JP7106989B2 - 信号制御装置、および、これを用いた電動パワーステアリング装置 - Google Patents

信号制御装置、および、これを用いた電動パワーステアリング装置 Download PDF

Info

Publication number
JP7106989B2
JP7106989B2 JP2018103871A JP2018103871A JP7106989B2 JP 7106989 B2 JP7106989 B2 JP 7106989B2 JP 2018103871 A JP2018103871 A JP 2018103871A JP 2018103871 A JP2018103871 A JP 2018103871A JP 7106989 B2 JP7106989 B2 JP 7106989B2
Authority
JP
Japan
Prior art keywords
angle
control
unit
system detection
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018103871A
Other languages
English (en)
Other versions
JP2019165610A (ja
Inventor
雅也 滝
敏博 藤田
修司 倉光
功一 中村
利光 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to US16/298,224 priority Critical patent/US11529990B2/en
Priority to DE102019203570.1A priority patent/DE102019203570B4/de
Publication of JP2019165610A publication Critical patent/JP2019165610A/ja
Application granted granted Critical
Publication of JP7106989B2 publication Critical patent/JP7106989B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、信号制御装置、および、これを用いた電動パワーステアリング装置に関する。
従来、回転角センサの検出値を用いて制御を行う電動パワーステアリング装置が知られている。例えば特許文献1では、2つのマイコンに対して、それぞれセンサ部が設けられている。
特開2017-191092号公報
特許文献1では、2つのマイコンに対して別々のセンサ部から検出値が入力されている。そのため、検出誤差がある場合、誤差のある検出値を用いて角度フィードバック演算を行うと、フィードバック演算が適切に行えない虞がある。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、角度フィードバック演算を適切に行うことができる信号制御装置、および、これを用いた電動パワーステアリング装置を提供することにある。
本発明の信号制御装置は、同一の回転電機(80)を制御する複数の制御部(130、138、139、230、238)を備える。それぞれの制御部は、角度演算部(131、132、231)と、角度フィードバック部(135、152、235)と、を備える。角度演算部は、個別に対応して設けられるセンサ部(125、225)からセンサ信号を取得し、センサ信号に応じた自系統検出角度を演算する。角度フィードバック部は、目標角と検出角度との角度偏差に応じた角度フィードバック制御を行う。
少なくとも1つの制御部の角度フィードバック部において、他の制御部の角度演算部にて演算される他系統検出角度と自系統検出角度との誤差を低減する補正処理がなされた角度偏差を用いて角度フィードバック制御を行う。
第1の態様では、少なくとも1つの制御部(138、238)は、他系統検出角度と自系統検出角度との角度誤差を補正するための補正値を記憶する補正値記憶部(137、237)を有する。角度フィードバック部は、自系統検出角度を補正値で補正した値を検出角度として用いる。
第2の態様では、自系統検出角度と他系統検出角度との誤差に応じた不感帯を設定する。角度フィードバック部は、目標角度と自系統検出角度との差が不感帯の範囲内の場合、角度偏差を0とし、目標角度と自系統検出角度との差が不感帯の範囲外の場合、不感帯の幅に応じて補正した値を角度偏差とする。
第3の態様では、目標角度は、通信可能に設けられる目標角度演算装置(300)から取得される。目標角度演算装置は、制御部から検出角度に係る値を取得し、取得した値に基づいて目標角度を補正する。角度フィードバック部は、目標角度演算装置にて補正処理がなされた目標角度を用いた角度フィードバック制御を行う。
これにより、センサ部に誤差がある場合であっても、角度偏差の誤差が低減されるので、角度偏差を用いる角度フィードバック演算を適切に行うことができる。
第1実施形態によるステアリングシステムの概略構成図である。 第1実施形態による駆動装置の断面図である。 図2のIII-III線断面図である。 第1実施形態によるECUを示すブロック図である。 第1実施形態によるECUを示すブロック図である。 角度誤差を説明する説明図である。 第1実施形態による指令演算処理を説明するフローチャートである。 第1実施形態による指令演算処理を説明するフローチャートである。 第1実施形態による調停舵角を説明する説明図である。 第1実施形態による調停舵角を説明する説明図である。 第1実施形態による独立制御への切替処理を説明するフローチャートである。 第2実施形態によるECUを示すブロック図である。 第2実施形態による指令演算処理を説明するフローチャートである。 第2実施形態による指令演算処理を説明するフローチャートである。 第3実施形態による指令演算処理を説明するフローチャートである。 第3実施形態による不感帯を説明する説明図である。 第3実施形態による指令演算処理を説明するフローチャートである。 第4実施形態による学習処理を説明するフローチャートである。 第4実施形態による学習処理を説明するフローチャートである。 第5実施形態によるECUを示すブロック図である。 第6実施形態によるECUを示すブロック図である。 第7実施形態によるECUを示すブロック図である。 第8実施形態による制御パターンを説明する説明図である。
以下、信号制御装置、および、これを用いた電動パワーステアリング装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
信号制御装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。図1に示すように、第1実施形態による信号制御装置としてのEPS-ECU10は、回転電機としてのモータ80とともに、車両のステアリング操作を補助するための電動パワーステアリング装置8に適用される。以下適宜、EPS-ECU10を、単にECU10という。図1は、電動パワーステアリング装置8を備えるステアリングシステム90の全体構成を示すものである。ステアリングシステム90は、操舵部材であるステアリングホイール91、ステアリングシャフト92、ピニオンギア96、ラック軸97、車輪98、および、電動パワーステアリング装置8等を備える。
