WO2012101907A1 - 電力伝送システム - Google Patents

電力伝送システム Download PDF

Info

Publication number
WO2012101907A1
WO2012101907A1 PCT/JP2011/078246 JP2011078246W WO2012101907A1 WO 2012101907 A1 WO2012101907 A1 WO 2012101907A1 JP 2011078246 W JP2011078246 W JP 2011078246W WO 2012101907 A1 WO2012101907 A1 WO 2012101907A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
circuit
coil
voltage
Prior art date
Application number
PCT/JP2011/078246
Other languages
English (en)
French (fr)
Inventor
細谷達也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012554633A priority Critical patent/JP5494838B2/ja
Priority to CN201180066125.9A priority patent/CN103329398B/zh
Priority to KR1020137019766A priority patent/KR101405878B1/ko
Priority to EP11856701.5A priority patent/EP2670023A4/en
Publication of WO2012101907A1 publication Critical patent/WO2012101907A1/ja
Priority to US13/944,908 priority patent/US9378888B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power transmission system including a power transmission device and a power reception device.
  • a conventional non-contact charging system includes, for example, a power transmission device including a primary coil in a charging stand and a portable electronic device including a secondary coil and a rechargeable battery as disclosed in Patent Document 1.
  • a power transmission device including a primary coil in a charging stand and a portable electronic device including a secondary coil and a rechargeable battery as disclosed in Patent Document 1.
  • the user places the portable electronic device on the power transmission device.
  • the primary side coil of the power transmission device and the secondary side coil of the portable electronic device are electromagnetically coupled (magnetic field coupling), and power is supplied to the charging device side to charge the secondary battery.
  • the power transmission coil and the power reception coil act as an insulating transformer using electromagnetic induction, and are merely used as a transformer using magnetic coupling.
  • transformers that use electromagnetic induction it is important to efficiently convert from electricity to magnetism and electricity by linking the magnetic flux generated by the current flowing in the primary winding with the secondary winding to flow the current. ing.
  • the ratio of the magnetic flux interlinked with the secondary winding out of the magnetic flux generated by the current flowing through the primary winding is called (magnetic) coupling degree.
  • the power conversion efficiency is increased.
  • impedance matching is performed to transmit electric power, so that the operating frequency is changed in control.
  • the frequency band that can be used for each electronic device is determined. Therefore, it is preferable to operate at a fixed frequency in consideration of EMC (electromagnetic compatibility), transmission energy controllability, and the like.
  • An object of the present invention is to provide a power transmission system that increases power conversion efficiency during power transmission without increasing the size of the apparatus.
  • the power transmission system of the present invention is configured as follows. (1) In a power transmission system including a power transmission device including a power transmission coil and a power reception device including a power reception coil, The power transmission device includes a power transmission device-side resonance capacitor that forms a power transmission device-side resonance circuit together with the power transmission coil, A power transmission device side AC voltage generating circuit that is connected to the power transmission coil and has a switching circuit composed of a parallel connection circuit of a switching element, a diode, and a capacitor, and generates an AC voltage from an input DC voltage; With The power receiving device includes a power receiving device side resonance capacitor that forms a power receiving device side resonance circuit together with the power receiving coil, A power receiving device side rectifier circuit connected to the power receiving coil and rectifying an AC voltage generated in the power receiving coil into a DC voltage; With An electromagnetic field coupling circuit is configured with a mutual inductance and a mutual capacitance that are equivalently formed between the power transmission coil and the power reception coil, and the power transmission device side resonance circuit and the power reception device side resonance
  • the power transmission device includes a power transmission device-side resonance capacitor that forms a power transmission device-side resonance circuit together with the power transmission coil, A power transmission device side AC voltage generating circuit that is connected to the power transmission coil and has a switching circuit composed of a parallel connection circuit of a switching element, a diode, and a capacitor, and generates an AC voltage from an input DC voltage;
  • the power receiving device includes a power receiving device side resonance capacitor that forms a power receiving device side resonance circuit together with the power receiving coil, A power receiving device side rectifier circuit connected to the power receiving coil and rectifying an AC voltage generated in the power receiving coil into a DC voltage;
  • An electromagnetic coupling circuit is configured by a mutual inductance equivalently formed between the power transmission coil and the power reception coil, and the power transmission device side resonance circuit and the power reception device side resonance circuit resonate, and the power transmission device Power is transmitted to the power receiving device, Energy that has not been transmitted from
  • the power transmission device includes a power transmission device-side resonance inductor that forms a power transmission device-side resonance circuit together with a power transmission capacitor, A power transmission device side AC voltage generating circuit that is connected to the power transmission coil and has a switching circuit composed of a parallel connection circuit of a switching element, a diode, and a capacitor, and generates an AC voltage from an input DC voltage;
  • the power receiving device includes a power receiving device-side resonance inductor that forms a power receiving device-side resonance circuit together with a power receiving capacitor;
  • a power receiving device side rectifier circuit connected to the power receiving coil and rectifying an AC voltage generated in the power receiving coil into a DC voltage;
  • An electric field coupling circuit is configured by a mutual capacitance that is equivalently formed between the power transmission coil and the power reception coil, and the power transmission device side resonance circuit and the power reception device side resonance circuit resonate with each other from the power transmission device.
  • Power is transmitted to the power receiving device, Energy that has not been transmitted from the power transmission device (reactive power) is stored as resonance energy in the power transmission device side resonance circuit, Of the energy received by the power receiving device, the energy (reactive power) not supplied to the output is stored as resonance energy in the power receiving device-side resonance circuit.
  • the power reception device includes an information transmission circuit that detects output information of the power reception device side rectifier circuit and transmits the output information to the power transmission device side,
  • the power transmission device preferably includes an output information receiving circuit that receives the output information, and a transmission power control circuit that controls the transmission power by controlling the power transmission device-side AC voltage generation circuit according to the output information.
  • the information transmission circuit is a circuit that transmits the output information by wireless communication
  • the output information reception circuit is a circuit that receives the output information by wireless communication.
  • the information transmission circuit is a circuit that converts an electric signal into an optical signal and transmits the output information
  • the output information reception circuit converts the optical signal into an electric signal and outputs the output information. It is a circuit to receive.
  • the switching circuit includes a high-side switching circuit and a low-side switching circuit, and the power transmission apparatus-side AC voltage generation circuit alternately turns on / off the high-side switching circuit and the low-side switching circuit.
  • the transmission power is preferably controlled by frequency control PFM (Pulse Frequency Modulation) that changes the switching frequency.
  • the switching circuit includes a high-side switching circuit and a low-side switching circuit
  • the power transmission device-side AC voltage generation circuit fixes the high-side switching circuit and the low-side switching circuit to a fixed switching frequency.
  • the transmission power is controlled by an on-period ratio control ORM (On-periods Ratio Modulation) that controls the ratio of the conduction period of the first switching circuit and the second switching circuit alternately. It is preferable.
  • ORM On-periods Ratio Modulation
  • the power receiving device side rectifier circuit is preferably a synchronous rectifier circuit including a switching element.
  • the power receiving device preferably includes an operating frequency control circuit that controls an operating frequency (switching frequency) of the synchronous rectifier circuit, and is configured to control received power according to the operating frequency.
  • the power receiving device includes a control circuit that controls a circuit on the power receiving device side, and the control circuit is configured to operate with electric power received by the power receiving device.
  • the power receiving device side rectifier circuit acts as the power transmitting device side AC voltage generating circuit, and the power transmitting device side AC voltage generating circuit is It preferably functions as a power receiving device side rectifier circuit, and thus can transmit power in both directions.
  • the power receiving apparatus side resonance circuits of the plurality of power receiving apparatuses have different resonance frequencies
  • the power transmission apparatus side AC voltage generation circuit has a switching frequency according to a power transmission destination. It is preferable to switch the switching circuit.
  • the switching frequency is greater than a resonance frequency due to resonance between the power transmission device side resonance circuit and the power reception device side resonance circuit so that a phase of a current waveform flowing in the power transmission coil is delayed with respect to the waveform of the AC voltage. It is preferable that the dead time is set to be high and the zero voltage switching operation is performed in a dead time period in which both the high-side switching element and the low-side switching element are turned off.
  • a parallel resonant capacitor is provided in parallel with the power transmission coil or the power reception coil.
  • the parallel resonant capacitor is formed of a stray capacitance that is equivalent to an electric capacitance formed by electric field coupling formed between the power transmission coil and the power reception coil.
  • the parallel resonant capacitor includes a stray capacitance formed between both ends of the power transmission coil or the power reception coil.
  • the power transmission coil and the power reception coil are air core inductors.
  • the mutual inductance is an equivalent excitation inductance generated by magnetic coupling formed between the power transmission coil and the power reception coil.
  • the inductance components of the power transmission coil or the power reception coil it is preferable to use a leakage inductance that is not involved in coupling as an inductor constituting the power transmission device side resonance circuit or the power reception device side resonance circuit.
  • the LC resonance circuit is provided on both the power transmission device side and the power reception device side, the two LC resonance circuits are resonated, and a magnetic field or an electric field or a combination of both is used between the power transmission coil and the power reception coil.
  • power transmission can be performed.
  • the resonance phenomenon only the active power is transmitted from the power transmission device side to the power reception device side, and the reactive power is circulated in each LC resonance circuit on the power transmission device side and the power reception device side and stored as resonance energy. Therefore, the power loss can be made extremely small.
  • FIG. 1 is a circuit diagram of a power transmission system 111 according to the first embodiment.
  • FIG. 2 is a voltage / current waveform diagram of each part of the power transmission system 111 shown in FIG. 1.
  • FIG. 3A is a circuit diagram of an electromagnetic field coupling resonance circuit portion including the electromagnetic field coupling circuit 90 and capacitors Cr and Crs shown in FIG.
  • FIG. 3B is an equivalent circuit diagram thereof.
  • FIG. 4 is a waveform diagram of a voltage applied between terminals 1-1 ′ in FIG.
  • FIG. 5A is a circuit diagram of a power transmission system 111A which is another configuration example of the first embodiment.
  • FIG. 5B is a circuit diagram of a power transmission system 111B, which is another configuration example of the first embodiment.
  • FIG. 5A is a circuit diagram of a power transmission system 111A which is another configuration example of the first embodiment.
  • FIG. 5B is a circuit diagram of a power transmission system 111B, which is another configuration example of the first embodiment.
  • FIG. 5C is a circuit diagram of a power transmission system 111C which is another configuration example of the first embodiment.
  • FIG. 6 is a circuit diagram of the power transmission system 112 according to the second embodiment.
  • FIG. 7 is a voltage-current waveform diagram of each part of the power transmission system 112 shown in FIG.
  • FIG. 8 is a circuit diagram of the power transmission system 113 according to the third embodiment.
  • FIG. 9 is a circuit diagram of the power transmission system 114 of the fourth embodiment.
  • FIG. 10 is a circuit diagram of the power transmission system 115 of the fifth embodiment.
  • FIG. 11 is a circuit diagram of the power transmission system 116 of the sixth embodiment.
  • FIG. 12 is a circuit diagram of the power transmission system 117 of the seventh embodiment.
  • FIG. 13 is a circuit diagram of the power transmission system 118 of the eighth embodiment.
  • FIG. 14 is a circuit diagram of the power transmission system 119 of the ninth embodiment.
  • FIG. 15 is a circuit diagram of the power transmission system 120 of the tenth embodiment.
  • FIG. 16 is a circuit diagram of the power transmission system 121 of the eleventh embodiment.
  • FIG. 17 is a circuit diagram of the power transmission system 122 of the twelfth embodiment.
  • FIG. 18 is a circuit diagram of the power transmission system 123 of the thirteenth embodiment.
  • FIG. 19 is a circuit diagram of the power transmission system 124 of the fourteenth embodiment.
  • FIG. 20 is a circuit diagram of the power transmission system 125 of the fifteenth embodiment.
  • FIG. 21 is a circuit diagram of the power transmission system 126 of the sixteenth embodiment.
  • FIG. 22 is a circuit diagram of the power transmission system 127 of the seventeenth embodiment.
  • FIG. 23 is a circuit diagram of the power transmission system 128 according to the eighteenth embodiment
  • FIG. 1 is a circuit diagram of a power transmission system 111 according to the first embodiment.
  • the power transmission system 111 includes a power transmission device PSU and a power reception device PRU.
  • the power transmission system 111 is a system that includes an input power source Vi in an input unit of the power transmission device PSU and supplies stable DC energy to a load Ro of the power reception device PRU.
  • the power transmission system 111 includes the following units.
  • An electromagnetic field coupling circuit 90 including a power transmission coil Lp and a power reception coil Ls
  • the switching circuit S1 including the switching element Q1 and the switching circuit S2 including the switching element Q2 connected to the power transmission coil Lp
  • the switching circuit S3 including the switching element Q3 connected to the power receiving coil Ls, the switching circuit S4 including the switching element Q4, and the smoothing capacitor Co ⁇ Series resonant capacitor Cr connected to power transmission coil Lp
  • a feedback control circuit 50 that generates a control signal for controlling the received power of the power receiving device PRU .Signal transmission means 30 for transmitting the feedback signal in an insulated state A parallel re
  • the switching elements Q3 and Q4 are alternately turned on to shape a square wave or trapezoidal voltage waveform into a DC voltage.
  • the switching control circuit 20 performs synchronous rectification control of the switching elements Q3 and Q4 based on the voltage signal of the power receiving coil Ls.
  • switching circuits S1, S2 using FETs such as MOSFETs as switching elements Q1, Q2, Q3, Q4 and using parasitic output capacitances and parasitic diodes. , S3, S4 can be configured.
  • the feedback control circuit 50 detects the output (voltage, current, or power) to the load Ro, and transmits feedback information to the power transmission device PSU side via the signal transmission means 30.
  • a portion surrounded by a thick broken line constitutes an electromagnetic field coupling circuit 90
  • a portion surrounded by a thin broken line constitutes a multiple resonance circuit 40.
  • a parameter Ml shown in FIG. 1 indicates a mutual coefficient of magnetic field coupling
  • Mc indicates a mutual coefficient of electric field coupling.
  • the mutual coefficient M as the electromagnetic field coupling is configured by combining the magnetic field coupling by the mutual inductance (mutual coefficient Ml) and the electric field coupling by the mutual capacitance (mutual coefficient Mc).
  • the double resonance circuit 40 including the electromagnetic field coupling circuit 90 resonates with two LC resonance circuits on the power transmission device side and the power reception device side.
  • a power transmission device side resonance circuit is constituted by the series resonance capacitor Cr of the power transmission device PSU and an equivalent series resonance inductor (Lr: this Lr will be described later in an equivalent circuit) connected in series thereto.
  • a power reception device side resonance circuit is configured by the series resonance capacitor Crs of the power reception device PRU and an equivalent inductance (Lrs: this Lrs will be described later with an equivalent circuit) connected in series therewith.
