WO2012105710A1 - cBN焼結体工具および被覆cBN焼結体工具 - Google Patents

cBN焼結体工具および被覆cBN焼結体工具 Download PDF

Info

Publication number
WO2012105710A1
WO2012105710A1 PCT/JP2012/052592 JP2012052592W WO2012105710A1 WO 2012105710 A1 WO2012105710 A1 WO 2012105710A1 JP 2012052592 W JP2012052592 W JP 2012052592W WO 2012105710 A1 WO2012105710 A1 WO 2012105710A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
cbn sintered
cbn
tool according
mass
Prior art date
Application number
PCT/JP2012/052592
Other languages
English (en)
French (fr)
Inventor
貴英 工藤
Original Assignee
株式会社タンガロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タンガロイ filed Critical 株式会社タンガロイ
Priority to US13/982,718 priority Critical patent/US20130309468A1/en
Priority to JP2012556001A priority patent/JP5614460B2/ja
Publication of WO2012105710A1 publication Critical patent/WO2012105710A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/003Cubic boron nitrides only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/005Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/006Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/007Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/008Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds other than carbides, borides or nitrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a cBN sintered body tool and a coated cBN sintered body tool.
  • cBN cubic boron nitride
  • a cBN sintered body obtained by sintering this cBN with a ceramic or metal binder phase is very excellent as a tool material.
  • the bonding between cBN particles and the bonding phase between cBN particles and the cBN particles are performed. Numerous studies have been conducted on the formation of strong bonds.
  • a binder phase mainly composed of remaining ceramics and inevitable impurities is The overall ratio of the sintered body is 5 to 30% aluminum oxide, 3 to 20% aluminum nitride and / or aluminum boride, and 10 to 40% of one or more of titanium carbide, titanium nitride, or titanium carbonitride.
  • a cubic boron nitride-containing sintered body comprising 3 to 30% of titanium boride and characterized in that the aluminum oxide has a particle size of 1 ⁇ m or less (see, for example, Patent Document 1).
  • the binder phase comprises a plurality of particles of high-pressure phase boron nitride and a binder phase, the content of the particles is 20.0 vol% or more and 99.7 vol% or less, and the binder phase surrounds the particles.
  • the second binder phase includes a grain growth inhibitory binder phase between the plurality of particles surrounded by the first binder phase, and the grain growth inhibitory binder phase includes Ti, Zr, and Hf.
  • a high-pressure phase boron nitride-based sintered body composed of at least one form of boride or a solid solution thereof, or at least one form of an aluminum nitride, boride or a solid solution thereof (for example, , See Patent Document 2).
  • cBN 40 to 85% by volume, at least one metal selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Co, Ni and Al, at least one of these metals At least one binder phase selected from the group consisting of various carbides, nitrides, carbonitrides, borides, oxides and their mutual solid solutions and unavoidable impurities: the remainder and included in the cBN sintered body
  • the cBN sintered compact tool containing the cBN sintered compact whose Mo element amount is 0.2-3.0 mass% with respect to the whole cBN sintered compact.
  • the cBN sintered body of the present invention comprises cBN, a binder phase, and unavoidable impurities.
  • cBN when cBN exceeds 85% by volume, wear resistance decreases due to progress of reactive wear with cBN work material, and fracture resistance decreases due to progress of crater wear.
  • the cBN when the cBN is less than 40% by volume, the ratio of the binder phase inferior in strength is relatively increased, resulting in a decrease in fracture resistance and a decrease in wear resistance due to a decrease in thermal conductivity. Therefore, cBN: 40 to 85% by volume.
  • the cBN content is preferably 45 to 85% by volume, more preferably 45 to 82% by volume.
  • the cBN content can be obtained by photographing the cross-sectional structure of the cBN sintered body with an SEM (scanning electron microscope) and analyzing the obtained cross-sectional structure photograph.
  • the binder phase of the cBN sintered body of the present invention is at least one metal selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Co, Ni and Al, and at least one of these metals. It consists of at least one selected from the group consisting of various carbides, nitrides, carbonitrides, borides, oxides, and their mutual solid solutions.
  • the binder phase of the present invention is preferably at least one metal selected from W, Mo, Co and Ni, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Co, Ni and Al.
  • the amount of Mo element contained in the cBN sintered body of the present invention is 0.2% by mass or more with respect to the entire cBN sintered body, the strength of the binder phase increases, the bond between the cBN and the binder phase is promoted, and the cBN is promoted. Bonding between the particles is promoted, and both the wear resistance and fracture resistance of the cBN sintered body are improved.
  • the amount of Mo element exceeds 3.0% by mass with respect to the entire cBN sintered body, cBN sintering occurs due to stress concentration on the Mo compound, Mo-based solid solution, and the like, and a decrease in the thermal conductivity of the cBN sintered body. Both the wear resistance and fracture resistance of the bonded body are reduced.
  • the amount of Mo element is set to 0.2 to 3.0% by mass.
  • the Mo element amount in the raw material powder may be blended so as to fall within this range.
  • the amount of Mo element is preferably 0.2 to 2.5% by mass.
  • the amount of Mo element contained in the cBN sintered body can be measured using EDS (energy dispersive X-ray analyzer) or ICP-AES (inductively coupled plasma emission spectrometer).
  • the strength of the binder phase increases, the bond between the cBN and the binder phase is promoted, the bond between the cBN particles is promoted, and the wear resistance of the cBN sintered body.
  • the amount of Ni element exceeds 3.0% by mass with respect to the entire cBN sintered body, the fracture resistance of the cBN sintered body tends to decrease due to stress concentration on the Ni compound or Ni-based solid solution. It is done. Therefore, the amount of Ni element is preferably 3.0% by mass or less. In order to realize this, the Ni element amount in the raw material powder may be blended so as to fall within this range.
  • the amount of Ni element contained in the cBN sintered body of the present invention is 0.2% by mass or more with respect to the whole cBN sintered body, the strength of the binder phase increases, and the bond between cBN and the binder phase is promoted.
  • the bonding between the cBN particles is promoted, and the effect of improving both the wear resistance and fracture resistance of the cBN sintered body becomes clear. Therefore, the content is preferably 0.2 to 3.0% by mass, more preferably 0.5 to 2.5% by mass.
  • the amount of Ni element contained in the cBN sintered body can be measured using EDS or ICP-AES.
  • the oxidation resistance of the cBN sintered body is improved and a tendency to be excellent in wear resistance is observed.
  • the amount of Ta element contained in the cBN sintered body of the present invention exceeds 3.5% by mass with respect to the entire cBN sintered body, stress concentration on the Ta compound or Ta-based solid solution causes cBN sintering. There is a tendency for the body's fracture resistance to decrease. Therefore, the Ta element amount is preferably 3.5% by mass or less. In order to realize this, the amount of Ta element in the raw material powder may be blended in this range.
  • the amount of Ta element contained in the cBN sintered body of the present invention is 0.1% by mass or more with respect to the entire cBN sintered body, the oxidation resistance of the cBN sintered body is improved and the wear resistance is excellent. Since the effect becomes clear, it is preferably 0.1 to 3.5% by mass, more preferably 0.5 to 3.0% by mass.
  • the amount of Ta element contained in the cBN sintered body can be measured using EDS or ICP-AES.
  • a WC-based cemented carbide ball in the step of pulverizing and mixing the raw material powder, ball mill mixing using a WC-based cemented carbide ball is preferable because of good pulverization and mixing efficiency.
  • W element is mixed into the cBN sintered body.
  • the W element mixed in the cBN sintered body is present in the binder phase of the cBN sintered body in the form of WC, WB, W 2 B, CoWB, W 2 Co 21 B 6 , Co 3 W 3 C, W, and the like.
  • the amount of W element contained in the cBN sintered body of the present invention is preferably 0 to 6% by mass with respect to the entire cBN sintered body. Of these, 0 to 5% by mass is more preferable, and 0 to 3% by mass is more preferable.
  • the amount of W element contained in the cBN sintered body of the present invention can be measured using EDS or ICP-AES.
  • the cBN sintered body of the present invention Fe mixed from the manufacturing process of the cBN sintered body can be exemplified.
  • the total of inevitable impurities is 0.5% by mass or less with respect to the entire cBN sintered body, and can be usually suppressed to 0.1% by mass or less with respect to the entire cBN sintered body. It does not affect the value.
  • in this invention in the range which does not impair the characteristic of the cBN sintered compact of this invention, in addition to cBN, a binder phase, and an unavoidable impurity, even if it contains a small amount of other components which cannot be said to be an unavoidable impurity, Good.
  • the coating of the present invention comprises at least one metal oxide, carbide, nitride, carbonitride, boron selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al and Si. And at least one selected from the group consisting of these solid solutions. Specifically, TiN, TiC, TiCN, (Ti, Al) N, (Ti, Si) N, (Al, Cr) N, Al 2 O 3 and the like can be mentioned.
  • the coating is preferably either a single layer film or a laminated film of two or more layers, and is preferably an alternate laminated film in which thin films having an average film thickness of 5 to 200 nm having different compositions are alternately laminated.
  • the total film thickness of the entire film is an average film thickness. When the thickness is less than 0.5 ⁇ m, the wear resistance is reduced. When the thickness exceeds 20 ⁇ m, the chipping resistance is decreased.
  • the thickness is preferably 0.5 to 20 ⁇ m, and more preferably 1 to 4 ⁇ m.
  • the cBN sintered body tool of the present invention is a cutting tool in which at least the cutting edge portion is made of the cBN sintered body of the present invention.
  • the whole cBN sintered body tool of the present invention may be composed only of the cBN sintered body of the present invention, a material different from the cBN sintered body of the present invention other than the cutting edge portion, for example, a cemented carbide may be used.
  • it may be a cutting tool obtained by brazing the cBN sintered body of the present invention to a cutting edge portion of a cutting tool-shaped cemented carbide and processing the cutting edge portion to become the cBN sintered body of the present invention.
  • the coated cBN sintered body tool of the present invention is a cutting tool composed of the coated cBN sintered body of the present invention in which at least the cutting edge portion is coated with a coating on the surface of the cBN sintered body of the present invention.
  • the entire coated cBN sintered body tool of the present invention may be composed of only the coated cBN sintered body of the present invention, materials other than the cutting edge portion are different from the coated cBN sintered body of the present invention, such as cemented carbide or coating. Cemented carbide may be used.
  • the cBN sintered body of the present invention is brazed to the cutting edge portion of a cutting tool-shaped cemented carbide, the cutting edge portion is processed to become the cBN sintered body of the present invention, and the surface is coated with a coating film.
  • a cutting tool may be used.
  • the strength of the binder phase is increased by adding a small amount of Mo, and the bond between the cBN and the binder phase and the bond between the cBN particles are promoted. Excellent. Therefore, the tool life of the cBN sintered body of the present invention in which at least the cutting edge portion is the cBN sintered body of the present invention can be extended as compared with the conventional tool life. Among them, it is more preferable to use the cBN sintered body tool of the present invention as a cBN sintered body tool for quenching steel processing because the effect of extending the tool life is high.
  • the coated cBN sintered body tool of the present invention in which at least the cutting edge portion is the coated cBN sintered body of the present invention can extend the tool life as compared with the prior art.
  • Step 1 cBN powder and metals of Ti, Zr, Hf, V, Nb, Cr, W, Co, Al, at least one carbide, nitride, carbonitride, boride, oxide of these metals and A binder phase forming powder consisting of at least one selected from the group consisting of these mutual solid solutions, and one or two of Mo metal powder and Mo 2 C powder as additives, Ni metal powder, Ta as required
  • cBN powder, binder phase forming powder and additive are weighed so as to have a predetermined composition.
  • Step 2 The binder phase forming powder and additives are mixed using, for example, a wet ball mill composed of a ball, an organic solvent, and a pot, and the organic solvent is evaporated to obtain a mixed powder.
  • Step 3 The mixed powder is heat-treated at a temperature of 700 to 1000 ° C. to cause a reaction to form a brittle intermetallic compound to form a brittle phase.
  • Step 4 The brittle phase is mixed and finely pulverized using, for example, a wet ball mill composed of balls, an organic solvent and a pot.
  • Step 5 The cBN powder is added to and mixed with the powder pulverized in Step 4, and these are uniformly dispersed.
  • Examples of the mixing method include a wet ball mill with a mixing time of 1 to 10 hours and an ultrasonic mixing with a mixing time of 5 to 120 minutes.
  • the mixed powder obtained in Step 5 is put into a metal capsule such as Ta, Nb, Mo, Zr, etc., and the metal capsule is loaded into an ultra-high pressure and high temperature generator, pressure 6-8 GPa, temperature 1200- It sinters on 1600 degreeC conditions, and obtains the cBN sintered compact of this invention.
  • the cBN sintered body obtained in Step 6 is processed into a tool to obtain the cBN sintered body tool of the present invention.
  • the coated cBN sintered body tool of the present invention can be obtained by coating the surface of the cBN sintered body tool of the present invention with a conventional CVD method or PVD method.
  • the cBN sintered body tool and the coated cBN sintered body tool of the present invention are excellent in wear resistance and fracture resistance.
  • the cBN sintered body tool and the coated cBN sintered body tool of the present invention have an effect that the tool life can be extended as compared with the conventional one.
  • CBN powder having an average particle size of 3.0 ⁇ m is prepared, TiN powder having an average particle size of 1.5 ⁇ m and Al powder having an average particle size of 3.1 ⁇ m are prepared as binder phase forming powder, and an average particle size of 2 is used as an additive.
  • a 0.5 ⁇ m Mo powder, a Ni powder having an average particle size of 2.5 ⁇ m, and a Ta powder having an average particle size of 4.0 ⁇ m were prepared and weighed to the composition shown in Table 1.
  • a binder phase forming powder other than cBN powder and additives were mixed using a wet ball mill composed of a WC-based cemented carbide ball, an organic solvent and a pot, and the resulting mixed powder was 850 ° C.
  • the mixture was reacted by heat treatment at a temperature of 5 ° C. to form a brittle phase.
  • the resulting brittle phase was finely pulverized using a wet ball mill composed of WC-based cemented carbide balls, an organic solvent, and a pot.
  • the cBN powder was added to the finely pulverized brittle phase powder, and the mixture was further mixed for 6 hours using a wet ball mill composed of a WC-based cemented carbide ball, an organic solvent, and a pot.
  • Sample No. 5 was mixed for 15 hours.
  • the obtained mixed powder was put into a Ta capsule, and the Ta capsule was loaded into an ultra-high pressure and high temperature generator, and sintered at a pressure of 6 GPa and a temperature of 1200 ° C. to obtain an inventive product and a comparative cBN sintered body.
  • a cBN sintered body of sample numbers 1 to 5 cut into a predetermined shape with a wire electric discharge machine is brazed to a cemented carbide base material and subjected to a grinding finish, and the cutting edge portion is made from the cBN sintered body.
  • Table 3 shows the tool life of the inventive product and the comparative product.
  • CBN powder having an average particle size of 3.0 ⁇ m is prepared, and as a binder phase forming powder, an TiN powder having an average particle size of 1.5 ⁇ m, an Al powder having an average particle size of 3.1 ⁇ m, a Co powder having an average particle size of 0.4 ⁇ m, A WC powder having an average particle diameter of 2.0 ⁇ m is prepared, and Mo powder having an average particle diameter of 2.5 ⁇ m, Ni powder having an average particle diameter of 2.5 ⁇ m, and Ta powder having an average particle diameter of 4.0 ⁇ m are prepared as additives. 4 was weighed to the composition shown in FIG.
  • a binder phase forming powder other than cBN powder and additives were mixed using a wet ball mill composed of a WC-based cemented carbide ball, an organic solvent and a pot, and the resulting mixed powder was 850 ° C.
  • the mixture was reacted by heat treatment at a temperature of 5 ° C. to form a brittle phase.
  • the resulting brittle phase was finely pulverized using a wet ball mill composed of WC-based cemented carbide balls, an organic solvent, and a pot.
  • the cBN powder was added to the finely pulverized brittle phase powder, and the mixture was further mixed for 6 hours using a wet ball mill composed of a WC-based cemented carbide ball, an organic solvent, and a pot.
  • the obtained mixed powder was put into a Ta capsule, and the Ta capsule was loaded into an ultrahigh pressure and high temperature generator, and sintered at a pressure of 7.5 GPa and a temperature of 1600 ° C. to obtain a cBN sintered body as an inventive product and a comparative product.
  • the cBN sintered bodies of sample numbers 6 to 15 cut into a predetermined shape with a wire electric discharge machine are brazed to a cemented carbide base material and subjected to grinding finish processing, and the cutting edge portion is made from the cBN sintered body.
  • Table 6 shows the tool life of the inventive product and the comparative product.
  • CBN powder with an average particle size of 3.0 ⁇ m is prepared, TiC powder with an average particle size of 1.2 ⁇ m and Al powder with an average particle size of 3.1 ⁇ m are prepared as binder phase forming powder, and an average particle size of 2 is added as an additive.
  • a 0.5 ⁇ m Mo powder, a Ni powder having an average particle size of 2.5 ⁇ m, and a Ta powder having an average particle size of 4.0 ⁇ m were prepared and weighed to the composition shown in Table 7.
  • a binder phase forming powder other than cBN powder and additives were mixed using a wet ball mill composed of a WC-based cemented carbide ball, an organic solvent and a pot, and the resulting mixed powder was 850 ° C.
  • the mixture was reacted by heat treatment at a temperature of 5 ° C. to form a brittle phase.
  • the resulting brittle phase was finely pulverized using a wet ball mill composed of WC-based cemented carbide balls, an organic solvent, and a pot.
  • the cBN powder was added to the finely pulverized brittle phase powder, and the mixture was further mixed for 6 hours using a wet ball mill composed of a WC-based cemented carbide ball, an organic solvent, and a pot.
  • the obtained mixed powder was put into a Ta capsule, and the Ta capsule was loaded into an ultra-high pressure and high temperature generator, and sintered at a pressure of 7 GPa and a temperature of 1300 ° C. to obtain an inventive product and a comparative cBN sintered body.
  • the cBN sintered body of sample numbers 16 to 21 cut into a predetermined shape with a wire electric discharge machine is brazed to a cemented carbide base material and ground and finished, and the cutting edge part is made of a cBN sintered body.
  • the inventive product has better wear resistance and fracture resistance than the comparative product, and the inventive product has a longer tool life than the comparative product.
  • CBN powder having an average particle size of 3.0 ⁇ m is prepared, TiCN powder having an average particle size of 0.8 ⁇ m and Al powder having an average particle size of 3.1 ⁇ m are prepared as binder phase forming powder, and an average particle size of 2 is used as an additive.
  • a 0.5 ⁇ m Mo powder, a Ni powder having an average particle diameter of 2.5 ⁇ m, and a Ta powder having an average particle diameter of 4.0 ⁇ m were prepared and weighed to the composition shown in Table 10.
  • a binder phase forming powder other than cBN powder and additives were mixed using a wet ball mill composed of a WC-based cemented carbide ball, an organic solvent and a pot, and the resulting mixed powder was 850 ° C.
  • the mixture was reacted by heat treatment at a temperature of 5 ° C. to form a brittle phase.
  • the resulting brittle phase was finely pulverized using a wet ball mill composed of WC-based cemented carbide balls, an organic solvent, and a pot.
  • cBN powder having an average particle size of 3.0 ⁇ m was added to the finely pulverized brittle phase powder, and the mixture was further mixed for 6 hours using a wet ball mill composed of a WC-based cemented carbide ball, an organic solvent, and a pot.
  • the obtained mixed powder was put into a Ta capsule, and the Ta capsule was loaded into an ultra-high pressure and high temperature generator, and sintered at a pressure of 7.2 GPa and a temperature of 1400 ° C. to obtain a cBN sintered body of an inventive product and a comparative product.
  • the cBN sintered bodies of sample numbers 22 to 26 cut into a predetermined shape with a wire electric discharge machine are brazed to a cemented carbide base material and subjected to grinding finish processing, and then the ISO standard CNGA120408 cutting insert shape cBN firing A bonded tool was obtained.
  • sample number 23 the surface of the cBN sintered body tool of sample number 23 was coated with an (Al, Cr) N film having an average film thickness of 1.3 ⁇ m by the PVD method to obtain a coated cBN sintered body tool.
  • Table 12 shows the tool life of the cBN sintered body tool and the coated cBN sintered body tool.
  • the inventive product has better wear resistance and fracture resistance than the comparative product, and the inventive product has a longer tool life than the comparative product.

Abstract

本発明は、耐摩耗性、耐欠損性に優れ、従来よりも工具寿命を延長できるcBN焼結体工具の提供を目的とし、cBN:40~85体積%と、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Co、NiおよびAlから選択される少なくとも1種の金属、これら金属の少なくとも1種の炭化物、窒化物、炭窒化物、硼化物、酸化物およびこれらの相互固溶体からなる群より選ばれた少なくとも1種からなる結合相および不可避的不純物:残部とからなりcBN焼結体に含まれるMo元素量がcBN焼結体全体に対して0.2~3.0質量%であるcBN焼結体を含むcBN焼結体工具を提供する。

Description

cBN焼結体工具および被覆cBN焼結体工具
本発明はcBN焼結体工具および被覆cBN焼結体工具に関する。
cBN(立方晶窒化硼素)はダイヤモンドに次ぐ高い硬度と優れた熱伝導性を持ち、さらにダイヤモンドに比べて鉄との親和性が低いという特徴がある。このcBNをセラミックスや金属の結合相で焼結したcBN焼結体は工具材料として非常に優れており、cBN焼結体工具の切削性能向上のためにcBN粒子同士の結合およびcBN粒子と結合相との強固な結合形成について多数の研究がなされている。
cBN焼結体工具の従来技術としては、体積比で、10~70%の立方晶窒化ホウ素と、残りセラミックスを主成分とする結合相と不可避不純物とからなる焼結体において、該結合相が焼結体の全体比で、酸化アルミニウム5~30%と、窒化アルミニウムおよび/またはホウ化アルミニウム3~20%と、炭化チタン、窒化チタンまたは炭窒化チタンの中の1種以上10~40%と、ホウ化チタン3~30%とからなり、かつ該酸化アルミニウムが1μm以下の粒径でなることを特徴とする立方晶窒化ホウ素含有焼結体がある(例えば、特許文献1参照。)。
また、高圧相型窒化硼素の複数の粒子と、結合相とを備え、前記粒子の含有率は20.0体積%以上99.7体積%以下であり、前記結合相は、前記粒子を包囲する第1の結合相と、それ以外の第2の結合相とを含み、前記第1の結合相は、Ti、TiAl、Zr、Hfの少なくとも1種の窒化物もしくはその固溶体の少なくともいずれかの形態からなり、前記第2の結合相は、前記第1の結合相で包囲された複数の前記粒子の間に粒成長抑制結合相を含み、前記粒成長抑制結合相は、Ti、Zr、Hfの少なくとも1種の硼化物もしくはその固溶体の少なくともいずれかの形態、または、Alの窒化物、硼化物もしくはその固溶体の少なくともいずれかの形態からなる、高圧相型窒化硼素基焼結体がある(例えば、特許文献2参照。)。
特開平7-82031号公報 特開平10-218666号公報
近年、切削加工において、被削材の難削性が増す一方で加工の高能率化が求められ切削速度や送り量が増加してきている。上記特許文献1の発明や上記特許文献2の発明を切削工具として用いたとき、耐摩耗性と耐欠損性が低く、これらの要求に十分に答えられなくなってきている。本発明は、上記問題を解決するためになされたものであり、耐摩耗性および耐欠損性に優れ、従来よりも工具寿命を延長できるcBN焼結体工具および被覆cBN焼結体工具を提供することを目的とする。
本発明者が研究を重ねたところ、cBN焼結体にMo、Ni、Taを微量添加することで結合相の強度が増し、cBNと結合相の結合やcBN粒子同士の結合が促進され、さらにcBN焼結体の耐酸化性が増すという知見を得た。そして、このcBN焼結体を切削工具として用いた場合、従来よりも工具寿命を延長できるという効果が得られた。これらの知見を基にして得られた本発明の要旨は次のとおりである。
(1)cBN:40~85体積%と、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Co、NiおよびAlから選択される少なくとも1種の金属、これら金属の少なくとも1種の炭化物、窒化物、炭窒化物、硼化物、酸化物およびこれらの相互固溶体からなる群より選ばれた少なくとも1種からなる結合相および不可避的不純物:残部とからなりcBN焼結体に含まれるMo元素量がcBN焼結体全体に対して0.2~3.0質量%であるcBN焼結体を含むcBN焼結体工具。
(2)cBN焼結体に含まれるNi元素量がcBN焼結体全体に対して0.2~3.0質量%である(1)に記載のcBN焼結体工具。
(3)cBN焼結体に含まれるTa元素量がcBN焼結体全体に対して0.1~3.5質量%である(1)または(2)に記載のcBN焼結体工具。
(4)cBN焼結体に含まれるW元素量がcBN焼結体全体に対して0~6質量%である(1)~(3)のいずれかに記載のcBN焼結体工具。
(5)(1)~(4)のいずれかのcBN焼結体工具の表面に被膜を被覆した被覆cBN焼結体工具。
本発明のcBN焼結体はcBNと結合相と不可避的不純物とからなる。本発明のcBN焼結体において、cBNが85体積%を超えて多くなると、cBNの被削材との反応摩耗の進行による耐摩耗性の低下やクレータ摩耗の進行による耐欠損性の低下が生じる。逆にcBNが40体積%未満になると強度に劣る結合相の割合が相対的に増えるため耐欠損性の低下や熱伝導率の低下による耐摩耗性の低下が生じる。そのためcBN:40~85体積%とした。cBN含有量は、好ましくは、45~85体積%であり、さらに好ましくは45~82体積%である。cBN含有量は、cBN焼結体の断面組織をSEM(走査電子顕微鏡)で撮影し、得られた断面組織写真を画像解析することで求めることができる。
本発明のcBN焼結体の結合相は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Co、NiおよびAlから選択される少なくとも1種の金属、これら金属の少なくとも1種の炭化物、窒化物、炭窒化物、硼化物、酸化物およびこれらの相互固溶体からなる群より選ばれた少なくとも1種からなる。本発明の結合相は、好ましくは、W、Mo、CoおよびNiから選択される少なくとも1種の金属、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Co、NiおよびAlから選択される金属の少なくとも1種の炭化物、窒化物、炭窒化物、硼化物、酸化物およびこれらの相互固溶体からなる群より選ばれた少なくとも1種が挙げられ、具体的には、TiN、TiCN、TiC、TiB、TiBN、TiAlN、TiAlN、AlN、AlB、AlB12、Al、ZrC、HfC、VC、NbC、Cr、MoC、TaC、ZrN、HfN、VN、NbN、TaN、CrN、WC、WB、WB、CoWB、WCo21、CoC、W、Mo、Co、Niおよびこれらの相互固溶体などを挙げることができ、より好ましくは、TiN、TiCN、TiC、TiB、AlN、AlB、AlB12、Al、MoC、TaC、TaN、CrN、WC、WB、WB、CoWB、WCo21、CoC、W、Mo、Co、Niおよびこれらの相互固溶体である。
本発明のcBN焼結体に含まれるMo元素量がcBN焼結体全体に対して0.2質量%以上になると、結合相の強度が増加し、cBNと結合相の結合が促進し、cBN粒子同士の結合が促進し、cBN焼結体の耐摩耗性と耐欠損性が共に向上する。しかしながら、Mo元素量がcBN焼結体全体に対して3.0質量%を超えて多くなるとMo化合物やMo系固溶体などへの応力集中やcBN焼結体の熱伝導率の低下により、cBN焼結体の耐摩耗性と耐欠損性が共に低下する。そのためMo元素量を0.2~3.0質量%とした。これを実現するためには、原料粉末中のMo元素量をこの範囲になるように配合すればよい。Mo元素量は好ましくは、0.2~2.5質量%である。なおcBN焼結体に含まれるMo元素量はEDS(エネルギー分散型X線分析装置)またはICP-AES(誘導結合プラズマ発光分光分析装置)などを用いて測定することができる。
本発明のcBN焼結体にNi元素が含まれると、結合相の強度が増加し、cBNと結合相の結合が促進し、cBN粒子同士の結合が促進し、cBN焼結体の耐摩耗性と耐欠損性が共に向上する傾向が見られる。しかしながら、Ni元素量がcBN焼結体全体に対して3.0質量%を超えて多くなるとNi化合物やNi系固溶体などへの応力集中によりcBN焼結体の耐欠損性が低下する傾向が見られる。そのため、Ni元素量は3.0質量%以下であると好ましい。これを実現するためには、原料粉末中のNi元素量をこの範囲になるように配合すればよい。その中でも、本発明のcBN焼結体に含まれるNi元素量がcBN焼結体全体に対して0.2質量%以上になると結合相の強度が増加し、cBNと結合相の結合が促進し、cBN粒子同士の結合が促進し、cBN焼結体の耐摩耗性と耐欠損性が共に向上する効果が明確になるので、0.2~3.0質量%であると好ましく、さらに好ましくは0.5~2.5質量%である。なおcBN焼結体に含まれるNi元素量はEDSまたはICP-AESなどを用いて測定することができる。
本発明のcBN焼結体にTa元素が含まれるとcBN焼結体の耐酸化性が向上し、耐摩耗性に優れる傾向が見られる。しかしながら、本発明のcBN焼結体に含まれるTa元素量がcBN焼結体全体に対して3.5質量%を超えて多くなるとTa化合物やTa系固溶体などへの応力集中により、cBN焼結体の耐欠損性が低下する傾向が見られる。そのため、Ta元素量は3.5質量%以下であると好ましい。これを実現するためには、原料粉末中のTa元素量をこの範囲になるように配合すればよい。その中でも、本発明のcBN焼結体に含まれるTa元素量がcBN焼結体全体に対して0.1質量%以上になるとcBN焼結体の耐酸化性が向上し、耐摩耗性に優れる効果が明確になるので、0.1~3.5質量%であると好ましく、さらに好ましくは0.5~3.0質量%である。なおcBN焼結体に含まれるTa元素量はEDSまたはICP-AESなどを用いて測定することができる。
本発明のcBN焼結体を製造する方法において、原料粉末を粉砕・混合する工程ではWC基超硬合金ボールを使用したボールミル混合を行うと粉砕・混合効率が良く好ましい。しかしながら、WC基超硬合金ボールを使用するとW元素がcBN焼結体に混入する。cBN焼結体に混入したW元素はWC、WB、WB、CoWB、WCo21、CoC、Wなどの形でcBN焼結体の結合相中に存在する。これらのWの金属およびタングステン化合物は切削時の欠損や亀裂の起点となりやすいので、本発明のcBN焼結体に含まれるW元素量はcBN焼結体全体に対して0~6質量%が好ましく、その中でも0~5質量%がさらに好ましく、その中でも0~3質量%がさらに好ましい。なお、本発明のcBN焼結体に含まれるW元素量はEDSまたはICP-AESなどを用いて測定することができる。
本発明のcBN焼結体の不可避的不純物としては、cBN焼結体の製造工程から混入されるFeを挙げることができる。不可避的不純物の合計はcBN焼結体全体に対して0.5質量%以下であり、通常はcBN焼結体全体に対して0.1質量%以下に抑えることができるので、本発明の特性値に影響を及ぼすことはない。なお、本発明においては、本発明のcBN焼結体の特性を損なわない範囲で、cBNと結合相と不可避的不純物の他に、不可避的不純物とはいえない他の成分を少量含有してもよい。
本発明のcBN焼結体の表面に被膜を被覆すると耐摩耗性が向上するので、さらに好ましい。本発明の被膜は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiから選択される少なくとも1種の金属の酸化物、炭化物、窒化物、炭窒化物、硼化物およびこれらの相互固溶体からなる群より選ばれた少なくとも1種からなる。具体的には、TiN、TiC、TiCN、(Ti,Al)N、(Ti,Si)N、(Al,Cr)N、Alなどを挙げることができる。被膜は単層膜または2層以上の積層膜のいずれも好ましく、組成が異なる平均膜厚5~200nmの薄膜を交互に積層した交互積層膜も好ましい。被膜全体の総膜厚は平均膜厚で、0.5μm未満であると耐摩耗性が低下し、20μmを超えると耐欠損性が低下することから、被膜全体の総膜厚は平均膜厚で0.5~20μmであると好ましく、その中でも1~4μmであると、さらに好ましい。
本発明のcBN焼結体工具は、少なくとも刃先部分が本発明のcBN焼結体からなる切削工具である。本発明のcBN焼結体工具全体が本発明のcBN焼結体のみで構成されてもよいが、刃先部分以外が本発明のcBN焼結体と異なる材料、例えば超硬合金、でもよい。例えば、切削工具形状の超硬合金の刃先部分に本発明のcBN焼結体をろう付けして、刃先部分が本発明のcBN焼結体になるように加工した切削工具でもよい。同様に、本発明の被覆cBN焼結体工具は、少なくとも刃先部分が本発明のcBN焼結体の表面に被膜を被覆した本発明の被覆cBN焼結体からなる切削工具である。本発明の被覆cBN焼結体工具全体が本発明の被覆cBN焼結体のみで構成されてもよいが、刃先部分以外が本発明の被覆cBN焼結体と異なる材料、例えば超硬合金や被覆超硬合金、でもよい。例えば、切削工具形状の超硬合金の刃先部分に本発明のcBN焼結体をろう付けして、刃先部分が本発明のcBN焼結体になるように加工し、さらにその表面に被膜を被覆した切削工具でもよい。
本発明のcBN焼結体は、Moを微量添加することで結合相の強度が増し、cBNと結合相の結合や、cBN粒子同士の結合が促進されることから、耐摩耗性および耐欠損性に優れる。そのため、少なくとも刃先部分が本発明のcBN焼結体である本発明のcBN焼結体工具は従来よりも工具寿命を延長できる。その中でも、本発明のcBN焼結体工具を焼入鋼加工用cBN焼結体工具として用いると工具寿命延長の効果が高いので、さらに好ましい。同様に、少なくとも刃先部分が本発明の被覆cBN焼結体である本発明の被覆cBN焼結体工具は従来よりも工具寿命を延長できる。その中でも、本発明の被覆cBN焼結体工具を焼入鋼加工用被覆cBN焼結体工具として用いると工具寿命延長の効果が高いので、さらに好ましい。
本発明のcBN焼結体工具の製造方法の一例を以下に述べる。
[工程1]cBN粉末と、Ti、Zr、Hf、V、Nb、Cr、W、Co、Alの金属、これら金属の少なくとも1種の炭化物、窒化物、炭窒化物、硼化物、酸化物およびこれらの相互固溶体からなる群より選ばれた少なくとも1種からなる結合相形成用粉末と、添加物としてMo金属粉末およびMoC粉末の1種または2種、必要に応じてNi金属粉末、Ta金属粉末およびTaC粉末の1種または2種を用意し、所定の組成になるようにcBN粉末、結合相形成用粉末および添加物を秤量する。
[工程2]結合相形成用粉末及び添加物を、例えば、ボールと有機溶媒とポットとからなる湿式ボールミルを用いて混合し、有機溶媒を蒸発させ、混合粉末を得る。
[工程3]混合粉末を700~1000℃の温度で熱処理して脆性な金属間化合物をつくる反応をさせて脆性のある相にする。
[工程4]脆性のある相を、例えば、ボールと有機溶媒とポットとからなる湿式ボールミルを用いて混合し、細かく粉砕する。
[工程5]工程4で粉砕された粉末にcBN粉末を追加して混合し、これらを均一に分散させる。このとき混合する方法としては、例えば、混合時間1~10時間の湿式ボールミル、混合時間5~120分間の超音波混合などを挙げることができる。
[工程6]工程5で得られた混合粉末を、例えば、Ta、Nb、Mo、Zrなどの金属カプセルに入れ、金属カプセルを超高圧高温発生装置に装填し、圧力6~8GPa、温度1200~1600℃の条件下で焼結して本発明のcBN焼結体を得る。
[工程7]工程6で得られたcBN焼結体を工具に加工して本発明のcBN焼結体工具を得る。
本発明の被覆cBN焼結体工具は、本発明のcBN焼結体工具の表面に従来のCVD法、PVD法により被膜を被覆することで得られる。
本発明のcBN焼結体工具および被覆cBN焼結体工具は、耐摩耗性および耐欠損性に優れる。本発明のcBN焼結体工具および被覆cBN焼結体工具は従来よりも工具寿命を延長できるという効果を奏する。
平均粒径3.0μmのcBN粉末を用意し、結合相形成用粉末として、平均粒径1.5μmのTiN粉末、平均粒径3.1μmのAl粉末を用意し、添加物として平均粒径2.5μmのMo粉末、平均粒径2.5μmのNi粉末、平均粒径4.0μmのTa粉末を用意し、表1に示す配合組成に秤量した。
Figure JPOXMLDOC01-appb-T000001
秤量した原料粉末の内、cBN粉末以外の結合相形成用粉末と添加物をWC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いて混合し、得られた混合粉末を850℃の温度で熱処理して反応させ脆性のある相にした。得られた脆性のある相をWC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いて細かく粉砕した。次に細かく粉砕した脆性のある相の粉末にcBN粉末を加えて、WC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いてさらに6時間混合した。ただし試料番号5については15時間混合した。得られた混合粉末をTaカプセルに入れ、Taカプセルを超高圧高温発生装置に装填し、圧力6GPa、温度1200℃で焼結して発明品と比較品のcBN焼結体を得た。
得られたcBN焼結体の断面組織から、SEM、画像解析装置、EDS、X線回折装置を用いて、cBNの体積%、結合相の体積%とその主な組成、cBN焼結体全体に含まれるMo元素、Ni元素、Ta元素およびW元素の含有量(cBN焼結体全体に対する各元素の質量%)を測定し、その値を表2に示した。
Figure JPOXMLDOC01-appb-T000002
試料番号1~5のcBN焼結体をワイヤ放電加工機で所定の形状にカットしたものを、超硬合金基材にろう付けし、研削仕上げ加工をして、刃先部分がcBN焼結体からなり刃先部分以外が超硬合金からなるISO規格CNGA120408切削インサート形状のcBN焼結体工具を得た。
発明品と比較品のcBN焼結体工具を用いて以下の切削試験を行った。発明品と比較品の工具寿命は表3に示した。
[連続切削試験]
加工形態:旋削加工、
被削材:焼入鋼SCM415H(形状:円柱状)、
切削速度:180m/min、
送り:0.15mm/rev、
切り込み:0.15mm、
雰囲気:湿式、
寿命判定:cBN焼結体工具の逃げ面摩耗幅が0.15mmを超えたとき、もしくは欠損を生じたときを工具寿命とした。
[断続切削試験]
加工形態:旋削加工、
被削材:焼入鋼SCM415H(形状:円柱に2本のV溝を入れた略円柱状)、
切削速度:150m/min、
送り:0.12mm/rev、
切り込み:0.15mm、
雰囲気:乾式、
寿命判定:cBN焼結体工具が欠損したときを工具寿命とした。
Figure JPOXMLDOC01-appb-T000003
表3から、発明品は比較品よりも耐摩耗性および耐欠損性が優れ、発明品は比較品よりも工具寿命が長いことが分かる。
平均粒径3.0μmのcBN粉末を用意し、結合相形成用粉末として、平均粒径1.5μmのTiN粉末、平均粒径3.1μmのAl粉末、平均粒径0.4μmのCo粉末、平均粒径2.0μmのWC粉末を用意し、添加物として平均粒径2.5μmのMo粉末、平均粒径2.5μmのNi粉末、平均粒径4.0μmのTa粉末を用意し、表4に示す配合組成に秤量した。
Figure JPOXMLDOC01-appb-T000004
秤量した原料粉末の内、cBN粉末以外の結合相形成用粉末と添加物をWC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いて混合し、得られた混合粉末を850℃の温度で熱処理して反応させ脆性のある相にした。得られた脆性のある相をWC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いて細かく粉砕した。次に細かく粉砕した脆性のある相の粉末にcBN粉末を加えて、WC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いてさらに6時間混合した。得られた混合粉末をTaカプセルに入れ、Taカプセルを超高圧高温発生装置に装填し、圧力7.5GPa、温度1600℃で焼結して発明品と比較品のcBN焼結体を得た。
得られたcBN焼結体の断面組織から、SEM、画像解析装置、EDS、X線回折装置を用いてcBNの体積%、結合相の体積%とその主な組成、cBN焼結体全体に含まれるMo元素、Ni元素、Ta元素およびW元素の含有量(cBN焼結体全体に含まれる各元素の質量%)を測定し、その値を表5に示した。
Figure JPOXMLDOC01-appb-T000005
試料番号6~15のcBN焼結体をワイヤ放電加工機で所定の形状にカットしたものを、超硬合金基材にろう付けし、研削仕上げ加工をして、刃先部分がcBN焼結体からなり刃先部分以外が超硬合金からなるISO規格CNGA120408切削インサート形状のcBN焼結体工具を得た。
発明品と比較品のcBN焼結体工具を用いて以下の切削試験を行った。発明品と比較品の工具寿命は表6に示した。
[連続切削試験]
加工形態:旋削加工、
被削材:焼入鋼SCM415H(形状:円柱状)、
切削速度:130m/min、
送り:0.15mm/rev、
切り込み:0.15mm、
雰囲気:湿式、
寿命判定:cBN焼結体工具の逃げ面摩耗幅が0.15mmを超えたとき、もしくは欠損を生じたときを工具寿命とした。
[断続切削試験]
加工形態:旋削加工、
被削材:焼入鋼SCM435H(形状:円柱に2本のV溝を入れた略円柱状)、
切削速度:130m/min、
送り:0.15mm/rev、
切り込み:0.15mm、
雰囲気:湿式、
寿命判定:cBN焼結体工具が欠損したときを工具寿命とした。
Figure JPOXMLDOC01-appb-T000006
表6から、発明品は比較品よりも耐摩耗性および耐欠損性が優れ、発明品は比較品よりも工具寿命が長いことが分かる。
平均粒径3.0μmのcBN粉末を用意し、結合相形成用粉末として、平均粒径1.2μmのTiC粉末、平均粒径3.1μmのAl粉末を用意し、添加物として平均粒径2.5μmのMo粉末、平均粒径2.5μmのNi粉末、平均粒径4.0μmのTa粉末を用意し、表7に示す配合組成に秤量した。
Figure JPOXMLDOC01-appb-T000007
秤量した原料粉末の内、cBN粉末以外の結合相形成用粉末と添加物をWC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いて混合し、得られた混合粉末を850℃の温度で熱処理して反応させ脆性のある相にした。得られた脆性のある相をWC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いて細かく粉砕した。次に細かく粉砕した脆性のある相の粉末にcBN粉末を加えて、WC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いてさらに6時間混合した。得られた混合粉末をTaカプセルに入れ、Taカプセルを超高圧高温発生装置に装填し、圧力7GPa、温度1300℃で焼結して発明品と比較品のcBN焼結体を得た。
得られたcBN焼結体の断面組織から、SEM、画像解析装置、EDS、X線回折装置を用いて、cBNの体積%、結合相の体積%とその主な組成、cBN焼結体全体に含まれるMo元素、Ni元素、Ta元素およびW元素の含有量(cBN焼結体全体に対する各元素の質量%)を測定し、その値を表8に示した。
Figure JPOXMLDOC01-appb-T000008
試料番号16~21のcBN焼結体をワイヤ放電加工機で所定の形状にカットしたものを超硬合金基材にろう付けし、研削仕上げ加工をして、刃先部分がcBN焼結体からなり刃先部分以外が超硬合金からなるISO規格CNGA120408切削インサート形状のcBN焼結体工具を得た。得られたcBN焼結体工具を用いて以下の切削試験を行った。cBN焼結体工具の工具寿命は表9に示した。
[連続切削試験]
加工形態:旋削加工、
被削材:焼入鋼SCM415H(形状:円柱状)、
切削速度:150m/min、
送り:0.15mm/rev、
切り込み:0.15mm、
雰囲気:湿式、
寿命判定:cBN焼結体工具の逃げ面摩耗幅が0.15mmを超えたとき、もしくは欠損を生じたときを工具寿命とした。
[断続切削試験]
加工形態:旋削加工、
被削材:焼入鋼SCM435H(形状:円柱に2本のV溝を入れた略円柱状)、
切削速度:130m/min、
送り:0.15mm/rev、
切り込み0.15mm、
雰囲気:乾式、
寿命判定:cBN焼結体工具が欠損したときを工具寿命とした。
Figure JPOXMLDOC01-appb-T000009
表9から、発明品は比較品よりも耐摩耗性および耐欠損性が優れ、発明品は比較品よりも工具寿命が長いことが分かる。
平均粒径3.0μmのcBN粉末を用意し、結合相形成用粉末として、平均粒径0.8μmのTiCN粉末、平均粒径3.1μmのAl粉末を用意し、添加物として平均粒径2.5μmのMo粉末、平均粒径2.5μmのNi粉末、平均粒径4.0μmのTa粉末を用意し、表10に示す配合組成に秤量した。
Figure JPOXMLDOC01-appb-T000010
秤量した原料粉末の内、cBN粉末以外の結合相形成用粉末と添加物をWC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いて混合し、得られた混合粉末を850℃の温度で熱処理して反応させ脆性のある相にした。得られた脆性のある相をWC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いて細かく粉砕した。次に細かく粉砕した脆性のある相の粉末に平均粒径3.0μmのcBN粉末を加えて、WC基超硬合金ボールと有機溶媒とポットとからなる湿式ボールミルを用いてさらに6時間混合した。得られた混合粉末をTaカプセルに入れ、Taカプセルを超高圧高温発生装置に装填し、圧力7.2GPa、温度1400℃で焼結して発明品と比較品のcBN焼結体を得た。
得られたcBN焼結体の断面組織から、SEM、画像解析装置、EDS、X線回折装置を用いてcBNの体積%、結合相の体積%とその主な組成、cBN焼結体全体に含まれるMo元素、Ni元素、Ta元素およびW元素の含有量(cBN焼結体全体に対する各元素の質量%)を測定し、その値を表11に示した。
Figure JPOXMLDOC01-appb-T000011
試料番号22~26のcBN焼結体をワイヤ放電加工機で所定の形状にカットしたものを超硬合金基材にろう付けし、研削仕上げ加工をして、ISO規格CNGA120408切削インサート形状のcBN焼結体工具を得た。試料番号23に関しては、試料番号23のcBN焼結体工具の表面にPVD法により平均膜厚1.3μmの(Al,Cr)N膜を被覆して被覆cBN焼結体工具を得た。得られた試料番号22、24~26のcBN焼結体工具および試料番号23の被覆cBN焼結体工具を用いて以下の切削試験を行った。cBN焼結体工具および被覆cBN焼結体工具の工具寿命は表12に示した。
[連続切削試験]
加工形態:旋削加工、
被削材:焼入鋼SCM415H(形状:円柱状)、
切削速度:130m/min、
送り:0.15mm/rev、
切り込み:0.15mm、
雰囲気:湿式、
寿命判定:cBN焼結体工具、被覆cBN焼結体工具の逃げ面摩耗幅が0.15mmを超えたとき、もしくは欠損を生じたときを工具寿命とした。
[断続切削試験]
加工形態:旋削加工、
被削材:焼入鋼SCM435H(形状:円柱に2本のV溝を入れた略円柱状)、
切削速度:130m/min、
送り:0.15mm/rev、
切り込み0.15mm、
雰囲気:湿式、
寿命判定:cBN焼結体工具、被覆cBN焼結体工具が欠損したときを工具寿命とした。
Figure JPOXMLDOC01-appb-T000012
表12から、発明品は比較品よりも耐摩耗性および耐欠損性が優れ、発明品は比較品よりも工具寿命が長いことが分かる。

Claims (20)

  1. cBN:40~85体積%と、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Co、NiおよびAlから選択される少なくとも1種の金属、これら金属の少なくとも1種の炭化物、窒化物、炭窒化物、硼化物、酸化物およびこれらの相互固溶体からなる群より選ばれた少なくとも1種からなる結合相および不可避的不純物:残部とからなりcBN焼結体に含まれるMo元素量がcBN焼結体全体に対して0.2~3.0質量%であるcBN焼結体を含むcBN焼結体工具。
  2. cBN焼結体に含まれるMo元素量がcBN焼結体全体に対して0.2~2.5質量%である請求項1に記載のcBN焼結体工具。
  3. cBN焼結体に含まれるNi元素量がcBN焼結体全体に対して3.0質量%以下である請求項1または2に記載のcBN焼結体工具。
  4. cBN焼結体に含まれるNi元素量がcBN焼結体全体に対して0.2~3.0質量%である請求項1~3のいずれか1項に記載のcBN焼結体工具。
  5. cBN焼結体に含まれるNi元素量がcBN焼結体全体に対して0.2~2.5質量%である請求項1~4のいずれか1項に記載のcBN焼結体工具。
  6. cBN焼結体に含まれるTa元素量がcBN焼結体全体に対して3.5質量%以下である請求項1~5のいずれか1項に記載のcBN焼結体工具。
  7. cBN焼結体に含まれるTa元素量がcBN焼結体全体に対して0.1~3.5質量%である請求項1~6のいずれか1項に記載のcBN焼結体工具。
  8. cBN焼結体に含まれるTa元素量がcBN焼結体全体に対して0.5~3.0質量%である請求項1~7のいずれか1項に記載のcBN焼結体工具。
  9. cBN焼結体に含まれるW元素量がcBN焼結体全体に対して0~6質量%である請求項1~8のいずれか1項に記載のcBN焼結体工具。
  10. cBN焼結体に含まれるW元素量がcBN焼結体全体に対して0~5質量%である請求項1~9のいずれか1項に記載のcBN焼結体工具。
  11. cBN焼結体に含まれるW元素量がcBN焼結体全体に対して0~3質量%である請求項1~10のいずれか1項に記載のcBN焼結体工具。
  12. 結合相が、TiN、TiCN、TiC、TiB、TiBN、TiAlN、TiAlN、AlN、AlB、AlB12、Al、ZrC、HfC、VC、NbC、Cr、MoC、TaC、ZrN、HfN、VN、NbN、TaN、CrN、WC、WB、WB、CoWB、WCo21、CoC、W、Mo、Co、Niおよびこれらの相互固溶体からなる群より選択された少なくとも1種からなる請求項1~11のいずれか1項に記載のcBN焼結体工具。
  13. 結合相が、TiN、TiCN、TiC、TiB、AlN、AlB、AlB12、Al、MoC、TaC、TaN、CrN、WC、WB、WB、CoWB、WCo21、CoC、W、Mo、Co、Niおよびこれらの相互固溶体からなる群より選択された少なくとも1種からなる請求項1~12のいずれか1項に記載のcBN焼結体工具。
  14. 請求項1~13のいずれか1項に記載のcBN焼結体工具の表面に被膜を被覆した被覆cBN焼結体工具。
  15. 被膜が、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiから選択される少なくとも1種の金属の酸化物、炭化物、窒化物、炭窒化物、硼化物およびこれらの相互固溶体からなる群より選ばれた少なくとも1種からなる請求項14に記載の被覆cBN焼結体工具。
  16. 被膜が、TiN、TiC、TiCN、(Ti,Al)N、(Ti,Si)N、(Al,Cr)NおよびAlからなる群より選ばれた少なくとも1種からなる請求項14または15に記載の被覆cBN焼結体工具。
  17. 被膜が、単層膜または2層以上の積層膜である請求項14~16のいずれか1項に記載の被覆cBN焼結体工具。
  18. 被膜が、組成が異なる平均膜厚5~200nmの薄膜を交互に積層した交互積層膜である請求項14~17のいずれか1項に記載の被覆cBN焼結体工具。
  19. 被膜全体の総膜厚が平均膜厚で0.5~20μmである請求項14~18のいずれか1項に記載の被覆cBN焼結体工具。
  20. 被膜全体の総膜厚が平均膜厚で1~4μmである請求項14~19のいずれか1項に記載の被覆cBN焼結体工具。
PCT/JP2012/052592 2011-02-04 2012-02-06 cBN焼結体工具および被覆cBN焼結体工具 WO2012105710A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/982,718 US20130309468A1 (en) 2011-02-04 2012-02-06 Cbn sintered body tool and coated cbn sintered body tool
JP2012556001A JP5614460B2 (ja) 2011-02-04 2012-02-06 cBN焼結体工具および被覆cBN焼結体工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-022692 2011-02-04
JP2011022692 2011-02-04

Publications (1)

Publication Number Publication Date
WO2012105710A1 true WO2012105710A1 (ja) 2012-08-09

Family

ID=46602907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052592 WO2012105710A1 (ja) 2011-02-04 2012-02-06 cBN焼結体工具および被覆cBN焼結体工具

Country Status (3)

Country Link
US (1) US20130309468A1 (ja)
JP (1) JP5614460B2 (ja)
WO (1) WO2012105710A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084268A (ja) * 2012-10-26 2014-05-12 Sumitomo Electric Hardmetal Corp 立方晶窒化ホウ素焼結体およびその製造方法
CN105363661A (zh) * 2015-09-28 2016-03-02 东莞劲胜精密组件股份有限公司 一种电子产品中框及其制作方法
CN106001976A (zh) * 2016-06-01 2016-10-12 吉林大学 一种用于激光熔覆和气焊的管式焊条及其制备方法
JP2017148930A (ja) * 2015-11-20 2017-08-31 セコ ツールズ アクティエボラーグ コーティングされた切断ツール
CN108611539A (zh) * 2018-06-15 2018-10-02 武汉科技大学 一种复合强化硬质合金及其制备方法
WO2020175598A1 (ja) * 2019-02-27 2020-09-03 三菱マテリアル株式会社 cBN焼結体および切削工具
JP6900590B1 (ja) * 2020-03-24 2021-07-07 昭和電工株式会社 立方晶窒化ホウ素焼結体及びその製造方法、並びに工具
WO2021192509A1 (ja) * 2020-03-24 2021-09-30 昭和電工株式会社 立方晶窒化ホウ素焼結体及びその製造方法、並びに工具
JP2023506581A (ja) * 2020-01-31 2023-02-16 エレメント シックス (ユーケイ) リミテッド 多結晶立方晶窒化ホウ素材料

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126702B1 (ja) * 2011-09-12 2013-01-23 三菱マテリアル株式会社 立方晶窒化ほう素基焼結材料製切削工具
US20150291479A1 (en) * 2014-04-11 2015-10-15 Smith International, Inc. Pcbn composites and methods of making the same
CN104072138B (zh) * 2014-06-18 2015-10-28 河海大学 一种碳化钨-立方氮化硼复合材料及其制备方法
JP6265097B2 (ja) * 2014-10-03 2018-01-24 住友電気工業株式会社 焼結体、焼結体を用いた切削工具
US11135655B2 (en) 2014-11-25 2021-10-05 Kyocera Corporation CBN sintered compact and cutting tool
PL3224222T3 (pl) * 2014-11-26 2019-10-31 Corning Inc Kompozycja kompozytu ceramicznego i sposób jej formowania
WO2017094628A1 (ja) * 2015-12-04 2017-06-08 株式会社タンガロイ 工具および被覆工具
CN108473377A (zh) 2016-11-17 2018-08-31 住友电工硬质合金株式会社 烧结体和包含该烧结体的切削工具
RU2750448C1 (ru) * 2020-07-31 2021-06-28 Общество с ограниченной ответственностью «Микробор Композит» Сырьевая смесь для изготовления крупноразмерной заготовки сверхтвердого композитного материала, крупноразмерная заготовка сверхтвердого композитного материала и способ ее получения
CN115369300B (zh) * 2021-09-01 2023-09-26 弗克森切削技术(苏州)有限公司 一种含AlN和TiB2的Ti(C,N)基金属陶瓷刀具材料及其制备方法
CN115594509A (zh) * 2022-09-27 2023-01-13 中国有色桂林矿产地质研究院有限公司(Cn) 一种含棒晶结构的聚晶立方氮化硼复合材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594458A (en) * 1979-01-13 1980-07-17 Ngk Spark Plug Co Ltd Cubic system boron nitride sintered body and manufacture thereof
JPS6372843A (ja) * 1987-08-28 1988-04-02 Nippon Oil & Fats Co Ltd 切削工具用高密度相窒化ホウ素含有焼結体の製造法
JPH0313539A (ja) * 1989-06-09 1991-01-22 Kobe Steel Ltd 高靭性・高硬度焼結体およびその製法
JPH0320437A (ja) * 1989-06-15 1991-01-29 Toshiba Tungaloy Co Ltd 高密度相窒化ホウ素基焼結体及び複合焼結体
JPH0782031A (ja) 1993-06-28 1995-03-28 Toshiba Tungaloy Co Ltd 立方晶窒化ホウ素含有焼結体およびその製造方法
JPH08104583A (ja) * 1994-08-01 1996-04-23 Sumitomo Electric Ind Ltd 工具用複合高硬度材料
JPH10218666A (ja) 1996-12-03 1998-08-18 Sumitomo Electric Ind Ltd 高圧相型窒化硼素基焼結体
JP2001179508A (ja) * 1999-12-27 2001-07-03 Kyocera Corp 切削工具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145960A (en) * 1981-03-05 1982-09-09 Toshiba Tungaloy Co Ltd High hardness sintered body for cutting
JPH05186844A (ja) * 1992-01-09 1993-07-27 Toshiba Tungaloy Co Ltd 高密度相窒化ホウ素基焼結体
SE516786C2 (sv) * 1994-11-18 2002-03-05 Sandvik Ab PCD- eller PcBN-verktyg för träindustrin
EP1712649B2 (en) * 2004-01-08 2017-11-22 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered compact
DE112006002881T5 (de) * 2005-10-28 2008-10-30 Element Six (Production) (Pty) Ltd. Kubisches Bornitrid aufweisender Presskörper
CN101627139A (zh) * 2006-12-11 2010-01-13 六号元素(产品)(控股)公司 立方氮化硼压块
JPWO2011129422A1 (ja) * 2010-04-16 2013-07-18 株式会社タンガロイ 被覆cBN焼結体
GB201011574D0 (en) * 2010-07-09 2010-08-25 Element Six Ltd PCBN material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594458A (en) * 1979-01-13 1980-07-17 Ngk Spark Plug Co Ltd Cubic system boron nitride sintered body and manufacture thereof
JPS6372843A (ja) * 1987-08-28 1988-04-02 Nippon Oil & Fats Co Ltd 切削工具用高密度相窒化ホウ素含有焼結体の製造法
JPH0313539A (ja) * 1989-06-09 1991-01-22 Kobe Steel Ltd 高靭性・高硬度焼結体およびその製法
JPH0320437A (ja) * 1989-06-15 1991-01-29 Toshiba Tungaloy Co Ltd 高密度相窒化ホウ素基焼結体及び複合焼結体
JPH0782031A (ja) 1993-06-28 1995-03-28 Toshiba Tungaloy Co Ltd 立方晶窒化ホウ素含有焼結体およびその製造方法
JPH08104583A (ja) * 1994-08-01 1996-04-23 Sumitomo Electric Ind Ltd 工具用複合高硬度材料
JPH10218666A (ja) 1996-12-03 1998-08-18 Sumitomo Electric Ind Ltd 高圧相型窒化硼素基焼結体
JP2001179508A (ja) * 1999-12-27 2001-07-03 Kyocera Corp 切削工具

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084268A (ja) * 2012-10-26 2014-05-12 Sumitomo Electric Hardmetal Corp 立方晶窒化ホウ素焼結体およびその製造方法
US20150291478A1 (en) * 2012-10-26 2015-10-15 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body and method for manufacturing the same
US9487449B2 (en) * 2012-10-26 2016-11-08 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body and method for manufacturing the same
CN105363661A (zh) * 2015-09-28 2016-03-02 东莞劲胜精密组件股份有限公司 一种电子产品中框及其制作方法
JP2017148930A (ja) * 2015-11-20 2017-08-31 セコ ツールズ アクティエボラーグ コーティングされた切断ツール
CN106001976A (zh) * 2016-06-01 2016-10-12 吉林大学 一种用于激光熔覆和气焊的管式焊条及其制备方法
CN108611539A (zh) * 2018-06-15 2018-10-02 武汉科技大学 一种复合强化硬质合金及其制备方法
CN108611539B (zh) * 2018-06-15 2019-11-01 武汉科技大学 一种复合强化硬质合金及其制备方法
WO2020175598A1 (ja) * 2019-02-27 2020-09-03 三菱マテリアル株式会社 cBN焼結体および切削工具
JP7377463B2 (ja) 2019-02-27 2023-11-10 三菱マテリアル株式会社 cBN焼結体および切削工具
CN113454047A (zh) * 2019-02-27 2021-09-28 三菱综合材料株式会社 cBN烧结体及切削工具
CN113454047B (zh) * 2019-02-27 2023-04-14 三菱综合材料株式会社 cBN烧结体及切削工具
JP2023506581A (ja) * 2020-01-31 2023-02-16 エレメント シックス (ユーケイ) リミテッド 多結晶立方晶窒化ホウ素材料
JP7265684B2 (ja) 2020-01-31 2023-04-26 エレメント シックス (ユーケイ) リミテッド 多結晶立方晶窒化ホウ素材料
CN113286770A (zh) * 2020-03-24 2021-08-20 昭和电工株式会社 立方晶氮化硼烧结体及其制造方法和工具
KR102373638B1 (ko) 2020-03-24 2022-03-14 쇼와 덴코 가부시키가이샤 입방정 질화붕소 소결체 및 그 제조 방법, 및 공구
US11427512B2 (en) 2020-03-24 2022-08-30 Showa Denko K.K. Cubic boron nitride sintered body and manufacturing method thereof, and tool
TWI747716B (zh) * 2020-03-24 2021-11-21 日商昭和電工股份有限公司 立方氮化硼燒結體及其製造方法,及工具
KR20210119958A (ko) * 2020-03-24 2021-10-06 쇼와 덴코 가부시키가이샤 입방정 질화붕소 소결체 및 그 제조 방법, 및 공구
WO2021192509A1 (ja) * 2020-03-24 2021-09-30 昭和電工株式会社 立方晶窒化ホウ素焼結体及びその製造方法、並びに工具
JP6900590B1 (ja) * 2020-03-24 2021-07-07 昭和電工株式会社 立方晶窒化ホウ素焼結体及びその製造方法、並びに工具

Also Published As

Publication number Publication date
JPWO2012105710A1 (ja) 2014-07-03
US20130309468A1 (en) 2013-11-21
JP5614460B2 (ja) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5614460B2 (ja) cBN焼結体工具および被覆cBN焼結体工具
JP5664795B2 (ja) 立方晶窒化硼素焼結体
JP6634647B2 (ja) 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
WO2011129422A1 (ja) 被覆cBN焼結体
JP5660034B2 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP5305056B1 (ja) 立方晶窒化ほう素基焼結体製切削工具
JP6082650B2 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP6637664B2 (ja) 立方晶窒化硼素焼結体切削工具
JP5447844B2 (ja) 高靭性立方晶窒化ほう素基超高圧焼結材料と切削工具
JP6032409B2 (ja) 立方晶窒化ほう素基超高圧焼結体を工具基体とする切削工具、表面被覆切削工具
JP5559575B2 (ja) サーメットおよび被覆サーメット
JP2019156692A (ja) 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
WO2016084939A1 (ja) 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
JP6843096B2 (ja) 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
JP6283985B2 (ja) 焼結体
JP5407487B2 (ja) 表面被覆切削工具
JP2011140414A (ja) 焼結体および焼結体を用いた切削工具
JP6365228B2 (ja) 焼結体
JP7400692B2 (ja) 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
JP4244108B2 (ja) すぐれた耐チッピング性を有する立方晶窒化ほう素基焼結材料製切削工具切刃片の製造方法
CN117326873A (zh) 立方氮化硼烧结体和涂覆立方氮化硼烧结体
JP4457870B2 (ja) 難削材の高速切削ですぐれた耐摩耗性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削チップ
JP2024033530A (ja) 立方晶窒化硼素焼結体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556001

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13982718

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012742619

Country of ref document: EP