ステアリングホイール91は、ステアリングシャフト92と接続される。ステアリングシャフト92には、操舵トルクTsを検出するトルクセンサ94が設けられる。トルクセンサ94は、第1トルク検出部194および第2トルク検出部294を有する。ステアリングシャフト92の先端には、ピニオンギア96が設けられる。ピニオンギア96は、ラック軸97に噛み合っている。ラック軸97の両端には、タイロッド等を介して一対の車輪98が連結される。
運転者がステアリングホイール91を回転させると、ステアリングホイール91に接続されたステアリングシャフト92が回転する。ステアリングシャフト92の回転運動は、ピニオンギア96によってラック軸97の直線運動に変換される。一対の車輪98は、ラック軸97の変位量に応じた角度に操舵される。
電動パワーステアリング装置8は、モータ80およびECU10を有する駆動装置40、ならびに、モータ80の回転を減速してステアリングシャフト92に伝える動力伝達部としての減速ギア89等を備える。本実施形態の電動パワーステアリング装置8は、所謂「コラムアシストタイプ」であるが、モータ80の回転をラック軸97に伝える所謂「ラックアシストタイプ」等としてもよい。本実施形態では、ステアリングシャフト92が「駆動対象」に対応する。
図2および図3に示すように、モータ80は、操舵に要するトルクの一部または全部を出力するものであって、図示しない電源としてのバッテリから電力が供給されることにより駆動され、減速ギア89を正逆回転させる。モータ80は、3相ブラシレスモータであって、ロータ860およびステータ840を有する。
モータ80は、巻線組としての第1モータ巻線180および第2モータ巻線280を有する。モータ巻線180、280は、電気的特性が同等であり、例えば特許第5672278号公報の図3に参照されるように、共通のステータ840に、互いに電気角30[deg]ずらしてキャンセル巻きされる。これに応じて、モータ巻線180、280には、位相φが30[deg]ずれた相電流が通電されるように制御される。通電位相差を最適化することで、出力トルクが向上する。また、6次のトルクリプルを低減することができる。さらにまた、位相差通電により、電流が平均化されるため、騒音、振動のキャンセルメリットを最大化することができる。また、発熱についても平均化されるため、各センサの検出値やトルク等、温度依存の系統間誤差を低減可能であるとともに、通電可能な電流量を平均化できる。
以下、第1モータ巻線180の通電制御に係る第1駆動回路120および第1制御部130等の組み合わせを第1系統L1、第2モータ巻線280の通電制御に係る第2駆動回路220および第2制御部230等の組み合わせを第2系統L2とする。また、第1系統L1に係る構成を主に100番台で付番し、第2系統L2に係る構成を主に200番台で符番する。また、第1系統L1および第2系統L2において、同様の構成には、下2桁が同じとなるように付番する。以下適宜、「第1」を添え字の「1」、「第2」を添え字の「2」として記載する。
駆動装置40は、モータ80の軸方向の一方側にECU10が一体的に設けられており、いわゆる「機電一体型」であるが、モータ80とECU10とは別途に設けられていてもよい。ECU10は、モータ80の出力軸とは反対側において、シャフト870の軸Axに対して同軸に配置されている。ECU10は、モータ80の出力軸側に設けられていてもよい。機電一体型とすることで、搭載スペースに制約のある車両において、ECU10とモータ80とを効率的に配置することができる。
モータ80は、ステータ840、ロータ860、および、これらを収容するハウジング830等を備える。ステータ840は、ハウジング830に固定されており、モータ巻線180、280が巻回される。ロータ860は、ステータ840の径方向内側に設けられ、ステータ840に対して相対回転可能に設けられる。
シャフト870は、ロータ860に嵌入され、ロータ860と一体に回転する。シャフト870は、軸受835、836により、ハウジング830に回転可能に支持される。シャフト870のECU10側の端部は、ハウジング830からECU10側に突出する。シャフト870のECU10側の端部には、マグネット875が設けられる。
ハウジング830は、リアフレームエンド837を含む有底筒状のケース834、および、ケース834の開口側に設けられるフロントフレームエンド838を有する。ケース834とフロントフレームエンド838とは、ボルト等により互いに締結されている。リアフレームエンド837には、リード線挿通孔839が形成される。リード線挿通孔839には、モータ巻線180、280の各相と接続されるリード線185、285が挿通される。リード線185、285は、リード線挿通孔839からECU10側に取り出され、基板470に接続される。
ECU10は、カバー460、カバー460に固定されているヒートシンク465、ヒートシンク465に固定されている基板470、および、基板470に実装される各種の電子部品等を備える。
カバー460は、外部の衝撃から電子部品を保護したり、ECU10の内部への埃や水等の浸入を防止したりする。カバー460は、カバー本体461、および、コネクタ部462が一体に形成される。なお、コネクタ部462は、カバー本体461と別体であってもよい。コネクタ部462の端子463は、図示しない配線等を経由して基板470と接続される。コネクタ数および端子数は、信号数等に応じて適宜変更可能である。コネクタ部462は、駆動装置40の軸方向の端部に設けられ、モータ80と反対側に開口する。コネクタ部462は、後述する各コネクタを含む。
基板470は、例えばプリント基板であり、リアフレームエンド837と対向して設けられる。基板470には、2系統分の電子部品が系統ごとに独立して実装されており、完全冗長構成をなしている。本実施形態では、1枚の基板470に電子部品が実装されているが、複数枚の基板に電子部品を実装するようにしてもよい。
基板470の2つの主面のうち、モータ80側の面をモータ面471、モータ80と反対側の面をカバー面472とする。図3に示すように、モータ面471には、駆動回路120を構成するスイッチング素子121、駆動回路220を構成するスイッチング素子221、角度センサ125、225、カスタムIC159、259等が実装される。角度センサ125、225は、マグネット875の回転に伴う磁界の変化を検出可能なように、マグネット875と対向する箇所に実装される。
カバー面472には、コンデンサ128、228、インダクタ129、229、および、制御部130、230を構成するマイコン等が実装される。図3では、制御部130、230を構成するマイコンについて、それぞれ「130」、「230」を付番した。コンデンサ128、228は、図示しないバッテリから入力された電力を平滑化する。また、コンデンサ128、228は、電荷を蓄えることで、モータ80への電力供給を補助する。コンデンサ128、228、および、インダクタ129、229は、フィルタ回路を構成し、バッテリを共用する他の装置から伝わるノイズを低減するとともに、駆動装置40からバッテリを共用する他の装置に伝わるノイズを低減する。なお、図3中には図示を省略しているが、電源回路116、216、モータリレー、および、電流センサ126、226等についても、モータ面471またはカバー面472に実装される。