  • the resonance circuit on the power transmission device side and the resonance circuit on the power reception device resonate to resonate each other, and two couplings between a magnetic field due to mutual inductance and an electric field due to mutual capacitance between the power transmission coil Lp and the power reception coil Ls. Utilize power transmission.
  • the capacitors Cp and Cs promote power transmission through electromagnetic coupling.
  • the capacitors Cp and Cs and the mutual capacitance (Cm) which will be shown later as an equivalent circuit, constitute a power transmission circuit based on ⁇ -type electric field coupling to transmit power.
  • the mutual capacitance Cm constitutes a power transmission circuit by electric field coupling with the resonance capacitors Cr and Crs.
  • Both series resonance capacitors Cr and Crs also serve as capacitors for holding a DC voltage.
  • the capacitor Cr On the power transmission device PSU side, the capacitor Cr is charged during the conduction period of the switching element Q1, and the capacitor Cr is discharged during the conduction period of the switching element Q2.
  • energy is supplied to the load Ro while discharging the capacitor Crs by adding the voltage of the capacitor Crs to the voltage generated in the power receiving coil Ls when the switching element Q3 is turned on, and the switching element Q4 is turned on.
  • the capacitor Crs is charged by the voltage generated in the power receiving coil Ls to store electrostatic energy. That is, the voltage of the receiving coil Ls generated during the conduction period of each of the switching elements Q3, Q4 or Q1, Q2 is added to output energy to the load Ro.
  • the two resonance circuits on the power transmission device side and the power reception device side resonate with respect to the switching frequency fs by the switching elements Q1 and Q2.
  • the double resonance circuit 40 includes two resonance circuits on the power transmission device side and the power reception device side including the electromagnetic field coupling circuit 90.
  • the double resonance circuit 40 has a specific resonance frequency fr that minimizes the combined impedance of the double resonance circuit 40, and the switching frequency fs and the resonance frequency fr approach each other to resonate.
  • the flowing current increases and the output power increases.
  • the switching element is turned on / off at a switching frequency fs higher than the inherent resonance frequency fr of the entire double resonance circuit 40 that combines the power transmission device side resonance circuit including the electromagnetic field coupling circuit and the power reception device side resonance circuit.
  • the switching frequency fs approaches the inherent resonance frequency fr and resonates, the current flowing into the multiple resonance circuit increases and the output power increases.
  • the electromagnetic field coupling circuit 90 is configured with a mutual inductance and a mutual capacitance formed equivalently between the power transmission coil and the power reception coil, and the power transmission device side resonance circuit and the power reception device side resonance circuit resonate, Power is transmitted from the power transmission device to the power reception device.
  • the energy that has not been transmitted from the power transmission device is stored as resonance energy in the power transmission device side resonance circuit as reactive power.
  • energy that is not supplied to the output among the energy received by the power receiving device is similarly stored as reactive energy in the power receiving device side resonance circuit as reactive power.
  • the output is controlled by controlling the on period ratio Da which is the ratio of the conduction periods of the two switching circuits, that is, the on period ratio control.
  • the switching control circuit 10 performs the following control. (1) For the entire multiple resonance circuit 40 including the power transmission device side resonance circuit including the electromagnetic field coupling circuit 90 and the power reception device side resonance circuit, the switching frequency is set to be lower than the natural resonance frequency fr with the smallest input impedance. Make it high. This makes the double resonant circuit inductive at that switching frequency. Therefore, the phase of the current flowing through the equivalent inductor Lr is delayed with respect to the voltage phase of the square-wave (trapezoidal) AC voltage generated by the power transmission device AC voltage generation circuit, and the voltage Vds1 of the switching element Q1 is 0. The switching element Q1 can be turned on. Similarly, the switching element Q2 can be turned on when the voltage vds2 of the switching element Q2 is zero.
  • ZVS zero voltage switching
  • switching loss can be greatly reduced, and high-efficiency operation is possible. Therefore, a zero voltage switching (ZVS) operation can be performed by appropriately setting a dead time period in which both the switching elements Q1 and Q2 are turned off. Further, since the operation is performed at the switching frequency higher than the resonance frequency fr in the entire load range, the zero voltage switching (ZVS) operation can be realized over the entire load range by appropriately setting the dead time period.
  • the switching frequency of the AC voltage generating circuit on the power transmission apparatus side is made constant, and the ratio of the conduction periods of the switching circuit S1 including the switching element Q1 and the switching circuit S2 including the switching element Q2, that is, the on period ratio is controlled.
  • the output power obtained from the power receiving device side rectifier circuit is adjusted, and the transmission energy is adjusted.
  • the waveform of the current flowing through the multiple resonance circuit 40 is distorted from a sine wave as the on period ratio Da departs from 1 by the on period ratio control means. Become. For this reason, in order to suppress the distortion of the waveform from the sine wave to a predetermined value, the on-period ratio of the switching circuits S1 and S2 is set to be relatively close to 1, and the switching frequency of the AC voltage generating circuit on the power transmission device side is set. By controlling the switching elements Q1 and Q2 so as to change, the output power obtained from the power receiving device side rectifier circuit is adjusted to adjust the transmission energy.
  • the switching frequency is changed according to the fluctuation of the input voltage on the power receiving device side.
  • the resonance current waveform is distorted from the sine wave. It is possible to adjust the output power obtained from the power receiving device side rectifier circuit and adjust the energy to be transmitted while obtaining optimum converter characteristics that are small and have a small change frequency of the switching frequency.
  • FIG. 2 is a voltage-current waveform diagram of each part of the power transmission system 111 shown in FIG. The operation at each timing of the power transmission system 111 is as follows.
  • the gate-source voltages of the switching elements Q1, Q2, Q3, and Q4 are vgs1, vgs2, vgs3, and vgs4, and the drain-source voltages are vds1, vds2, vds3, and vds4, respectively.
  • Q1 and Q2 perform on / off operations alternately with a short dead time when both switching elements are turned off, and perform ZVS operation by commutating currents flowing through Q1 and Q2 in the dead time period. The operation in each state in one switching cycle is shown below.
  • the switching circuit S3 including the switching element Q3 of the power receiving device PRU is conductive, and a voltage is induced in the power receiving coil Ls by the voltage applied to the power transmitting coil Lp, and the capacitor Crs is discharged to supply current. The voltage induced in the coil Ls and the voltage across the capacitor Crs are added to transmit power to the load. When the switching element Q1 is turned off, State 2 is obtained.
  • the switching circuit S2 including the switching element Q2 is conductive.
  • the parasitic diodes at both ends of the switching element Q2 are conducted, and the ZVS operation is performed by turning on the switching element Q2 during this period.
  • a current flows through the power transmission coil Lp, and the capacitor Cr is discharged.
  • the switching element Q4 is conductive, and a voltage is induced in the power receiving coil Ls by the voltage applied to the power transmitting coil Lp, and the capacitor Crs is charged.
  • the voltage of the capacitor Co is applied to the load to transmit power.
  • a negative current flows through the current waveforms id3 and id4 flowing through the switching elements Q3 and Q4 on the receiving device side.
  • the negative current flowing through the switching elements Q3 and Q4 becomes a current regenerated from the load side, and the current supplied to the output is a value obtained by averaging the currents obtained by subtracting the negative current from the positive currents of the current waveforms id3 and id4. It becomes.
  • the output current is greatly reduced by simply changing the ON period ratio from 1, and the supply power can be adjusted greatly by changing the small ON period ratio, thereby improving the controllability of the output power.
  • FIG. 3A is a circuit diagram of an electromagnetic field coupling resonance circuit portion composed of the electromagnetic field coupling circuit 90 and capacitors Cr and Crs shown in FIG.
  • FIG. 3B is an equivalent circuit diagram thereof.
  • the mutual inductance Lm is shown as an equivalent inductor that transmits power by magnetic field coupling between the power transmission coil Lp and the power reception coil Ls
  • the mutual capacitance Cm is electric power due to electric field coupling between the power transmission coil Lp and the power reception coil Ls. Is shown as an equivalent capacitor that transmits.
  • the inductances Ls and Lsr on the power receiving device side are described using the inductances Ls1 and Lrs1 equivalently converted to the apparent inductance viewed from the power transmission device side.
  • n a turns ratio that is a ratio of the number of turns of the power receiving coil to the number of turns of the power transmitting coil
  • the relationship becomes.
  • the capacitances Cs and Csr on the power receiving device side are described using the capacitances Cs1 and Crs1 equivalently converted to the apparent capacitance viewed from the power transmission device side.
  • Cs1 Cs / n 2
  • Crs1 Crs / n 2
  • Lm ⁇ Lp Lm ⁇ Ls If this relationship holds, Lr ⁇ Lp Lrs1 ⁇ Ls1 Can also be considered.
  • a square wave voltage vac in as shown in Fig. 4 is applied between the terminals 1 'of Fig. 3 (B), and the following equation is obtained by Fourier series expansion of the voltage vac in) (t).
  • the square wave signal includes the fundamental wave component of the resonance frequency and its harmonic component, and a voltage including a higher-order frequency component is applied between the terminals 1-1 ′.
  • Power can be efficiently transmitted by performing a resonance operation including a voltage waveform of a higher-order frequency component.
  • the energy that has not been transmitted from the power transmission device is stored as resonance energy in the power transmission device side resonance circuit as reactive power.
  • energy that is supplied to the output and not consumed by power among the energy received by the power receiving device is also stored as resonance energy in the power receiving device side resonance circuit as reactive power.
  • the active power is transmitted from the power transmission device side to the power reception device side by using a resonance phenomenon that causes the power transmission device side resonance circuit and the power reception device side resonance circuit to resonate, and the reactive power is transmitted between the power transmission device side and the power reception device side. Since each LC resonance circuit circulates and is stored as resonance energy, it is possible to configure a power transmission system with very small power loss.
  • a switching operation is performed by increasing the switching frequency with respect to the resonance frequency of the multi-resonance circuit composed of the power transmitting device PSU and the power receiving device PRU, and an appropriate dead time is set. Zero voltage switching) operation can be performed, and switching loss can be greatly reduced.
  • the transmission power can be controlled by changing the switching frequency and the frequency control PFM (PulseulFrequency Modulation), and the output power can be adjusted.
  • PFM PulseulFrequency Modulation
  • Transmission power can be controlled by an on-period ratio control ORM (On-periods Ratio Modulation) that controls the ratio of conduction periods of switching elements that are alternately turned on and off alternately at a fixed switching frequency.
  • ORM On-periods Ratio Modulation
  • the available frequency band can be limited, and EMC countermeasures can be facilitated. Also, the controllability for controlling the output can be improved.
  • (K) Rectification loss can be reduced by the synchronous rectifier circuit on the power receiving device side.
  • the power transmission system can be downsized. By performing a synchronous rectification operation with the switching elements Q3 and Q4 constituting the synchronous rectification circuit and passing a negative current through the switching elements Q3 and Q4, it becomes possible to largely adjust the transmission power with a small change in the on-period ratio. Power controllability can be improved.
  • the power receiving device side can operate the control circuit with the received power. Therefore, it is not necessary to provide a power source on the power receiving apparatus side, and the apparatus can be reduced in size and weight.
  • power can be transmitted from the power receiving device side to the power transmitting device side, or the received power can be transmitted to another location using the power receiving device side as a relay point. It can also be used as a relay system, and long-distance power transmission becomes possible by preparing and relaying a plurality of this apparatus.
  • the capacitors Cp and Cs provided in parallel with the power transmission coil Lp or the power reception coil Ls are efficient by matching with the mutual capacitance Cm formed between the power transmission coil Lp and the power reception coil Ls.
  • An electric field coupling circuit can be formed. Transmission efficiency is higher than in the case of magnetic field coupling alone.
  • the mutual capacitance Cm uses a stray capacitance that becomes an equivalent capacitance by electric field coupling formed between the power transmission coil Lp and the power reception coil Ls, thereby eliminating the need for a component of mutual capacitance and reducing the size and weight. be able to.
  • the parallel resonance capacitance (Cp, Cs) uses the stray capacitance formed at both ends of the winding of the power transmission coil Lp or the power reception coil Ls, so that no component of the parallel resonance capacitance is required, and the power transmission system device Can be reduced in size and weight.
  • the leakage inductance that is not involved in the coupling is used as a resonance inductor constituting the power transmission device side resonance circuit or the power reception device side resonance circuit, so that the components of the resonance inductor are unnecessary or small.
  • the power transmission system device can be reduced in size and weight.
  • FIG. 5A, FIG. 5B, and FIG. 5C are circuit diagrams of a power transmission system having a configuration example different from that of the first embodiment.
  • FIG. 5A is a circuit diagram of the power transmission system 111A.
  • the mutual inductances Lmp and Lms that are equivalent inductances involved in magnetic field coupling between the power transmission coil Lp and the power receiving coil Ls, and leakage that is equivalent inductance not involved in magnetic field coupling.
  • Inductances Lr and Lrs are provided.
  • mutual capacitances Cm1 and Cm2 that are equivalent capacitances involved in electric field coupling between the transmission capacitance Cp and the reception capacitance Cs and leakage capacitances Cpp and Css that are equivalent capacitances not involved in electric field coupling are provided.
  • inductances Lmp, Lms, Lr, Lrs and capacitances Cm1, Cm2, Cpp, Css an equivalent inductor of the power transmission coil Lp and the power reception coil Ls or an equivalent capacity of the power transmission capacitance Cp and the power reception capacitance Cs can be used.
  • these can be used as a single electronic component, or can be combined with an equivalent inductance and an equivalent capacitance.
  • the power transmission system 111A has the following effects.
  • the leakage inductance that is not involved in the coupling is used as a resonance inductor that constitutes the power transmission device side resonance circuit or the power reception device side resonance circuit, thereby eliminating the need for a resonant inductor component.
  • the power transmission system apparatus can be reduced in size and weight.
  • the leakage capacitance that is not involved in the coupling is used as the resonance capacitor constituting the power transmission device side resonance circuit or the power reception device side resonance circuit, so that no component of the resonance capacitor is required.
  • the power transmission system apparatus can be reduced in size and weight.
  • FIG. 5B is a circuit diagram of the power transmission system 111B.
  • the mutual inductances Lmp and Lms which are equivalent inductances involved in the magnetic field coupling between the power transmission coil Lp and the power reception coil Ls, and the magnetic field coupling are not involved.
  • Leakage inductances Lr and Lrs which are equivalent inductances, are provided. It does not have a mutual capacitance, which is an equivalent capacitance involved in electric field coupling. That is, only a magnetic field coupling circuit that is a coupling of only a magnetic field is formed, not an electric field coupling circuit that is a coupling of an electric field and a magnetic field.
  • the magnetic field coupling circuit 91 is formed in the power transmission system 111B, the number of components is smaller than that in the case where the electric field coupling circuit 90 is formed, and the power transmission system 111B can be configured with a simple circuit and has the following effects.
  • the leakage inductance that is not involved in the coupling is used as a resonance inductor that constitutes the power transmission device side resonance circuit or the power reception device side resonance circuit, thereby eliminating the need for a resonant inductor component.
  • the power transmission system apparatus can be reduced in size and weight.
  • FIG. 5C is a circuit diagram of the power transmission system 111C. Unlike the power transmission system 111 shown in FIG. 1 in the first embodiment, mutual capacitances Cm1 and Cm2 that are equivalent capacitances involved in electric field coupling between the transmission capacitance Cp and the receiving transmission capacitance Cs, and magnetic field coupling. Leakage capacitances Cpp and Css that are equivalent capacitances are not provided. There is no mutual inductance that is an equivalent inductance involved in electric field coupling. That is, only the electric field coupling circuit 92 that is a coupling of only the electric field is formed instead of the electric field coupling circuit 90 that is a coupling of the electric field and the magnetic field.
  • the electric field coupling circuit 92 is formed in the power transmission system 111C, the number of components is smaller than that in the case where the electric field coupling circuit is formed, and the electric power transmission system 111C can be configured with a simple circuit, and has the following effects.
  • the use of a leakage capacitance that is not involved in coupling as a resonance capacitor constituting the power transmission device side resonance circuit or the power reception device side resonance circuit eliminates the need for a component of the resonance capacitor.
  • the power transmission system apparatus can be reduced in size and weight.
  • FIG. 6 is a circuit diagram of the power transmission system 112 according to the second embodiment.
  • rectifier diodes D3 and D4 are provided on the power reception device side instead of the switching elements Q3 and Q4 that are synchronous rectifier elements. That is, the power receiver side rectifier circuit is configured by the diodes D3 and D4.
  • FIG. 7 is a voltage-current waveform diagram of each part of the power transmission system 112 shown in FIG. The operation at each timing of the power transmission system 112 is as follows.
  • the gate-source voltages of the switching elements Q1, Q2 are voltages vgs1, vgs2, and the drain-source voltages are voltages vds1, vds2, respectively.
  • Q1 and Q2 perform on / off operations alternately with a short dead time when both switching elements are turned off, and perform ZVS operation by commutating currents flowing through Q1 and Q2 in the dead time period. The operation in each state in one switching cycle is shown below.
  • the diode D3 conducts and current starts to flow from 0A.
  • the voltage applied to the power transmission coil Lp induces a voltage in the power reception coil Ls, the capacitor Crs is discharged and supplied with current, and the voltage induced in the power reception coil Ls and the voltage across the capacitor Crs are added to the load. Power is transmitted.
  • State 2 is obtained.
  • the power receiving device PRU can be simply configured. Further, the rectifier diodes D3 and D4 pass a current only in the forward direction, and no negative current flows through the power receiving device side rectifier circuit as compared with the power transmission system 111 of the first embodiment. For this reason, there is no current regenerated from the output side, the current circulating through the power receiving device side resonance circuit is reduced, and the conduction loss can be reduced.
  • FIG. 7 is a circuit diagram of the power transmission system 113 according to the third embodiment.
  • the first embodiment differs from the power transmission system shown in FIG. 1 in the configuration on the power receiving device PRU side.
  • a center tap rectifier circuit is configured by the power receiving coils Ls1 and Ls2, the diodes D3 and D4, and the capacitor Co.
  • the configuration of the power transmission device PSU is the same as that shown in the first embodiment.
  • a parallel resonant capacitor Crsa (capacitor corresponding to Cp in FIG. 1) is configured by a stray capacitance generated in the power transmission coil Lp or a single capacitor.
  • a parallel resonant capacitor Crsb (capacitor corresponding to Cs in FIG. 1) is configured by stray capacitance generated in the power receiving coils Ls1 and Ls2 or a single capacitor.
  • transmission power is controlled by switching frequency control (PFM).
  • PFM switching frequency control
  • FIG. 9 is a circuit diagram of the power transmission system 114 of the fourth embodiment. Unlike the power transmission system shown in FIG. 7 in the third embodiment, in this example, a resonance capacitor Crs is provided on the power receiving device PRU side. For this reason, electromagnetic resonance operation can be performed at a predetermined resonance frequency by the capacitor Crs.
  • transmission power is controlled by switching frequency control (PFM).
  • PFM switching frequency control
  • FIG. 10 is a circuit diagram of the power transmission system 115 of the fifth embodiment.
  • the first embodiment differs from the power transmission system shown in FIG. 1 in the configuration on the power receiving device PRU side.
  • a bridge rectifier circuit is configured by diodes D3, D4, D7, D8 and a capacitor Co in the power receiving coil Ls.
  • the configuration of the power transmission device PSU is the same as that shown in the first embodiment.
  • a parallel resonant capacitor Crs (capacitor corresponding to Cs in FIG. 1) is configured by stray capacitance generated in the power receiving coil Ls or a single capacitor.
  • transmission power is controlled by switching frequency control (PFM).
  • PFM switching frequency control
  • FIG. 11 is a circuit diagram of the power transmission system 116 of the sixth embodiment. Unlike the power transmission system shown in FIG. 10 in the fifth embodiment, in this example, a resonance capacitor Crs is provided on the power receiving device PRU side. For this reason, electromagnetic resonance operation can be performed at a predetermined resonance frequency by the capacitor Crs.
  • transmission power is controlled by switching frequency control (PFM).
  • PFM switching frequency control
  • FIG. 12 is a circuit diagram of the power transmission system 117 of the seventh embodiment.
  • an AC voltage generating circuit having a full bridge circuit configuration by four switching elements Q1, Q2, Q3, and Q4 is provided on the power transmission device PSU side.
  • a rectification circuit having a bridge rectification configuration by four switching elements Qs1, Qs2, Qs3, and Qs4 is provided on the power receiving device PRU side.
  • the switching elements Q1, Q2, Q3, and Q4 on the power transmission device PSU side and the switching elements Qs1, Qs2, and Qs3 on the power reception device PRU side Since the voltage applied to Qs4 is halved, the loss in the switching element can be reduced.
  • the power transmission device PSU and the power reception device PRU are circuits having the same configuration and are symmetrical, and thus can be used as a bidirectional power transmission system device.
  • FIG. 13 is a circuit diagram of the power transmission system 118 of the eighth embodiment.
  • an AC voltage generation circuit having a full bridge circuit configuration by four switching elements Q1, Q2, Q5, and Q6 is provided on the power transmission device PSU side, and bridge rectification by four diodes D3, D4, D7, and D8 on the power reception device PRU side.
  • a rectifier circuit having a configuration is provided.
  • the configuration on the power receiving device PRU side can be simplified compared to the seventh embodiment.
  • the withstand voltage of the rectifying element on the power receiving device PRU side can be reduced.
  • FIG. 14 is a circuit diagram of the power transmission system 119 of the ninth embodiment.
  • capacitors Cr1 and Cr2 for dividing the voltage of the input power source Vi and capacitors Crs1 and Crs2 for dividing the output voltage Vo are provided. That is, the series resonance capacitor Cr in the power transmission system shown in the first embodiment is divided into Cr1 and Cr2, and the series resonance capacitor Crs is divided into Crs1 and Crs2.
  • the exciting inductances of the power transmitting coil Lp and the power receiving coil Ls are illustrated as series resonant inductors Lr and Lrs. Others are the same as those shown in FIG. 1 in the first embodiment.
  • the loss due to the capacitor is dispersed, the overall loss is reduced, and the heat generation is dispersed.
  • the capacitors Cr1 and Cr2 and the capacitors Crs1 and Crs2 play both roles of holding a DC voltage and acting as a series resonance capacitor.
  • FIG. 15 is a circuit diagram of the power transmission system 120 of the tenth embodiment.
  • a capacitor Cc is provided on the power transmission device PSU side to constitute a voltage clamp circuit. Others are the same as those shown in FIG. 1 in the first embodiment.
  • the switching element Q1 is turned off, the voltage of the power transmission coil Lp is charged to the capacitor Cc via the parasitic diode of the switching element Q2, and the voltage in the direction shown in FIG.
  • the voltage (+ Vc) charged in the capacitor Cc is applied to the multiple resonance circuit. That is, the input voltage Vi is converted into a square wave voltage, and the square wave voltage has voltage amplitudes of + Vi and ⁇ Vc.
  • the input power supply voltage to the resonance circuit changes between + Vi and 0 V, and the voltage amplitude is Vi.
  • the input power supply voltage changes from + Vi to ⁇ Vc.
  • the voltage amplitude operates at (Vi + Vc).
  • the voltage Vc across the capacitor Cc constituting the voltage clamp circuit changes according to the ON time ratio D which is the ratio of the conduction period of the switching element Q1 to the switching period, and the output voltage Vo can be controlled over a wide range.
  • the amplitude voltage of the square wave voltage applied to the resonance circuit is increased, and both the PFM and the ON period ratio control ORM (On-periods Ratio Modulation) operate.
  • FIG. 16 is a circuit diagram of the power transmission system 121 of the eleventh embodiment.
  • a capacitor Cc is provided on the power transmission device PSU side to constitute a voltage clamp circuit
  • a capacitor Ccs is provided on the power reception device PRU side to constitute a voltage clamp circuit on the power reception device PRU side.
  • Others are the same as those of the tenth embodiment shown in FIG.
  • the input voltage Vi is converted into a square wave voltage, and the square wave voltage has voltage amplitudes of + Vi and ⁇ Vc. Further, since the negative voltage (Vcs) is charged in the capacitor Ccs on the power receiving device side, the AC square wave voltage applied to the synchronous rectifier circuit by the switching elements Qs1 and Qs2 has voltage amplitudes of + Vo and ⁇ Vcs. Since the voltage amplitude is thus increased, the control characteristics with respect to fluctuations in the output voltage are also improved. That is, the output voltage can be easily adjusted over a wide range.
  • FIG. 17 is a circuit diagram of the power transmission system 122 of the twelfth embodiment.
  • the power transmission coil Lp of the power transmission device PSU and the power reception coil Ls of the power reception device PRU are coils each having a magnetic core such as ferrite. Therefore, a transformer is constituted by the power transmission coil Lp and the power reception coil Ls.
  • the degree of magnetic field coupling between the power transmission coil Lp and the power reception coil Ls is increased, and the power transmission efficiency can be sufficiently increased.
  • electromagnetic waves (magnetic flux and electric flux) emitted to the space can be suppressed by the ferrite that is a magnetic core.
  • FIG. 18 is a circuit diagram of the power transmission system 123 of the thirteenth embodiment.
  • the power transmission system 123 includes resonance inductors Lr and Lrs, resonance capacitors Cr, Crs, Cp, and Cs as compared with the twelfth embodiment.
  • the degree of magnetic field coupling between the power transmission coil Lp and the power reception coil Ls is increased, and the power transmission efficiency can be sufficiently increased.
  • the electromagnetic waves (magnetic flux and electric flux) emitted to the space are ferrite. Can be suppressed.
  • an inductor component and leakage inductance that are not involved in the magnetic field coupling between the power transmission coil Lp and the power reception coil Ls can be used as the resonance inductors Lr and Lrs.
  • winding capacitances which are stray capacitances equivalent to the power transmission coil Lp and the power reception coil Ls, can be used as the resonance capacitors Cp, Cs.
  • the resonant inductors Lr and Lrs and the resonant capacitors Cp and Cs can also be constituted by a single electronic component. In this case, the resonant frequency can be arbitrarily set, and therefore a resonant operation can be caused at a predetermined switching frequency. It becomes easy.
  • FIG. 19 is a circuit diagram of the power transmission system 124 of the fourteenth embodiment.
  • the power transmission system 124 includes resonant inductors Lr and Lrs and resonant capacitors Cr, Crs, Cp, and Cs as compared to the twelfth embodiment.
  • a multi-resonant circuit 40 is configured by the power transmission coil Lp, the power reception coil Ls, the resonance inductors Lr and Lrs, and the resonance capacitors Cr, Crs, Cp, and Cs.
  • the degree of magnetic field coupling between the power transmission coil Lp and the power reception coil Ls is increased, and the power transmission efficiency can be sufficiently increased. Moreover, electromagnetic waves (magnetic flux and electric flux) emitted into the space can be suppressed by ferrite. Furthermore, since the resonance frequency can be set arbitrarily, it is easy to perform a resonance operation.
  • FIG. 20 is a circuit diagram of the power transmission system 125 of the fifteenth embodiment.
  • the power transmission system 125 includes capacitors Cr1 and Cr2 that divide the voltage of the input power source Vi, and capacitors Crs1 and Crs2 that divide the output voltage Vo. That is, the series resonance capacitor on the power transmission device PSU side is divided into Cr1 and Cr2, and the series resonance capacitor on the power reception device PRU side is divided into Crs1 and Crs2.
  • the loss due to the capacitor is dispersed, the overall loss is reduced, and the heat generation is dispersed.
  • the capacitors Cr1 and Cr2 and the capacitors Crs1 and Crs2 play both roles of holding a DC voltage and acting as a series resonance capacitor.
  • FIG. 21 is a circuit diagram of the power transmission system of the sixteenth embodiment.
  • the resonance capacitor on the power transmission device PSU side is divided and arranged in two capacitors Cr1 and Cr2
  • the resonance capacitor on the power reception device side is divided and arranged in two capacitors Crs1 and Crs2.
  • the capacitors Cr1 and Cr2 and the capacitors Crs1 and Crs2 play both roles of holding a DC voltage and acting as a series resonance capacitor.
  • electrical insulation by an electric field can be obtained by the resonant capacitors Cr1, Cr2, Crs1, and Crs2. Further, by surrounding the power transmission coil and the power reception coil with the resonance capacitors Cr1, Cr2, Crs1, and Crs2, the physical restrictions are eased and the electromagnetic waves (magnetic flux and electric flux) emitted to the space can be easily contained.
  • the loss in the capacitor can be dispersed.
  • FIG. 22 is a circuit diagram of the power transmission system 127 of the seventeenth embodiment.
  • an AC voltage generation circuit having a full bridge circuit configuration including four switching elements Q1, Q2, Q5, and Q6 is provided on the power transmission device PSU side.
  • a rectification circuit having a bridge rectification configuration with four switching elements Q3, Q4, Q7, and Q8 is provided on the power receiving device PRU side.
  • Other configurations are the same as those in the sixteenth embodiment.
  • the voltages applied to the switching elements Q1, Q2, Q5, Q6 on the power transmitting device PSU side and the switching elements Q3, Q4, Q7, Q8 on the power receiving device PRU side are each halved. Therefore, loss in the switching element can be reduced.
  • Other functions and effects are the same as those in the sixteenth embodiment.
  • FIG. 23 is a circuit diagram of the power transmission system 128 according to the eighteenth embodiment.
  • the power transmission system 128 includes a plurality of power transmission / reception devices PSU / PRU1, PSU / PRU2, PSU / PRU3, and PSU / PRU4 capable of bidirectional power transmission.
  • the second power transmission / reception device PSU / PRU2 that forms an electromagnetic coupling correspondingly acts as a power reception device. Therefore, power is transmitted from the first power transmission / reception device PSU / PRU1 to the second power transmission / reception device PSU / PRU2.
  • the load Ro of the second power transmission / reception device PSU / PRU2 includes a rechargeable battery and its charging circuit.
  • the third power transmission / reception device PSU / PRU3 corresponds to the second power transmission / reception device PSU / PRU2, and when the second power transmission / reception device PSU / PRU2 acts as a power transmission device, the third power transmission / reception device PSU / PRU3.
  • PRU 3 acts as a power receiving device.
  • the rechargeable battery is used as a power source for the second power transmitting / receiving device PSU / PRU2.
  • load Ro2 of the 3rd power transmission / reception apparatus PSU / PRU3 is provided with a charging battery and its charging circuit.
  • the fourth power transmission / reception device PSU / PRU4 corresponds to the third power transmission / reception device PSU / PRU3, and when the third power transmission / reception device PSU / PRU3 acts as a power transmission device, the fourth power transmission / reception device PSU / PRU4.
  • PRU 4 acts as a power receiving device.
  • the third power transmission / reception device PSU / PRU3 uses the rechargeable battery as a power source.
  • load Ro3 of the 4th power transmission / reception apparatus PSU / PRU4 is a charging battery and its charging circuit.
  • a power transmission / reception device on the way can relay power to transmit power far away.
  • the resonance frequency of the resonance circuit of the plurality of power receiving devices is made different and the power transmission device side is configured to perform the switching operation of the switching circuit at the switching frequency according to the power transmission destination, Power can be selectively transmitted to a predetermined power receiving apparatus.
  • the switching frequency by switching the switching frequency according to the power transmission direction of the power transmission / reception device, it is possible to transmit power in a direction (location) suitable for each switching frequency. That is, by performing control such as switching the switching frequency, it is possible to select an appropriate electronic device or transmit electric power to an appropriate direction or place to prevent power transmission crosstalk.
  • Power transmission device PRU ... Power reception devices Q1 to Q8 ... Switching elements Qs1, Qs2, Qs3, Qs4 ... Switching elements S1, S2, S3, S4 ... Switching circuits 10, 20 ... Switching control Circuit 30 ... signal transmission means 40 ... multi-resonant circuit 50 ... feedback control circuit 90 ... electromagnetic coupling circuit 91 ... magnetic coupling circuit 92 ... field coupling circuits 111-128 ... power transmission system

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

送電コイル(Lp)に直列に接続された共振キャパシタ(Cr)を含む送電装置側共振回路と、受電コイル(Ls)に直列に接続された共振キャパシタ(Crs)を含む受電装置側共振回路とを共鳴させることによりそれぞれが共振し、そのことにより、送電コイル(Lp)と受電コイル(Ls)との間で磁界と電界の2つの結合を利用して電力伝送を行う。また、全体の複共振回路の固有の共振周波数に対してスイッチング周波数を高くして動作させることによりZVS動作を行って、スイッチング損失を大幅に低減でき、高効率動作が可能となる。これにより、小型化を図りつつ電力変換効率を高めた電力伝送システムを構成する。

Description

電力伝送システム
 本発明は、電力送電装置と電力受電装置とで構成される電力伝送システムに関するものである。
 近年、電子機器の小型軽量化および低消費電力化、さらには電池容量の増大化に伴い、電池駆動の電子機器が増加している。また、近距離では機器間のデータ通信を無線で行う利用形態も増えている。これらの事情に伴って電力についても非接触での伝送技術が要求されている。
 従来の非接触型の充電システムは、例えば特許文献1に示されるように、充電台等に一次側コイルを備える送電装置と、二次コイルおよび充電電池を備えた携帯電子機器とで構成されていて、ユーザは携帯電子機器を送電装置に載置する。これにより、送電装置の一次側コイルと携帯電子機器の二次側コイルとが電磁誘導結合(磁界結合)して充電装置側へ電力が供給され、二次電池が充電される。
特開2008-206327号公報
 しかしながら、特許文献1の電力伝送システムにおいては、送電コイルと受電コイルとは電磁誘導を利用した絶縁トランスとして作用し、磁気結合を利用した変圧器として利用しているに過ぎない。電磁誘導を利用したトランスでは、1次巻線に流れる電流により発生した磁束を2次巻線と鎖交させて電流を流し、電気から磁気、そして電気へと効率よく変換することが重要となっている。一般に、1次巻線に流れる電流により発生した磁束のうち、2次巻線と鎖交する磁束の割合は(磁気)結合度と呼ばれ、電磁誘導を利用したトランスでは、電力変換効率を高めるためには磁気結合度を高めることが重要となっている。しかしながら、磁気飽和を防止するため、または物理的な制約によりトランスの磁気結合度を大きくすることが困難な場合も多く、結果的に電力変換効率を低下させるという結果となっている。
 また、一般に電力伝送システムでは、インピーダンスマッチング(整合)を行なって電力を伝送するため、制御においては動作周波数を変化させる。一方、電子機器では機器ごとに使用できる周波数帯域が決められている。そのため、EMC(電磁両立性)や伝送エネルギーの制御性などを考えると固定周波数で動作することが好ましい。
 本発明は、装置を大型化することなく電力伝送時の電力変換効率を高めた電力伝送システムを提供することを目的としている。
 本発明の電力伝送システムは次のように構成される。
(1)送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
 前記送電装置は、前記送電コイルとともに送電装置側共振回路を構成する送電装置側共振キャパシタと、
 前記送電コイルに接続されて、スイッチング素子、ダイオード、およびキャパシタの並列接続回路で構成されたスイッチング回路を有し、入力される直流電圧から交流電圧を発生する送電装置側交流電圧発生回路と、
 を備え、
 前記受電装置は、前記受電コイルとともに受電装置側共振回路を構成する受電装置側共振キャパシタと、
 前記受電コイルに接続されて、該受電コイルに生じる交流電圧を直流電圧に整流する受電装置側整流回路と、
を備え、
 前記送電コイルと受電コイルとの間に等価的に形成される相互インダクタンスおよび相互キャパシタンスで電磁界結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
 前記送電装置から送電されなかったエネルギー(無効電力)は前記送電装置側共振回路に共振エネルギーとして保存され、
 前記受電装置が受電したエネルギーのうち出力に供給されなかったエネルギー(無効電力)は前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする。
(2)送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
 前記送電装置は、前記送電コイルとともに送電装置側共振回路を構成する送電装置側共振キャパシタと、
 前記送電コイルに接続されて、スイッチング素子、ダイオード、およびキャパシタの並列接続回路で構成されたスイッチング回路を有し、入力される直流電圧から交流電圧を発生する送電装置側交流電圧発生回路と、
 を備え、
 前記受電装置は、前記受電コイルとともに受電装置側共振回路を構成する受電装置側共振キャパシタと、
 前記受電コイルに接続されて、該受電コイルに生じる交流電圧を直流電圧に整流する受電装置側整流回路と、
を備え、
 前記送電コイルと受電コイルとの間に等価的に形成される相互インダクタンスで電磁結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
 前記送電装置から送電されなかったエネルギー(無効電力)は前記送電装置側共振回路に共振エネルギーとして保存され、
 前記受電装置が受電したエネルギーのうち出力に供給されなかったエネルギー(無効電力)は前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする。
(3)送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
 前記送電装置は、送電キャパシタとともに送電装置側共振回路を構成する送電装置側共振インダクタと、
 前記送電コイルに接続されて、スイッチング素子、ダイオード、およびキャパシタの並列接続回路で構成されたスイッチング回路を有し、入力される直流電圧から交流電圧を発生する送電装置側交流電圧発生回路と、
 を備え、
 前記受電装置は、受電キャパシタとともに受電装置側共振回路を構成する受電装置側共振インダクタと、
 前記受電コイルに接続されて、該受電コイルに生じる交流電圧を直流電圧に整流する受電装置側整流回路と、
を備え、
 前記送電コイルと受電コイルとの間に等価的に形成される相互キャパシタンスで電界結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
 前記送電装置から送電されなかったエネルギー(無効電力)は前記送電装置側共振回路に共振エネルギーとして保存され、
 前記受電装置が受電したエネルギーのうち出力に供給されなかったエネルギー(無効電力)は前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする。
(4)前記受電装置は、前記受電装置側整流回路の出力情報を検出して前記送電装置側に前記出力情報を伝送する情報送信回路を備え、
 前記送電装置は、前記出力情報を受信する出力情報受信回路と、前記出力情報に応じて前記送電装置側交流電圧発生回路を制御して伝送電力を制御する伝送電力制御回路とを備えることが好ましい。
(5)例えば、前記情報送信回路は、無線通信で前記出力情報を送信する回路であり、前記出力情報受信回路は無線通信で前記出力情報を受信する回路である。
(6)また例えば、前記情報送信回路は、電気信号を光信号に変換して前記出力情報を送信する回路であり、前記出力情報受信回路は光信号を電気信号に変換して前記出力情報を受信する回路である。
(7)例えば、前記スイッチング回路はハイサイドのスイッチング回路とローサイドのスイッチング回路を備え、前記送電装置側交流電圧発生回路は、前記ハイサイドのスイッチング回路と前記ローサイドのスイッチング回路を交互にオン/オフするスイッチング周波数を変化させる周波数制御PFM(Pulse Frequency Modulation)により伝送電力を制御するように構成することが好ましい。
(8)また例えば、前記スイッチング回路はハイサイドのスイッチング回路とローサイドのスイッチング回路を備え、前記送電装置側交流電圧発生回路は、前記ハイサイドのスイッチング回路と前記ローサイドのスイッチング回路を固定のスイッチング周波数で交互にオン/オフして、第1のスイッチング回路と再2のスイッチング回路の導通期間の比率を制御するオン期間比制御ORM(On-periods Ratio Modulation)により伝送電力を制御するように構成することが好ましい。
(9)前記受電装置側整流回路はスイッチング素子を備えた同期整流回路であることが好ましい。
(10)前記受電装置は、前記同期整流回路の動作周波数(スイッチング周波数)を制御する動作周波数制御回路を備え、前記動作周波数によって受電電力を制御するように構成することが好ましい。
(11)前記受電装置は、該受電装置側の回路を制御する制御回路を備え、該制御回路は、前記受電装置が受電した電力によって動作するように構成することが好ましい。
(12)前記受電装置側整流回路の出力部から電力が伝送されるとき、前記受電装置側整流回路は前記送電装置側交流電圧発生回路として作用するとともに、前記送電装置側交流電圧発生回路は前記受電装置側整流回路として作用し、そのことで双方向に電力伝送が可能であることが好ましい。
(13)前記受電装置は複数存在する場合は、これらの複数の受電装置の前記受電装置側共振回路の共振周波数を異ならせ、前記送電装置側交流電圧発生回路は、送電先に応じたスイッチング周波数で前記スイッチング回路をスイッチングすることが好ましい。
(14)前記交流電圧の波形に対して、前記送電コイルに流れる電流波形の位相が遅れるように、前記スイッチング周波数は前記送電装置側共振回路と前記受電装置側共振回路との共鳴による共振周波数より高く定められ、前記ハイサイドのスイッチング素子とローサイドのスイッチング素子が共にオフするデッドタイムの期間でゼロ電圧スイッチング動作を行うように前記デッドタイムが設定されていることが好ましい。
(15)前記送電コイルまたは前記受電コイルに対して並列に並列共振キャパシタが備えられていることが好ましい。
(16)前記並列共振キャパシタは前記送電コイルと前記受電コイルとの間に形成される電界結合による等価的なキャパシタンスとなる浮遊容量で構成されていることが好ましい。
(17)前記並列共振キャパシタは前記送電コイルまたは前記受電コイルのコイル両端間に形成される浮遊容量で構成されていることが好ましい。
(18)例えば、前記送電コイルおよび前記受電コイルは空芯のインダクタである。
(19)前記相互インダクタンスは、前記送電コイルと前記受電コイルとの間に形成される磁気結合により生じる等価的な励磁インダクタンスであることが好ましい。
(20)前記送電コイルもしくは前記受電コイルのインダクタンス成分のうち、結合に関与しない漏れインダクタンスを前記送電装置側共振回路または前記受電装置側共振回路を構成するインダクタとして用いることが好ましい。
 本発明によれば、送電装置側と受電装置側の双方にLC共振回路を備え、2つのLC共振回路を共鳴させて、送電コイルと受電コイルとの間で磁界または電界または双方の結合を利用して電力伝送を行うことができる。また、共振現象を利用することで有効電力のみを送電装置側から受電装置側へ伝送し、無効電力は送電装置側と受電装置側のそれぞれのLC共振回路において循環して共振エネルギーとして保存されるため電力損失を非常に小さくすることができる。
図1は第1の実施形態の電力伝送システム111の回路図である。 図2は、図1に示した電力伝送システム111の各部の電圧電流波形図である。 図3(A)は、図1に示した電磁界結合回路90とキャパシタCr、Crsで構成される電磁界結合共振回路部分の回路図である。図3(B)はその等価回路図である。 図3(B)の1-1’端子間に与えられる電圧の波形図である。 図5(A)は第1の実施形態の別の構成例である電力伝送システム111Aの回路図である。図5(B)は第1の実施形態の別の構成例である電力伝送システム111Bの回路図である。図5(C)は第1の実施形態の別の構成例である電力伝送システム111Cの回路図である。 図6は第2の実施形態の電力伝送システム112の回路図である。 図7は、図6に示した電力伝送システム112の各部の電圧電流波形図である。 図8は第3の実施形態の電力伝送システム113の回路図である。 図9は第4の実施形態の電力伝送システム114の回路図である。 図10は第5の実施形態の電力伝送システム115の回路図である。 図11は第6の実施形態の電力伝送システム116の回路図である。 図12は第7の実施形態の電力伝送システム117の回路図である。 図13は第8の実施形態の電力伝送システム118の回路図である。 図14は第9の実施形態の電力伝送システム119の回路図である。 図15は第10の実施形態の電力伝送システム120の回路図である。 図16は第11の実施形態の電力伝送システム121の回路図である。 図17は第12の実施形態の電力伝送システム122の回路図である。 図18は第13の実施形態の電力伝送システム123の回路図である。 図19は第14の実施形態の電力伝送システム124の回路図である。 図20は第15の実施形態の電力伝送システム125の回路図である。 図21は第16の実施形態の電力伝送システム126の回路図である。 図22は第17の実施形態の電力伝送システム127の回路図である。 図23は第18の実施形態の電力伝送システム128の回路図である。
《第1の実施形態》
 図1は第1の実施形態の電力伝送システム111の回路図である。
 電力伝送システム111は電力送電装置PSUと電力受電装置PRUとで構成されている。
 この電力伝送システム111は、電力送電装置PSUの入力部に入力電源Viを備え、電力受電装置PRUの負荷Roへ安定した直流のエネルギーを供給するシステムである。電力伝送システム111は次の各部を備えている。
 ・送電コイルLpおよび受電コイルLsを備える電磁界結合回路90
 ・送電コイルLpに接続された、スイッチング素子Q1を含むスイッチング回路S1、スイッチング素子Q2を含むスイッチング回路S2
 ・受電コイルLsに接続されたスイッチング素子Q3を含むスイッチング回路S3、スイッチング素子Q4を含むスイッチング回路S4、および平滑キャパシタCo
 ・送電コイルLpに接続された直列共振キャパシタCr
 ・受電コイルLsに接続された直列共振キャパシタCrs
 ・スイッチング素子Q1、Q2に接続されたスイッチング制御回路10
 ・電力受電装置PRUの受電電力を制御するための制御信号を発生するフィードバック制御回路50
 ・フィードバック信号を絶縁状態で伝送する信号伝達手段30
 ・送電コイルLpに対して並列に接続された並列共振キャパシタCp
 ・1次巻線nsに対して並列に接続された並列共振キャパシタCs
 ・電磁界結合回路90および並列キャパシタCp、Csにより構成される複共振回路40
 スイッチング素子Q1とQ2は、スイッチング制御回路10の制御により、デッドタイムを挟んで交互にオンオフすることにより、直流電圧Viを方形波状または台形波状の電圧波形に整形する。一方、スイッチング素子Q3、Q4は交互に導通することにより方形波状または台形波状の電圧波形を直流電圧に整形する。スイッチング制御回路20は受電コイルLsの電圧信号を基にしてスイッチング素子Q3、Q4の同期整流制御を行う。図1に示す第1の実施形態の電力伝送システム111では、スイッチング素子Q1、Q2、Q3、Q4にMOSFETなどのFETを用いて、寄生の出力容量や寄生ダイオードを利用してスイッチング回路S1、S2、S3、S4を構成することができる。
 フィードバック制御回路50は、負荷Roへの出力(電圧、電流、または電力)を検出し、信号伝達手段30を介して送電装置PSU側にフィードバック情報を伝達する。
 図1において太い破線で囲んだ部分は電磁界結合回路90、細い破線で囲んだ部分は複共振回路40を構成している。図1に示すパラメータMlは磁界結合の相互係数を示したものであり、Mcは電界結合の相互係数を示したものである。相互インダクタンスによる磁界結合(相互係数Ml)と相互キャパシタンスによる電界結合(相互係数Mc)との合成により電磁界結合としての相互係数Mは構成される。この電磁界結合回路90を含めた複共振回路40は、送電装置側と受電装置側の2つのLC共振回路で共鳴動作する。
 送電装置PSUの直列共振キャパシタCrと、これに直列接続される等価的な直列共振インダクタ(Lr:このLrについては後に等価回路で説明する。)とによって送電装置側共振回路が構成される。同様に、受電装置PRUの直列共振キャパシタCrsと、これに直列接続される等価的なインダクタンス(Lrs:このLrsについても後に等価回路で説明する。)とによって受電装置側共振回路が構成される。この送電装置側の共振回路と受電装置側の共振回路とが共鳴することによりそれぞれが共振し、送電コイルLpと受電コイルLsとの間で相互インダクタンスによる磁界と相互キャパシタンスによる電界の2つの結合を利用して電力伝送を行う。
 なお、キャパシタCp、Csは電磁界結合での電力伝送を促進する。すなわち、キャパシタCp、Cs、そして後に等価回路で示す相互キャパシタンス(Cm)とでπ型の電界結合による電力伝送回路を構成して電力を伝送する。この相互キャパシタンスCmは、共振キャパシタCr、Crsとも電界結合による電力伝送回路を構成している。
 直列共振キャパシタCr、Crsは共に直流電圧を保持するためのキャパシタを兼ねている。送電装置PSU側ではスイッチング素子Q1の導通期間にキャパシタCrを充電し、スイッチング素子Q2の導通期間にキャパシタCrを放電する。一方、受電装置PRU側では、スイッチング素子Q3が導通して受電コイルLsに発生する電圧にキャパシタCrsの電圧を加えてキャパシタCrsを放電しながら負荷Roにエネルギーを供給し、スイッチング素子Q4が導通して受電コイルLsに発生する電圧によりキャパシタCrsを充電して静電エネルギーを蓄える。つまり、スイッチング素子Q3、Q4、もしくはQ1、Q2それぞれの導通期間に発生する受電コイルLsの電圧を加算して負荷Roにエネルギーを出力する。
 スイッチング素子Q1とQ2によるスイッチング周波数fsに対して送電装置側と受電装置側の2つの共振回路は共鳴する。電磁界結合回路90を含めた送電装置側と受電装置側の2つの共振回路から複共振回路40は構成される。複共振回路40は、複共振回路40の合成インピーダンスが最も小さくなる固有の共振周波数frを有しており、スイッチング周波数fsと共振周波数frとが近づいて共振することにより、それぞれ2つの共振回路に流れる電流は大きくなり、出力電力は増加する。すなわち、電磁界結合回路を含めた送電装置側共振回路と受電装置側共振回路とを合成した全体の複共振回路40が有する固有の共振周波数frよりも高いスイッチング周波数fsでスイッチング素子をオンオフ動作させ、スイッチング周波数fsが固有の共振周波数frに近づいて共振することにより、複共振回路に流入する電流は大きくなり、出力電力は増加する。
 したがって、送電コイルと受電コイルとの間に等価的に形成される相互インダクタンスおよび相互キャパシタンスで電磁界結合回路90が構成されて、送電装置側共振回路と受電装置側共振回路とが共鳴して、送電装置から受電装置へ電力が伝送される。一方、送電装置から送電されなかったエネルギーは無効電力として送電装置側共振回路に共振エネルギーとして保存される。また、受電装置が受電したエネルギーのうち出力に供給されなかったエネルギーも同様に無効電力として受電装置側共振回路に共振エネルギーとして保存される。
 一方、スイッチング周波数fsを一定にして動作をさせる場合においては、2つのスイッチング回路の導通期間の比率となるオン期間比Daを制御、すなわちオン期間比制御により出力を制御する。オン期間比制御では、オン期間比Da=1、すなわちスイッチング周期に対する第1のスイッチング回路S1の導通期間の比率である、コンバータのオン時比率DがD=0.5に近づくほど出力電力は増加する。
 スイッチング制御回路10は次の制御を行う。
(1)電磁界結合回路90を含めた送電装置側共振回路と受電装置側共振回路とを合わせた全体の複共振回路40に対して、入力インピーダンスが最も小さくなる固有共振周波数frよりスイッチング周波数を高くする。このことにより、そのスイッチング周波数では複共振回路は誘導性となる。そのため、等価的なインダクタLrに流れる電流位相は、送電装置側交流電圧発生回路による方形波(台形波)状の交流電圧の電圧位相に対して遅れ、スイッチング素子Q1の電圧Vds1が0の状態でスイッチング素子Q1をターンオンできる。同様に、スイッチング素子Q2の電圧vds2が0の状態でスイッチング素子Q2をターンオンできる。すなわちZVS(ゼロ電圧スイッチング)動作を行うことになり、スイッチング損失を大幅に低減でき、高効率動作が可能となる。したがって、スイッチング素子Q1とスイッチング素子Q2が共にオフするデッドタイムの期間を適切に設定することで、ゼロ電圧スイッチング(ZVS)動作を行うことができる。また、全負荷範囲において共振周波数frより高いスイッチング周波数にて動作をするため、適切にデッドタイムの期間を設定することで、全負荷範囲に亘ってゼロ電圧スイッチング(ZVS)動作が実現できる。
(2)送電装置側交流電圧発生回路のスイッチング周波数を一定にし、スイッチング素子Q1を含むスイッチング回路S1と、スイッチング素子Q2を含むスイッチング回路S2のそれぞれの導通期間の比率、すなわちオン期間比を制御することで、受電装置側整流回路から得られる出力電力を調整し、伝送エネルギーを調整する。
(3)受電装置側整流回路から供給する出力電力を制御するにあたって、オン期間比制御手段によりオン期間比Daが1から離れるに伴って複共振回路40を流れる電流波形は正弦波から歪むことになる。このため正弦波からの波形の歪みを所定の値に抑えるために、スイッチング回路S1、S2のオン期間比を比較的1に近いところに設定して、送電装置側交流電圧発生回路のスイッチング周波数を変化させるようにスイッチング素子Q1、Q2を制御することで、受電装置側整流回路から得られる出力電力を調整し送電エネルギーを調整する。
(4)そこで、前記(2)のオン期間比制御と(3)のスイッチング周波数による制御とを組み合わせて、例えば、受電装置側の入力電圧の変動に応じてスイッチング周波数を変化させ。複共振回路40に流れる電流波形が正弦波から大きく歪むことを抑制し、負荷の変動に対しては、オン期間比を制御するように構成することで、共振電流波形は正弦波からの歪みが小さく、スイッチング周波数の変化幅も小さい、最適なコンバータ特性を得ながら、受電装置側整流回路から得られる出力電力を調整して送電するエネルギーを調整することができる。
 図2は、図1に示した電力伝送システム111の各部の電圧電流波形図である。電力伝送システム111の各タイミングでの動作は次のとおりである。
 送電コイルLpの励磁電流をimとする。スイッチング素子Q1、Q2、Q3、Q4のゲート・ソース間電圧をvgs1、vgs2、vgs3、vgs4、ドレイン・ソース間電圧をそれぞれvds1、vds2、vds3、vds4とする。Q1、Q2は、両スイッチング素子がオフとなる短いデッドタイムを挟んで交互にオン、オフ動作を行い、デッドタイム期間にQ1、Q2に流れる電流をそれぞれ転流させてZVS動作を行う。1スイッチング周期における各状態での動作を以下に示す。
[1]State1 時刻t0~t1
 送電装置PSUのスイッチング素子Q1を備えたスイッチング回路S1は導通している。まず、スイッチング素子Q1の両端の寄生ダイオードは導通し、この期間においてスイッチング素子Q1をターンオンすることでZVS動作が行われる。送電コイルLpには電流が流れ、キャパシタCrは充電される。
 受電装置PRUのスイッチング素子Q3を備えたスイッチング回路S3は導通しており、送電コイルLpに印加された電圧により、受電コイルLsに電圧が誘起され、キャパシタCrsは放電して電流が供給され、受電コイルLsに誘起された電圧とキャパシタCrsの両端電圧が加算されて負荷に電力が伝送される。
 スイッチング素子Q1がターンオフするとState2となる。
[2]State2 時刻t1~t2
 送電コイルLpに流れていた電流irにより、スイッチング素子Q1の両端のキャパシタC1は充電され、スイッチング素子Q2の両端のキャパシタC2は放電される。電圧vds1が電圧Vi、電圧vds2が0VになるとState3となる。
[3]State3 時刻t2~t3
 送電装置PSUでは、スイッチング素子Q2を備えたスイッチング回路S2は導通している。まず、スイッチング素子Q2の両端の寄生ダイオードは導通し、この期間においてスイッチング素子Q2をターンオンすることでZVS動作が行われる。送電コイルLpには電流が流れ、キャパシタCrは放電される。スイッチング素子Q4は導通しており、送電コイルLpに印加された電圧により、受電コイルLsに電圧が誘起され、キャパシタCrsは充電される。負荷にはキャパシタCoの電圧が印加されて電力が伝送される。Q2がターンオフするとState4となる。
[4]State4 時刻t3~t4
 送電コイルLpに流れていた電流irにより、スイッチング素子Q1の両端のキャパシタC1は放電され、スイッチング素子Q2の両端のキャパシタC2は充電される。電圧vds1が電圧0V、電圧vds2がViになるとState1となる。
 以降、State1~4を周期的に繰り返す。
 図2では、受信装置側のスイッチング素子Q3,Q4に流れる電流波形id3、id4は負電流が流れる。このようにスイッチング素子Q3,Q4に流れる負電流は、負荷側から回生される電流となり、出力に供給される電流は、電流波形id3、id4の正電流から負電流を引いた電流を平均した値となる。このため、オン期間比を1から小さく変化させるだけで、出力電流は大きく減少し、小さなオン期間比の変化で大きく供給電力を調整することが可能となり出力電力の制御性が向上する。
 図3(A)は、図1に示した電磁界結合回路90とキャパシタCr、Crsで構成される電磁界結合共振回路部分の回路図である。図3(B)はその等価回路図である。ここで、相互インダクタンスLmは、送電コイルLpと受電コイルLsとの磁界結合により電力を伝送する等価的なインダクタとして示され、相互キャパシタンスCmは、送電コイルLpと受電コイルLsとの電界結合により電力を伝送する等価的なキャパシタとして示される。
 前記送電装置側の直列共振インダクタLrはLr=Lp-Lmに相当するインダクタンスである。また、受電装置側の直列共振インダクタLrsはLrs=Ls-Lmに相当するインダクタンスである。ただし、ここでは受電装置側のインダクタンスLs、Lsrは、送電装置側から見た見かけ上のインダクタンスに等価的に換算したインダクタンスLs1、Lrs1を用いて説明している。具体的には、例えば、送電コイルの巻数に対する受電コイルの巻数の比となる巻数比をnとすると、
 Ls1=nLs
 Lrs1=nLrs
となる関係が成り立つ。同様にして、ここでは受電装置側のキャパシタンスCs、Csrは、送電装置側から見た見かけ上のキャパシタンスに等価的に換算したキャパシタンスCs1、Crs1を用いて説明している。具体的には、例えば、送電コイルの巻数に対する受電コイルの巻数の比となる巻数比をnとすると、
 Cs1=Cs/n
 Crs1=Crs/n
となる関係が成り立つ。さらにここで、
 Lm<<Lp
 Lm<<Ls
の関係が成り立つ場合は、
 Lr≒Lp
 Lrs1≒Ls1
として考えることもできる。
 電磁界結合共振回路への入力電圧波形を電圧vac in (t)とすると次式を得る。
Figure JPOXMLDOC01-appb-M000001
ただし、
Figure JPOXMLDOC01-appb-M000002
である。
 図3(B)の1-1’端子間には図4に示すような方形波電圧vac inが与えられ、電圧vac in (t)をフーリエ級数展開して次式を得る。
Figure JPOXMLDOC01-appb-M000003
ただし、
Figure JPOXMLDOC01-appb-M000004
である。
 このように、方形波信号には共振周波数の基本波成分とその高調波成分を含み、端子1-1’間には高次の周波数成分を含む電圧が与えられるため、電磁界結合共振回路によって高次の周波数成分の電圧波形も含めて共鳴動作を行なうことで効率良く電力を伝送することができる。さらに送電装置から送電されなかったエネルギーは無効電力として送電装置側共振回路に共振エネルギーとして保存される。同様に、受電装置が受電したエネルギーのうち出力に供給して電力消費されなかったエネルギーも無効電力として受電装置側共振回路に共振エネルギーとして保存される。
 第1の実施形態によれば次のような効果を奏する。
(a)送電装置側共振回路と受電装置側共振回路とを共鳴させる共振現象を利用することで有効電力を送電装置側から受電装置側へ伝送し、無効電力は送電装置側と受電装置側のそれぞれのLC共振回路において循環して共振エネルギーとして保存されるため電力損失が非常に小さい電力伝送システムを構成することができる。
(b)単一のコンバータを送電装置PSUと受電装置PRUとして構成することで、電力用電子部品の数が非常に少ない電力伝送システムを構成することが可能である。そのため非常に簡素に構成でき、電力伝送システム装置の小型軽量化を図ることができる。
(c)送電装置PSUおよび受電装置PRUから構成される複共振回路の共振周波数に対して、スイッチング周波数を高くしてスイッチング動作をさせ、適切なデッドタイムを設定することにより、スイッチング素子のZVS(ゼロ電圧スイッチング)動作を行うことが可能となり、スイッチング損失を大幅に低減できる。
(d)送電装置側の前記Lr、Crによる共振回路の共振周波数および受電装置の前記Lrs、Crsによる共振回路の共振周波数とスイッチング周波数fsとが同調して共鳴現象により電力伝送を行うことで、電磁誘導による電力伝送よりも効率の高い電力伝送が可能となる。
(e)送電コイルLpと受電コイルLsとの間で形成されるLC共振動作により、磁界結合だけでなく電界結合をも利用して電力伝送を行うことができる。磁界結合だけの場合より伝送効率が高くなる。
(f)フィードバック制御回路50を用いて、受電装置の出力情報を送電装置PSU側に伝達し、送電装置側のスイッチング制御回路10を制御して伝送電力を調整することで、精度の良い伝送電力の調整が可能となる。
(g)信号伝達手段30に無線通信機器を用いて出力情報を送電装置側に伝達することで、電気的に絶縁して送電装置側で出力電力を調整することができる。
(h)信号伝達手段30に光電素子を用いて出力情報を送電装置側に伝達することで、電気的に絶縁して送電装置側で出力電力を調整することができる。
(i)スイッチング周波数を変化させて周波数制御PFM(Pulse Frequency Modulation)により伝送電力を制御することが可能となり、出力電力を調整することができる。
(j)固定のスイッチング周波数で交互にオン、オフするスイッチング素子の導通期間の比率を制御するオン期間比制御ORM(On-periods Ratio Modulation)により伝送電力を制御することが可能である。固定のスイッチング周波数を用いることにより利用周波数帯域を限定することができEMC対策も容易となる。また出力を制御する制御性も改善できる。
(k)受電装置側の同期整流回路により整流損失を低減できる。電力伝送システムの小型化が可能となる。同期整流回路を構成するスイッチング素子Q3、Q4で同期整流動作を行い、スイッチング素子Q3,Q4に負電流を流すことで、小さなオン期間比の変化で伝送電力を大きく調整することが可能となり、伝送電力の制御性を向上できる。
(l)受電装置側の同期整流回路の動作周波数を制御することで、送電装置側ではなく、受電装置側での伝送電力の調整が可能となる。
(m)受電装置側は、受電した電力により制御回路を動作させることができる。したがって受電装置側に電源を備える必要がなく、装置の小型軽量化を図ることができる。
(n)双方向の電力伝送が可能となることで、受電装置側から送電装置側へ電力を伝送したり、受電装置側を中継点として、受電した電力をさらに別のところへ送電したりできる中継システムとしても利用可能で、本装置を複数用意して中継することで長距離の電力伝送が可能となる。
(o)順方向と逆方向とでスイッチング周波数を切り替えることにより、スイッチング周波数ごとに特定の場所を設定しておき、目的にあった場所への電力伝送が可能となる。スイッチング周波数を切り替えることにより、電力伝送の混線を防ぐことができる。
(p)ZVS動作を行うことでスイッチング素子におけるスイッチング損を大幅に低減できる。
(q)送電コイルLp、または受電コイルLsに並列に備えたキャパシタCp、Csは、送電コイルLpと受電コイルLsとの間に形成される相互キャパシタンスCmとによって整合をとることで、効率の良い電界結合回路を形成することができる。磁界結合だけの場合より伝送効率が高くなる。
(r)相互キャパシタンスCmは、送電コイルLpと受電コイルLsとの間に形成される電界結合による等価的なキャパシタンスとなる浮遊容量を用いることで相互キャパシタンスの部品が不要になり小型軽量化を図ることができる。
(s)並列共振キャパシタンス(Cp、Cs)は、送電コイルLpまたは受電コイルLsの巻線の両端に形成される浮遊容量を用いることで、並列共振キャパシタンスの部品が不要になり、電力伝送システム装置の小型軽量化を図ることができる。
(t)送電コイルLpと受電コイルLsの間を空芯とした場合でも、電磁界共鳴現象を用いた電磁界結合を形成することで効率よくワイヤレスで電力送電を行うことができる。したがって磁芯が不要になり、電力伝送距離を長くできる。
(u)送電コイルLpと受電コイルLsとの間に形成される磁界結合による等価的なインダクタンスとなる励磁インダクタンスを用いることで、相互インダクタLmの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
(v)送電コイルもしくは受電コイルのインダクタンス成分のうち、結合に関与しない漏れインダクタンスを送電装置側共振回路もしくは受電装置側共振回路を構成する共振インダクタとして用いることで共振インダクタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
《第1の実施形態の別の構成例》
 図5(A)、図5(B)、図5(C)はそれぞれ第1の実施形態とは別の構成例の電力伝送システムの回路図である。
 図5(A)は電力伝送システム111Aの回路図である。図1に示した電力伝送システム111と異なり、送電コイルLpと受電コイルLsとの磁界結合に関与する等価的なインダクタンスである相互インダクタンスLmp、Lmsおよび磁界結合に関与しない等価的なインダクタンスである漏れインダクタンスLr、Lrsを備えている。また、送電キャパシタンスCpと受電キャパシタンスCsとの電界結合に関与する等価的なキャパシタンスである相互キャパシタンスCm1、Cm2および電界結合に関与しない等価的なキャパシタンスである漏れキャパシタンスCpp、Cssを備えている。これらのインダクタンスLmp、Lms、Lr、LrsおよびキャパシタンスCm1、Cm2、Cpp、Cssは、送電コイルLpと受電コイルLsの等価インダクタ、または送電キャパシタンスCpと受電キャパシタンスCsの等価容量を用いることができる。もしくは、これらを単体の電子部品を用いることもできるし、等価インダクタンス、等価キャパシタンスと合成して用いることもできる。
 電力伝送システム111Aでは、次のような効果を奏する。
(a)送電コイルLpと受電コイルLsとの間に形成される磁界結合による等価的なインダクタンスとなる励磁インダクタンスLmp、Lmsを用いることで、相互インダクタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
(b)送電コイルLpもしくは受電コイルLsのインダクタンス成分のうち、結合に関与しない漏れインダクタンスを送電装置側共振回路もしくは受電装置側共振回路を構成する共振インダクタとして用いることで共振インダクタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
(c)送電キャパシタンスCpと受電キャパシタンスCsとの間に形成される電界結合による等価的なキャパシタンスとなる励磁キャパシタンスCm1、Cm2を用いることで、相互インダクタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
(d)送電キャパシタンスCpもしくは受電キャパシタンスCsのキャパシタンス成分のうち、結合に関与しない漏れキャパシタンスを送電装置側共振回路もしくは受電装置側共振回路を構成する共振キャパシタとして用いることで共振キャパシタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
 図5(B)は電力伝送システム111Bの回路図である。第1の実施形態で図1に示した電力伝送システム111と異なり、送電コイルLpと受電コイルLsとの磁界結合に関与する等価的なインダクタンスである相互インダクタンスLmp、Lms、および磁界結合に関与しない等価的なインダクタンスである漏れインダクタンスLr、Lrsを備える。電界結合に関与する等価的なキャパシタンスである相互キャパシタンスを備えていない。すなわち、電界と磁界の結合である電界結合回路ではなく、磁界のみの結合である磁界結合回路のみを形成する。
 電力伝送システム111Bでは磁界結合回路91を形成するため、電界結合回路90を形成する場合に比べ部品数が少なく、簡素な回路で構成することができ、次のような効果を奏する。
(a)送電コイルLpと受電コイルLsとの間に形成される磁界結合による等価的なインダクタンスとなる励磁インダクタンスLmp、Lmsを用いることで、相互インダクタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
(b)送電コイルLpもしくは受電コイルLsのインダクタンス成分のうち、結合に関与しない漏れインダクタンスを送電装置側共振回路もしくは受電装置側共振回路を構成する共振インダクタとして用いることで共振インダクタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
 図5(C)は電力伝送システム111Cの回路図である。第1の実施形態で図1に示した電力伝送システム111と異なり、送電キャパシタンスCpと受電送電キャパシタンスCsとの電界結合に関与する等価的なキャパシタンスである相互キャパシタンスCm1、Cm2、および磁界結合に関与しない等価的なキャパシタンスである漏れキャパシタンスCpp、Cssを備える。電界結合に関与する等価的なインダクタンスである相互インダクタンスを備えていない。すなわち、電界と磁界の結合である電界結合回路90ではなく、電界のみの結合である電界結合回路92のみを形成する。
 電力伝送システム111Cでは電界結合回路92を形成するため、電界結合回路を形成する場合に比べ部品数が少なく、簡素な回路で構成することができ、次のような効果を奏する。
(a)送電キャパシタンスCpと受電キャパシタンスCsとの間に形成される電界結合による等価的なキャパシタンスとなる励磁キャパシタンスCm1、Cm2を用いることで、相互インダクタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
