WO2012128160A1 - 非水電解質二次電池用正極極板及びその製造方法、並びに非水電解質二次電池及びその製造方法 - Google Patents

非水電解質二次電池用正極極板及びその製造方法、並びに非水電解質二次電池及びその製造方法 Download PDF

Info

Publication number
WO2012128160A1
WO2012128160A1 PCT/JP2012/056614 JP2012056614W WO2012128160A1 WO 2012128160 A1 WO2012128160 A1 WO 2012128160A1 JP 2012056614 W JP2012056614 W JP 2012056614W WO 2012128160 A1 WO2012128160 A1 WO 2012128160A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
protective layer
electrode active
electrolyte secondary
Prior art date
Application number
PCT/JP2012/056614
Other languages
English (en)
French (fr)
Inventor
哲哉 松田
直樹 小川
圭亮 南
藤原 豊樹
能間 俊之
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201280013725.3A priority Critical patent/CN103430357B/zh
Priority to JP2013505923A priority patent/JP5929897B2/ja
Priority to US14/006,828 priority patent/US9231245B2/en
Publication of WO2012128160A1 publication Critical patent/WO2012128160A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode plate for a non-aqueous electrolyte secondary battery having a portion in which a positive electrode active material layer is formed on the positive electrode core and the positive electrode core not formed with a positive electrode active material layer is exposed.
  • the present invention relates to a method, a non-aqueous electrolyte secondary battery, and a manufacturing method thereof.
  • non-aqueous electrolyte secondary battery for example, in a lithium ion battery including a wound electrode body, a positive electrode plate in which a positive electrode active material layer is formed on both surfaces of a positive electrode core body made of a long aluminum foil, and the like, Winding in a state where a long separator made of a microporous polyolefin is disposed between the negative electrode plates having a negative electrode active material layer formed on both sides of a negative electrode core made of a long copper foil, etc. After the flat electrode body is formed, the positive electrode tab and the negative electrode tab are connected to the positive electrode plate and the negative electrode plate, respectively, and housed in an exterior body of a predetermined shape.
  • a positive electrode plate in which a positive electrode active material layer is formed on both surfaces of a positive electrode core body made of aluminum foil and the like, and a negative electrode active body on both surfaces of a negative electrode core body made of copper foil and the like.
  • a separator made of a microporous polyolefin is disposed between the negative electrode plates on which the material layers are formed, and a large number of positive electrode plates and negative electrode plates are stacked via the separators to form a stacked electrode body.
  • the positive electrode tabs connected to the electrode plate and the negative electrode plate and the negative electrode tabs are connected in parallel to each other and housed in an exterior body having a predetermined shape.
  • the negative electrode active material layer in order to smoothly occlude lithium ions released from the positive electrode active material during charging into the negative electrode active material, the negative electrode active material layer usually has a separator. It arrange
  • a winding displacement in the axial direction of a separator is formed by forming an insulating layer made of an insulating resin on both surfaces of a base portion of a protruding portion where the positive and negative electrodes of a wound electrode body are exposed. Even if the non-projecting ends of the positive and negative electrodes are exposed due to the presence of the insulating layer, the short circuit between the positive and negative electrodes and the base part of the projecting parts of the positive and negative electrodes is prevented.
  • a non-aqueous secondary battery is disclosed in which a short circuit is prevented.
  • Patent Document 2 includes a positive electrode in which an active material mixture layer is disposed on at least one side of a current collector made of a metal foil, and a part of the metal is exposed, and the positive electrode is the metal Is exposed to the negative electrode through the separator together with the exposed portion, and the portion of the exposed portion of the metal that faces the negative electrode through the separator is lower in electronic conductivity than the metal and Even if a protective layer made of an insulating material is formed and a part of the electrode breaks through the separator and comes into contact with the other electrode, the battery is gently discharged to avoid abnormal battery heat generation.
  • a non-aqueous secondary battery is disclosed in which a battery abnormality can be detected on the device side by a battery voltage drop.
  • polyvinylidene fluoride is generally used as a binder for the positive electrode active material layer of the positive electrode plate of the nonaqueous electrolyte secondary battery. Further, as the binder for the protective layer formed on the positive electrode plate, it is preferable to use the same polyvinylidene fluoride as the binder for the positive electrode active material layer so as not to deteriorate the battery characteristics.
  • Polyvinylidene fluoride is used as a binder for the positive electrode active material layer and the protective layer, and the positive electrode active material mixture slurry and the protective layer slurry are placed on the long positive electrode core along the longitudinal direction of the long positive electrode core.
  • the negative electrode plate and the positive electrode plate may be easily short-circuited in a portion where the width of the protective layer is narrow.
  • the present inventor has found that the above problem can be solved by controlling the molecular weight relationship of polyvinylidene fluoride contained as a binder in each of the positive electrode active material layer and the protective layer.
  • the positive electrode plate for a non-aqueous electrolyte secondary battery according to the present invention has a positive electrode core body on which a positive electrode active material layer is formed and a positive electrode active material layer is not formed.
  • the positive electrode active material layer and the protective layer contain polyvinylidene fluoride, and the weight average molecular weight Mw of the polyvinylidene fluoride contained in the protective layer is the same as that of the polyvinylidene fluoride contained in the positive electrode active material layer. It is characterized by being larger than the weight average molecular weight Mw.
  • the inventors have found that when the weight average molecular weight Mw of the polyvinylidene fluoride contained in the positive electrode active material mixture slurry and the protective layer slurry is the same, when applying each slurry on the core, It has been found that the width of the positive electrode active material layer and the protective layer becomes unstable because the active material mixture slurry spreads in the width direction and the protective layer becomes narrow.
  • the positive electrode active material mixture slurry is obtained by making the weight average molecular weight Mw of the polyvinylidene fluoride contained in the protective layer slurry larger than the weight average molecular weight Mw of the polyvinylidene fluoride contained in the positive electrode active material mixture slurry.
  • the protective layer slurry can be stably applied, and the widths of the positive electrode active material layer and the protective layer can be stabilized.
  • the weight average molecular weight Mw of the polyvinylidene fluoride contained in the positive electrode active material layer is preferably 100,000 to 350,000, and more preferably 200,000 to 300,000.
  • the weight average molecular weight Mw of the polyvinylidene fluoride contained in the positive electrode active material layer is smaller than 100,000, the viscosity of the positive electrode active material mixture slurry decreases. Therefore, in order to obtain a slurry having the optimum properties, it is necessary to increase the proportion of polyvinylidene fluoride in the positive electrode active material mixture slurry, so that the proportion of the positive electrode active material is decreased, and the battery capacity is reduced. Moreover, when the weight average molecular weight Mw of the polyvinylidene fluoride contained in the positive electrode active material layer is larger than 350,000, the positive electrode active material mixture slurry is liable to be precipitated and gelled, which is not preferable.
  • the polyvinylidene fluoride contained in the protective layer preferably has a weight average molecular weight Mw of 350,000 to 1,300,000, more preferably 400,000 to 1,100,000. *
  • the weight average molecular weight Mw of the polyvinylidene fluoride contained in the protective layer By setting the weight average molecular weight Mw of the polyvinylidene fluoride contained in the protective layer to 350,000 or more, it is possible to more effectively prevent the positive electrode active material mixture slurry from spreading in the width direction during coating. Further, when the weight average molecular weight Mw of the polyvinylidene fluoride contained in the protective layer is larger than 1.3 million, the solubility of the polyvinylidene fluoride in the solvent N-methylpyrrolidone (NMP) is lowered, so that the slurry having the optimum properties It is not preferable because it can be difficult to obtain.
  • NMP N-methylpyrrolidone
  • the weight average molecular weight Mw of polyvinylidene fluoride is determined by gel permeation chromatography (GPC method).
  • GPC method utilizes the fact that when a solution in which polyvinylidene fluoride is dissolved is introduced into a column packed with a gel having a large number of pores, the higher the weight average molecular weight Mw, the faster the elution occurs. This is a method for obtaining the distribution.
  • the protective layer is preferably insulative or has lower electronic conductivity than the positive electrode core and is non-insulating.
  • the protective layer preferably contains an inorganic oxide.
  • the protective layer contains an inorganic oxide
  • the heat resistance and strength of the protective layer can be improved. Therefore, even when a burr or the like of the negative electrode plate breaks through the separator, it can be effectively prevented that the negative electrode plate and the positive electrode core are in direct contact with each other.
  • a method for containing an inorganic oxide in the protective layer it is preferable to contain a particulate inorganic oxide in the protective layer.
  • the inorganic oxide it is preferable to use at least one selected from the group consisting of alumina, titania, and zirconia.
  • the protective layer preferably contains a conductive agent.
  • the protective layer is insulative, charging and discharging are possible even if a part of the negative electrode plate breaks through the separator and is not short-circuited. If the battery continues to be used for a long time in that state, the damaged part may start, and the separator may break, causing a large short circuit, and the battery may generate abnormal heat. Therefore, when a conductive agent is contained in the protective layer, the protective layer is made of a non-insulating material that has lower electronic conductivity than the metal positive electrode core. As a result, when a part of the negative electrode plate breaks through the separator and comes into contact with the protective layer, the battery is gently discharged to avoid abnormal heat generation of the battery, and the battery side causes battery abnormality to be Can be detected.
  • a carbon material can be used as the conductive agent. It is preferable to use graphite or carbon black as the carbon material.
  • the protective layer preferably contains an inorganic oxide and a conductive agent.
  • the protective layer contains both the inorganic oxide and the conductive agent, a safer non-aqueous electrolyte secondary battery can be obtained.
  • the amount of polyvinylidene fluoride contained in the positive electrode active material layer is preferably 1 to 10% by mass, and preferably 2 to 5% by mass with respect to the total amount of the positive electrode active material layer. More preferred. Further, the amount of polyvinylidene fluoride contained in the protective layer is preferably 10 to 20% by mass, more preferably 12 to 15% by mass with respect to the total amount of the protective layer.
  • the nonaqueous electrolyte secondary battery preferably has an electrode body in which the positive electrode plate for a nonaqueous electrolyte secondary battery and the negative electrode plate are laminated or wound with a separator interposed therebetween.
  • the method for producing a positive electrode plate for a non-aqueous electrolyte secondary battery according to the present invention includes a step of exposing a positive electrode core body on which a positive electrode active material layer is formed and a positive electrode active material layer is not formed.
  • a method for producing a positive electrode plate for a non-aqueous electrolyte secondary battery, wherein a protective layer is formed in a region adjacent to the positive electrode active material layer in a portion where the positive electrode active material layer is not formed in the positive electrode core A positive electrode active material mixture slurry containing a positive electrode active material and polyvinylidene fluoride, and a polyvinyl fluoride having a weight average molecular weight Mw larger than the weight average molecular weight Mw of the polyvinylidene fluoride contained in the positive electrode active material mixture slurry.
  • the positive electrode active material mixture slurry and the protective layer slurry both containing polyvinylidene fluoride are simultaneously applied on the positive electrode core, or one of the positive electrode active material mixture slurry and the protective layer slurry is applied on the positive electrode core.
  • the other slurry is applied onto the positive electrode core before the one slurry is dried, the problem arises that the widths of the positive electrode active material layer and the protective layer in the positive electrode plate are not stable.
  • the positive electrode active material mixture slurry is obtained by making the weight average molecular weight Mw of the polyvinylidene fluoride contained in the protective layer slurry larger than the weight average molecular weight Mw of the polyvinylidene fluoride contained in the positive electrode active material mixture slurry.
  • the width of the protective layer can be stabilized.
  • a positive electrode active material mixture slurry and a protective layer slurry are merged inside a die head of a die coater, and the positive electrode active material mixture slurry and the protective layer are combined. It is preferable to apply the slurry onto the positive electrode core at the same time.
  • the positive electrode active material mixture slurry and the protective layer slurry are combined inside the die head using a die coater. It is preferable to apply them simultaneously on the positive electrode core.
  • the positive electrode active material mixture slurry and the protective layer slurry are merged inside the die head of the die coater, and the positive electrode active material mixture slurry and the protective layer slurry are applied simultaneously on the positive electrode core, the positive electrode active plate in the positive electrode plate is used. Since the problem that the widths of the material layer and the protective layer are not stable is more likely to occur, it is more effective to apply the present invention.
  • the viscosity of the protective layer slurry is preferably 0.50 to 1.80 Pa ⁇ s, and preferably 0.60 to 1.50 Pa ⁇ s. More preferably.
  • the viscosity of the positive electrode active material mixture slurry is preferably 1.50 Pa ⁇ s or more, more preferably 1.50 to 3.50 Pa ⁇ s, and 1.80 to 3.00 Pa ⁇ s. More preferably.
  • the present invention it is possible to provide a highly reliable nonaqueous electrolyte secondary battery using a positive electrode plate in which the widths of the positive electrode active material layer and the protective layer are stable.
  • FIG. 1A is a diagram showing positive electrode plates of examples and comparative examples.
  • FIG. 1B is a cross-sectional view taken along line IA-IA in FIG. 1A.
  • FIG. 2A is a plan view of the exterior body showing the configuration of the prismatic nonaqueous electrolyte secondary battery according to the embodiment of the present invention.
  • 2B is a cross-sectional view taken along line IB-IB in FIG. 2A. It is a figure which shows the positional relationship of the positive electrode plate, separator, and negative electrode plate in the square nonaqueous electrolyte secondary battery which concerns on the Example of this invention.
  • the positive electrode plate was produced as follows. First, LiNi 0.35 Co 0.35 Mn 0.3 O 2 as a positive electrode active material, carbon powder as a conductive agent, polyvinylidene fluoride (PVdF) as a binder, and N-methylpyrrolidone (NMP) as a solvent. The mixture was kneaded so that the mass ratio of positive electrode active material: carbon powder: PVdF was 88: 9: 3 to prepare a positive electrode active material mixture slurry. Here, polyvinylidene fluoride (PVdF) having a weight average molecular weight Mw of 280,000 was used.
  • PVdF polyvinylidene fluoride
  • alumina powder, graphite as a conductive agent, polyvinylidene fluoride (PVdF) as a binder and N-methylpyrrolidone (NMP) as a solvent the mass ratio of alumina powder: graphite: PVdF was 83: 3: 14%.
  • NMP N-methylpyrrolidone
  • a protective layer slurry was prepared.
  • a polyvinylidene fluoride having a weight average molecular weight Mw of 1 million was used.
  • the positive electrode active material mixture slurry and the protective layer slurry produced by the above method were applied onto a positive electrode core made of aluminum foil using a die coater.
  • the positive electrode active material mixture slurry and the protective layer slurry were applied in the vicinity of the discharge port inside the die head.
  • 1B is a cross-sectional view taken along line IA-IA in FIG. 1A.
  • the positive electrode plate in which the positive electrode active material layer 2 and the protective layer 3 were formed on the positive electrode core was passed through a dryer, and the slurry solvent NMP was removed and dried. After drying, this dried positive electrode plate was rolled by a roll press to obtain a positive electrode plate of Example 1 in which the positive electrode active material layer 2 had a thickness of 69 ⁇ m and the protective layer 3 had a thickness of 14 ⁇ m.
  • Example 2 A positive electrode plate was produced in the same manner as in Example 1 except that the weight average molecular weight Mw of polyvinylidene fluoride contained in the protective layer was 630,000, and was used as the positive electrode plate of Example 2.
  • Example 3 A positive electrode plate was prepared in the same manner as in Example 1 except that the weight average molecular weight Mw of polyvinylidene fluoride contained in the protective layer was 500,000, and the positive electrode plate of Example 3 was obtained.
  • Example 4 A positive electrode plate was produced in the same manner as in Example 1 except that the weight average molecular weight Mw of polyvinylidene fluoride contained in the protective layer was 350,000, and the positive electrode plate of Example 4 was obtained.
  • Example 1 A positive electrode plate was prepared in the same manner as in Example 1 except that the weight average molecular weight Mw of polyvinylidene fluoride contained in the protective layer was 280,000, and a positive electrode plate of Comparative Example 1 was obtained.
  • Example 5 The positive electrode plate of Example 5 was prepared in the same manner as in Example 1 with the viscosity of the positive electrode active material mixture slurry being 2.10 Pa ⁇ s and the viscosity of the protective layer slurry being 0.45 Pa ⁇ s. It was.
  • Example 6 A positive electrode plate was produced in the same manner as in Example 5 except that the viscosity of the protective layer slurry was 0.65 Pa ⁇ s.
  • Example 7 A positive electrode plate was prepared in the same manner as in Example 5 except that the viscosity of the protective layer slurry was 0.77 Pa ⁇ s.
  • Example 8 A positive electrode plate was prepared in the same manner as in Example 5 except that the viscosity of the protective layer slurry was set to 0.95 Pa ⁇ s.
  • Example 9 A positive electrode plate was produced in the same manner as in Example 5 except that the viscosity of the protective layer slurry was 1.20 Pa ⁇ s.
  • Example 10 A positive electrode plate was prepared in the same manner as in Example 5 except that the viscosity of the protective layer slurry was 1.45 Pa ⁇ s.
  • Example 11 A positive electrode plate was prepared in the same manner as in Example 5 except that the viscosity of the protective layer slurry was 2.33 Pa ⁇ s.
  • Comparative Example 2 The positive electrode plate of Comparative Example 2 was prepared by setting the viscosity of the positive electrode active material mixture slurry to 2.10 Pa ⁇ s and the protective layer slurry to 0.75 Pa ⁇ s in the same manner as in Comparative Example 1. It was.
  • Example 5 to 11 and Comparative Example 2 the viscosity of the positive electrode active material mixture slurry and the viscosity of the protective layer slurry were adjusted by changing the ratio of NMP in the slurry. Further, the viscosity of the positive electrode active material mixture slurry and the viscosity of the protective layer slurry were measured using a spiral viscometer (PC-1TL, manufactured by Malcolm) under the conditions of a rotation speed of 40 rpm and a temperature of 25 ° C.
  • PC-1TL manufactured by Malcolm
  • Example 6 In Examples 6 to 10 in which the viscosity of the protective layer slurry is 0.65 to 1.45 Pa ⁇ s, no blur is observed at the boundary between the positive electrode active material layer and the protective layer, and there are no streaks on the protective layer. Did not occur.
  • Example 5 in which the viscosity of the protective layer slurry is 0.45 Pa ⁇ s, no streak was generated on the protective layer, but slight blurring occurred at the boundary between the positive electrode active material layer and the protective layer. The part where is seen was generated. When such blurring occurs, the portion that contributes to the charge / discharge reaction in the positive electrode active material layer is reduced, and the battery capacity may be reduced, which is not preferable.
  • Example 11 in which the viscosity of the protective layer slurry was 2.33 Pa ⁇ s, no blur was observed at the boundary between the positive electrode active material layer and the protective layer, but streaks occurred on the protective layer. Thus, if streaks occur in the protective layer, the positive electrode core and the negative electrode plate may be in direct contact at the streaks, which is not preferable.
  • the viscosity of the protective layer slurry is preferably about 0.60 to 1.50 Pa ⁇ s.
  • the rectangular nonaqueous electrolyte secondary battery 10 includes a flat wound electrode body in which a positive electrode plate 1 and a negative electrode plate 6 are wound through a separator 5 (both not shown). 11 is accommodated in a rectangular battery outer can 12 and the battery outer can 12 is sealed with a sealing plate 13.
  • the flat wound electrode body 11 includes a laminated positive electrode core exposed portion 14 in which a positive electrode core exposed portion 4 in which a positive electrode active material layer is not formed is stacked at one end in the winding axis direction, and the other.
  • the negative electrode core exposed portion 15 in which the negative electrode core exposed portion 8 in which the negative electrode active material layer is not formed is stacked is provided.
  • the laminated positive electrode core exposed portion 14 is connected to the positive electrode terminal 17 by the positive electrode current collector 16, and the laminated negative electrode core exposed portion 15 is connected to the negative electrode terminal 19 by the negative electrode current collector 18.
  • the positive electrode terminal 17 and the negative electrode terminal 19 are caulked and joined to the sealing plate 13 via insulating members 20 and 21 each made of an insulating plate, a gasket, or the like.
  • the flat wound electrode body 11 is inserted into the battery outer can 12, and then the sealing plate 13 is laser welded to the opening of the battery outer can 12, and then the electrolytic solution It is produced by injecting a non-aqueous electrolyte from an injection hole (not shown) and sealing the electrolyte injection hole.
  • a positive electrode plate was produced in the same manner as in Example 1 except that the positive electrode active material layer 2 and the protective layer 3 were formed on both surfaces of the positive electrode core.
  • the dimensions shown in FIG. 1 are set such that the width (W1) of the positive electrode active material layer 2 is 179 mm, the width (W2) of the protective layer 3 is 7 mm, and the width (W3) of the positive electrode core exposed portion 4 is 28.5 mm.
  • a positive electrode plate was prepared. Thereafter, the positive electrode plate is cut in the width direction of the positive electrode plate by cutting the positive electrode plate along the longitudinal direction on the center in the width direction of the positive electrode plate (on the positive electrode active material layer 2) and on the positive electrode core exposed portion 4.
  • the negative electrode plate 6 was produced as follows. First, 98% by mass of graphite powder and 1% by mass of carboxymethylcellulose and styrene-butadiene rubber were mixed, and water was added to knead to prepare a negative electrode active material mixture slurry. This negative electrode active material mixture slurry was uniformly applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m so that negative electrode core exposed portions 8 along the longitudinal direction could be formed at both ends in the width direction. Thereafter, the negative electrode plate 6 on which the negative electrode active material layer 7 was formed was passed through a dryer to remove water necessary for slurry preparation and dried.
  • this electrode plate was rolled by a roll press to obtain a negative electrode plate having a thickness of 68 ⁇ m.
  • the positive electrode core exposed portion 4 of the positive electrode plate 1 produced as described above and the negative electrode core exposed portion 8 of the negative electrode plate 6 are positioned on opposite sides in the width direction, respectively, with a thickness of 0. 0.
  • the laminate was wound through a 03 mm polyethylene porous separator to form a laminated positive electrode core exposed portion 14 in which positive electrode cores were laminated on both sides, and a laminated negative electrode core exposed portion 15 in which negative electrode cores were laminated.
  • a wound electrode body 11 was obtained.
  • the cut end of the negative electrode plate 6 faces the protective layer 3 of the positive electrode plate 1 with the separator 5 interposed therebetween.
  • Insulating members 20 and 21 are disposed on the inner surface of a through hole (not shown) provided in the sealing body 13 and the outer surface of the battery around the through hole. Then, on the insulating member located on the battery inner surface of the sealing plate 13, the through hole of the sealing body 13 and the through hole (not shown) provided in the positive electrode current collecting plate 16 overlap the positive electrode current collecting plate 16. To be positioned. Thereafter, the insertion portion of the positive external terminal 17 having a collar portion (not shown) and an insertion portion (not shown) is inserted into the through hole of the sealing body 13 and the through hole of the positive electrode current collector plate 16 from the outside of the battery. Insert. In this state, the diameter of the lower portion (battery inner side) of the insertion portion is expanded, and the positive electrode external terminal 17 is caulked and fixed to the sealing body 13 together with the positive electrode current collector plate 16.
  • the negative electrode external terminal 19 is caulked and fixed together with the negative electrode current collecting plate 18 to the sealing body 13.
  • the members are integrated, and the positive and negative electrode current collector plates 16 and 18 and the positive and negative electrode external terminals 17 and 18 are connected so as to be energized. Further, the positive and negative electrode external terminals 17 and 18 protrude from the sealing body 13 while being insulated from the sealing body 13.
  • the convex portions of the positive electrode current collector plate 16 and the positive electrode current collector plate receiving component are opposed to both surfaces of the laminated positive electrode core exposed portion 14 of the wound electrode body 11 via the laminated positive electrode core exposed portion 14. Arrange as follows. Thereafter, a pair of welding electrodes is pressed against the back side of the convex portion of the positive current collector plate 16 and the back side of the convex portion of the positive current collector plate receiving component, and a current is passed through the pair of welding electrodes to thereby collect the positive current collector. The plate 16 and the positive electrode current collector receiving part are resistance-welded to the exposed portion of the positive electrode core. By this operation, the positive electrode current collector plate 16 and the positive electrode current collector plate receiving component are fixed to the laminated positive electrode core exposed portion 14.
  • the negative electrode current collector 18 and the negative electrode current collector receiving component 25 are resistance-welded to the laminated negative electrode core exposed portion 15.
  • the wound electrode body 11 is wrapped with a polypropylene sheet and inserted into the battery outer can 12, and then the sealing plate 13 is laser welded to the opening of the battery outer can 12.
  • LiPF 6 is dissolved in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 3: 7 so as to be 1 mol / L to obtain a non-aqueous electrolyte.
  • the electrolyte injection hole After injecting a predetermined amount of the non-aqueous electrolyte adjusted by the above method from an electrolyte injection hole (not shown) provided in the sealing plate 13, the electrolyte injection hole is hermetically sealed with a sealing material. A hydroelectric secondary battery 10 was produced.
  • a positive electrode plate having a stable width of each of the positive electrode active material layer and the protective layer can be obtained, and a highly reliable nonaqueous electrolyte secondary battery can be obtained by using this positive electrode plate.
  • the positive electrode active material mixture slurry and the protective layer slurry were merged inside the die head of the die coater, and the positive electrode active material mixture slurry and the protective layer slurry were simultaneously applied onto the positive electrode core.
  • a method may be used in which the coating is performed by merging outside the die head (at the tip of the die head) without merging inside the die head.
  • coating a positive electrode active material mixture slurry and a protective layer slurry on a positive electrode core body using a respectively different die head is also considered.
  • the positive electrode active material mixture slurry and the protective layer slurry do not necessarily have to be combined and applied inside the die head.
  • the die heads of the positive electrode active material mixture slurry and the protective layer slurry may be arranged in a line and applied onto the positive electrode core at the same time. Further, a method may be used in which the respective die heads are arranged to be shifted back and forth, and the other slurry is applied onto the positive electrode core body before the one slurry is dried.
  • a carbon material capable of occluding and releasing lithium ions can be used as the negative electrode active material.
  • the carbon material capable of occluding and releasing lithium ions include graphite, non-graphitizable carbon, graphitizable carbon, fibrous carbon, coke, and carbon black. Of these, graphite is particularly preferable.
  • the non-carbon material include silicon, tin, and alloys and oxides mainly containing them.
  • Nonaqueous solvents (organic solvents) of nonaqueous electrolytes that can be used in the present invention include carbonates, lactones, ethers, ketones, esters, etc. that have been conventionally used in nonaqueous electrolyte secondary batteries.
  • a mixture of two or more of these solvents can be used.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate
  • chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate
  • unsaturated cyclic carbonates such as vinylene carbonate (VC) can also be added to the nonaqueous electrolyte.
  • LiPF 6 LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , LiB (C 2 O 4 ) 2 , LiB ( C 2 O 4 ) F 2 , LiP (C 2 O 4 ) 3 , LiP (C 2 O 4 ) 2 F 2 , LiP (C 2 O 4 ) F 4 and the like and mixtures thereof are used.
  • LiPF 6 is particularly preferable.
  • a porous separator made of polyolefin such as polypropylene (PP) or polyethylene (PP) is preferably used as the separator.
  • PP polypropylene
  • PP polyethylene
  • a polymer electrolyte may be used as a separator.
  • Positive electrode plate 2 Positive electrode active material layer 3: Protective layer 4: Positive electrode core exposed portion 5: Separator 6: Negative electrode plate 7: Negative electrode active material layer 8: Negative electrode core exposed portion 10: Square non-aqueous electrolyte 2 Secondary battery 11: Winding type electrode body 12: Battery outer can 13: Sealing plate 14: Laminated positive electrode core exposed part 15: Laminated negative electrode core exposed part 16: Positive electrode current collector 17: Positive electrode terminal 18: Negative electrode current collector 19: Negative electrode terminal 20, 21: Insulating member 25: Negative electrode current collector receiving component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】 正極芯体が露出した部分を有し、前記正極芯体が露出した部分のうち正極活物質層と隣接する領域に保護層が形成されている正極極板において、正極活物質層及び保護層のそれぞれの幅が安定した正極極板を用いた信頼性の高い非水電解質二次電池を提供する。 【解決手段】 正極芯体上に正極活物質層2が形成されているとともに正極活物質層2が形成されていない正極芯体露出部4を有する正極極板1であって、前記正極芯体露出部4のうち正極活物質層2と隣接する領域に保護層3が形成されており、前記正極活物質層2及び前記保護層3はポリフッ化ビニリデンを含有し、前記保護層3に含有されるポリフッ化ビニリデンの重量平均分子量Mwが、前記正極活物質層2に含有されるポリフッ化ビニリデンの重量平均分子量Mwよりも大きいことを特徴とする。

Description

非水電解質二次電池用正極極板及びその製造方法、並びに非水電解質二次電池及びその製造方法
 本発明は、正極芯体上に正極活物質層が形成されているとともに正極活物質層が形成されていない正極芯体が露出した部分を有する非水電解質二次電池用正極極板及びその製造方法、並びに非水電解質二次電池及びその製造方法に関する。
 携帯型の電子機器や、電気自動車(EV)、ハイブリッド電気自動車(HEV)などの急速な普及に伴い、それらに使用される非水電解質二次電池への要求仕様は、年々厳しくなり、特に小型軽量化、高容量、高出力でサイクル特性が優れ、性能の安定したものが要求されている。
 この非水電解質二次電池として、例えば巻回型電極体を備えるリチウムイオン電池においては、長尺状のアルミニウム箔等からなる正極芯体の両面に正極活物質層を形成した正極極板と、長尺状の銅箔等からなる負極芯体の両面に負極活物質層を形成した負極極板の間に、微多孔性のポリオレフィンからなる長尺状のセパレータを配置した状態で巻回し、円柱状又は偏平状の電極体とした後、正極極板及び負極極板にそれぞれ正極タブ及び負極タブを接続して所定形状の外装体に収納した構成を有している。
 また、積層型電極体を備えるリチウムイオン電池においては、アルミニウム箔等からなる正極芯体の両面に正極活物質層を形成した正極極板と、銅箔等からなる負極芯体の両面に負極活物質層を形成した負極極板の間に、微多孔性のポリオレフィンからなるセパレータを配置し、正極極板と負極極板とをセパレータを介して多数積層して積層型電極体を形成し、それぞれの正極極板及び負極極板に接続された正極タブ同士及び負極タブ同士をそれぞれ並列に接続して所定形状の外装体に収納した構成を有している。
 ところで、リチウムイオン電池に代表される非水電解質二次電池においては、充電時に正極活物質から放出されたリチウムイオンを負極活物質に円滑に吸蔵させるために、通常、負極活物質層はセパレータを介して正極活物質層の端部よりも突出した状態に配置される。したがって、正極極板に正極芯体が露出する部分が形成された場合、正極芯体が露出する部分はセパレータを介して負極極板の端部と対向した構造となる。
 このような正極芯体が露出している部分がセパレータを介して負極極板の端部と対向した構造を有する場合、負極極板の端部のバリや極板から剥離した粉末などがセパレータを貫通して短絡した際に大きな電流が流れ、発熱を引き起こす可能性がある。
 このような課題を解決するため、正極活物質層が形成されていない正極芯体の露出した部分において正極活物質層と隣接する領域に保護層を形成する技術が提案されている。
 例えば、下記特許文献1には、巻回型電極体の正負両極の金属が露出した突出部の根本部分の両面に絶縁性樹脂からなる絶縁層を形成することによりセパレータの軸長方向の巻ズレに起因して正負両極の非突出端部が露出しても、絶縁層の存在により正負両極の突出部の根本部分との間の短絡を防止するとともに、電極板の打ち抜き等に起因するバリによる短絡を防止するようにした非水系二次電池が開示されている。
 また、下記特許文献2には、金属箔からなる集電体の少なくとも片面に活物質合剤層が配置されているとともに一部に金属が露出した部分を有する正極を備え、前記正極が前記金属が露出した部分とともにセパレータを介して負極と対向しており、前記金属が露出した部分のうち、前記セパレータを介して負極と対向している部分に前記金属よりも電子導電性が低く、かつ非絶縁性の材料からなる保護層を形成し、電極の一部がセパレータを突き破って他方の電極と接触することがあっても、電池を穏やかに放電させることで電池の異常な発熱を回避するとともに、電池電圧低下によって電池の異常を機器側が検出できるようになる非水系二次電池が開示されている。
特開2001-93583号公報 特開2007-95656号公報
 正極芯体が露出した部分を有し、正極活物質層が形成されていない正極芯体における正極活物質層と隣接する領域に保護層が形成されている正極極板を作製する方法として、長尺状の正極芯体上に正極活物質合剤スラリーと保護層スラリーを、長尺状の正極芯体の長手方向に沿って同時に塗布することが効率的である。
 ここで、非水電解質二次電池の正極極板の正極活物質層のバインダーとしては、一般的にポリフッ化ビニリデンが使用されている。また、正極極板に形成される保護層のバインダーとしては、電池特性の低下をさせないために正極活物質層のバインダーと同じポリフッ化ビニリデンを用いること好ましい。
 正極活物質層及び保護層のバインダーとしてともにポリフッ化ビニリデンを用い、長尺状の正極芯体上に正極活物質合剤スラリーと保護層スラリーを、長尺状の正極芯体の長手方向に沿って塗布した場合、得られる正極極板における正極活物質層及び保護層の幅が安定しないという課題が生じた。
 このように正極活物質層及び保護層の幅が安定しないと、保護層の幅が狭くなった部分において、負極極板と正極極板が短絡し易くなる虞がある。
 本発明者は、種々実験を重ねた結果、正極活物質層及び保護層にそれぞれバインダーとして含有されるポリフッ化ビニリデンの分子量の関係を制御することにより上記課題を解決し得ることを見出した。
 本発明は、正極芯体が露出した部分を有し、前記正極芯体が露出した部分のうち正極活物質層と隣接する領域に保護層が形成されている正極極板において、正極活物質層及び保護層のそれぞれの幅が安定した正極極板を用いた信頼性の高い非水電解質二次電池を提供することを目的とする。
 上記目的を達成するため、本発明の非水電解質二次電池用正極極板は、正極芯体上に正極活物質層が形成されているとともに正極活物質層が形成されていない正極芯体が露出した部分を有する非水電解質二次電池用正極極板であって、前記正極芯体において正極活物質層が形成されていない部分のうち正極活物質層と隣接する領域に保護層が形成されており、前記正極活物質層及び前記保護層はポリフッ化ビニリデンを含有し、前記保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwが、前記正極活物質層に含有されるポリフッ化ビニリデンの重量平均分子量Mwよりも大きいことを特徴とする。
 発明者らは種々検討を行った結果、正極活物質合剤スラリーと保護層スラリーに含有されるポリフッ化ビニリデンの重量平均分子量Mwが同じ場合、芯体上に各スラリーを塗布する際に、正極活物質合剤スラリーが幅方向に広がり、保護層の幅が狭くなる部分が生じることより、正極活物質層及び保護層の幅が不安定になることを見出した。
 そこで、保護層スラリーに含有されるポリフッ化ビニリデンの重量平均分子量Mwを、正極活物質合剤スラリーに含有されるポリフッ化ビニリデンの重量平均分子量Mwよりも大きくすることにより、正極活物質合剤スラリー及び保護層スラリーを安定して塗布することができ、正極活物質層及び保護層の幅を安定化することが可能となった。
 本発明において、前記正極活物質層に含有されるポリフッ化ビニリデンの重量平均分子量Mwが10万~35万であることが好ましいく、20万~30万であることがより好ましい。
 正極活物質層に含有されるポリフッ化ビニリデンの重量平均分子量Mwが、10万よりも小さいと、正極活物質合剤スラリーの粘度が低下する。したがって、最適な性状のスラリーを得るためには正極活物質合剤スラリー中のポリフッ化ビニリデンの割合を増やす必要があるため、正極活物質の割合を減らすこととなり、電池容量が低下する。また、正極活物質層に含有されるポリフッ化ビニリデンの重量平均分子量Mwが、35万よりも大きくなると正極活物質合剤スラリーの沈降及びゲル化が生じ易くなるため好ましくない。
 本発明において、前記保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwが35万~130万であることが好ましく、40~110万であることがより好ましい。 
 保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwを、35万以上とすることにより、正極活物質合剤スラリーが塗工時に幅方向に広がることをより効果的に防止できる。また、保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwが、130万よりも大きいと溶剤であるN-メチルピロリドン(NMP)に対するポリフッ化ビニリデンの溶解度が低くなるため、最適な性状のスラリーを得ることが困難になりうるため好ましくない。
 本発明において、ポリフッ化ビニリデンの重量平均分子量Mwは、ゲル浸透クロマトグラフ法(GPC法)により決定される。GPC法は、細孔を多数有するゲルが充填されたカラムに、ポリフッ化ビニリデンを溶解させた溶液を導入すると重量平均分子量Mwの大きいものほど早く溶出されるということを利用して重量平均分子量Mw分布を求める方 法である。
 本発明において、前記保護層は、絶縁性、又は前記正極芯体よりも電子導電性が低く且つ非絶縁性であることが好ましい。
 本発明において、前記保護層は、無機酸化物を含有することが好ましい。
 保護層に無機酸化物が含有されると、保護層の耐熱性や強度を向上させることができる。したがって、負極極板のバリ等がセパレータを突き破った場合であっても、確実に負極極板と正極芯体が直接接することを効果的に防止できる。ここで、保護層に無機酸化物を含有させる方法としては、保護層に粒子状の無機酸化物を含有させることが好ましい。
 無機酸化物としては、アルミナ、チタニア、及びジルコニアからなる群から選択される少なくとも一種を用いることが好ましい。
 本発明においては、前記保護層は、導電剤を含有することが好ましい。
 保護層が絶縁性である場合、負極極板の一部等がセパレータを突き破った状態でも短絡していなければ充放電が可能である。その状態で長期にわたり電池を使用し続けると、損傷した部分が起点になってセパレータが破膜して大きな短絡を引き起こし、電池が異常な発熱を生じる虞がある。そこで、保護層に導電剤が含有されると、金属製の正極芯体よりも電子導電性が低く、かつ非絶縁性の材料からなる保護層となる。これにより、負極極板の一部等がセパレータを突き破って保護層と接触した場合、電池を穏やかに放電させることで電池の異常な発熱を回避するとともに、電池電圧低下によって電池の異常を機器側が検出できるようになる。
 導電剤としては、炭素材料を用いることができる。炭素材料として黒鉛又はカーボンブラック等を用いることが好ましい。
 本発明においては、前記保護層は、無機酸化物及び導電剤を含有することが好ましい。
 保護層が、無機酸化物及び導電剤の両方を含有することにより、より安全性の高い非水電解質二次電池が得られる。
 本発明において、正極活物質層中に含有されるポリフッ化ビニリデンの量は、正極活物質層の全量に対して、1~10質量%とすることが好ましく、2~5質量%とすることがより好ましい。また、保護層中に含有されるポリフッ化ビニリデンの量は、保護層の全量に対して、10~20質量%とすることが好ましく、12~15質量%とすることがより好ましい。
 本発明において、前記非水電解質二次電池用正極極板と、負極極板とがセパレータを介して積層又は巻回された電極体を有する非水電解質二次電池とすることが好ましい。
 これにより、正極活物質層及び保護層のそれぞれの幅が安定した正極極板を用いた、信頼性の高い非水電解質二次電池となる。
 本発明の非水電解質二次電池用正極極板の製造方法は、正極芯体上に正極活物質層が形成されているとともに正極活物質層が形成されていない正極芯体が露出した部分を有し、前記正極芯体において正極活物質層が形成されていない部分のうち、正極活物質層と隣接する領域に保護層が形成されている非水電解質二次電池用正極極板の製造方法であって、正極活物質及びポリフッ化ビニリデンを含有する正極活物質合剤スラリーと、前記正極活物質合剤スラリーに含有されるポリフッ化ビニリデンの重量平均分子量Mwよりも大きな重量平均分子量Mwのポリフッ化ビニリデンを含有する保護層スラリーを、同時に、あるいは、前記正極活物質合剤スラリー及び前記保護層スラリーのうち一方のスラリーを前記正極芯体上に塗布した後、前記一方のスラリーが乾燥する前に正極芯体上に他方のスラリーを塗布することを特徴とする。
 共にポリフッ化ビニリデンを含有する正極活物質合剤スラリー及び保護層スラリーを同時に正極芯体上に塗布する場合、あるいは、正極活物質合剤スラリー及び保護層スラリーのうち一方のスラリーを正極芯体上に塗布した後、前記一方のスラリーが乾燥する前に正極芯体上に他方のスラリーを塗布する場合、正極極板における正極活物質層及び保護層の幅が安定しないという課題が生じる。
 そこで、保護層スラリーに含有されるポリフッ化ビニリデンの重量平均分子量Mwを、正極活物質合剤スラリーに含有されるポリフッ化ビニリデンの重量平均分子量Mwよりも大きくすることにより、正極活物質合剤スラリー及び保護層の幅を安定化することが可能となる。
 本発明の非水電解質二次電池用正極極板の製造方法では、正極活物質合剤スラリーと、保護層スラリーを、ダイコータのダイヘッド内部で合流させ、前記正極活物質合剤スラリーと前記保護層スラリーを正極芯体上に同時に塗布することが好ましい。
 長尺状の正極芯体上に正極活物質合剤スラリー及び保護層スラリーを塗工する場合、生産性の観点から、ダイコータを用いて正極活物質合剤スラリー及び保護層スラリーをダイヘッド内部で合流させ正極芯体上に同時に塗布することが好ましい。また、正極活物質合剤スラリーと、保護層スラリーを、ダイコータのダイヘッド内部で合流させ、正極活物質合剤スラリーと保護層スラリーを正極芯体上に同時に塗布する場合、正極極板における正極活物質層及び保護層の幅が安定しないという課題がより生じ易いため、本願発明を適用することがより効果的である。
 本発明の非水電解質二次電池用正極極板の製造方法においては、保護層スラリーの粘度を0.50~1.80Pa・sとすることが好ましく、0.60~1.50Pa・sとすることがより好ましい。
 これにより、塗布後の正極活物質合剤スラリーと保護層スラリーとの境界部ににじみが生じたり、乾燥後の保護層においてスジが発生することをより確実に防止できる。また、正極活物質合剤スラリーの粘度は、1.50Pa・s以上とすることが好ましく、1.50~3.50Pa・sとすることがより好ましく、1.80~3.00Pa・sとすることがさらに好ましい。
 本発明によれば、正極活物質層及び保護層のそれぞれの幅が安定した正極極板を用いた、信頼性の高い非水電解質二次電池を提供することができる。
図1Aは、実施例及び比較例の正極極板を示す図である。図1Bは、図1AのIA-IA線に沿った断面図である。 図2Aは、本発明の実施例に係る角形の非水電解質二次電池の構成を示す外装体を透視した平面図である。図2Bは図2AのIB-IB線に沿った断面図である。 本発明の実施例に係る角形の非水電解質二次電池における正極極板、セパレータ、及び負極極板の位置関係を示す図である。
 以下、本発明を実施するための形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。
[正極極板の作製]
 [実施例1]
 正極極板は次のようにして作製した。まず、正極活物質としてのLiNi0.35Co0.35Mn0.3、導電剤としての炭素粉末、バインダーとしてのポリフッ化ビニリデン(PVdF)と溶剤としてのN-メチルピロリドン(NMP)を、正極活物質:炭素粉末:PVdFの質量比が88:9:3 となるように混練し、正極活物質合剤スラリーを作製した。ここで、ポリフッ化ビニリデン(PVdF)の重量平均分子量Mwは28万のものを用いた。
 次に、アルミナ粉末、導電剤としての黒鉛、バインダーとしてのポリフッ化ビニリデン(PVdF)と溶剤としてのN-メチルピロリドン(NMP)を、アルミナ粉末:黒鉛:PVdFの質量比が83:3:14 となるように混練し、保護層スラリーを作製した。ここで、ポリフッ化ビニリデンの重量平均分子量Mwは100万のものを用いた。
 上記の方法で作製した正極活物質合剤スラリー及び保護層スラリーをダイコータを用いてアルミニウム箔からなる正極芯体上に塗布した。正極活物質合剤スラリー及び保護層スラリーを同時に正極芯体上に塗布するため、ダイヘッド内部の吐出口近傍において正極活物質合剤スラリー及び保護層スラリーを合流させ塗布を行った。図1Aに示すように、正極芯体として幅250mm、厚さ15μmのアルミニウム箔を用い、正極芯体の幅方向の中央領域に正極活物質層2(幅W1=179mm)が形成され、その両端側に保護層3(W2=7mm)が形成され、正極芯体の幅方向の両端部に長手方向に沿った正極芯体露出部4(W3=28.5mm)が形成されるように200mの連続塗工を行った(L1=200m)。図1Bは図1AにおけるIA-IA線に沿った断面図である。
 その後、正極芯体上に正極活物質層2及び保護層3を形成した正極極板を乾燥機中に通過させて、スラリー溶剤であるNMPを除去して乾燥させた。乾燥後、この乾燥正極板をロールプレス機により圧延して、正極活物質層2の厚さが69μm、保護層3の厚さが14μmである実施例1の正極極板とした。
 [実施例2]
 保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwを63万としたことを除いては実施例1と同様の方法で正極極板を作製し、実施例2の正極極板とした。
 [実施例3]
 保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwを50万としたことを除いては実施例1と同様の方法で正極極板を作製し、実施例3の正極極板とした。
 [実施例4]
 保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwを35万としたことを除いては実施例1と同様の方法で正極極板を作製し、実施例4の正極極板とした。
 [比較例1]
 保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwを28万としたことを除いては実施例1と同様の方法で正極極板を作製し、比較例1の正極極板とした。
[評価]
 実施例1及び比較例1の正極極板に関して、それぞれ連続塗工を行った長さ方向の全領域(L1=200m)における正極活物質層の幅(W1)及び保護層の幅(W2)の最大値及び最小値を測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
      
    
 保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwが、正極活物質層に含有されるポリフッ化ビニリデンの重量平均分子量Mwと同じ比較例1では、正極活物質層の幅が最大で186mmの部分が存在し、この部分では、保護層の幅は0mmとなった。これに対して、保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwが、正極活物質層に含有されるポリフッ化ビニリデンの重量平均分子量Mwよりも大きい実施例1~4では、いずれの部分も正極活物質層の幅が179mm、保護層の幅が7mmの安定した正極極板が得られた。
 次に保護層スラリーの粘度に関して検討を行った。
[実施例5]
 正極活物質合剤スラリーの粘度を2.10Pa・sとし、保護層スラリーの粘度を0.45Pa・sとして、実施例1と同様の方法で正極極板を作製し実施例5の正極極板とした。
[実施例6]
 保護層スラリーの粘度を0.65Pa・sとすること以外は実施例5と同様の方法で正極極板を作製し実施例6の正極極板とした。
[実施例7]
 保護層スラリーの粘度を0.77Pa・sとすること以外は実施例5と同様の方法で正極極板を作製し実施例7の正極極板とした。
[実施例8]
 保護層スラリーの粘度を0.95Pa・sとすること以外は実施例5と同様の方法で正極極板を作製し実施例8の正極極板とした。
[実施例9]
 保護層スラリーの粘度を1.20Pa・sとすること以外は実施例5と同様の方法で正極極板を作製し実施例9の正極極板とした。
[実施例10]
 保護層スラリーの粘度を1.45Pa・sとすること以外は実施例5と同様の方法で正極極板を作製し実施例10の正極極板とした。
[実施例11]
 保護層スラリーの粘度を2.33Pa・sとすること以外は実施例5と同様の方法で正極極板を作製し実施例11の正極極板とした。
[比較例2]
 正極活物質合剤スラリーの粘度を2.10Pa・sとし、保護層スラリーの粘度を0.75Pa・sとして、比較例1と同様の方法で正極極板を作製し比較例2の正極極板とした。
 なお、実施例5~11、比較例2において、正極活物質合剤スラリーの粘度、及び保護層スラリーの粘度は、スラリー中のNMPの割合を変化させることにより調整した。また、正極活物質合剤スラリーの粘度、及び保護層スラリーの粘度は、スパイラル粘度計(マルコム社製 PC-1TL)を用い、回転数40rpm、温度25℃の条件で測定した。
[評価]
 実施例5~11、及び比較例2の正極極板に関して、それぞれ連続塗工を行った長さ方向の全領域(L1=200m)における正極活物質層の幅(W1)及び保護層の幅(W2)の最大値及び最小値を測定した。また、正極活物質層と保護層との境界部のにじみの有無、及び保護層上のスジの有無について検査を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
      

 
 保護層スラリーの粘度が0.65~1.45Pa・sである実施例6~10では、正極活物質層と保護層との境界部ににじみは見られず、また、保護層上にスジも発生しなかった。これに対して、保護層スラリーの粘度が0.45Pa・sである実施例5では、保護層上にスジは発生しなかったものの、正極活物質層と保護層との境界部に僅かににじみが見られる部分が生じた。このようなにじみが生じた場合、正極活物質層において充放電反応に寄与する部分が減少し、電池容量が低下する虞があるため好ましくない。保護層スラリーの粘度が2.33Pa・sである実施例11では、正極活物質層と保護層との境界部ににじみは見られなかったものの、保護層上にスジが発生した。このように、保護層状にスジが発生するとスジ部分で正極芯体と負極極板とが直接接触する虞があるため好ましくない。
 以上のことから、保護層スラリーの粘度を0.65~1.45Pa・sとすることにより、正極活物質層と保護層との境界部のにじみ、保護層上のスジの発生を抑制することができことが分かる。このことから、保護層スラリーの粘度は、0.60~1.50Pa・s程度とすることが好ましいと考えられる。
 次に本発明の非水電解質二次電池について、角形非水電解質二次電池10を用いて説明する。角形非水電解質二次電池10は、図2に示すように、正極極板1及び負極極板6がセパレータ5(いずれも図示省略)を介して巻回された偏平状の巻回型電極体11を、角形の電池外装缶12の内部に収容し、封口板13によって電池外装缶12を密閉したものである。この偏平状の巻回型電極体11は、巻回軸方向の一方の端部に正極活物質層が形成されていない正極芯体露出部4が積層された積層正極芯体露出部14、他方の端部に負極活物質層が形成されていない負極芯体露出部8が積層された積層負極芯体露出部15を備えている。積層正極芯体露出部14は正極集電体16によって正極端子17に接続され、積層負極芯体露出部15は負極集電体18によって負極端子19に接続されている。正極端子17及び負極端子19はそれぞれ絶縁板、ガスケット等からなる絶縁部材20、21を介して封口板13にカシメ接合されている。
 この角形非水電解質二次電池10は、偏平状の巻回型電極体11を電池外装缶12内に挿入した後、封口板13を電池外装缶12の開口部にレーザ溶接し、その後電解液注液孔(図示省略)から非水電解液を注液して、この電解液注液孔を密閉することにより作製される。
 次に、非水電解質二次電池10の製造方法を説明する。
[正極極板の作製]
 正極活物質層2及び保護層3を正極芯体の両面に形成することを除いては、上記実施例1と同様の方法で正極極板を作製した。ここで、図1に示す各寸法を正極活物質層2の幅(W1)=179mm、保護層3の幅(W2)=7mm、正極芯体露出部4の幅(W3)=28.5mmとして正極極板を作製した。その後、正極極板の幅方向の中央(正極活物質層2上)及び正極芯体露出部4上で長手方向に沿って正極極板を切断することにより、正極極板の幅方向において正極活物質層2の一方の端部側にのみ保護層3及び正極芯体露出部4が存在する正極極板1(正極活物質層2の幅(W4)=90mm、保護層3の幅(W5)=7mm、正極芯体露出部4の幅(W6)=8mm)を作製した。また、正極極板を幅方向に沿って切断し、正極極板1の長さを3870mmとした。
[負極極板の作製]
 負極極板6は次のようにして作製した。まず、黒鉛粉末98質量%と、カルボキシメチルセルロース、スチレンブタジエンゴムをそれぞれ1質量%とを混合し、水を加えて混練して負極活物質合剤スラリーを作製した。この負極活物質合剤スラリーを厚さ10μmの銅箔からなる負極集電体の両面に、幅方向の両端部に長手方向に沿った負極芯体露出部8 ができるように均一に塗布した。その後、負極活物質層7を形成した負極極板6を乾燥機中に通過させて、スラリー作製時に必要であった水を除去して乾燥させた。乾燥後、この極板をロールプレス機により圧延して、厚みが68μmの負極板とした。次いで、得られた電極を幅107mm(負極活物質層7の幅(W7)=97mm、負極芯体露出部8の幅(W8)=10mm)、長さ4020mmに切り出し、負極極板6を得た。
[巻回型電極体の作製]
 上記のようにして作製された正極極板1の正極芯体露出部4と負極極板6の負極芯体露出部8とがそれぞれ幅方向において反対側に位置するようにして、厚さ0.03mmのポリエチレン製の多孔質セパレータを介して巻回し、両側にそれぞれ正極芯体が積層された積層正極芯体露出部14と、負極芯体が積層された積層負極芯体露出部15が形成された巻回型電極体11とした。ここで、図3に示すように負極極板6の切断された端部は、正極極板1の保護層3とセパレータ5を介して対向する。
[集電板と封口体との接続]
 一方面側に突出した凸部(図示せず)が2つ、離間して設けられたアルミニウム製の正極集電板16及び銅製の負極集電板18をそれぞれ1つと、一方面側に突出した凸部が1つ設けられたアルミニウム製の正極集電板受け部品(図示せず)及び銅製の負極集電板受け部品25をそれぞれ2つ準備する。
 封口体13に設けられた貫通孔(図示せず)の内面、及び貫通孔の周囲の電池外側表面に絶縁部材20、21を配置する。そして、封口板13の電池内側表面に位置する絶縁部材上に、上記正極集電板16を封口体13の貫通孔と正極集電板16に設けられた貫通孔(図示せず)とが重なるように位置させる。その後、鍔部(図示せず)と、挿入部(図示せず)と、を有する正極外部端子17の挿入部を、電池外側から封口体13の貫通孔および正極集電板16の貫通孔に挿通させる。この状態で挿入部の下部(電池内側部)の径を広げて、正極集電板16と共に正極外部端子17を封口体13にカシメ固定する。
 負極側についても同様にして、負極集電板18と共に負極外部端子19を封口体13にカシメ固定する。これらの作業により各部材が一体化されると共に、正負電極集電板16、18と正負電極外部端子17、18とが、それぞれ通電可能に接続される。また、正負電極外部端子17、18が封口体13と絶縁された状態で封口体13から突出した構造となる。
[集電板の取り付け]
 巻回型電極体11における積層正極芯体露出部14の両面に、上記正極集電板16及び上記正極集電板受け部品をそれぞれの凸部が積層正極芯体露出部14を介して対向するように配置する。この後、正極集電板16の凸部の裏側、及び正極集電板受け部品の凸部の裏側に一対の溶接用電極を押し当て、一対の溶接用電極に電流を流して、正極集電板16および正極集電板受け部品を正極芯体露出部に抵抗溶接する。この作業により、正極集電板16及び正極集電板受け部品が積層正極芯体露出部14に固定される。
 負極側についても同様にして、上記積層負極芯体露出部15に負極集電体18及び負極集電体受け部品25を抵抗溶接する。
 その後、巻回型電極体11をポリプロピレン製シートで包み、電池外装缶12内に挿入した後、封口板13を電池外装缶12の開口部にレーザ溶接する。
[電解液の作製]
 エチレンカーボネートとジエチルカーボネ一卜を体積比3:7で混合した溶媒に対し、LiPF を1モル/Lとなるように溶解して非水電解液とする。
 封口板13に設けられた電解液注入孔(図示省略)から上記の方法で調整した非水電解液を所定量注入した後、電解液注入孔を封止材で密閉封止することにより角形非水電質二次電池10を作製した。
 以上のとおり、本発明によると正極活物質層及び保護層のそれぞれの幅が安定した正極極板が得られ、この正極極板を用いることにより信頼性の高い非水電解質二次電池が得られる。
 なお、上記実施例においては、正極極板及び負極極板の間にセパレータを介在させて巻回した偏平状の巻回型電極体を用いた場合について説明したが、本発明では、積層型電極体や、巻回型電極体の場合にあっては円筒状の巻回型電極体、楕円状の巻回型電極体の場合においても同様の作用・効果を生じる。
また、上記実施例においては、正極活物質層2の幅方向の両端側に保護層3を形成するように正極芯体上にスラリーを塗布する例を示したが、正極活物質層2の幅方向の一方端側にのみ保護層3を形成するように正極芯体上にスラリーを塗布した場合においても同様の作用・効果を生じる。
 上記実施例においては、正極活物質合剤スラリーと、保護層スラリーを、ダイコータのダイヘッド内部で合流させ、正極活物質合剤スラリーと保護層スラリーを正極芯体上に同時に塗布する例を示したが、ダイヘッド内部で合流させず、ダイヘッド外部(ダイヘッド先端)で合流させて塗布する方法であっても良い。また、正極活物質合剤スラリーと保護層スラリーをそれぞれ異なるダイヘッドを用いて正極芯体上に塗布する方法も考えられる。この場合、正極活物質合剤スラリーと保護層スラリーを、必ずしもダイヘッド内部で合流させて塗布しなくても良い。また、正極活物質合剤スラリーと保護層スラリーのそれぞれのダイヘッドを一列に並べ、正極芯体上に同時に塗布しても良い。また、それぞれのダイヘッドを前後にずらして並べ、一方のスラリーが乾燥する前に正極芯体上に他方のスラリーを塗布する方法であっても良い。
<その他の事項>
(追加事項)
本発明における正極活物質としては、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、リチウムニッケルマンガン複合酸化物(LiNi1-xMn(0<x<1))、リチウムニッケルコバルト複合酸化物(LiNi1-xCo(0<x<1))、リチウムニッケルコバルトマンガン複合酸化物(LiNiCoMn(0<x<1、0<y<1、0<z<1、x+y+z=1))等のリチウム遷移金属複合酸化物が挙げられる。また、上記のリチウム遷移金属複合酸化物にAl、Ti、Zr、Nb、B、Mg又はMo等を添加したものも使用し得る。例えば、Li1+aNiCoMn(M=Al、Ti、Zr、Nb、B、Mg及びMoから選択される少なくとも1種の元素、0≦a≦0.2、0.2≦x≦0.5、0.2≦y≦0.5、0.2≦z≦0.4、0≦b≦0.02、a+b+x+y+z=1)で表されるリチウム遷移金属複合酸化物が挙げられる。
 また、負極活物質としてはリチウムイオンの吸蔵・放出が可能な炭素材料を用いることができる。リチウムイオンの吸蔵・放出が可能な炭素材料としては、黒鉛、難黒鉛性炭素、易黒鉛性炭素、繊維状炭素、コークス及びカーボンブラック等が挙げられる。これらの内、特に黒鉛が好ましい。さらに、非炭素系材料としては、シリコン、スズ、及びそれらを主とする合金や酸化物などが挙げられる。
 本発明において使用できる非水電解質の非水溶媒(有機溶媒)は、従来から非水電解液二次電池において一般的に使用されているカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類等を使用することができ、これらの溶媒の2種類以上を混合して用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。また、ビニレンカーボネート(VC)などの不飽和環状炭酸エステルを非水電解質に添加することもできる。
 本発明において使用できる非水電解質の電解質塩としては、従来のリチウムイオン二次電池において電解質塩として一般に使用されているものを用いることができる。例えば、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12、LiB(C、LiB(C)F、LiP(C、LiP(C、LiP(C)F等及びそれらの混合物が用いられる。これらの中でも、LiPFが特に好ましい。また、前記非水溶媒に対する電解質塩の溶解量は、0.5~2.0mol/Lとするのが好ましい。
 本発明において、セパレータとしてポリプロピレン(PP)やポリエチレン(PP)などのポリオレフィン製の多孔質セパレータを用いることが好ましい。特にポリプロピレン(PP)とポリエチレン(PE)の3層構造(PP/PE/PP、あるいはPE/PP/PE)を有するセパレータを用いることが好ましい。また、ポリマー電解質をセパレータとして用いてもよい。
1:正極極板 2:正極活物質層 3:保護層 4:正極芯体露出部 5:セパレータ 6:負極極板 7:負極活物質層 8:負極芯体露出部 10:角形非水電解質二次電池 11:巻回型電極体 12:電池外装缶 13:封口板 14:積層正極芯体露出部 15:積層負極芯体露出部 16:正極集電体 17:正極端子 18:負極集電体 19:負極端子 20、21:絶縁部材 25:負極集電体受け部品 
 
 
 
 

Claims (17)

  1.  正極芯体上に正極活物質層が形成されているとともに正極活物質層が形成されていない正極芯体が露出した部分を有する非水電解質二次電池用正極極板であって、前記正極芯体において正極活物質層が形成されていない部分のうち正極活物質層と隣接する領域に保護層が形成されており、前記正極活物質層及び前記保護層はポリフッ化ビニリデンを含有し、前記保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwが、前記正極活物質層に含有されるポリフッ化ビニリデンの重量平均分子量Mwよりも大きいことを特徴とする非水電解質二次電池用正極極板。
  2.  前記正極活物質層に含有されるポリフッ化ビニリデンの重量平均分子量Mwが10万~35万であることを特徴とする請求項1に記載の非水電解質二次電池用正極極板。
  3.  前記保護層に含有されるポリフッ化ビニリデンの重量平均分子量Mwが35万~130万であることを特徴とする請求項1に記載の非水電解質二次電池用正極極板。
  4.  前記保護層は、絶縁性、又は前記正極芯体よりも電子導電性が低く且つ非絶縁性であることを特徴とする請求項1に記載の非水電解質二次電池用正極極板。
  5.  前記保護層は、無機酸化物を含有することを特徴とする請求項1に記載の非水電解質二次電池用正極極板。
  6.  前記保護層は、導電剤を含有することを特徴とする請求項4に記載の非水電解質二次電池用正極極板。
  7.  前記無機酸化物は、アルミナ、チタニア、及びジルコニアからなる群から選択される少なくとも一種であることを特徴とする請求項5に記載の非水電解質二次電池用正極極板。
  8.  前記導電剤は、炭素材料であることを特徴とする請求項6に記載の非水電解質二次電池用正極極板。
  9.  前記請求項1~8のいずれかに記載の非水電解質二次電池用正極極板と、負極極板とがセパレータを介して積層又は巻回された電極体を有する非水電解質二次電池。
  10.  正極芯体上に正極活物質層が形成されているとともに正極活物質層が形成されていない正極芯体が露出した部分を有し、前記正極芯体において正極活物質層が形成されていない部分のうち、正極活物質層と隣接する領域に保護層が形成されている非水電解質二次電池用正極極板の製造方法であって、
     正極活物質及びポリフッ化ビニリデンを含有する正極活物質合剤スラリーと、前記正極活物質合剤スラリーに含有されるポリフッ化ビニリデンの重量平均分子量Mwよりも大きな重量平均分子量Mwのポリフッ化ビニリデンを含有する保護層スラリーを、同時に、あるいは、前記正極活物質合剤スラリー及び前記保護層スラリーのうち一方のスラリーを前記正極芯体上に塗布した後、前記一方のスラリーが乾燥する前に正極芯体上に他方のスラリーを塗布することを特徴とする非水電解質二次電池用正極極板の製造方法。
  11.  前記正極活物質合剤スラリーと、前記保護層スラリーを、ダイコータのダイヘッド内部で合流させ、前記正極活物質合剤スラリーと前記保護層スラリーを正極芯体上に同時に塗布することを特徴とする請求項10に記載の非水電解質二次電池用正極極板の製造方法。
  12.  前記正極活物質合剤スラリーに含有されるポリフッ化ビニリデンの重量平均分子量Mwが10万~35万であり、前記保護層スラリーに含有されるポリフッ化ビニリデンの重量平均分子量Mwが35万~130万であることを特徴とする請求項10に記載の非水電解質二次電池用正極極板の製造方法。
  13.  前記保護層は、絶縁性、又は前記正極芯体よりも電子導電性が低く且つ非絶縁性であることを特徴とする請求項10に記載の非水電解質二次電池用正極極板の製造方法。
  14.  前記保護層スラリーは、無機酸化物及び/又は導電剤を含有することを特徴とする請求項10に記載の非水電解質二次電池用正極極板の製造方法。
  15.  前記保護層スラリーの粘度が0.60Pa・s~1.50Pa・sであることを特徴とする請求項10に記載の非水電解質二次電池用正極極板の製造方法。
  16.  前記正極活物質合剤スラリーの粘度が1.50Pa・s以上であることを特徴とする請求項10に記載の非水電解質二次電池用正極極板の製造方法。
  17.  前記請求項10~16のいずれかに記載の非水電解質二次電池用正極極板の製造方法により作製した正極極板と、負極極板と、をセパレータを介して積層又は巻回し電極体を作製する工程を有する非水電解質二次電池の製造方法。
     
     
PCT/JP2012/056614 2011-03-23 2012-03-15 非水電解質二次電池用正極極板及びその製造方法、並びに非水電解質二次電池及びその製造方法 WO2012128160A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280013725.3A CN103430357B (zh) 2011-03-23 2012-03-15 非水电解质充电电池用正极极板及其制造方法、以及非水电解质充电电池及其制造方法
JP2013505923A JP5929897B2 (ja) 2011-03-23 2012-03-15 非水電解質二次電池用正極極板及びその製造方法、並びに非水電解質二次電池及びその製造方法
US14/006,828 US9231245B2 (en) 2011-03-23 2012-03-15 Positive electrode plate for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode plate, nonaqueous electrolyte secondary battery, and method for manufacturing the battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-064775 2011-03-23
JP2011064775 2011-03-23
JP2011-189654 2011-08-31
JP2011189654 2011-08-31

Publications (1)

Publication Number Publication Date
WO2012128160A1 true WO2012128160A1 (ja) 2012-09-27

Family

ID=46879311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056614 WO2012128160A1 (ja) 2011-03-23 2012-03-15 非水電解質二次電池用正極極板及びその製造方法、並びに非水電解質二次電池及びその製造方法

Country Status (4)

Country Link
US (1) US9231245B2 (ja)
JP (1) JP5929897B2 (ja)
CN (1) CN103430357B (ja)
WO (1) WO2012128160A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241593A (zh) * 2013-06-19 2014-12-24 株式会社杰士汤浅国际 蓄电元件和蓄电池模块
JP2016509338A (ja) * 2013-11-27 2016-03-24 エルジー ケム. エルティーディ. 電極組立体及びこれを含む電気化学素子
JP2016207620A (ja) * 2015-04-28 2016-12-08 株式会社日立ハイテクファインシステムズ リチウムイオン二次電池及びその製造方法と製造装置
WO2017057762A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 リチウムイオン二次電池の電極部、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP2017120766A (ja) * 2015-12-25 2017-07-06 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP2017135110A (ja) * 2017-02-07 2017-08-03 エルジー ケム. エルティーディ. 電極組立体及びこれを含む電気化学素子
WO2018123088A1 (ja) * 2016-12-28 2018-07-05 マクセルホールディングス株式会社 巻回型電池
JP2019096501A (ja) * 2017-11-24 2019-06-20 日本電気株式会社 二次電池用電極の製造方法および二次電池の製造方法
WO2020202973A1 (ja) 2019-03-29 2020-10-08 株式会社エンビジョンAescエナジーデバイス リチウムイオン二次電池用の正極電極、リチウムイオン二次電池用の正極電極シート、および、その製造方法
JP2020167067A (ja) * 2019-03-29 2020-10-08 株式会社エンビジョンAescエナジーデバイス リチウムイオン二次電池用の正極電極、リチウムイオン二次電池用の正極電極シート、その製造方法
JP2021039874A (ja) * 2019-09-02 2021-03-11 トヨタ自動車株式会社 非水電解質二次電池
WO2021199684A1 (ja) * 2020-03-30 2021-10-07 三洋電機株式会社 非水電解質二次電池用正極板の製造方法及び非水電解質二次電池の製造方法
US11450858B2 (en) 2019-06-06 2022-09-20 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery having an improved insulating layer
US11469405B2 (en) 2017-11-24 2022-10-11 Nec Corporation Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057137B2 (ja) * 2014-04-18 2017-01-11 トヨタ自動車株式会社 非水電解質二次電池用の正極とその製造方法
US11456487B2 (en) 2016-05-27 2022-09-27 Panasonic Holdings Corporation Method for manufacturing secondary battery
TWI616021B (zh) * 2017-01-20 2018-02-21 迪吉亞節能科技股份有限公司 電池芯極片結構
JP6787241B2 (ja) * 2017-04-28 2020-11-18 トヨタ自動車株式会社 電極積層体及び電池の製造方法
JP6737235B2 (ja) * 2017-05-22 2020-08-05 トヨタ自動車株式会社 電池およびその製造方法
JP7073689B2 (ja) 2017-11-29 2022-05-24 株式会社Gsユアサ 極板、電極体及び蓄電素子
JP7382569B2 (ja) * 2018-07-30 2023-11-17 パナソニックIpマネジメント株式会社 電池用電極、電池、および電池用電極の製造方法
WO2020130000A1 (ja) * 2018-12-19 2020-06-25 三洋電機株式会社 二次電池用の電極板及びそれを用いた二次電池
CN113039662B (zh) * 2018-12-19 2023-05-05 三洋电机株式会社 二次电池用的电极板和使用了该电极板的二次电池
JP7194336B2 (ja) * 2019-08-01 2022-12-22 トヨタ自動車株式会社 非水電解質二次電池
KR20210020329A (ko) * 2019-08-14 2021-02-24 현대자동차주식회사 리튬이온 이차전지 및 그 제조방법
WO2021195851A1 (zh) * 2020-03-30 2021-10-07 宁德新能源科技有限公司 极片、应用该极片的电极组件、电池及用电装置
CN113826262A (zh) * 2021-02-18 2021-12-21 宁德新能源科技有限公司 电化学装置及电子装置
EP4318627A4 (en) * 2021-03-30 2024-06-05 Ningde Amperex Technology Limited ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE
WO2022204967A1 (zh) * 2021-03-30 2022-10-06 宁德新能源科技有限公司 电化学装置和电子装置
CN113113564B (zh) * 2021-04-06 2023-03-31 湖北亿纬动力有限公司 一种多幅涂布结构、负极极片及负极极片的用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055537A (ja) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2005509247A (ja) * 2001-06-07 2005-04-07 スリーエム イノベイティブ プロパティズ カンパニー 被覆エッジの制御
JP2007095656A (ja) * 2005-08-30 2007-04-12 Sanyo Electric Co Ltd 非水系二次電池
JP2008034215A (ja) * 2006-07-28 2008-02-14 Hitachi Ltd リチウム二次電池用正極とその製造方法、およびリチウム二次電池
JP2010118216A (ja) * 2008-11-12 2010-05-27 Asahi Kasei Corp 蓄電素子用電極体、及びこれを含む非水系リチウム型蓄電素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366783B2 (ja) 1998-11-16 2009-11-18 株式会社デンソー 積層型電池及びその電極の製造方法
US7335448B2 (en) 2002-05-30 2008-02-26 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2008047398A (ja) * 2006-08-14 2008-02-28 Sony Corp 非水電解質二次電池
JP5217877B2 (ja) * 2008-10-08 2013-06-19 ヤマハ株式会社 会議支援装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509247A (ja) * 2001-06-07 2005-04-07 スリーエム イノベイティブ プロパティズ カンパニー 被覆エッジの制御
JP2004055537A (ja) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2007095656A (ja) * 2005-08-30 2007-04-12 Sanyo Electric Co Ltd 非水系二次電池
JP2008034215A (ja) * 2006-07-28 2008-02-14 Hitachi Ltd リチウム二次電池用正極とその製造方法、およびリチウム二次電池
JP2010118216A (ja) * 2008-11-12 2010-05-27 Asahi Kasei Corp 蓄電素子用電極体、及びこれを含む非水系リチウム型蓄電素子

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140376160A1 (en) * 2013-06-19 2014-12-25 Gs Yuasa International Ltd. Electric storage device and electric storage module
CN104241593A (zh) * 2013-06-19 2014-12-24 株式会社杰士汤浅国际 蓄电元件和蓄电池模块
CN104241593B (zh) * 2013-06-19 2019-01-08 株式会社杰士汤浅国际 蓄电元件和蓄电池模块
EP2899791B1 (en) * 2013-11-27 2018-08-01 LG Chem, Ltd. Electrode assembly and electrochemical device including same
JP2016509338A (ja) * 2013-11-27 2016-03-24 エルジー ケム. エルティーディ. 電極組立体及びこれを含む電気化学素子
US9350006B2 (en) 2013-11-27 2016-05-24 Lg Chem, Ltd. Electrode assembly and electrochemical device including the same
JP2016207620A (ja) * 2015-04-28 2016-12-08 株式会社日立ハイテクファインシステムズ リチウムイオン二次電池及びその製造方法と製造装置
WO2017057762A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 リチウムイオン二次電池の電極部、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP2017120766A (ja) * 2015-12-25 2017-07-06 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池
WO2018123088A1 (ja) * 2016-12-28 2018-07-05 マクセルホールディングス株式会社 巻回型電池
JP2017135110A (ja) * 2017-02-07 2017-08-03 エルジー ケム. エルティーディ. 電極組立体及びこれを含む電気化学素子
JP7031249B2 (ja) 2017-11-24 2022-03-08 日本電気株式会社 二次電池用電極の製造方法および二次電池の製造方法
JP2019096501A (ja) * 2017-11-24 2019-06-20 日本電気株式会社 二次電池用電極の製造方法および二次電池の製造方法
US11469405B2 (en) 2017-11-24 2022-10-11 Nec Corporation Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
WO2020202973A1 (ja) 2019-03-29 2020-10-08 株式会社エンビジョンAescエナジーデバイス リチウムイオン二次電池用の正極電極、リチウムイオン二次電池用の正極電極シート、および、その製造方法
JP2020167067A (ja) * 2019-03-29 2020-10-08 株式会社エンビジョンAescエナジーデバイス リチウムイオン二次電池用の正極電極、リチウムイオン二次電池用の正極電極シート、その製造方法
WO2020203658A1 (ja) 2019-03-29 2020-10-08 株式会社エンビジョンAescエナジーデバイス リチウムイオン二次電池用の正極電極、リチウムイオン二次電池用の正極電極シート、および、その製造方法
JP7281944B2 (ja) 2019-03-29 2023-05-26 株式会社エンビジョンAescジャパン リチウムイオン二次電池用の正極電極、リチウムイオン二次電池用の正極電極シート、その製造方法
US11450858B2 (en) 2019-06-06 2022-09-20 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery having an improved insulating layer
JP2021039874A (ja) * 2019-09-02 2021-03-11 トヨタ自動車株式会社 非水電解質二次電池
JP7174335B2 (ja) 2019-09-02 2022-11-17 トヨタ自動車株式会社 非水電解質二次電池
WO2021199684A1 (ja) * 2020-03-30 2021-10-07 三洋電機株式会社 非水電解質二次電池用正極板の製造方法及び非水電解質二次電池の製造方法

Also Published As

Publication number Publication date
US9231245B2 (en) 2016-01-05
JP5929897B2 (ja) 2016-06-08
CN103430357B (zh) 2016-02-03
CN103430357A (zh) 2013-12-04
JPWO2012128160A1 (ja) 2014-07-24
US20140011064A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
JP5929897B2 (ja) 非水電解質二次電池用正極極板及びその製造方法、並びに非水電解質二次電池及びその製造方法
US11108078B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP5260838B2 (ja) 非水系二次電池
US20100119940A1 (en) Secondary battery
JP5465755B2 (ja) 非水系二次電池
JPWO2015001716A1 (ja) 非水電解質二次電池
JP6138436B2 (ja) 非水電解質二次電池及びその製造方法
JP6287185B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
KR20160134808A (ko) 비수 전해액 이차 전지
US20140023919A1 (en) Non-aqueous electrolyte secondary cell
US20140080010A1 (en) Non-aqueous electrolyte secondary battery
JP3786349B2 (ja) 非水二次電池
WO2019098056A1 (ja) リチウムイオン二次電池
US10431846B2 (en) Energy storage device
JP6287186B2 (ja) 非水電解質二次電池
JP2010009818A (ja) 非水系二次電池用電極板およびこれを用いた非水系二次電池
JP2013201094A (ja) 非水電解液二次電池
WO2020137817A1 (ja) 非水電解質二次電池
US20140023915A1 (en) Non-aqueous electrolyte secondary cell
JP2008243704A (ja) 円筒型非水電解質電池
JP2007172878A (ja) 電池およびその製造方法
WO2020137818A1 (ja) 非水電解質二次電池及びその製造方法
JP4272657B2 (ja) 非水二次電池
JP2011181438A (ja) 非水電解質二次電池
JP4501180B2 (ja) 非水系ポリマ二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14006828

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12760516

Country of ref document: EP

Kind code of ref document: A1