図4に示すように、ECU10は、駆動回路120、220、および、制御部130、230等を備える。図4では、煩雑になることを避けるため、一部の制御線等を省略した。他の実施形態に係る図も同様である。第1駆動回路120は、6つのスイッチング素子121を有する3相インバータであって、第1モータ巻線180へ供給される電力を変換する。スイッチング素子121は、第1制御部130から出力される制御信号に基づいてオンオフ作動が制御される。第2駆動回路220は、6つのスイッチング素子221を有する3相インバータであって、第2モータ巻線280へ供給される電力を変換する。スイッチング素子221は、第2制御部230から出力される制御信号に基づいてオンオフ作動が制御される。
第1角度センサ125は、モータ80の回転角を検出し、第1モータ回転角信号θm1を第1制御部130に出力する。第2角度センサ225は、モータ80の回転角を検出し、第2モータ回転角信号θm2を第2制御部230に出力する。第1電流センサ126は、第1モータ巻線180の電流を検出し、第1電流検出信号I1を第1制御部130に出力する。第2電流センサ226は、第2モータ巻線280の電流を検出し、第2電流検出信号I2を第2制御部230に出力する。
制御部130、230は、マイコン等を主体として構成され、内部にはいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。制御部130、230における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
第1制御部130および第2制御部230は、制御部130、230間にて相互に通信可能に設けられる。以下適宜、制御部130、230間の通信を、「マイコン間通信」という。制御部130、230間の通信方法は、SPIやSENT等のシリアル通信や、CAN通信、FlexRay通信等、どのような方法を用いてもよい。後述の実施形態における制御部138、139、238についても同様である。
第1制御部130は、第1舵角演算部131、第1角度フィードバック部135、および、第1電流フィードバック部140等を有する。第2制御部230は、第2舵角演算部231、第2角度フィードバック部235、および、第2電流フィードバック部240等を有する。以下適宜、フィードバックを「FB」と記載する。
第1舵角演算部131は、第1モータ回転角信号θm1に基づき、第1舵角θstr1を演算し、角度FB部135に出力する。第2舵角演算部231は、第2モータ回転角信号θm2に基づき、第2舵角θstr2を演算し、角度FB部235に出力する。舵角θstr1、θstr2は、中立で記憶しておいた舵角0点または車両直進状態などの制御状態を用いて算出した舵角0点に対し、ギア比換算したモータ角の変化量を積算することで演算するが、演算方法はどのようであってもよい。また、角度センサ125、225が、例えばモータ角および回転数を出力することで、制御部130、230にて絶対角を演算したり、角度センサ125、225内にて舵角を演算したりするようにしてもよい。また、車速等の車両情報や電源電圧などに基づく補正を行うことが好ましい。
第1角度FB部135は、目標角演算ECU300から目標角度θtgt1を取得し、角度FB演算により、目標角度θtgt1に応じた第1電流指令値TgtCurr1を演算出力する。第2角度FB部235は、目標角演算ECU300から目標角度θtgt2を取得し、角度FB演算により、目標角度θtgt2に応じた第2電流指令値TgtCurr2を演算する。演算される指令値は、電流指令値に替えて、トルク指令値であってもよい。また、図5に示すように、角度FB部135、235に共通の目標角度θtgtが入力されるようにしてもよい。本実施形態では、目標角度を目標舵角とするが、モータ角であってもよい。
第1電流FB部140は、第1角度FB部135にて演算された指令値、第1電流検出信号I1および第1モータ回転角信号θm1に基づく電流FB演算により、第1デューティ指令値D1を演算し、第1駆動回路120に出力する。第2電流FB部240は、第2角度FB部235にて演算された指令値、第2電流検出信号I2および第2モータ回転角信号θm2に基づく電流FB演算により、第2デューティ指令値D2を演算し、第2駆動回路220に出力する。デューティ指令値D1、D2に基づいて、スイッチング素子121、221がオンオフされることで、モータ巻線180、280の電流が制御され、モータ80の駆動が制御される。
角度FB部135、235は、それぞれ、角度偏差θdiff1、θdiff2を用い、式(1-1)、(1-2)に基づき、電流指令値TgtCurr1、TgtCurr2を演算する。なお、式(1-1)、(1-2)に限らず、例えば台形近似等であってもよく、角度偏差θdiff1、θdiff2を用いるどのような演算としてもよい。
Figure 0007106989000001
図6に示すように、舵角θstr1、θstr2に誤差があり、かつ、制御対象であるモータ80が1つの場合、それぞれの電流指令値TgtCurr1、TgtCurr2に基づいて制御を行うと、目標角度θtgt1、θtgt2に対して誤差を持った角度にて、各制御部130、230の電流指令値TgtCurr1、TgtCurr2に応じたトルクが釣り合う時点で釣り合う。このとき、式中のI項がたまり、電流指令値TgtCurr1、TgtCurr2が際限なく大きくなり過大な出力となる、あるいは、必要以上のトルクが出力されて過熱する等の問題が生じる。なお、図6中では、電流指令値TgtCurr1、TgtCurr2を、模式的に「指令値1」、「指令値2」として示した。
そこで本実施形態では、マイコン間通信で、制御部130、230が舵角θstr1、θstr2を交換し、角度ずれを補完する。本実施形態では、制御部130、230がマイコン間通信にて舵角θstr1、θstr2を相互に送受信する。
第1制御部130における指令演算処理を図7のフローチャートに基づいて説明する。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップも同様である。
S101では、第1角度FB部135は、第1角度偏差θdiff1を演算する(式(2-1)、(3-1)参照)。式中のθ1は、第1調停舵角である。
θ1=θstr1×G11+θstr2×G12 ・・・(2-1)
θdiff1=θtgt1-θ1 ・・・(3-1)
S102では、第1角度FB部135は、式(1-1)にて、第1電流指令値TgtCurr1を演算する。
第2制御部230における指令演算処理を図8のフローチャートに基づいて説明する。S201では、第2角度FB部235は、第2角度偏差θdiff2を演算する(式(2-2)、(3-2)参照)。式中のθ2は、第2調停舵角である。
θ2=θstr1×G21+θstr2×G22 ・・・(2-2)
θdiff2=θtgt2-θ2 ・・・(3-2)
S202では、第2角度FB部235は、式(1-2)にて、第2電流指令値TgtCurr2を演算する。
ここで、G11+G12=1、G21+G22=1であり、G11、G12、G21、G22は、0から1の範囲で任意に設定可能である。G11=G12=G21=G22=0.5とすれば、図9に示すように、調停舵角θ1、θ2は、共に舵角θstr1、θstr2の平均値となる。
また、G11=1、G12=0、G21=0、G22=1とすれば、図10に示すように、調停舵角θ1、θ2を、第1舵角θstr1に合わせることになる。この場合、第1制御部130は、第2制御部230にて演算した第2舵角θstr2を知る必要はない。
このように、調停舵角θ1、θ2を一致させれば、角度偏差θdiff1、θdiff2が一致するので、過大な出力や過熱を防ぐことができ、モータ80の駆動を良好に制御することができる。
