WO2021192509A1 - 立方晶窒化ホウ素焼結体及びその製造方法、並びに工具 - Google Patents

立方晶窒化ホウ素焼結体及びその製造方法、並びに工具 Download PDF

Info

Publication number
WO2021192509A1
WO2021192509A1 PCT/JP2021/000951 JP2021000951W WO2021192509A1 WO 2021192509 A1 WO2021192509 A1 WO 2021192509A1 JP 2021000951 W JP2021000951 W JP 2021000951W WO 2021192509 A1 WO2021192509 A1 WO 2021192509A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
boron nitride
cubic boron
cbn
nitride sintered
Prior art date
Application number
PCT/JP2021/000951
Other languages
English (en)
French (fr)
Inventor
巧 中島
山田 二郎
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020217020575A priority Critical patent/KR102373638B1/ko
Priority to JP2021521436A priority patent/JP6900590B1/ja
Priority to CN202180001763.6A priority patent/CN113286770B/zh
Priority to US17/420,260 priority patent/US11427512B2/en
Priority to EP21733042.2A priority patent/EP3907206B8/en
Priority to PL21733042.2T priority patent/PL3907206T3/pl
Publication of WO2021192509A1 publication Critical patent/WO2021192509A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Definitions

  • the present invention relates to a cubic boron nitride sintered body, a method for producing the same, and a tool for cutting and grinding.
  • Cubic boron nitride (hereinafter abbreviated as cBN) is a substance having hardness similar to that of diamond, and a cBN sintered body obtained by sintering cBN particles as a main component has wear resistance and fracture resistance. It is a material that has both of the above characteristics. Therefore, the cBN sintered body is mainly used as a cutting tool for difficult-to-cut materials such as high-hardness steel. Then, the cBN sintered body is being improved in order to meet the demand for further improvement of wear resistance and fracture resistance according to the purpose of cutting and various usage modes of cutting tools.
  • the ratio of the weight of W to the total weight of W, Co and Ni is 0.2 to 0.6 for the metal components W, Co and Ni existing as compounds in the cBN sintered body.
  • the ratio of the weight of Co to the total weight of Co and Ni is 0.6 to 0.95, so that the cBN sintered body having excellent strength and heat resistance can be obtained.
  • the ratio of the XRD intensity of the B 6 Co 21 W 2 (420) plane to the X-ray diffraction (XRD) intensity of the cBN (111) plane is 0.10 to 0.40. It is described that a cBN sintered body having a high content and a low specific resistance can be obtained.
  • Patent Document 3 since the XRD peak height of the TiB 2 (101) plane is smaller than 12% of the XRD peak height of the cBN (111) plane, the decrease in fracture resistance of the cBN sintered body is suppressed. It is stated that it will be done.
  • CBN tool A tool using a cBN sintered body (hereinafter, abbreviated as CBN tool).
  • CBN tool A tool using a cBN sintered body (hereinafter, abbreviated as CBN tool).
  • the required performance for is also becoming stricter.
  • a CBN tool in which the surface of a cBN sintered body is coated with a ceramic coating film having excellent heat resistance such as TiN, TiAlN, TiCN, CrAlN, etc. is also used.
  • the adhesion to the ceramic coating film is not always sufficient.
  • the ceramic coating film peels off from the surface of the cBN sintered body, and this peeled part Therefore, there is a problem that abnormal wear, chipping, and chipping occur.
  • PVD physical vapor deposition
  • the present invention has been made to solve the above problems, and cBN sintering has excellent wear resistance and fracture resistance, and the surface has excellent adhesion to a ceramic coating film. It is an object of the present invention to provide a body, a method for manufacturing the same, and a tool.
  • the present invention is a cBN sintered body in which the cBN content is increased, a compounding raw material containing a Ni source and cBN are mixed and sintered, and W 2 Ni x Co (1-x) B 2 is produced in the bonding phase. According to the above, in addition to excellent wear resistance and fracture resistance, it is based on the finding that peeling of the ceramic coating film covering the surface is suppressed.
  • the present invention provides the following [1] to [9].
  • [6] The method for producing a cubic boron nitride sintered body according to any one of the above [1] to [5], which includes an Al source, a Ti source, a Ni source, a W source, and a Co source.
  • the tool according to the above [7] which is used for cutting or grinding.
  • a cBN sintered body having excellent wear resistance and fracture resistance and also having excellent adhesion to a ceramic coating film. Therefore, by using the cBN sintered body of the present invention, it is possible to extend the life of the CBN tool even in the grinding of difficult-to-cut materials, and by extension, the processing cost in cutting and grinding of interrupted parts and high-hardness steel. Can be reduced.
  • XRD X-ray diffraction
  • the cBN sintered body of the present invention a method for producing the same, and an embodiment of a tool using the cBN sintered body will be described.
  • the cBN sintered body of the present invention contains 60 to 90% by volume of cBN, and the balance is the bonded phase. Then, the bonding phase is at least one of Al, a nitride, a boronide and an oxide, and at least one of a carbide, a nitride, a carbonitride and a boroide of Ti, according to the following formula (1).
  • the bonding phase is at least one of Al, a nitride, a boronide and an oxide, and at least one of a carbide, a nitride, a carbonitride and a boroide of Ti, according to the following formula (1).
  • Such a cBN sintered body has excellent wear resistance and fracture resistance, and good adhesion to the ceramic coating film covering the surface can be obtained.
  • the content of cBN in the cBN sintered body of the present embodiment is 60.0 to 90.0% by volume, preferably 60.0 to 85.0% by volume, and more preferably 65.0 to 80.0. Volume%.
  • the content is 60.0% by volume or more, the cBN sintered body can be used even when minute cracks occur while taking advantage of the excellent characteristics of cBN such as high hardness, high oxidation resistance and high thermal conductivity. Inward extension is suppressed and good fracture resistance is obtained.
  • the content is 90.0% by volume or less, aggregation of cBN particles is suppressed and cBN particles are easily sintered without falling off, so that good wear resistance can be obtained.
  • the content of cBN in the cBN sintered body is a value in which the occupied area ratio of cBN is regarded as the volume content based on the observation image of the mirror-polished surface of the cBN sintered body by a scanning electron microscope (SEM). Is. Specifically, it is obtained by the method described in the following examples.
  • the cBN particles in the cBN sintered body of the present embodiment preferably have a peripheral length envelopment degree of 0.600 to 0.900, more preferably 0.700 to 0.880, and further preferably 0.750. It is ⁇ 0.850.
  • the peripheral length envelopment degree is a parameter related to the particle shape, represents the ratio of the envelopment peripheral length to the particle peripheral length, and is an index of the unevenness of the particle surface. The closer the peripheral length enveloping degree is to 1, the less uneven the particle surface is, and the smoother the contour is. Further, the smaller the peripheral length enveloping degree, the more uneven the particle surface tends to be, and the contour tends to be rough or the particle tends to be distorted.
  • the peripheral length envelopment degree of the cBN particles is small, the interfacial strength between the cBN particles and the bonded phase is high, the cBN particles are less likely to be shed, and the cBN sintered body is less likely to be cracked. Further, even when a ceramic coating film is formed on the surface of such a cBN sintered body by applying a high bias voltage by the PVD method, for example, cBN particles are less likely to fall off, which is good with the ceramic coating film. Good adhesion can be obtained.
  • the peripheral length enveloping degree is 0.600 or more, the excessive reaction between the cBN particles and the constituent raw materials of the bonded phase is suppressed, and the high hardness and excellent wear resistance which are the original characteristics of the cBN particles are sufficient. It is demonstrated in. Further, when the peripheral length envelopment degree is 0.900 or less, the cBN particles do not fall off and the sintering reaction with the constituent raw materials of the bonded phase proceeds appropriately, so that good wear resistance and fracture resistance are obtained. In addition, good adhesion to the ceramic coating film can be obtained.
  • the peripheral length envelopment degree of the cBN particles in the cBN sintered body is based on the observation image of the mirror-polished surface of the cBN sintered body by SEM, and the peripheral length LA of 100 cBN particles and the envelopment circumference.
  • the length LB is measured, LB / LA is calculated, and the value obtained by arithmetically averaging these is used.
  • the contour of one cBN particle in the observation image by SEM is a
  • the total length of the contour a is the peripheral length LA.
  • the circumference connecting the convex portions of the contour a is b
  • the total length of the circumference b is the envelope peripheral length LB.
  • the perimeter length envelope is specifically determined by the method described in the following Examples.
  • the cBN particles in the cBN sintered body of the present embodiment have an average particle size of preferably 1.0 to 10.0 ⁇ m, more preferably 1.0 to 6.0 ⁇ m, and even more preferably 2.0 to 5.0 ⁇ m. Is.
  • the average particle size of the cBN particles in the cBN sintered body referred to in the present specification is determined by determining the area equivalent diameter of 100 cBN particles based on the observation image of the mirror-polished surface of the cBN sintered body by SEM.
  • the particle size is defined as the cumulative area of 50% of the cumulative distribution.
  • the rest of the cBN in the cBN sintered body of this embodiment is the bonded phase.
  • the bonding phase is at least one of Al nitride, Al boride and Al oxide, and at least one of Ti carbide, Ti nitride, Ti carbonitride and Ti boride. It contains a heel and a compound A represented by the following formula (1). W 2 Ni x Co (1-x) B 2 (0.40 ⁇ x ⁇ 1) (1)
  • the bonded phase has a high bonding force with cBN, suppresses the generation and elongation of cracks in the cBN sintered body, and brings about excellent fracture resistance.
  • the compound constituting the binding phase contains TiN, TiCN, TiB 2 , AlN, Al 2 O 3, and compound A, and it is also preferable that W 2 Co 21 B 6 is contained.
  • Each compound constituting the bonded phase shall be confirmed by qualitative analysis by the XRD method for the cBN sintered body. Specifically, the qualitative analysis of the cBN sintered body is performed by collation with an existing inorganic material database as shown in the following examples.
  • Compound A plays a role of firmly adhering the bonded phase to the cBN particles and promoting densification of the cBN sintered body.
  • x representing the ratio of Ni to Co in compound A is 0.40 ⁇ x ⁇ 1, preferably 0.45 ⁇ x ⁇ 0.95, and more preferably 0.50 ⁇ x ⁇ . It is 0.90.
  • x is 0.40 or more, a sufficient amount of compound A is formed in the bonded phase to appropriately densify the cBN sintered body. If x is less than 1, a cBN sintered body having high hardness can be easily obtained by forming compound A, which is a composite compound containing Co and Ni in the bonded phase.
  • Compound A can promote reaction sintering in the bonded phase and between the bonded phase and the cBN particles, and can increase the interfacial strength between the cBN particles and the bonded phase, but is inferior in hardness to cBN and the crystal grows coarsely. It is preferable not to use too much, and it is preferable not to use too much from the viewpoint of good wear resistance and fracture resistance of the cBN sintered body. Therefore, compound A is preferably contained in an amount ratio within a predetermined range with respect to cBN. In the present invention, the preferable amount ratio of Compound A to cBN is determined based on the diffraction peak intensity of the XRD spectrum of the cBN sintered body.
  • the ratio IA of the diffraction peak intensity IA assigned to the (112) plane of compound A and the diffraction peak intensity IB attributed to the (111) plane of cBN. / IB is preferably 0.330 to 0.750, more preferably 0.350 to 0.730, and even more preferably 0.410 to 0.700. Since the peak intensity in the XRD spectrum is affected not only by the amount of crystal phase formed but also by the crystallinity and orientation of the particles in the sintered body, the diffraction peak intensity ratio in the present invention is not necessarily cBN sintered. It should be noted that it does not always correspond to the composition ratio in the body.
  • the cBN sintered body preferably contains TiB 2 as a boride of Ti, and the content of TiB 2 is the same as that of compound A, such as the interfacial strength between the cBN particles and the bonded phase and the cBN sintered body. From the viewpoint of wear resistance, it is preferably within the range of a predetermined amount ratio with respect to cBN. In the present invention, the preferred amount ratio of TiB 2 to cBN is determined based on the diffraction peak intensity of the XRD spectrum for the cBN sintered body.
  • the ratio IC of the diffraction peak intensity IC assigned to the (101) plane of TiB 2 and the diffraction peak intensity IB assigned to the (111) plane of cBN / IB is preferably 0.140 to 0.750, more preferably 0.200 to 0.750, and even more preferably 0.250 to 0.700.
  • TiB 2 It shall be regarded as the diffraction peak attributed to the (101) plane of.
  • the bound phase may contain other compounds other than the Al compound, Ti compound and compound A as described above.
  • composite oxides of Al and Ti and borides of Group 4-6 transition metal elements ZrB 2 , ZrB 12 , HfB 2 , HfB, HfB 12 , VB 2 , V 3 B 4 , V 3 B 12 , VB, V 5 B 6, V 2 B 2, NbB 2, Nb 3 B 2, NbB, TaB 2, Ta 2 B, Ta 3 B 2, TaB, Ta 3 B 4, CrB, CrB 4, Cr 2 B, Cr 2 B 3, Cr 5 B 3, CrB 2, MoB, Mo 2 B 5, MoB 4, Mo 2 B, MoB 2, WB, W 2 B, WB 4), nitrides (ZrN x (0 ⁇ x ⁇ 1), Hf 3 N 2 , HfN x (0 ⁇ x ⁇ 1), Hf 4 N 3 , VN x (0 ⁇ x ⁇ 1), V 2 N, NbN, Nb 4 N 3 , Nb
  • each of the Group 4 to 6 transition metal elements other than Ti and W in the cBN sintered body is preferably as small as possible, more preferably 1000 mass ppm or less, still more preferably 100 mass ppm or less. Is. Further, for example, it may contain unavoidable impurities that are derived from a compounding raw material or are mixed in a manufacturing process such as contamination from a crushing container. Examples of the unavoidable impurities include Li, Mg, Ca, Al, Si, Ti, C, B, S, P, Ga, Co, Ni, Mn, Fe, Cl, W, and compounds thereof. It may also include those that overlap with the other compounds mentioned above.
  • the cBN sintered body of the present embodiment preferably has an electrical resistivity at 25 ° C. of 1.0 ⁇ 10 -5 to 5.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, more preferably 1.0 ⁇ 10 ⁇ . It is 5 to 1.0 ⁇ 10 -2 ⁇ ⁇ cm. If the electrical resistance of the cBN sintered body is within the above range, for example, even when a high bias voltage is applied by a physical vapor deposition (PVD) method and the surface of the cBN sintered body is coated with a ceramic coating film. , It is preferable to obtain good adhesion to the ceramic coating film.
  • the electrical resistivity of the cBN sintered body referred to in the present invention is specifically a value measured by a four-probe method for a measurement sample prepared as shown in the following examples.
  • the cBN sintered body of the present invention preferably has a high hardness, and specifically, JIS Z 2244, from the viewpoint that it can be suitably used as a CBN tool for cutting of high hardness steel and the like.
  • the Vickers hardness measured under the conditions of a load of 9.8 N and a holding time of 15 seconds by a method according to 2009 is preferably 2950 or more, more preferably 3000 or more, still more preferably 3100 or more.
  • the cBN sintered body of the present embodiment is a step of mixing and pulverizing a compounding raw material containing an Al source, a Ti source, a Ni source, a W source and a Co source and a compound containing cBN powder to obtain a raw material mixture (1).
  • the cBN sintered body of the present embodiment can be preferably obtained.
  • a compounding raw material containing an Al source, a Ti source, a Ni source, a W source and a Co source and a compound containing cBN powder are mixed and pulverized to obtain a raw material mixture.
  • cBN powder for example, cBN particles having a purity of 99.9% or more obtained by ultrahigh pressure and high temperature synthesis of 3 GPa or more and 1200 ° C. or more are finely pulverized to adjust the particle size and particle shape. ..
  • a crusher such as jaw crusher crushing, jet mill crushing, roll breaker crushing, vibration mill crushing, ball mill crushing, pot mill crushing, planetary ball mill crushing, and bead mill crushing can be used.
  • the cBN powder preferably has a particle size (hereinafter referred to as D50) at a cumulative volume of 50% in the volume distribution of the particle size measured by the laser diffraction / scattering method of 0.3 to 10.0 ⁇ m. , More preferably 1.0 to 8.0 ⁇ m, still more preferably 2.0 to 5.0 ⁇ m.
  • D50 particle size
  • the cBN powder preferably has a particle size (hereinafter referred to as D50) at a cumulative volume of 50% in the volume distribution of the particle size measured by the laser diffraction / scattering method of 0.3 to 10.0 ⁇ m. , More preferably 1.0 to 8.0 ⁇ m, still more preferably 2.0 to 5.0 ⁇ m.
  • the particle shape of the cBN powder preferably has a circularity of 0.910 to 0.950, more preferably 0.920 to 0.950, and even more preferably 0.925 to 0.945.
  • the circularity is 0.910 or more, the fluidity of the raw material mixture is good, the reaction at the interface between the cBN powder and the bonded phase proceeds appropriately, and a uniform sintered body can be easily obtained. Further, when the circularity is 0.950 or less, an appropriate contact state between the cBN powder and the bonded phase is ensured, and the sintering reaction easily proceeds satisfactorily.
  • the volume occupied by particles having a circularity of 0.900 or less is preferably 25.0% by volume or less from the viewpoint of uniform progress of the sintering reaction when obtaining a cBN sintered body. It is more preferably 5.0 to 20.0% by volume, still more preferably 10.0 to 18.0% by volume.
  • the circularity is an index showing how close a particle is to a sphere, and is based on the definition of JIS Z 8890: 2017. In a two-dimensional image of a particle, when S is the projected area and L is the perimeter, it is represented by 4 ⁇ S / L 2. The closer the shape in the two-dimensional image is to a circle, the closer the circularity value is to 1.
  • the circularity of the cBN powder referred to in the present specification is an arithmetic mean value of the circularity of about 1000 particles of the cBN powder. Specifically, it can be measured with a flow-type particle image analyzer as shown in the following examples.
  • the Al source, Ti source, Ni source, W source and Co source form a part of the bonded phase of the cBN sintered body, and may be an element alone or a compound, respectively.
  • one that produces TiN, TiCN, TiB 2 , AlN, Al 2 O 3 and compound A in the bonding phase by sintering when obtaining a cBN sintered body is used.
  • the compounding raw material for example, a combination of TiN, TiAl 3 , WC, Co, Ni and B can be used. From the viewpoint of homogenizing the composition of the cBN sintered body, each raw material powder used as the compounding raw material preferably has a particle size equal to or smaller than that of the cBN powder, and more preferably D50 is 5.
  • the compounded raw materials contain Group 4 to 6 transition metal elements other than Ti and W and other unavoidable impurities due to the origin of each raw material powder or contamination in the manufacturing process. In some cases.
  • the compounding raw material and compounded with cBN powder When, for example, a combination of TiN, TiAl 3 , WC, Co, Ni and B is used as the compounding raw material and compounded with cBN powder, a total of 100 of these compounding components are obtained in order to obtain the cBN sintered body.
  • the blending amount of the cBN powder in the mass% is preferably 65.00 to 97.00 mass%, more preferably 67.00 to 95.00 mass%, still more preferably 70.00 to 92.00 mass%. %.
  • the amount of TiN compounded in the compounded raw material may be larger than the total amount of TiAl 3, WC, Co and B from the viewpoint of improving Vickers hardness and acid resistance. More preferred.
  • the compounding amount of WC is 1.00 to 5.00% by mass in the total 100% by mass of the compounding components. It is preferable, more preferably 1.00 to 3.00% by mass, still more preferably 1.50% by mass or more and less than 3.0% by mass.
  • the blending amount of Co is preferably 0.10 to 5.00% by mass, more preferably 0.15 to 2.00% by mass, and further preferably 0.20 to 0.50% by mass.
  • the blending amount of Ni is preferably 0.10 to 15.00% by mass, more preferably 0.15 to 12.00% by mass, and further preferably 0.20 to 10.00% by mass.
  • the blending amount of B is preferably 0 to 10.00% by mass, more preferably 0 to 7.00% by mass, and further preferably 0 to 5.00% by mass.
  • the raw material mixture obtained by mixing and pulverizing the compounded raw material and the compound containing the cBN powder may be a dry pulverized version of the compounded raw material and the cBN powder. From the viewpoint of homogenization of mixing, it is preferable that the mixed slurry prepared by wet pulverization using a dispersion medium is dried. In this case, for example, acetone, hexane, 2-propanol, ethanol, heptane, etc. can be mixed and pulverized in a planetary ball mill as a dispersion medium, and since cBN has a high hardness, a cemented carbide ball can be used. It is preferable to use it.
  • Examples of the method for drying the mixed slurry include static drying, vacuum drying, vacuum drying and the like in an inert gas atmosphere such as an inert gas such as Ar , N 2 gas, and H 2 / Ar mixed gas. ..
  • static drying it is preferable to carry out the drying at a temperature of 70 to 100 ° C. for 5 hours or more for sufficient drying.
  • the sufficiently dried raw material mixture obtained in the step (1) is heat-treated at a temperature of 500 to 800 ° C. to degas to obtain a heat-treated powder.
  • the heat treatment is preferably performed in a vacuum atmosphere from the viewpoint of efficiently performing the degassing treatment, and more preferably the pressure is 1.0 ⁇ 10 -3 Pa or less.
  • the degassing treatment before firing in the production process of the cBN sintered body is usually performed at 1000 ° C. or higher, but in the present invention, from the viewpoint of uniform progress of reaction sintering of the bonded phase and densification of the sintered body. Therefore, the temperature of the heat treatment is set to 800 ° C. or lower.
  • the temperature of the heat treatment is set to 500 ° C. or higher.
  • the temperature of the heat treatment for degassing is more preferably 550 to 750 ° C, still more preferably 600 to 700 ° C.
  • the heat treatment time is appropriately set according to the amount of the raw material mixture to be treated, the type of the dispersion medium used in the step (1), and the like, but is usually preferably 0.1 to 10 hours. It is preferably 1 to 3 hours.
  • the heat-treated powder obtained in the step (2) is pressure-heat-treated under an inert gas atmosphere at a pressure of 3.0 GPa or more and a temperature of 1200 to 1500 ° C. to obtain a cBN sintered body.
  • the cBN sintered body of the present embodiment can be preferably obtained.
  • the maximum pressure in the pressure heat treatment is preferably 3.5 GPa or more, more preferably 4.0 GPa or more.
  • the maximum temperature in the pressure heat treatment is preferably 1250 to 1500 ° C, more preferably 1300 ° C to 1500 ° C.
  • the atmosphere during handling of the heat treatment powder and during the pressure heat treatment may be an inert gas atmosphere.
  • the inert gas include Ar gas and N 2 gas. These gases may be used alone or in combination of two or more.
  • the tool of the present embodiment contains the cBN sintered body of the present invention as a constituent material.
  • the cBN sintered body of the present invention has high hardness and excellent wear resistance and fracture resistance, it is a material suitable for tools, particularly tools for cutting and grinding. Is. That is, as a CBN tool, it can exhibit the above-mentioned excellent characteristics.
  • the surface of the cBN sintered body of the present invention is excellent in adhesion to the ceramic coating film (coating), and the coating can be made difficult to peel off. Therefore, even when the cBN sintered body of the present invention is applied to cutting or grinding intermittent parts such as gear end faces and pinholes of high-hardness steel, the ceramic coating film is hard to peel off and the life of the coating tool is extended. Can also be planned.
  • Examples of the material of the ceramic coating film include TiN, TiAlN, TiCN, CrAlN and the like. Of these, TiAlN and CrAlN are preferable from the viewpoint of oxidation resistance and the like, and TiAlN is preferable from the viewpoint of cost and the like.
  • cBN particles (“BN-V”, manufactured by Showa Denko KK) are finely pulverized and classified by centrifugation and sedimentation to prepare cBN (1) to (3) shown below, and compared with the following examples. It was used as a raw material for cBN powder in the production of the cBN sintered body in the example.
  • CBN (1) D50 2.8 ⁇ m, circularity 0.943, circularity (one particle) 0.900 or less
  • cBN (1) to (3) and D50 of other raw material powders used for producing the cBN sintered body are used in a particle size analysis measuring device (“Microtrack (registered trademark) MT3300”, manufactured by Nikkiso Co., Ltd.). It was obtained from the particle size distribution measured in the above. Further, the circularity of cBN (1) to (3) can be used for image analysis of about 1000 particles (1000 or more) using a flow type particle image analyzer (“FPIA-3000”, manufactured by Sysmex Corporation). Was measured. The ratio of the number of particles having a circularity (one particle) of 0.900 or less is the cumulative number of particles with the circularity of each particle on the horizontal axis for about 1000 particles whose circularity was measured by the image analysis. Is the ratio of the cumulative number of particles at a circularity of 0.900 in the circularity distribution graph in which is represented by the vertical axis.
  • a particle size analysis measuring device (“Microtrack (registered trademark) MT3300”, manufactured by Nikkiso Co.,
  • a compounded raw material (1) prepared by previously mixing a predetermined cBN powder raw material with TiN (D50 1.2 ⁇ m) and TiAl 3 (D50 19.8 ⁇ m) at a mass ratio of 3: 1 and the compounded raw material (1).
  • Other compounding materials other than 1) (WC (D50: 0.5 ⁇ m), Co (D50: 2.8 ⁇ m), Ni (D50: 0.4 ⁇ m), B (D50: 0.4 ⁇ m)) are shown in the table below.
  • a cBN sintered body (diameter: about 60 mm, thickness). Approximately 4 mm) was produced.
  • the upper surface of the cBN sintered body (the contact surface with the cemented carbide support plate is the lower surface) was ground with a # 400 diamond grindstone to prepare a sintered body sample for evaluation.
  • Comparative Example 4 In Comparative Example 2, no heat treatment was performed during degassing after the slurry of the raw material mixture was dried, and the dry powder was subjected to pressure heat treatment in the same manner as in Comparative Example 2, but a flat plate-shaped cBN sintered body was used. could not be obtained.
  • the sintered body sample was mirror-polished, and a reflected electron image was taken with an SEM (“S-5500”, manufactured by Hitachi High-Technologies Corporation) at a magnification of 2000 times.
  • SEM S-5500
  • the captured image has a black part, a white part, and a gray part, and when energy dispersive X-ray spectroscopy (EDX) is performed on each part, the black part is cBN, and the white part and the gray part are the coupling phase. It was confirmed that.
  • the captured image is binarized with image processing software, the black part representing the cBN particles and the white part representing the bound phase are confirmed, and the area ratio of the black part to the entire visual field area of the binarized image is obtained.
  • the arithmetic average value for the three fields was regarded as the volume ratio of the cBN particles.
  • the photographed image of SEM is shown in FIG. 4A, and the binarized image thereof is shown in FIG. 4B.
  • the size of one visual field is 64.0 ⁇ m in width and 44.6 ⁇ m in length, and the total area of three visual fields is 8563.2 ⁇ m 2 .
  • ⁇ Perimeter Envelope> In the same method as the measurement of ⁇ cBN content>, a reflected electron image was taken at a magnification of 10000 times, and in the binarized image, the peripheral length of any 100 black parts (100 cBN particles).
  • LB / LA was calculated by measuring LA and the enveloping circumference LB, and the arithmetic average value thereof was taken as the circumference length enveloping degree.
  • the measured XRD pattern was collated with an inorganic material database (using software "X'pert High Score Plus").
  • the composition of the sintered body was specified based on the result of XRD analysis with reference to the result of elemental analysis by inductively coupled plasma emission spectroscopy (ICP-AES).
  • the sintered body composition shown in Table 1 below is a component detected by XRD analysis.
  • cBN, TiN, TiCN, TiB 2 , AlN and Al 2 O 3 are contained in the sintered body composition.
  • the components confirmed other than these are as shown in Table 1.
  • the amount of Ni and the amount of Co were obtained from the amount of peak shift and the lattice constant in the XRD pattern, and the result of elemental analysis by ICP-AES, and the value of x was specified.
  • ⁇ Vickers hardness> The Vickers hardness of the mirror-polished sintered body sample was measured under the conditions of a load of 9.8 N and a holding time of 15 seconds by a method according to JIS Z 2244: 2009.
  • ⁇ Electrical resistivity> From the sintered body for evaluation, it is cut out to 35 mm ⁇ 20 mm with an electric discharge machine, and further, the contact surface (lower surface) side with the cemented carbide support substrate is removed with a thickness of 100 ⁇ m or more, and then polished to be a measurement sample. (35 mm ⁇ 20 mm, thickness 0.80 mm, surface roughness Rz of 0.4 or less) was prepared. The electrical resistance value of the measurement sample was measured by a four-probe method at room temperature (25 ° C.) with a resistivity meter (“Lorester-GX”, manufactured by Mitsubishi Chemical Analytical Co., Ltd .; PSP probe).
  • a cutting tool of ISO standard CNGA120408 was produced from the sintered body for evaluation, a TiAlN coating film (coating film) was formed by the PVD method, and a coating cutting tool was produced. The film thickness of the coating film was measured by observing the cross section with SEM. Using this coated cutting tool, the work material shown in the following (Test 1) or (Test 2) is turned around the outer circumference (cutting speed 150 m / min, depth of cut 0.20 mm, feed amount 0.10 mm / rev). Was done.
  • Test 1 As a work material, high carbon chrome bearing steel (JIS standard SUJ2; hardness (HRC) 60 to 64) on the peripheral surface of a round bar with a diameter of 45 mm and a length of 200 mm, three at equal intervals in the circumferential direction, longitudinal A total of 24 pinholes having a diameter of 5 mm and a depth of 10 mm were formed at equal intervals in the direction, and the processing time was set to 10 minutes.
  • JIS standard SUJ2 hardness (HRC) 60 to 64
  • (Test 2) As a work material, a round bar of alloy tool steel for cold dies (JIS standard SKD11; hardness HRC60 to 64) having a diameter of 70 mm and a length of 300 mm was used, and the processing time was set to 15 minutes. In addition, (Test 2) was performed only for Examples 11 to 15 and Comparative Examples 6 to 10.
  • the cBN sintered bodies of Examples 1 to 15 have a bonded phase containing TiB 2 and W 2 Ni x Co (1-x) B 2 (Compound A).
  • a coating tool having a large Vickers hardness, a low electrical resistivity, and a high adhesion of the coating film was obtained even when a high bias voltage was applied during film formation by the PVD method. It is considered that this is because the formation of the bonded phase as described above promotes the densification of the sintered body and the cBN particles are firmly held without falling off.
  • the coating tool according to the above-described embodiment even when a high-hardness steel having a pinhole on the peripheral surface is machined, the coating film does not peel off and no tool chipping occurs. It was confirmed that excellent wear resistance can be obtained.
  • compound A was not contained in the bonded phase, and even if the cBN content was the same, the Vickers hardness was inferior to that of the examples. Was there.
  • the coating tools according to these comparative examples tended to have a tendency for the coating to peel off and to wear easily.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

優れた耐摩耗性及び耐欠損性を有しつつ、表面がセラミックスコーティング膜との密着性にも優れた立方晶窒化ホウ素焼結体及びその製造方法、並びに工具を提供する。本発明の立方晶窒化ホウ素焼結体は、立方晶窒化ホウ素を60.0~90.0体積%含み、残部が結合相であり、前記結合相は、Alの、窒化物、ホウ化物及び酸化物のうちの少なくともいずれかと、Tiの、炭化物、窒化物、炭窒化物及びホウ化物のうちの少なくともいずれかと、下記式(1)で表される化合物とを含有する。 W2NixCo(1-x)B2 (0.40≦x<1) (1)

Description

立方晶窒化ホウ素焼結体及びその製造方法、並びに工具
 本発明は、立方晶窒化ホウ素焼結体及びその製造方法、並びに、切削や研削用の工具に関する。
 立方晶窒化ホウ素(以下、cBNと略称する。)は、ダイヤモンドに準じた硬さを有する物質であり、cBN粒子を主成分として焼結させたcBN焼結体は、耐摩耗性及び耐欠損性の両特性を兼ね備えた材料である。このため、cBN焼結体は、主に、高硬度鋼等の難削材の切削工具に利用されている。
 そして、切削加工の目的や切削工具の様々な使用態様等に応じて、耐摩耗性及び耐欠損性のさらなる向上の要求に応えるべく、cBN焼結体の改良が進められている。
 例えば、特許文献1に、cBN焼結体中に化合物として存在する金属成分W、Co及びNiについて、W、Co及びNiの合計重量に対するWの重量の比を0.2~0.6、かつ、Co及びNiの合計重量に対するCoの重量の比を0.6~0.95とすることより、強度及び耐熱性に優れたcBN焼結体になることが記載されている。
 また、特許文献2に、cBN(111)面のX線回折(XRD)強度に対するB6Co212(420)面のXRD強度の比が0.10~0.40であることにより、cBN含有量が多く、比抵抗が低いcBN焼結体が得られることが記載されている。
 また、特許文献3に、TiB2(101)面のXRDピーク高さが、cBN(111)面のXRDピーク高さの12%より小さいことにより、cBN焼結体の耐欠損性の低下が抑制されることが記載されている。
国際公開第2000/047537号 特開2004-331456号公報 国際公開第2006/046125号
 ところで、近年、軽量化対応の被削材の難削化や、加工コストの低減化のための切削加工速度の高速化が著しく、cBN焼結体による工具(以下、CBN工具と略称する。)に対する要求性能も厳しくなっている。このような要求に対応すべく、例えば、cBN焼結体の表面を、TiNやTiAlN、TiCN、CrAlN等の耐熱性に優れたセラミックスコーティング膜で被覆したCBN工具も使用されている。
 しかしながら、上記特許文献1~3に記載されているような従来のcBN焼結体では、セラミックスコーティング膜との密着性は必ずしも十分ではなかった。例えば、ギア端面やピンホール等の断続部や、ロックウェル硬さ(HRC)60以上の高硬度鋼の切削や研削加工時には、cBN焼結体の表面からセラミックスコーティング膜が剥離し、この剥離箇所から、異常摩耗やチッピング、欠損が発生するという課題を有していた。
 また、セラミックスコーティング膜を物理蒸着(PVD)法で形成される場合に、高いバイアス電圧が印加されると、従来のcBN焼結体では、セラミックスコーティング膜との密着性が十分に得られないこともあった。
 本発明は、上記のような課題を解決するためになされたものであり、優れた耐摩耗性及び耐欠損性を有しつつ、表面がセラミックスコーティング膜との密着性にも優れたcBN焼結体及びその製造方法、並びに工具を提供することを目的とする。
 本発明は、cBN含有量を高め、Ni源を含む配合原料とcBNとを混合して焼結させ、結合相にW2NixCo(1-x)2を生成させたcBN焼結体によれば、優れた耐摩耗性及び耐欠損性に加えて、表面を被覆するセラミックスコーティング膜の剥離が抑制されることを見出したことに基づくものである。
 すなわち、本発明は、以下の[1]~[9]を提供するものである。
 [1]立方晶窒化ホウ素を60.0~90.0体積%含み、残部が結合相であり、前記結合相は、Alの、窒化物、ホウ化物及び酸化物のうちの少なくともいずれかと、Tiの、炭化物、窒化物、炭窒化物及びホウ化物のうちの少なくともいずれかと、下記式(1)で表される化合物とを含有する、立方晶窒化ホウ素焼結体。
  W2NixCo(1-x)2 (0.40≦x<1)     (1)
 [2]CuKαを線源とするX線回折スペクトルにおいて、前記式(1)で表される化合物の(112)面に帰属される回折ピーク強度IAと、立方晶窒化ホウ素の(111)面に帰属される回折ピーク強度IBとの比IA/IBが0.330~0.750である、上記[1]に記載の立方晶窒化ホウ素焼結体。
 [3]前記Tiのホウ化物としてTiB2を含み、CuKαを線源とするX線回折スペクトルにおいて、TiB2の(101)面に帰属される回折ピーク強度ICと、立方晶窒化ホウ素の(111)面に帰属される回折ピーク強度IBとの比IC/IBが0.140~0.750である、上記[1]又は[2]に記載の立方晶窒化ホウ素焼結体。
 [4]25℃における電気抵抗率が1.0×10-5~5.0×10-2Ω・cmである、上記[1]~[3]のいずれか1項に記載の立方晶窒化ホウ素焼結体。
 [5]立方晶窒化ホウ素粒子の周囲長包絡度が0.600~0.900である、上記[1]~[4]のいずれか1項に記載の立方晶窒化ホウ素焼結体。
 [6]上記[1]~[5]のいずれか1項に記載の立方晶窒化ホウ素焼結体を製造する方法であって、Al源、Ti源、Ni源、W源及びCo源を含む配合原料と、立方晶窒化ホウ素粉末とを含む配合物を混合粉砕して、原料混合物を得る工程と、前記原料混合物を500~800℃で熱処理して脱ガスし、熱処理粉末を得る工程と、前記熱処理粉末を、不活性ガス雰囲気下、3.0GPa以上、1200~1500℃で加圧加熱処理して、立方晶窒化ホウ素焼結体を得る工程とを有する、立方晶窒化ホウ素焼結体の製造方法。
 [7]上記[1]~[5]のいずれか1項に記載の立方晶窒化ホウ素焼結体を構成材料として含む工具。
 [8]切削又は研削用である、上記[7]に記載の工具。
 [9]前記立方晶窒化ホウ素焼結体の表面にセラミックスコーティング膜を有する、上記[7]又は[8]に記載の工具。
 本発明によれば、耐摩耗性及び耐欠損性に優れ、かつ、セラミックスコーティング膜との密着性にも優れたcBN焼結体が提供される。
 したがって、本発明のcBN焼結体を用いることにより、難削材の研削加工においてもCBN工具の長寿命化を図ることができ、ひいては、断続部や高硬度鋼の切削や研削加工における加工コストを低減させることができる。
実施例14のcBN焼結体のX線回折(XRD)チャートである。 比較例10のcBN焼結体のXRDチャートである。 cBN焼結体中のcBN粒子の周囲長及び包絡周囲長を説明するための概略図である。 実施例1の焼結体試料の走査型電子顕微鏡(SEM)による撮影画像(倍率2000倍)である。 図4AのSEM画像の二値化処理像である。
 以下、本発明のcBN焼結体及びその製造方法、並びにcBN焼結体を用いた工具の実施形態について説明する。
[cBN焼結体]
 本発明のcBN焼結体は、cBNを60~90体積%含み、残部が結合相である。そして、前記結合相が、Alの、窒化物、ホウ化物及び酸化物のうちの少なくともいずれかと、Tiの、炭化物、窒化物、炭窒化物及びホウ化物のうちの少なくともいずれかと、下記式(1)で表される化合物Aとを含有するものである。
  W2NixCo(1-x)2 (0.40≦x<1)     (1)
 このようなcBN焼結体は、優れた耐摩耗性及び耐欠損性を有しており、かつ、表面を被覆するセラミックスコーティング膜との良好な密着性が得られる。
<cBN>
 本実施形態のcBN焼結体中のcBNの含有量は、60.0~90.0体積%であり、好ましくは60.0~85.0体積%、より好ましくは65.0~80.0体積%とする。
 前記含有量が60.0体積%以上であることにより、高硬度、高耐酸化性及び高熱伝導性等のcBNの優れた特性を活かしつつ、微小なクラックが生じた場合でもcBN焼結体の内部への伸展が抑制され、良好な耐欠損性が得られる。また、前記含有量が90.0体積%以下であれば、cBN粒子同士の凝集が抑制され、cBN粒子が脱落することなく焼結しやすいため、良好な耐摩耗性が得られる。
 なお、cBN焼結体中のcBNの含有量は、cBN焼結体の鏡面研磨面の走査型電子顕微鏡(SEM)による観察画像に基づいて、cBNの占有面積割合を体積含有量とみなした値である。具体的には、下記実施例に記載の方法により求められる。
 本実施形態のcBN焼結体中のcBN粒子は、周囲長包絡度が、0.600~0.900であることが好ましく、より好ましくは0.700~0.880、さらに好ましくは0.750~0.850である。
 周囲長包絡度とは、粒子形状に関するパラメーターであり、粒子周囲長に対する包絡周囲長の割合を表し、粒子表面の凹凸度の指標となる。周囲長包絡度が1に近いほど、粒子表面の凹凸が少なく、輪郭が滑らかなであることを意味する。また、周囲長包絡度が小さいほど、粒子表面に凹凸が多く、輪郭が荒れていたり、粒子が歪んでいたりする傾向がある。
 cBN粒子の周囲長包絡度が小さい場合、cBN粒子と結合相の界面強度が高く、cBN粒子が脱粒し難くなり、また、cBN焼結体にクラックが生じ難くなる。また、このようなcBN焼結体の表面に、例えば、PVD法で高いバイアス電圧を印加してセラミックスコーティング膜を形成する場合においても、cBN粒子の脱落が生じ難く、該セラミックスコーティング膜との良好な密着性が得られる。
 前記周囲長包絡度が0.600以上であれば、cBN粒子と、結合相の構成原料との過剰な反応が抑制され、cBN粒子の本来の特性である高硬度及び優れた耐摩耗性が十分に発揮される。また、周囲長包絡度が0.900以下であれば、cBN粒子が脱落することなく、結合相の構成原料との焼結反応が適度に進行したことにより、良好な耐摩耗性及び耐欠損性を示し、また、セラミックスコーティング被膜との良好な密着性が得られる。
 なお、本発明において、cBN焼結体中のcBN粒子の周囲長包絡度とは、cBN焼結体の鏡面研磨面のSEMによる観察画像に基づいて、cBN粒子100個の周囲長LA及び包絡周囲長LBを測定してLB/LAを算出し、これらを算術平均した値を言うものとする。具体的には、図3に示すように、例えば、SEMによる観察画像における1個のcBN粒子の輪郭がaである場合、輪郭aの全長が周囲長LAである。輪郭aの凸部を結んだ周がbであり、周bの全長が包絡周囲長LBである。周囲長包絡度は、具体的には、下記実施例に記載の方法により求められる。
 本実施形態のcBN焼結体中のcBN粒子は、平均粒子径が、好ましくは1.0~10.0μm、より好ましくは1.0~6.0μm、さらに好ましくは2.0~5.0μmである。前記平均粒子径が1.0μm以上であれば、すべてのcBN粒子が結合相によって強固に保持されやすい。また、前記平均粒子径が10.0μm以下であれば、焼結体が靭性に優れたものとなりやすい。
 なお、本明細書で言うcBN焼結体中のcBN粒子の平均粒子径は、cBN焼結体の鏡面研磨面のSEMによる観察画像に基づいて、cBN粒子100個の面積相当径を求め、その累積分布の累積面積50%における粒子径とする。
<結合相>
 本実施形態のcBN焼結体中のcBNの残部は結合相である。前記結合相は、Alの窒化物、Alのホウ化物及びAlの酸化物のうちの少なくともいずれかと、Tiの炭化物、Tiの窒化物、Tiの炭窒化物及びTiのホウ化物のうちの少なくともいずれかと、下記式(1)で表される化合物Aとを含有する。
  W2NixCo(1-x)2 (0.40≦x<1)     (1)
 前記結合相は、cBNとの高い結合力を有し、cBN焼結体におけるクラックの発生及び伸展を抑制し、優れた耐欠損性をもたらす。
 前記結合相を構成する化合物は、好ましい実施形態においては、TiN、TiCN、TiB2、AlN、Al23及び化合物Aを含み、さらに、W2Co216を含んでいることも好ましい。
 なお、前記結合相を構成する各化合物は、cBN焼結体についてXRD法による定性分析で確認されるものとする。cBN焼結体の定性分析は、具体的には、下記実施例に示すように、既存の無機材料データベースとの照合により行われる。
 化合物Aは、結合相をcBN粒子に強固に接着させ、cBN焼結体の緻密化を促進させる役割を担う。このような観点から、化合物AにおけるNiとCoの比率を表すxは、0.40≦x<1であり、好ましくは0.45≦x≦0.95、さらに好ましくは0.50≦x≦0.90である。
 xが0.40以上であれば、cBN焼結体を適度に緻密化させるのに十分な量の化合物Aが結合相中に生成する。また、xが1未満であれば、結合相中でのCo及びNiを含む複合化合物である化合物Aの生成により、高硬度のcBN焼結体が得られやすい。
 化合物Aは、結合相中、及び結合相とcBN粒子との反応焼結を促進し、cBN粒子と結合相との界面強度を高めることができる一方、cBNよりも硬度に劣り、結晶が粗大成長しないことが好ましく、cBN焼結体の良好な耐摩耗性及び耐欠損性の観点からは、多すぎないことが好ましい。このため、化合物Aは、cBNに対して所定範囲内の量比で含まれていることが好ましい。
 本発明においては、化合物AのcBNに対する好ましい量比は、cBN焼結体のXRDスペクトルの回折ピーク強度に基づいて定める。具体的には、CuKαを線源とするXRDスペクトルにおいて、化合物Aの(112)面に帰属される回折ピーク強度IAと、cBNの(111)面に帰属される回折ピーク強度IBとの比IA/IBが0.330~0.750であることが好ましく、より好ましくは0.350~0.730、さらに好ましくは0.410~0.700である。
 なお、XRDスペクトルにおけるピーク強度は、結晶相の生成量のみならず、焼結体中の粒子の結晶性や配向性の影響も受けるため、本発明における回折ピーク強度比は、必ずしも、cBN焼結体中の組成割合に対応するとは限らない点に留意を要する。
 また、前記cBN焼結体は、Tiのホウ化物としてTiB2を含むことが好ましく、TiB2の含有量についても、化合物Aと同様に、cBN粒子と結合相との界面強度及びcBN焼結体の耐摩耗性の観点から、cBNに対して所定の量比の範囲内であることが好ましい。
 本発明においては、TiB2のcBNに対する好ましい量比は、cBN焼結体についてXRDスペクトルの回折ピーク強度に基づいて定める。具体的には、CuKαを線源とするXRDスペクトルにおいて、TiB2の(101)面に帰属される回折ピーク強度ICと、cBNの(111)面に帰属される回折ピーク強度IBとの比IC/IBが0.140~0.750であることが好ましく、より好ましくは0.200~0.750、さらに好ましくは0.250~0.700である。
 ただし、TiB2とAlB2はX線回折パターンが重なるため、両化合物の区別は困難であり、本発明においては、便宜上、当該回折ピークが両化合物について重なっている場合であっても、TiB2の(101)面に帰属される回折ピークとみなすものとする。
 結合相には、上述したようなAl化合物、Ti化合物及び化合物A以外の、その他の化合物が含まれていてもよい。例えば、Al及びTiの複合酸化物や、第4~6族遷移金属元素のホウ化物(ZrB2、ZrB12、HfB2、HfB、HfB12、VB2、V34、V312、VB、V56、V22、NbB2、Nb32、NbB、TaB2、Ta2B、Ta32、TaB、Ta34、CrB、CrB4、Cr2B、Cr23、Cr53、CrB2、MoB、Mo25、MoB4、Mo2B、MoB2、WB、W2B、WB4)、窒化物(ZrNx(0<x≦1)、Hf32、HfNx(0<x≦1)、Hf43、VNx(0<x≦1)、V2N、NbN、Nb43、Nb2N、TaNx(0<x≦1)、Ta35、Ta4N、Ta2N、Cr2N、CrNx(0<x≦1)、WN、W2N)、及び、上述した化合物も含めた各化合物の相互固溶体が含まれていてもよい。ただし、cBN焼結体中、Ti及びW以外の第4~6族遷移金属元素のそれぞれの含有量は、できる限り少ないことが好ましく、より好ましくは1000質量ppm以下、さらに好ましくは100質量ppm以下である。
 また、例えば、配合原料に由来するものであったり、粉砕容器からのコンタミネーション等の製造過程で混入したりする不可避的不純物が含まれている場合もある。前記不可避的不純物としては、例えば、Li、Mg、Ca、Al、Si、Ti、C、B、S、P、Ga、Co、Ni、Mn、Fe、Cl、W、及び、これらの化合物等が挙げられ、前記その他の化合物と重複するものも含まれ得る。
<電気抵抗率>
 本実施形態のcBN焼結体は、25℃における電気抵抗率が1.0×10-5~5.0×10-2Ω・cmであることが好ましく、より好ましくは1.0×10-5~1.0×10-2Ω・cmである。
 cBN焼結体の電気抵抗率が上記範囲内であれば、例えば、物理蒸着(PVD)法で高いバイアス電圧を印加して、該cBN焼結体の表面をセラミックスコーティング膜で被覆した場合においても、該セラミックスコーティング膜との良好な密着性を得る上で好ましい。
 なお、本発明で言うcBN焼結体の電気抵抗率は、具体的には、下記実施例に示すようにして作製した測定試料について、4探針法により測定した値である。
<ビッカース硬度>
 本発明のcBN焼結体は、CBN工具として、高硬度鋼の切削加工等に好適に用いることができるものとする観点からは、高硬度であることが好ましく、具体的には、JIS Z 2244:2009に準じた方法で、荷重9.8N、保持時間15秒の条件で測定されたビッカース硬度が2950以上であることが好ましく、より好ましくは3000以上、さらに好ましくは3100以上である。
[cBN焼結体の製造方法]
 本実施形態のcBN焼結体は、Al源、Ti源、Ni源、W源及びCo源を含む配合原料と、cBN粉末とを含む配合物を混合粉砕して、原料混合物を得る工程(1)と、前記原料混合物を500~800℃で熱処理して脱ガスし、熱処理粉末を得る工程(2)と、前記熱処理粉末を、不活性ガス雰囲気下、3.0GPa以上、1200~1500℃で加圧加熱処理して、cBN焼結体を得る工程(3)とを経ることにより製造することができる。
 上記工程(1)~(3)を含む製造方法によれば、本実施形態のcBN焼結体を好適に得ることができる。
<工程(1)>
 工程(1)では、まず、Al源、Ti源、Ni源、W源及びCo源を含む配合原料と、cBN粉末とを含む配合物を混合粉砕して、原料混合物を得る。
 cBN粉末には、例えば、3GPa以上、1200℃以上の超高圧高温合成で得られた純度99.9%以上のcBN粒子を微粉砕し、粒子径及び粒子形状を調整したものが好適に用いられる。
 微粉砕する手段としては、例えば、ジョークラッシャー粉砕、ジェットミル粉砕、ロールブレーカ粉砕、振動ミル粉砕、ボールミル粉砕、ポットミル粉砕、遊星ボールミル粉砕、ビーズミル粉砕等の粉砕機を用いることができる。
 前記cBN粉末は、レーザー回折散乱法により測定された粒子径の体積分布における累積体積50%での粒子径(以下、D50と表記する。)が、0.3~10.0μmであることが好ましく、より好ましくは1.0~8.0μm、さらに好ましくは2.0~5.0μmである。
 前記D50が0.3μm以上であることにより、結合相の構成成分となることが抑制され、cBNを十分な量で含有する、硬度の高い焼結体が得られやすい。また、前記D50が10.0μm以下であれば、靭性に優れ、耐欠損性に優れた焼結体が得られやすい。
 前記cBN粉末の粒子形状は、円形度が0.910~0.950であることが好ましく、より好ましくは0.920~0.950、さらに好ましくは0.925~0.945である。
 円形度が0.910以上であることにより、原料混合物の流動性が良好であり、cBN粉末と結合相との界面における反応が適度に進行し、均一な焼結体が得られやすくなる。また、円形度が0.950以下であれば、cBN粉末と結合相との適度な接触状態が確保され、焼結反応が良好に進行しやすい。
 また、前記cBN粉末は、cBN焼結体を得る際の焼結反応の均一な進行の観点から、円形度0.900以下の粒子の占める体積が25.0体積%以下であることが好ましく、より好ましくは5.0~20.0体積%、さらに好ましくは10.0~18.0体積%である。
 なお、円形度は、粒子がどの程度球体に近いかを示す指標であり、JIS Z 8890:2017の定義に基づく。粒子の二次元画像において、Sを投影面積、Lを周囲長としたとき、4πS/L2で表される。二次元画像における形状が円に近いほど、円形度の値は1に近づく。本明細書で言うcBN粉末の円形度とは、約1000個のcBN粉末の粒子についての円形度の算術平均値とする。具体的には、下記実施例に示すようなフロー式粒子像分析装置で測定することができる。
 Al源、Ti源、Ni源、W源及びCo源は、cBN焼結体の結合相の一部を構成するものであり、それぞれ、元素単体であっても、化合物であってもよい。
 好ましくは、cBN焼結体を得る際の焼結により、結合相において、TiN、TiCN、TiB2、AlN、Al23及び化合物Aを生成するものが用いられる。
 前記配合原料としては、例えば、TiN、TiAl3、WC、Co、Ni及びBの組み合わせを用いることができる。
 前記配合原料に用いられる各原料粉末は、cBN焼結体の組成の均一化の観点から、cBN粉末と同等程度又はそれ以下の粒径のものを用いることが好ましく、より好ましくは、D50が5.0μm以下、さらに好ましくはD50が0.01~3.0μmである。
 なお、前記配合原料には、各原料粉末の原料由来又は製造過程での混入等に起因して、Ti及びW以外の第4~6族遷移金属元素やその他の不可避的不純物が含まれている場合もある。
 前記配合原料として、例えば、TiN、TiAl3、WC、Co、Ni及びBの組み合わせを用いて、cBN粉末と配合する場合、前記cBN焼結体を得るためには、これらの配合成分の合計100質量%中のcBN粉末の配合量が、65.00~97.00質量%であることが好ましく、より好ましくは67.00~95.00質量%、さらに好ましくは70.00~92.00質量%である。
 また、このような配合原料を用いる場合、該配合原料中、ビッカース硬度向上や耐酸性等の観点から、TiNの配合量が、TiAl3、WC、Co及びBの合計配合量よりも多いことがより好ましい。
 また、このような配合原料においては、化合物Aの生成しやすさの観点から、前記配合成分の合計100質量%中、WCの配合量は、1.00~5.00質量%であることが好ましく、より好ましくは1.00~3.00質量%、さらに好ましくは1.50質量%以上3.0質量%未満である。
 同様に、Coの配合量は、好ましくは0.10~5.00質量%、より好ましくは0.15~2.00質量%、さらに好ましくは0.20~0.50質量%である。また、Niの配合量は、好ましくは0.10~15.00質量%、より好ましくは0.15~12.00質量%、さらに好ましくは0.20~10.00質量%である。また、Bの配合量は、好ましくは0~10.00質量%、より好ましくは0~7.00質量%、さらに好ましくは0~5.00質量%である。
 前記配合原料と、cBN粉末とを含む配合物を混合粉砕して得られる原料混合物は、前記配合原料及びcBN粉末を乾式粉砕したものであってもよい。混合の均一化の観点から、分散媒を用いた湿式粉砕により調製した混合スラリーを乾燥させて得られたものであることが好ましい。この場合、例えば、分散媒として、アセトン、ヘキサン、2-プロパノール、エタノール、ヘプタン等を用いて遊星ボールミルにて混合粉砕することができ、cBNが高硬度であることから、超硬合金製ボールを用いることが好ましい。前記混合スラリーの乾燥方法としては、例えば、Ar等の不活性ガス、N2ガス、H2/Ar混合ガス等の不活性ガス雰囲気下での静置乾燥、減圧乾燥、真空乾燥等が挙げられる。静置乾燥の場合、十分な乾燥のため、70~100℃の温度で5時間以上行うことが好ましい。
<工程(2)>
 工程(2)では、工程(1)で得られた、十分に乾燥させた原料混合物を、500~800℃の温度で熱処理して脱ガスし、熱処理粉末を得る。
 前記熱処理は、脱ガス処理を効率的に行う観点から、真空雰囲気下で行うことが好ましく、より好ましくは圧力1.0×10-3Pa以下である。
 cBN焼結体の製造工程における焼成前の脱ガス処理は、通常、1000℃以上で行われるが、本発明においては、結合相の反応焼結の均一な進行及び焼結体の緻密化の観点から、前記熱処理の温度は800℃以下とする。
 また、有機物等の不純物成分を十分に除去し、焼結体を緻密化させる観点から、前記熱処理の温度を500℃以上とする。
 脱ガスのための前記熱処理の温度は、より好ましくは550~750℃、さらに好ましくは600~700℃である。
 前記熱処理の時間は、処理する原料混合物の量や工程(1)で用いられた分散媒の種類等に応じて適宜設定されるが、通常、0.1~10時間であることが好ましく、より好ましくは1~3時間である。
<工程(3)>
 工程(3)では、工程(2)で得られた熱処理粉末を、不活性ガス雰囲気下、圧力3.0GPa以上、温度1200~1500℃で加圧加熱処理して、cBN焼結体を得る。
 このように、前記熱処理粉末を超高圧高温焼成することにより、本実施形態のcBN焼結体を好適に得ることができる。
 cBN焼結体の緻密化の観点から、加圧加熱処理における最高圧力は、好ましくは3.5GPa以上、より好ましくは4.0GPa以上である。同様の観点から、加圧加熱処理における最高温度は、好ましくは1250~1500℃、より好ましくは1300℃~1500℃である。
 前記熱処理粉末が加圧加熱処理時に酸化することなく、所望のcBN焼結体を製造する観点から、該熱処理粉末の取り扱い時及び加圧加熱処理時の雰囲気は、不活性ガス雰囲気とすることが好ましい。不活性ガスとしては、例えば、Arガス、N2ガス等が挙げられる。これらのガスは、1種単独で用いても、2種以上を併用してもよい。
[工具]
 本実施形態の工具は、本発明のcBN焼結体を構成材料として含むものである。
 上述したように、本発明のcBN焼結体は、高硬度であり、優れた耐摩耗性及び耐欠損性を有していることから、工具、特に、切削や研削用の工具に好適な材料である。すなわち、CBN工具として、上記のような優れた特性を発揮し得る。
 高硬度鋼等の難削材の研削や切削において、優れた耐摩耗性及び耐欠損性を付与すべく、cBN焼結体の表面を、耐熱性に優れたセラミックスコーティング膜で被覆したCBN工具(コーティング工具)においても、本発明のcBN焼結体は、表面がセラミックスコーティング膜(被膜)との密着性に優れており、被膜が剥離し難いものとすることができる。
 したがって、本発明のcBN焼結体は、高硬度鋼のギア端面やピンホール等の断続部の切削や研削に適用される場合においても、セラミックスコーティング膜が剥離し難く、コーティング工具の長寿命化を図ることもできる。
 前記セラミックスコーティング膜の材質としては、例えば、TiN、TiAlN、TiCN、CrAlN等が挙げられる。これらのうち、耐酸化性等の観点から、TiAlN、CrAlNが好ましく、コスト等の点で、TiAlNの方が好ましい。
 以下、本発明の実施形態を実施例に基づいて説明するが、本発明は下記実施例に限定されるものではない。
[cBN焼結体の製造]
<cBN粉末原料の調製>
 cBN粒子(「BN-V」、昭和電工株式会社製)を微粉砕し、遠心法及び沈降法で分級して、以下に示すcBN(1)~(3)を調製し、下記実施例及び比較例におけるcBN焼結体の製造におけるcBN粉末原料として用いた。
 ・cBN(1):D50 2.8μm、円形度0.943、円形度(1個の粒子)0.900以下の粒子数の割合15.2%
 ・cBN(2):D50 3.6μm、円形度0.936、円形度(1個の粒子)0.900以下の粒子数の割合16.1%
 ・cBN(3):D50 3.1μm、円形度0.928、円形度(1個の粒子)0.900以下の粒子数の割合16.3%
 なお、cBN(1)~(3)、及びcBN焼結体の製造に用いられるその他の原料粉末のD50は、粒度分析測定装置(「マイクロトラック(登録商標) MT3300」、日機装株式会社製)にて測定した粒度分布から求めた。
 また、cBN(1)~(3)の円形度は、フロー式粒子像分析装置(「FPIA-3000」、シスメックス社製)を用いて、約1000個(1000個以上)の粒子の画像解析にて測定した。
 また、円形度(1個の粒子)0.900以下の粒子数の割合は、前記画像解析にて円形度を測定した約1000個の粒子について、各粒子の円形度を横軸、累積粒子数を縦軸として表した円形度分布グラフにおいて、円形度0.900における累積粒子数の割合である。
(実施例1~15、比較例1、2及び5~8)
 所定のcBN粉末原料と、TiN(D50 1.2μm)及びTiAl3(D50 19.8μm)を質量比3:1で予め混合して調製しておいた配合原料(1)と、前記配合原料(1)以外のその他の配合原料(WC(D50:0.5μm)、Co(D50:2.8μm)、Ni(D50:0.4μm)、B(D50:0.4μm))とを、下記表1に示す各配合組成にて配合し、分散媒としてアセトンを用いて、遊星ボールミル(超硬合金(主な構成成分:WC約90質量%、Co約10質量%)製ボール)にて、均一になるように混合粉砕し、原料混合物のスラリーを得た。
 前記スラリーを、N2ガス雰囲気下、70℃で5時間、静置乾燥した後、1.0×10-3Pa以下の真空雰囲気下、650℃で0.5時間熱処理して脱ガスを行い、熱処理粉末を得た。
 N2ガス雰囲気下で、前記熱処理粉末を超硬合金製支持板に積層した後、4.5GPa、1500℃で1時間、加圧加熱処理して、cBN焼結体(直径約60mm、厚さ約4mm)を作製した。cBN焼結体の上面(超硬合金製支持板との接触面が下面)を#400ダイヤモンド砥石で研削し、評価用の焼結体試料とした。
(比較例3及び9)
 原料混合物の各配合組成を下記表1に示すものとし、また、原料混合物のスラリーを乾燥させた後の脱ガス時の熱処理温度を1000℃とし、それ以外は実施例1と同様にして、熱処理粉末を得た後、cBN焼結体を得て、各焼結体試料を作製した。
(比較例4)
 比較例2において、原料混合物のスラリーを乾燥させた後の脱ガス時に熱処理を行わず、乾燥粉末を比較例2と同様にして、加圧加熱処理を行ったが、平板状のcBN焼結体を得ることができなかった。
[cBN焼結体の評価測定]
 上記実施例及び比較例で得られた各焼結体試料について、以下の各種評価測定を行った。これらの評価測定結果を表1にまとめて示す。なお、比較例10として、市販品のcBN焼結体(平均粒径3μm(公称値)のcBN粉末、及びTiNバインダー使用)についての評価測定結果を併せて示す。
<cBN含有量>
 焼結体試料を鏡面研磨し、SEM(「S-5500」、日立ハイテクノロジーズ株式会社製)にて、倍率2000倍で反射電子像を撮影した。撮影画像には、黒色部、白色部及び灰色部があり、各部分について、エネルギー分散型X線分光分析(EDX)を行ったところ、黒色部がcBN、白色部及び灰色部が結合相であることが確認された。撮影画像を画像処理ソフトにて二値化処理し、cBN粒子を表す黒色部と結合相を表す白色部を確認し、二値化処理画像の視野領域全体に占める黒色部の面積割合を求め、3視野についての算術平均値をcBN粒子の体積割合とみなした。
 代表例として実施例1の焼結体試料について、図4Aに、SEMの撮影画像を、図4Bに、その二値化処理像を示す。なお、1視野のサイズは、横64.0μm、縦44.6μmとし、3視野の合計面積は8563.2μm2である。
<周囲長包絡度>
 前記<cBN含有量>の測定と同様の手法で、倍率10000倍で反射電子像を撮影し、二値化処理した画像において、任意の100か所の黒色部(cBN粒子100個)の周囲長LA及び包絡周囲長LBを測定してLB/LAを算出し、それらの算術平均値を周囲長包絡度とした。
<焼結体組成>
 X線回折装置(「X’pert PRO」、パナリティカル社製)にて、XRD測定を行った。測定は、CuKα線、出力電圧40kV、出力電流40mA、サンプリング幅0.0167°、スキャンスピード0.4178°/s、測定範囲2θ=10~80°の条件で行った。
 測定されたXRDパターンについて、無機材料データベース(ソフトウェア「X’pert High Score Plus」使用)と照合した。
 また、誘導結合プラズマ発光分光分析(ICP-AES)による元素分析の結果も参照して、XRD分析結果に基づいて、焼結体組成を特定した。
 なお、下記表1に示す焼結体組成は、XRD分析で検出された成分である。実施例及び比較例のいずれの焼結体試料についても(比較例4を除く)、焼結体組成中に、cBN、TiN、TiCN、TiB2、AlN及びAl23が含まれていることが確認された。これら以外に確認された成分は、表1に記載のとおりである。
 また、化合物Aについては、XRDパターンにおけるピークシフト量及び格子定数、並びにICP-AESによる元素分析結果から、Ni量及びCo量を求め、xの値を特定した。
<ピーク強度比>
 前記<焼結体組成>の項におけるXRDパターンにおいて、2θ=43.00°付近のW2NixCo(1-x)2(化合物A)の(112)面の回折ピーク強度IA、2θ=43.30°付近のcBN(111)面の回折ピーク強度IB、及び2θ=44.36°付近のTiB2(101)面の回折ピーク強度ICを測定し、IA/IB及びIC/IBの各比を算出した。
 代表例として実施例14及び比較例10について、測定したXRDパターンの2θ=42.5°~45.0°の拡大図を、図1及び図2にそれぞれ示す。
<ビッカース硬度>
 鏡面研磨した焼結体試料について、JIS Z 2244:2009に準じた方法で、荷重9.8N、保持時間15秒の条件でビッカース硬度を測定した。
<電気抵抗率>
 評価用の焼結体から、放電加工機で、35mm×20mmに切り出し、さらに、超硬合金製支持基板との接触面(下面)側を厚さ100μm以上除去した後、研磨加工し、測定試料(35mm×20mm、厚さ0.80mm、表面粗さRzが0.4以下)を作製した。
 測定試料について、抵抗率計(「ロレスタ-GX」、三菱ケミカルアナリティック株式会社製;PSPプローブ)にて、室温(25℃)にて、4探針法により電気抵抗値を測定した。
<切削評価>
 評価用の焼結体から、ISO規格CNGA120408の切削工具を作製し、PVD法によりTiAlNコーティング膜(被膜)を形成し、コーティング切削工具を作製した。なお、被膜の膜厚は、SEMでの断面観察により測定した。
 このコーティング切削工具を用いて、以下の(試験1)又は(試験2)に示す被削材について、外周旋削加工(切削速度150m/min、切込み量0.20mm、送り量0.10mm/rev)を行った。加工後の工具刃先を、デジタルマイクロスコープ(「VHX-5500」、株式会社キーエンス製)にて観察し、損傷状態(被膜剥離及び欠損の有無)を確認し、また、工具逃げ面の最大摩耗幅を計測して、これを逃げ面摩耗量とした(JIS B 0170:1993参照)。
(試験1)
 被削材として、高炭素クロム軸受鋼(JIS規格SUJ2;硬さ(HRC)60~64)の直径45mm、長さ200mmの丸棒の周面に、円周方向に等間隔に3個、長手方向に等間隔に8個の計24個の直径5mm、深さ10mmのピンホールが形成されたものを用い、加工時間を10分間とした。
(試験2)
 被削材として、冷間金型用合金工具鋼(JIS規格SKD11;硬さHRC60~64)の直径70mm、長さ300mmの丸棒を用い、加工時間を15分間とした。
 なお、(試験2)は、実施例11~15及び比較例6~10についてのみ行った。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、実施例1~15のcBN焼結体は、TiB2及びW2NixCo(1-x)2(化合物A)を含有する結合相が生成されていることが確認された。また、ビッカース硬度が大きく、低い電気抵抗率が保持されており、PVD法による被膜形成時に高いバイアス電圧が印加されても、被膜の密着性が高いコーティング工具が得られた。これは、上記のような結合相の生成により、焼結体の緻密化が促進され、また、cBN粒子が脱落することなく強固に保持されているためであると考えられる。
 上記のような実施例に係るコーティング工具によれば、周面にピンホールが設けられた高硬度鋼を切削加工した場合であっても、被膜が剥離することなく、かつ、工具欠損も生じず、優れた耐摩耗性を得られることが認められた。
 これに対して、比較例1~10のcBN焼結体はいずれも、結合相には化合物Aは含まれておらず、cBN含有量が同等であっても、ビッカース硬度は実施例よりも劣っていた。また、これらの比較例に係るコーティング工具は、被膜が剥がれやすく、摩耗しやすい傾向が見られた。

Claims (9)

  1.  立方晶窒化ホウ素を60.0~90.0体積%含み、残部が結合相であり、
     前記結合相は、Alの、窒化物、ホウ化物及び酸化物のうちの少なくともいずれかと、Tiの、炭化物、窒化物、炭窒化物及びホウ化物のうちの少なくともいずれかと、下記式(1)で表される化合物とを含有する、立方晶窒化ホウ素焼結体。
      W2NixCo(1-x)2 (0.40≦x<1)     (1)
  2.  CuKαを線源とするX線回折スペクトルにおいて、前記式(1)で表される化合物の(112)面に帰属される回折ピーク強度IAと、立方晶窒化ホウ素の(111)面に帰属される回折ピーク強度IBとの比IA/IBが0.330~0.750である、請求項1に記載の立方晶窒化ホウ素焼結体。
  3.  前記Tiのホウ化物としてTiB2を含み、
     CuKαを線源とするX線回折スペクトルにおいて、TiB2の(101)面に帰属される回折ピーク強度ICと、立方晶窒化ホウ素の(111)面に帰属される回折ピーク強度IBとの比IC/IBが0.140~0.750である、請求項1又は2に記載の立方晶窒化ホウ素焼結体。
  4.  25℃における電気抵抗率が1.0×10-5~5.0×10-2Ω・cmである、請求項1~3のいずれか1項に記載の立方晶窒化ホウ素焼結体。
  5.  立方晶窒化ホウ素粒子の周囲長包絡度が0.600~0.900である、請求項1~4のいずれか1項に記載の立方晶窒化ホウ素焼結体。
  6.  請求項1~5のいずれか1項に記載の立方晶窒化ホウ素焼結体を製造する方法であって、
     Al源、Ti源、Ni源、W源及びCo源を含む配合原料と、立方晶窒化ホウ素粉末とを含む配合物を混合粉砕して、原料混合物を得る工程と、
     前記原料混合物を500~800℃で熱処理して脱ガスし、熱処理粉末を得る工程と、
     前記熱処理粉末を、不活性ガス雰囲気下、3.0GPa以上、1200~1500℃で加圧加熱処理して、立方晶窒化ホウ素焼結体を得る工程とを有する、立方晶窒化ホウ素焼結体の製造方法。
  7.  請求項1~5のいずれか1項に記載の立方晶窒化ホウ素焼結体を構成材料として含む工具。
  8.  切削又は研削用である、請求項7に記載の工具。
  9.  前記立方晶窒化ホウ素焼結体の表面にセラミックスコーティング膜を有する、請求項7又は8に記載の工具。
PCT/JP2021/000951 2020-03-24 2021-01-14 立方晶窒化ホウ素焼結体及びその製造方法、並びに工具 WO2021192509A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217020575A KR102373638B1 (ko) 2020-03-24 2021-01-14 입방정 질화붕소 소결체 및 그 제조 방법, 및 공구
JP2021521436A JP6900590B1 (ja) 2020-03-24 2021-01-14 立方晶窒化ホウ素焼結体及びその製造方法、並びに工具
CN202180001763.6A CN113286770B (zh) 2020-03-24 2021-01-14 立方晶氮化硼烧结体及其制造方法和工具
US17/420,260 US11427512B2 (en) 2020-03-24 2021-01-14 Cubic boron nitride sintered body and manufacturing method thereof, and tool
EP21733042.2A EP3907206B8 (en) 2020-03-24 2021-01-14 Cubic boron nitride sintered body, method for producing same, and tool
PL21733042.2T PL3907206T3 (pl) 2020-03-24 2021-01-14 Spiekany korpus z sześciennego azotku boru, sposób jego wytwarzania oraz narzędzie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020053229 2020-03-24
JP2020-053229 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021192509A1 true WO2021192509A1 (ja) 2021-09-30

Family

ID=77358200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000951 WO2021192509A1 (ja) 2020-03-24 2021-01-14 立方晶窒化ホウ素焼結体及びその製造方法、並びに工具

Country Status (3)

Country Link
HU (1) HUE062423T2 (ja)
TW (1) TWI747716B (ja)
WO (1) WO2021192509A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005058A1 (ja) * 2022-06-28 2024-01-04 京セラ株式会社 インサートおよび切削工具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044350A (ja) * 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd cBN焼結体
WO2000047537A1 (fr) * 1999-02-12 2000-08-17 Sumitomo Electric Industries, Ltd. Produit fritte tres resistant aux chocs et a la formation de crateres
JP2002226273A (ja) * 2001-01-30 2002-08-14 Showa Denko Kk 焼結体
JP2006315898A (ja) * 2005-05-12 2006-11-24 Tungaloy Corp 立方晶窒化硼素焼結体
WO2012105710A1 (ja) * 2011-02-04 2012-08-09 株式会社タンガロイ cBN焼結体工具および被覆cBN焼結体工具
WO2012144502A1 (ja) * 2011-04-18 2012-10-26 株式会社タンガロイ 複合体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032387B1 (ja) * 2014-12-24 2016-11-30 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP2017014084A (ja) * 2015-07-03 2017-01-19 昭和電工株式会社 立方晶窒化硼素焼結体、立方晶窒化硼素焼結体の製造方法、工具、および切削工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044350A (ja) * 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd cBN焼結体
WO2000047537A1 (fr) * 1999-02-12 2000-08-17 Sumitomo Electric Industries, Ltd. Produit fritte tres resistant aux chocs et a la formation de crateres
JP2002226273A (ja) * 2001-01-30 2002-08-14 Showa Denko Kk 焼結体
JP2006315898A (ja) * 2005-05-12 2006-11-24 Tungaloy Corp 立方晶窒化硼素焼結体
WO2012105710A1 (ja) * 2011-02-04 2012-08-09 株式会社タンガロイ cBN焼結体工具および被覆cBN焼結体工具
WO2012144502A1 (ja) * 2011-04-18 2012-10-26 株式会社タンガロイ 複合体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005058A1 (ja) * 2022-06-28 2024-01-04 京セラ株式会社 インサートおよび切削工具

Also Published As

Publication number Publication date
TWI747716B (zh) 2021-11-21
TW202136177A (zh) 2021-10-01
HUE062423T2 (hu) 2023-11-28

Similar Documents

Publication Publication Date Title
JP6032387B1 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
CA2785696C (en) Cubic boron nitride sintered body and cubic boron nitride sintered body tool
JP6032375B2 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP6900590B1 (ja) 立方晶窒化ホウ素焼結体及びその製造方法、並びに工具
EP3447166B1 (en) Coated cutting tool
JP2017014084A (ja) 立方晶窒化硼素焼結体、立方晶窒化硼素焼結体の製造方法、工具、および切削工具
JP2014083664A (ja) 立方晶窒化ほう素基超高圧焼結体を工具基体とする切削工具、表面被覆切削工具
JP6206695B1 (ja) 工具
WO2021192509A1 (ja) 立方晶窒化ホウ素焼結体及びその製造方法、並びに工具
WO2021124700A1 (ja) 立方晶窒化硼素焼結体及びその製造方法
JP6967175B2 (ja) 立方晶窒化硼素焼結体および切削工具
JP6928196B2 (ja) 立方晶窒化硼素焼結体
CN111801304B (zh) cBN烧结体及切削工具
JP7377463B2 (ja) cBN焼結体および切削工具
US11542203B2 (en) Cubic boron nitride sintered material
JP2020001990A (ja) cBN焼結体および切削工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021521436

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021733042

Country of ref document: EP

Effective date: 20210728

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21733042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE