 toward the ECU 45 and connected to the substrate 470.
  • the ECU 45 includes a cover 460, a heat sink 465 fixed to the cover 460, a substrate 470 fixed to the heat sink 465, various electronic components mounted on the substrate 470, and the like.
  • the cover 460 protects the electronic component from an external impact, and prevents the infiltration of dust, water, and the like into the inside of the ECU 45.
  • the cover 460 is integrally formed with a cover main body 461, a collective connector 462, and a first connector 51 described later. Note that at least one of the collective connector 462 and the first connector portion 51 may be separate from the cover main body 461.
  • the terminal 463 of the collective connector 462 is connected to the substrate 470 via a wire or the like (not shown). The number of terminals can be changed as appropriate according to the number of signals and the like.
  • the collective connector 462 and the first connector portion 51 are provided at the axial end of the drive device 40 and open on the opposite side to the motor 80.
  • the substrate 470 is, for example, a printed circuit board, and is provided to face the rear frame end 837.
  • electronic components for two systems are mounted independently for each system, and a complete redundant configuration is formed.
  • the electronic component is mounted on one substrate 470, but the electronic component may be mounted on a plurality of substrates.
  • the surface on the motor 80 side is referred to as a motor surface 471
  • the surface on the opposite side to the motor 80 is referred to as a cover surface 472.
  • the switching element 121 constituting the inverter circuit 120, the switching element 221 constituting the inverter circuit 220, rotation angle sensors 126 and 226, custom ICs 159 and 259, etc. are mounted on the motor surface 471.
  • the rotation angle sensors 126 and 226 are mounted at locations facing the magnet 875 so as to detect changes in the magnetic field as the magnet 875 rotates.
  • the custom ICs 159 and 259 include interface circuits 133 and 233 and driver circuits 140 and 240, respectively.
  • the capacitors 128 and 228, the inductors 129 and 229, and microcomputers constituting the control units 150 and 250 are mounted.
  • “150” and “250” are assigned to the microcomputers constituting the control units 150 and 250, respectively.
  • the capacitors 128 and 228 smooth the power input from the batteries 101 and 201.
  • the capacitors 128 and 228 assist the power supply to the motor 80 by storing charge.
  • the capacitors 128 and 228 and the inductors 129 and 229 constitute a filter circuit to reduce noise transmitted from other devices sharing the batteries 101 and 201 and to share the batteries 101 and 201 from the driving device 40. Reduce the noise transmitted to the device.
  • the power supply relays 122 and 222, the motor relays 123 and 223, the current sensors 125 and 225, etc. are also mounted on the motor surface 471 or the cover surface 472.
  • the connector unit 50 has a first connector portion 51, a second connector portion 61, and a seal member 70 (see FIG. 10 etc.).
  • the first connector portion 51 is a male connector
  • the second connector portion 61 is a female connector.
  • the drive device 40 is shown in a simplified manner, and the collective connector 462 and the like are omitted. The same applies to FIGS. 16 to 19 and 21.
  • the first connector portion 51 is provided integrally with the cover main body 461 of the ECU 45.
  • the second connector portion 61 is provided at the tip of the harness 39.
  • the end of the harness 39 opposite to the second connector portion 61 is integrally provided with the torque sensor 30.
  • FIGS. 7 to 9 show a first connector portion 51
  • FIGS. 10 to 12 show a second connector portion 61
  • the first connector portion 51 has a housing 52, a male terminal 56 and the like.
  • the housing 52 corresponds to the “male connector housing”.
  • the housing 52 is integrally formed with the cover main body 461.
  • the housing 52 is formed of resin or the like, and the lock portion 53 is provided upright on the outer wall surface 521.
  • the housing 52 is formed with two terminal accommodating chambers 55 opened to the front end side.
  • Partitions 54 are formed between the terminal accommodation chambers 55.
  • the tip end surface of the peripheral wall 525 of the housing 52 and the tip end surface of the partition 54 are formed on the same plane. The term "on the same plane" means that manufacturing errors are acceptable.
  • the signals S1 and S2 from the torque sensor 30 are in two systems, and two terminal accommodation chambers 55 are formed to correspond to the respective systems. That is, the signal S1 is input via the male terminal 56 formed in one terminal accommodating chamber 55, and the signal S2 is input via the male terminal 56 formed in the other terminal accommodating chamber.
  • the proximal end side of the male terminal 56 is embedded in the housing 52, and the distal end side protrudes into the terminal accommodation chamber 55.
  • four male terminals 56 are provided in one terminal accommodating chamber 55. That is, in the present embodiment, four male terminals 56 are provided for one system.
  • the number of terminals may be any number depending on the number of signals. The same applies to a female terminal 66 described later.
  • the core wire 57 is connected to the proximal end side of the male terminal 56.
  • the core wire 57 is covered with the covering portion 571 except for the connection point with the male terminal 56.
  • the end of the core wire 57 opposite to the end connected to the male terminal 56 is taken out of the housing 52 and connected to the substrate 470.
  • a water blocking member 58 formed of an elastic material is provided between the core wire 57 and the housing 52.
  • the second connector portion 61 has a housing 62, a female terminal 66, and the like.
  • the housing 62 corresponds to the “female connector housing”.
  • the housing 62 has a housing body 621 and a lock portion forming portion 628.
  • the housing main body 621 is formed of a resin or the like in a bottomed cylindrical shape.
  • the lock portion forming portion 628 is formed of resin or the like, and is fixed to the housing main body 621 so as to cover one wide surface of the housing main body 621 and the side connected to the harness 39.
  • the lock portion 63 is formed in the lock portion forming portion 628.
  • the terminal formation portion 65 is integrally formed with the housing body 621.
  • the two terminal formation portions 65 are formed in a fork on the inside of the peripheral wall portion 625 of the housing main body 621.
  • the end face of the terminal formation portion 65 is formed on the same plane as the tip end face of the peripheral wall 625.
  • a fitting groove 626 into which the front end side of the housing 52 of the first connector portion 51 is inserted is formed between the two terminal formation portions 65 and between the terminal formation portion 65 and the peripheral wall portion 625.
  • the partition portion 54 is inserted into the groove portion 627 between the two terminal formation portions 65.
  • the female terminal 66 is embedded in the terminal formation portion 65.
  • four female terminals 66 are provided in one terminal formation portion 65.
  • an opening 651 is formed on the tip end side of the female terminal 66.
  • the core wire 67 is connected to the proximal end side of the female terminal 66.
  • the core wire 67 is covered with the covering portion 671 except for the connection point with the female terminal 66.
  • the end of the core wire 67 opposite to the end connected to the female terminal 66 is taken out of the housing 62 and provided inside the harness 39.
  • a water blocking member 68 formed of an elastic material is provided between the core wire 67 and the housing 62.
  • the seal member 70 is provided for each terminal formation portion 65. As indicated by arrow As, the seal member 70 is fitted to the outer peripheral side of the terminal forming portion 65.
  • FIGS. 13 and 14 is a cross-sectional view corresponding to FIG. 9 and FIG. 11, and FIG. 14 is a cross-sectional view corresponding to FIG. 10 and FIG.
  • the first connector portion 51 is inserted into the fitting groove 626 of the second connector portion 61.
  • the terminal formation portions 65 are respectively inserted into the terminal accommodation chambers 55 of the corresponding system.
  • the male terminal 56 and the female terminal 66 are electrically connected in the space partitioned for each system by the partition unit 54.
  • the seal member 70 is formed of an elastic material such as rubber and is provided between the first connector portion 51 and the second connector portion 61.
  • FIG. 15 is a schematic view in which the seal portion is enlarged. As shown in FIG. 15, the seal member 70 is fitted on the outer periphery of the terminal formation portion 65 of the second connector portion 61 in a state where the first connector portion 51 is not inserted. When the first connector portion 51 is inserted into the fitting groove 626 of the second connector portion 61, the seal member 70 is formed by the side wall surface 542 of the inner wall surface 522 of the housing 52 or the partition portion 54 and the peripheral wall surface 652 of the terminal forming portion 65.
  • the lock portion 53 of the first connector portion 51 has an inclined surface 531 whose opening side is lower, and a locking surface 532 formed substantially perpendicular to the outer wall surface 521 of the housing 52 on the side opposite to the opening. , It is formed in the side view substantially trapezoidal shape (refer FIG. 8).
  • the inclined surface 531 slides the lock portion 63 of the second connector portion 61.
  • the locking surface 532 is locked to the lock portion 63, and the snap fit is fixed in a state in which the first connector portion 51 is inserted into the second connector portion 61.
  • the holding angle is locked at about 90 °
  • the first connector portion 51 and the second connector portion 61 can not be detached.
  • the elastic force of the seal member 70 prevents the first connector portion 51 from being pushed back and disengaged, and the airtight state of the connection portion between the male terminal 56 and the female terminal 66 is semipermanently maintained. .
  • the sealed state of the wiring is maintained for each system.
  • the terminal storage chamber 55 and the terminal formation portion 65 are provided for each system, and the seal member 70 is provided in each of them. That is, it can be said that waterproofing is secured independently for each of the paths of the signals S1 and S2. Therefore, even if the terminal storage chamber 55 of one system is flooded and an abnormality such as a short between pins occurs, for example, it is possible to prevent the water in the terminal storage chamber 55 of the other system. The probability of both being flooded can be reduced.
  • the drive of the motor 80 is controlled using the signals S1 and S2 related to the steering torque.
  • the partition portion 54 in the first connector portion 51 two independent terminal storage chambers are formed in the same housing 52. Further, in the second connector portion 61, the terminal forming portion 65 is bifurcated in the same housing 62. Then, by inserting the first connector portion 51 into the second connector portion 61, the male terminal 56 and the female terminal 66 are connected in a space independent for each system. Thereby, it is possible to prevent an increase in the number of parts and an increase in the size of the device as compared to the case where a connector unit is separately provided for each system. In addition, it is possible to ensure the vehicle mountability equivalent to the case where the signal of the torque sensor 30 is one system while securing the independence of the connection for each system.
  • control unit 46 of the present embodiment includes the ECU 45, the first connector portion 51, the second connector portion 61, the plurality of seal members 70, and the lock portions 53 and 63.
  • ECU 45 controls inverter circuits 120 and 220 for converting the electric power of motor 80 having motor windings 180 and 280, and control units 150 and 250 for controlling on / off operation of switching elements 121 and 221 constituting inverter circuits 120 and 220.
  • the first connector portion 51 is provided in the ECU 45.
  • the second connector portion 61 is connected to the torque sensor 30 via the harness 39 and fitted with the first connector portion 51.
  • the seal member 70 is provided between the first connector portion 51 and the second connector portion 61.
  • the lock portions 53 and 63 constituting the lock mechanism are fixed in a state in which the first connector portion 51 and the second connector portion 61 are fitted.
  • first connector portion 51 and the second connector portion 61 is a male connector, and the other is a female connector.
  • first connector portion 51 is a male connector
  • second connector portion 61 is a female connector.
  • first and second attached to the connector portions 51 and 61 are to distinguish the two members constituting the connector unit 50, and differ from those to distinguish the systems. I will supplement it. The same applies to the sensor connector unit 300 of the fifth embodiment.
  • a terminal accommodating chamber 55 in which the male terminal 56 is provided in the housing 52 is divided into a plurality of portions by the partition portion 54.
  • the female terminals 66 are embedded, and the terminal forming portion 65 inserted into each of the terminal accommodating chambers 55 is divided in the housing 62.
  • the seal member 70 is provided for each of the terminal storage chambers 55.
  • a plurality of terminal storage chambers 55 and a plurality of terminal formation portions 65 are independent within the housings 52 and 62, and the seal members 70 are provided in the respective terminal storage chambers 55.
  • the seal members 70 are provided in the respective terminal storage chambers 55.
  • the seal member 70 is provided between the inner wall surface 522 of the housing 52 or the side wall surface 542 of the partition portion 54 and the peripheral wall surface 652 of the terminal forming portion 65.
  • the seal member 70 can be properly kept airtight at the connection points of the terminals 56 and 56 by being crushed by surface contact.
  • the torque sensor 30 can output redundant systems of signals S1 and S2. Terminal accommodation room 55 and terminal formation part 65 are provided for every system of signals S1 and S2 from torque sensor 30, respectively. Thereby, it is possible to prevent the signals of all the systems from being unavailable due to the flooding while suppressing the enlargement of the physique accompanying the multisystemization of the signals.
  • the motor 80 has a plurality of sets of motor windings 180, 280.
  • the inverter circuits 120 and 220 and the control units 150 and 250 are provided for each of the motor windings 180 and 280.
  • a signal output from the torque sensor 30 is input to control units 150 and 250 corresponding to each system.
  • a harness 39 connecting the torque sensor 30 and the second connector portion 61 is provided integrally with the torque sensor 30. Thus, the signal from the torque sensor 30 is properly transmitted to the ECU 45 via the harness 39.
  • the torque sensor 30 is a torque sensor that detects a steering torque.
  • the signals S1 and S2 related to the steering torque can be appropriately input to the ECU 45.
  • the electric power steering apparatus 901 includes a control unit 46 and a motor 80 that is integrated with the ECU 45 and outputs an assist torque that assists the driver in steering. Thereby, even when part of the systems is flooded, steering assistance can be continued in the other system. Further, by integrally providing the ECU 45 and the motor 80, the size of the drive device 40 can be reduced.
  • the steering system 90 includes an electric power steering apparatus 901, a power transmission unit 910, a steering wheel 91 steered by the driver, a steering shaft 92, a pinion gear 96, and a rack shaft 97.
  • the power transmission unit 910 transmits the torque output from the motor 80 to the rack shaft 97 to be driven.
  • the steering shaft 92 rotates integrally with the steering wheel 91.
  • the pinion gear 96 is provided at the tip of the steering shaft 92.
  • the rack shaft 97 meshes with the pinion gear 96 and converts the rotational movement of the pinion gear 96 into linear movement.
  • the motor 80 is provided along the rack shaft 97.
  • the motor is provided along the rack axis.
  • the deviation about an installation error shall be accepted. The same applies to the following embodiments.
  • the power transmission unit 910 has a belt drive mechanism. By assisting the linear motion of the rack shaft 97 with the torque of the motor 80, the steering by the driver can be appropriately assisted. Also, even if the drive device 40 is disposed relatively close to the ground in the engine room, for example, and waterproofed by water splashing etc., the waterproof property is secured, so the assist control is properly performed. It can continue.
  • the connector unit 500 of the present embodiment has a first connector portion 501, a second connector portion 502, and a seal member 70.
  • the first connector portion 501 is a female connector similar to the second connector portion 61 of the first embodiment
  • the second connector portion 502 is a male similar to the first connector portion 51 of the first embodiment. It is a connector.
  • the details such as the connection relationship between the first connector portion 501 and the second connector portion 502 are the same as those in the above embodiment. Even with this configuration, the same effects as the above embodiment can be obtained.
  • the drive device 41 according to the third embodiment is a “machine-electrical separate type” in which the ECU 45 and the motor 80 are separately provided and connected by a mechanical-electrical connection harness 49. That is, the electric power steering apparatus 901 (not shown in FIGS. 17 and 18) of this embodiment is connected by the control unit 46, the ECU 45, and the mechanical connection harness 49, and outputs an assist torque for assisting the driver's steering. And a motor 80.
  • the machine-electrical type By adopting the machine-electrical type, the degree of freedom of the arrangement of the ECU 45 is enhanced.
  • the connector unit 50 of this embodiment is the same as that of the first embodiment, the first connector portion 51 is a male connector, and the second connector portion 61 is a female connector.
  • the connector unit 500 of the fourth embodiment shown in FIG. 18 is the same as that of the second embodiment, the first connector portion 501 is a female connector, and the second connector portion 502 is a male connector. Even with this configuration, the same effects as the above embodiment can be obtained.
  • FIG. 19 and FIG. FIG. 20 is a transverse sectional view of the sensor connector unit 300.
  • the torque sensor 30 of the above embodiment is integrally provided with the harness 39
  • the torque sensor 30 of the fifth embodiment and the harness 39 are connected via the sensor connector unit 300.
  • the description of the configuration of the ECU 45 is omitted in FIG. 19 and FIG. 21 described later, the ECU connector unit and the drive device may be in any of the above embodiments.
  • the sensor connector unit 300 includes a first sensor connector portion 310, a second sensor connector portion 320, and a seal member 330.
  • the first sensor connector portion 310 has a housing 312, a sensor side male terminal 316, and the like.
  • the housing 312 is integrally formed with the torque sensor 30, and a lock portion 313 is formed on the outer peripheral surface.
  • two sensor side terminal accommodation chambers 315 which are opened on the tip side are formed.
  • the sensor side male terminal 316 protrudes into the sensor side terminal accommodating chamber 315.
  • the core wire 317 is connected to the proximal end side of the sensor side male terminal 316.
  • the end of core wire 317 opposite to the side connected to sensor side male terminal 316 is taken out of housing 312 and connected to encoders 132, 232.
  • the second sensor connector portion 320 has a housing 322, a sensor-side female terminal 326, and the like.
  • the housing 322 is formed with a lock portion 323.
  • the two sensor terminal forming portions 325 are integrally formed with the housing 322. In other words, the sensor-side terminal formation portion 325 is bifurcated inside the peripheral wall portion of the housing 322.
  • the sensor-side female terminal 326 is embedded in the sensor-side terminal forming portion 325.
  • the core wire 327 is connected to the proximal end side of the sensor-side female terminal 326.
  • the end of the core wire 327 opposite to the side connected to the sensor-side female terminal 326 is taken out of the housing 322 and provided inside the harness 39.
  • the seal member 330 is provided for each of the sensor-side terminal accommodation chambers 315.
  • the first sensor connector portion 310 is a male connector, which is substantially the same as the first connector portion 51 of the first embodiment, and the second sensor connector portion 320 is a female connector, which is the first embodiment of the first embodiment.
  • the second connector section 61 is substantially the same as the second connector section 61. Moreover, since the connection form of the sensor connector unit 300 is the same as that of the connector unit 50 of the first embodiment, the detailed description will be omitted.
  • the control unit 46 further includes a first sensor connector portion 310 and a second sensor connector portion 320.
  • the first sensor connector portion 310 is provided to the torque sensor 30.
  • the second sensor connector portion 320 is connected to the second connector portion 61 by the harness 39 and fitted with the first sensor connector portion 310.
  • the signal of the torque sensor 30 can be appropriately output to the ECU 45 side.
  • the control unit 46 further includes a plurality of seal members 330 and sensor connector lock portions 313, 323.
  • the seal member 330 is provided between the first sensor connector portion 310 and the second sensor connector portion 320.
  • the lock portions 313 and 323 are fixed in a state in which the first sensor connector portion 310 and the second sensor connector portion 320 are fitted.
  • first sensor connector portion 310 or the second sensor connector portion 320 is a male connector, and the other is a female connector.
  • the first sensor connector portion 310 is a male connector
  • the second sensor connector portion 320 is a female connector having a sensor-side female terminal 326.
  • the sensor-side terminal accommodation chamber 315 in which the sensor-side male terminal 316 is provided is partitioned into a plurality of first sensor connector portions 310 by the sensor-side partition portion 314.
  • the sensor side female terminal 326 connected to the sensor side male terminal 316 is embedded, and the sensor side terminal forming portion 325 inserted into each of the sensor side terminal accommodation chambers 315 is inside the housing 322 And divided.
  • the seal member 330 is provided for each of the sensor-side terminal accommodation chambers 315.
  • a plurality of terminal accommodating chambers 315 and terminal forming portions 325 are independent inside the housings 312 and 322, and sealing members 330 are respectively provided.
  • sealing members 330 are respectively provided.
  • the housing 312 corresponds to the “sensor side male housing”
  • the housing 322 corresponds to the “sensor side female housing”.
  • the lock portions 313 and 323 correspond to the “sensor connector lock portion”
  • the seal member 330 corresponds to the “sensor connector seal member”.
  • the wording “sensor side” attached to the name of the configuration related to the sensor connector unit 300, such as “sensor side terminal storage chamber” does not mean an arrangement relationship, and is distinguished from the configuration of the connector unit 50. It is added that it is what is attached.
  • the sensor connector unit 350 of the sixth embodiment shown in FIG. 21 is a female connector similar to the second connector unit 61 of the first embodiment in that the first sensor connector unit 351 integrally provided with the torque sensor 30 is
  • the second sensor connector portion 352 provided on the harness 39 side is a male connector similar to the first connector portion 51 of the second embodiment. Even with this configuration, the same effects as the above embodiment can be obtained.
  • Seventh to tenth embodiments are shown in FIG. 22 to FIG.
  • the seventh to tenth embodiments are variations of the steering system 90, and the mechanical-electrical integrated type is exemplified, but the mechanical-electrical type may be adopted.
  • the connector unit 50 the connector unit 550 may be used, and instead of the sensor connector unit 300, the sensor connector unit 350 may be used.
  • the torque sensor 30 and the harness 39 may be integrated. The same applies to an embodiment according to a steer-by-wire system described later.
  • the power transmission unit 920 has a ball screw 921 for transmitting the torque of the motor 80 to the rack shaft 97.
  • the drive device 40 is provided coaxially with the rack shaft 97, and the rotation of the motor 80 is converted into linear motion by the ball screw 921. Thereby, the linear motion of the rack shaft 97 is assisted.
  • the electric power steering apparatus 901 of the present embodiment is a so-called rack assist type that transmits torque generated by the motor 80 to the rack shaft 97, and more specifically, a rack coaxial assist type.
  • the rack shaft 97 corresponds to the “drive target”.
  • the connector unit 50 is provided to face the radially outer side of the ECU 45. Also in the first embodiment and the like, instead of providing the connector unit 50 at the axial end of the drive device 40, the connector unit 50 may be provided to face the radially outer side of the drive device 40. Further, as shown in FIG. 23, instead of arranging the ECU 45 coaxially with the motor 80, the ECU 45 may be provided on the side of the motor 80.
  • the power transmission unit 930 has a worm gear 931 for transmitting the torque of the motor 80 to the pinion gear 96.
  • the worm of the worm gear 931 is driven by the motor 80, and the worm wheel rotates integrally with the pinion gear 96.
  • the electric power steering apparatus 901 of the present embodiment is a so-called pinion assist type that transmits the torque generated by the motor 80 to the pinion gear 96.
  • the pinion gear 96 corresponds to the “drive target”.
  • the power transmission unit 940 includes a worm gear 941 and a pinion 942.
  • the worm of the worm gear 941 is driven by the motor 80, and the worm wheel rotates integrally with the pinion 942.
  • the torque of the motor 80 is transmitted to the pinion 942.
  • the pinion 942 is provided separately from the pinion gear 96 and meshes with the rack shaft 97. That is, the electric power steering apparatus 901 of this embodiment is a so-called dual pinion assist type that transmits the torque generated by the motor 80 to the pinion 942 separately provided from the pinion gear 96.
  • the rack shaft 97 corresponds to the “drive target”.
  • the axis of the motor 80 is disposed parallel to the axis of the steering shaft 92.
  • the power transmission unit 950 has a reduction gear 951 that transmits the torque of the motor 80 to the steering shaft 92.
  • the rotation of the motor 80 is transmitted to the steering shaft 92 via the reduction gear 951.
  • the electric power steering apparatus 901 of this embodiment is a so-called column assist type that transmits the torque generated by the motor 80 to the steering shaft 92.
  • the steering shaft 92 corresponds to the “drive target”. Even when configured as in the seventh to tenth embodiments, the same effect as that of the above embodiments can be obtained.
  • FIG. 27 to FIG. An eleventh embodiment is shown in FIG. 27 to FIG.
  • the control unit 46 is applied to the steering system 90.
  • the control unit 46 is applied to a steer-by-wire system 970.
  • the steer-by-wire system 970 includes a steering wheel 91, a steering shaft 971, a pinion gear 96, a rack shaft 97, wheels 98, a steering device 975, and the like.
  • the steering device 975 includes a reaction force motor 85, a steering motor 86, a control unit 46, and the like.
  • the control unit 46 of the present embodiment is provided with an ECU 450 as a controller unit, instead of the ECU 45 of the above embodiment.
  • ECU 450 and reaction force motor 85 are connected via connector 451, harness 491 and connector 851.
  • ECU 450 and steering motor 86 are connected via connector 452, harness 492 and connector 861.
  • the steering wheel 91 is connected to one end of a steering shaft 971.
  • the steering shaft 971 is provided with a torque sensor 30 for detecting a torque input to the steering shaft 971.
  • a reaction force motor 85 is provided at the tip of the steering shaft 971, and the steering shaft 971 is separated from the rack shaft 97.
  • the reaction force motor 85 provides the driver with an appropriate steering feeling by applying a reaction force according to the driver's steering to the steering wheel 91.
  • the reaction force motor 85 is, for example, a three-phase brushless motor, and has a first motor winding 185 and a second motor winding 285 (see FIG. 28).
  • the turning motor 86 controls the turning angle of the wheel 98 by its rotation.
  • the steering motor 86 is, for example, a three-phase brushless motor, and has a first motor winding 186 and a second motor winding 286 (see FIG. 28).
  • the rotation of the steering motor 86 causes the pinion gear 96 to rotate.
  • the rotational movement of the pinion gear is converted to linear movement of the rack shaft 97 by the rack and pinion, and the pair of wheels 98 is steered at an angle corresponding to the displacement amount of the rack shaft 97. That is, the steer-by-wire system 970 of this embodiment is a pinion drive type.
  • the reaction force motor rotation angle sensor 891 detects the rotation angle of the reaction force motor 85.
  • the steering motor rotation angle sensor 892 detects the rotation angle of the steering motor 86.
  • the rack stroke sensor 893 detects a rack stroke amount.
  • a vehicle speed sensor 894 detects the traveling speed of the vehicle.
  • the detection values of the reaction force motor rotation angle sensor 891, the steering motor rotation angle sensor 892, the rack stroke sensor 893, and the vehicle speed sensor 894 are acquired via connectors and wiring (not shown).
  • the detection values of the sensors 891 to 894 may be acquired internally if the sensor is inside the ECU 450, or may be acquired by communication from the vehicle communication network 195, 295 (not shown in FIG. 28) or the like. .
  • the ECU 450 includes a substrate (not shown), various electronic components mounted on the substrate, a housing for accommodating these, and the like.
  • the electronic components mounted on the substrate include the control units 160 and 260, and switching elements and the like that constitute the inverter circuits 167, 168, 267, and 268.
  • a connector unit 50 is provided in the housing. The details of the connector unit 50 are the same as in the above embodiment.
  • the first control unit 160 includes a decoder 151, a first basic reaction force control unit 161, a first reaction force correction unit 162, a first final reaction force control unit 163, and a first steering control unit 165.
  • the second control unit 260 includes a decoder 251, a second basic reaction force control unit 261, a second reaction force correction unit 262, a second final reaction force control unit 263, and a second steering control unit 265.
  • the control units 160 and 260 are respectively configured by separate microcomputers, the control units 160 and 260 may be configured by one microcomputer 455 as shown in FIG. The same applies to the control units 150 and 250 described above. In FIGS. 28 and 29, the decoders 151 and 251 are not shown.
  • the first basic reaction force control unit 161 instructs the reaction force motor 85 based on the signal S1 from the torque sensor 30, the detection value of the reaction force motor rotation angle sensor 891, the detection value of the rack stroke sensor 893, etc.
  • the reaction force Hb1 is calculated.
  • the second basic reaction force control unit 261 instructs the reaction force motor 85 based on the signal S2 from the torque sensor 30, the detection value of the reaction force motor rotation angle sensor 891, the detection value of the rack stroke sensor 893, etc.
  • the reaction force Hb2 is calculated.
  • the basic reaction force is a reaction force based on a basic state quantity.
  • the reaction force correction units 162 and 262 calculate the correction reaction forces Hc1 and Hc2 according to the state of the vehicle behavior based on the detection value of the turning motor rotation angle sensor 892, the detection value of the rack stroke sensor 893, and the like.
  • the first final reaction force control unit 163 is configured based on the basic reaction force Hb1 calculated by the first basic reaction force control unit 161 and the correction reaction force Hc1 calculated by the first reaction force correction unit 162.
  • the final reaction force Hf1 given to the steering wheel 91 by the force motor 85 is calculated.
  • the second final reaction force control unit 263 is configured based on the basic reaction force Hb2 calculated by the second basic reaction force control unit 261 and the corrected reaction force Hc2 calculated by the second reaction force correction unit 262.
  • the final reaction force Hf2 given to the steering wheel 91 by the force motor 85 is calculated.
  • the first steering control unit 165 calculates the steering torque Tb1 based on the signal S1 from the torque sensor 30, the detection value of the rack stroke sensor 893, the detection value of the vehicle speed sensor 894, and the like.
  • the second steering control unit 265 calculates the steering torque Tb2 based on the signal S2 from the torque sensor 30, the detection value of the rack stroke sensor 893, the detection value of the vehicle speed sensor 894, and the like.
  • the first reaction force inverter circuit 167 has a switching element (not shown) whose on / off operation is controlled based on the final reaction force Hf1, and converts the power of the first motor winding 185 of the reaction force motor 85.
  • the first steering inverter circuit 168 has a switching element (not shown) whose on / off operation is controlled based on the steering torque Tb1, and converts the power of the first motor winding 186 of the steering motor 86.
  • the second reaction force inverter circuit 267 has a switching element (not shown) whose on / off operation is controlled based on the final reaction force Hf2, and converts the power of the second motor winding 285 of the reaction force motor 85.
  • the second steering inverter circuit 268 has a switching element (not shown) whose on / off operation is controlled based on the steering torque Tb2, and converts the power of the second motor winding 286 of the steering motor 86.
  • the reaction force inverter circuit is described as “INV_R”, and the turning inverter circuit as “INV_T”.
  • the torque sensor 30, the ECU 450, the reaction force motor 85, and the steering motor 86 have a redundant configuration.
  • the connector unit 50 and the sensor connector unit 300 similar to the said embodiment are used for the connection of the torque sensor 30 and ECU450. Therefore, even if one system is flooded, if the other system is not flooded, either one of the signals S1 and S2 can be used to drive the motors 85 and 86 based on the steering torque. Thus, the steering operation of the vehicle can be continued.
  • the steering shaft that rotates integrally with the steering wheel 91, which is a steering member, and the rack shaft 97 can be mechanically separated, and provide reaction between the ECU 450 and the steering wheel 91.
  • a reaction force motor 85 and a steering motor 86 for changing the steering amount of the wheel 98 steered in accordance with the drive of the rack shaft 97 in accordance with the steering of the steering wheel 91 are provided.
  • ECU 450 is provided separately from reaction force motor 85 and steering motor 86.
  • the ECU 450 and the reaction force motor 85 are connected by a reaction force motor connection harness 491.
  • the ECU 450 and the steering motor 86 are connected by a steering motor connection harness 492.
  • the steering motor 86 drives a pinion gear 96 that meshes with the rack shaft 97.
  • the connector unit 50 is also applicable to the steer-by-wire system 970 as in this embodiment, and in the redundant steer-by-wire system 970, even if part of the system is flooded, the other systems are Since the waterproofness of the wheel 98 is secured, the turning control of the wheel 98 can be properly continued. In addition, the same effect as that of the above embodiment can be obtained.
  • FIG. 9 A twelfth embodiment is shown in FIG.
  • a pinion gear 981 that meshes with the rack shaft 97 is provided separately from the pinion gear 96.
  • the pinion gear 981 is driven by the steering motor 87. That is, the steer-by-wire system 970 of this embodiment is a dual pinion drive type.
  • the ECU 450 and steering motor 87 are connected via connector 453, harness 493 and connector 871.
  • the steering motor 87 like the steering motor 86, has two sets of motor windings (not shown), and energization of one of the motor windings is controlled by the first control unit 160, and the other motor winding is performed.
  • the energization of the wire is controlled by the second control unit 260. Even with this configuration, the same effects as the above embodiment can be obtained.
  • FIG. 31 A thirteenth embodiment is shown in FIG. 31 and a fourteenth embodiment is shown in FIG.
  • the steering motor 86 of the thirteenth embodiment is provided coaxially with the rack shaft 97 and drives the rack shaft 97 via a ball screw 983. That is, the steer-by-wire system 970 of this embodiment is a rack coaxial type.
  • the steering motor 86 of the fourteenth embodiment is provided with a motor shaft substantially parallel to the rack shaft 97 and drives the rack shaft 97 via a belt drive 984. That is, the steer-by-wire system 970 of this embodiment is a rack parallel type.
  • the steering motor 86 drives the rack shaft 97 via the ball screw 983 or the belt drive 984. Even with this configuration, the same effects as the above embodiment can be obtained.
  • steer-by-wire system (Modified example of steer-by-wire system)
  • the steer-by-wire system 970 may be of a mechanical-electrical integrated type in which the steering motor 88 and the ECU 450 are integrally provided.
  • FIG. 33 shows a pinion drive type
  • FIG. 35 shows a rack coaxial type
  • FIG. 36 shows a rack parallel type, in which a steering motor 86 and an ECU 450 are integrally provided mechanically.
  • the ECU 450 may be provided for each of the two steering motors 86 and 87.
  • FIG. 34 illustrates that the torque sensor 30 is provided with two connector units 300, for example, one connector unit includes four terminal receiving chambers 55 and four terminal forming portions 65 (not shown in FIG. 34). You may form integrally by forming one by one.
  • the ECU 450 is provided integrally with the steering motors 86, 87. Even with this configuration, the same effects as the above embodiment can be obtained.
  • the sensor unit is a torque sensor.
  • the sensor unit may be a sensor other than a torque sensor provided outside the controller unit.
  • a vehicle communication network such as CAN may be regarded as a "sensor unit”, and a connector unit may be formed similarly.
  • the number of systems of signals input from the sensor unit may be three or more.
  • the terminal accommodation chambers and the terminal formation portions be provided in number according to the number of systems, the number of terminal accommodation chambers and terminal formation portions and the number of systems do not necessarily match.
  • each part which constitutes a drive is provided two by two, and is completely two lines.
  • each component constituting the drive device may be one system or three or more systems. Also, some components may be shared between the systems, such as, for example, the battery is shared by multiple systems.
  • the lock mechanism is a snap fit fixing by engagement of the lock portions provided in each of the first connector portion and the second connector portion.
  • the lock portion constituting the lock mechanism may be a separate member from the first connector portion and the second connector portion, for example, even if the lock mechanism is constituted by clamp fixation or bolt fixation. Good.
  • the terminal accommodation chamber and the terminal formation portion are both formed in a substantially rectangular shape in plan view. In other embodiments, the terminal receiving chamber and the terminal forming portion may have any shape.
  • the connector unit provided in the controller unit and the sensor connector unit provided in the sensor unit have the same shape.
  • the connector unit provided on the controller unit side and the connector unit provided on the sensor unit side may have different shapes.
  • the motor is a three-phase brushless motor.
  • any motor may be used, such as, for example, a brushed motor.
  • the column axis and the rack axis are separated.
  • a member capable of switching connection and disconnection such as a clutch may be provided between the column shaft and the rack shaft.
  • the steer-by-wire system may be functioned as a so-called electric power steering apparatus by connecting the column axis and the rack axis.
  • this indication is not limited at all to the above-mentioned embodiment, and can be carried out in various forms in the range which does not deviate from the meaning.

Abstract

第1コネクタ部(51、501)は、コントローラ部(45、450)に設けられる。第2コネクタ部(61、502)は、ハーネス(39)を経由してセンサ部(30)と接続され、第1コネクタ部と嵌まり合う。ロック部(53、63)は、第1コネクタ部と第2コネクタ部とが嵌まり合っている状態にて固定する。第1コネクタ部または第2コネクタ部の一方は、オスコネクタであって、オスコネクタハウジング(52)の内部にて、オス端子(56)が設けられる端子収容室(55)が仕切り部(54)により複数に区画されている。第1コネクタ部または第2コネクタ部の他方は、メスコネクタであって、オス端子と接続されるメス端子(66)が埋設され、端子収容室のそれぞれに挿入される端子形成部(65)がメスコネクタハウジング(62)の内部にて分割されている。シール部材(70)は、端子収容室ごとに設けられる。

Description

制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム 関連出願の相互参照
 本出願は、2017年7月19日に出願された特許出願番号願2017-139912号、および、2017年10月2日に出願された特許出願番号願2017-192711号に基づくものであり、ここにその記載内容を援用する。
 本開示は、制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステムに関する。
 従来、運転者による操舵部材の操舵を補助する電動パワーステアリング装置が知られている。例えば特許文献1では、モータとECUとが一体に設けられている。また、ECUには、給電コネクタおよび信号コネクタが設けられている。
特開2016-36246号公報
 ところで、例えばトルクセンサからの信号入力を多重化する場合のように、トルクセンサから複数の信号が入力される場合、信号毎に防水性を確保するべく、信号毎にコネクタを分割することが考えられる。しかしながら、コネクタを信号毎に分割すると、ECUの体格が大型化する。
 本開示の目的は、コネクタの防水性を確保可能である制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステムを提供することにある。
 本開示の制御ユニットは、コントローラ部と、第1コネクタ部と、第2コネクタ部と、複数のシール部材と、ロック部と、を備える。コントローラ部は、インバータ回路、および、制御部を有する。インバータ回路は、モータ巻線を有するモータの電力を変換する。制御部は、インバータ回路を構成するスイッチング素子のオンオフ作動を制御する。
 第1コネクタ部は、コントローラ部に設けられる。第2コネクタ部は、ハーネスを経由してセンサ部と接続され、第1コネクタ部と嵌まり合う。シール部材は、第1コネクタ部と第2コネクタ部との間に設けられる。ロック部は、第1コネクタ部と第2コネクタ部とが嵌まり合っている状態にて固定する。
 第1コネクタ部または第2コネクタ部の一方は、オスコネクタであって、オスコネクタハウジングの内部にて、オス端子設けられる端子収容室が仕切り部による、複数に区画されている。第1コネクタ部または第2コネクタ部の他方は、メスコネクタであって、オス端子と接続されるメス端子が埋設され、端子収容室のそれぞれに挿入される端子形成部がメスコネクタハウジングの内部にて分割されている。シール部材は、端子収容室ごとに設けられる。
 本開示では、第1コネクタ部および第2コネクタ部のハウジングの内部にて、端子収容室および端子形成部が、複数、独立しており、シール部材がそれぞれ設けられている。これにより、例えば一部のシール部材の破損等により、一部の端子収容室が浸水したとしても、他の端子収容室への浸水を防ぐことができ、防水性を確保することができる。また、コネクタハウジングを複数設ける場合と比較し、体格の大型化や部品点数の増加を最小限に抑えることができる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態によるステアリングシステムを示す概略構成図であり、 図2は、第1実施形態による駆動装置を示すブロック図であり、 図3は、第1実施形態による駆動装置を示す断面図であり、 図4は、図3のIV-IV線断面図であり、 図5は、図3のV方向矢視図であり、 図6は、第1実施形態によるコネクタユニットを示す斜視図であり、 図7は、第1実施形態による第1コネクタ部を示す斜視図であり、 図8は、図7のVIII-VIII線断面図であり、 図9は、図7のIX-IX線断面図であり、 図10は、第1実施形態による第2コネクタ部を示す斜視図であり、 図11は、図10のXI-XI線断面図であり、 図12は、図10のXII-XII線断面図であり、 図13は、第1実施形態によるコネクタユニットの断面図であり、 図14は、第1実施形態によるコネクタユニットの断面図であり、 図15は、第1実施形態による第1コネクタ部と第2コネクタ部とを接続した状態におけるシール部材の状態を示す模式図であり、 図16は、第2実施形態によるコネクタユニットを示す斜視図であり、 図17は、第3実施形態による駆動装置を説明する斜視図であり、 図18は、第4実施形態による駆動装置を説明する斜視図であり、 図19は、第5実施形態によるセンサコネクタユニットを示す斜視図であり、 図20は、第5実施形態によるセンサコネクタユニットを示す断面図であり、 図21は、第6実施形態によるセンサコネクタユニットを示す斜視図であり、 図22は、第7実施形態によるステアリングシステムを示す概略構成図であり、 図23は、第7実施形態によるステアリングシステムを示す概略構成図であり、 図24は、第8実施形態によるステアリングシステムを示す概略構成図であり、 図25は、第9実施形態によるステアリングシステムを示す概略構成図であり、 図26は、第10実施形態によるステアリングシステムを示す概略構成図であり、 図27は、第11実施形態によるステアバイワイヤシステムを示す概略構成図であり、 図28は、第11実施形態によるステアバイワイヤシステムを示すブロック図であり、 図29は、第11実施形態によるステアバイワイヤシステムを示すブロック図であり、 図30は、第12実施形態によるステアバイワイヤシステムを示す概略構成図であり、 図31は、第13実施形態によるステアバイワイヤシステムを示す概略構成図であり、 図32は、第14実施形態によるステアバイワイヤシステムを示す概略構成図であり、 図33は、ステアバイワイヤシステムの変形例を示す概略構成図であり、 図34は、ステアバイワイヤシステムの変形例を示す概略構成図であり、 図35は、ステアバイワイヤシステムの変形例を示す概略構成図であり、 図36は、ステアバイワイヤシステムの変形例を示す概略構成図である。
 以下、本開示による制御ユニット、電動パワーステアリング装置、および、ステアリングシステムを図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
   (第1実施形態)
 第1実施形態による制御ユニット、電動パワーステアリング装置、および、ステアリングシステムを図1~図15に示す。電動パワーステアリング装置901を備えるステアリングシステム90を図1に示す。ステアリングシステム90は、操舵部材としてのステアリングホイール91、ステアリングシャフト92、ピニオンギア96、ラック軸97、車輪98、および、電動パワーステアリング装置901等を備える。
 ステアリングホイール91は、ステアリングシャフト92と接続される。ステアリングシャフト92には、ステアリングシャフト92に入力されるトルクを検出するセンサ部としてのトルクセンサ30が設けられる。ステアリングシャフト92の先端には、ピニオンギア96が設けられる。ピニオンギア96は、ラック軸97に噛み合っている。ラック軸97の両端には、タイロッド等を介して一対の車輪98が設けられる。
 運転者がステアリングホイール91を回転させると、ステアリングホイール91に接続されているステアリングシャフト92が回転する。ステアリングシャフト92の回転運動は、ラックアンドピニオンにより、ラック軸97の直線運動に変換され、ラック軸97の変位量に応じた角度に一対の車輪98が操舵される。
 ステアリングシャフト92は、ステアリングホイール91と接続される第1軸93およびピニオンギア96と接続される第2軸94を有し、第1軸93と第2軸94とは図示しないトーションバーで接続される。トルクセンサ30は、トーションバーの捻れ変位に応じた磁界の変化を検出する。トルクセンサ30は、ハーネス39を経由して、ECU45と接続される。本実施形態では、ハーネス39を経由して接続されるトルクセンサ30およびECU45を、制御ユニット46とする(図6参照)。
 電動パワーステアリング装置901は、トルクセンサ30、および、駆動装置40等を備える。電動パワーステアリング装置901は、トルクセンサ30から取得される操舵トルクに係る信号S1、S2や、車両通信網195、295(図2参照)から取得される車速等の信号に基づき、ステアリングホイール91の操舵を補助するための補助トルクをモータ80から出力する。モータ80から出力されたトルクは、動力伝達部910を介してラック軸97に伝達される。本実施形態のモータ80は、EPSモータである。
 動力伝達部910は、ベルトドライブ機構で構成され、出力軸911、ベルト912、ベアリング913、および、ボールねじ914を有する。出力軸911は、モータ80のシャフト870(図3参照)と一体に回転する。出力軸911の回転は、ベルト912およびベアリング913を経由してボールねじ914に伝達され、ボールねじ914により直線運動に変換される。これにより、ラック軸97の直線運動をアシストする。すなわち、本実施形態の電動パワーステアリング装置901は、モータ80にて発生したトルクをラック軸97に伝達する、いわゆるラックアシストタイプ、詳細にはラックパラレルアシストタイプである。本実施形態では、ラック軸97が「駆動対象」に対応する。
 図1~図3に示すように、駆動装置40は、モータ80、および、コントローラ部としてのECU45を有する。モータ80は、運転者によるステアリングホイール91の操舵を補助する補助トルクを出力するものであって、電源であるバッテリ101、201から電力が供給されることにより駆動され、出力軸911を正逆回転させる。モータ80は、例えば3相ブラシレスモータであって、ステータ840およびロータ860を有する。
 駆動装置40のシステム構成を図2に基づいて説明する。図2に示すように、モータ80は、第1モータ巻線180および第2モータ巻線280を有する。ここで、第1モータ巻線180、および、第1モータ巻線180に対応して設けられ、第1モータ巻線180の通電制御に係る第1インバータ回路120および第1制御部150等の組み合わせを第1系統L1とする。第2モータ巻線280、および、第2モータ巻線280に対応して設けられ、第2モータ巻線280の通電制御に係る第2インバータ回路220および第2制御部250等の組み合わせを第2系統L2とする。
 以下、第1系統L1に係る構成を100番台で付番し、第2系統L2に係る構成を200番台で付番する。また、第1系統L1および第2系統L2において、同様の構成には、下2桁が同じとなるように付番し、説明を適宜省略する。図2において、第1モータ巻線180を「モータ巻線1」、第2モータ巻線280を「モータ巻線2」とする。後述の他の構成についても、図中、系統を示す「第1」を添え字の「1」、「第2」を添え字の「2」として記載する。
 ECU45は、インバータ回路120、220、電源リレー122、222、および、制御部150、250等を備える。ECU45には、コネクタユニット50、電源コネクタ111、211、および、車両通信コネクタ112、212が設けられる。コネクタ111、112、211、212は、集合コネクタ462(図5参照)として一体に設けられているが、複数に分割されていてもよい。
 第1電源コネクタ111は、第1バッテリ101に接続される。第1バッテリ101の電力は、第1電源コネクタ111、第1電源リレー122、第1インバータ回路120、および、第1モータリレー123を経由して、第1モータ巻線180に供給される。また、第1バッテリ101の電力は、第1制御部150および第1系統L1のセンサ類にも供給される。
 第2電源コネクタ211は、第2バッテリ201に接続される。第2バッテリ201の電力は、電源コネクタ211、第2電源リレー222、第2インバータ回路220、および、第2モータリレー223を経由して、第2モータ巻線280に供給される。また、第2バッテリ201の電力は、第2制御部250および第2系統L2のセンサ類にも供給される。
 バッテリ101、201は、同様のものであってもよいし、出力電圧等の性能が異なっていてもよい。バッテリ101、201とコネクタ111、211との間には、出力電圧等に応じてDCDCコンバータ等を設けてもよい。また、電源コネクタ111、211は、同一のバッテリに接続され、系統L1、L2にてバッテリを共用していてもよい。
 第1車両通信コネクタ112は、第1車両通信網195に接続され、第2車両通信コネクタ212は、車両通信網295に接続される。車両通信コネクタ112、212は、同一の車両通信網に接続されてもよい。図2では、車両通信網195、295としてCAN(Controller Area Network)を例示しているが、CAN-FD(CAN with Flexible Data rate)やFlexRay等、どのような規格のものでもよい。コネクタユニット50は、トルクセンサ30と接続される。
 トルクセンサ30は、磁気信号変換部31、エンコーダ132、232を有し、ステアリングシャフト92に入力される操舵トルクを検出する。磁気信号変換部31は、ステアリングシャフト92に入力されたトルクに応じたトーションバーの捻れ変位を磁気信号に変換する。
 エンコーダ132、232は、磁気信号変換部31の検出信号を電気信号に変換する。第1エンコーダ132の信号S1は、コネクタユニット50、および、第1インターフェース回路133を経由して、第1制御部150に入力される。第2エンコーダ232の信号S2は、コネクタユニット50、および、第2インターフェース回路233を経由して、第2制御部250に入力される。インターフェース回路133、233には、ノイズフィルタが含まれる。
 信号S1、S2は、いずれも操舵トルクに係る信号であって、冗長信号であるといえる。本実施形態では、2系統の冗長信号である信号S1、S2が、それぞれ、制御部150、250に入力される。なお、信号S1、S2は、完全に同一である必要はなく、制御部150、250側にて操舵トルクに換算可能な値を含んでいれば、操舵トルクに係る「冗長信号」とみなす。
 第1インバータ回路120は、6つのスイッチング素子121(図4参照)を有する3相インバータであって、第1モータ巻線180へ供給される電力を変換する。第1インバータ回路120のスイッチング素子121は、第1制御部150から出力される制御信号に基づいてオンオフ作動が制御される。第2インバータ回路220は、6つのスイッチング素子221(図4参照)を有する3相インバータであって、第2モータ巻線280へ供給される電力を変換する。第2インバータ回路220のスイッチング素子221は、第2制御部250から出力される制御信号に基づいてオンオフ作動が制御される。
 第1電源リレー122は、第1電源コネクタ111と第1インバータ回路120との間に設けられる。第1電源リレー122は、第1制御部150により制御され、オンのときに第1バッテリ101側と第1インバータ回路120側との間の通電が許容され、オフのときに第1バッテリ101側と第1インバータ回路120側との通電が禁止される。第2電源リレー222は、第2電源コネクタ211と第2インバータ回路220との間に設けられる。第2電源リレー222は、第2制御部250により制御され、オンのときに第2バッテリ201側と第2インバータ回路220側との間の通電が許容され、オフのときに第2バッテリ201側と第2インバータ回路220側との通電が禁止される。
 第1モータリレー123は、第1インバータ回路120と第1モータ巻線180との間の各相に設けられる。第1モータリレー123は、第1制御部150により制御され、オンのときに第1インバータ回路120側と第1モータ巻線180との間の通電が許容され、オフのときに第1インバータ回路120側と第1モータ巻線180との間の通電が禁止される。第2モータリレー223は、第2インバータ回路220と第2モータ巻線280との間の各相に設けられる。第2モータリレー223は、第2制御部250により制御され、オンのときに第2インバータ回路220側と第2モータ巻線280との間の通電が許容され、オフのときに第2インバータ回路220側と第2モータ巻線280との間の通電が禁止される。
 第1電流センサ125は、第1モータ巻線180の各相に通電される電流を検出し、検出値を第1制御部150に出力する。第2電流センサ225は、第2モータ巻線280の各相に通電される電流を検出し、検出値を第2制御部250に出力する。第1回転角センサ126は、モータ80の回転角を検出し、第1制御部150に出力する。第2回転角センサ226は、モータ80の回転角を検出し、第2制御部250に出力する。
 第1ドライバ回路140は、第1制御部150からの制御信号に基づき、第1インバータ回路120のスイッチング素子、第1電源リレー122、および、第1モータリレー123を駆動する駆動信号を各素子に出力する。第2ドライバ回路240は、第2制御部250からの制御信号に基づき、第2インバータ回路220のスイッチング素子、第2電源リレー222、および、第2モータリレー223を駆動する駆動信号を各素子に出力する。
 第1制御部150は、デコーダ151、および、フィードバック制御部155等を有する。第2制御部250は、デコーダ251、および、フィードバック制御部255等を有する。
 制御部150、250は、マイコン等を主体として構成され、内部にはいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。ECU45における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。後述の制御部160、260も同様である。
 デコーダ151は、エンコーダ132から入力される電気信号である信号S1を、操舵トルクに応じた信号であって、各種演算に利用可能な操舵トルク信号にデコードする。デコーダ251は、エンコーダ232から入力される電気信号である信号S2を、操舵トルクに応じた信号であって、各種演算に利用可能な操舵トルク信号にデコードする。
 フィードバック制御部155は、電流センサ125および回転角センサ126の検出値、車両通信網195から車両通信回路117を経由して取得される車速信号等の車両信号、ならびに、デコーダ151から取得される操舵トルク信号等に基づくフィードバック演算を行い、スイッチング素子121の駆動を制御する制御信号を生成する。フィードバック制御部255は、電流センサ225および回転角センサ226の検出値、車両通信網295から車両通信回路217を経由して取得される車速信号等の車両信号、ならびに、デコーダ251から取得される操舵トルク信号等に基づくフィードバック演算を行い、スイッチング素子221の駆動を制御する制御信号を生成する。
 駆動装置40の構成を図3~図5に基づいて説明する。本実施形態の駆動装置40は、モータ80の軸方向の一方側にECU45が一体的に設けられており、いわゆる「機電一体型」である。ECU45は、モータ80の出力軸911(図1参照)とは反対側において、シャフト870の軸Axに対して同軸に配置されている。ECU45は、モータ80の出力軸911側に設けられていてもよい。機電一体型とすることで、搭載スペースに制約のある車両において、ECU45とモータ80とを効率的に配置することができる。
 モータ80は、ステータ840、ロータ860、および、これらを収容するハウジング830等を備える。ステータ840は、ハウジング830に固定されており、モータ巻線180、280が巻回される。ロータ860は、ステータ840の径方向内側に設けられ、ステータ840に対して相対回転可能に設けられる。
 シャフト870は、ロータ860に嵌入され、ロータ860と一体に回転する。シャフト870は、軸受835、836により、ハウジング830に回転可能に支持される。シャフト870のECU45側の端部は、ハウジング830からECU45側に突出する。シャフト870のECU45側の端部には、マグネット875が設けられる。
 ハウジング830は、リアフレームエンド837を含む有底筒状のケース834、および、ケース834の開口側に設けられるフロントフレームエンド838を有する。ケース834とフロントフレームエンド838とは、ボルト等により互いに締結されている。リアフレームエンド837には、リード線挿通孔839が形成される。リード線挿通孔839には、モータ巻線180、280の各相と接続されるリード線181、281が挿通される。リード線181、281は、リード線挿通孔839からECU45側に取り出され、基板470に接続される。
 ECU45は、カバー460、カバー460に固定されているヒートシンク465、ヒートシンク465に固定されている基板470、および、基板470に実装される各種の電子部品等を備える。
 カバー460は、外部の衝撃から電子部品を保護したり、ECU45の内部への埃や水等の浸入を防止したりする。カバー460は、カバー本体461、集合コネクタ462、および、後述の第1コネクタ部51が一体に形成される。なお、集合コネクタ462および第1コネクタ部51の少なくとも一方は、カバー本体461と別体であってもよい。集合コネクタ462の端子463は、図示しない配線等を経由して基板470と接続される。なお、端子数は、信号数等に応じて適宜変更可能である。集合コネクタ462および第1コネクタ部51は、駆動装置40の軸方向の端部に設けられ、モータ80と反対側に開口する。
 基板470は、例えばプリント基板であり、リアフレームエンド837と対向して設けられる。基板470には、2系統分の電子部品が系統ごとに独立して実装されており、完全冗長構成をなしている。本実施形態では、1枚の基板470に電子部品が実装されているが、複数枚の基板に電子部品を実装するようにしてもよい。
 基板470の2つの主面のうち、モータ80側の面をモータ面471、モータ80と反対側の面をカバー面472とする。図4に示すように、モータ面471には、インバータ回路120を構成するスイッチング素子121、インバータ回路220を構成するスイッチング素子221、回転角センサ126、226、カスタムIC159、259等が実装される。回転角センサ126、226は、マグネット875の回転に伴う磁界の変化を検出可能なように、マグネット875と対向する箇所に実装される。カスタムIC159、259には、それぞれ、インターフェース回路133、233およびドライバ回路140、240等が含まれる。
 カバー面472には、コンデンサ128、228、インダクタ129、229、および、制御部150、250を構成するマイコン等が実装される。図4では、制御部150、250を構成するマイコンについて、それぞれ「150」、「250」を付番した。コンデンサ128、228は、バッテリ101、201から入力された電力を平滑化する。また、コンデンサ128、228は、電荷を蓄えることで、モータ80への電力供給を補助する。コンデンサ128、228、および、インダクタ129、229は、フィルタ回路を構成し、バッテリ101、201を共用する他の装置から伝わるノイズを低減するとともに、駆動装置40からバッテリ101、201を共用する他の装置に伝わるノイズを低減する。なお、図4中には図示を省略しているが、電源リレー122、222、モータリレー123、223、および、電流センサ125、225等についても、モータ面471またはカバー面472に実装される。
 図6に示すように、コネクタユニット50は、第1コネクタ部51、第2コネクタ部61、および、シール部材70(図10等参照)を有する。本実施形態では、第1コネクタ部51がオスコネクタであり、第2コネクタ部61がメスコネクタである。図6においては、駆動装置40を簡略化して記載しており、集合コネクタ462等は省略した。図16~図19、図21についても同様である。
 第1コネクタ部51は、ECU45のカバー本体461と一体に設けられる。第2コネクタ部61は、ハーネス39の先端に設けられている。ハーネス39の第2コネクタ部61と反対側の端部は、トルクセンサ30と一体に設けられる。第1コネクタ部51と第2コネクタ部61とを接続することで、トルクセンサ30とECU45との間での信号伝達が可能となり、トルクセンサ30からの信号S1、S2をECU45に送信可能となる。本実施形態では、2系統分の信号S1、S2を送信する信号線が、1本のハーネス39の内部に設けられる。
 図7~図9に第1コネクタ部51、図10~図12に第2コネクタ部61を示す。図7~図9に示すように、第1コネクタ部51は、ハウジング52およびオス端子56等を有する。本実施形態では、ハウジング52が「オスコネクタハウジング」に対応する。ハウジング52は、カバー本体461と一体に形成される。ハウジング52は、樹脂等で形成され、外壁面521には、ロック部53が立設される。
 ハウジング52には、先端側に開口する2つの端子収容室55が形成される。端子収容室55の間には、仕切り部54が形成される。ハウジング52の周壁部525の先端面と、仕切り部54の先端面とは、同一平面上となるように形成される。なお、「同一平面上」とは、製造誤差程度は許容されるものとする。
 本実施形態では、トルクセンサ30からの信号S1、S2は2系統であり、端子収容室55は、それぞれの系統に対応するように、2つ形成されている。すなわち、信号S1は、一方の端子収容室55に形成されるオス端子56を経由して入力され、信号S2は、他方の端子収容室に形成されるオス端子56を経由して入力される。
 オス端子56は、基端側がハウジング52に埋設され、先端側が端子収容室55内に突出する。本実施形態では、1つの端子収容室55に4本のオス端子56が設けられている。すなわち本実施形態では、1系統につき、4本のオス端子56が設けられる。端子数は、信号数に応じて、いくつであってもよい。後述のメス端子66も同様である。
 芯線57は、オス端子56の基端側に接続される。芯線57は、オス端子56との接続箇所を除き、被覆部571にて被覆される。芯線57のオス端子56と接続される側と反対側の端部は、ハウジング52から取り出され、基板470と接続される。芯線57とハウジング52との間には、弾性材で形成される止水部材58が設けられる。
 図10~図12に示すように、第2コネクタ部61は、ハウジング62およびメス端子66等を有する。本実施形態では、ハウジング62が「メスコネクタハウジング」に対応する。ハウジング62は、ハウジング本体621およびロック部形成部628を有する。ハウジング本体621は、樹脂等で有底筒状に形成される。ロック部形成部628は、樹脂等で形成され、ハウジング本体621の一方の幅広面およびハーネス39と接続される側を覆うように、ハウジング本体621に固定される。ロック部形成部628には、ロック部63が形成される。
 端子形成部65は、ハウジング本体621と一体に形成されている。2つの端子形成部65は、ハウジング本体621の周壁部625の内側に、2股に形成されている。端子形成部65の端面は、周壁部625の先端面と同一平面上となるように形成される。2つの端子形成部65の間、および、端子形成部65と周壁部625との間には、第1コネクタ部51のハウジング52の先端側が挿入される嵌合溝626が形成される。2つの端子形成部65間の溝部627には、仕切り部54が挿入される。
 メス端子66は、端子形成部65に埋設されている。本実施形態では、1つの端子形成部65に4本のメス端子66が設けられる。端子形成部65は、メス端子66の先端側に開口651が形成される。第1コネクタ部51と第2コネクタ部61とが接続されると、オス端子56の先端は、開口651に挿入されて、メス端子66と当接する。これにより、オス端子56とメス端子66とが電気的に接続される。
 芯線67は、メス端子66の基端側に接続される。芯線67は、メス端子66との接続箇所を除き、被覆部671にて被覆される。芯線67のメス端子66と接続される側と反対側の端部は、ハウジング62から取り出され、ハーネス39の内部に設けられる。芯線67とハウジング62との間には、弾性材で形成される止水部材68が設けられる。
 シール部材70は、端子形成部65ごとに設けられる。矢印Asで示すように、シール部材70は、端子形成部65の外周側に嵌め込まれる。
 第1コネクタ部51と第2コネクタ部61との接続について、図13および図14に基づいて説明する。図13は、図9および図11に対応する断面図であり、図14は図10および図12に対応する断面図である。
 図13および図14に示すように、第1コネクタ部51は、第2コネクタ部61の嵌合溝626に挿入される。このとき、端子形成部65は、それぞれ、対応する系統の端子収容室55に挿入される。これにより、オス端子56とメス端子66とは、仕切り部54にて系統ごとに間仕切られた空間にて、電気的に接続される。
 シール部材70は、ゴム等の弾性材にて形成され、第1コネクタ部51と第2コネクタ部61との間に設けられる。図15は、シール部を拡大した模式図である。図15に示すように、シール部材70は、第1コネクタ部51が挿入されていない状態にて、第2コネクタ部61の端子形成部65の外周に嵌め込まれている。第1コネクタ部51が第2コネクタ部61の嵌合溝626に挿入されると、シール部材70は、ハウジング52の内壁面522または仕切り部54の側壁面542と端子形成部65の周壁面652との間にて、面接触にて、嵌合時の応力Fにより、潰れ代Agの分、押し潰される。これにより、第1コネクタ部51と第2コネクタ部61との間の隙間が埋められ、オス端子56とメス端子66との接続部が気密状態となる。したがって、矢印Awで示すように、外部からの浸水から、端子56、66の接続部が守られる。
 また、第1コネクタ部51のロック部53は、開口側が低くなる傾斜面531、および、開口と反対側にて、ハウジング52の外壁面521に略垂直に形成される係止面532を有し、側面視略台形状に形成される(図8参照)。第1コネクタ部51が第2コネクタ部61に挿入されるとき、傾斜面531が第2コネクタ部61のロック部63をスライドする。そして、係止面532がロック部63に係止されることで第1コネクタ部51が第2コネクタ部61に挿入された状態にて、スナップフィット固定される。本実施形態では、保持角が略90°にてロック状態となるため、第1コネクタ部51と第2コネクタ部61とは、着脱不能となる。これにより、シール部材70の弾性力にて第1コネクタ部51が押し戻されて嵌合が外れるのを防止し、オス端子56とメス端子66との接続部の気密状態が半永久的に維持される。換言すると、系統毎に配線が密閉された状態が維持される。
 本実施形態では、端子収容室55および端子形成部65が系統毎に設けられており、それぞれにシール部材70が設けられる。すなわち、信号S1、S2の経路毎に、独立して防水性が確保されている、といえる。そのため、仮に、一方の系統の端子収容室55が浸水し、例えばピン間ショート等の異常が生じたとしても、他方の系統の端子収容室55への浸水を防ぐことができるので、両系統が共に浸水する確率を低減することができる。本実施形態では、操舵トルクに係る信号S1、S2を用いてモータ80の駆動を制御している。そのため、トルクセンサ30からの信号S1、S2が共に利用できない場合、適切なアシスト制御ができないため、モータ80の駆動を停止し、マニュアルステアとなる。本実施形態では、一方の系統が浸水したとしても、他方の系統が浸水していなければ、トルクセンサ30からの信号S1、S2のいずれか一方が利用可能であるので、操舵トルクに基づいてモータ80を駆動し、操舵のアシストを継続することができる。
 本実施形態では、第1コネクタ部51において、仕切り部54を設けることで、同一のハウジング52内にて、独立した2つの端子収容室を形成している。また、第2コネクタ部61において、同一のハウジング62内にて、端子形成部65を2股にしている。そして、第1コネクタ部51を第2コネクタ部61に挿入することで、系統ごとに独立した空間にて、オス端子56とメス端子66とを接続している。これにより、系統毎にコネクタユニットを別途に設ける場合と比較し、部品点数の増加や、装置の大型化を防ぐことができる。また、系統毎の接続の独立性を確保しつつ、トルクセンサ30の信号が1系統である場合と同等の車両搭載性を確保することができる。
 以上説明したように、本実施形態の制御ユニット46は、ECU45と、第1コネクタ部51と、第2コネクタ部61と、複数のシール部材70と、ロック部53、63と、を備える。ECU45は、モータ巻線180、280を有するモータ80の電力を変換するインバータ回路120、220、および、インバータ回路120、220を構成するスイッチング素子121、221のオンオフ作動を制御する制御部150、250を有する。
 第1コネクタ部51は、ECU45に設けられる。第2コネクタ部61は、ハーネス39を経由してトルクセンサ30と接続され、第1コネクタ部51と嵌まり合う。シール部材70は、第1コネクタ部51と第2コネクタ部61との間に設けられる。ロック機構を構成するロック部53、63は、第1コネクタ部51と第2コネクタ部61とが嵌まり合っている状態にて固定する。
 第1コネクタ部51または第2コネクタ部61は、一方がオスコネクタであり、他方がメスコネクタである。本実施形態では、第1コネクタ部51がオスコネクタであり、第2コネクタ部61がメスコネクタである。ここで、コネクタ部51、61に付された「第1」、「第2」は、コネクタユニット50を構成する2つの部材を区別するものであって、系統を区別するものとは異なることを補足しておく。第5実施形態のセンサコネクタユニット300についても同様である。
 第1コネクタ部51は、ハウジング52の内部にて、オス端子56が設けられる端子収容室55が、仕切り部54により、複数に区画されている。第2コネクタ部61は、メス端子66が埋設され、端子収容室55のそれぞれに挿入される端子形成部65が、ハウジング62の内部にて分割されている。シール部材70は、端子収容室55ごとに設けられる。
 本実施形態では、ハウジング52、62の内部にて、端子収容室55および端子形成部65が、複数、独立しており、シール部材70がそれぞれの端子収容室55に設けられている。これにより、例えば一部のシール部材70の破損等により一部の端子収容室55が浸水したとしても、他の端子収容室55への浸水を防ぐことができ、コネクタユニット50の防水性を確保することができる。また、コネクタハウジングを複数設ける場合と比較し、駆動装置40の体格の大型化や部品点数の増加を最小限に抑えることができる。
 シール部材70は、ハウジング52の内壁面522または仕切り部54の側壁面542と、端子形成部65の周壁面652との間に設けられる。シール部材70は、面接触にて押し潰されることで、端子56、56の接続箇所の気密状態を適切に保つことができる。
 トルクセンサ30は、冗長的な複数系統の信号S1、S2を出力可能である。端子収容室55および端子形成部65は、トルクセンサ30からの信号S1、S2の系統毎に設けられる。これにより、信号の多系統化に伴う体格の大型化を抑えつつ、浸水により全系統の信号が利用できなくなるのを防ぐことができる。
 モータ80は、複数組のモータ巻線180、280を有する。インバータ回路120、220および制御部150、250は、モータ巻線180、280毎に設けられる。トルクセンサ30から出力される信号は、系統毎に対応する制御部150、250に入力される。これにより、一方の系統に異常が生じた場合であっても、他方の系統を用いてモータ80の駆動を継続することができる。
 トルクセンサ30と第2コネクタ部61とを接続するハーネス39は、トルクセンサ30と一体に設けられている。これにより、トルクセンサ30からの信号は、ハーネス39を経由して、ECU45に適切に送信される。
 トルクセンサ30は、操舵トルクを検出するトルクセンサである。これにより、操舵トルクに係る信号S1、S2を適切にECU45に入力することができる。
 電動パワーステアリング装置901は、制御ユニット46と、ECU45と一体に設けられ、運転者による操舵をアシストするアシストトルクを出力するモータ80と、を備える。これにより、一部の系統が浸水した場合であっても、他方の系統にて操舵のアシストを継続することができる。また、ECU45とモータ80とを一体に設けることで、駆動装置40の体格を小型化することができる。
 ステアリングシステム90は、電動パワーステアリング装置901と、動力伝達部910と、運転者により操舵されるステアリングホイール91と、ステアリングシャフト92と、ピニオンギア96と、ラック軸97と、を備える。動力伝達部910は、モータ80から出力されたトルクを駆動対象であるラック軸97に伝達する。ステアリングシャフト92は、ステアリングホイール91と一体に回転する。ピニオンギア96は、ステアリングシャフト92の先端に設けられる。ラック軸97は、ピニオンギア96と噛み合い、ピニオンギア96の回転運動を直線運動に変換する。
 モータ80は、ラック軸97に沿って設けられる。ここで、モータ80の軸線がラック軸97の軸線と平行に配置されている状態を、「モータがラック軸に沿って設けられる」とする。なお、「平行」とは、設置誤差程度のずれは許容されるものとする。以下の実施形態についても同様である。
 動力伝達部910は、ベルトドライブ機構を有する。モータ80のトルクにより、ラック軸97の直線運動をアシストすることで、運転者による操舵を適切にアシストすることができる。また、駆動装置40が、例えばエンジンルーム内の地面に比較的近い箇所に配置され、水はね等により被水した場合であっても、防水性が確保されているので、アシスト制御を適切に継続することができる。
   (第2実施形態)
 第2実施形態を図16に基づいて説明する。図16に示すように、本実施形態のコネクタユニット500は、第1コネクタ部501、第2コネクタ部502、および、シール部材70を有する。図16~図19および図21において、シール部材70の図示を省略する。本実施形態では、第1コネクタ部501が、第1実施形態の第2コネクタ部61と同様のメスコネクタであり、第2コネクタ部502が第1実施形態の第1コネクタ部51と同様のオスコネクタである。第1コネクタ部501と第2コネクタ部502との接続関係等の詳細は、上記実施形態と同様である。このように構成しても、上記実施形態と同様の効果を奏する。
   (第3実施形態、第4実施形態)
 第3実施形態を図17、第4実施形態を図18に示す。図17に示すように、第3実施形態の駆動装置41は、ECU45とモータ80とが別々に設けられており、機電接続ハーネス49で接続されている「機電別体型」である。すなわち、本実施形態の電動パワーステアリング装置901(図17および図18では不図示)は、制御ユニット46と、ECU45と機電接続ハーネス49で接続され、運転者による操舵をアシストするアシストトルクを出力するモータ80と、を備える。機電別体型とすることで、ECU45の配置の自由度が高まる。
 本実施形態のコネクタユニット50は、第1実施形態と同様であり、第1コネクタ部51がオスコネクタであり、第2コネクタ部61がメスコネクタである。また、図18に示す第4実施形態のコネクタユニット500は第2実施形態と同様であり、第1コネクタ部501がメスコネクタであり、第2コネクタ部502がオスコネクタである。このように構成しても、上記実施形態と同様の効果を奏する。
   (第5実施形態)
 第5実施形態を図19および図20に示す。図20は、センサコネクタユニット300の横方向断面図である。上記実施形態のトルクセンサ30は、ハーネス39が一体に設けられているのに対し、第5実施形態のトルクセンサ30とハーネス39とは、センサコネクタユニット300を介して接続される。なお、図19および後述の図21においては、ECU45側の構成の記載を省略しているが、ECU側コネクタユニットや駆動装置は、上記のいずれの実施形態のものであってもよい。
 センサコネクタユニット300は、第1センサコネクタ部310、第2センサコネクタ部320、および、シール部材330を有する。第1センサコネクタ部310と第2センサコネクタ部320とを接続することで、トルクセンサ30とハーネス39との間での信号伝達が可能となり、ハーネス39を経由して、トルクセンサ30からの信号S1、S2をECU45に送信可能となる。
 第1センサコネクタ部310は、ハウジング312およびセンサ側オス端子316等を有する。ハウジング312は、トルクセンサ30と一体に形成され、外周面にはロック部313が形成される。ハウジング312には、先端側に開口する2つのセンサ側端子収容室315が形成される。
 センサ側オス端子316は、センサ側端子収容室315に突出する。センサ側オス端子316の基端側には、芯線317が接続される。芯線317のセンサ側オス端子316と接続される側と反対側の端部は、ハウジング312から取り出され、エンコーダ132、232と接続される。
 第2センサコネクタ部320は、ハウジング322およびセンサ側メス端子326等を有する。ハウジング322には、ロック部323が形成される。2つのセンサ側端子形成部325は、ハウジング322と一体に形成される。換言すると、センサ側端子形成部325は、ハウジング322の周壁部の内側に、2股に形成されている。
 センサ側メス端子326は、センサ側端子形成部325に埋設されている。センサ側メス端子326の基端側には、芯線327が接続される。芯線327のセンサ側メス端子326と接続される側とは反対側の端部は、ハウジング322から取り出され、ハーネス39の内部に設けられる。シール部材330は、センサ側端子収容室315ごとに設けられる。
 第1センサコネクタ部310は、オスコネクタであって、第1実施形態の第1コネクタ部51と略同様であり、第2センサコネクタ部320は、メスコネクタであって、第1実施形態の第2コネクタ部61と略同様である。また、センサコネクタユニット300の接続形態は、第1実施形態のコネクタユニット50と同様であるので、詳細な説明を省略する。
 制御ユニット46は、第1センサコネクタ部310と、第2センサコネクタ部320と、をさらに備える。第1センサコネクタ部310は、トルクセンサ30に設けられる。第2センサコネクタ部320は、ハーネス39により第2コネクタ部61と接続され、第1センサコネクタ部310と嵌まり合う。
 本実施形態のように、トルクセンサ30とハーネス39とをセンサコネクタユニット300にて接続するようにしても、トルクセンサ30の信号をECU45側へ適切に出力することができる。
 制御ユニット46は、複数のシール部材330と、センサコネクタロック部313、323と、をさらに備える。シール部材330は、第1センサコネクタ部310と第2センサコネクタ部320との間に設けられる。ロック部313、323は、第1センサコネクタ部310と第2センサコネクタ部320とが嵌まり合っている状態にて固定する。
 第1センサコネクタ部310または第2センサコネクタ部320は、一方がオスコネクタであり、他方がメスコネクタである。本実施形態では、第1センサコネクタ部310がオスコネクタであり、第2センサコネクタ部320がセンサ側メス端子326を有するメスコネクタである。
 第1センサコネクタ部310は、ハウジング312の内部にて、センサ側オス端子316が設けられるセンサ側端子収容室315がセンサ側仕切り部314により、複数に区画されている。第2センサコネクタ部320は、センサ側オス端子316と接続されるセンサ側メス端子326が埋設され、センサ側端子収容室315のそれぞれに挿入されるセンサ側端子形成部325がハウジング322の内部にて分割されている。シール部材330は、センサ側端子収容室315ごとに設けられる。
 本実施形態では、ハウジング312、322の内部で端子収容室315および端子形成部325が、複数、独立しており、シール部材330がそれぞれ設けられている。これにより、例えば一部のシール部材330の破損等により一部のセンサ側端子収容室315が浸水したとしても、他のセンサ側端子収容室315への浸水を防ぐことができ、センサコネクタユニット300の防水性を確保することができる。また、コネクタハウジングを複数設ける場合と比較し、トルクセンサ30の体格の大型化や部品点数の増加を最小限に抑えることができる。
 本実施形態では、ハウジング312が「センサ側オスハウジング」、ハウジング322が「センサ側メスハウジング」に対応する。また、ロック部313、323が「センサコネクタロック部」に対応し、シール部材330が「センサコネクタシール部材」に対応する。なお、「センサ側端子収容室」等、センサコネクタユニット300に係る構成の名称に付された「センサ側」の文言については、配置関係を意味するものではなく、コネクタユニット50の構成と区別すべく付しているものであることを補足しておく。
   (第6実施形態)
 図21に示す第6実施形態のセンサコネクタユニット350は、トルクセンサ30と一体に設けられる第1センサ側コネクタユニット部351が、第1実施形態の第2コネクタ部61と同様のメスコネクタであり、ハーネス39側に設けられる第2センサコネクタ部352が、第2実施形態の第1コネクタ部51と同様のオスコネクタである。このように構成しても、上記実施形態と同様の効果を奏する。
   (第7実施形態~第10実施形態)
 第7実施形態~第10実施形態を図22~図26に示す。第7実施形態~第10実施形態は、ステアリングシステム90のバリエーションであって、機電一体型のものを例示するが、機電別体型としてもよい。また、コネクタユニット50に替えて、コネクタユニット550としてもよいし、センサコネクタユニット300に替えて、センサコネクタユニット350としてもよい。さらにまた、第1実施形態等のように、トルクセンサ30とハーネス39とが一体であってもよい。後述のステアバイワイヤシステムに係る実施形態についても同様である。
 図22に示すように、第7実施形態では、動力伝達部920は、モータ80のトルクをラック軸97に伝達するボールねじ921を有する。本実施形態では、駆動装置40は、ラック軸97と同軸に設けられており、モータ80の回転は、ボールねじ921により直線運動に変換される。これにより、ラック軸97の直線運動をアシストする。すなわち、本実施形態の電動パワーステアリング装置901は、モータ80にて発生したトルクをラック軸97に伝達する、いわゆるラックアシストタイプ、詳細にはラック同軸アシストタイプである。本実施形態では、ラック軸97が「駆動対象」に対応する。
 本実施形態では、コネクタユニット50は、ECU45の径方向外側を向いて設けられている。第1実施形態等においても、コネクタユニット50を、駆動装置40の軸方向端部に設けることに替えて、駆動装置40の径方向外側を向いて設けるようにしてもよい。また、図23に示すように、ECU45をモータ80と同軸に配置することに替えて、ECU45をモータ80の側方に設けるようにしてもよい。
 図24に示すように、第8実施形態では、動力伝達部930は、モータ80のトルクをピニオンギア96に伝達するウォームギア931を有する。ウォームギア931のウォームは、モータ80により駆動され、ウォームホイールは、ピニオンギア96と一体に回転する。すなわち、本実施形態の電動パワーステアリング装置901は、モータ80にて発生したトルクをピニオンギア96に伝達する、いわゆるピニオンアシストタイプである。本実施形態では、ピニオンギア96が「駆動対象」に対応する。
 図25に示すように、第9実施形態では、動力伝達部940は、ウォームギア941、および、ピニオン942を有する。ウォームギア941のウォームは、モータ80により駆動され、ウォームホイールは、ピニオン942と一体に回転する。これにより、モータ80のトルクは、ピニオン942に伝達される。ピニオン942は、ピニオンギア96とは別途に設けられており、ラック軸97に噛み合っている。すなわち、本実施形態の電動パワーステアリング装置901は、モータ80にて発生したトルクをピニオンギア96とは別途に設けられるピニオン942に伝達する、いわゆるデュアルピニオンアシストタイプである。本実施形態では、ラック軸97が「駆動対象」に対応する。
 図26に示すように、第10実施形態では、駆動装置40は、モータ80の軸線がステアリングシャフト92の軸線と平行に配置される。動力伝達部950は、モータ80のトルクをステアリングシャフト92に伝達する減速機951を有する。モータ80の回転は、減速機951を経由してステアリングシャフト92に伝達される。すなわち、本実施形態の電動パワーステアリング装置901は、モータ80にて発生したトルクをステアリングシャフト92に伝達する、いわゆるコラムアシストタイプである。本実施形態では、ステアリングシャフト92が「駆動対象」に対応する。第7実施形態~第10実施形態のように構成しても、上記実施形態と同様の効果を奏する。
   (第11実施形態)
 第11実施形態を図27~図29に示す。上記実施形態では、制御ユニット46は、ステアリングシステム90に適用される。第11実施形態では、制御ユニット46は、ステアバイワイヤシステム970に適用される。
 図27に示すように、ステアバイワイヤシステム970は、ステアリングホイール91、ステアリングシャフト971、ピニオンギア96、ラック軸97、車輪98、および、操舵装置975等を備える。操舵装置975は、反力モータ85、転舵モータ86、および、制御ユニット46等を有する。本実施形態の制御ユニット46は、コントローラ部として、上記実施形態のECU45に替えて、ECU450が設けられる。ECU450と反力モータ85とは、コネクタ451、ハーネス491およびコネクタ851を経由して接続される。ECU450と転舵モータ86とは、コネクタ452、ハーネス492およびコネクタ861を経由して接続される。
 ステアリングホイール91は、ステアリングシャフト971の一端に接続される。ステアリングシャフト971には、ステアリングシャフト971に入力されるトルクを検出するトルクセンサ30が設けられる。ステアリングシャフト971の先端には、反力モータ85が設けられており、ステアリングシャフト971は、ラック軸97と分離されている。
 反力モータ85は、運転者の操舵に応じた反力をステアリングホイール91に与えることで、運転者に適切な操舵フィーリングを与えるものである。反力モータ85は、例えば3相ブラシレスモータであって、第1モータ巻線185および第2モータ巻線285を有する(図28参照)。
 転舵モータ86は、その回転により、車輪98の転舵角を制御する。転舵モータ86は、例えば3相ブラシレスモータであって、第1モータ巻線186および第2モータ巻線286を有する(図28参照)。本実施形態では、転舵モータ86の回転により、ピニオンギア96が回転する。ピニオンギアの回転運動は、ラックアンドピニオンにより、ラック軸97の直線運動に変換され、ラック軸97の変位量に応じた角度に一対の車輪98が転舵される。すなわち本実施形態のステアバイワイヤシステム970は、ピニオン駆動タイプである。
 図28に示すように、反力モータ回転角センサ891は、反力モータ85の回転角を検出する。転舵モータ回転角センサ892は、転舵モータ86の回転角を検出する。ラックストロークセンサ893は、ラックストローク量を検出する。車速センサ894は、車両の走行速度を検出する。
 反力モータ回転角センサ891、転舵モータ回転角センサ892、ラックストロークセンサ893および車速センサ894の検出値は、図示しないコネクタおよび配線等を経由して取得される。センサ891~894の検出値は、センサがECU450の内部にあれば、内部的に取得すればよいし、車両通信網195、295(図28では不図示)等から通信にて取得してもよい。
 ECU450は、図示しない基板、基板に実装される各種の電子部品、および、これらを収容する筐体等を備える。基板に実装される電子部品には、制御部160、260、および、インバータ回路167、168、267、268を構成するスイッチング素子等が含まれる。筐体には、コネクタユニット50が設けられる。コネクタユニット50の詳細は、上記実施形態と同様である。
 第1制御部160は、デコーダ151、第1基本反力制御部161、第1反力補正部162、第1最終反力制御部163、および、第1転舵制御部165を有する。第2制御部260は、デコーダ251、第2基本反力制御部261、第2反力補正部262、第2最終反力制御部263、および、第2転舵制御部265を有する。図28では、制御部160、260は、それぞれ別途のマイコンにて構成されるが、図29に示すように、制御部160、260を1つのマイコン455にて構成するようにしてもよい。上述の制御部150、250についても同様である。なお、図28および図29では、デコーダ151、251の図示を省略した。
 第1基本反力制御部161は、トルクセンサ30からの信号S1、反力モータ回転角センサ891の検出値、および、ラックストロークセンサ893の検出値等に基づき、反力モータ85に指令する基本反力Hb1を算出する。第2基本反力制御部261は、トルクセンサ30からの信号S2、反力モータ回転角センサ891の検出値、および、ラックストロークセンサ893の検出値等に基づき、反力モータ85に指令する基本反力Hb2を算出する。基本反力とは、基本的な状態量に基づく反力である。
 反力補正部162、262は、転舵モータ回転角センサ892の検出値、および、ラックストロークセンサ893の検出値等に基づき、車両挙動の状態に応じた補正反力Hc1、Hc2を算出する。
 第1最終反力制御部163は、第1基本反力制御部161にて演算された基本反力Hb1、および、第1反力補正部162にて演算された補正反力Hc1に基づき、反力モータ85がステアリングホイール91に与える最終反力Hf1を算出する。第2最終反力制御部263は、第2基本反力制御部261にて演算された基本反力Hb2、および、第2反力補正部262にて演算された補正反力Hc2に基づき、反力モータ85がステアリングホイール91に与える最終反力Hf2を算出する。
 第1転舵制御部165は、トルクセンサ30からの信号S1、ラックストロークセンサ893の検出値、および、車速センサ894の検出値等に基づき、転舵トルクTb1を算出する。第2転舵制御部265は、トルクセンサ30からの信号S2、ラックストロークセンサ893の検出値、および、車速センサ894の検出値等に基づき、転舵トルクTb2を算出する。
 第1反力インバータ回路167は、最終反力Hf1に基づいてオンオフ作動が制御される図示しないスイッチング素子を有し、反力モータ85の第1モータ巻線185の電力を変換する。第1転舵インバータ回路168は、転舵トルクTb1に基づいてオンオフ作動が制御される図示しないスイッチング素子を有し、転舵モータ86の第1モータ巻線186の電力を変換する。
 第2反力インバータ回路267は、最終反力Hf2に基づいてオンオフ作動が制御される図示しないスイッチング素子を有し、反力モータ85の第2モータ巻線285の電力を変換する。第2転舵インバータ回路268は、転舵トルクTb2に基づいてオンオフ作動が制御される図示しないスイッチング素子を有し、転舵モータ86の第2モータ巻線286の電力を変換する。図中、反力インバータ回路を「INV_R」、転舵インバータ回路を「INV_T」と記載した。
 本実施形態では、反力モータ85の第1モータ巻線185および転舵モータ86の第1モータ巻線186、ならびに、モータ巻線185、186に対応して設けられるインバータ回路167、168および制御部160等の組み合わせを第1系統とする。また、反力モータ85の第2モータ巻線285および転舵モータ86の第2モータ巻線286、ならびに、モータ巻線285、286に対応して設けられるインバータ回路267、268および制御部260等の組み合わせを第2系統とする。
 本実施形態のステアバイワイヤシステム970は、トルクセンサ30、ECU450、反力モータ85および転舵モータ86が冗長構成となっている。また、トルクセンサ30とECU450との接続には、上記実施形態と同様のコネクタユニット50およびセンサコネクタユニット300を用いている。したがって、一方の系統が浸水したとしても、他方の系統が浸水していなければ、信号S1、S2のいずれか一方が利用可能であるので、操舵トルクに基づいてモータ85、86の駆動をすることで、車両のステアリング操作を継続することができる。
 本実施形態のステアバイワイヤシステム970は、操舵部材であるステアリングホイール91と一体に回転するステアリングシャフトとラック軸97とが機械的に分離可能であって、ECU450と、ステアリングホイール91の反力を与える反力モータ85と、ステアリングホイール91の操舵に応じてラック軸97の駆動に伴って転舵される車輪98の転舵量を変更する転舵モータ86と、を備える。
 ECU450は、反力モータ85および転舵モータ86と別体に設けられる。ECU450と反力モータ85とは、反力モータ接続ハーネス491で接続される。ECU450と転舵モータ86とは、転舵モータ接続ハーネス492で接続される。転舵モータ86は、ラック軸97と噛み合うピニオンギア96を駆動する。
 コネクタユニット50は、本実施形態のようにステアバイワイヤシステム970にも適用可能であって、冗長化されているステアバイワイヤシステム970において、一部の系統が浸水した場合であっても、他の系統の防水性が確保されているので、車輪98の転舵制御を適切に継続することができる。また、上記実施形態と同様の効果を奏する。
   (第12実施形態)
 第12実施形態を図30に示す。本実施形態では、ピニオンギア96とは別途に、ラック軸97と噛み合うピニオンギア981が設けられる。ピニオンギア981は、転舵モータ87にて駆動される。すなわち本実施形態のステアバイワイヤシステム970は、デュアルピニオン駆動タイプである。
 ECU450と転舵モータ87とは、コネクタ453、ハーネス493およびコネクタ871を経由して接続される。転舵モータ87は、転舵モータ86と同様、図示しない2組のモータ巻線を有しており、一方のモータ巻線への通電は第1制御部160にて制御され、他方のモータ巻線への通電は第2制御部260にて制御される。このように構成しても、上記実施形態と同様の効果を奏する。
   (第13実施形態、第14実施形態)
 第13実施形態を図31、第14実施形態を図32に示す。第13実施形態の転舵モータ86は、ラック軸97と同軸に設けられ、ボールねじ983を介してラック軸97を駆動する。すなわち本実施形態のステアバイワイヤシステム970は、ラック同軸タイプである。
 第14実施形態の転舵モータ86は、モータ軸がラック軸97に沿って略平行に設けられ、ベルトドライブ984を介してラック軸97を駆動する。すなわち本実施形態のステアバイワイヤシステム970は、ラックパラレルタイプである。
 第13実施形態および第14実施形態では、転舵モータ86は、ボールねじ983またはベルトドライブ984を介してラック軸97を駆動する。このように構成しても、上記実施形態と同様の効果を奏する。
   (ステアバイワイヤシステムの変形例)
 第11実施形態~第14実施形態では、転舵モータ86、87とECU450とが別体である機電別体型のステアバイワイヤの例を説明した。図33~図36に示すように、ステアバイワイヤシステム970は、転舵モータ88とECU450とが一体に設けられる機電一体型としてもよい。
 図33はピニオン駆動タイプであり、図35はラック同軸タイプであり、図36はラックパラレルタイプであって、転舵モータ86とECU450とを機電一体に設けている。また、図34のように、デュアルピニオン駆動タイプの場合、2つの転舵モータ86、87に対し、それぞれECU450が設けられるようにしてもよい。図34では、トルクセンサ30に2つのコネクタユニット300を設けるものとして図示しているが、例えば、1つのコネクタユニットに、端子収容室55および端子形成部65(図34では不図示)を4つずつ形成することで、一体に形成してもよい。
 変形例では、ECU450は、転舵モータ86、87と一体に設けられる。このように構成しても、上記実施形態と同様の効果を奏する。
   (他の実施形態)
 上記実施形態では、センサ部はトルクセンサである。他の実施形態では、センサ部は、コントローラ部の外部に設けられるトルクセンサ以外のセンサであってもよい。また、CAN等の車両通信網を「センサ部」とみなし、コネクタユニットを同様に形成してもよい。
 上記実施形態では、センサ部から2系統の信号が入力される。他の実施形態では、センサ部から入力される信号の系統数は、3系統以上であってもよい。この場合、端子収容室および端子形成部は、系統数に応じた個数、設けられること望ましいが、端子収容室および端子形成部の数と系統数とは、必ずしも一致していなくてもよい。
 上記実施形態では、駆動装置を構成する各部品は、2つずつ設けられており、完全2系統である。他の実施形態では、駆動装置を構成する各部品は、1系統であってもよいし、3系統以上であってもよい。また、例えばバッテリが複数系統で共用されている、といった具合に、一部の部品を系統間にて共用していてもよい。
 上記実施形態では、ロック機構は、第1コネクタ部および第2コネクタ部のそれぞれに設けられるロック部が係合することによるスナップフィット固定である。他の実施形態では、ロック機構を構成するロック部は、第1コネクタ部および第2コネクタ部とは別途の部材であってもよく、例えばクランプ固定やボルト固定等によりロック機構を構成してもよい。
 上記実施形態では、端子収容室および端子形成部は、いずれも平面視略矩形に形成される。他の実施形態では、端子収容室および端子形成部は、どのような形状であってもよい。
 第3実施形態等では、コントローラ部に設けられるコネクタユニットと、センサ部に設けられるセンサコネクタユニットとは、同様の形状である。他の実施形態では、コントローラ部側に設けられるコネクタユニットと、センサ部側に設けられるコネクタユニットとが、異なる形状であってもよい。
 上記実施形態では、モータは、3相ブラシレスモータである。他の実施形態では、例えばブラシ付きモータ等、どのようなモータであってもよい。
 上記実施形態のステアバイワイヤシステムでは、コラム軸とラック軸とが、分離されている。他の実施形態では、ステアバイワイヤシステムにおいて、コラム軸とラック軸との間にクラッチ等の断接を切り替え可能な部材を設けてもよい。そして、例えばステアバイワイヤシステムの異常時には、コラム軸とラック軸とを接続することで、ステアバイワイヤシステムを、いわば電動パワーステアリング装置として機能させるようにしてもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
 本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。

Claims (23)

  1.  モータ巻線(180、185、186、280、285、286)を有するモータ(80、85、86)の電力を変換するインバータ回路(120、167、168、220、267、268)、および、前記インバータ回路を構成するスイッチング素子(121、221)のオンオフ作動を制御する制御部(150、160、250、260)を有するコントローラ部(45、450)と、
     前記コントローラ部に設けられる第1コネクタ部(51、501)と、
     ハーネス(39)を経由して前記センサ部(30)と接続され、前記第1コネクタ部と嵌まり合う第2コネクタ部(61、502)と、
     前記第1コネクタ部と前記第2コネクタ部との間に設けられる複数のシール部材(70)と、
     前記第1コネクタ部と前記第2コネクタ部とが嵌まり合っている状態にて固定するロック部(53、63)と、
     を備え、
     前記第1コネクタ部または前記第2コネクタ部の一方は、オスコネクタであって、オスコネクタハウジング(52)の内部にて、オス端子(56)が設けられる端子収容室(55)が仕切り部(54)により複数に区画されており、
     前記第1コネクタ部または前記第2コネクタ部の他方は、メスコネクタであって、前記オス端子と接続されるメス端子(66)が埋設され、前記端子収容室のそれぞれに挿入される端子形成部(65)がメスコネクタハウジング(62)の内部にて分割されており、
     前記シール部材は、前記端子収容室ごとに設けられる制御ユニット。
  2.  前記シール部材は、前記オスコネクタハウジングの内壁面(522)または前記仕切り部の側壁面(542)と、前記端子形成部の周壁面(652)との間に設けられる請求項1に記載の制御ユニット。
  3.  前記センサ部は、冗長的な複数系統の信号を出力可能であって、
     前記端子収容室および前記端子形成部は、前記センサ部からの信号の系統毎に設けられる請求項1または2に記載の制御ユニット。
  4.  前記モータは、複数組の前記モータ巻線を有し、
     前記インバータ回路および前記制御部は、前記モータ巻線ごとに設けられており、
     前記センサ部から出力される信号は、系統毎に対応する前記制御部に入力される請求項3に記載の制御ユニット。
  5.  前記第1コネクタ部は、オスコネクタであって、
     前記第2コネクタ部は、メスコネクタである請求項1~4のいずれか一項に記載の制御ユニット。
  6.  前記第1コネクタ部は、メスコネクタであって、
     前記第2コネクタ部は、オスコネクタである請求項1~4のいずれか一項に記載の制御ユニット。
  7.  前記ハーネスは、前記センサ部(30)と一体に設けられている請求項1~6のいずれか一項に記載の制御ユニット。
  8.  前記センサ部と、
     前記センサ部に設けられる第1センサコネクタ部(310、351)と、
     前記ハーネスにより前記第2コネクタ部と接続され、前記第1センサコネクタ部と嵌まり合う第2センサコネクタ部(320、352)と、
     をさらに備える請求項1~6のいずれか一項に記載の制御ユニット。
  9.  前記第1センサコネクタ部と前記第2センサコネクタ部との間に設けられる複数のセンサコネクタシール部材(330)と、
     前記第1センサコネクタ部と前記第2センサコネクタ部とが嵌まり合っている状態にて固定するセンサコネクタロック部(313、323)と、
     をさらに備え、
     前記第1センサコネクタ部または前記第2センサコネクタ部の一方は、オスコネクタであって、センサ側オスハウジング(312)の内部にて、センサ側オス端子(316)が設けられるセンサ側端子収容室(315)がセンサ側仕切り部(314)により、複数に区画されており、
     前記第1センサコネクタ部または前記第2センサコネクタ部の他方は、メスコネクタであって、前記センサ側オス端子と接続されるセンサ側メス端子(326)が埋設され、前記センサ側端子収容室のそれぞれに挿入されるセンサ側端子形成部(325)がセンサ側メスハウジング(322)の内部にて分割されており、
     前記センサコネクタシール部材は、前記センサ側端子収容室ごとに設けられる請求項8に記載の制御ユニット。
  10.  前記センサ部は、操舵トルクを検出するトルクセンサである請求項1~9のいずれか一項に記載の制御ユニット。
  11.  請求項1~10のいずれか一項に記載の制御ユニット(46)と、
     前記コントローラ部と一体に設けられ、運転者による操舵をアシストするアシストトルクを出力する前記モータと、
     を備える電動パワーステアリング装置。
  12.  請求項1~10のいずれか一項に記載の制御ユニット(46)と、
     前記コントローラ部と機電接続ハーネス(49)にて接続され、運転者による操舵をアシストするアシストトルクを出力する前記モータと、
     を備える電動パワーステアリング装置。
  13.  請求項11または12に記載の電動パワーステアリング装置(901)と、
     前記モータから出力されたトルクを駆動対象(92、96、97)に伝達する動力伝達部(910、920、930、940、950)と、
     運転者により操舵される操舵部材(91)と、
     前記操舵部材と一体に回転するステアリングシャフト(92)と、
     前記ステアリングシャフトの先端に設けられるピニオンギア(96)と、
     前記ピニオンギアと噛み合い、前記ピニオンギアの回転運動を直線運動に変換するラック軸(97)と、
     を備えるステアリングシステム。
  14.  前記モータは、前記ラック軸に沿って設けられ、
     前記動力伝達部(910)は、ベルトドライブ機構を有する請求項13に記載のステアリングシステム。
  15.  前記モータは、前記ラック軸と同軸に設けられ、
     前記動力伝達部(920)は、前記モータのトルクを前記ラック軸に伝達するボールねじ(921)を有する請求項13に記載のステアリングシステム。
  16.  前記動力伝達部(930)は、前記モータのトルクを前記ピニオンギアに伝達するウォームギア(931)を有する請求項13に記載のステアリングシステム。
  17.  前記動力伝達部(940)は、前記ピニオンギアとは別途に前記ラック軸に噛み合うピニオン(942)、および、前記モータのトルクを前記ピニオンに伝達するウォームギア(941)を有する請求項13に記載のステアリングシステム。
  18.  前記動力伝達部(950)は、前記モータのトルクを前記ステアリングシャフトに伝達する減速機(951)を有する請求項13に記載のステアリングシステム。
  19.  操舵部材(91)と一体に回転するステアリングシャフト(971)とラック軸(976)とが機械的に分離可能であるステアバイワイヤシステムであって、
     請求項1~10のいずれか一項に記載の制御ユニット(46)と、
     前記操舵部材に反力を与える反力モータ(85)、および、前記操舵部材の操舵に応じて前記ラック軸の駆動に伴って転舵される車輪(98)の転舵量を変更する転舵モータ(86、87)である前記モータと、
     を備えるステアバイワイヤシステム。
  20.  前記コントローラ部は、前記反力モータおよび前記転舵モータと別体に設けられ、
     前記コントローラ部と前記反力モータとは、反力モータ接続ハーネス(491)で接続され、
     前記コントローラ部と前記転舵モータとは、転舵モータ接続ハーネス(492、493)で接続される請求項19に記載のステアバイワイヤシステム。
  21.  前記コントローラ部は、前記転舵モータと一体に設けられ、
     前記コントローラ部と前記反力モータとは、反力モータ接続ハーネス(491)で接続される請求項19に記載のステアバイワイヤシステム。
  22.  前記転舵モータは、前記ラック軸と噛み合うピニオンギア(96)を駆動する請求項19~21のいずれか一項に記載のステアバイワイヤシステム。
  23.  前記転舵モータは、ボールねじ(983)またはベルトドライブ(984)を介して前記ラック軸を駆動する請求項19~21のいずれか一項に記載のステアバイワイヤシステム。
PCT/JP2018/026553 2017-07-19 2018-07-13 制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム WO2019017302A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017139912 2017-07-19
JP2017-139912 2017-07-19
JP2017-192711 2017-10-02
JP2017192711A JP6747412B2 (ja) 2017-07-19 2017-10-02 制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム

Publications (1)

Publication Number Publication Date
WO2019017302A1 true WO2019017302A1 (ja) 2019-01-24

Family

ID=65015762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026553 WO2019017302A1 (ja) 2017-07-19 2018-07-13 制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム

Country Status (1)

Country Link
WO (1) WO2019017302A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219240A (ja) * 1996-02-09 1997-08-19 Yazaki Corp カバー付き防水コネクタ
US6113407A (en) * 1998-09-30 2000-09-05 The Whitaker Corporation Electrical connector with gas exchange membrane
JP2003227767A (ja) * 2002-02-04 2003-08-15 Koyo Seiko Co Ltd トルク検出装置及びこれを用いた電動式パワーステアリング装置
JP2005093166A (ja) * 2003-09-16 2005-04-07 Auto Network Gijutsu Kenkyusho:Kk インバータ用コネクタ装置
JP2007069849A (ja) * 2005-09-09 2007-03-22 Nissan Motor Co Ltd 車両用操舵制御装置
WO2012176357A1 (ja) * 2011-06-21 2012-12-27 日本精工株式会社 トルク検出装置の異常診断方法及び電動パワーステアリング装置
JP2016504977A (ja) * 2013-01-21 2016-02-18 ロバート ボッシュ オートモーティブ ステアリング エルエルシー 独立した補助電気アシスト・パワーステアリング・システム
JP2016034202A (ja) * 2014-07-31 2016-03-10 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
JP2016060408A (ja) * 2014-09-19 2016-04-25 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置およびパワーステアリング装置の組み立て方法
WO2016063367A1 (ja) * 2014-10-22 2016-04-28 三菱電機株式会社 電動パワーステアリング装置
WO2017077973A1 (ja) * 2015-11-04 2017-05-11 日立オートモティブシステムズ株式会社 パワーステアリング装置、およびパワーステアリング装置の制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219240A (ja) * 1996-02-09 1997-08-19 Yazaki Corp カバー付き防水コネクタ
US6113407A (en) * 1998-09-30 2000-09-05 The Whitaker Corporation Electrical connector with gas exchange membrane
JP2003227767A (ja) * 2002-02-04 2003-08-15 Koyo Seiko Co Ltd トルク検出装置及びこれを用いた電動式パワーステアリング装置
JP2005093166A (ja) * 2003-09-16 2005-04-07 Auto Network Gijutsu Kenkyusho:Kk インバータ用コネクタ装置
JP2007069849A (ja) * 2005-09-09 2007-03-22 Nissan Motor Co Ltd 車両用操舵制御装置
WO2012176357A1 (ja) * 2011-06-21 2012-12-27 日本精工株式会社 トルク検出装置の異常診断方法及び電動パワーステアリング装置
JP2016504977A (ja) * 2013-01-21 2016-02-18 ロバート ボッシュ オートモーティブ ステアリング エルエルシー 独立した補助電気アシスト・パワーステアリング・システム
JP2016034202A (ja) * 2014-07-31 2016-03-10 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
JP2016060408A (ja) * 2014-09-19 2016-04-25 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置およびパワーステアリング装置の組み立て方法
WO2016063367A1 (ja) * 2014-10-22 2016-04-28 三菱電機株式会社 電動パワーステアリング装置
WO2017077973A1 (ja) * 2015-11-04 2017-05-11 日立オートモティブシステムズ株式会社 パワーステアリング装置、およびパワーステアリング装置の制御装置

Similar Documents

Publication Publication Date Title
JP6747413B2 (ja) 制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
JP5397658B2 (ja) 車両用操舵装置及びそのサブアセンブリの移送方法
US11529990B2 (en) Signal control apparatus and electric power steering apparatus using same
JP5316839B2 (ja) モータおよびこれを備える車両用操舵装置
US11904958B2 (en) Detection device, calculation device, control device, and electric power steering device using the same
JP6747412B2 (ja) 制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
US11888345B2 (en) Drive device and drive unit
US11285992B2 (en) Rotating electric machine control device
US11541930B2 (en) Rotary electric machine control device
JP7151695B2 (ja) 電子制御装置、および、電源システム
JP7153483B2 (ja) 電動駆動装置、及び電動パワーステアリング装置
WO2019181938A1 (ja) 検出装置、演算装置、制御装置、および、これを用いた電動パワーステアリング装置
JP7106989B2 (ja) 信号制御装置、および、これを用いた電動パワーステアリング装置
JP7081386B2 (ja) 回転検出装置、および、これを用いた電動パワーステアリング装置
WO2019017308A1 (ja) センサユニット、制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
JP2012006419A (ja) 車両用操舵装置
WO2019017302A1 (ja) 制御ユニット、電動パワーステアリング装置、ステアリングシステム、および、ステアバイワイヤシステム
WO2019198655A1 (ja) 駆動装置
JP5967425B2 (ja) 電動パワーステアリング装置
WO2020149293A1 (ja) 駆動装置
JP7172140B2 (ja) 回転検出装置、および、これを用いた電動パワーステアリング装置
JP7156211B2 (ja) 回転電機制御装置
JP2022056881A (ja) モータ駆動システム
US8576573B2 (en) Controller, electric power steering provided with the same, method of manufacturing bus bar, and method of manufacturing controller
JP7211288B2 (ja) 駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834344

Country of ref document: EP

Kind code of ref document: A1