本実施形態では、マイコン間通信ができない場合や、第2舵角θstr2が異常の場合、独立制御に切り替えてもよいし、後述する第8実施形態のように他の補正処理に切り替えてもよい。独立制御への切替処理を図11に示す。ここでは、第1制御部130での処理を例に説明する。S111では、第1制御部130は、第2舵角θstr2を取得可能か否か判断する。第2舵角θstr2を取得できないと判断された場合(S111:NO)、S112へ移行し、系統内角度偏差θd1を第1角度偏差θdiff1とする(式(3-3)参照)。S113およびS114の処理は、図6中のS101およびS102の処理と同様である。
θd1=θtgt1-θstr1 ・・・(3-3)
以上説明したように、信号制御装置であるECU10は、同一のモータ80を制御する複数の制御部130、230を備える。それぞれの制御部130、230は、舵角演算部131、231と、角度FB部135、235と、を備える。舵角演算部131、231は、個別に対応して設けられる角度センサ125、225からセンサ信号を取得し、センサ信号に応じた舵角θstr1、θstr2を演算する。角度FB部135、235は、目標角度θtgt1、θtgt2と舵角θstr1、θstr2との角度偏差θdiff1、θdiff2に応じた角度FB制御を行う。
少なくとも1つの制御部130、230の角度FB部135、235において、他の制御部の舵角演算部にて演算される他系統検出角度と自系統検出角度との誤差を低減する補正処理がなされた角度偏差θdiff1、θdiff2を用いて角度フィードバック制御を行う。ここで、「補正処理がなされた角度偏差」とは、角度偏差を直接的に補正することに限らず、目標角度や検出角度等、角度偏差の演算に用いられる値を補正することも含む概念である。これにより、角度センサ125、225に誤差がある場合であっても、角度偏差θdiff1、θdiff2の誤差が低減されるので、角度偏差θdiff1、θdiff2を用いる角度FB演算を適切に行うことができる。したがって、モータ80の過大な出力や過熱を防ぐことができ、モータ80を適切に制御することができる。
少なくとも1つの制御部130、230は、他の制御部から舵角を取得する。角度FB部135、235は、舵角θstr1、θstr2の誤差を補正した調停舵角θ1、θ2を検出角度として用いる。これにより、角度偏差θdiff1、θdiff2の誤差を適切に低減することができる。
電動パワーステアリング装置8は、ECU10と、操舵に要するトルクを出力するモータ80と、を備える。ECU10は、角度FB部135、235にて演算された値を用いてモータ80の駆動を制御する。これにより、角度センサ125、225に誤差がある場合であっても、角度FB制御により操舵を適切にアシストすることができる。
本実施形態では、ECU10が「信号制御装置」、角度センサ125、225が「センサ部」、舵角演算部131、231が「角度演算部」に対応する。舵角θstr1、θstr2が「検出角度」、「自系統検出角度」、「他系統検出角度」に対応する。詳細には、第1制御部130において、第1舵角θstr1が「自系統検出角度」、第2舵角θstr2が「他系統検出角度」に対応し、第2制御部230において、第2舵角θstr2が「自系統検出角度」、第1舵角θstr1が「他系統検出角度」に対応する。また、調停舵角θ1、θ2が「調停角度」に対応する。
(第2実施形態)
第2実施形態を図12~図14に示す。図12に示すように、第1制御部138は、第1舵角演算部131、第1角度フィードバック部135、補正値記憶部137、および、第1電流フィードバック部140等を有する。第2制御部238は、第2舵角演算部231、第2角度フィードバック部235、補正値記憶部237、および、第2電流フィードバック部240等を有する。制御部138、238は、舵角θstr1、θstr2を相互に送受信する。補正値記憶部137は、角度誤差θx1に応じた補正値α1を記憶する。補正値記憶部237は、角度誤差θx2に応じた補正値α2を記憶する。本実施形態では、補正値α1、α2は、角度誤差θx1、θx2とするが、角度誤差θx1、θx2に応じた他の値としてもよい。また、図12では、補正値記憶部137、237が、制御部138、238に設けられているが、一部の制御部の補正値記憶部を省略してもよい。
第1制御部138における指令演算処理を図13のフローチャートに基づいて説明する。S131では、第1制御部138は、マイコン起動時か否かを判断する。マイコン起動時ではないと判断された場合(S131:NO)、S133へ移行する。マイコン起動時であると判断された場合(S131:YES)、S132へ移行し、角度誤差θx1を演算する(式(4-1)参照)。
S133では、第1角度FB部135は、第1電流指令値TgtCurr1を演算する。ここでの処理は、図7中のS101およびS102の処理と略同様であるが、調停舵角θ1の演算式が異なる(式(2-3)参照)。
θx1=θstr1-θstr2 ・・・(4-1)
θ1=θstr1+θx1×G13 ・・・(2-3)
第2制御部238における指令演算処理を図14のフローチャートに基づいて説明する。S231では、第2制御部238は、マイコン起動時か否かを判断する。マイコン起動時ではないと判断された場合(S231:NO)、S233へ移行する。マイコン起動時であると判断された場合(S231:YES)、S232へ移行し、角度誤差θx2を演算する(式(4-2)参照)。
S233では、第2角度FB部235は、第2電流指令値TgtCurr2を演算する。ここでの演算は、図7中のS201およびS202の処理と略同様であるが、調停舵角θ2の演算式が異なる(式(2-4)参照)
θx2=θstr2-θstr1 ・・・(4-2)
θ2=θstr2+θx2×G23 ・・・(2-4)
G13=G23=0.5とすれば、調停舵角θ1、θ2は、共に舵角θstr1、θstr2の平均値となり、G13=0、G23=1とすれば、調停舵角θ1、θ2を第1舵角θstr1に合わせることになる。このようにしても、角度偏差θdiff1、θdiff2が一致するので、過大な出力を防ぐことができ、モータ80の駆動を良好に制御することができる。本実施形態では、起動時にマイコン間通信が正常であれば、制御中にマイコン間通信が異常になったとしても、同様の制御を継続可能である。
本実施形態では、少なくとも1つの制御部138、238は、他の制御部から舵角を起動時に取得し、舵角θstr1、θstr2の角度誤差θx1、θx2を演算する。角度FB部135、235は、舵角θstr1、θstr2を角度誤差θx1、θx2で補正した値を検出角度として用いる。本実施形態では、マイコン起動時に舵角θstr1、θstr2を交換し、角度誤差θx1、θx2を演算しておくので、制御中にマイコン間通信が異常になった場合であっても、正常時と同様の角度FB制御を継続可能である。また上記実施形態と同様の効果を奏する。
また、上記構成において、他の制御部からの舵角を取得し、舵角θstr1、θstr2の角度誤差θx1、θx2を演算した後に、角度誤差θx1、θx2を補正値α1、α2として補正値記憶部137、237に記憶させてもよい。この場合、補正値記憶部137、237を、マイコンがシャットダウンされても補正値α1、α2が保持されるように、例えば不揮発性メモリ等の不揮発記憶領域として構成してもよい。また、角度FB部135、235は、自系統の舵角θstr1、θstr2を補正値α1、α2で補正した値を検出角度として用いる。これにより、マイコン起動毎に角度情報を交換するのではなく、起動時に補正値α1、α2を読み出して角度誤差を補正する構成とすることが可能である。本構成によれば、補正後に何らかの要因によりマイコン間通信が異常になった後、マイコンを停止し再度起動し直した後も、正常時と同様の角度FB制御を継続可能である。
(第3実施形態)
第3実施形態を図15~図17に示す。上記実施形態では、マイコン間通信を用いて調停舵角θ1、θ2を演算する。ここで、マイコン間通信が異常である場合、上記実施形態の角度制御を行うことができない。また、マイコン間通信が異常である場合に制御を継続するメイン側、制御を停止するサブ側を予め決めておくことで、制御を継続可能であるが、この場合、メイン側に異常に起因してマイコン間通信が行えない場合、結果として角度制御を継続することができない。
そこで本実施形態では、図15および図16に示すように、舵角θstr1、θstr2との誤差分より大きい不感帯を設ける。以下、第1制御部130での処理について説明する。第2制御部230での処理は、添え字「1」を「2」、「2」を「1」と読み替えればよいので、説明を省略する。また、制御部130、230に替えて、第2実施形態の制御部138、238としてもよい。後述の実施形態についても同様である。本実施形態では、不感帯閾値をθth1とし、-θth1以上、θth1以下の範囲を不感帯とする。正側と負側とで閾値が異なっていてもよい。不感帯閾値θth1は、舵角θstr1、θstr2の誤差に応じ、誤差よりも大きい任意の設計値とする。
本実施形態の指令演算処理を図15のフローチャートに基づいて説明する。S151では、角度FB部135は、系統内角度偏差θd1を演算する(式(3-3)参照)。
S152では、角度FB部135は、系統内角度偏差θd1が正側不感帯閾値θth1より大きいか否かを判断する。系統内角度偏差θd1が正側不感帯閾値θth1より大きいと判断された場合(S152:YES)、S154へ移行し、角度偏差θdiff1を演算する(式(5)参照)。系統内角度偏差θd1が正側不感帯閾値θth1以下であると判断された場合(S152:NO)、S153へ移行する。
S153では、角度FB部135は、系統内角度偏差θd1が負側不感帯既定値-θthより小さいか否かを判断する。系統内角度偏差θd1が負側不感帯閾値-θth未満であると判断された場合(S153:YES)、S155へ移行し、角度偏差θdiff1を演算する(式(6)参照)。系統内角度偏差θd1が負側不感帯既定値-θth以上であると判断された場合(S153:NO)、すなわち系統内角度偏差θd1が不感帯の範囲内である場合、角度偏差θdiff1=0とする。
θdiff1=θx1-θth1 ・・・(5)
θdiff1=θx1+θth1 ・・・(6)
S154~S156にて演算される角度偏差θdiff1は、図15に示す如くとなる。S154~S156に続いて移行するS157では、角度FB部135は、電流指令値TgtCurr1を演算する(式(1-1)参照)。
また、図15のフローチャートに替えて、図17のフローチャートにて指令演算処理を行ってもよい。図15および図17は、演算方法が異なるが、得られる結果は同様である。S161~S163の処理は、図15のS151~S153の処理と同様である。
S162にて肯定判断されて移行するS164では、角度FB部135は、角度誤差θy1を正側不感帯閾値θth1とする。S163にて肯定判断されて移行するS165では、角度FB部135は、角度誤差θy1を負側不感帯既定値-θth1とする。S163にて否定判断されて移行するS166では、角度FB部135は、角度誤差θy1を系統内角度偏差θd1とする。
S167では、角度FB部135では、電流指令値TgtCurr1を演算する。ここでの処理は、図7中のS101およびS102の処理と同様であるが、調停舵角θ1の演算式が異なる(式(7)参照)。
θ1=θstr1+θy1 ・・・(7)
本実施形態では、角度FB部135、235にて、共に不感帯を用いるものとして説明したが、角度FB部135、235の一方にて不感帯を設け、他方にて不感帯を設けないようにしてもよい。この場合、不感帯内では、不感帯を設けない側のマイコンで求めた指令値が出力される。例えば、第1角度FB部135にて不感帯を設けず、第2角度FB部235にて不感帯を設ける場合、目標角度θtgt1に向かう制御量の絶対値は、目標角度θtgt2に向かう制御量の絶対値より大きくなるため、実際のモータ角度は、最終的に目標角度θtgt2に向かって制御される。このようにしても、角度偏差θdiff1、θdiff2の誤差に伴う過大な出力や過熱を防ぐことができる。第4実施形態についても同様である。
本実施形態では、舵角θstr1、θstr2の誤差に応じた不感帯を設定する。角度FB部135は、目標角度θtgtと舵角θstr1との差が不感帯の範囲内の場合、角度偏差θdiff1を0とし、目標角度θtgtと舵角θstr1との差が不感帯の範囲外の場合、不感帯の幅に応じて補正した値を角度偏差θdiff1とする。詳細には、不感帯を規定する正側の閾値を正側不感帯閾値θth1、θth2、負側の閾値を負側不感帯閾値-θth1、-θth2とする。目標角度θtgt1と舵角θstr1との差が正側不感帯閾値θth1より大きい場合、目標角度θtgt1から、舵角θstr1および正側不感帯閾値θth1を減算した値を角度偏差θdiffとする(式(5)参照)。目標角度θtgt1と舵角θstr1との差が負側不感帯閾値-θth1より小さい場合、目標角度θtgt1から、舵角θstr1および負側不感帯閾値-θthを減算した値を角度偏差θdiff1とする(式(6)参照)。
本実施形態では、角度偏差θdiff1、θdiff1の誤差低減に係る補正処理にマイコン間通信を用いていないので、例えばマイコン間通信が異常の場合であっても、角度偏差θdiff1、θdiff2の誤差を低減可能であり、角度FB演算を適切に行うことができる。また、上記実施形態と同様の効果を奏する。
(第4実施形態)
第4実施形態を図18および図19に示す。第3実施形態では、不感帯は、予め設定された固定値であり、マイコン間通信は不要である。本実施形態では、マイコン間通信にて舵角θstr1、θstr2の誤差を学習し、不感帯を設定する。不感帯を学習することで、不感帯幅を最小限にすることができるので、制御性の悪化程度を小さくすることができる。図17は、起動時に不感帯を学習する場合の学習処理を説明するフローチャートである。本実施形態においても、第1制御部130での演算について説明する。
S171では、第1制御部130は、マイコン起動時か否かを判断する。マイコン起動時ではないと判断された場合(S171:NO)、S172の処理を行わず、本ルーチンを終了する。マイコン起動時であると判断された場合(S171:YES)、S172へ移行し、不感帯閾値θth1を演算する(式(8)参照)。
θth1=θstr1-θstr2 ・・・(8)
図19は、常時マイコン間通信を行って、相手の舵角が正常なときに不感帯を学習する。S176では、第1制御部130は、第2舵角θstr2が正常か否かを判断する。第2舵角θstr2が正常ではないと判断された場合(S176:NO)、S177の処理を行わず、本ルーチンを終了する。第2舵角θstr2が正常であると判断された場合(S176:YES)、S177へ移行し、S172と同様、不感帯閾値θth1を演算する(式(8)参照)。
制御部130は、第2舵角θstr2を取得し、第1舵角θstr1と第2舵角θstr2とに基づいて、不感帯を設定する。これにより、不感帯を適切に設定でき、不感帯幅を狭くすることができる。また、上記実施形態と同様の効果を奏する。
(第5実施形態)
第5実施形態を図20に示す。本実施形態では、第1制御部130は出力舵角θout1を目標角演算ECU300に送信し、第2制御部230は出力舵角θout2を目標角演算ECU300に送信する。本実施形態では、出力舵角θout1、θout2は、舵角θstr1、θstr2と同じ値とするが、角度換算可能な異なる値としてもよい。
目標角演算ECU300は、出力舵角θout1、θout2に基づいて目標角を補正する。式(9-1)、(9-2)では、真の目標角度をθtgt_t、補正後の値をθtgt1、θtgt2とする。
θtgt1=θtgt_t-(θout1-θout2)×G14
・・・(9-1)
θtgt2=θtgt_t-(θout2-θout1)×G24
・・・(9-2)
ここで、G14=G24=0.5とすれば、真の目標角度θtgt_tが目標角度θtgt1、θtgt2の平均となるように制御できる。また、G14=0、G24=1とすれば、第1目標角度θtgt1=真の目標角度θtgt_tとなり、第2目標角度θtgt2として、各制御部130、230にて演算される舵角θstr1、θstr2の角度誤差を調整した値を指示することになる。
目標角度θtgt1は、通信可能に設けられる目標角度演算装置としての目標角演算ECU300から取得される。目標角演算ECU300は、制御部130、230から検出角度に係る値として出力舵角θout1、θout2を取得し、取得した値に基づいて目標角度θtgt1、θtgt2を補正する。角度FB部135、235は、目標角演算ECU300にて補正処理がなされた目標角度θtgt1、θtgt2を用いた角度FB制御を行う。本実施形態では、角度偏差θdiff1、θdiff1の誤差低減に係る補正処理にマイコン間通信を用いていないので、例えばマイコン間通信が異常の場合であっても、角度偏差θdiff1、θdiff2の誤差を低減可能であり、角度FB演算を適切に行うことができる。また、上記実施形態と同様の効果を奏する。
(第6実施形態)
第6実施形態を図21に示す。本実施形態では、第1制御部130は出力舵角θout1を外部バス350に送信し、第2角度FB部235は出力舵角θout1を外部バス350から取得する。第2制御部230は出力舵角θout2を外部バス350に送信し、第1角度FB部135は出力舵角θout2を外部バス350から取得する。本実施形態では、制御部130、230が相互に出力舵角θout1、θout2を取得しているが、少なくとも一方にて相手側の舵角を取得して角度ずれを認識、補正すればよい。このように構成しても、マイコン間通信を用いることなく、モータ80の駆動を良好に制御することができる。また、上記実施形態と同様の効果を奏する。
(第7実施形態)
第7実施形態を図22に示す。系統L1、L2では、同様の演算が行われるため、図22には第1系統L1の第1制御部139について記載し、第2制御部を省略した。第1制御部139は、角度演算部132、電流FB部140、アシスト量演算部151、補償制御演算部152、および、加算器153等を有する。
角度演算部132は、第1モータ回転角信号θm1に基づき、モータ角を演算する。なお、角度センサ125がモータ角の演算を行う場合、角度演算部132はモータ角を角度センサ125から取得すればよい。
アシスト量演算部151は、操舵トルクに応じたアシスト量として、基本電流指令値TgtCurr1_bを演算する。補償制御演算部152は、第1モータ回転角信号θm1を用いた補償量C1を演算する。加算器153は、基本電流指令値TgtCurr1_bと補償量C1とを加算し、電流指令値TgtCurr1を演算する。電流FB部140は、上記実施形態と同様、電流指令値TgtCurr1に基づく電流FB演算により、デューティ指令値D1を演算する。
補償制御演算部152は、モータ角を用いた補償制御を行う。補償制御には、例えば舵角0点を目標角度とし、角度偏差θdiff1に応じてステアリングホイール91を戻す方向に制御量を出力する戻し制御等が含まれる。上記実施形態にて説明した角度偏差θdiff1、θdiff2の誤差による影響を低減するための処理は、本実施形態の補償制御等、角度偏差θdiff1、θdiff2を用いる各種演算に適用可能である。なお、角度偏差θdiff1、θdiff2は、モータ角に基づいて演算された値であってもよい。すなわち本実施形態では、補償制御演算部152が「角度フィードバック部」に対応する。このように構成しても、上記実施形態と同様の効果を奏する。
(第8実施形態)
第8実施形態を図23に示す。本実施形態では、主に、正常時と異常時との制御の切り替えを中心に説明する。図23中の制御パターン1~制御パターン6は、それぞれ第1実施形態~第6実施形態に対応している。簡単にまとめておくと、制御パターン1は、マイコン間通信にて舵角θstr1、θstr2を常時交換する。制御パターン2は、マイコン間通信にて、起動時に舵角θstr1、θstr2を交換する。制御パターン3は、予め設計した不感帯を設ける。第4実施形態では、不感帯を起動時に演算する例と、常時演算する例を説明したが、制御パターン4は、起動時に不感帯を演算するものとする。制御パターン5は、目標角演算ECU300にて目標角度θtgt1、θtgt2を変更する。制御パターン6は、外部バス350を経由して、舵角θstr1、θstr2を交換する。また、制御パターンAは、一方の制御部で演算した制御量をマイコン間通信にて他方の制御部に送り、他方の制御部では取得した制御量に基づいて制御を行う。図22では、異常状態と制御実施の可否を示している。図22中の○印は実施可、×印は実施不可を意味する。
制御部130、230の起動時からマイコン間通信が使用不可である場合、マイコン間通信を用いる制御パターン1、2、4、Aが実施不可であり、マイコン間通信を用いない制御パターン3、5、6は実施可能である。
起動時はマイコン間通信が正常であり、制御中にマイコン間通信が使用不可になる場合、常時マイコン間通信を用いる制御パターン1、Aが実施不可であり、その他は実施可能である。
外部バス350が故障した場合、外部バス通信を用いる制御パターン5、6が実施不可であり、その他は実施可能である。なお、外部バス350が故障すると、目標角演算ECU300から目標角度θtgt1、θtgt2を取得できないので、リアルタイムに目標角度θtgtが変わる制御には適用できないが、予め目標角がわかっている戻し制御などの補償制御(第7実施形態参照)には適用可能である。
例えば、マイコン間通信が正常である場合、一方の制御部をメイン制御部、他方をサブ制御部とし、メイン制御部で演算した制御量をサブ制御部にマイコン間通信にて送信する制御パターンAとし、マイコン間通信に異常が生じた場合、制御パターン2または制御パターン3に切り替える、といった具合である。マイコン間通信正常時の制御パターンはどのパターンであってもよく、マイコン間通信異常時に移行する制御パターンは、マイコン間通信を用いずに実施可能ないずれの制御パターンとしてもよい。外部バス通信についても同様である。これにより、マイコン間通信、または、外部バス通信に異常が生じた場合であっても、適切にモータ80の駆動制御を継続可能である。
本実施形態では、他系統検出角度と自系統検出角度との誤差を低減する補正処理は、制御部130、230間の通信が正常である場合と異常である場合とで異なっている。これにより、制御部130、230間の通信状態に応じ、適切に角度FB演算を行うことができる。
制御部130、230には、1つのメイン制御部、および、少なくとも1つのサブ制御部が含まれる。ここでは、第1制御部130がメイン制御部、第2制御部230がサブ制御部として説明する。制御部130、230間の通信が正常である場合、第1制御部130の角度FB部135にて演算された値に基づく制御量を通信にて、全ての制御部130、230にて共有する。制御部130、230間の通信が異常である場合、少なくとも1つの角度FB部135、235にて、補正処理がなされた角度偏差θdiff1、θdiff2を用いた角度FB演算を行う。これにより、制御部130、230間の通信が正常である場合、メイン制御部にて演算された制御量に基づいて、適切にモータ80の駆動を制御可能である。なお、制御部130、230にて共有する制御量は、例えば、電流指令値、トルク指令値または電圧指令値等である。また。制御部130、230間の通信異常時においても、適切に角度FB演算を行うことができる。
(他の実施形態)
上記実施形態では、巻線組が2組設けられ、位相を30[deg]ずらしてキャンセル巻きされている。他の実施形態では、巻線組の位相差やステータへの巻回方法等は、どのようであってもよい。上記実施形態の電動パワーステアリング装置は、巻線組、駆動回路および制御部が2つずつ設けられており、2系統にて構成される。他の実施形態では、系統数は3以上であってもよい。また、1つの制御部に対して複数の巻線組および駆動回路が設けられていてもよい。上記実施形態では、回転電機は3相ブラシレスモータである。他の実施形態では、回転電機の相数は3相以外でもよい。また回転電機は、ブラシレスモータに限らずどのようなモータであってもよい。
上記実施形態では、センサ部は、モータの回転角を検出する回転角センサである。他の実施形態では、センサ部は、例えばステアリングホイールの回転角度を検出する舵角センサや、トルクセンサ等、モータ回転角センサ以外であってもよい。
上記実施形態では、信号制御装置は、電動パワーステアリング装置に適用される。他の実施形態では、信号制御装置を電動パワーステアリング装置以外の装置に適用してもよい。以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
8・・・電動パワーステアリング装置
10・・・ECU(信号制御装置)
80・・・モータ(回転電機)
125、225・・・角度センサ(センサ部)
130、138、139、230、238・・・制御部
131、231・・・舵角演算部(角度演算部)
132・・・角度演算部
135、235・・・角度FB部
152・・・補償制御部演算部(角度フィードバック部)

Claims (7)

  1. 同一の回転電機(80)を制御する複数の制御部(130、138、139、230、238)を備える信号制御装置であって、
    それぞれの前記制御部は、
    個別に対応して設けられるセンサ部(125、225)からセンサ信号を取得し、前記センサ信号に応じた自系統検出角度を演算する角度演算部(131、132、231)と、
    目標角度と検出角度との角度偏差に応じた角度フィードバック制御を行う角度フィードバック部(135、152、235)と、
    を備え、
    少なくとも1つの前記制御部の前記角度フィードバック部において、他の前記制御部の前記角度演算部にて演算される他系統検出角度と前記自系統検出角度との誤差を低減する補正処理がなされた前記角度偏差を用いて角度フィードバック制御を行い、
    少なくとも1つの前記制御部(138、238)は、前記他系統検出角度と前記自系統検出角度との角度誤差を補正するための補正値を記憶する補正値記憶部(137、237)を有し、
    前記角度フィードバック部は、前記自系統検出角度を前記補正値で補正した値を前記検出角度として用いる信号制御装置。
  2. 同一の回転電機(80)を制御する複数の制御部(130、138、139、230、238)を備える信号制御装置であって、
    それぞれの前記制御部は、
    個別に対応して設けられるセンサ部(125、225)からセンサ信号を取得し、前記センサ信号に応じた自系統検出角度を演算する角度演算部(131、132、231)と、
    目標角度と検出角度との角度偏差に応じた角度フィードバック制御を行う角度フィードバック部(135、152、235)と、
    を備え、
    少なくとも1つの前記制御部の前記角度フィードバック部において、他の前記制御部の前記角度演算部にて演算される他系統検出角度と前記自系統検出角度との誤差を低減する補正処理がなされた前記角度偏差を用いて角度フィードバック制御を行い、
    前記自系統検出角度と前記他系統検出角度との誤差に応じた不感帯を設定し、
    前記角度フィードバック部は、
    前記目標角度と前記自系統検出角度との差が前記不感帯の範囲内の場合、前記角度偏差を0とし、
    前記目標角度と前記自系統検出角度との差が前記不感帯の範囲外の場合、前記不感帯の幅に応じて補正した値を前記角度偏差とする信号制御装置。
  3. 少なくとも1つの前記制御部は、前記他系統検出角度を取得し、前記自系統検出角度と前記他系統検出角度とに基づいて前記不感帯を設定する請求項に記載の信号制御装置。
  4. 同一の回転電機(80)を制御する複数の制御部(130、138、139、230、238)を備える信号制御装置であって、
    それぞれの前記制御部は、
    個別に対応して設けられるセンサ部(125、225)からセンサ信号を取得し、前記センサ信号に応じた自系統検出角度を演算する角度演算部(131、132、231)と、
    目標角度と検出角度との角度偏差に応じた角度フィードバック制御を行う角度フィードバック部(135、152、235)と、
    を備え、
    少なくとも1つの前記制御部の前記角度フィードバック部において、他の前記制御部の前記角度演算部にて演算される他系統検出角度と前記自系統検出角度との誤差を低減する補正処理がなされた前記角度偏差を用いて角度フィードバック制御を行い、
    前記目標角度は、通信可能に設けられる目標角度演算装置(300)から取得され、
    前記目標角度演算装置は、前記制御部から検出角度に係る値を取得し、取得した値に基づいて前記目標角度を補正し、
    前記角度フィードバック部は、前記目標角度演算装置にて前記補正処理がなされた前記目標角度を用いた角度フィードバック制御を行う信号制御装置。
  5. 前記補正処理は、前記制御部間の通信が正常である場合と異常である場合とで異なる請求項1~のいずれか一項に記載の信号制御装置。
  6. 前記制御部には、1つのメイン制御部、および、サブ制御部が含まれ、
    前記制御部間の通信が正常である場合、前記メイン制御部の前記角度フィードバック部にて演算された値に基づく制御量を通信にて全ての前記制御部にて共有し、
    前記制御部間の通信が異常である場合、少なくとも1つの前記角度フィードバック部にて、前記補正処理がなされた前記角度偏差を用いた角度フィードバック制御を行う請求項1~のいずれか一項に記載の信号制御装置。
  7. 請求項1~のいずれか一項に記載の信号制御装置と、
    操舵に要するトルクを出力する前記回転電機と、
    を備え、
    前記信号制御装置は、前記角度フィードバック部にて演算された値を用いて前記回転電機の駆動を制御する電動パワーステアリング装置。
JP2018103871A 2018-03-20 2018-05-30 信号制御装置、および、これを用いた電動パワーステアリング装置 Active JP7106989B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/298,224 US11529990B2 (en) 2018-03-20 2019-03-11 Signal control apparatus and electric power steering apparatus using same
DE102019203570.1A DE102019203570B4 (de) 2018-03-20 2019-03-15 Signalsteuerungsvorrichtung und dieselbe verwendende Elektroservolenkungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018052359 2018-03-20
JP2018052359 2018-03-20

Publications (2)

Publication Number Publication Date
JP2019165610A JP2019165610A (ja) 2019-09-26
JP7106989B2 true JP7106989B2 (ja) 2022-07-27

Family

ID=68065099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103871A Active JP7106989B2 (ja) 2018-03-20 2018-05-30 信号制御装置、および、これを用いた電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP7106989B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255095B2 (ja) 2018-05-30 2023-04-11 株式会社デンソー 回転検出装置、および、これを用いた電動パワーステアリング装置
JP7160012B2 (ja) * 2019-10-03 2022-10-25 株式会社デンソー 電子制御装置
JP7226251B2 (ja) * 2019-11-05 2023-02-21 株式会社デンソー 冗長化制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262643A (ja) 2008-04-22 2009-11-12 Toyota Motor Corp 車両制御装置
JP2013034281A (ja) 2011-08-01 2013-02-14 Denso Corp 多相回転機の制御装置、及びこれを用いた電動パワーステアリング装置
JP2016113031A (ja) 2014-12-16 2016-06-23 トヨタ自動車株式会社 車両の電動パワーステアリング装置
JP2017059096A (ja) 2015-09-18 2017-03-23 株式会社デンソー 通信システム
US20170291640A1 (en) 2016-04-06 2017-10-12 Denso Corporation Rotation detecting apparatus and electric power steering apparatus using the same
JP2017191092A (ja) 2016-04-06 2017-10-19 株式会社デンソー 回転検出装置、および、これを用いた電動パワーステアリング装置
JP2018038176A (ja) 2016-08-31 2018-03-08 株式会社ジェイテクト モータ制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262643A (ja) 2008-04-22 2009-11-12 Toyota Motor Corp 車両制御装置
JP2013034281A (ja) 2011-08-01 2013-02-14 Denso Corp 多相回転機の制御装置、及びこれを用いた電動パワーステアリング装置
JP2016113031A (ja) 2014-12-16 2016-06-23 トヨタ自動車株式会社 車両の電動パワーステアリング装置
JP2017059096A (ja) 2015-09-18 2017-03-23 株式会社デンソー 通信システム
US20170291640A1 (en) 2016-04-06 2017-10-12 Denso Corporation Rotation detecting apparatus and electric power steering apparatus using the same
JP2017191092A (ja) 2016-04-06 2017-10-19 株式会社デンソー 回転検出装置、および、これを用いた電動パワーステアリング装置
JP2018038176A (ja) 2016-08-31 2018-03-08 株式会社ジェイテクト モータ制御装置

Also Published As

Publication number Publication date
JP2019165610A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
US11529990B2 (en) Signal control apparatus and electric power steering apparatus using same
JP7106989B2 (ja) 信号制御装置、および、これを用いた電動パワーステアリング装置
JP7192646B2 (ja) 回転電機制御装置
JP7139616B2 (ja) 操舵制御装置
US11639192B2 (en) Detection unit
CN111788460B (zh) 检测装置、运算装置、控制装置及电动助力转向装置
US11285992B2 (en) Rotating electric machine control device
WO2021085228A1 (ja) モータ駆動システム
JP2020171103A (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
US11088532B2 (en) Control device
JP7205373B2 (ja) 回転電機制御装置
US11453438B2 (en) Rotation detection device
CN111746637A (zh) 检测单元
JP7081386B2 (ja) 回転検出装置、および、これを用いた電動パワーステアリング装置
WO2019181938A1 (ja) 検出装置、演算装置、制御装置、および、これを用いた電動パワーステアリング装置
JP7255095B2 (ja) 回転検出装置、および、これを用いた電動パワーステアリング装置
JP7172140B2 (ja) 回転検出装置、および、これを用いた電動パワーステアリング装置
JP7156211B2 (ja) 回転電機制御装置
JP7183730B2 (ja) 操舵制御装置
CN117441287A (zh) 电力供给装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R151 Written notification of patent or utility model registration

Ref document number: 7106989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151