(b)送電キャパシタンスCpもしくは受電キャパシタンスCsのキャパシタンス成分のうち、結合に関与しない漏れキャパシタンスを送電装置側共振回路もしくは受電装置側共振回路を構成する共振キャパシタとして用いることで共振キャパシタの部品が不要、または小さくすることができ、電力伝送システム装置の小型軽量化を図ることができる。
《第2の実施形態》
 図6は第2の実施形態の電力伝送システム112の回路図である。この例では第1の実施形態の電力伝送システム111と異なり、受電装置側に同期整流素子であるスイッチング素子Q3、Q4に代えて、整流ダイオードD3、D4を備えている。すなわちダイオードD3、D4で受電装置側整流回路を構成している。
 図7は、図6に示した電力伝送システム112の各部の電圧電流波形図である。電力伝送システム112の各タイミングでの動作は次のとおりである。
 送電コイルLpの励磁電流をimとする。スイッチング素子Q1、Q2のゲート・ソース間電圧を電圧vgs1、vgs2、ドレイン・ソース間電圧をそれぞれ電圧vds1、vds2、とする。Q1、Q2は、両スイッチング素子がオフとなる短いデッドタイムを挟んで交互にオン、オフ動作を行い、デッドタイム期間にQ1、Q2に流れる電流をそれぞれ転流させてZVS動作を行う。1スイッチング周期における各状態での動作を以下に示す。
[1]State1 時刻t0~t1
 送電装置PSU側では、スイッチング素子Q1は導通している。まず、スイッチング素子Q1の両端の寄生ダイオードは導通し、この期間においてスイッチング素子Q1をターンオンすることでZVS動作が行われる。巻線Lpには電流が流れ、キャパシタCrは充電される。
 受電装置PRU側では、ダイオードD3は導通して、0Aから電流が流れ始める。送電コイルLpに印加された電圧により、受電コイルLsに電圧が誘起され、キャパシタCrsは放電して電流が供給され、受電コイルLsに誘起された電圧とキャパシタCrsの両端電圧が加算されて負荷に電力が伝送される。
 スイッチング素子Q1がターンオフするとState2となる。
[2]State2 時刻t1~t2
 送電コイルLpに流れていた電流irにより、スイッチング素子Q1の両端のキャパシタC1は充電され、スイッチング素子Q2の両端のキャパシタC2は放電される。電圧vds1が電圧Vi、電圧vds2が0VになるとState3となる。
[3]State3 時刻t2~t3
 送電装置PSU側では、スイッチング素子Q2は導通している。まず、スイッチング素子Q2の両端の寄生ダイオードは導通し、この期間においてスイッチング素子Q2をターンオンすることでZVS動作が行われる。送電コイルLpには電流が流れ、キャパシタCrは放電される。電流irが励磁電流imと等しくなるとState4となる。
[4]State4 時刻t3~t4
 受電装置PRU側では、ダイオードD4は導通して、0Aから電流が流れ始める。送電コイルLpに印加された電圧により、受電コイルLsに電圧が誘起され、キャパシタCrsは充電される。負荷にはキャパシタCoの電圧が印加されて電力が伝送される。電流irが励磁電流imと等しくなるとState5となる。
[5]State5 時刻t4~t5
 送電装置PSU側では電流irは励磁電流imとして流れ、受電装置PRU側では電流は流れない。Q2がターンオフするとState6となる。
[6]State6 時刻t5~t6
 送電コイルLpに流れていた電流irにより、スイッチング素子Q1の両端のキャパシタC1は放電され、スイッチング素子Q2の両端のキャパシタC2は充電される。電圧vds1が電圧0V、電圧vds2がViになるとState1となる。
 以降、State1~6を周期的に繰り返す。
 第2の実施形態の電力伝送システム112では、電力受電装置PRUを簡素に構成できる。また、整流ダイオードD3、D4は順方向だけに電流を流し、第1の実施形態の電力伝送システム111と比較して、受電装置側整流回路には負電流は流れない。このため、出力側から回生される電流はなくなり、受電装置側共振回路を循環する電流が減少して導通損を低減できる。
《第3の実施形態》
 図7は第3の実施形態の電力伝送システム113の回路図である。第1の実施形態で図1に示した電力伝送システムと異なるのは、受電装置PRU側の構成である。第3の実施形態では、受電コイルLs1、Ls2、ダイオードD3、D4、キャパシタCoによってセンタータップ整流回路が構成されている。送電装置PSUの構成は第1の実施形態で示したものと同様である。但し、送電装置PSU側では、送電コイルLpに生じる浮遊容量または単体のキャパシタにより並列共振キャパシタCrsa(図1におけるCpに相当するキャパシタ)を構成している。
 この第3の実施形態では、受電装置PRU側では受電コイルLs1、Ls2に生じる浮遊容量または単体のキャパシタにより並列共振キャパシタCrsb(図1におけるCsに相当するキャパシタ)を構成している。
 第3の実施形態の電力伝送システム113では、スイッチング周波数の制御(PFM)によって伝送電力が制御される。
《第4の実施形態》
 図9は第4の実施形態の電力伝送システム114の回路図である。第3の実施形態で図7に示した電力伝送システムと異なり、この例では、受電装置PRU側に共振キャパシタCrsを備えている。このため、このキャパシタCrsによって所定の共振周波数で電磁界共鳴動作をさせることができる。
 この第4の実施形態の電力伝送システム114では、スイッチング周波数の制御(PFM)によって伝送電力が制御される。
《第5の実施形態》
 図10は第5の実施形態の電力伝送システム115の回路図である。第1の実施形態で図1に示した電力伝送システムと異なるのは、受電装置PRU側の構成である。第5の実施形態では、受電コイルLsに、ダイオードD3、D4、D7、D8、キャパシタCoによってブリッジ整流回路が構成されている。送電装置PSUの構成は第1の実施形態で示したものと同様である。
 受電装置PRU側では受電コイルLsに生じる浮遊容量または単体のキャパシタにより並列共振キャパシタCrs(図1におけるCsに相当するキャパシタ)を構成している。
 この第5の実施形態の電力伝送システム115では、スイッチング周波数の制御(PFM)によって伝送電力が制御される。
《第6の実施形態》
 図11は第6の実施形態の電力伝送システム116の回路図である。第5の実施形態で図10に示した電力伝送システムと異なり、この例では、受電装置PRU側に共振キャパシタCrsを備えている。このため、このキャパシタCrsによって所定の共振周波数で電磁界共鳴動作をさせることができる。
 この第6の実施形態の電力伝送システム116では、スイッチング周波数の制御(PFM)によって伝送電力が制御される。
《第7の実施形態》
 図12は第7の実施形態の電力伝送システム117の回路図である。この例では送電装置PSU側に4つのスイッチング素子Q1、Q2、Q3、Q4によるフルブリッジ回路構成の交流電圧発生回路を設けている。また、受電装置PRU側に4つのスイッチング素子Qs1、Qs2、Qs3、Qs4によるブリッジ整流構成の整流回路を設けている。
 この第7の実施形態によれば、第1~第6の実施形態に比べて、送電装置PSU側のスイッチング素子Q1、Q2、Q3、Q4、および受電装置PRU側のスイッチング素子Qs1、Qs2、Qs3、Qs4に印加される電圧がそれぞれ半分となるため、スイッチング素子での損失を低減できる。
 また、送電装置PSUと受電装置PRUは同様構成の回路であり、対称性があるので、双方向電力伝送システム装置として用いることができる。
《第8の実施形態》
 図13は第8の実施形態の電力伝送システム118の回路図である。この例では送電装置PSU側に4つのスイッチング素子Q1、Q2、Q5、Q6によるフルブリッジ回路構成の交流電圧発生回路を設け、受電装置PRU側に4つのダイオードD3、D4、D7、D8によるブリッジ整流構成の整流回路を設けている。
 第8の実施形態によれば、第7の実施形態に対して受電装置PRU側の構成を簡素にできる。また、受電装置PRU側の整流素子の耐圧を低減することができる。
《第9の実施形態》
 図14は第9の実施形態の電力伝送システム119の回路図である。
 この例では入力電源Viの電圧を分圧するキャパシタCr1、Cr2、および出力電圧Voを分圧するキャパシタCrs1、Crs2を備えている。すなわち、第1の実施形態で示した電力伝送システムにおける直列共振キャパシタCrをCr1、Cr2に分割し、直列共振キャパシタCrsをCrs1、Crs2に分割したものである。ここでは、送電コイルLpおよび受電コイルLsの励磁インダクタンスを直列共振インダクタLr、Lrsとして図示している。その他は第1の実施形態で図1に示したものと同様である。
 第9の実施形態では、直列共振キャパシタに流れる電流が2つのキャパシタに分割されるので、キャパシタによる損失が分散され全体の損失が低減され、発熱が分散される。
 なお、キャパシタCr1、Cr2およびキャパシタCrs1、Crs2は、直流電圧を保持する作用と直列共振用キャパシタとしての作用の両方の役割を果たす。
《第10の実施形態》
 図15は第10の実施形態の電力伝送システム120の回路図である。この例では送電装置PSU側にキャパシタCcを設けて電圧クランプ回路を構成している。その他は第1の実施形態で図1に示したものと同様である。
 図15に示した電力伝送システムでは、スイッチング素子Q1のターンオフ後、送電コイルLpの電圧がスイッチング素子Q2の寄生ダイオードを介してキャパシタCcに図15に示す方向の電圧がチャージされ、スイッチング素子Q2がオンのときにキャパシタCcにチャージされた電圧(+Vc)が複共振回路へ印加される。すなわち、入力電圧Viが方形波電圧に変換され、その方形波電圧は+Viと-Vcの電圧振幅となる。
 第1~第9の実施形態では共振回路への入力電源電圧が+Viと0Vと変化し、電圧振幅は、Viであるのに比べ、第10の実施形態では入力電源電圧が+Viから-Vcへと大きく変化し、電圧振幅は、(Vi+Vc)で動作することになる。また、電圧クランプ回路を構成するキャパシタCcの両端電圧Vcは、スイッチング周期に対するスイッチング素子Q1の導通期間の比率であるオン時比率Dによって変化し、出力電圧Voを広範囲に亘って制御できる。このことは出力電圧が一定である場合に入力電源電圧が広範囲に亘って変化する場合への適用に優れることを表している。このように電圧クランプ回路を構成することにより、入力電圧の変動に対する制御特性が改善される。すなわち入力電圧が大きく変動しても出力電圧の安定化が図れる。
 第10の実施形態によれば、共振回路に与える方形波電圧の振幅電圧が大きくなって、PFM、オン期間比制御ORM(On-periods Ratio Modulation)のどちらでも動作する。
《第11の実施形態》
 図16は第11の実施形態の電力伝送システム121の回路図である。この例では送電装置PSU側にキャパシタCcを設けて電圧クランプ回路を構成し、受電装置PRU側にキャパシタCcsを設けて受電装置PRU側にも電圧クランプ回路を構成している。その他は第10の実施形態で図15に示したものと同様である。
 図16に示した電力伝送システムでは、入力電圧Viが方形波電圧に変換され、その方形波電圧は+Viと-Vcの電圧振幅となる。また、受電装置側のキャパシタCcsに負電圧(Vcs)がチャージされるので、スイッチング素子Qs1、Qs2による同期整流回路に印加される交流方形波電圧は+Voと-Vcsの電圧振幅となる。このように電圧振幅が大きくなるので、出力電圧の変動に対する制御特性も改善される。すなわち出力電圧の調整が広範囲に亘って容易となる。
《第12の実施形態》
 図17は第12の実施形態の電力伝送システム122の回路図である。この例では、送電装置PSUの送電コイルLp、および受電装置PRUの受電コイルLsをそれぞれフェライトなどの磁芯を有するコイルとしている。そのため、送電コイルLpと受電コイルLsによりトランスが構成される。
 第12の実施形態によれば、送電コイルLpと受電コイルLsとの磁界結合の度合いが大きくなり、電力伝送効率を十分に大きくすることができる。また、空間に放出される電磁波(磁束と電束)を磁芯であるフェライトにより抑制することができる。
 《第13の実施形態》
 図18は第13の実施形態の電力伝送システム123の回路図である。この電力伝送システム123は実施形態12に対して、共振インダクタLr、Lrs、共振キャパシタCr、Crs、Cp、Csを構成したものである。
 第13の実施形態によれば、送電コイルLpと受電コイルLsとの磁界結合の度合いが大きくなり、電力伝送効率を十分に大きくすることができる。また、送電コイルLpと受電コイルLsとの磁界結合に関与する相互インダクタンスにより発生する磁束のほとんどが磁芯であるフェライトを通る経路となるため空間に放出される電磁波(磁束と電束)をフェライトにより抑制することができる。また、送電コイルLpと受電コイルLsとの磁界結合に関与しないインダクタ成分、漏れインダクタンスを共振インダクタLr、Lrsとして利用できる。さらに、送電コイルLpと受電コイルLsに等価的に構成される浮遊容量である巻線容量を共振キャパシタCp、Csとして利用できる。一方、これら共振インダクタLr、Lrs、共振キャパシタCp、Csを単体の電子部品で構成することもでき、この場合は、任意に共振周波数が設定できるため、所定のスイッチング周波数で共鳴動作を引き起こすことが容易になる。
《第14の実施形態》
 図19は第14の実施形態の電力伝送システム124の回路図である。この電力伝送システム124は、第12の実施形態に対して、共振インダクタLr、Lrs、共振キャパシタCr、Crs、Cp、Csを構成したものである。送電コイルLp、受電コイルLs、共振インダクタLr、Lrs、共振キャパシタCr、Crs、Cp、Csによって複共振回路40が構成されている。
 第14の実施形態によれば、送電コイルLpと受電コイルLsとの磁界結合の度合いが大きくなり、電力伝送効率を十分に大きくすることができる。また、空間に放出される電磁波(磁束と電束)をフェライトにより抑制することができる。さらに、任意に共振周波数が設定できるため、共鳴動作をさせ易い。
《第15の実施形態》
 図20は第15の実施形態の電力伝送システム125の回路図である。この電力伝送システム125は、入力電源Viの電圧を分圧するキャパシタCr1、Cr2、および出力電圧Voを分圧するキャパシタCrs1、Crs2を備えている。すなわち、送電装置PSU側の直列共振キャパシタをCr1、Cr2に分割し、受電装置PRU側の直列共振キャパシタをCrs1、Crs2に分割したものである。
 第15の実施形態では、直列共振キャパシタに流れる電流が2つのキャパシタに分割されるので、キャパシタによる損失が分散され全体の損失が低減され、発熱が分散される。
 なお、キャパシタCr1、Cr2およびキャパシタCrs1、Crs2は、直流電圧を保持する作用と直列共振用キャパシタとしての作用の両方の役割を果たす。
《第16の実施形態》
 図21は第16の実施形態の電力伝送システムの回路図である。この例では送電装置PSU側の共振キャパシタを二つのキャパシタCr1、Cr2に分割配置し、受電装置側の共振キャパシタを二つのキャパシタCrs1、Crs2に分割配置している。キャパシタCr1、Cr2およびキャパシタCrs1、Crs2は直流電圧を保持する作用と直列共振用キャパシタとしての作用の両方の役割を果たす。
 この第16の実施形態によれば、共振キャパシタCr1、Cr2、Crs1、Crs2により電界による電気的な絶縁を得ることができる。また、共振キャパシタCr1、Cr2、Crs1、Crs2により送電コイルと受電コイルを囲むことにより物理的な制約を緩和して空間に放出される電磁波(磁束と電束)を封じ込め易い。
 さらに、送電装置PSU側および受電装置PRU側の共振キャパシタのそれぞれに印加される電圧が2つのキャパシタに分割されて印加されるので、キャパシタでの損失を分散することができる。
《第17の実施形態》
 図22は第17の実施形態の電力伝送システム127の回路図である。この例では送電装置PSU側に4つのスイッチング素子Q1、Q2、Q5、Q6によるフルブリッジ回路構成の交流電圧発生回路を設けている。また、受電装置PRU側に4つのスイッチング素子Q3、Q4、Q7、Q8によるブリッジ整流構成の整流回路を設けている。その他の構成は第16の実施形態と同様である。
 この第17の実施形態によれば、送電装置PSU側のスイッチング素子Q1、Q2、Q5、Q6、および受電装置PRU側のスイッチング素子Q3、Q4、Q7、Q8に印加される電圧がそれぞれ半分となるため、スイッチング素子での損失を低減できる。その他の作用効果は第16の実施形態と同様である。
《第18の実施形態》
 図23は第18の実施形態の電力伝送システム128の回路図である。
 この電力伝送システム128は、双方向電力伝送可能な複数の送受電装置PSU/PRU1、PSU/PRU2、PSU/PRU3、PSU/PRU4を備えたシステムである。
 第1の電力送受電装置PSU/PRU1が送電装置として作用するとき、それに対応して電磁界結合を形成する第2の送受電装置PSU/PRU2は受電装置として作用する。したがって、第1の送受電装置PSU/PRU1から第2の送受電装置PSU/PRU2へ電力が伝送される。このとき、第2の送受電装置PSU/PRU2の負荷Roには充電電池およびその充電回路を備える。
 第3の送受電装置PSU/PRU3は第2の送受電装置PSU/PRU2に対応していて、第2の送受電装置PSU/PRU2が送電装置として作用するとき、第3の送受電装置PSU/PRU3は受電装置として作用する。このとき、第2の送受電装置PSU/PRU2は前記充電電池が電源として用いられる。そして第3の送受電装置PSU/PRU3の負荷Ro2は充電電池およびその充電回路を備える。
 第4の送受電装置PSU/PRU4は第3の送受電装置PSU/PRU3に対応していて、第3の送受電装置PSU/PRU3が送電装置として作用するとき、第4の送受電装置PSU/PRU4は受電装置として作用する。このとき、第3の送受電装置PSU/PRU3は前記充電電池が電源として用いられる。そして第4の送受電装置PSU/PRU4の負荷Ro3は充電電池およびその充電回路である。
 このようにして、複数の電力送受電装置を備えることにより、途中の電力送受電装置が電力を中継して遠方まで電力を伝送することが可能となる。
 なお、複数の受電装置側の共振回路の共振周波数を異ならせておき、送電装置側は、送電先に応じたスイッチング周波数でスイッチング回路をスイッチング動作するように構成すれば、複数の受電装置に対して所定の受電装置に選択的に電力を伝送できる。
 また、電力送受電装置の電力伝送方向に応じてスイッチング周波数を切り替えることにより、スイッチング周波数ごとに目的にあった方向(場所)への電力伝送が可能となる。すなわち、スイッチング周波数を切り替えるなどの制御を行うことにより、適切な電子機器を選択したりや適切な方向や場所へ電力を送電して、電力伝送の混線を防ぐことができる。
Co…平滑キャパシタ
Cp、Cs、Cpp、Css…並列共振キャパシタ
Cm、Cm1、Cm2…相互キャパシタンス
Cr、Crs…直列共振キャパシタ
Cr1、Cr2…共振キャパシタ
Crs…直列共振キャパシタ
Crs1、Crs2…共振キャパシタ
D3、D4、D7、D8…整流ダイオード
Ds1、Ds2…ダイオード
im…励磁電流
Lp…送電コイル
Lm、Lmp、Lms…励磁インダクタンス、または相互インダクタンス
Ls…受電コイル
Lr、Lrs…直列共振インダクタ
Mc…電界結合の相互係数
Ml…磁界結合の相互係数
PSU…電力送電装置
PRU…電力受電装置
Q1~Q8…スイッチング素子
Qs1、Qs2、Qs3、Qs4…スイッチング素子
S1、S2、S3、S4…スイッチング回路
10、20…スイッチング制御回路
30…信号伝達手段
40…複共振回路
50…フィードバック制御回路
90…電磁界結合回路
91…磁界結合回路
92…電界結合回路
111~128…電力伝送システム

Claims (20)

  1.  送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
     前記送電装置は、前記送電コイルとともに送電装置側共振回路を構成する送電装置側共振キャパシタと、
     前記送電コイルに接続されて、スイッチング素子、ダイオード、およびキャパシタの並列接続回路で構成されたスイッチング回路を有し、入力される直流電圧から交流電圧を発生する送電装置側交流電圧発生回路と、
     を備え、
     前記受電装置は、前記受電コイルとともに受電装置側共振回路を構成する受電装置側共振キャパシタと、
     前記受電コイルに接続されて、該受電コイルに生じる交流電圧を直流電圧に整流する受電装置側整流回路と、
    を備え、
     前記送電コイルと受電コイルとの間に等価的に形成される相互インダクタンスおよび相互キャパシタンスで電磁界結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
     前記送電装置から送電されなかったエネルギーは前記送電装置側共振回路に共振エネルギーとして保存され、
     前記受電装置が受電したエネルギーのうち出力に供給されなかったエネルギーは前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする電力伝送システム。
  2.  送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
     前記送電装置は、前記送電コイルとともに送電装置側共振回路を構成する送電装置側共振キャパシタと、
     前記送電コイルに接続されて、スイッチング素子、ダイオード、およびキャパシタの並列接続回路で構成されたスイッチング回路を有し、入力される直流電圧から交流電圧を発生する送電装置側交流電圧発生回路と、
     を備え、
     前記受電装置は、前記受電コイルとともに受電装置側共振回路を構成する受電装置側共振キャパシタと、
     前記受電コイルに接続されて、該受電コイルに生じる交流電圧を直流電圧に整流する受電装置側整流回路と、
    を備え、
     前記送電コイルと受電コイルとの間に等価的に形成される相互インダクタンスで電磁結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
     前記送電装置から送電されなかったエネルギーは前記送電装置側共振回路に共振エネルギーとして保存され、
     前記受電装置が受電したエネルギーのうち出力に供給されなかったエネルギーは前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする電力伝送システム。
  3.  送電コイルを備えた送電装置と、受電コイルを備えた受電装置とで構成される電力伝送システムにおいて、
     前記送電装置は、送電キャパシタとともに送電装置側共振回路を構成する送電装置側共振インダクタと、
     前記送電コイルに接続されて、スイッチング素子、ダイオード、およびキャパシタの並列接続回路で構成されたスイッチング回路を有し、入力される直流電圧から交流電圧を発生する送電装置側交流電圧発生回路と、
     を備え、
     前記受電装置は、受電キャパシタとともに受電装置側共振回路を構成する受電装置側共振インダクタと、
     前記受電コイルに接続されて、該受電コイルに生じる交流電圧を直流電圧に整流する受電装置側整流回路と、
    を備え、
     前記送電コイルと受電コイルとの間に等価的に形成される相互キャパシタンスで電界結合回路が構成されて、前記送電装置側共振回路と前記受電装置側共振回路とが共鳴して、前記送電装置から前記受電装置へ電力が伝送され、
     前記送電装置から送電されなかったエネルギーは前記送電装置側共振回路に共振エネルギーとして保存され、
     前記受電装置が受電したエネルギーのうち出力に供給されなかったエネルギーは前記受電装置側共振回路に共振エネルギーとして保存されることを特徴とする電力伝送システム。
  4.  前記受電装置は、前記受電装置側整流回路の出力情報を検出して前記送電装置側に前記出力情報を伝送する情報送信回路を備え、
     前記送電装置は、前記出力情報を受信する出力情報受信回路と、前記出力情報に応じて前記送電装置側交流電圧発生回路を制御して伝送電力を制御する伝送電力制御回路とを備えた、請求項1~3のいずれかに記載の電力伝送システム。
  5.  前記情報送信回路は、無線通信で前記出力情報を送信する回路であり、
     前記出力情報受信回路は無線通信で前記出力情報を受信する回路である、請求項4に記載の電力伝送システム。
  6.  前記情報送信回路は、電気信号を光信号に変換して前記出力情報を送信する回路であり、
     前記出力情報受信回路は光信号を電気信号に変換して前記出力情報を受信する回路である、請求項4に記載の電力伝送システム。
  7.  前記スイッチング回路はハイサイドのスイッチング回路とローサイドのスイッチング回路を備え、
     前記送電装置側交流電圧発生回路は、前記ハイサイドのスイッチング回路と前記ローサイドのスイッチング回路を交互にオン/オフするスイッチング周波数を変化させる周波数制御PFM(Pulse Frequency Modulation)により伝送電力を制御する、請求項1~6のいずれかに記載の電力伝送システム。
  8.  前記スイッチング回路はハイサイドのスイッチング回路とローサイドのスイッチング回路を備え、
     前記送電装置側交流電圧発生回路は、前記ハイサイドのスイッチング回路と前記ローサイドのスイッチング回路を固定のスイッチング周波数で交互にオン/オフして、第1のスイッチング回路と再2のスイッチング回路の導通期間の比率を制御するオン期間比制御ORM(On-periods Ratio Modulation)により伝送電力を制御する、請求項1~6のいずれかに記載の電力伝送システム。
  9.  前記受電装置側整流回路はスイッチング素子を備えた同期整流回路である、請求項1~8のいずれかに記載の電力伝送システム。
  10.  前記受電装置は、前記同期整流回路の動作周波数を制御する動作周波数制御回路を備え、前記動作周波数によって受電電力を制御する、請求項9に記載の電力伝送システム。
  11.  前記受電装置は、該受電装置側の回路を制御する制御回路を備え、該制御回路は、前記受電装置が受電した電力によって動作する、請求項1~10のいずれかに記載の電力伝送システム。
  12.  前記受電装置側整流回路の出力部から電力が伝送されるとき、前記受電装置側整流回路は前記送電装置側交流電圧発生回路として作用するとともに、前記送電装置側交流電圧発生回路は前記受電装置側整流回路として作用し、
     双方向に電力伝送が可能な、請求項1~11のいずれかに記載の電力伝送システム。
  13.  前記受電装置は複数存在し、これらの複数の受電装置の前記受電装置側共振回路の共振周波数を異ならせ、前記送電装置側交流電圧発生回路は、送電先に応じたスイッチング周波数で前記スイッチング回路をスイッチングする、請求項1~12のいずれかに記載の電力伝送システム。
  14.  前記交流電圧の波形に対して、前記送電コイルに流れる電流波形の位相が遅れるように、前記スイッチング周波数は前記送電装置側共振回路と前記受電装置側共振回路との共鳴による共振周波数より高く定められ、前記ハイサイドのスイッチング素子とローサイドのスイッチング素子が共にオフするデッドタイムの期間でゼロ電圧スイッチング動作を行うように前記デッドタイムが設定された、請求項7または8に記載の電力伝送システム。
  15.  前記送電コイルまたは前記受電コイルに対して並列に並列共振キャパシタを備えた、請求項1~14のいずれかに記載の電力伝送システム。
  16.  前記並列共振キャパシタを前記送電コイルと前記受電コイルとの間に形成される電界結合による等価的なキャパシタンスとなる浮遊容量で構成した、請求項15に記載の電力伝送システム。
  17.  前記並列共振キャパシタを前記送電コイルまたは前記受電コイルのコイル両端間に形成される浮遊容量で構成した、請求項15または16に記載の電力伝送システム。
  18.  前記送電コイルおよび前記受電コイルは空芯のインダクタである、請求項1~17のいずれかに記載の電力伝送システム。
  19.  前記相互インダクタンスは、前記送電コイルと前記受電コイルとの間に形成される磁界結合により生じる等価的な励磁インダクタンスである、請求項1~18のいずれかに記載の電力伝送システム。
  20.  前記送電コイルもしくは前記受電コイルのインダクタンス成分のうち、結合に関与しない漏れインダクタンスを前記送電装置側共振回路または前記受電装置側共振回路を構成するインダクタとして用いた、請求項1~19のいずれかに記載の電力伝送システム。
PCT/JP2011/078246 2011-01-26 2011-12-07 電力伝送システム WO2012101907A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012554633A JP5494838B2 (ja) 2011-01-26 2011-12-07 電力伝送システム
CN201180066125.9A CN103329398B (zh) 2011-01-26 2011-12-07 电力输送系统
KR1020137019766A KR101405878B1 (ko) 2011-01-26 2011-12-07 전력 전송 시스템
EP11856701.5A EP2670023A4 (en) 2011-01-26 2011-12-07 ENERGY TRANSMISSION SYSTEM
US13/944,908 US9378888B2 (en) 2011-01-26 2013-07-18 Power transfer system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-014614 2011-01-26
JP2011014614 2011-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/944,908 Continuation US9378888B2 (en) 2011-01-26 2013-07-18 Power transfer system

Publications (1)

Publication Number Publication Date
WO2012101907A1 true WO2012101907A1 (ja) 2012-08-02

Family

ID=46580491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078246 WO2012101907A1 (ja) 2011-01-26 2011-12-07 電力伝送システム

Country Status (6)

Country Link
US (1) US9378888B2 (ja)
EP (1) EP2670023A4 (ja)
JP (1) JP5494838B2 (ja)
KR (1) KR101405878B1 (ja)
CN (1) CN103329398B (ja)
WO (1) WO2012101907A1 (ja)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244635A (ja) * 2011-05-13 2012-12-10 Central Research Institute Of Electric Power Industry 双方向非接触給電システム
WO2014038379A1 (ja) * 2012-09-07 2014-03-13 シャープ株式会社 ワイヤレス給電システム、およびワイヤレス受電装置
WO2014057959A1 (ja) * 2012-10-11 2014-04-17 株式会社村田製作所 ワイヤレス給電装置
WO2014103438A1 (ja) * 2012-12-28 2014-07-03 株式会社村田製作所 電力伝送システム
WO2014109460A1 (ko) * 2013-01-09 2014-07-17 한국전기연구원 다중기기의 자유 위치 무선 충전을 위한 무선전력전송 시스템
WO2014122853A1 (ja) * 2013-02-05 2014-08-14 株式会社 村田製作所 受電装置、送電装置および電力伝送システム
WO2014126181A1 (ja) * 2013-02-15 2014-08-21 株式会社村田製作所 ワイヤレス給電装置
JP2014527793A (ja) * 2011-08-04 2014-10-16 ワイトリシティ コーポレーションWitricity Corporation 整調可能無線電力アーキテクチャ
JP2015002643A (ja) * 2013-06-18 2015-01-05 パナソニックIpマネジメント株式会社 非接触電力伝送システム
WO2015005155A1 (ja) * 2013-07-08 2015-01-15 株式会社村田製作所 電力変換回路、電力伝送システムおよび電力変換システム
JP2015019531A (ja) * 2013-07-12 2015-01-29 東芝テック株式会社 電力伝送装置、電力伝送装置用の送電装置及び受電装置
CN104426248A (zh) * 2013-08-30 2015-03-18 三星电机株式会社 供电装置
JPWO2013058175A1 (ja) * 2011-10-21 2015-04-02 株式会社村田製作所 スイッチング電源装置
JP2015128365A (ja) * 2013-11-28 2015-07-09 Tdk株式会社 非接触電力伝送回路
WO2015104768A1 (ja) * 2014-01-07 2015-07-16 パナソニックIpマネジメント株式会社 非接触給電装置の制御方法及び非接触給電装置
US9130467B2 (en) 2011-10-21 2015-09-08 Murata Manufacturing Co., Ltd. Switching power supply device
CN104901430A (zh) * 2014-03-07 2015-09-09 英特尔公司 无线供电中的电容性元件耦合
JP2015529445A (ja) * 2012-09-11 2015-10-05 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 無線電力制御
WO2016080044A1 (ja) * 2014-11-17 2016-05-26 株式会社村田製作所 ワイヤレス給電装置
JP2016539528A (ja) * 2014-05-12 2016-12-15 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH インダクタのための駆動回路、インダクタの作動方法、駆動回路を備えたアクティブ送信装置
JPWO2014103430A1 (ja) * 2012-12-27 2017-01-12 株式会社村田製作所 ワイヤレス電力伝送システム
US9711278B2 (en) 2013-01-09 2017-07-18 Korea Electrotechnology Research Institute Wireless power transmission system for free-position wireless charging of multiple devices
WO2017130422A1 (ja) * 2016-01-26 2017-08-03 株式会社 東亜産業 磁気共鳴式給電システム
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
WO2018131261A1 (ja) * 2017-01-13 2018-07-19 オムロン株式会社 非接触給電装置
WO2018185810A1 (ja) * 2017-04-03 2018-10-11 三菱電機株式会社 非接触給電システム
US10381876B2 (en) 2013-05-30 2019-08-13 Drayson Technologies (Europe) Limited Inductive power transfer system
GB2526972B (en) * 2013-03-27 2020-04-29 Murata Manufacturing Co Wireless power transmission apparatus
JPWO2020170996A1 (ja) * 2019-02-21 2020-08-27
US11011937B2 (en) 2017-07-10 2021-05-18 Murata Manufacturing Co., Ltd. High frequency power supply device
JPWO2021125228A1 (ja) * 2019-12-20 2021-06-24
WO2022091479A1 (ja) * 2020-10-30 2022-05-05 株式会社村田製作所 電源回路モジュール
WO2022239552A1 (ja) * 2021-05-12 2022-11-17 オムロン株式会社 複合共振回路の駆動制御装置及び非接触給電システム
JP7391920B2 (ja) 2021-09-13 2023-12-05 株式会社東芝 電子回路及び方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103756A1 (en) * 2012-01-06 2013-07-11 Access Business Group International Llc Wireless power receiver system
GB201215152D0 (en) * 2012-08-24 2012-10-10 Imp Innovations Ltd Maximising DC to load efficiency for inductive power transfer
CN105144562B (zh) * 2013-05-21 2017-10-31 株式会社村田制作所 开关电源装置
US10188446B2 (en) 2013-10-16 2019-01-29 Covidien Lp Resonant inverter
CN105474506B (zh) * 2013-12-05 2018-05-25 株式会社村田制作所 受电装置以及电力传输系统
US20160285321A1 (en) * 2013-12-26 2016-09-29 Mitsubishi Electric Engineering Company, Limited Rectifying circuit for high-frequency power supply
JP6588190B2 (ja) 2014-03-28 2019-10-09 株式会社デンソー 無線給電装置
US20150326136A1 (en) * 2014-05-09 2015-11-12 Analog Devices Technology Magnetic field energy harvesting device
WO2015173847A1 (ja) * 2014-05-14 2015-11-19 ネオテス株式会社 非接触電力伝送装置
US10084343B2 (en) * 2014-06-13 2018-09-25 Empire Technology Development Llc Frequency changing encoded resonant power transfer
JP6392347B2 (ja) * 2014-06-30 2018-09-19 シャープ株式会社 スイッチング回路およびこれを備えた電源回路
US10069324B2 (en) 2014-09-08 2018-09-04 Empire Technology Development Llc Systems and methods for coupling power to devices
US10320228B2 (en) 2014-09-08 2019-06-11 Empire Technology Development Llc Power coupling device
JP6179730B2 (ja) * 2014-09-19 2017-08-16 パナソニックIpマネジメント株式会社 受電装置、非接触電力伝送システム及び充電方法
US9276413B1 (en) 2014-09-25 2016-03-01 Navitas Semiconductor, Inc. Soft switched single stage wireless power transfer
US9564823B2 (en) 2014-10-01 2017-02-07 Toyota Motor Engineering & Manufacturing North America, Inc. DC-DC power conversion circuit with magnetic and capacitive isolation
DE102014222603B3 (de) * 2014-11-05 2015-12-24 Continental Automotive Gmbh Treiberschaltung für eine Induktivität und aktive Sendeeinrichtung mit einer Treiberschaltung
JP6489212B2 (ja) 2014-11-07 2019-03-27 株式会社村田製作所 固定チューニングおよび電力制限機能を有する可変距離ワイヤレス給電システム
JP6213485B2 (ja) * 2014-11-28 2017-10-18 トヨタ自動車株式会社 送電装置
GB2535978B (en) * 2015-02-04 2018-04-11 Drayson Tech Europe Ltd Rectifier for wireless power transfer
JP6168254B2 (ja) * 2015-02-26 2017-07-26 株式会社村田製作所 電圧検出回路、送電装置および電力伝送システム
US10411512B2 (en) * 2015-04-10 2019-09-10 Qualcomm Incorporated Methods and apparatus for implementing presence and usage pattern detection in wireless charging applications
PL226676B1 (pl) 2015-06-29 2017-08-31 Akademia Górniczo Hutnicza Im Stanisława Staszica W Krakowie Przetwornica izolacyjna
WO2017010285A1 (ja) * 2015-07-10 2017-01-19 株式会社村田製作所 送電装置およびワイヤレス給電システム
US9866132B2 (en) * 2015-07-31 2018-01-09 Toyota Motor Engineering & Manufacturing North America, Inc. DC-DC power conversion and balancing circuit
US9893631B2 (en) * 2015-09-23 2018-02-13 Toyota Motor Engineering & Manufacturing North America, Inc. Non-isolated DC-DC conversion circuit configured for capacitive and magnetic power transfer
CN105471286B (zh) * 2015-12-10 2017-09-29 无锡华润矽科微电子有限公司 同步整流电路、无线充电系统以及同步整流方法
WO2017115624A1 (ja) * 2015-12-28 2017-07-06 日本電産株式会社 移動体システム
CN105406605B (zh) * 2015-12-29 2017-12-08 湖南大学 一种电容耦合式无线功率传输电路及其控制方法
KR20170089350A (ko) * 2016-01-26 2017-08-03 삼성전기주식회사 무선 전력 송수신 장치
CN105896744A (zh) * 2016-04-26 2016-08-24 圣邦微电子(北京)股份有限公司 Lc槽路谐振耦合和非谐振耦合槽路控制方法及电路
DE112017002357T5 (de) * 2016-06-06 2019-01-17 Murata Manufacturing Co., Ltd. System für drahtlose leistungsversorgung, vorrichtung für drahtlose leistungsübertragung und vorrichtung für drahtlosen leistungsempfang
KR102622053B1 (ko) 2016-07-18 2024-01-08 삼성전자주식회사 전자장치, 디스플레이 장치 및 그 장치들의 구동방법
US10763755B2 (en) * 2016-12-16 2020-09-01 Toyota Motor Engineering & Manufacturing North America, Inc. Symmetrical isolated DC-DC power conversion circuit
JP7003445B2 (ja) * 2017-05-19 2022-02-04 オムロン株式会社 非接触給電装置
KR101996127B1 (ko) * 2017-05-26 2019-07-03 울산대학교 산학협력단 전계결합 방식 기반의 무선 전력 전송 시스템
KR101996316B1 (ko) * 2017-07-25 2019-07-04 부경대학교 산학협력단 무선 충전 장치 및 그 제어 방법
JP6904424B2 (ja) * 2017-09-12 2021-07-14 株式会社村田製作所 電力送電装置および電力受電装置
CN107959355A (zh) * 2017-11-20 2018-04-24 西南交通大学 一种磁场耦合式与电场耦合式结合的无线电能传输系统
CN108173355A (zh) * 2018-02-02 2018-06-15 华南理工大学 一种电磁场耦合混合无线电能传输系统
CN111903035A (zh) * 2018-03-28 2020-11-06 松下知识产权经营株式会社 送电模块、受电模块、送电装置、受电装置以及无线电力传输系统
CN109088545B (zh) * 2018-06-19 2019-09-13 华中科技大学 一种双向无线电能传输系统的相位同步方法
EP3857675A1 (en) * 2018-09-26 2021-08-04 Eggtronic Engineering S.P.A. System for transferring electrical power to an electrical load
JP7070333B2 (ja) * 2018-10-29 2022-05-18 トヨタ自動車株式会社 電力変換ユニット
JP7205169B2 (ja) * 2018-11-01 2023-01-17 オムロン株式会社 非接触給電装置
CN109941128B (zh) * 2019-04-25 2020-12-01 西南交通大学 一种电场耦合式的电动汽车无线充电技术电压优化方法
KR102283666B1 (ko) * 2019-10-29 2021-07-30 (주)화인파워엑스 회로변수 자동 튜닝형 무선충전 시스템 및 이를 이용한 회로변수의 자동 튜닝 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285436A (ja) * 1990-08-31 1992-10-09 Siemens Ag ターゲットコイルの駆動回路および方法
WO2006022365A1 (ja) * 2004-08-27 2006-03-02 Hokushin Denki Co., Ltd. 非接触電力伝送装置
JP2006230032A (ja) * 2005-02-15 2006-08-31 Noboru Daiho 電力伝送装置、電力伝送方法
JP2008206327A (ja) 2007-02-21 2008-09-04 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224735A (ja) 1985-03-29 1986-10-06 Mitsubishi Electric Corp 密結合線路を用いた移動体通信方式
JP2556387B2 (ja) 1990-02-21 1996-11-20 株式会社国際電気エンジニアリング 漏洩同軸線路
JP2561201B2 (ja) 1992-05-19 1996-12-04 株式会社電設 共振型dc−dcコンバータ
JP2659315B2 (ja) * 1992-11-13 1997-09-30 株式会社ピーエフユー 非接触型icメモリカードシステム
JPH07322613A (ja) 1994-05-26 1995-12-08 Murata Mfg Co Ltd 電圧共振コンバータ
US5638260A (en) * 1995-05-19 1997-06-10 Electronic Measurements, Inc. Parallel resonant capacitor charging power supply operating above the resonant frequency
JP3139534B2 (ja) 1996-05-17 2001-03-05 サンケン電気株式会社 共振型スイッチング電源装置
JP3392016B2 (ja) * 1996-09-13 2003-03-31 株式会社日立製作所 電力伝送システム並びに電力伝送および情報通信システム
JPH118910A (ja) 1997-06-16 1999-01-12 Denso Corp ハイブリッド電気自動車の電源装置
JPH11187582A (ja) * 1997-12-17 1999-07-09 Mitsuoka Electric Mfg Co Ltd 電磁誘導電源装置
JPH11356044A (ja) * 1998-04-10 1999-12-24 Sony Corp 共振型スイッチング電源
US6934167B2 (en) * 2003-05-01 2005-08-23 Delta Electronics, Inc. Contactless electrical energy transmission system having a primary side current feedback control and soft-switched secondary side rectifier
JP2006050689A (ja) 2004-07-30 2006-02-16 Sony Corp スイッチング電源回路
JP2006074897A (ja) 2004-09-01 2006-03-16 Sony Corp スイッチング電源回路
JP4099593B2 (ja) * 2004-09-17 2008-06-11 ソニー株式会社 スイッチング電源回路
JP4099595B2 (ja) 2004-09-30 2008-06-11 ソニー株式会社 スイッチング電源回路
JP2007020391A (ja) 2005-07-07 2007-01-25 Samsung Electro Mech Co Ltd 高効率ハーフブリッジdc/dcコンバータ及びその制御方法
DE102005047551A1 (de) * 2005-09-30 2007-04-12 Siemens Ag Erregereinrichtung für eine elektrische Maschine
CN100521482C (zh) * 2006-02-15 2009-07-29 索尼株式会社 开关电源电路
JP2008104295A (ja) 2006-10-19 2008-05-01 Voltex:Kk 非接触電源装置
JP5118418B2 (ja) * 2007-08-28 2013-01-16 パナソニック株式会社 非接触給電装置
JP5241381B2 (ja) * 2008-08-25 2013-07-17 株式会社日立製作所 電力受信装置
WO2010050008A1 (ja) * 2008-10-29 2010-05-06 株式会社日立製作所 周波数可変フレネル領域電力送信機および受信機、並びに電力伝送システム
JP5552752B2 (ja) * 2009-04-15 2014-07-16 セイコーエプソン株式会社 受電装置、電子機器および無接点電力伝送システム
JP5447509B2 (ja) * 2009-04-27 2014-03-19 株式会社村田製作所 ワイヤレス電力伝送端末

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285436A (ja) * 1990-08-31 1992-10-09 Siemens Ag ターゲットコイルの駆動回路および方法
WO2006022365A1 (ja) * 2004-08-27 2006-03-02 Hokushin Denki Co., Ltd. 非接触電力伝送装置
JP2006230032A (ja) * 2005-02-15 2006-08-31 Noboru Daiho 電力伝送装置、電力伝送方法
JP2008206327A (ja) 2007-02-21 2008-09-04 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2670023A4

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244635A (ja) * 2011-05-13 2012-12-10 Central Research Institute Of Electric Power Industry 双方向非接触給電システム
JP2014527793A (ja) * 2011-08-04 2014-10-16 ワイトリシティ コーポレーションWitricity Corporation 整調可能無線電力アーキテクチャ
US10734842B2 (en) 2011-08-04 2020-08-04 Witricity Corporation Tunable wireless power architectures
US11621585B2 (en) 2011-08-04 2023-04-04 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US9130467B2 (en) 2011-10-21 2015-09-08 Murata Manufacturing Co., Ltd. Switching power supply device
JPWO2013058175A1 (ja) * 2011-10-21 2015-04-02 株式会社村田製作所 スイッチング電源装置
US9048741B2 (en) 2011-10-21 2015-06-02 Murata Manufacturing Co., Ltd. Switching power supply device
WO2014038379A1 (ja) * 2012-09-07 2014-03-13 シャープ株式会社 ワイヤレス給電システム、およびワイヤレス受電装置
US9912166B2 (en) 2012-09-11 2018-03-06 Access Business Group International Llc Wireless power control
JP2015529445A (ja) * 2012-09-11 2015-10-05 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 無線電力制御
US10530188B2 (en) 2012-09-11 2020-01-07 Philips Ip Ventures B.V. Wireless power control
EP2908406A4 (en) * 2012-10-11 2016-04-20 Murata Manufacturing Co WIRELESS POWER SUPPLY DEVICE
JP2017028998A (ja) * 2012-10-11 2017-02-02 株式会社村田製作所 ワイヤレス給電装置
WO2014057959A1 (ja) * 2012-10-11 2014-04-17 株式会社村田製作所 ワイヤレス給電装置
CN104718682A (zh) * 2012-10-11 2015-06-17 株式会社村田制作所 无线供电装置
JP2018183051A (ja) * 2012-10-11 2018-11-15 株式会社村田製作所 ワイヤレス給電装置
US9948141B2 (en) 2012-10-11 2018-04-17 Murata Manufacturing Co., Ltd. Wireless power transfer apparatus
CN106961164A (zh) * 2012-10-11 2017-07-18 株式会社村田制作所 无线供电装置
US20150214788A1 (en) * 2012-10-11 2015-07-30 Murata Manufacturing Co., Ltd. Wireless power transfer apparatus
JPWO2014057959A1 (ja) * 2012-10-11 2016-09-05 株式会社村田製作所 ワイヤレス給電装置
JPWO2014103430A1 (ja) * 2012-12-27 2017-01-12 株式会社村田製作所 ワイヤレス電力伝送システム
WO2014103438A1 (ja) * 2012-12-28 2014-07-03 株式会社村田製作所 電力伝送システム
US9685794B2 (en) 2012-12-28 2017-06-20 Murata Manufacturing Co., Ltd. Power transmission system
JP5716877B2 (ja) * 2012-12-28 2015-05-13 株式会社村田製作所 電力伝送システム
US9711278B2 (en) 2013-01-09 2017-07-18 Korea Electrotechnology Research Institute Wireless power transmission system for free-position wireless charging of multiple devices
US10141105B2 (en) 2013-01-09 2018-11-27 Korea Electrotechnology Research Institute Wireless power transmission system for free-position wireless charging of multiple devices
WO2014109460A1 (ko) * 2013-01-09 2014-07-17 한국전기연구원 다중기기의 자유 위치 무선 충전을 위한 무선전력전송 시스템
JP5737546B2 (ja) * 2013-02-05 2015-06-17 株式会社村田製作所 受電装置、送電装置および電力伝送システム
JPWO2014122853A1 (ja) * 2013-02-05 2017-01-26 株式会社村田製作所 受電装置、送電装置および電力伝送システム
WO2014122853A1 (ja) * 2013-02-05 2014-08-14 株式会社 村田製作所 受電装置、送電装置および電力伝送システム
US20150333801A1 (en) * 2013-02-15 2015-11-19 Murata Manufacturing Co., Ltd. Wireless power supply apparatus
GB2526444B (en) * 2013-02-15 2020-07-01 Murata Manufacturing Co Wireless power supply apparatus
WO2014126181A1 (ja) * 2013-02-15 2014-08-21 株式会社村田製作所 ワイヤレス給電装置
GB2526444A (en) * 2013-02-15 2015-11-25 Murata Manufacturing Co Wireless power supply apparatus
US10027377B2 (en) 2013-02-15 2018-07-17 Murata Manufacturing Co., Ltd. Wireless power supply apparatus
JPWO2014126181A1 (ja) * 2013-02-15 2017-02-02 株式会社村田製作所 ワイヤレス給電装置
CN104969442A (zh) * 2013-02-15 2015-10-07 株式会社村田制作所 无线供电装置
GB2526972B (en) * 2013-03-27 2020-04-29 Murata Manufacturing Co Wireless power transmission apparatus
US10381876B2 (en) 2013-05-30 2019-08-13 Drayson Technologies (Europe) Limited Inductive power transfer system
JP2015002643A (ja) * 2013-06-18 2015-01-05 パナソニックIpマネジメント株式会社 非接触電力伝送システム
WO2015005155A1 (ja) * 2013-07-08 2015-01-15 株式会社村田製作所 電力変換回路、電力伝送システムおよび電力変換システム
US9853460B2 (en) 2013-07-08 2017-12-26 Murata Manufacturing Co., Ltd. Power conversion circuit, power transmission system, and power conversion system
CN105247775A (zh) * 2013-07-08 2016-01-13 株式会社村田制作所 电力变换电路、电力输送系统以及电力变换系统
JP6048583B2 (ja) * 2013-07-08 2016-12-21 株式会社村田製作所 電力変換回路、電力伝送システムおよび電力変換システム
JP2015019531A (ja) * 2013-07-12 2015-01-29 東芝テック株式会社 電力伝送装置、電力伝送装置用の送電装置及び受電装置
US11720133B2 (en) 2013-08-14 2023-08-08 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US11112814B2 (en) 2013-08-14 2021-09-07 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
EP2843790A3 (en) * 2013-08-30 2015-03-18 Samsung Electro-Mechanics Co., Ltd. Power supply device
CN104426248A (zh) * 2013-08-30 2015-03-18 三星电机株式会社 供电装置
US10122212B2 (en) 2013-08-30 2018-11-06 Samsung Electro-Mechanics Co., Ltd. Power supply device
JP2015128365A (ja) * 2013-11-28 2015-07-09 Tdk株式会社 非接触電力伝送回路
WO2015104768A1 (ja) * 2014-01-07 2015-07-16 パナソニックIpマネジメント株式会社 非接触給電装置の制御方法及び非接触給電装置
JPWO2015104768A1 (ja) * 2014-01-07 2017-03-23 パナソニックIpマネジメント株式会社 非接触給電装置の制御方法及び非接触給電装置
CN104901430A (zh) * 2014-03-07 2015-09-09 英特尔公司 无线供电中的电容性元件耦合
US9923380B2 (en) 2014-03-07 2018-03-20 Intel Corporation Capacitive element coupling in wireless power
JP2015171317A (ja) * 2014-03-07 2015-09-28 インテル コーポレイション 無線電力における容量性素子結合
TWI586068B (zh) * 2014-03-07 2017-06-01 英特爾股份有限公司 無線電源中的電容性元件耦接技術
JP2016539528A (ja) * 2014-05-12 2016-12-15 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH インダクタのための駆動回路、インダクタの作動方法、駆動回路を備えたアクティブ送信装置
US10078928B2 (en) 2014-05-12 2018-09-18 Continental Automotive Gmbh Driver circuit for an inductor coil
US9859798B2 (en) 2014-11-17 2018-01-02 Murata Manufacturing Co., Ltd. Wireless power-feeding apparatus
WO2016080044A1 (ja) * 2014-11-17 2016-05-26 株式会社村田製作所 ワイヤレス給電装置
JPWO2016080044A1 (ja) * 2014-11-17 2017-04-27 株式会社村田製作所 ワイヤレス給電装置
WO2017130422A1 (ja) * 2016-01-26 2017-08-03 株式会社 東亜産業 磁気共鳴式給電システム
WO2018131261A1 (ja) * 2017-01-13 2018-07-19 オムロン株式会社 非接触給電装置
JP2018113831A (ja) * 2017-01-13 2018-07-19 オムロン株式会社 非接触給電装置
JPWO2018185810A1 (ja) * 2017-04-03 2019-11-07 三菱電機株式会社 非接触給電システム
WO2018185810A1 (ja) * 2017-04-03 2018-10-11 三菱電機株式会社 非接触給電システム
US11011937B2 (en) 2017-07-10 2021-05-18 Murata Manufacturing Co., Ltd. High frequency power supply device
JPWO2020170996A1 (ja) * 2019-02-21 2020-08-27
JP7261506B2 (ja) 2019-02-21 2023-04-20 株式会社レゾンテック ワイヤレス給電システムおよび円形・球形・多面形状を有する受電器
JPWO2021125228A1 (ja) * 2019-12-20 2021-06-24
JP7141156B2 (ja) 2019-12-20 2022-09-22 株式会社レゾンテック チューニング調整回路を有するワイヤレス給電システム
WO2022091479A1 (ja) * 2020-10-30 2022-05-05 株式会社村田製作所 電源回路モジュール
WO2022239552A1 (ja) * 2021-05-12 2022-11-17 オムロン株式会社 複合共振回路の駆動制御装置及び非接触給電システム
JP7391920B2 (ja) 2021-09-13 2023-12-05 株式会社東芝 電子回路及び方法

Also Published As

Publication number Publication date
EP2670023A4 (en) 2016-11-02
KR101405878B1 (ko) 2014-06-12
KR20130114694A (ko) 2013-10-18
JP5494838B2 (ja) 2014-05-21
JPWO2012101907A1 (ja) 2014-06-30
CN103329398B (zh) 2015-07-01
EP2670023A1 (en) 2013-12-04
CN103329398A (zh) 2013-09-25
US20130300210A1 (en) 2013-11-14
US9378888B2 (en) 2016-06-28

Similar Documents

Publication Publication Date Title
JP5494838B2 (ja) 電力伝送システム
JP5787027B2 (ja) 電力伝送システム
JP6601538B2 (ja) ワイヤレス給電装置
JP5321758B2 (ja) スイッチング電源装置
JP5488722B2 (ja) スイッチング電源装置
JP6202222B2 (ja) ワイヤレス給電システム
JP5804073B2 (ja) スイッチング電源装置
WO2014126181A1 (ja) ワイヤレス給電装置
WO2013058174A1 (ja) スイッチング電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554633

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011856701

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137019766

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE