WO2012141167A1 - 固体高分子形燃料電池用補強材及びそれに用いる粘接着組成物 - Google Patents

固体高分子形燃料電池用補強材及びそれに用いる粘接着組成物 Download PDF

Info

Publication number
WO2012141167A1
WO2012141167A1 PCT/JP2012/059770 JP2012059770W WO2012141167A1 WO 2012141167 A1 WO2012141167 A1 WO 2012141167A1 JP 2012059770 W JP2012059770 W JP 2012059770W WO 2012141167 A1 WO2012141167 A1 WO 2012141167A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing material
electrolyte membrane
catalyst layer
layer
adhesive
Prior art date
Application number
PCT/JP2012/059770
Other languages
English (en)
French (fr)
Inventor
宏年 坂元
谷口 貴久
公淳 宇高
秀紀 浅井
和史 小谷
邦聡 芳片
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2013509924A priority Critical patent/JP5880546B2/ja
Priority to CN201280017396.XA priority patent/CN103582562B/zh
Priority to US14/111,123 priority patent/US9437881B2/en
Priority to EP12771339.4A priority patent/EP2698250A4/en
Publication of WO2012141167A1 publication Critical patent/WO2012141167A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J177/00Adhesives based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Adhesives based on derivatives of such polymers
    • C09J177/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J177/00Adhesives based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Adhesives based on derivatives of such polymers
    • C09J177/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2477/00Presence of polyamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2481/00Presence of sulfur containing polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a reinforcing material used for a catalyst layer-electrolyte membrane laminate or a membrane-electrode assembly in a polymer electrolyte fuel cell.
  • the present invention also relates to a catalyst layer-electrolyte laminate, a membrane-electrode assembly, and a polymer electrolyte fuel cell using a reinforcing material.
  • this invention relates to the adhesive composition used suitably for adhesion
  • Fuel cells have electrodes on both sides of the electrolyte membrane, generate electricity by the electrochemical reaction between hydrogen and oxygen, and produce only water as a by-product during power generation.
  • a polymer electrolyte fuel cell is a fuel cell using a polymer material for an electrolyte membrane, has a low operating temperature, and is expected to be put to practical use as a home cogeneration system.
  • the basic structure of a polymer electrolyte fuel cell is a catalyst layer-electrolyte membrane laminate (CCM) in which a catalyst layer is bonded to both sides of an electrolyte membrane having proton conductivity, and each catalyst layer of this catalyst layer-electrolyte membrane A membrane-electrode assembly (MEA) having a gas diffusion layer laminated thereon is provided, and a gasket and a separator are installed on this MEA.
  • CCM catalyst layer-electrolyte membrane laminate
  • MEA membrane-electrode assembly
  • Patent Document 1 a technique for reinforcing an electrolyte membrane by adhering a frame-shaped reinforcing material to a catalyst layer-electrolyte membrane or a membrane-electrode assembly has been proposed.
  • the adhesive strength is too strong, it is difficult to correct the position of the reinforcing material once the reinforcing material is brought into contact with the electrolyte membrane, and the wrinkles and the like of the electrolyte membrane generated at the time of bonding are removed. I wouldn't.
  • the initial adhesive force of the adhesive is too weak, there is a problem that the reinforcing film is displaced when the reinforcing material is pressure-bonded to the electrolyte film.
  • An object of the present invention is to provide a reinforcing material with an adhesive layer that has a suitable initial adhesion to an adherend such as an electrolyte membrane, a catalyst layer, a gas diffusion layer, etc., and is easy to temporarily fix, and a catalyst using the reinforcing material It is to provide a layer-electrolyte membrane laminate, a membrane-electrode assembly, and a polymer electrolyte fuel cell. Furthermore, the other object of this invention is to provide the adhesive composition used for the said reinforcing material.
  • the present inventor has intensively studied to solve the above problems, and in a reinforcing material in which an adhesive layer is formed on a base material, aliphatic polyamide, an epoxy resin, and polythiol are added to the adhesive layer.
  • aliphatic polyamide, an epoxy resin, and polythiol are added to the adhesive layer.
  • the present invention relates to a reinforcing material, a catalyst layer-electrolyte membrane laminate with a reinforcing material, a membrane-electrode assembly with a reinforcing material, and a polymer electrolyte fuel cell according to the following embodiments.
  • Item 1 A reinforcing material in which an adhesive layer is laminated on a base material, wherein the adhesive layer contains an aliphatic polyamide, an epoxy resin, and a polythiol.
  • Item 2. The reinforcing material according to Item 1, wherein the polythiol is solid at room temperature.
  • Item 3. Item 2. The reinforcing material according to Item 1, wherein the adhesive layer further contains an ionic liquid.
  • the reinforcing material according to Item 3 wherein the content of the ionic liquid in the adhesive layer is 0.01 to 10% by mass.
  • Item 5 A catalyst layer-electrolyte membrane laminate in which a catalyst layer is formed on both surfaces excluding the outer peripheral edge of the electrolyte membrane; The reinforcing material according to any one of Items 1 to 4, The reinforcing material has a frame shape having an opening, The reinforcing material is bonded via the adhesive layer on the outer peripheral edge of at least one surface of the catalyst layer-electrolyte membrane laminate, A catalyst layer-electrolyte membrane laminate with a reinforcing material, Item 6.
  • a method for producing a catalyst layer-electrolyte membrane laminate with a reinforcing material comprising the following steps: (I) The reinforcing material according to any one of items 1 to 4 having a frame shape having an opening is adhered to the outer peripheral edge of the electrolyte membrane via the adhesive layer of the reinforcing material, thereby providing an electrolyte with the reinforcing material.
  • a step of obtaining a membrane and (ii) a step of laminating a catalyst layer on the electrolyte membrane exposed from the opening in the electrolyte membrane with reinforcing material to obtain a catalyst layer-electrolyte membrane laminate with reinforcing material.
  • a membrane-electrode assembly in which a catalyst layer and a gas diffusion layer are sequentially laminated on both surfaces of the electrolyte membrane;
  • the reinforcing material according to any one of Items 1 to 4,
  • the reinforcing material has a frame shape having an opening,
  • the reinforcing material is bonded to the outer peripheral edge of at least one surface of the membrane-electrode assembly via the adhesive layer.
  • a method for producing a membrane-electrode assembly with a reinforcing material including the following steps: (I) A reinforcing material according to any one of items 1 to 4 having a frame shape having an opening is adhered to the outer peripheral edge of the electrolyte membrane via an adhesive layer of the reinforcing material, thereby providing an electrolyte with a reinforcing material. And (ii) a two-layer structure comprising a catalyst layer and a gas diffusion layer sequentially laminated on the electrolyte membrane exposed from the opening in the electrolyte membrane with a reinforcing material, or a catalyst layer and a gas diffusion layer A step of laminating layers to obtain a membrane-electrode assembly with a reinforcing material.
  • Item 8. A polymer electrolyte fuel cell comprising the membrane-electrode assembly with a reinforcing material according to Item 7.
  • this invention relates to the adhesive composition of the following aspect, its use, and an adhesive sheet.
  • Item 10. An adhesive composition comprising an epoxy resin, an aliphatic polyamide, and polythiol. Item 11. Item 11. The adhesive composition according to Item 10, wherein the polythiol is solid at room temperature. Item 12. Item 11. The adhesive composition according to Item 10, further comprising an ionic liquid. Item 13. Item 13. The adhesive composition according to Item 12, wherein the content of the ionic liquid is 0.01 to 10% by mass. Item 14. Item 11. The adhesive composition according to Item 10, which is used for bonding an electrolyte membrane used in a polymer electrolyte fuel cell. Item 15.
  • Item 16 An adhesive sheet in which an adhesive layer comprising the adhesive composition according to any one of Items 10 to 14 is formed on a peelable protective film.
  • the reinforcing material of the present invention since the initial adhesive force to the adherend such as the electrolyte membrane is appropriate, the position of the reinforcing material is corrected or adhered before the main bonding (heat treatment or heat pressure treatment). It can remove wrinkles on the body and is suitable for temporary fixing.
  • the reinforcing material of the present invention exhibits high adhesion to the adherend after final adhesion (heat treatment or heat pressure treatment), and further stabilizes the adhesion even in the reaction atmosphere of the fuel cell under high temperature conditions or acidic conditions. Therefore, the fuel cell can be provided with excellent durability.
  • the adhesive composition of the present invention has an appropriate initial adhesive force to the adherend, and can easily correct the position of the reinforcing material and remove wrinkles of the adherend. Workability of bonding to the kimono is greatly improved.
  • a frame-shaped reinforcing material having an opening is bonded to the electrolyte membrane, and then a catalyst transfer film is laminated to the opening of the electrolyte membrane.
  • the adhesive leaks out from the frame of the reinforcing material due to the heat pressure at the time of transfer, resulting in a decrease in productivity and a decrease in battery performance.
  • a reinforcing material is provided even under more severe conditions (for example, 100 ° C.
  • the adherend and the reinforcing material can be bonded without leakage of the adhesive composition even when exposed to severe heat and pressure conditions. it can.
  • the reinforcing material of the present invention in which a catalyst layer-electrolyte membrane laminate having a catalyst layer slightly smaller than the electrolyte membrane is used, and a frame-like reinforcing material is bonded only to the outer peripheral edge of the electrolyte membrane of the catalyst layer-electrolyte membrane laminate 1 shows an example of a cross-sectional view of an attached catalyst layer-electrolyte membrane laminate.
  • a catalyst layer-electrolyte membrane laminate whose catalyst layer is slightly smaller than the electrolyte membrane, and attach a frame-shaped reinforcing material to the outer periphery of the catalyst layer and the outer periphery of the catalyst layer of the catalyst layer-electrolyte membrane laminate 1 shows an example of a cross-sectional view of a catalyst layer-electrolyte membrane laminate with a reinforcing material of the present invention.
  • the reinforcing material of the present invention in which a catalyst layer-electrolyte membrane laminate having the same size as the catalyst layer and the electrolyte membrane is used, and a frame-like reinforcing material is bonded to the outer peripheral edge of the catalyst layer of the catalyst layer-electrolyte membrane laminate 1 shows an example of a cross-sectional view of an attached catalyst layer-electrolyte membrane laminate.
  • a membrane-electrode assembly in which the gas diffusion layer is slightly smaller than the catalyst layer and the catalyst layer is slightly smaller than the electrolyte membrane is used, and a frame-shaped reinforcing material is provided only on the outer peripheral edge of the electrolyte membrane of the membrane-electrode assembly.
  • FIG. 1 An example of a cross-sectional view of a membrane-electrode assembly with a reinforcing material of the present invention to which is attached is shown.
  • the outer periphery of the electrolyte membrane of the membrane-electrode assembly and the outer periphery of the catalyst layer 1 shows an example of a cross-sectional view of a membrane-electrode assembly with a reinforcing material of the present invention to which a frame-shaped reinforcing material is bonded.
  • a frame-shaped reinforcing material is attached to the outer peripheral edge of the catalyst layer of the membrane-electrode assembly.
  • An example of a cross-sectional view of a membrane-electrode assembly with a reinforcing material of the present invention bonded thereto is shown.
  • Reinforcement of the present invention in which a catalyst layer, an electrolyte membrane, and a gas diffusion layer have the same size, and a frame-shaped reinforcing material is bonded to the outer peripheral edge of the gas diffusion layer of the membrane-electrode assembly
  • An example of a cross-sectional view of a membrane-electrode assembly with a material is shown.
  • FIG. 1 An example of a cross-sectional view of a membrane-electrode assembly with a reinforcing material of the present invention to which a frame-shaped reinforcing material is bonded is shown in FIG.
  • the reinforcing material of the present invention has a structure in which an adhesive layer 2 is laminated on a substrate 1, as shown in FIG.
  • the adhesive layer contains an aliphatic polyamide, an epoxy resin, and polythiol.
  • the base material used for the reinforcing material of the present invention is a base material bonded to the adherend through a cured adhesive layer for the purpose of reinforcing the adherend.
  • the base material used in the reinforcing material of the present invention is appropriately set according to the use of the reinforcing material regardless of whether it is a plastic base material, a metal base material, a composite base material thereof, or the like.
  • the material is used as a reinforcing material for the catalyst layer-electrolyte membrane laminate or the membrane-electrode assembly, those having a gas barrier property are preferable.
  • base materials having barrier properties against water vapor, water, fuel gas, and oxidant gas include polyester, polyamide, polyimide, polymethyl pentene, polyphenylene oxide, polysulfone, polyether ether ketone, polyphenylene sulfide, and fluororesin.
  • the polyester include plastic substrates such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene naphthalate.
  • metal substrates such as aluminum, copper, zinc, etc .
  • oxides such as alumina, silica, titania, etc.
  • polyesters particularly polyethylene naphthalate, are preferable from the viewpoints of gas barrier properties, heat resistance, thermal dimensional stability, and reduction in production costs.
  • the reinforcing material of the present invention is provided with a function as a gasket, it is preferable to use a plastic substrate, an oxide laminated plastic substrate, etc. from the viewpoint of insulation.
  • the thickness of the substrate is not particularly limited, but when the reinforcing material of the present invention is used as a reinforcing material for a catalyst layer-electrolyte membrane laminate or a membrane-electrode assembly, the thickness of the substrate is, for example, 6 It may be ⁇ 500 ⁇ m, preferably 12 ⁇ 100 ⁇ m.
  • the shape of the reinforcing material of the present invention is not particularly limited and is appropriately set according to the use of the adherend.
  • the reinforcing material is used as a reinforcing material for the membrane-electrode assembly or the membrane-electrode assembly.
  • a frame shape having an opening 2 is desirable as shown in FIG.
  • an adhesive layer containing an epoxy resin, aliphatic polyamide, and polythiol is laminated on the base material.
  • the constituent components of these adhesive layers become inseparable, the initial adhesive force becomes appropriate, and temporary fixing becomes easy.
  • the adhesive layer having such a structure it exhibits high adhesion to the adherend after the main adhesion (heat treatment or heat pressure treatment), and under the reaction atmosphere of the fuel cell under high temperature conditions or acidic conditions.
  • the adhesive force can be stably maintained.
  • the epoxy resin can be used regardless of whether it is monoepoxy or polyepoxy.
  • Examples of the monoepoxy resin include butyl glycidyl ether, hexyl glycidyl ether, phenyl glycidyl ether, and allyl glycidyl ether.
  • polyvalent epoxy resin examples include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A, tetrachlorobisphenol A.
  • Glycidyl type epoxy resin 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 1,2: 8,9 diepoxy limonene, 2,2-bis (hydroxymethyl) -1-butano 1,2-epoxy-4- (2-oxiranyl) alicyclic such as cyclohexanedicarboxylic epoxide etc. Le like.
  • epoxy resins from the viewpoint of film forming property and compatibility, a polyvalent epoxy resin is preferable, a bisphenol type epoxy resin is more preferable, and a bisphenol A type epoxy resin is particularly preferable.
  • epoxy resins may be used alone or in combination of two or more.
  • the epoxy equivalent of the epoxy resin is preferably 100 to 1000, for example, in order to improve the adhesive strength and durability after thermocompression bonding while maintaining the initial adhesive strength moderately.
  • the epoxy equivalent is the mass of a resin containing 1 equivalent of an epoxy group measured by the method defined in JISK7236.
  • Examples of commercially available epoxy resins include jER828 (made by Japan Epoxy Resin), jER1001 (made by Japan Epoxy Resin), jER1004 (made by Japan Epoxy Resin), jER1007 (made by Japan Epoxy Resin), and jER871 (Japan).
  • Epoxy resin) jER872 (Japan epoxy resin), EPR-4030 (ADEKA), etc. can be used.
  • the content of the epoxy resin is not particularly limited.
  • the content is 10 to 90% by mass, preferably 25 to 75% by mass, based on the total mass of the adhesive layer. Can be mentioned. By satisfying such a content, a desired adhesive force can be provided more effectively.
  • aliphatic polyamide examples include polycaproamide (nylon-6), polyaminoundecansan (nylon-11), polylauryllactam (nylon-12), polyhexamethylenediaminoadipic acid (nylon-66), polyhexamethylene Diamino sebacic acid (nylon-610), polyhexamethylene diaminododecanedioic acid (nylon-612), copolymer of caprolactam and lauryl lactam (nylon-6,12), copolymer of caprolactam and aminoundecanoic acid (nylon 6) -, 11), a copolymer of caprolactam, hexamethylenediaminoadipic acid and aminododecanedioic acid (nylon-6,66,612), a copolymer of caprolactam, polyhexamethylenediaminoadipic acid and lauryllactam (nylon-6) 66,12), a copolymer of caprol
  • aliphatic polyamide resin a block copolymer of a polyamide and a polyether ester having a dimer acid capable of obtaining a polymer having toughness and excellent flexibility; and a block copolymer of the polyamide and a polyester are preferable.
  • aliphatic polyamides may be used singly or in combination of two or more.
  • the mass average molecular weight of the aliphatic polyamide in order to make the initial adhesive force moderate and improve the adhesive strength and durability after the main adhesion (heat treatment or heat pressure treatment), for example, the mass average molecular weight is 1, Those within the range of 000 to 200,000 are preferred.
  • the mass average molecular weight is a value in terms of polystyrene measured by gel permeation chromatography (GPC).
  • Examples of commercially available aliphatic polyamides include TAPE-826-4S (Fuji Kasei Kogyo Co., Ltd.), TAPE-826-5A (Fuji Kasei Kogyo Co., Ltd.), Newmide 515-ME (Harima Kasei Co., Ltd.), Newmide 945 (manufactured by Harima Kasei Co., Ltd.), Newmide 947 (manufactured by Harima Kasei Co., Ltd.) and the like can be used.
  • the content of the aliphatic polyamide is not particularly limited, but for example, 5 to 80% by mass, preferably 10 to 50% by mass, based on the total mass of the adhesive layer. Is mentioned.
  • Polythiol functions as a curing agent for the epoxy resin in the adhesive layer.
  • the polythiol used in the present invention is not particularly limited as long as it has two or more thiol groups and can cure the above epoxy resin.
  • trimethylolpropane tris thioglycolate
  • penta Erythritol tetrakis thioglycolate
  • ethylene glycol dithioglycolate trimethylolpropane tris ( ⁇ -thiopropionate), pentaerythritol tetrakis ( ⁇ -thiopropionate), dipentaerythritol poly ( ⁇ -thiopropionate)
  • Thiol compounds obtained by esterification reaction of polyols such as pentaerythritol tristhiopropionate and mercapto organic acids; 1,4-butanedithiol, 1,6-hexanedithiol, 1,10-decanedithiol, etc.
  • Killed polythiol compound terminal thiol group-containing polyether; terminal thiol group-containing polythioether; thiol compound obtained by reaction of epoxy compound and hydrogen sulfide; thiol compound having terminal thiol group obtained by reaction of polythiol and epoxy compound; 2 , 4,6-trimercapto-1,3,5-triazine (thiocyanuric acid), 2-di-n-butylamino-4,6-dimercapto-s-triazine (melting point 137 ° C.
  • 1-hexylamino- 3,5-dimercaptotriazine 1-diethylamino-3,5-dimercaptotriazine, 1-cyclohexylamino-3,5-dimercaptotriazine, 1-dibutylamino-3,5-dimercaptotriazine, 2-anilide- 4,6-mercaptotriazine, 1-phenyla Polythiol having a triazine skeleton such as Roh-3,5-dimercapto-triazine.
  • polythiol having a solid state at room temperature preferably a melting point of 120 ° C. or higher
  • it can be imparted with a property that it is difficult to leak from the adherend region even when heated to the adhesive layer.
  • polythiols that are solid at room temperature include 2,4,6-trimercapto-1,3,5-triazine (melting point of 300 ° C. or higher), 2-di-n-butylamino-4,6- Dimercapto-s-triazine (melting point: 137 to 140 ° C.).
  • Examples of commercially available products of the above polythiol include TSH (manufactured by Kawaguchi Chemical Industry Co., Ltd.), DISNET DB (manufactured by Sankyo Kasei Co., Ltd.), DISNET AF (manufactured by Sankyo Kasei Co., Ltd.), and the like.
  • the content of the polythiol is not particularly limited. For example, 0.01 to 85% by mass, preferably 0.1 to 65%, based on the total mass of the adhesive layer. % By weight.
  • the ratio of the epoxy resin, the aliphatic polyamide, and the polythiol may be appropriately set within a range that satisfies the content of each component described above. 10-100 parts by weight of aliphatic polyamide per 100 parts by weight of the epoxy resin from the viewpoint of improving adhesive strength, durability, etc. after the main adhesion (heat treatment or heat pressure treatment) while maintaining moderately Preferably, 25 to 50 parts by weight; 0.4 to 1.2 equivalents, preferably 0.5 to 1.0 equivalents of polythiol per 1 equivalent of epoxy group of the above-mentioned epoxy resin is set in a satisfactory range.
  • the adhesive layer of the reinforcing material of the present invention may contain an ionic liquid as necessary in order to adjust the adhesive force.
  • the ionic liquid acts as a curing accelerator for polythiol, shortens the curing time of the adhesive layer of the reinforcing material of the present invention, or in temporary fixing before the main bonding (heat treatment or heat pressure treatment) even at a relatively low temperature. Good adhesiveness can be imparted, and the adhesive strength after curing can be further improved.
  • the hydrocarbon polymer electrolyte membrane is difficult to give an appropriate adhesive force in the temporary fixing before the main adhesion (heat treatment or heat pressure treatment), and it is difficult to fix the position of the reinforcing material at the time of temporary fixing.
  • the ionic liquid is contained in the adhesive layer of the reinforcing material of the present invention, it is a material that easily shifts in position, and there is a disadvantage in using such a hydrocarbon-based polymer electrolyte membrane as an adherend. This can be eliminated, and the initial adhesive strength to the hydrocarbon polymer electrolyte membrane can be maintained moderately, and the adhesive strength, durability, etc. after the main adhesion (heat treatment or hot pressure treatment) can be improved.
  • the ionic liquid refers to a molten salt having a melting point of 150 ° C. or lower and exhibiting a liquid state at room temperature (about 25 ° C.), and is also referred to as a low melting point molten salt.
  • an ionic liquid maintains a liquid state even in a temperature range of ⁇ 30 ° C. to 300 ° C., and has an extremely low vapor pressure, non-volatility, and low viscosity.
  • the type of cation and anion constituting the ionic liquid and the combination thereof are not particularly limited, and a cation capable of constituting the ionic liquid and an anion serving as a counter ion may be appropriately set.
  • the cation constituting the ionic liquid includes an imidazolium cation (cation having an imidazolium skeleton), a pyridinium cation (cation having a pyridinium skeleton), an aliphatic amine cation, and an alicyclic amine system.
  • Examples include cations and aliphatic phosphonium cations.
  • Examples of the imidazolium-based cation include 1-methyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, and 1-octyl-3-methylimidazole.
  • 1-octadecyl-3-methylimidazolium 1-methyl-2,3-dimethylimidazolium, 1-butyl-2,3-dimethylimidazolium, 1-hexyl-2,3-dimethylimidazolium, 1- Examples include octyl-2,3-dimethylimidazolium and 1-octadecyl-2,3-dimethylimidazolium.
  • Examples of the pyridinium cation include 1-methylpyridinium, 1-butylpyridinium, 1-hexylpyridinium, 1-octyl-pyridinium, 1-butyl-3-methyl-pyridinium, 1-butyl-4-methyl-pyridinium, 1 -Hexyl-4-methyl-pyridinium, 1-octyl-4-methylpyridinium and the like.
  • Examples of aliphatic amine cations include tetrabutylammonium, tetrapentylammonium, trioctylmethylammonium, trimethylhexylammonium, trimethylpropylammonium, N, N-dimethyl-N, N-didecylammonium, and N, N-diallyl. -N-hexyl-N-methylammonium, trimethylethylammonium and the like.
  • Examples of the alicyclic amine cation include 1-methyl-1-butylpiperidinium, 1-methyl-1-ethylpyrrolidinium, 1-methyl-1-butylpyrrolidinium, 4-methyl-4- Examples include hexylmorpholinium, 1-methyl-1-ethylpiperidinium, and 4-methyl-4-ethylmorpholinium.
  • Examples of the aliphatic phosphonium cation include tetrabutylphosphonium, triisobutylmethylphosphonium, tetrapentylphosphonium, and tetrahexylphosphonium.
  • the anion constituting the ionic liquid is not particularly limited as long as it exhibits the properties of the ionic liquid when the salt is formed with the cation, but for example, fluorine, chlorine, bromine, iodine, etc.
  • the ionic liquid used in the present invention is preferably a salt of an imidazolium cation or a pyridinium cation and a fluorine anion, more preferably a salt of an imidazolium cation and a fluorine anion, particularly preferably 1- And butyl-3-methyl-pyridinium (1-butyl-3-methyl-pyridinium).
  • the content thereof is not particularly limited, but for example, 0.01 to 10% by mass per total mass of the adhesive layer, Preferably, it is 0.05 to 7.5% by mass.
  • the ratio of the ionic liquid to the epoxy resin may be appropriately set within a range satisfying the content of each component described above.
  • the ionic liquid per 100 parts by weight of the epoxy resin The amount is 0.01 to 20 parts by mass, preferably 0.1 to 10 parts by mass.
  • polyimide resin acrylic resin, ⁇ -olefin resin, urethane resin, ethylene-vinyl acetate resin, vinyl chloride resin, silicone resin for adjusting adhesion, imparting flexibility, adjusting curing conditions, etc.
  • Resin such as styrene-butadiene resin, polyvinyl pyrrolidone resin, polymethacrylate resin; curing agent other than polythiol; crosslinking agent; curing accelerator; curing retarder; antioxidant; pigment; Also good.
  • a curing accelerator it is possible to accelerate the curing of the adhesive layer at the time of main bonding by heat treatment or heat-pressure treatment, and by containing a curing retarder, heat treatment or heat-pressure treatment It is possible to suppress the adhesive layer from being cured before the main bonding according to.
  • the thickness of the adhesive layer to be laminated is not particularly limited, but sufficient adhesive strength after the main bonding (heat treatment or heat pressure treatment wearing) while providing an appropriate initial adhesive strength. Is usually 1 to 300 ⁇ m, preferably 5 to 50 ⁇ m.
  • the adhesive layer has a T-type peel strength of 0.01 to 0.3 N / mm before curing when the substrate and the adherend are bonded, and at 100 ° C. More than 0.35 N / mm after heat treatment for 6 hours; preferably 0.01 to 0.2 N / mm before cure, and after heat treatment and cure at 100 ° C. for 6 hours It is desirable to satisfy 0.5 N / mm or more.
  • the T-type peel strength is measured by adhering an adherend to a strip-shaped reinforcing material having a width of 15 mm and pulling the adherend and the base material of the reinforcing material in a T shape at a speed of 50 mm / min. Is the adhesive force.
  • the reinforcing material of the present invention is suitably used as a reinforcing material for a catalyst layer-electrolyte membrane laminate or a membrane-electrode assembly, the T-type peel strength is satisfactory when the adherend is an electrolyte membrane. It is desirable that
  • the method for laminating the adhesive layer on the reinforcing material of the present invention is not particularly limited, and a conventionally known method can be used.
  • the coating composition of the adhesive composition is obtained by dissolving and dispersing the compounding components of the adhesive layer in an organic solvent.
  • the adhesive liquid layer can be laminated on the base material by directly applying the coating liquid thus obtained onto the base material and drying, or a desired protective film that can be peeled off. After coating and drying to a film thickness, the adhesive layer formed on the protective film is transferred to the substrate, whereby the adhesive layer can be laminated on the substrate.
  • the organic solvent used in the coating solution is not particularly limited.
  • ketones such as methyl ethyl ketone, methyl amyl ketone, methyl isobutyl ketone, cyclohexane, and 3-heptanone; aromatics such as toluene and xylene Hydrocarbons; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether; ethyl acetate, acetic acid-n-butyl, isobutyl acetate, acetic acid Esters such as amyl, ethyl propion, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, butyl butyrate; ethanol, propanol, isopropyl alcohol, butanol, 3-methoate Shi butanol, cyclohex
  • the method for coating the coating liquid on the substrate or the protective film is not particularly limited.
  • the protective film is not particularly limited as long as the surface in contact with the adhesive layer has releasability, for example, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, etc.
  • polyester film polyethylene film, polypropylene film, A plastic film having a peelability alone or having been subjected to a peeling treatment, such as a polyarate film, a fluororesin film, a diacetylcellulose film, a triacetylcellulose film, an acetylcellulose butyrate film; a polyethylene laminated paper, a polypropylene laminated paper, Examples include paper subjected to release treatment such as glassine paper, resin-coated paper, and clay-coated paper.
  • the said peeling process is a process which forms the peeling layer which has peelability, such as a fluorine-type resin, a silicone type resin, an Alkit type resin.
  • the adhesive film on the protective film is bonded to a predetermined portion of the base material and bonded, and then the protective film is peeled and removed. Good.
  • the reinforcing material of the present invention is used for the purpose of reinforcing the strength of various adherends such as an electrolyte membrane, a catalyst layer, a gas diffusion layer, a gasket, and a sealing material regardless of the material.
  • the reinforcing material of the present invention is preferably used as a reinforcing material for a catalyst layer-electrolyte membrane laminate or a membrane-electrode assembly.
  • the reinforcing material of the present invention can be bonded to the adherend by main bonding (heat treatment or heat pressure treatment). Specifically, the adhesive layer of the reinforcing material of the present invention is bonded to the adherend and temporarily fixed, and then cured by heat treatment at about 80 to 120 ° C. for about 1 to 10 hours. The reinforcing material of the present invention and the adherend can be firmly bonded. In addition, if air is included between the reinforcing material and the adherend, the adhesiveness is poor. Therefore, before performing the heat treatment, air may be vented by applying pressure at about 50 to 100 ° C. for 1 to 10 minutes. . Moreover, you may apply a pressure with the said heat processing. The pressure condition may be about 0.01 mPa to 10 mPa, preferably 0.05 mPa to 1 mPa. Pressurization can be performed using a vacuum press or the like.
  • the reinforcing material of the present invention can be pressure-bonded to the adherend with a weak pressure before the adhesive layer is cured, and has good adhesiveness and adhesion by subsequent curing at a low temperature and in a short time. Is particularly suitable for the integral molding method by vacuum molding.
  • the catalyst layer with reinforcing material-electrolyte membrane laminate of the present invention comprises a catalyst layer-electrolyte membrane laminate in which catalyst layers are formed on both sides of the electrolyte membrane, and the reinforcing material. And the reinforcing material is bonded to the outer peripheral edge of at least one surface of the catalyst layer-electrolyte membrane laminate through the adhesive layer.
  • the outer peripheral edge of the catalyst layer-electrolyte membrane laminate is bonded via the adhesive adhesive layer.
  • the adhesion region with the reinforcing material is different from that of the reinforcing material-attached catalyst layer-electrolyte membrane stack shown in FIG. It may be formed only from the outer peripheral edge of the electrolyte membrane, and the adhesion region with the reinforcing material is formed between the outer peripheral edge of the electrolyte membrane and the catalyst layer as shown in FIG.
  • the adhesive layer is bonded to the reinforcing material as in the catalyst layer-electrolyte membrane laminate with the reinforcing material shown in FIG.
  • region should just be formed from the outer peripheral part of the catalyst layer.
  • the reinforcing material is interposed on at least one surface of the catalyst layer-electrolyte membrane laminate, preferably the outer peripheral edge of both surfaces, with the adhesive layer interposed therebetween. Are glued together.
  • the reinforcing material is adhered on the outer peripheral edge of both surfaces of the catalyst layer-electrolyte membrane laminate, as shown in FIGS.
  • the outer peripheral side surface of the electrolyte membrane of the catalyst layer-electrolyte membrane laminate is preferably sealed with two reinforcing materials, but the outer peripheral side surface may not be sealed.
  • an adhesive for adhering a separator or a gasket to the surface of the reinforcing material (a surface not adhered to the outer peripheral edge of the catalyst layer-electrolyte membrane laminate).
  • a layer may be provided.
  • the adhesive layer may be of the same composition as that of the adhesive layer used for adhesion between the reinforcing material and the outer peripheral edge of the catalyst layer-electrolyte membrane laminate, or may be of a different composition. .
  • Electrode membrane As long as the electrolyte membrane has proton conductivity, its composition is not limited as long as it can be used in a polymer electrolyte fuel cell.
  • the electrolyte membrane has a function of selectively transmitting protons generated in the anode catalyst layer to the cathode catalyst layer along the film thickness direction.
  • the electrolyte membrane also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the specific configuration of the electrolyte membrane is not particularly limited, and a membrane made of a polymer electrolyte that is conventionally known in the technical field of fuel cells can be appropriately employed.
  • the polymer electrolyte membrane for example, Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Corporation), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), Fluoropolymer electrolyte membranes composed of perfluorocarbon sulfonic acid polymers such as Gore Select (registered trademark) manufactured by Gore Corporation; hydrocarbon polymer electrolyte membranes and the like can be used.
  • the thickness of the electrolyte membrane is usually about 5 to 250 ⁇ m, preferably about 10 to 80 ⁇ m.
  • the catalyst layer is a layer where the battery reaction actually proceeds. Specifically, the oxidation reaction of hydrogen proceeds in the anode catalyst layer, and the reduction reaction of oxygen proceeds in the cathode catalyst layer.
  • the catalyst layer preferably contains a catalyst component and, if necessary, further contains a conductive catalyst carrier that supports the catalyst component, and a polymer electrolyte binder.
  • the catalyst component used in the anode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst component can be used.
  • the catalyst component used for the cathode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst component can be used.
  • Specific examples of catalyst components include platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof.
  • Carbon catalysts such as nitrogen-containing carbon
  • metal oxides such as molybdenum oxide and titanium oxide.
  • those containing at least platinum are preferable in order to improve catalytic activity, poisoning resistance to carbon monoxide, heat resistance, and the like.
  • the catalyst carrier functions as a carrier for supporting the above-described catalyst component and an electron conduction path involved in the transfer of electrons between the catalyst component and another member.
  • any catalyst carrier may be used as long as it has a specific surface area for supporting the catalyst component in a desired dispersed state and sufficient electron conductivity, and the main component is composed of carbon. preferable.
  • Specific examples of the catalyst carrier include carbon particles such as carbon black, activated carbon, coke, natural graphite, and artificial graphite.
  • the polymer electrolyte binder improves the adhesion between the catalyst layer and the electrolyte membrane, and functions as a proton conduction path involved in the exchange of protons between the catalyst component and other members. Moreover, the polymer electrolyte binder has a polar group such as a hydroxyl group, and the polar group contributes to the improvement of the adhesive force with the adhesive layer of the reinforcing material of the present invention.
  • the polymer electrolyte binder the same materials as those used for the above-described electrolyte membrane can be used.
  • the thickness of the catalyst layer is usually 1 to 100 ⁇ m, preferably 5 to 30 ⁇ m.
  • a catalyst layer is laminated in a desired shape on both surfaces excluding the outer peripheral edge of the electrolyte membrane to form a catalyst layer-electrolyte membrane laminate.
  • the method for laminating the catalyst layer on the electrolyte membrane is not particularly limited, and a conventionally known method can be used.
  • the catalyst transfer film used in the above transfer method is a film having a two-layer structure in which a catalyst layer is formed on the transfer film.
  • the transfer film used for the catalyst transfer film is not particularly limited as long as the catalyst layer can be laminated and the surface in contact with the catalyst layer has releasability. Specifically, the transfer film is described in the section of “1. Reinforcing material”. The same protective film is used. Further, in order to transfer the catalyst layer formed on the transfer film to the electrolyte membrane, the catalyst transfer film is bonded to a predetermined portion of the electrolyte membrane and subjected to hot pressure treatment, and then the transfer film is peeled off and removed.
  • the method for producing the reinforcing layer-attached catalyst layer-electrolyte membrane laminate of the present invention is not particularly limited. For example, after the catalyst layer-electrolyte membrane laminate is formed, the catalyst layer-electrolyte membrane laminate on the outer peripheral edge.
  • the reinforcing material may be adhered to the electrolyte membrane, and after the reinforcing material is adhered on the electrolyte membrane, the catalyst layer may be laminated on the electrolyte membrane with the reinforcing material.
  • a preferred example of the method for producing a catalyst layer-electrolyte membrane laminate with a reinforcing material of the present invention includes the following steps: (I) a step of obtaining an electrolyte membrane with a reinforcing material by bonding the frame-shaped reinforcing material having an opening to the outer peripheral edge of the electrolyte membrane via an adhesive layer of the reinforcing material; and (ii) A step of laminating a catalyst layer on an electrolyte membrane exposed from an opening in an electrolyte membrane with a reinforcing material to obtain a catalyst layer-electrolyte membrane laminate with a reinforcing material.
  • the adhesive layer of the reinforcing material when a solid polythiol is used at room temperature (30 ° C.), the region to be adhered (catalyst layer-electrolyte membrane laminate) is exposed even when exposed to severe hot pressure conditions. Since the problem of the prior art that the adhesive layer leaks out from the outer peripheral edge of the catalyst is eliminated, even if the manufacturing method is such that the catalyst layer is laminated after the electrolyte and the reinforcing material are bonded together The advantage that the catalyst layer-electrolyte membrane laminate with the material can be produced efficiently is obtained. In view of such advantages, in the production method including the steps (i) and (ii), it is preferable that the adhesive layer of the reinforcing material used contains polythiol that is solid at room temperature.
  • a catalyst layer-electrolyte membrane laminate with a reinforcing material having the structure shown in FIG. 3 is manufactured.
  • the membrane-electrode assembly with reinforcing material of the present invention comprises a membrane-electrode assembly in which a catalyst layer and a gas diffusion layer are sequentially laminated on both surfaces of an electrolyte membrane, and the reinforcing material.
  • the reinforcing material is adhered to the outer peripheral edge of at least one surface of the membrane-electrode assembly via the adhesive layer.
  • the membrane-electrode assembly with a reinforcing material of the present invention is not particularly limited as long as the outer peripheral edge of the membrane-electrode assembly is adhered via an adhesive layer of the reinforcing material.
  • the outer peripheral edge of the gas diffusion layer of the membrane-electrode assembly is not taken into the adhesion region (that is, the above-mentioned A state in which a gas diffusion layer is formed on each catalyst layer of the catalyst layer with reinforcing material-electrolyte membrane stack may be employed.
  • a membrane-electrode assembly in which the gas diffusion layer is slightly smaller than the catalyst layer and the catalyst layer is slightly smaller than the electrolyte membrane is used.
  • a reinforcing sheet formed in a frame shape is bonded only to the outer peripheral edge of the electrolyte membrane.
  • the membrane-electrode assembly shown in FIG. 7 uses a membrane-electrode assembly in which the gas diffusion layer is slightly smaller than the catalyst layer and the catalyst layer is slightly smaller than the electrolyte membrane. A frame-shaped reinforcing material is bonded to the outer peripheral edge of the electrolyte membrane and the outer peripheral edge of the catalyst layer.
  • the gas diffusion layer is slightly smaller than the catalyst layer, and the membrane-electrode assembly having the same size as the catalyst layer and the electrolyte membrane is used.
  • a frame-shaped reinforcing material is bonded to the outer peripheral edge of the catalyst layer.
  • the outer peripheral edge of the gas diffusion layer of the membrane-electrode assembly is taken into the adhesion region, and the gas diffusion layer
  • the state in which the adhesion region is formed only from the outer periphery of the gas diffusion layer (FIG. 9), the state in which the adhesion region is formed from the outer periphery of the gas diffusion layer and the outer periphery of the catalyst layer (FIG. 10), or A state where an adhesion region is formed from the outer peripheral edge, the outer peripheral edge of the catalyst layer, and the outer peripheral edge of the electrolyte membrane (FIG. 11) may be used.
  • a membrane-electrode assembly having the same size as the catalyst layer, the electrolyte membrane, and the gas diffusion layer is used, and the outer peripheral edge of the gas diffusion layer of the membrane-electrode assembly. Further, a frame-like reinforcing material is bonded.
  • a membrane-electrode assembly in which the catalyst layer and the electrolyte membrane are the same size and the gas diffusion layer is slightly smaller than the catalyst layer is used.
  • a frame-shaped reinforcing material is bonded to the outer peripheral edge of the gas diffusion layer and the outer peripheral edge of the catalyst layer.
  • the 11 uses a membrane-electrode assembly in which the catalyst layer is slightly smaller than the electrolyte membrane and the gas diffusion layer is further smaller than the catalyst layer.
  • a frame-shaped reinforcing material is bonded to the outer peripheral edge of the electrolyte membrane, the outer peripheral edge of the gas diffusion layer, and the outer peripheral edge of the catalyst layer.
  • the reinforcing material is bonded to at least one surface of the membrane-electrode assembly, preferably the outer peripheral edge of both surfaces via the adhesive layer. Yes.
  • the reinforcing material is bonded to the outer peripheral edge of both surfaces of the membrane-electrode assembly, as shown in FIGS.
  • the outer peripheral side surface of the electrolyte membrane of the joined body is preferably sealed with two reinforcing materials, but the outer peripheral side surface may not be sealed.
  • an adhesive layer for adhering a separator or a gasket is provided on the surface of the reinforcing material (a surface not bonded to the outer peripheral edge of the membrane-electrode assembly). It may be.
  • the adhesive layer may have the same composition as that of the adhesive layer used for adhesion between the reinforcing material and the outer peripheral edge of the membrane-electrode assembly, or may have a different composition.
  • the gas diffusion layer can use various conductive porous substrates constituting the anode (fuel electrode) and cathode (air electrode), and efficiently supplies fuel gas and oxidant gas as fuel to the catalyst layer. It is desirable to use a porous conductive substrate. Examples of the porous conductive substrate include carbon paper and carbon cloth.
  • the gas diffusion layer may contain a polymer electrolyte binder as necessary.
  • the polymer electrolyte binder has a polar group such as a hydroxyl group, and the polar group can improve the adhesive force with the adhesive layer of the reinforcing material.
  • the polymer electrolyte binder the same materials as those used for the above-described electrolyte membrane can be used.
  • the film thickness of the gas diffusion layer is usually 20 to 1000 ⁇ m, preferably 30 to 400 ⁇ m.
  • the method for forming the membrane-electrode assembly is not particularly limited, and a conventionally known method can be used.
  • a method of forming a membrane-electrode assembly by disposing a gas diffusion layer on the catalyst layer of the catalyst layer-electrolyte membrane laminate and bonding them by thermocompression bonding; a two-layer structure transfer of the catalyst layer and the gas diffusion layer examples thereof include a method in which a film is placed on an electrolyte membrane and a membrane-electrode assembly is formed by a transfer method.
  • the two-layer structure transfer film used for the transfer method has a two-layer structure composed of a gas diffusion layer and a catalyst layer laminated on the transfer film.
  • the transfer film used for the catalyst transfer film is not particularly limited as long as the gas diffusion layer can be laminated and the surface in contact with the gas diffusion layer has releasability. Specifically, the column of “1. The same protective film as described in 1) is used.
  • the layers may be sequentially laminated by a dry coating method such as an electrostatic screen method, a spray coating method, or a transfer method.
  • the catalyst layer / gas diffusion layer transfer film is bonded to a predetermined portion of the electrolyte membrane and thermocompression bonded, and then the transfer film is peeled off. Remove it.
  • the method for producing a membrane-electrode assembly with a reinforcing material of the present invention is not particularly limited.
  • the reinforcing material may be adhered, or after the reinforcing material is adhered on the electrolyte membrane, a catalyst layer and a gas diffusion layer may be sequentially laminated on the electrolyte membrane with the reinforcing material.
  • a preferable example of the method for producing a membrane-electrode assembly with a reinforcing material of the present invention includes the following steps: (I) The frame-like reinforcing material having an opening (containing the polythiol solid at room temperature in the adhesive layer) is adhered to the outer peripheral edge of the electrolyte membrane via the adhesive layer of the reinforcing material. And (ii) sequentially laminating a catalyst layer and a gas diffusion layer on the electrolyte membrane exposed from the opening in the electrolyte membrane with a reinforcing material, or from the catalyst layer and the gas diffusion layer. A step of laminating the two-layer structure to obtain a membrane-electrode assembly with a reinforcing material.
  • the adhesive layer of the reinforcing material when a solid polythiol is used at room temperature (30 ° C.), the region to be adhered (catalyst layer-electrolyte membrane laminate) is exposed even when exposed to severe hot pressure conditions.
  • the adhesive layer of the reinforcing material used contains polythiol that is solid at room temperature.
  • a reinforcing material-attached catalyst layer-electrolyte membrane laminate having the structure shown in FIG. 6 is manufactured.
  • Polymer electrolyte fuel cell The polymer electrolyte fuel cell of the present invention comprises the membrane-electrode assembly with a reinforcing material.
  • the solid polymer fuel cell of the present invention is produced by sandwiching the membrane-electrode assembly with a reinforcing material with a separator with a gasket interposed as necessary. If a base material having a gasket function is used in the reinforcing material, the reinforcing material also serves as a gasket. Therefore, the membrane-electrode assembly with the reinforcing material can be used without interposing a gasket. Can be sandwiched between separators. In the reinforcing material, if a base material that plays the role of a gasket is not used, the gasket is interposed between the reinforcing material of the membrane-electrode assembly with the reinforcing material and the separator. It is desirable to sandwich the membrane-electrode assembly with a reinforcing material with a separator.
  • the separator may be a conductive plate that is stable even in the environment inside the fuel cell.
  • a carbon plate in which a gas flow path is formed is used.
  • the separator is made of a metal such as stainless steel, and a coating made of a conductive material such as chromium, a platinum group metal or oxide thereof, or a conductive polymer is formed on the metal surface, and the separator is also made of a metal. It is also possible to use a metal surface plated with a material such as silver, a platinum group composite oxide or chromium nitride.
  • the gasket is not particularly limited as long as it has strength enough to withstand hot pressing and has a gas barrier property that does not leak fuel and oxidant to the outside.
  • a polyethylene terephthalate sheet examples thereof include a Teflon (registered trademark) sheet and a silicon rubber sheet.
  • Adhesive composition The adhesive composition of the present invention is characterized by containing an epoxy resin, an aliphatic polyamide, and a polythiol.
  • the types of epoxy resin, aliphatic polyamide, and polythiol used are as described in the column of [Adhesive layer] in “1. Reinforcing material”. Further, in the adhesive composition of the present invention, the contents and ratios of these components are also the components in the adhesive layer described in the column of [Adhesive layer] in the “1. Reinforcing material”. It is the same as the content and ratio of.
  • the adhesive composition of the present invention may contain an ionic liquid in addition to the above components.
  • an ionic liquid in addition to the above components.
  • the adhesive composition of the present invention by further containing an ionic liquid, shortening of the curing time, imparting appropriate adhesiveness at the time of temporary fixing at a relatively low temperature condition, improvement of the adhesive strength after curing, etc. Is possible.
  • the adhesive composition of the present invention preferably contains an ionic liquid.
  • the type of the ionic liquid used is as described in the column “1. Reinforcing material” above.
  • the adhesive composition of the present invention is an adhesive composition that does not contain a solvent by mixing a predetermined amount of epoxy resin, aliphatic polyamide, polythiol, and other blending components as required, or necessary. Depending on the case, it can be prepared as an adhesive composition containing an organic solvent.
  • the organic solvent is the same as the organic solvent used in the adhesive composition coating liquid described in the “Adhesive layer” column of “1.
  • the adhesive composition of the present invention may be used by directly applying to an adherend and drying.
  • an adhesive sheet formed on a protective film capable of peeling the adhesive layer composed of the adhesive composition of the present invention is prepared, and the adhesive sheet of the present invention is prepared using the adhesive sheet.
  • the composition can be transferred to an adherend and used.
  • the adhesive sheet can be prepared, for example, by coating and drying a protective film from which the coating liquid of the adhesive composition of the present invention can be peeled so as to have a desired film thickness.
  • the peelable protective film the organic solvent blended in the liquid adhesive composition, the coating method, and the like, the description in the “Adhesive layer” column of “1. It is the same.
  • the adherend is adhered in a layered form having a film thickness of 1 to 300 ⁇ m, preferably 5 to 50 ⁇ m.
  • the adhesive composition of the present invention is preferably used as an adhesive for members constituting a polymer electrolyte fuel cell, but the adhesive composition of the present invention has good adhesion to an adherend.
  • an adherend For example, interior materials and exterior materials for vehicles such as automobiles and railways, aircraft and ships; fittings such as window frames and door frames; walls, floors, ceilings, etc. It can also be used as an adhesive for building interior materials; decorative sheets for housings and containers of home appliances such as televisions and air conditioners; and decorative sheets for housings of OA equipment such as personal computers.
  • the adhesive composition of this invention can be used as an adhesive agent of the structural members of various batteries other than a polymer electrolyte fuel cell.
  • a metal-air battery that uses a gas for an electrode reaction has components such as a negative electrode electrolyte, a positive electrode catalyst layer, a gas diffusion layer, a separator, a support, a water-repellent film, a gasket, and a sealing material.
  • the adhesive composition of the present invention can also be used as an adhesive between these constituent members.
  • the metal air battery include lithium air battery, sodium air battery, potassium air battery, magnesium air battery, calcium air battery, zinc air battery, aluminum air battery, and iron air battery.
  • the metal-air battery may be a primary battery or a secondary battery.
  • any one of an electrolyte membrane, a catalyst layer, and a gas diffusion layer used in the polymer electrolyte fuel cell It is suitably applied to adhesion between at least one kind and a substrate that reinforces them, in particular, adhesion between the electrolyte membrane and the substrate.
  • the pressure-sensitive adhesive composition of the present invention when a polythiol that is solid at room temperature (30 ° C.), preferably a polythiol having a melting point of 120 ° C. or higher is used as the polythiol, the pressure-sensitive adhesive composition is subjected to high temperature conditions of about 100 to 150 ° C. Even if it is exposed, it can be provided with the property that it is difficult to leak out from the bonded area. In view of such properties, when using a solid polythiol at room temperature, the adhesive composition of the present invention is suitably used for bonding adherends exposed to the above high temperature conditions. .
  • the adhesive composition of the present invention has a T-type peel strength of 0.01 to 0 before curing when a 20 ⁇ m thick adhesive layer is formed between the reinforcing material substrate and the electrolyte membrane. 3 N / mm and after heat treatment at 100 ° C. for 6 hours to effect, more than 0.35 N / mm; preferably 0.01 to 0.2 N / mm before curing and at 100 ° C. It is desirable to satisfy 0.5 N / mm or more after being cured by heat treatment for 6 hours.
  • the T-type peel strength is an adhesive force measured by adhering a strip-shaped substrate having a width of 15 mm and a strip-shaped electrolyte membrane, and pulling the substrate and the electrolyte membrane in a T shape at a speed of 50 mm / min. It is.
  • the adhesive composition of the present invention can adhere an adherend by heat treatment or hot pressure treatment.
  • the conditions for adhering the adherend using the adhesive composition of the present invention are also the same as those described in the column of [Adhesive layer] in the “1.
  • Test Example 1 Ease of temporary fixing to a fluorine-based polymer electrolyte membrane and evaluation of the presence or absence of leakage of the adhesive composition 1.
  • Preparation and Evaluation of Reinforcing Catalyst Layer-Electrolyte Membrane Laminate (1) ⁇ Preparation of Reinforcing Material> Coating solutions of the adhesive compositions of Examples 1 to 10 and Comparative Examples 1 and 2 shown in Tables 1 and 2 were prepared, and a plastic substrate (Teonex Q51 (registered trademark, manufactured by Teijin DuPont Films)) (thickness)
  • a reinforcing material in which an adhesive layer with a thickness of 20 ⁇ m is laminated is applied by a blade coating method and dried on a 25 ⁇ m, 100 mm ⁇ 100 mm square center part having a 51 mm ⁇ 51 mm square opening) did.
  • a catalyst layer 3 of 50 mm ⁇ 50 mm and a layer thickness of 20 ⁇ m was formed on both surfaces of an electrolyte membrane (Nafion (registered trademark, manufactured by DuPont), thickness 25 ⁇ m, 100 mm ⁇ 100 mm) by a transfer method.
  • an electrolyte membrane Nifion (registered trademark, manufactured by DuPont), thickness 25 ⁇ m, 100 mm ⁇ 100 mm
  • platinum catalyst-supported carbon platinum supported amount: 45.7 wt%, manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E50E
  • 1-butanol 10 g 2-butanol 10 g
  • fluororesin (5 wt% Nafion Binder, manufactured by DuPont) 20 g and 6 g of water were added, and the catalyst-forming paste prepared by stirring and mixing them with a disperser was coated with a polyester film (manufactured by Toyobo Co., Ltd.) so that the platinum weight after drying the catalyst layer was 0.4 mg / cm 2 E5100, 25 ⁇ m) to prepare a catalyst layer transfer film.
  • this catalyst layer transfer film is placed on both surfaces of the electrolyte membrane so that the catalyst layer faces the electrolyte membrane side, and is hot-pressed under conditions of 150 ° C., 5.0 MPa, 5 minutes, Catalyst layers were formed on both sides.
  • the adhesive layer of the reinforcing material is laminated on the outer periphery of the electrolyte membrane of the catalyst layer-electrolyte membrane laminate obtained above, and is temporarily attached by pressure bonding with a finger, at 100 ° C., 0.5 MPa, 1 minute. Then, heat treatment (main bonding) was performed at 100 ° C. for 6 hours to prepare a catalyst layer-electrolyte membrane laminate (1) with a reinforcing material.
  • ⁇ Evaluation item 1 Evaluation of the degree of leakage of the adhesive composition> The appearance of the reinforcing material after the main adhesion was observed, and the degree to which the adhesive composition leaked (laterally stretched) from the interface between the reinforcing material and the electrolyte membrane was measured. The degree of leakage was evaluated by arbitrarily measuring the length (leakage length) of the adhesive composition protruding from the reinforcing material and the electrolyte membrane, and averaging the values.
  • catalyst layer-electrolyte membrane laminate (2) with reinforcing material ⁇ Preparation of electrolyte membrane with reinforcing material>
  • the same reinforcing material used in the catalyst layer-electrolyte membrane laminate (1) with the reinforcing material is laminated on both surfaces of the electrolyte membrane (Nafion (registered trademark, manufactured by DuPont), thickness 25 ⁇ m, 100 mm ⁇ 100 mm). And after making it press-fit with a finger
  • ⁇ Evaluation item 2 Evaluation of workability when temporarily fixed>
  • BB The initial adhesive force during temporary fixing is too strong. The position cannot be corrected after bonding, and the electrolyte membrane will be broken if it is forcibly removed.
  • B Initial adhesive strength at the time of temporary fixing is strong. Although the position can be slightly corrected after bonding, the electrolyte membrane cannot be stretched to remove wrinkles.
  • A The initial adhesive force at the time of temporary fixing is appropriate.
  • the position can be corrected after bonding, and the electrolyte membrane can be stretched to remove wrinkles from the electrolyte membrane.
  • C Initial adhesive force at the time of temporary fixing is weak, and temporary fixing becomes insufficient only by pressure bonding. Moreover, it is difficult to adjust the position of the reinforcing material and the catalyst layer during thermocompression bonding. CC: The initial adhesive force at the time of temporary fixing is very weak and cannot be temporarily fixed by pressure bonding with a finger.
  • ⁇ Evaluation item 3 degree of leakage of adhesive composition> Observe the appearance of the catalyst layer-electrolyte membrane laminate (2) with the reinforcing material obtained above and measure the extent to which the adhesive composition leaks (laterally stretches) from the interface between the reinforcing material and the electrolyte membrane. did. The degree of leakage was evaluated by measuring 10 lengths (leakage length) where the adhesive composition protruded from the reinforcing material and the electrolyte membrane, and averaging the values.
  • Test Example 2 Evaluation of T-type peel strength for a fluorine-based polymer electrolyte membrane, except for using a plastic base material (Teonex Q51 (registered trademark, manufactured by Teijin DuPont Films Ltd.) (thick 25 ⁇ m, 15 mm ⁇ 50 mm strip))
  • a plastic base material Teonex Q51 (registered trademark, manufactured by Teijin DuPont Films Ltd.) (thick 25 ⁇ m, 15 mm ⁇ 50 mm strip)
  • an adhesive layer (thickness 20 ⁇ m) made of the adhesive composition shown in Examples 1 to 5 in Table 1 and Comparative Examples 1 and 2 in Table 2 was laminated. Reinforcing material was prepared.
  • the adhesive layer side of the reinforcing material obtained above and the electrolyte membrane (Nafion (registered trademark, manufactured by DuPont)) (25 mm thick, 15 mm ⁇ 50 mm strip shape) are brought into contact with each other and pressed with fingers. Temporary fixing was performed, and the T-type peel strength (before curing) was measured, and then the temporarily bonded reinforcing material and the electrolyte membrane were thermocompression bonded at 100 ° C. by applying a pressure of 0.5 MPa. It heat-processed at 6 degreeC for 6 hours, and measured the T-type peeling strength (after hardening) after thermocompression bonding.
  • the T-type peel strength (before curing) was measured using an Autograph AG-IS (manufactured by Shimadzu Corporation) at a peel rate of 50 mm / min.
  • Table 3 shows the obtained results.
  • Test Example 3 Ease of temporary fixing to a hydrocarbon-based polymer electrolyte membrane and evaluation of the presence or absence of leakage of the adhesive composition 1.
  • Preparation and Evaluation of Reinforcing Catalyst Layer-Electrolyte Membrane Laminate (1) ⁇ Preparation of Reinforcing Material> Coating solutions of the adhesive compositions of Examples 11 to 14 and Comparative 3 to 4 shown in Table 4 were prepared, and a plastic substrate (Teonex Q51 (registered trademark, manufactured by Teijin DuPont Films)) (thickness 25 ⁇ m, 100 mm)
  • a reinforcing material in which a pressure-sensitive adhesive layer having a thickness of 20 ⁇ m was laminated was prepared by coating and drying the substrate by a blade coating method (having a 51 mm ⁇ 51 mm square opening at the center of a ⁇ 100 mm square).
  • a catalyst layer 3 of 50 mm ⁇ 50 mm and a layer thickness of 20 ⁇ m was formed on both surfaces of a hydrocarbon polymer electrolyte membrane (thickness 25 ⁇ m, 100 mm ⁇ 100 mm) by a transfer method.
  • platinum catalyst-supported carbon platinum supported amount: 45.7 wt%, manufactured by Tanaka Kikinzoku Co., Ltd., TEC10E50E
  • 1-butanol 10 g 2-butanol 10 g
  • fluororesin (5 wt% Nafion Binder, manufactured by DuPont) 20 g and 6 g of water
  • a catalyst-forming paste prepared by stirring and mixing them in a disperser was prepared by using a polyester film (manufactured by Toyobo Co., Ltd.) so that the platinum weight after drying the catalyst layer was 0.4 mg / cm 2.
  • E5100, 25 ⁇ m to prepare a catalyst layer transfer film.
  • this catalyst layer transfer film is placed on both surfaces of the electrolyte membrane so that the catalyst layer faces the electrolyte membrane side, and is hot-pressed at 150 ° C., 50 MPa for 10 minutes on both surfaces of the electrolyte membrane. A catalyst layer was formed.
  • catalyst layer-electrolyte membrane laminate (2) with reinforcing material ⁇ Preparation of electrolyte membrane with reinforcing material>
  • the same reinforcing materials as those used in the catalyst layer-electrolyte membrane laminate (1) with the reinforcing material are laminated on both sides of a hydrocarbon polymer electrolyte membrane (thickness 25 ⁇ m, 100 mm ⁇ 100 mm) and pressure-bonded with fingers. After temporary fixing, heat treatment (main adhesion) was performed at 100 ° C. for 6 hours to prepare an electrolyte membrane with a reinforcing material.
  • Results Table 4 shows the results obtained. As can be seen from Table 4, when a hydrocarbon polymer electrolyte membrane is used, as in the case of using a fluorine polymer electrolyte membrane, a viscosity containing a curing agent other than epoxy resin, aliphatic polyamide, and polythiol is used. When the adhesive composition (Comparative Example 3) was used, the initial adhesive force at the time of temporary fixing was weak, and temporary fixing was insufficient only by pressure bonding. Further, even when an adhesive composition containing an epoxy resin and polythiol and containing no aliphatic polyamide was used (Comparative Example 4), sufficient temporary fixing could not be performed.
  • Test Example 4 Evaluation of T-type peel strength for hydrocarbon-based polymer electrolyte membrane Use of a plastic substrate (Teonex Q51 (registered trademark, manufactured by Teijin DuPont Films) (thick 25 ⁇ m, 15 mm ⁇ 50 mm strip)) Except for the above, in the same manner as in Test Example 1 above, the reinforcing layer in which the adhesive layers (thickness 20 ⁇ m) composed of the adhesive compositions shown in Examples 11 to 14 and Comparative Examples 3 to 4 in Table 4 were laminated A material was prepared.
  • Teonex Q51 registered trademark, manufactured by Teijin DuPont Films
  • Table 5 shows the obtained results. Also from this result, the adhesive compositions shown in Examples 11 to 14 have an appropriate initial adhesive force at the time of temporary fixing to the hydrocarbon polymer electrolyte membrane, and after this adhesion (after thermocompression bonding) Was confirmed to exhibit high adhesive strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)

Abstract

 本発明の目的は、電解質膜、触媒層、ガス拡散層等の被着体に対する初期接着力が適度であって、仮止め容易な粘接着層付き補強材を提供することである。 基材上に粘接着層を形成した補強材において、前記粘接着層に脂肪族ポリアミドと、エポキシ樹脂と、ポリチオールを含有する補強材を使用することで、被着体に対し、補強材を接着させた後も被着材の位置修正が可能であり、貼り合せ時に発生した被着体等のしわを除去できるため、高度な技術を使用しなくとも容易に補強材付き触媒層-電解質膜積層体等を製造することができる。

Description

固体高分子形燃料電池用補強材及びそれに用いる粘接着組成物
 本発明は、固体高分子形燃料電池における触媒層-電解質膜積層体や膜-電極接合体等に使用される補強材に関する。また、本発明は、補強材を利用した触媒層-電解質膜積層体、膜-電極接合体、及び固体高分子形燃料電池に関する。更に、本発明は、電解質膜と基材の接着に好適に使用される粘接着組成物、及び当該粘接着組成物を含む粘接着シートに関する。
 燃料電池は、電解質膜の両面に電極が配置され、水素と酸素の電気化学反応により発電し、発電時に水のみが副生する。このように、一般的な内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しないために次世代のクリーンエネルギーシステムとして普及が見込まれている。とりわけ、固体高分子形燃料電池は、電解質膜に高分子材料を用いた燃料電池であり、作動温度が低く、家庭用コージェネレーションシステム等として早期の実用化が見込まれている。固体高分子形燃料電池の基本構造は、プロトン伝導性を有する電解質膜の両面に、触媒層を接合した触媒層-電解質膜積層体(CCM)や、更にこの触媒層-電解質膜の各触媒層上にガス拡散層を積層した膜-電極接合体(MEA)を備え、このMEAにガスケット及びセパレータが設置されている。
 また、近年、固体高分子形燃料電池は高出力化するために電解質膜を薄膜化する傾向がある。この結果、電解質膜が破れ易くなり、燃料電池の耐久性が低下する一因となっている。この問題を抑制する手法として、触媒層-電解質膜又は膜‐電極接合体に枠状の補強材を接着させることによって、電解質膜を補強する技術が提案されている(特許文献1)。
 このような補強材付き触媒層-電解質膜積層体又は膜-電極接合体において、補強材と触媒層-電解質膜積層体又は膜-電極接合体中の電解質膜や触媒層、ガス拡散層との接着は、各被着体と補強材との間に接着剤(接着層)を介在させることにより行われている。しかしながら、従来の接着剤では、例えば、電解質膜に補強材を貼り合わせる際の作業性が悪く、生産性の低下を招いていた。具体的には、接着剤の接着力が強すぎるために、一度補強材を電解質膜に接触させた後は補強材の位置修正が困難であり、貼り合わせ時に発生した電解質膜のしわ等を取り除くことができなかった。また、逆に接着剤の初期接着力が弱過ぎるために、補強材を電解質膜に圧着する際に補強膜が位置ずれする等の問題があった。
 そのため、補強材付き触媒層-電解質膜積層体又は膜-電極接合体を製造するにあたり、電解質膜や触媒層、ガス拡散層等の被着体に対し、仮止めできるような補強材(適度な初期接着力で補強材を接着させることのできる補強材)及びそれに用いる接着剤の開発が求められていた。
特開平5-242897号公報
 本発明の目的は、電解質膜、触媒層、ガス拡散層等の被着体に対する初期接着力が適度であって、仮止め容易な粘接着層付き補強材、及び当該補強材を利用した触媒層-電解質膜積層体、膜-電極接合体、及び固体高分子形燃料電池を提供することである。更に、本発明の他の目的は、当該補強材に用いられる粘接着組成物を提供することである。
 本発明者は、上記課題を解決すべく鋭意検討を行ったところ、基材上に粘接着層を形成した補強材において、前記粘接着層に脂肪族ポリアミドと、エポキシ樹脂と、ポリチオールを含有する補強材を使用することで、被着体に対し、補強材を接着させた後も被着材の位置修正が可能であり、貼り合せ時に発生した被着体等のしわを除去できるため、高度な技術を使用しなくとも容易に補強材付き触媒層-電解質膜積層体等を製造することができることを見出した。本発明は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記態様の補強材、補強材付き触媒層-電解質膜積層体、補強材付き膜-電極接合体、及び固体高分子形燃料電池に関する。
項1. 基材上に粘接着層が積層された補強材であって、粘接着層が、脂肪族ポリアミドと、エポキシ樹脂と、ポリチオールとを含有していることを特徴とする、補強材。
項2. 前記ポリチオールが常温で固体状である、項1に記載の補強材。
項3. 前記粘接着層が、更にイオン性液体を含有する、項1に記載の補強材。
項4. 前記粘接着層におけるイオン性液体の含有量が、0.01~10質量%である、項3に記載の補強材。
項5. 電解質膜の外周縁部を除いた両面に触媒層が形成された触媒層-電解質膜積層体と、
項1~4のいずれかに記載の補強材とを備え、
前記補強材が開口部を有する枠状であり、
前記触媒層-電解質膜積層体の少なくとも一方面の外周縁部上に、前記補強材がその粘接着層を介して接着されている、
ことを特徴とする、補強材付き触媒層-電解質膜積層体。
項6. 下記工程を含む、補強材付き触媒層-電解質膜積層体の製造方法:
(i)開口部を有する枠状の項1~4のいずれかに記載の補強材を、電解質膜の外周縁部に当該補強材の粘接着層を介して接着させて、補強材付き電解質膜を得る工程、及び
(ii)補強材付き電解質膜において前記開口部から露出している電解質膜に触媒層を積層させて、補強材付き触媒層-電解質膜積層体を得る工程。
項7. 電解質膜の両面に触媒層及びガス拡散層が順次積層された膜-電極接合体と、
項1~4のいずれかに記載の補強材とを備え、
前記補強材が開口部を有する枠状であり、
前記膜-電極接合体の少なくとも一方面の外周縁部上に、前記補強材がその粘接着層を介して接着されている、
ことを特徴とする、補強材付き膜-電極接合体。
項8. 下記工程を含む、補強材付き膜-電極接合体の製造方法:
(i)開口部を有する枠状の項1~4のいずれかに記載の補強材を、電解質膜の外周縁部に当該補強材の粘接着層を介して接着させて、補強材付き電解質膜を得る工程、及び
(ii)補強材付き電解質膜において前記開口部から露出している電解質膜に、触媒層及びガス拡散層を順次積層、又は触媒層及びガス拡散層からなる2層構造体を積層させて、補強材付き膜-電極接合体を得る工程。
項9. 項7に記載の補強材付き膜-電極接合体を含む、固体高分子形燃料電池。
 また、本発明は、下記態様の粘接着組成物及びその使用、並びに粘接着シートに関する。
項10. エポキシ樹脂と、脂肪族ポリアミドと、ポリチオールとを含有することを特徴とする、粘接着組成物。
項11. 前記ポリチオールが常温で固体状である、項10に記載の粘接着組成物。
項12. 更に、イオン性液体を含有する、項10に記載の粘接着組成物。
項13. イオン性液体の含有量が、0.01~10質量%である、項12に記載の粘接着組成物。
項14. 固体高分子形燃料電池に用いられる電解質膜の接着に使用される、項10に記載の粘接着組成物。
項15. エポキシ樹脂と、脂肪族ポリアミドと、ポリチオールとを含有する粘接着組成物の、固体高分子形燃料電池に用いられる電解質膜用の接着剤の製造のための使用。
項16. 項10~14のいずれかに記載の粘接着組成物からなる粘接着層が、剥離可能な保護フィルムに形成されている粘接着シート。
 本発明の補強材によれば、電解質膜等の被着体に対する初期接着力が適度であるため、本接着(熱処理または熱圧処理)する前に、補強材の位置を修正したり、被着体のしわを除去することができ、仮止めに適している。また、本発明の補強材は、本接着(熱処理または熱圧処理)後に被着体に対して高い接着力を示し、更に高温条件や酸性条件等の燃料電池の反応雰囲気下でも接着力を安定に保持できるので、燃料電池に優れた耐久性を備えさせることもできる。
 更に、本発明の粘接着組成物は、被着体に対する初期接着力が適度であり、補強材の位置修正や被着体のしわの除去を容易に行うことができるので、補強材の被着体への貼り合せ作業性が格段に向上する。
 また、従来、補強材付き触媒層-電解質膜積層体の製造方法として、開口部を有する枠状の補強材を電解質膜に接着させた後に、触媒転写フィルムを積層し、電解質膜の開口部に触媒層を形成する場合には、転写時の熱圧により、接着剤が補強材の枠から漏出し、生産性の低下や電池の性能低下を招くといった欠点があった。しかしながら、本発明の一態様(特に、常温で固形状のポリチオールを含有する態様)では、かかる欠点が解消され、より厳しい条件(例えば、100℃以上×0.5MPa以上)であっても補強材付き触媒層-電解質膜積層体を製造することができるため、量産に適している。また、かかる態様の本発明の粘接着組成物によれば、厳しい熱圧条件に晒される場合であっても、粘接着組成物の漏出なしに被着体と補強材を接着させることができる。
本発明の補強材の断面図の一例を示す。 本発明の補強材に使用される基材の本発明の正面図の一例を示す。 触媒層が電解質膜より一回り小さい触媒層-電解質膜積層体を用い、当該触媒層-電解質膜積層体の電解質膜の外周縁部のみに、枠状の補強材を接着した本発明の補強材付き触媒層-電解質膜積層体の断面図の一例を示す。 触媒層が電解質膜より一回り小さい触媒層-電解質膜積層体を用い、当該触媒層-電解質膜積層体の電解質膜の外周縁部と触媒層の外周縁部に、枠状の補強材を接着した本発明の補強材付き触媒層-電解質膜積層体の断面図の一例を示す。 触媒層と電解質膜が同じ大きさの触媒層-電解質膜積層体を用い、当該触媒層-電解質膜積層体の触媒層の外周縁部に、枠状の補強材を接着した本発明の補強材付き触媒層-電解質膜積層体の断面図の一例を示す。 ガス拡散層が触媒層より一回り小さく、触媒層が電解質膜よりも一回り小さい膜-電極接合体を用い、当該膜-電極接合体の電解質膜の外周縁部のみに、枠状の補強材を接着した本発明の補強材付き膜-電極接合体の断面図の一例を示す。 ガス拡散層が触媒層より一回り小さく、触媒層が電解質膜よりも一回り小さい膜-電極接合体を用い、当該膜-電極接合体の電解質膜の外周縁部と触媒層の外周縁部に、枠状の補強材を接着した本発明の補強材付き膜-電極接合体の断面図の一例を示す。 ガス拡散層が触媒層より一回り小さく、触媒層と電解質膜が同じ大きさの膜-電極接合体を用い、当該膜-電極接合体の触媒層の外周縁部に、枠状の補強材を接着した本発明の補強材付き膜-電極接合体の断面図の一例を示す。 触媒層と電解質膜とガス拡散層が同じ大きさの膜-電極接合体を用い、当該膜-電極接合体のガス拡散層の外周縁部に、枠状の補強材を接着した本発明の補強材付き膜-電極接合体の断面図の一例を示す。 触媒層と電解質膜が同じ大きさで、ガス拡散層が触媒層より一回り小さい膜-電極接合体を用い、当該膜-電極接合体のガス拡散層の外周縁部と触媒層の外周縁部に、枠状の補強材を接着した本発明の補強材付き膜-電極接合体の断面図の一例を示す。 触媒層が電解質膜より一回り小さく、ガス拡散層が触媒層より更に一回り小さい膜-電極接合体を用い、当該膜-電極接合体の電解質膜の外周縁部とガス拡散層の外周縁部と触媒層の外周縁部に、枠状の補強材を接着した本発明の補強材付き膜-電極接合体の断面図の一例を示す。
1.補強材
 本発明の補強材は、図1に示すように、基材1上に粘接着層2が積層された構造を有している。本発明の補強材において、粘接着層が、脂肪族ポリアミドと、エポキシ樹脂と、ポリチオールとを含有していることを特徴とする。以下、本発明の補強材を構成する各要素について説明する。
[基材]
 本発明の補強材に使用される基材は、被着体を補強する目的で、硬化した粘接着層を介して被着体に接着される基材である。本発明の補強材に使用される基材としては、プラスチック基材、金属基材、これらの複合基材等の別を問わず、当該補強材の用途に応じて適宜設定されるが、当該補強材を触媒層-電解質膜積層体又は膜-電極接合体の補強材として使用する場合には、ガスバリア性を備えているものが好ましい。水蒸気、水、燃料ガス及び酸化剤ガスに対するバリア性を有する基材として、具体的には、ポリエステル、ポリアミド、ポリイミド、ポリメチルテンペン、ポリフェニレンオキサイド、ポリサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、フッ素樹脂等が挙げられる。また、ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等のプラスチック基材が挙げられる。また、アルミ、銅、亜鉛等の金属基材;アルミ、銅、亜鉛等の金属をプラスチック基材上に積層した金属積層プラスチック基材;アルミナ、シリカ、チタニア等の酸化物をプレスチック基材上に積層した酸化物積層プラスチック基材等も使用できる。これらの基材の中で、ポリエステル、とりわけポリエチレンナフタレートは、ガスバリア性、耐熱性、熱寸法安定性、製造コストの低減の観点から好ましい。
 また、本発明の補強材にガスケットとしての機能も備えさせる場合は、絶縁性の観点から、プラスチック基材、酸化物積層プレスチック基材等を使用することが好ましい。
 基材の厚さについては特に制限されないが、本発明の補強材を触媒層-電解質膜積層体又は膜-電極接合体の補強材として使用する場合、基材の厚さについては、例えば、6~500μm、好ましくは12~100μmであればよい。
 本発明の補強材の形状については、特に制限されず、被接着体の用途に応じて適宜設定されるが、当該補強材を膜-電極接合体又は膜-電極接合体の補強材として使用する場合には、図2に示すように開口部2を有する枠状であることが望ましい。
[粘接着層]
 本発明の補強材において、基材上に、エポキシ樹脂と、脂肪族ポリアミドと、ポリチオールとを含有する粘接着層が積層されている。これらの粘接着層の構成成分が一体不可分となって、初期接着力が適度になり、仮止めが容易となる。また、かかる構成の粘接着層を使用することによって、本接着(熱処理又は熱圧処理)後に被着体に対して高い接着力を示し、高温条件や酸性条件等の燃料電池の反応雰囲気下でも接着力を安定に保持することが可能になる。
 エポキシ樹脂は、モノエポキシ又は多価エポキシの別を問わず、使用することができる。モノエポキシ樹脂としては、例えば、ブチルグリシジルエーテル、ヘキシルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル等が挙げられる。
 多価エポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA等のビスフェノール類をグリシジル化したビスフェノール型エポキシ樹脂;ビフェノール、ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン等の2価フェノール類をグリシジル化したエポキシ樹脂;1,1,1-トリス(4-ヒドロキシフェニル)メタン等のトリスフェノール類をグリシジル化したエポキシ樹脂;1,1,2,2,-テトラキス(4-ヒドロキシフェニル)エタン等のテトラキスフェノール類をグリシジル化したエポキシ樹脂;その他の多価フェノール類をグリシジル化したエポキシ樹脂;グリセリン、ポリエチレングリコール等の多価アルコールをグリシジル化した脂肪族エーテル型エポキシ樹脂;p-オキシ安息香酸等のヒドロキシカルボン酸をグリシジル化したエーテルエステル型エポキシ樹脂;フタル酸、テレフタル酸等のポリカルボン酸をグリシジル化したエステル型エポキシ樹脂;トリグリシジルイソシアヌレート等のアミン型エポキシ樹脂等のグリシジル型エポキシ樹脂;3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、1,2:8,9ジエポキシリモネン、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン等の脂環族エポキサイド等が挙げられる。
 これらのエポキシ樹脂の中でも、造膜性及び相溶性の観点から、好ましくは多価エポキシ樹脂、更に好ましくはビスフェノール型エポキシ樹脂、特に好ましくはビスフェノールA型エポキシ樹脂が挙げられる。
 これらのエポキシ樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 上記エポキシ樹脂のエポキシ当量としては、初期接着力を適度に維持しつつ、熱圧着後の接着力や耐久性等を向上させるために、例えば、100~1000であることが望ましい。ここで、エポキシ当量は、JISK7236に規定される方法で測定した1当量のエポキシ基を含む樹脂の質量である。
 上記エポキシ樹脂の市販品としては、例えば、jER828(ジャパンエポキシレジン社製)、jER1001(ジャパンエポキシレジン社製)、jER1004(ジャパンエポキシレジン社製)、jER1007(ジャパンエポキシレジン社製)、jER871(ジャパンエポキシレジン社製)jER872(ジャパンエポキシレジン社製)、EPR-4030(ADEKA社製)等を使用できる。
 本発明の補強材の粘接着層において、上記エポキシ樹脂の含有量については、特に制限されないが、例えば粘接着層の総質量当たり、10~90質量%、好ましくは25~75質量%が挙げられる。かかる含有量を充足することにより、所望の接着力をより有効に備えさせることができる。
 脂肪族ポリアミドとしては、例えば、ポリカプロアミド(ナイロン-6)、ポリアミノウンデカンサン(ナイロン-11)、ポリラウリルラクタム(ナイロン-12)、ポリヘキサメチレンジアミノアジピン酸(ナイロン-66)、ポリヘキサメチレンジアミノセバシン酸(ナイロン-610)、ポリヘキサメチレンジアミノドデカン二酸(ナイロン-612)、カプロラクタムとラウリルラクタムの共重合体(ナイロン-6,12)、カプロラクタムとアミノウンデカン酸の共重合体(ナイロン6-,11)、カプロラクタムとヘキサメチレンジアミノアジピン酸とアミノドデカン二酸の共重合体(ナイロン-6,66,612)、カプロラクタムとポリヘキサメチレンジアミノアジピン酸とラウリルラクタムの共重合体(ナイロン-6,66,12)、カプロラクタムとポリヘキサメチレンジアミノアジピン酸とポリヘキサメチレンジアミノセバシン酸の共重合体(ナイロン-6,66,610)、及びカプロラクタムとポリヘキサメチレンジアミノアジピン酸とポリヘキサメチレンジアミノドデカン二酸の共重合体(ナイロン-6,66,612)等;前記ポリアミドとポリエーテルエステルとのブロック共重合体;前記ポリアミドとポリエステルとのブロック共重合体等が挙げられる。特に、脂肪族ポリアミド樹脂として、強靭かつ柔軟性に優れてポリマーが得られるダイマー酸を有するポリアミドとポリエーテルエステルとのブロック共重合体;及び当該ポリアミドとポリエステルとのブロック共重合体が好ましい。
 これらの脂肪族ポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 上記脂肪族ポリアミドの分子量としては、初期接着力を適度にして、本接着(熱処理又は熱圧処理着)後の接着力や耐久性等を向上させるためには、例えば、質量平均分子量が1,000~200,000の範囲内のものが好適である。ここで、質量平均分子量は、ゲル浸透クロマトグラフィー(GPC)にて測定されるポリスチレン換算の値である。
 上記脂肪族ポリアミドの市販品としては、例えば、TAPE-826-4S(富士化成工業社製)、TAPE-826-5A(富士化成工業社製)、ニューマイド515-ME(ハリマ化成社製)、ニューマイド945(ハリマ化成社製)、ニューマイド947(ハリマ化成社製)等を使用できる。
 本発明の補強材の粘接着層において、上記脂肪族ポリアミドの含有量については、特に制限されないが、例えば粘接着層の総質量当たり、5~80質量%、好ましくは10~50質量%が挙げられる。
 ポリチオールは、粘接着層において上記エポキシ樹脂の硬化剤として機能する。本発明に使用されるポリチオールとしては、2個以上のチオール基を有し、上記エポキシ樹脂を硬化可能であることを限度として特に制限されないが、例えば、トリメチロールプロパントリス(チオグリコレート)、ペンタエリスリトールテトラキス(チオグリコレート)、エチレングリコールジチオグリコレート、トリメチロールプロパントリス(β-チオプロピオネート)、ペンタエリスリトールテトラキス(β-チオプロピオネート)、ジペンタエリスリトールポリ(β-チオプロピオネート)、ペンタエリスリトールトリスチオプロピオン酸エステル等のポリオールとメルカプト有機酸のエステル化反応によって得られるチオール化合物;1,4-ブタンジチオール、1,6-ヘキサンジチオール、1,10-デカンジチオール等のアルキルポリチオール化合物;末端チオール基含有ポリエーテル;末端チオール基含有ポリチオエーテル;エポキシ化合物と硫化水素の反応によって得られるチオール化合物;ポリチオールとエポキシ化合物との反応によって得られる末端チオール基を有するチオール化合物;2,4,6-トリメルカプト-1,3,5-トリアジン(チオシアヌル酸)、2-ジ-n-ブチルアミノ-4,6-ジメルカプト-s-トリアジン(融点137℃以上)、1-ヘキシルアミノ-3,5-ジメルカプトトリアジン、1-ジエチルアミノ-3,5-ジメルカプトトリアジン、1-シクロヘキシルアミノ-3,5-ジメルカプトトリアジン、1-ジブチルアミノ-3,5-ジメルカプトトリアジン、2-アニリド-4,6-メルカプトトリアジン、1-フェニルアミノ-3,5-ジメルカプトトリアジン等のトリアジン骨格を有するポリチオールが挙げられる。
 これらの中でも、常温(30℃)で固体状、好ましくは融点が120℃以上のポリチオールを使用すると、粘接着層に対して加熱されても被接着領域から漏出し難い性質を付与できるので、好適に使用される。常温で固体状のポリチオールの好適な具体例としては、2,4,6-トリメルカプト-1,3,5-トリアジン(融点300℃以上)、2-ジ-n-ブチルアミノ-4,6-ジメルカプト-s-トリアジン(融点137~140℃)が挙げられる。また、例えば、2-ジ-n-ブチルアミノ-4,6-ジメルカプト-s-トリアジンのように融点が低い固体状のポリチオールを使用すると、粘接着層を硬化させる際の反応性が向上するという利点も得られる。
 上記ポリチオールの市販品としては、例えば、TSH(川口化学工業社製)、ジスネットDB(三協化成社製)、ジスネットAF(三協化成社製)等を使用できる。
 本発明の補強材の粘接着層において、上記ポリチオールの含有量については、特に制限されないが、例えば粘接着層の総質量当たり、0.01~85質量%、好ましくは0.1~65質量%が挙げられる。
 本発明の補強材の粘接着層において、上記エポキシ樹脂、脂肪族ポリアミド、及びポリチオールの比率としては、前述する各成分の含有量を充足する範囲で適宜設定すればよいが、初期接着力を適度に維持しつつ、本接着(熱処理又は熱圧処理着)後の接着力や耐久性等を向上させるためという観点から、上記エポキシ樹脂100重量部当たり、肪族ポリアミドを10~100重量部、好ましくは25~50重量部;上記エポキシ樹脂のエポキシ基1当量当たり、ポリチオール0.4~1.2当量、好ましくは0.5~1.0当量を充足範囲に設定することが望ましい。
 また、本発明の補強材の粘接着層には、上記エポキシ樹脂、脂肪族ポリアミド、及びポリチオールの他に、接着力を調整するために、必要に応じてイオン性液体が含まれていてもよい。イオン性液体は、ポリチオールの硬化促進剤として作用し、本発明の補強材の粘接着層の硬化時間を短縮させたり、比較的低温でも本接着(熱処理または熱圧処理)前の仮止めにおいて良好な接着性を付与でき、更に硬化後の接着強度を一層向上させることができる。また、電解質膜の中でも、炭化水素系高分子電解質膜は、本接着(熱処理または熱圧処理)前の仮止めにおいて適度な接着力を付与し難く、仮止め時に補強材の位置を固定し難く、位置ずれし易い素材であるが、本発明の補強材の粘接着層においてイオン性液体を含有させると、このような炭化水素系高分子電解質膜を被着体として使用する際の欠点を解消でき、炭化水素系高分子電解質膜に対する初期接着力を適度に維持しつつ本接着(熱処理又は熱圧処理着)後の接着力や耐久性等を向上させることができる。
 イオン性液体とは、融点が150℃以下であり、室温(25℃程度)で液状を呈する溶融塩を指し、低融点溶融塩とも称されるイオン性化合物である。イオン性液体は、一般に、-30℃以上~300℃以下の温度範囲でも液体状を維持し、蒸気圧は極めて低く、不揮発性、低粘度といった特性を備えている。
 本発明において、イオン性液体を構成するカチオンとアニオンの種類、及びそれら組み合わせについては特に制限されず、イオン性液体を構成できるカチオンと、その対イオンになるアニオンを適宜設定すればよい。
 具体的には、イオン性液体を構成するカチオンとしては、イミダゾリウム系カチオン(イミダゾリウム骨格を有するカチオン)、ピリジニウム系カチオン(ピリジニウム骨格を有するカチオン)、脂肪族アミン系カチオン、脂環式アミン系カチオン、脂肪族ホスホニウム系カチオン等が挙げられる。イミダゾリウム系カチオンとしては、例えば、カチオンが、1-メチル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-ヘキシル-3-メチルイミダゾリウム、1-オクチル-3-メチルイミダゾリウム、1-オクタデシル-3-メチルイミダゾリウム、1-メチル-2,3-ジメチルイミダゾリウム、1-ブチル-2,3-ジメチルイミダゾリウム、1-ヘキシル-2,3-ジメチルイミダゾリウム、1-オクチル-2,3-ジメチルイミダゾリウム、1-オクタデシル-2,3-ジメチルイミダゾリウム等が挙げられる。ピリジニウム系カチオンとしては、例えば、1-メチルピリジニウム、1-ブチルピリジニウム、1-ヘキシルピリジニウム、1-オクチル-ピリジニウム、1-ブチル-3-メチル-ピリジニウム、1-ブチル-4-メチル-ピリジニウム、1-ヘキシル-4-メチル-ピリジニウム、1-オクチル-4-メチルピリジニウム等が挙げられる。脂肪族アミンのカチオンとしては、例えば、テトラブチルアンモニウム、テトラペンチルアンモニウム、トリオクチルメチルアンモニウム、トリメチルヘキシルアンモニウム、トリメチルプロピルアンモニウム、N,N-ジメチル-N,N-ジデシルアンモニウム、N,N-ジアリル-N-ヘキシル-N-メチルアンモニウム、トリメチルエチルアンモニウム等が挙げられる。脂環式アミンのカチオンとしては、例えば、1-メチル-1-ブチルピペリジニウム、1-メチル-1-エチルピロリジニウム、1-メチル-1-ブチルピロリジニウム、4-メチル-4-ヘキシルモルホリニウム、1-メチル-1-エチルピペリジニウム、4-メチル-4-エチルモルホリニウムが挙げられる。脂肪族ホスホニウム系カチオンとしては、例えば、テトラブチルホスホニウム、トリイソブチルメチルホスホニウム、テトラペンチルホスホニウム、テトラヘキシルホスホニウム等が挙げられる。
 また、イオン性液体を構成するアニオンとしては、前記カチオンと塩を形成した際にイオン性液体の性質を呈するものであることを限度として特に制限されないが、例えば、フッ素、塩素、臭素、ヨウ素等のハロゲンイオン;テトラフルオロボレート、ヘキサフルオロボレート、トリフルオロアセテート、ヘキサフルオロホスフェート、トリフラート等のフッ素系アニオン;シアネート、チオシアネート、ナイトレート、トルエンスルホネート、(CFSO等が挙げられる。
 本発明で使用されるイオン性液体として、好ましくは、イミダゾリウム系カチオン又はピリジニウム系カチオンとフッ素系アニオンの塩、更に好ましくは、イミダゾリウム系カチオンとフッ素系アニオンの塩、特に好ましくは、1-ブチル-3-メチル-ピリジニウム(1-ブチル-3-メチル-ピリジニウム)が挙げられる。
 本発明の補強材の粘接着層において、上記イオン性液体を含有させる場合、その含有量については、特に制限されないが、例えば粘接着層の総質量当たり、0.01~10質量%、好ましくは0.05~7.5質量%が挙げられる。このような含有量を充足することにより、粘接着層の硬化時間の短縮、比較的低温条件での仮止め時に良好な接着性の付与、硬化後の接着強度の向上等が可能になる。
 本発明の補強材の粘接着層において、上記イオン性液体を含有させる場合、上記エポキシ樹脂に対するイオン性液体の比率については、前述する各成分の含有量を充足する範囲で適宜設定すればよいが、初期接着力を適度に維持しつつ、本接着(熱処理又は熱圧処理着)後の接着力や耐久性等を向上させるためという観点から、上記エポキシ樹脂100重量部当たり、イオン性液体が0.01~20質量部、好ましくは0.1~10質量部が挙げられる。
 本発明の補強材の粘接着層において、本発明の効果を妨げない範囲で必要に応じて他の配合成分を含んでいてもよい。具体的には、接着性の調整、可撓性の付与、硬化条件の調整等のために、ポリイミド樹脂、アクリル樹脂、αオレフィン樹脂、ウレタン樹脂、エチレン-酢酸ビニル樹脂、塩化ビニル樹脂、シリコーン樹脂、スチレン-ブタジエン樹脂、ポリビニルピロリドン樹脂、ポリメタクリレート樹脂等の樹脂;ポリチオール以外の硬化剤;架橋剤;硬化促進剤;硬化遅延剤;酸化防止剤;顔料;染料;帯電防止剤等を含んでいてもよい。例えば、硬化促進剤を含むことにより、熱処理又は熱圧処理着による本接着時に、粘接着層の硬化を促進することができ、また、硬化遅延剤を含むことにより、熱処理又は熱圧処理着による本接着前に、粘接着層が硬化するのを抑制することができる。
 本発明の補強材において、積層される粘接着層の厚さについては、特に制限されないが、適度な初期接着力を備えさせつつ、本接着(熱処理又は熱圧処理着)後に十分な接着力を付与するために、通常1~300μm、好ましくは5~50μmが挙げられる。
 本発明の補強材において、粘接着層は、基材と被着体を接着させた場合においてT型剥離強度が、硬化前では0.01~0.3N/mmであり、且つ100℃で6時間加熱処理して硬化させた後では0.35N/mm超;好ましくは硬化前では0.01~0.2N/mmであり、且つ100℃で6時間加熱処理して硬化せた後では0.5N/mm以上を充足することが望ましい。ここで、T型剥離強度とは、幅15mmの短冊状の補強材を被着体を接着させ、被着体と補強材の基材をT字状に50mm/分の速度で引っ張ることにより測定される接着力である。本発明の補強材が触媒層-電解質膜積層体又は膜-電極接合体の補強材として好適に使用されることを鑑みれば、上記T型剥離強度は、被着体が電解質膜の場合において充足していることが望ましい。
 本発明の補強材上に粘接着層を積層させる方法は、特に制限されず、従来公知の方法を用いることができる。例えば、上記粘接着層の配合成分を有機溶剤に溶解、分散させることにより、粘接着組成物の塗工液を得る。斯して得られた塗工液を基材に直接塗工し乾燥させることにより粘接着層を基材上に積層させることができ、又は当該塗工液を剥離可能な保護フィルムに所望の膜厚になるように塗工、乾燥させた後、保護フィルム上に形成された粘接着層を基材に転写することにより、粘接着層を基材上に積層させることもできる。ここで、上記塗工液に使用される有機溶剤としては、特に制限されないが、例えば、メチルエチルケトン、メチルアミルケトン、メチルイソブチルケトン、シクロヘキサン、3-ヘプタノン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、酢酸アミル、プロピオンエチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル等のエステル類;エタノール、プロパノール、イソプロピルアルコール、ブタノール、3-メトキシブタノール、シクロヘキサノール、エチレングリコール、グリセリン等のアルコール類、及びこれらの混合液等が挙げられる。また、上記塗工液を基材又は保護フィルム上に塗工する方法についても、特に制限されるものではなく、例えば、ロールコート法、グラビアコート法、リバースコート法、スプレーコート法、ブレードコート法、ナイフコート法、カーテンコート法、ダイコート法、コンマコート法、スクリーンコート法等が挙げられる。また、上記保護フィルムとしては、粘接着層と接する面が剥離性を備える限り、特に制限されず、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリアレートフィルム、フッ素樹脂フィルム、ジアセチルセルロースフィルム、トリアセチルセルロースフィルム、アセチルセルロースブチレートフィルム等の、単独で剥離性を有する又はこれらに剥離処理を施したプラスチックフィルム;ポリエチレンラミネート紙、ポリプロピレンラミネート紙、グラシン紙、樹脂コート紙、クレーコート紙等の剥離処理された紙等が挙げられる。また、上記剥離処理とは、フッ素系樹脂、シリコーン系樹脂、アルキット系樹脂等の剥離性を有する剥離層を形成させる処理である。また、保護フィルム上に形成された粘接着層を基材に転写するには、保護フィルム上の粘接着層を基材の所定箇所に貼り合せて圧着した後に保護フィルムを剥離除去すればよい。
[補強材の用途・接着法]
 本発明の補強材は、素材を問わず、電解質膜、触媒層、ガス拡散層、ガスケット、シール材等の様々な被着体の強度を補強する目的で使用される。とりわけ、本発明の補強材は、触媒層-電解質膜積層体又は膜-電極接合体の補強材として使用することが好適である。
 本発明の補強材は、本接着(熱処理又は熱圧処理)により被着体に接着させることができる。具体的には、本発明の補強材の粘接着層を被着体に貼り合せて仮止めした後に、80~120℃程度で1~10時間程度の条件で熱処理することで硬化させることにより、本発明の補強材と被着体を強固に接着させることができる。また、補強材と被着材との間に空気を含むと接着性が劣るため、上記熱処理を行う前に、50~100℃程度で1~10分間、圧力を加えエア抜きを行ってもよい。また、上記熱処理とともに圧力を加えてもよい。加圧の条件は、0.01mPa~10mPa程度でよく、0.05mPa~1mPaが好ましい。加圧は、真空プレス機等を使用して行うことができる。
 また、本発明の補強材は、粘接着層の硬化前は、被着体に弱い圧力で圧着させることができ、その後の低温且つ短時間での硬化により、良好な接着性と密着性とを実現させることができるので、特に、真空成形による一体成形法に好適である。
2.補強材付き触媒層-電解質膜積層体
 本発明の補強材付き触媒層-電解質膜積層体は、電解質膜の両面に触媒層が形成された触媒層-電解質膜積層体と、上記補強材とを備え、当該触媒層-電解質膜積層体の少なくとも一方面の外周縁部上に、当該補強材がその粘接着層を介して接着していることを特徴とする。
 本発明の補強材付き触媒層-電解質膜積層体は、補強材の粘接着層を介して触媒層-電解質膜積層体の外周縁部が接着されていればよく、その接着領域については特に制限されない。例えば、電解質膜上に、当該電解質膜よりも一回り小さい触媒層が形成されている場合には、図3に示す補強材付き触媒層-電解質膜積層のように、補強材との接着領域が電解質膜の外周縁部のみから形成されていてもよく、また図4に示す補強材付き触媒層-電解質膜積層のように、補強材との接着領域が電解質膜の外周縁部と触媒層の外周縁部から形成されていてもよい。また、例えば、電解質膜上に、当該電解質膜と同じ大きさの触媒層が形成されている場合には、図5に示す補強材付き触媒層-電解質膜積層のように、補強材との接着領域は触媒層の外周縁部から形成されていればよい。
 本発明の補強材付き触媒層-電解質膜積層体は、触媒層-電解質膜積層体の少なくとも一方面、好ましくは双方の面の外周縁部上に、上記補強材がその粘接着層を介して接着されている。本発明の補強材付き触媒層-電解質膜積層体において、触媒層-電解質膜積層体の双方の面の外周縁部上に上記補強材が接着されている場合、図3~4に示すように、触媒層-電解質膜積層体の電解質膜の外周側面が2つの補強材によって封止されていることが好ましいが、当該外周側面は封止されていなくてもよい。
 また、本発明の補強材付き触媒層-電解質膜積層体において、補強材の表面(触媒層-電解質膜積層体の外周縁部と接着させない面)には、セパレータ又はガスケットを接着させるための接着層が設けられていてもよい。当該接着層は、補強材と触媒層-電解質膜積層体の外周縁部との接着に使用される粘接着層と同一組成のものであっても、また異なる組成のものであってもよい。
 以下、本発明の補強材付き触媒層-電解質膜積層体を構成する各要素について説明する。
[電解質膜]
 電解質膜は、プロトン伝導性を備えている限り、その組成については制限されず、固体高分子形燃料電池で使用可能なものであればよい。
 電解質膜は、アノード触媒層で生成したプロトンを膜厚方向に沿ってカソード触媒層へと選択的に透過させる機能を有する。また、電解質膜は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。電解質膜の具体的な構成は特に制限されず、燃料電池の技術分野において従来公知の高分子電解質からなる膜が適宜採用できる。高分子電解質膜として、例えば、ナフィオン(Nafion)(登録商標、デュポン社製)、アシプレックス(Aciplex)(登録商標、旭化成株式会社製)、フレミオン(Flemion)(登録商標、旭硝子株式会社製)、ゴアセレクト(Gore Select)(登録商標)、ゴア社製)等のパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質膜;炭化水素系高分子電解質膜等を用いることができる。電解質膜の膜厚としては、通常5~250μm程度、好ましくは10~80μm程度が挙げられる。
[触媒層]
 触媒層は、実際に電池反応が進行する層である。具体的には、アノード触媒層では水素の酸化反応が進行し、カソード触媒層では酸素の還元反応が進行する。触媒層は、触媒成分を含み、必要に応じて、更に触媒成分を担持する導電性の触媒担体、及び高分子電解質バインダーを含むことが望ましい。
 アノード触媒層に用いられる触媒成分は、水素の酸化反応に触媒作用を有するものであれば特に制限されず、公知の触媒成分を使用できる。また、カソード触媒層に用いられる触媒成分も、酸素の還元反応に触媒作用を有するものであれば特に制限はなく、公知の触媒成分が使用できる。触媒成分として、具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属、及びこれらの合金等;含窒素カーボン等のカーボン触媒;酸化モリブデン、酸化チタン等の金属酸化物等が挙げられる。これらの中でも、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性等を向上させるために、少なくとも白金を含むものが好ましい。
 触媒担体は、上述した触媒成分を担持するための担体、及び触媒成分と他の部材との間での電子の授受に関与する電子伝導パスとして機能する。触媒担体としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、充分な電子伝導性を有しているものであればよく、主成分がカーボンで構成されていることが好ましい。触媒担体として、具体的には、カーボンブラック、活性炭、コークス、天然黒鉛、人造黒鉛等のカーボン粒子が挙げられる。
 高分子電解質バインダーは、触媒層と電解質膜の接着性を向上させると共に、触媒成分と他の部材との間でのプロトンの授受に関与するプロトン伝導パスとして機能する。また、高分子電解質バインダーは、水酸基等の極性基を有しており、当該極性基が本発明の補強材の粘接着層との接着力の向上にも寄与する。高分子電解質バインダーとしては、上述した電解質膜に使用されるものと同じ材料を使用することができる。
 触媒層の膜厚については、通常1~100μm、好ましくは5~30μmが挙げられる。
[触媒層-電解質膜積層体の形成法]
 上記電解質膜の外周縁部を除いた両面に触媒層が所望の形状で積層され、触媒層-電解質膜積層体が形成される。電解質膜上に触媒層を積層させる方法は、特に制限されず、従来公知の方法を用いることができる。例えば、静電スクリーン法等の乾式塗布法やスプレーコート法により電解質膜上に触媒層を塗工し、触媒層-電解質膜積層体を形成する方法;所望形状の触媒転写フィルムを電解質膜上に配置して転写法によって触媒層-電解質膜積層体を形成する方法等が挙げられる。
 上記転写法に使用される触媒転写フィルムは、転写フィルム上に触媒層が形成された二層構造のフィルムである。触媒転写フィルムに用いられる転写フィルムとしては、触媒層を積層でき且つ触媒層と接する面が剥離性を備える限り、特に制限されず、具体的には、前記「1.補強材」の欄に記載する保護フィルムと同様のものが使用される。また、転写フィルム上に形成された触媒層を電解質膜に転写するには、触媒転写フィルムを電解質膜の所定箇所に貼り合せて熱圧処理した後に転写フィルムを剥離除去すればよい。
 上記触媒層-電解質膜積層体の外周縁部に、上記補強材がその粘接着層を介して接着させる方法については、前記「1.補強材」の欄に記載する通りである。
[補強材付き触媒層-電解質膜積層体の製造法]
 本発明の補強材付き触媒層-電解質膜積層体の製造方法については、特に制限されず、例えば、触媒層-電解質膜積層体を形成した後に、触媒層-電解質膜積層体の外周縁部上に上記補強材を接着させてもよく、電解質膜上に上記補強材を接着させた後に、補強材付き電解質膜に、触媒層を積層させてもよい。
 本発明の補強材付き触媒層-電解質膜積層体の製造方法の好適な一例として下記工程を含むものが例示される:
(i)開口部を有する枠状の上記補強材を、電解質膜の外周縁部に当該補強材の粘接着層を介して接着させて、補強材付き電解質膜を得る工程、及び
(ii)補強材付き電解質膜において開口部から露出している電解質膜に触媒層を積層させて、補強材付き触媒層-電解質膜積層体を得る工程。
 特に、上記補強材の粘接着層において、ポリチオールとして常温(30℃)で固形状のものを使用する場合、厳しい熱圧条件に晒されても、被接着領域(触媒層-電解質膜積層体の外周縁部)から粘接着層が漏出するという従来技術の問題点が解消されているため、電解質と上記補強材を接着させた後に、触媒層を積層させる製造方法であっても、補強材付き触媒層-電解質膜積層体を効率的に製造できるという利点が得られる。かかる利点を鑑みれば、上記(i)及び(ii)の工程を含む製造方法において、使用される補強材の粘接着層は、常温で固形状のポリチオールを含有していることが好ましい。
 上記工程を含む製造方法によれば、図3に示す構造の補強材付き触媒層-電解質膜積層が製造される。
3.補強材付き膜-電極接合体
 本発明の補強材付き膜-電極接合体は、電解質膜の両面に触媒層及びガス拡散層が順次積層された膜-電極接合体と、上記補強材とを備え、当該膜-電極接合体の少なくとも一方面の外周縁部上に、当該補強材がその粘接着層を介して接着していることを特徴とする。
 本発明の補強材付き膜-電極接合体は、補強材の接着層を介して膜-電極接合体の外周縁部が接着していればよく、その接着領域については特に制限されない。
 例えば、本発明の補強材付き膜-電極接合体は、図6~8に示すように、膜-電極接合体のガス拡散層の外周縁部が接着領域に取り込まれていない状態(即ち、上記補強材付き触媒層-電解質膜積層の各触媒層上にガス拡散層が形成された状態)であってもよい。図6に示す膜-電極接合体では、ガス拡散層が触媒層より一回り小さく、触媒層が電解質膜よりも一回り小さい膜-電極接合体が用いられており、当該膜-電極接合体の電解質膜の外周縁部のみに、枠状に形成した補強シートが接着されている。図7に示す膜-電極接合体では、ガス拡散層が触媒層より一回り小さく、触媒層が電解質膜よりも一回り小さい膜-電極接合体が用いられており、当該膜-電極接合体の電解質膜の外周縁部と触媒層の外周縁部に、枠状の補強材が接着されている。図8に示す膜-電極接合体では、ガス拡散層が触媒層より一回り小さく、触媒層と電解質膜が同じ大きさの膜-電極接合体が用いられており、当該膜-電極接合体の触媒層の外周縁部に、枠状の補強材が接着されている。
 また、例えば、本発明の補強材付き膜-電極接合体は、また図9~11に示すように、膜-電極接合体のガス拡散層の外周縁部が接着領域に取り込まれ、ガス拡散層の外周縁部のみから接着領域が形成された状態(図9)、ガス拡散層の外周縁部と触媒層の外周縁部から接着領域が形成された状態(図10)、又はガス拡散層の外周縁部と触媒層の外周縁部と電解質膜の外周縁部から接着領域が形成された状態(図11)であってもよい。図9に示す膜-電極接合体では、触媒層と電解質膜とガス拡散層が同じ大きさの膜-電極接合体が用いられており、当該膜-電極接合体のガス拡散層の外周縁部に、枠状の補強材が接着されている。図10に示す膜-電極接合体では、触媒層と電解質膜が同じ大きさで、ガス拡散層が触媒層より一回り小さい膜-電極接合体が用いられており、当該膜-電極接合体のガス拡散層の外周縁部と触媒層の外周縁部に、枠状の補強材が接着されている。図11に示す膜-電極接合体では、触媒層が電解質膜より一回り小さく、ガス拡散層が触媒層より更に一回り小さい膜-電極接合体が用いられており、当該膜-電極接合体の電解質膜の外周縁部とガス拡散層の外周縁部と触媒層の外周縁部に、枠状の補強材が接着されている。
 本発明の補強材付き膜-電極接合体は、膜-電極接合体の少なくとも一方面、好ましくは双方の面の外周縁部上に、上記補強材がその粘接着層を介して接着されている。本発明の補強材付き膜-電極接合体において、膜-電極接合体の双方の面の外周縁部上に上記補強材が接着されている場合、図6~11に示すように、膜-電極接合体の電解質膜の外周側面が2つの補強材によって封止されていることが好ましいが、当該外周側面は封止されていなくてもよい。
 また、本発明の補強材付き膜-電極接合体において、補強材の表面(膜-電極接合体の外周縁部と接着させない面)には、セパレータ又はガスケットを接着させるための接着層が設けられていてもよい。当該接着層は、補強材と膜-電極接合体の外周縁部との接着に使用される粘接着層と同一組成のものであっても、また異なる組成のものであってもよい。
 以下、本発明の補強材付き膜-電極接合体を構成する各要素について説明する。
[ガス拡散層]
 ガス拡散層は、アノード(燃料極)、カソード(空気極)を構成する各種の導電性多孔質基材を使用でき、燃料である燃料ガス及び酸化剤ガスを効率よく触媒層に供給するため、多孔質の導電性基材を使用することが望ましい。多孔質の導電性基材としては、例えば、カーボンペーパーやカーボンクロス等が挙げられる。
 また、ガス拡散層は、必要に応じて、高分子電解質バインダーを含んでもよい。高分子電解質バインダーは、水酸基等の極性基を有しており、当該極性基が上記補強材の粘接着層との接着力を向上させることができる。高分子電解質バインダーとしては、上述した電解質膜に使用されるものと同じ材料を使用することができる。
 ガス拡散層の膜厚については、通常20~1000μm、好ましくは30~400μmが挙げられる。
[膜-電極接合体の形成法]
 膜-電極接合体を形成する方法は、特に制限されず、従来公知の方法を用いることができる。例えば、触媒層-電解質膜積層体の触媒層上にガス拡散層を配置して熱圧着による接合させることにより膜-電極接合体を形成する方法;触媒層及びガス拡散層の2層構造体転写フィルムを電解質膜上に配置して転写法によって膜-電極接合体を形成する方法等が挙げられる。
 上記転写法に使用される2層構造体転写フィルムは、転写フィルム上に、ガス拡散層及び触媒層からなる2層構造体が積層されている。触媒転写フィルムに用いられる転写フィルムとしては、ガス拡散層を積層でき且つガス拡散層と接する面が剥離性を備える限り、特に制限されず、具体的には、前記「1.補強材」の欄に記載する保護フィルムと同様のものが使用される。また、転写フィルム上に、ガス拡散層及び触媒層を順次形成するには、静電スクリーン法等の乾式塗布法やスプレーコート法又は転写法にて、各層を順次積層させればよい。また、転写フィルム上に形成された触媒層及びガス拡散層を電解質膜に転写するには、触媒層/ガス拡散層転写フィルムを電解質膜の所定箇所に貼り合せて熱圧着した後に転写フィルムを剥離除去すればよい。
[補強材付き膜-電極接合体の製造法]
 本発明の補強材付き膜-電極接合体の製造方法については、特に制限されず、例えば、膜-電極接合体を形成した後に、膜-電極接合体の外周縁部上(電解質膜上)に上記補強材を接着させてもよく、電解質膜上に上記補強材を接着させた後に、補強材付き電解質膜に対して触媒層とガス拡散層を順次積層してもよい。
 本発明の補強材付き膜-電極接合体の製造方法の好適な一例として下記工程を含むものが例示される:
(i)開口部を有する枠状の上記補強材(粘接着層に常温で固形状のポリチオールを含有)を、電解質膜の外周縁部に当該補強材の粘接着層を介して接着させて、補強材付き電解質膜を得る工程、及び
(ii)補強材付き電解質膜において開口部から露出している電解質膜に、触媒層及びガス拡散層を順次積層、又は触媒層及びガス拡散層からなる2層構造体を積層させて、補強材付き膜-電極接合体を得る工程。
 特に、上記補強材の粘接着層において、ポリチオールとして常温(30℃)で固形状のものを使用する場合、厳しい熱圧条件に晒されても、被接着領域(触媒層-電解質膜積層体の外周縁部)から粘接着層が漏出するという従来技術の問題点が解消されているため、電解質と上記補強材を接着させた後に、触媒層及びガス拡散層を順次積層させる製造方法であっても、補強材付き膜-電極接合体を効率的に製造できるという利点が得られる。かかる利点を鑑みれば、上記(i)及び(ii)の工程を含む製造方法において、使用される補強材の粘接着層は、常温で固形状のポリチオールを含有していることが好ましい。
 上記工程を含む製造方法によれば、図6に示す構造の補強材付き触媒層-電解質膜積層が製造される。
4.固体高分子形燃料電池
 本発明の固体高分子形燃料電池は、上記補強材付き膜-電極接合体を含むことを特徴とする。
 本発明の固体高分子形燃料電池は、上記補強材付き膜-電極接合体に対して、必要に応じてガスケットを介在させてセパレータで挟持させることにより製造される。上記補強材において、ガスケットの機能を有する基材を使用している場合であれば、当該補強材がガスケットとしての役割も果たすので、ガスケットを介在さることなく、上記補強材付き膜-電極接合体をセパレータで挟持させることができる。また、上記補強材において、ガスケットの役割を果たす基材を使用していない場合であれば、上記補強材付き膜-電極接合体の補強材とセパレータの間にガスケットを介在させた状態で、上記補強材付き膜-電極接合体をセパレータで挟持させることが望ましい。
 セパレータとしては燃料電池内の環境においても安定な導電性板であればよく、一般的には、カーボン板にガス流路を形成したものが用いられる。また、セパレータをステンレス等の金属により構成し、金属の表面にクロム、白金族金属又はその酸化物、導電性ポリマー等の導電性材料からなる被膜を形成したものや、同様にセパレータを金属によって構成し、該金属の表面に銀、白金族の複合酸化物、窒化クロム等の材料によるメッキ処理を施したもの等を使用することも可能である。
 ガスケットとしては、熱プレスに耐え得る強度を備え、且つ外部に燃料及び酸化剤を漏出しない程度のガスバリア性を有しているものであることを限度として特に制限されず、例えば、ポリエチレンテレフタレートシート、テフロン(登録商標)シート、シリコンゴムシート等が挙げられる。
5.粘接着組成物
 本発明の粘接着組成物は、エポキシ樹脂と、脂肪族ポリアミドと、ポリチオールとを含有することを特徴とする。
 本発明の粘接着組成物において、使用されるエポキシ樹脂、脂肪族ポリアミド、及びポリチオールの種類については、上記「1.補強材」における[粘接着層]の欄に記載の通りである。また、本発明の粘接着組成物において、これらの成分の含有量及び比率についても、上記「1.補強材」における[粘接着層]の欄に記載する粘接着層中の各成分の含有量及び比率と同様である。
 また、本発明の粘接着組成物には、上記成分以外にイオン性液体を含んでいてもよい。本発明の粘接着組成物において、更にイオン性液体を含有することにより、硬化時間の短縮、比較的低温条件での仮止め時の適度な接着性の付与、硬化後の接着強度の向上等が可能になる。特に、炭化水素系電解質膜を被着体とする場合には、本発明の粘接着組成物は、イオン性液体を含んでいることが好ましい。本発明の粘接着組成物において、使用されるイオン性液体の種類については、上記「1.補強材」の欄に記載の通りである。また、本発明の粘接着組成物におけるイオン性液体の含有量及び比率についても、上記「1.補強材」における[粘接着層]の欄に記載する粘接着層中の各成分の含有量及び比率と同様である。
 また、本発明の粘接着組成物に配合可能な他の配合成分についても、上記「1.補強材」の欄に記載の通りである。
 本発明の粘接着組成物は、エポキシ樹脂と、脂肪族ポリアミドと、ポリチオールと、必要に応じて他の配合成分とを所定量混合して溶剤未配合の粘接着組成物として、又は必要に応じて有機溶剤を配合した粘接着組成物として調製することができる。
 有機溶剤としては、上記「1.補強材」の[粘接着層]の欄に記載した粘接着組成物の塗工液に使用される有機溶剤と同様である。
 本発明の粘接着組成物は、被着体に直接塗工し乾燥させることにより使用してもよい。また、本発明の粘接着組成物からなる粘接着層を剥離可能な保護フィルム上に形成させた粘接着シートを調製し、当該粘接着シートを用いて、本発明の粘接着組成物を被着体に転写して使用することもできる。上記粘接着シートは、例えば、本発明の粘接着組成物の塗工液を剥離可能な保護フィルムに所望の膜厚になるように塗工、乾燥させることにより調製できる。ここで、剥離可能な保護フィルム、液状の粘接着組成物に配合される有機溶剤、及び塗工方法等については、上記「1.補強材」の[粘接着層]の欄の記載と同様である。
 本発明の粘接着組成物は、膜厚を1~300μm、好ましくは5~50μmの層状にして、被着体を接着させることが望ましい。
 本発明の粘接着組成物は、固体高分子形燃料電池を構成する部材の接着剤として好適に使用されるが、本発明の粘接着組成物は、被着体に対して良好な接着性及び密着性を示し、耐久性にも優れるので、例えば、自動車、鉄道等の車両、航空機、船舶等の内装材や外装材;窓枠や扉枠等の建具;壁、床、天井等の建築物の内装材;テレビや空調機等の家電製品の筐体や容器の装飾シート;パソコン等のOA機器の筐体等の装飾シートの接着剤としても使用することができる。また、本発明の粘接着組成物は、固体高分子形燃料電池以外の各種電池の構成部材の接着剤として使用することができる。例えば、電極反応に気体(ガス)を使用する金属空気電池は、負極電解質、正極触媒層、ガス拡散層、セパレータ、支持体、撥水膜、ガスケット、シール材等の構成部材を有しており、本発明の粘接着組成物は、これらの構成部材同士の接着剤として使用することもできる。
 また、金属空気電池の種類としては、例えばリチウム空気電池、ナトリウム空気電池、カリウム空気電池、マグネシウム空気電池、カルシウム空気電池、亜鉛空気電池、アルミニウム空気電池及び鉄空気電池等を挙げることができる。また、金属空気電池は一次電池であってもよく、二次電池であってもよい。
 本発明の粘接着組成物を、固体高分子形燃料電池を構成する部材の接着に使用する場合、固体高分子形燃料電池に使用される電解質膜、触媒層、及びガス拡散層のいずれか少なくとも1種とそれらを補強する基材との接着、とりわけ電解質膜と基材との接着に好適に適用される。
 本発明の粘接着組成物において、ポリチオールとして、常温(30℃)で固体状、好ましくは融点が120℃以上のポリチオールを使用すると、粘接着組成物が100~150℃程度の高温条件に晒されても接着領域から漏出し難い性質を備えることができる。このような特性を鑑みれば、ポリチオールとして常温で固形状のものを使用する場合には、本発明の粘接着組成物は、上記高温条件に晒される被着体の接着に好適に使用される。
 本発明の粘接着組成物は、上記補強材の基材と電解質膜の間に厚さ20μmの粘接着層を形成した場合において、T型剥離強度が、硬化前では0.01~0.3N/mmであり、且つ100℃で6時間加熱処理して効果させた後では0.35N/mm超;好ましくは硬化前では0.01~0.2N/mmであり、且つ100℃で6時間加熱処理して硬化せた後では0.5N/mm以上を充足することが望ましい。ここで、T型剥離強度とは、幅15mmの短冊状基材と短冊状電解質膜を接着させ、基材と電解質膜をT字状に50mm/分の速度で引っ張ることにより測定される接着力である。
 本発明の粘接着組成物は、熱処理又は熱圧処理により被着体を接着させることができる。本発明の粘接着組成物を用いて被着体を接着させる条件等についても、上記「1.補強材」の[粘接着層]の欄の記載と同様である。
 以下に、実施例等に基づいて本発明を詳細に説明するが、本発明はこれらによって限定されるものではない。
試験例1:フッ素系高分子電解質膜に対する仮止め容易性、及び粘接着組成物の漏出の有無の評価
1.補強材付き触媒層-電解質膜積層体(1)の作成及び評価
<補強材の作製>
 表1及び2に示す実施例1~10及び比較例1~2の粘接着組成物の塗工液を調製し、プラスチック基材(テオネックスQ51(登録商標、帝人デュポンフィルム社製)(厚さ25μm、100mm×100mmの正方形の中心部に51mm×51mmの正方形の開口部を有する)上にブレードコート法で塗工、乾燥することにより、厚さ20μmの粘着層が積層された補強材を作製した。
<触媒層-電解質膜積層体の作製>
 電解質膜(Nafion(登録商標、デュポン社製)、厚さ25μm、100mm×100mm)の両面に、50mm×50mm、層厚20μmの触媒層3を転写法により形成した。具体的には、白金触媒担持カーボン(白金担持量:45.7wt%、田中貴金属社製、TEC10E50E)2gに、1-ブタノール10g、2-ブタノール10g、フッ素樹脂(5wt%ナフィオンバインダー、デュポン社製)20g及び水6gを加え、これらを分散機にて攪拌混合することにより調製した触媒形成用ペーストを、触媒層乾燥後の白金重量が0.4mg/cmとなるようにポリエステルフィルム(東洋紡製、E5100、25μm)上に塗工して触媒層転写フィルムを作製した。そして、この触媒層転写フィルムを、触媒層が電解質膜側を向くように中心を合わせて電解質膜の両面に配置し、150℃、5.0MPa、5分の条件で熱プレスして電解質膜の両面に触媒層を形成した。
<補強材付き触媒層-電解質膜積層体(1)の作製>
 上記で得られた触媒層-電解質膜積層体の電解質膜の外周部に上記補強材の粘接着層を積層し、指で圧着させて仮止めを行い、100℃、0.5MPa、1分の圧力を加えた後、100℃、6時間加熱熱処理(本接着)させ、補強材付き触媒層-電解質膜積層体(1)を作製した。
<評価項目1:粘接着組成物の漏出の程度の評価>
 本接着後の補強材の外観を観察し、粘接着組成物が、補強材と電解質膜の界面から漏出(横伸び)している程度を測定した。漏出の程度については、補強材と電解質膜から粘接着組成物がはみ出した長さ(漏出長さ)を任意に10箇所測定し、その値を平均することにより評価した。
2.補強材付き触媒層-電解質膜積層体(2)の作成及び評価
<補強材付き電解質膜の作製>
 上記補強材付き触媒層-電解質膜積層体(1)で使用したものと同じ各補強材を、電解質膜(Nafion(登録商標、デュポン社製)、厚さ25μm、100mm×100mm)の両面に積層し、指で圧着させて仮止めを行った後、100℃、6時間加熱熱処理(本接着)させ、補強材付き電解質膜を作製した。
<評価項目2:仮止めした際の作業性の評価>
 上記補強材付き電解質膜の作製時に、補強材と電解質膜を仮止めした際の作業性について、下記判定基準に従って評価した。
<仮止めをした際の作業性>
BB:仮止めの際の初期接着力が強すぎる。貼り合せ後に位置修正ができず、無理に剥がすと電解質膜が破れる。
B :仮止めの際の初期接着力が強い。貼り合せ後に若干の位置修正は可能であるが、電解質膜を伸ばしてしわを除去することができない。
A :仮止めの際の初期接着力が適度である。貼り合せ後に位置修正が可能であり、しかも電解質膜を伸ばして電解質膜のしわを除去するもできる。
C :仮止めの際の初期接着力が弱く、圧着のみでは仮止めが不十分になる。また、熱圧着時に補強材と触媒層の位置調整が困難である。
CC:仮止めの際の初期接着力が非常に弱く、指での圧着で仮止めできない。
<補強材付き触媒層-電解質膜積層体(2)の作成>
 補強材付き電解質膜における電解質膜の両面に、上記補強材付き触媒層-電解質膜積層体(1)の作製の際に使用したものと同じ触媒転写フィルムを積層し、150℃、5MPa、5分の条件で熱圧処理を施し、補強材付き触媒層-電解質膜積層体(2)を作製した。
<評価項目3:粘接着組成物の漏出の程度>
 上記で得られた補強材付き触媒層-電解質膜積層体(2)の外観を観察し、粘接着組成物が、補強材と電解質膜の界面から漏出(横伸び)している程度を測定した。漏出の程度については、補強材と電解質膜から粘接着組成物がはみ出した長さ(漏出長さ)を10箇所測定し、その値を平均することにより評価した。
3.結果
 得られた結果を表1及び2に併せて示す。表2に示すように、エポキシ樹脂、脂肪族ポリアミド、及びポリチオール以外の硬化剤を含む粘接着組成物を使用した場合(比較例1)では、仮止めの際の初期接着力が強すぎ、貼り合せ後の位置修正ができない等の作業性が悪く、しかも触媒層を積層させる熱圧着によって粘接着組成物が補強材と電解質膜の界面から漏出していた。また、エポキシ樹脂及びポリチオールを含み、且つ脂肪族ポリアミドを含まない粘接着組成物を使用した場合(比較例2)では、初期接着力が弱く、補強材の位置調整が困難であった。これに対して、表1に示すように、エポキシ樹脂、脂肪族ポリアミド、及びポリチオールを含む粘接着組成物を使用した場合(実施例1-10)では、いずれも、仮止めの際の初期接着力が適度であり、貼り合せ後に位置修正が可能で、電解質膜を伸ばして電解質膜のしわを除去するもできた。更に、ポリチオールとして常温で固形状のものを使用した場合(実施例1-5及び7-10)には、触媒層を積層させる熱圧着処理に晒されても、粘接着組成物が補強材と電解質膜の界面から漏出することなく、接着層を安定に維持できていた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
試験例2:フッ素系高分子電解質膜に対するT型剥離強度の評価
 プラスチック基材(テオネックスQ51(登録商標、帝人デュポンフィルム社製)(厚さ25μm、15mm×50mmの短冊状)を使用すること以外は、上記試験例1と同様の方法で、表1の実施例1~5及び表2の比較例1~2に示す粘接着組成物からなる粘接着層(厚さ20μm)が積層された補強材を作製した。
 上記で得られた補強材の粘接着層側と電解質膜(ナフィオン(Nafion)(登録商標、デュポン社製)(厚さ25mm、15mm×50mmの短冊状)を接触させて指で圧着させて仮止めを行い、T型剥離強度(硬化前)の測定を行った。次いで、仮止めした補強材と電解質膜に対して、100℃で0.5MPaの圧力を加えて熱圧着させ、その後100℃で6時間加熱処理し、熱圧着後のT型剥離強度(硬化後)の測定を行った。
 なお、T型剥離強度(硬化前)は、オートグラフAG-IS(島津製作所社製)を用い、50mm/分の剥離速度で測定した。
 得られた結果を表3に示す。この結果と上記試験例1の結果を総合すると、T字剥離強度が0.2N/mm以下であれば、仮止めの際の初期接着力が適度になり、貼り合せ後に位置修正が容易で、電解質膜を伸ばしてしわを除去するも可能になることが明らかとなった。
Figure JPOXMLDOC01-appb-T000003
試験例3:炭化水素系高分子電解質膜に対する仮止め容易性、及び粘接着組成物の漏出の有無の評価
1.補強材付き触媒層-電解質膜積層体(1)の作成及び評価
<補強材の作製>
 表4に示す実施例11~14及び比較3~4の粘接着組成物の塗工液を調製し、プラスチック基材(テオネックスQ51(登録商標、帝人デュポンフィルム社製)(厚さ25μm、100mm×100mmの正方形の中心部に51mm×51mmの正方形の開口部を有する)上にブレードコート法で塗工、乾燥することにより、厚さ20μmの粘着層が積層された補強材を作製した。
<触媒層-電解質膜積層体の作製>
 炭化水素系高分子電解質膜(厚さ25μm、100mm×100mm)の両面に、50mm×50mm、層厚20μmの触媒層3を転写法により形成した。具体的には、白金触媒担持カーボン(白金担持量:45.7wt%、田中貴金属社製、TEC10E50E)2gに、1-ブタノール10g、2-ブタノール10g、フッ素樹脂(5wt%ナフィオンバインダー、デュポン社製)20g及び水6gを加え、これらを分散機にて攪拌混合することにより調製した触媒形成用ペーストを、触媒層乾燥後の白金重量が0.4mg/cm2となるようにポリエステルフィルム(東洋紡製、E5100、25μm)上に塗工して触媒層転写フィルムを作製した。そして、この触媒層転写フィルムを、触媒層が電解質膜側を向くように中心を合わせて電解質膜の両面に配置し、150℃、50MPa、10分の条件で熱プレスして電解質膜の両面に触媒層を形成した。
<補強材付き触媒層-電解質膜積層体(1)の作製>
 上記で得られた補強材と触媒層-電解質膜積層体を用いて、上記試験例1と同条件で補強材付き触媒層-電解質膜積層体(1)を作製した。
<評価項目1:粘接着組成物の漏出の程度の評価>
 本接着後の粘接着組成物の漏出の程度を、上記試験例1と同様の方法で評価した。
2.補強材付き触媒層-電解質膜積層体(2)の作成及び評価
<補強材付き電解質膜の作製>
 上記補強材付き触媒層-電解質膜積層体(1)で使用したものと同じ各補強材を、炭化水素系高分子電解質膜(厚さ25μm、100mm×100mm)の両面に積層し、指で圧着させて仮止めを行った後、100℃、6時間加熱熱処理(本接着)させ、補強材付き電解質膜を作製した。
<評価項目2:仮止めした際の作業性の評価>
 上記補強材付き電解質膜の作製時に、補強材と電解質膜を仮止めした際の作業性について、上記試験例1と同様の方法で評価した。
<補強材付き触媒層-電解質膜積層体(2)の作成>
 上記で得られた補強材付き電解質膜における電解質膜の両面に、上記補強材付き触媒層-電解質膜積層体(1)の作製の際に使用したものと同じ触媒転写フィルムを積層し、150℃、50MPa、10分の条件で熱圧処理を施し、補強材付き触媒層-電解質膜積層体(2)を作製した。
<評価項目3:粘接着組成物の漏出の程度>
 上記で得られた補強材付き触媒層-電解質膜積層体(2)において、粘接着組成物が、補強材と電解質膜の界面から漏出(横伸び)している程度を、上記試験例1と同様の方法で評価した。
3.結果
 得られた結果を表4に示す。表4から分かるように、フッ素系高分子電解質膜を使用した場合と同様に、炭化水素系高分子電解質膜を使用した場合において、エポキシ樹脂、脂肪族ポリアミド、及びポリチオール以外の硬化剤を含む粘接着組成物(比較例3)を使用すると、仮止めの際の初期接着力が弱く、圧着のみでは仮止めが不十分であった。また、エポキシ樹脂及びポリチオールを含み、且つ脂肪族ポリアミドを含まない粘接着組成物を使用した場合(比較例4)でも、十分な仮止めができなかった。これに対して、エポキシ樹脂、脂肪族ポリアミド、ポリチオール、及びイオン性液体を含む粘接着組成物を使用した場合(実施例11~14)では、いずれも、仮止めの際の初期接着力が適度であり、貼り合せ後に位置修正が可能で、電解質膜を伸ばして電解質膜のしわを除去するもできた。また、実施例11~14では、触媒層を積層させる熱圧着処理に晒されても、粘接着組成物が補強材と電解質膜の界面から漏出することなく、接着層を安定に維持できていた。
Figure JPOXMLDOC01-appb-T000004
試験例4:炭化水素系高分子電解質膜に対するT型剥離強度の評価
 プラスチック基材(テオネックスQ51(登録商標、帝人デュポンフィルム社製)(厚さ25μm、15mm×50mmの短冊状)を使用すること以外は、上記試験例1と同様の方法で、表4の実施例11~14及び比較例3~4に示す粘接着組成物からなる粘接着層(厚さ20μm)が積層された補強材を作製した。
 上記で得られた補強材と炭化水素系高分子電解質膜(厚さ25μm、100mm×100mm)を用いて、上記試験例2と同様の方法で、仮止め時(硬化前)のT型剥離強度と、熱圧着後(硬化後)のT型剥離強度の測定を行った。
 得られた結果を表5に示す。この結果からも、実施例11~14に示す粘接着組成物は、炭化水素系高分子電解質膜に対して仮止めの際の初期接着力が適度であり、本接着後(熱圧着後)には高い接着力を示すことが確認された。
Figure JPOXMLDOC01-appb-T000005
1 基材
2 粘接着層
3 補強材
4 開口部
5 電解質膜
6 触媒層
7 補強材付き触媒層-電解質膜積層体
8 ガス拡散層
9 補強材付き膜-電極接合体

Claims (15)

  1.  基材上に粘接着層が積層された補強材であって、粘接着層が、脂肪族ポリアミドと、エポキシ樹脂と、ポリチオールとを含有していることを特徴とする、補強材。
  2.  前記ポリチオールが常温で固体状である、請求項1に記載の補強材。
  3.  前記粘接着層が、更にイオン性液体を含有する、請求項1に記載の補強材。
  4.  前記粘接着層におけるイオン性液体の含有量が、0.01~10質量%である、請求項3に記載の補強材。
  5.  電解質膜の外周縁部を除いた両面に触媒層が形成された触媒層-電解質膜積層体と、
    請求項1~4のいずれかに記載の補強材とを備え、
    前記補強材が開口部を有する枠状であり、
    前記触媒層-電解質膜積層体の少なくとも一方面の外周縁部上に、前記補強材がその粘接着層を介して接着されている、
    ことを特徴とする、補強材付き触媒層-電解質膜積層体。
  6.  下記工程を含む、補強材付き触媒層-電解質膜積層体の製造方法:
    (i)開口部を有する枠状の請求項1~4のいずれかに記載の補強材を、電解質膜の外周縁部に当該補強材の粘接着層を介して接着させて、補強材付き電解質膜を得る工程、及び
    (ii)補強材付き電解質膜において前記開口部から露出している電解質膜に触媒層を積層させて、補強材付き触媒層-電解質膜積層体を得る工程。
  7.  電解質膜の両面に触媒層及びガス拡散層が順次積層された膜-電極接合体と、
    請求項1~4のいずれかに記載の補強材とを備え、
    前記補強材が開口部を有する枠状であり、
    前記膜-電極接合体の少なくとも一方面の外周縁部上に、前記補強材がその粘接着層を介して接着されている、
    ことを特徴とする、補強材付き膜-電極接合体。
  8.  下記工程を含む、補強材付き膜-電極接合体の製造方法:
    (i)開口部を有する枠状の請求項1~4のいずれかに記載の補強材を、電解質膜の外周縁部に当該補強材の粘接着層を介して接着させて、補強材付き電解質膜を得る工程、及び
    (ii)補強材付き電解質膜において前記開口部から露出している電解質膜に、触媒層及びガス拡散層を順次積層、又は触媒層及びガス拡散層からなる2層構造体を積層させて、補強材付き膜-電極接合体を得る工程。
  9.  請求項7に記載の補強材付き膜-電極接合体を含む、固体高分子形燃料電池。
  10.  エポキシ樹脂と、脂肪族ポリアミドと、ポリチオールとを含有することを特徴とする、粘接着組成物。
  11.  前記ポリチオールが常温で固体状である、請求項10に記載の粘接着組成物。
  12.  更に、イオン性液体を含有する、請求項10に記載の粘接着組成物。
  13.  イオン性液体の含有量が、0.01~10質量%である、請求項12に記載の粘接着組成物。
  14.  固体高分子形燃料電池に用いられる電解質膜の接着に使用される、請求項10に記載の粘接着組成物。
  15.  請求項10~14のいずれかに記載の粘接着組成物からなる粘接着層が、剥離可能な保護フィルムに形成されている粘接着シート。
PCT/JP2012/059770 2011-04-11 2012-04-10 固体高分子形燃料電池用補強材及びそれに用いる粘接着組成物 WO2012141167A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013509924A JP5880546B2 (ja) 2011-04-11 2012-04-10 固体高分子形燃料電池用補強材及びそれに用いる粘接着組成物
CN201280017396.XA CN103582562B (zh) 2011-04-11 2012-04-10 聚合物电解质燃料电池用增强材料及其中所使用的粘着粘接组合物
US14/111,123 US9437881B2 (en) 2011-04-11 2012-04-10 Reinforcing material for solid polymer fuel cell, and cohesive/adhesive composition for use in same
EP12771339.4A EP2698250A4 (en) 2011-04-11 2012-04-10 REINFORCING MATERIAL FOR SOLID POLYMER FUEL CELL, AND COHESIVE / ADHESIVE COMPOSITION FOR USE THEREIN

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-087289 2011-04-11
JP2011087289 2011-04-11
JP2011256410 2011-11-24
JP2011-256410 2011-11-24

Publications (1)

Publication Number Publication Date
WO2012141167A1 true WO2012141167A1 (ja) 2012-10-18

Family

ID=47009340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059770 WO2012141167A1 (ja) 2011-04-11 2012-04-10 固体高分子形燃料電池用補強材及びそれに用いる粘接着組成物

Country Status (5)

Country Link
US (1) US9437881B2 (ja)
EP (1) EP2698250A4 (ja)
JP (1) JP5880546B2 (ja)
CN (1) CN103582562B (ja)
WO (1) WO2012141167A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229371A (ja) * 2011-04-27 2012-11-22 Dainippon Printing Co Ltd 熱硬化型粘接着剤組成物、粘接着シート、及び粘接着シートの製造方法
WO2014111745A3 (en) * 2013-01-18 2014-10-23 Daimler Ag Fuel cell assembly comprising a frame sheet adhesively bonded to mea and flow field plate
CN104212394A (zh) * 2014-09-11 2014-12-17 中国科学院长春应用化学研究所 一种室温固化环氧树脂胶黏剂及其制备方法
JP5761417B1 (ja) * 2014-03-31 2015-08-12 大日本印刷株式会社 支持体付き電解質膜、及び、支持体付き触媒層−電解質膜積層体
JP2017107753A (ja) * 2015-12-10 2017-06-15 本田技研工業株式会社 樹脂枠付き電解質膜・電極構造体の製造方法及びその製造装置
JP2019515067A (ja) * 2016-04-22 2019-06-06 ピーアールシー−デソト インターナショナル,インコーポレイティド 硫黄含有ポリマー組成物におけるイオン液体触媒
CN110088962A (zh) * 2016-12-20 2019-08-02 米其林集团总公司 用于制造燃料电池的膜-电极组件的方法及生产线

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2978053A4 (en) * 2013-03-22 2016-09-07 Toppan Printing Co Ltd CARRIER FILM FOR CATALYST TRANSFER FILM AND METHOD OF PREPARATION, METHOD FOR PRODUCING A TRANSFER FILM AND ELECTROLYTE MEMBRANE WITH THE CATALYST LAYER
DE102016111794A1 (de) 2016-06-28 2017-12-28 Volkswagen Ag Membran-Elektroden-Anordnung, Brennstoffzellenstapel und Verfahren zum Herstellen einer Membran-Elektroden-Anordnung
FR3060862A1 (fr) * 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'assemblage membrane-electrode pour pile a combustible
JP6673241B2 (ja) * 2017-02-02 2020-03-25 トヨタ自動車株式会社 帯状の部材の貼り合わせ方法、および、帯状の部材の貼り合わせ装置
JP6427215B2 (ja) * 2017-03-07 2018-11-21 本田技研工業株式会社 固体高分子型燃料電池用フィルム成形品のプレス加工方法及びプレス加工装置
KR20200071622A (ko) * 2018-12-11 2020-06-19 현대자동차주식회사 리튬 이차전지 및 그 제조방법
KR20200082238A (ko) * 2018-12-28 2020-07-08 현대자동차주식회사 연료 전지용 막 전극 접합체 및 이의 제조 방법
CN113646383A (zh) * 2019-03-25 2021-11-12 3M创新有限公司 可固化组合物、由其制得的制品,及其制造和使用方法
DE102020213140A1 (de) * 2020-10-19 2022-04-21 Robert Bosch Gesellschaft mit beschränkter Haftung Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
DE102020216363A1 (de) * 2020-12-21 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Membran-Elektroden-Anordnung, Membran-Elektroden-Anordnung sowie Brennstoffzelle mit einer Membran-Elektroden-Anordnung
CN112909293A (zh) * 2021-01-15 2021-06-04 苏州泰仑电子材料有限公司 质子交换膜复合密封结构、膜电极、燃料电池
CN112909288A (zh) * 2021-01-15 2021-06-04 苏州泰仑电子材料有限公司 一种用于燃料电池的膜电极结构及制备方法
DE102021205857A1 (de) 2021-06-10 2022-12-15 Robert Bosch Gesellschaft mit beschränkter Haftung Membran-Elektroden-Anordnung und Verfahren zum Herstellen einer Membran und einer Elektrodenschicht für eine Membran-Elektroden-Anordnung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102624A (en) * 1979-02-01 1980-08-06 Mitsubishi Petrochem Co Ltd Epoxy resin composition having excellent curability
JPH05242897A (ja) 1992-02-26 1993-09-21 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH07169448A (ja) * 1993-08-25 1995-07-04 Yuasa Corp アルカリ電池
JPH1060097A (ja) * 1996-08-22 1998-03-03 Aisin Chem Co Ltd エポキシ樹脂組成物
JP2004211038A (ja) * 2003-01-09 2004-07-29 Uchiyama Mfg Corp 接着剤組成物
JP2004277444A (ja) * 2003-03-12 2004-10-07 Ricoh Co Ltd 導電性接着剤
JP2010275545A (ja) * 2009-04-30 2010-12-09 Toagosei Co Ltd 光硬化型接着剤組成物
JP2011017820A (ja) * 2009-07-08 2011-01-27 Sumitomo Chemical Co Ltd 偏光板及びそれを含む積層光学部材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571763A (en) 1978-11-24 1980-05-30 Dainippon Toryo Co Ltd Epoxy resin coating composition
DE2904490A1 (de) 1979-02-07 1980-08-21 Bayer Ag Verfahren zur herstellung von alpha -hydroxycarbonsaeureamiden
JPH02294322A (ja) 1989-05-08 1990-12-05 Showa Highpolymer Co Ltd 硬化可能な組成物
IL136344A0 (en) * 1998-01-16 2001-05-20 Loctite R & D Ltd Curable epoxy-based compositions
JP2000037659A (ja) * 1998-05-20 2000-02-08 Chugoku Marine Paints Ltd 船舶タンク内表面の塗装方法および塗装船舶
JP2000037658A (ja) 1998-05-20 2000-02-08 Chugoku Marine Paints Ltd 船舶外板の塗装方法および塗装船舶
JP5182906B2 (ja) 1998-05-20 2013-04-17 中国塗料株式会社 塗装膜厚調整が容易な塗料組成物およびそれから形成された重防食塗膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102624A (en) * 1979-02-01 1980-08-06 Mitsubishi Petrochem Co Ltd Epoxy resin composition having excellent curability
JPH05242897A (ja) 1992-02-26 1993-09-21 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH07169448A (ja) * 1993-08-25 1995-07-04 Yuasa Corp アルカリ電池
JPH1060097A (ja) * 1996-08-22 1998-03-03 Aisin Chem Co Ltd エポキシ樹脂組成物
JP2004211038A (ja) * 2003-01-09 2004-07-29 Uchiyama Mfg Corp 接着剤組成物
JP2004277444A (ja) * 2003-03-12 2004-10-07 Ricoh Co Ltd 導電性接着剤
JP2010275545A (ja) * 2009-04-30 2010-12-09 Toagosei Co Ltd 光硬化型接着剤組成物
JP2011017820A (ja) * 2009-07-08 2011-01-27 Sumitomo Chemical Co Ltd 偏光板及びそれを含む積層光学部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2698250A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229371A (ja) * 2011-04-27 2012-11-22 Dainippon Printing Co Ltd 熱硬化型粘接着剤組成物、粘接着シート、及び粘接着シートの製造方法
WO2014111745A3 (en) * 2013-01-18 2014-10-23 Daimler Ag Fuel cell assembly comprising a frame sheet adhesively bonded to mea and flow field plate
CN105074987A (zh) * 2013-01-18 2015-11-18 戴姆勒股份公司 包括粘接到膜电极组件和流场板的框架薄片的燃料电池组件
JP2016503230A (ja) * 2013-01-18 2016-02-01 ダイムラー・アクチェンゲゼルシャフトDaimler AG 燃料電池アセンブリおよびその作製方法
US10903508B2 (en) 2013-01-18 2021-01-26 Daimler Ag Fuel cell assemblies and preparation methods therfor
JP5761417B1 (ja) * 2014-03-31 2015-08-12 大日本印刷株式会社 支持体付き電解質膜、及び、支持体付き触媒層−電解質膜積層体
CN104212394A (zh) * 2014-09-11 2014-12-17 中国科学院长春应用化学研究所 一种室温固化环氧树脂胶黏剂及其制备方法
JP2017107753A (ja) * 2015-12-10 2017-06-15 本田技研工業株式会社 樹脂枠付き電解質膜・電極構造体の製造方法及びその製造装置
JP2019515067A (ja) * 2016-04-22 2019-06-06 ピーアールシー−デソト インターナショナル,インコーポレイティド 硫黄含有ポリマー組成物におけるイオン液体触媒
CN110088962A (zh) * 2016-12-20 2019-08-02 米其林集团总公司 用于制造燃料电池的膜-电极组件的方法及生产线

Also Published As

Publication number Publication date
JP5880546B2 (ja) 2016-03-09
JPWO2012141167A1 (ja) 2014-07-28
CN103582562A (zh) 2014-02-12
EP2698250A4 (en) 2014-12-10
CN103582562B (zh) 2015-10-14
EP2698250A1 (en) 2014-02-19
US20140127608A1 (en) 2014-05-08
US9437881B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5880546B2 (ja) 固体高分子形燃料電池用補強材及びそれに用いる粘接着組成物
WO2007043587A1 (ja) 膜電極接合体および固体高分子形燃料電池
CN106104885A (zh) 膜电极接合体的制造方法、膜电极接合体以及固体高分子式燃料电池
TWI532201B (zh) 薄膜系太陽電池模組及薄膜系太陽電池模組之製造方法
JP4978752B2 (ja) 燃料電池およびその製造方法
JP5205191B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP5091890B2 (ja) 燃料電池用接着剤及びこれを用いて作製した膜電極構造体
JP7280871B2 (ja) ホットメルト接着シート
JP5284143B2 (ja) 燃料電池用接着剤及びこれを用いた膜電極構造体
CN114864989A (zh) 一种膜电极边框及其制备方法和膜电极
WO2007113589A1 (en) Membrane electrode assembly
JP4512316B2 (ja) 接着剤組成物
WO2022270286A1 (ja) 固体高分子型燃料電池シール材
JP5711869B2 (ja) 接着部材、その製造方法および接着構造
JP5720279B2 (ja) 燃料電池およびその製造方法
JP4486801B2 (ja) 接着剤組成物
JP5870883B2 (ja) 燃料電池の製造方法
US20230246214A1 (en) Method for production of an at least two-layered laminate of a membrane electrode assembly
JP2003303600A (ja) 燃料電池の製造方法
CN117568834A (zh) 一种水电解制氢膜电极的封装结构及制备方法
CN102555370A (zh) 一种非氟高耐候高粘结性太阳电池背膜及加工工艺
JP2010080112A (ja) 膜電極接合体を含む燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013509924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012771339

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14111123

Country of ref document: US