WO2012090669A1 - 電極用バインダー組成物、電極用スラリー、電極、電気化学デバイス、ならびに電極用バインダー組成物の製造方法および保管方法 - Google Patents

電極用バインダー組成物、電極用スラリー、電極、電気化学デバイス、ならびに電極用バインダー組成物の製造方法および保管方法 Download PDF

Info

Publication number
WO2012090669A1
WO2012090669A1 PCT/JP2011/078373 JP2011078373W WO2012090669A1 WO 2012090669 A1 WO2012090669 A1 WO 2012090669A1 JP 2011078373 W JP2011078373 W JP 2011078373W WO 2012090669 A1 WO2012090669 A1 WO 2012090669A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
binder composition
electrodes
mass
polymer particles
Prior art date
Application number
PCT/JP2011/078373
Other languages
English (en)
French (fr)
Inventor
一郎 梶原
真坂 房澄
武志 茂木
大介 助口
達朗 本多
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to US13/977,255 priority Critical patent/US20130323588A1/en
Priority to CN201180058004.XA priority patent/CN103238243B/zh
Priority to KR1020137019775A priority patent/KR101373976B1/ko
Priority to JP2012514664A priority patent/JP5146710B2/ja
Publication of WO2012090669A1 publication Critical patent/WO2012090669A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrode binder composition, an electrode slurry containing the binder composition and an active material, an electrode obtained by applying the slurry to a current collector, an electrochemical device including the electrode, and the binder composition.
  • the present invention relates to a manufacturing method and a storage method.
  • lithium ion secondary batteries and lithium ion capacitors are expected as power storage devices having high voltage and high energy density.
  • An electrode used in such an electricity storage device is produced by applying and drying a mixture of an active material and an electrode binder to a current collector.
  • the properties required for such an electrode binder include improving the bonding ability between active materials and the bonding ability between the active material and the current collector (hereinafter, also simply referred to as “binding property”), Abrasion resistance in the process of winding the electrode, suitability for dust removal, etc., in which fine powder of the active material is not generated from the electrode composition layer (hereinafter also simply referred to as “active material layer”) applied by subsequent cutting, etc. There is.
  • the electrode binder When the electrode binder satisfies these required characteristics, the degree of freedom in designing the electrode folding method, the winding radius, and the like is increased, and downsizing of the electricity storage device can be achieved. Furthermore, the internal resistance of the battery resulting from the binder for electrodes can be reduced. Thereby, favorable charge / discharge characteristics can be realized.
  • Japanese Patent Application Laid-Open No. 2000-299109 discusses a technique for improving the above characteristics by controlling the composition of the binder for electrodes.
  • Japanese Patent Application Laid-Open No. 2010-205722 and Japanese Patent Application Laid-Open No. 2010-3703 discuss a technique for improving the above characteristics using a binder having an epoxy group or a hydroxyl group.
  • Japanese Patent Application Laid-Open No. 2010-245035 discusses a technique for controlling the content of residual impurities.
  • the binder composition for an electrode is in a state where organic particles are dispersed in a dispersion medium, an aggregate may be generated due to a change in processing after storage or storage environment. Aggregates thus generated may cause a short circuit when an electrode is produced. Furthermore, an electrochemical device manufactured using a binder composition in which such aggregates are generated may cause problems such as ignition due to defects in the electrodes. Therefore, development of a new binder with reduced foreign matter that can produce an electrode with the least possible occurrence of the above problems has been desired. There has also been a demand for a method for storing an electrode binder composition that does not generate foreign matter.
  • some embodiments according to the present invention provide an electrode binder composition capable of producing an electrode having good binding properties and excellent charge / discharge characteristics by solving the above-described problems. . Furthermore, the present invention provides an electrode binder composition capable of producing an electrode capable of maintaining good binding properties and good charge / discharge characteristics over a long period of time.
  • Another aspect of the present invention has been made in order to solve the above-described problems of the prior art, and the occurrence rate of defects such as breakage of the separator is extremely small, causing problems such as ignition. It is an object to provide a binder composition for an electrode that can be used as an electrode material of an electrochemical device that is difficult and has high safety. Furthermore, another aspect of the present invention provides a storage method in which foreign matters are not generated when storing such a binder composition for an electrode from the viewpoint of improving the yield of the electrode.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • One aspect of the binder composition for electrodes according to the present invention is: (A) 5 to 40 parts by mass of a structural unit derived from an ⁇ , ⁇ -unsaturated nitrile compound; (B) 0.3 to 10 parts by mass of a structural unit derived from an unsaturated carboxylic acid; And polymer particles having a number average particle diameter of 50 to 400 nm, The gel content is 90-99%, The electrolyte solution swelling rate is 110 to 400%.
  • the polymer particles may further contain a structural unit derived from a compound represented by the following general formula (1).
  • R 1 is a hydrogen atom or a monovalent hydrocarbon group
  • R 2 is a divalent hydrocarbon group.
  • the compound represented by the general formula (1) may be hydroxyethyl methacrylate.
  • the polymer particles may further contain a structural unit derived from the (C) conjugated diene compound.
  • Electrode binder composition of any one of Application Examples 1 to 4 The pH can be 6 or more and 8 or less.
  • Electrode binder composition of any one of Application Examples 1 to 5 When measured with a particle counter, the number of particles having a particle diameter of 20 ⁇ m or more per mL can be zero.
  • One aspect of the method for producing an electrode binder composition according to the present invention is as follows. It includes a step of reducing the number of particles having a particle diameter of 20 ⁇ m or more per mL to 0 when measured with a particle counter by filtration.
  • One aspect of the slurry for electrodes according to the present invention is: It contains an active material and the binder composition for an electrode according to any one of Application Examples 1 to 6.
  • One aspect of the electrode according to the present invention is: It is characterized by comprising: a current collector; and an active material layer formed by applying and drying the electrode slurry of Application Example 8 on the surface of the current collector.
  • Application Example 10 One aspect of the electrochemical device according to the present invention is: The electrode of Application Example 9 is provided.
  • One aspect of the method for storing the binder composition for electrodes according to the present invention is as follows:
  • the electrode binder composition according to any one of Application Example 1 to Application Example 6 is filled in a container controlled at a temperature of 2 ° C. or higher and 30 ° C. or lower, and the electrode binder composition of the electrode is contained in the inner volume of the container.
  • the ratio of the volume of the void portion excluding the occupied volume is 1 to 20%.
  • the oxygen concentration in the void portion atmosphere may be 1% or less.
  • the elution concentration of metal ions from the container may be 50 ppm or less.
  • the electrode binder composition according to the present invention can produce an electrode having excellent binding properties and excellent charge / discharge characteristics. Moreover, according to the binder composition for electrodes which concerns on this invention, the electrode which can maintain favorable binding property and favorable charging / discharging characteristic over a long period of time can be produced.
  • the generation of foreign matters can be suppressed, and as a result, the electrode yield can be improved.
  • Drawing 1 is an explanatory view showing typically the filtration device used in one embodiment of the manufacturing method of the binder composition for electrodes concerning the present invention.
  • Electrode Binder Composition comprises (A) 5 to 40 parts by mass of a structural unit derived from an ⁇ , ⁇ -unsaturated nitrile compound, and (B) derived from an unsaturated carboxylic acid. And a polymer obtained by coagulating the polymer particles, insoluble in toluene, containing polymer particles containing 0.3 to 10 parts by mass of the structural unit and having a number average particle diameter of 50 to 400 nm.
  • the swell ratio (electrolyte swell ratio) is 110 to 400% when the continuous film obtained by drying the polymer particles is immersed in a standard electrolyte solution. It is characterized by being.
  • the binder composition for an electrode according to the present embodiment is used as a binder of an active material, and specifically, a binder between positive electrode active material particles and a positive electrode active material and a collector metal foil, or It acts as a binder between the negative electrode active material particles and between the negative electrode active material and the current collector metal foil.
  • the polymer particles are contained in an amount of 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass in solid content with respect to 100 parts by mass of the positive electrode active material or the negative electrode active material. Can be prepared as a slurry.
  • the content of the polymer particles is less than 0.1 parts by mass, the binding property may be deteriorated.
  • the content is more than 10 parts by mass, battery characteristics when assembled as a battery tend to be adversely affected.
  • each component contained in the binder composition for electrodes which concerns on this Embodiment is demonstrated in detail.
  • the polymer particles contained in the electrode binder according to the present embodiment include (A) a structural unit derived from an ⁇ , ⁇ -unsaturated nitrile compound (hereinafter also referred to as “(A) structural unit”). And (B) a structural unit derived from an unsaturated carboxylic acid (hereinafter also referred to as “(B) structural unit”).
  • the “structural unit” means a polymer obtained by polymerizing a monomer to form a repeating unit, and the monomer constitutes a repeating unit.
  • (A) Specific examples of the ⁇ , ⁇ -unsaturated nitrile compound used for constituting the structural unit include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile, vinylidene cyanide and the like. Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is particularly preferable.
  • these (A) structural units can be used individually by 1 type or in combination of 2 or more types.
  • the content ratio of the structural unit (A) is 5 to 40 parts by weight, preferably 7 to 35 parts by weight, and more preferably 10 to 30 parts by weight, when all the structural units are 100 parts by weight. preferable.
  • (A) When the content rate of a structural unit exists in the said range, it is excellent in affinity with the electrolyte solution to be used, and a swelling rate does not become large too much, and it can contribute to the improvement of a battery characteristic.
  • (B) Specific examples of the unsaturated carboxylic acid used for constituting the structural unit include mono- or dicarboxylic acids (anhydrides) such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid. Is mentioned. Among these, acrylic acid, methacrylic acid, and itaconic acid are particularly preferable. In addition, these (B) structural units can be used individually by 1 type or in combination of 2 or more types.
  • the content ratio of the structural units is 0.3 to 10 parts by mass, preferably 0.3 to 6 parts by mass, when all the structural units are 100 parts by mass.
  • (B) When the content rate of a structural unit exists in the said range, it is excellent in the dispersion stability of a polymer particle at the time of preparation of the slurry for electrodes, and does not produce an aggregate easily. Further, an increase in slurry viscosity over time can be suppressed.
  • (C) Constituent Unit Derived from Conjugated Diene Compound The polymer particles contained in the electrode binder composition according to the present embodiment are composed of (C) a constituent unit derived from a conjugated diene compound (hereinafter referred to as “(C) constituent unit”. It is preferable that it also contains ".”
  • the polymer particles can have a strong binding force. That is, since rubber elasticity derived from the conjugated diene compound is imparted to the polymer particles, it becomes possible to follow changes such as volume shrinkage and expansion of the electrode. Thereby, it is thought that it has the durability which improves a binding property and maintains a charging / discharging characteristic for a long term.
  • conjugated diene compound used for constituting the structural unit examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, -Chloro-1,3-butadiene, substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like. Among these, 1,3-butadiene is particularly preferable. In addition, these (C) structural units can be used individually by 1 type or in combination of 2 or more types.
  • the content of the structural unit is preferably 60 parts by mass or less, more preferably 25 to 55 parts by mass, and 35 to 50 parts by mass when all the structural units are 100 parts by mass. It is particularly preferred. (C) When the content rate of a structural unit exists in the said range, the further improvement of binding property will be attained.
  • Polymer particles contained in the electrode binder composition according to the present embodiment are composed of (D) a constituent unit derived from an aromatic vinyl compound (hereinafter referred to as “(D)”. It is preferable that the component further includes a “structural unit”.
  • (D) Specific examples of the aromatic vinyl compound used for constituting the structural unit include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene and the like. Among these, styrene is particularly preferable. In addition, these (D) structural units can be used individually by 1 type or in combination of 2 or more types.
  • the content of the structural unit is preferably 60 parts by mass or less, more preferably 10 to 55 parts by mass, and 20 to 50 parts by mass when the total structural unit is 100 parts by mass. It is particularly preferred.
  • a polymer particle When the content rate of a structural unit exists in the said range, a polymer particle has moderate binding property with respect to the graphite used as an active material. In addition, the obtained electrode layer has excellent flexibility and binding property to the current collector.
  • (E) Constituent Unit Derived from (Meth) acrylate Compound The polymer particles contained in the electrode binder composition according to this embodiment are composed of a constituent unit derived from (E) (meth) acrylate compound (hereinafter referred to as “( E) (also referred to as “structural unit”) is preferable.
  • ( E) (meth) acrylate compound
  • structural unit a constituent unit derived from (E) (meth) acrylate compound
  • ⁇ (meth) acrylate” means both “ ⁇ acrylate” and “ ⁇ methacrylate”.
  • the (meth) acrylate compound used for constituting the structural unit is preferably a compound represented by the following general formula (1).
  • R 1 is a hydrogen atom or a monovalent hydrocarbon group, preferably a monovalent hydrocarbon group, and a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms. Is more preferable, and a methyl group is particularly preferable.
  • R 2 is a divalent hydrocarbon group, preferably a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms.
  • Specific examples of the compound represented by the general formula (1) used for constituting the structural unit include 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 4-hydroxybutyl.
  • Examples include methacrylate, 5-hydroxypentyl methacrylate, 6-hydroxyhexyl methacrylate and the like. Of these, 2-hydroxyethyl methacrylate is preferred.
  • these (E) structural units can be used individually by 1 type or in combination of 2 or more types.
  • the polymer particle contained in the binder composition for electrodes which concerns on this Embodiment contains the structural unit derived from (E) (meth) acrylate compounds other than the compound shown by the said General formula (1). Also good.
  • Specific examples of such (meth) acrylate compounds include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl ( (Meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, 2-hexyl (meth) acrylate, octyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) An acrylate etc.
  • methyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate are mentioned.
  • methyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate are preferable, and methyl (meth) acrylate is more preferable.
  • these (E) structural units can be used individually by 1 type or in combination of 2 or more types.
  • the content of the structural unit is preferably 40 parts by mass or less, more preferably 5 to 35 parts by mass, and more preferably 10 to 30 parts by mass, when the total structural unit is 100 parts by mass. It is particularly preferred.
  • the structural unit (E) is a compound represented by the general formula (1)
  • the amount is preferably 20 parts by mass or less, more preferably 1 to 10 parts by mass, and 2 to 5 parts by mass. It is particularly preferred that (E) When the content ratio of the structural unit is within the above range, the resulting polymer particles have an appropriate affinity with the electrolytic solution, and the electrode binder composition becomes an electrical resistance component in the battery. While suppressing an increase in resistance, it is possible to prevent a decrease in binding property due to excessive absorption of the electrolytic solution.
  • the polymer particles contained in the binder composition for an electrode according to the present embodiment include, in addition to the above constituent units, monomer compounds copolymerizable with these (hereinafter, It may contain structural units derived simply from “other comonomer”.
  • copolymerization monomers include alkyl amides of ethylenically unsaturated carboxylic acids such as (meth) acrylamide and N-methylol acrylamide; vinyl carboxylic acid esters such as vinyl acetate and vinyl propionate; Examples thereof include acid anhydrides of saturated dicarboxylic acids; monoalkyl esters; monoamides; aminoalkylamides of ethylenically unsaturated carboxylic acids such as aminoethylacrylamide, dimethylaminomethylmethacrylamide, and methylaminopropylmethacrylamide.
  • these copolymerization monomers can be used individually by 1 type or in combination of 2 or more types, and a crosslinkable copolymerization monomer can also be used together.
  • the number average particle diameter of the polymer particles is in the range of 50 to 400 nm, and preferably in the range of 70 to 350 nm.
  • the obtained electrode is preferable because a sufficient number of effective adhesion points tend to be formed between the active material, the polymer particles, and the current collector.
  • the number average particle diameter of the polymer particles can be obtained by using a particle size distribution measuring apparatus using a dynamic light scattering method as a measurement principle.
  • a particle size distribution measuring apparatus for example, Coulter LS230, LS100, LS13 320 (above, manufactured by Beckman Coulter. Inc), ALV5000 (manufactured by ALV), FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.), etc. Can be mentioned.
  • These particle size distribution measuring devices are not intended to evaluate only the primary particles of the polymer particles, but can also evaluate the secondary particles formed by aggregation of the primary particles. Therefore, the particle size distribution measured by these particle size distribution measuring devices can be used as an indicator of the dispersion state of the polymer particles contained in the electrode slurry.
  • the number average particle diameter of the polymer particles can also be measured by a method of centrifuging the electrode slurry and precipitating the active material particles, and then measuring the supernatant with the above particle size distribution measuring apparatus. .
  • Glass transition temperature (Tg) of polymer particles The glass transition temperature (Tg) of the polymer particles is preferably ⁇ 50 to 25 ° C., more preferably ⁇ 30 to 5 ° C., when measured by differential scanning calorimetry (DSC) according to JIS K7121. preferable.
  • DSC differential scanning calorimetry
  • the polymer particles can impart better flexibility and adhesiveness to the active material layer, and therefore the binding property can be further improved. preferable.
  • the method for synthesizing the polymer particles contained in the electrode binder composition according to the present embodiment is not particularly limited, but can be easily produced by a two-stage emulsion polymerization process.
  • the monomer component used in the first stage emulsion polymerization step includes, for example, ⁇ , ⁇ -unsaturated nitrile compound, conjugated diene compound, aromatic vinyl Non-carboxylic acid monomers such as compounds, (meth) acrylate compounds, and other copolymerization monomers, and carboxylic acid monomers such as unsaturated carboxylic acids are contained.
  • the content ratio of the non-carboxylic acid monomer contained in the monomer component is 80 to 92% by mass in a total of 100% by mass of the non-carboxylic acid monomer and the carboxylic acid monomer. It is preferably 82 to 92% by mass.
  • the content ratio of the non-carboxylic acid monomer is 80 to 92% by mass, the dispersion stability of the polymer particles is excellent during the preparation of the electrode slurry, and aggregates are hardly generated. Further, an increase in slurry viscosity over time can be suppressed.
  • the content ratio of the (meth) acrylate compound in the non-carboxylic acid monomer is preferably 14 to 30% by mass.
  • the content ratio of the (meth) acrylate compound is in the above range, the dispersion stability of the polymer particles is excellent during the preparation of the electrode slurry, and aggregates are hardly generated.
  • the obtained polymer particles have moderate affinity with the electrolytic solution, and can prevent a decrease in binding property due to excessive absorption of the electrolytic solution.
  • the content of the conjugated diene compound in the non-carboxylic acid monomer is preferably 10 to 60% by mass, and the ratio of the aromatic vinyl compound is 20 to 50% by mass. It is preferable.
  • the proportion of itaconic acid in the carboxylic acid monomer is preferably 50 to 85% by mass.
  • the monomer component (II) used in the second-stage emulsion polymerization step includes, for example, an ⁇ , ⁇ -unsaturated nitrile compound, a conjugated diene compound, and an aromatic vinyl.
  • Non-carboxylic acid monomers such as compounds, (meth) acrylate compounds, and other copolymerization monomers, and carboxylic acid monomers such as unsaturated carboxylic acids are contained.
  • the content ratio of the non-carboxylic acid monomer contained in the monomer component is 94 to 99 mass% in a total of 100 mass% of the non-carboxylic acid monomer and the carboxylic acid monomer. It is preferably 96 to 98% by mass.
  • the content ratio of the non-carboxylic acid monomer is within the above range, the dispersion stability of the polymer particles is excellent during the preparation of the electrode slurry, and aggregates are hardly generated. Further, an increase in slurry viscosity over time can be suppressed.
  • the content ratio of the (meth) acrylate compound in the non-carboxylic acid monomer is preferably 11.5% by mass or less.
  • the content ratio of the (meth) acrylate compound is 11.5% by mass or less, the obtained polymer particles have an appropriate affinity with the electrolytic solution, and have binding properties due to excessive absorption of the electrolytic solution. Decline can be prevented.
  • the mass ratio ((I) / (II) ratio) of (I) monomer component to (II) monomer component is 0.05 to 0.5. It is preferable that it is 0.1 to 0.4.
  • the ratio (I) / (II) is in the above range, the dispersion stability of the polymer particles is excellent during the preparation of the electrode slurry, and aggregates are hardly generated. Further, an increase in slurry viscosity over time can be suppressed.
  • Emulsion polymerization The emulsion polymerization step is carried out in an aqueous medium in the presence of an emulsifier, a polymerization initiator, and a molecular weight regulator.
  • an emulsifier emulsifier, a polymerization initiator, and a molecular weight regulator.
  • Emulsifiers Specific examples of emulsifiers include sulfate esters of higher alcohols, alkylbenzene sulfonates, alkyl diphenyl ether disulfonates, aliphatic sulfonates, aliphatic carboxylates, dehydroabietic acid salts, and formalin condensates of naphthalene sulfonic acid.
  • Nonionic surfactants such as sulfate salts of nonionic surfactants; Nonionic surfactants such as alkyl ester type, alkylphenyl ether type, and alkyl ether type of polyethylene glycol; perfluorobutyl sulfonate, Fluorosurfactants such as fluoroalkyl group-containing phosphates, perfluoroalkyl group-containing carboxylates, and perfluoroalkylethylene oxide adducts can be mentioned. In the emulsion polymerization step, these emulsifiers can be used alone or in combination of two or more.
  • polymerization initiator examples include water-soluble polymerization initiators such as lithium persulfate, potassium persulfate, sodium persulfate, and ammonium persulfate; cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, Examples thereof include oil-soluble polymerization initiators such as acetyl peroxide, diisopropylbenzene hydroperoxide, and 1,1,3,3-tetramethylbutyl hydroperoxide. Among these, potassium persulfate, sodium persulfate, cumene hydroperoxide, and t-butyl hydroperoxide are preferable.
  • these polymerization initiators can be used singly or in combination of two or more.
  • the amount of the polymerization initiator used is not particularly limited, and is appropriately adjusted in consideration of the combination of the monomer composition, the pH of the polymerization reaction system, other additives, and the like.
  • molecular weight regulators include n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan, and the like; dimethylxanthogen disulfide Xanthogen compounds such as diisopropylxanthogen disulfide; thiuram compounds such as terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide; 2,6-di-t-butyl-4-methylphenol, styrenated phenol Phenolic compounds such as allyl compounds such as allyl alcohol; halogenated hydrocarbon compounds such as dichloromethane, dibro
  • the first stage emulsion polymerization step is preferably carried out under conditions where the polymerization temperature is 40 to 80 ° C. and the polymerization time is 2 to 4 hours.
  • the polymerization conversion rate is preferably 50% or more, and more preferably 60% or more.
  • the second stage emulsion polymerization step is preferably carried out under conditions of a polymerization temperature of 40 to 80 ° C. and a polymerization time of 2 to 6 hours.
  • the dispersion After completion of the emulsion polymerization, it is preferable to neutralize the dispersion by adding a neutralizing agent so that the pH of the dispersion is about 5 to 10.
  • a neutralizing agent Usually, metal hydroxides, such as sodium hydroxide and potassium hydroxide, and ammonia are mentioned.
  • the pH of the dispersion By setting the pH of the dispersion in the range of 5 to 10, the blending stability of the dispersion is improved, but it is preferably 6 to 9, more preferably 6 to 8, and even more preferably 7 to 8.5. .
  • the reaction can proceed with good dispersion stability, but it is preferably 45% by mass or less, more preferably 40% by mass or less. Further, by performing concentration after the neutralization treatment, highly solid differentiation can be achieved while further improving the stability of the particles.
  • additives such as a water-soluble thickener
  • water-soluble thickeners such as carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein; hexametaphosphate soda, tripolyphosphate
  • dispersants such as soda, sodium pyrophosphate, and sodium polyacrylate
  • latex stabilizers such as nonionic and anionic surfactants.
  • the gel content of the electrode binder composition according to the present embodiment is 90 to 99%, preferably 92 to 99%, more preferably 94 to 99%.
  • the gel content is in the above range, the polymer particles are difficult to dissolve in the electrolytic solution, and adverse effects on battery characteristics due to an increase in overvoltage can be suppressed over a long period of time. If the gel content is less than the above range, the ability as an electrode binder for fixing the active material over a long period is insufficient, which is not preferable. Moreover, since the adhesive force to a collector will fall when gel content exceeds the said range, it is unpreferable.
  • the gel content of the electrode binder composition according to the present embodiment can be calculated by the following procedure.
  • Electrolytic Solution Swell Rate The electrolytic solution swell rate of the electrode binder composition according to the present embodiment is 110 to 400%, preferably 130 to 350%, and more preferably 150 to 300%.
  • the electrolytic solution swelling ratio is in the above range, the polymer particles can be appropriately swollen with respect to the electrolytic solution. As a result, solvated lithium ions can easily reach the active material, effectively reducing the electrode resistance, and realizing better charge / discharge characteristics. Furthermore, since a large volume change does not occur, the binding property is also excellent.
  • the electrolytic solution swelling ratio is less than the above range, the binding property is good, but lithium ions are inhibited from reaching the active material and the electrode resistance increases, which is not preferable.
  • the electrolytic solution swelling ratio exceeds the above range, the electrode resistance is lowered, but the binding property is deteriorated, which is not preferable.
  • the electrolytic solution swelling rate of the electrode binder composition according to the present embodiment can be calculated by the following procedure.
  • the electrode binder composition is poured into a predetermined frame and dried at room temperature to obtain a dry film. Thereafter, the dried film is taken out of the frame and further dried by heating at 80 ° C. for 3 hours to obtain a test film.
  • the obtained film for test (W0 ′ (g)) is immersed in a standard electrolyte and heated at 80 ° C. for 1 day to swell. Thereafter, the test film is taken out from the standard electrolyte solution, and after the electrolyte solution adhering to the film surface is wiped off, the post-immersion mass (W1 ′ (g)) after the test is measured.
  • standard electrolyte means a concentration of 1M LiPF 6 as an electrolyte with respect to a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 5: 5.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the electrode binder composition according to the present embodiment can use the electrode binder composition as described above, but particles having a particle diameter of 20 ⁇ m or more per mL when measured with a particle counter.
  • the number of is preferably 0.
  • the separator is damaged by the particles contained in the binder ( That is, it can be used as a material for an electrode that constitutes an electrochemical device that has a very low incidence of defects (the separator is penetrated by particles) and is highly safe.
  • the conventional binder composition for electrodes does not perform an operation of removing particles larger than a predetermined particle size, it is considered that particles larger than the predetermined particle size are contained. Then, if the large particles are charged when an electric current flows, the large particles may be attracted to the electrode side across the separator and may penetrate the separator or cause a crack to penetrate the separator. was there. As described above, the conventional electrode binder composition has a defect in which the separator is damaged (specifically, a defect in which the large particles penetrate the separator or cause a crack to penetrate the separator). There was a possibility. If the separator is broken, the electrochemical device may be energized, and thus the electrochemical device may cause a hard short circuit. If the hard short circuit occurs, the electrochemical device may ignite.
  • the binder composition for an electrode according to the present embodiment since it does not contain particles (particles larger than a predetermined particle diameter) that cause cracks to penetrate the separator or penetrate the separator, Electrodes of electrochemical devices that have no such problems and are highly safe can be produced.
  • the particles larger than the predetermined particle diameter are specifically particles having a particle diameter of the same size as the thickness of the separator separating the positive electrode and the negative electrode.
  • the thickness of the separator is usually 10 to 30 ⁇ m. If the thickness of the separator is less than 10 ⁇ m, the separator is easily damaged and may cause a failure of the electrochemical device.
  • the electrode binder composition according to the present embodiment is not particularly limited as long as the above conditions are satisfied.
  • particles having a particle diameter of 15 ⁇ m or more per mL and less than 20 ⁇ m when measured with a particle counter Is preferably from 0 to 35000, more preferably from 0 to 4000.
  • the number of particles having a particle diameter of more than 10 ⁇ m and less than 15 ⁇ m per mL when measured with a particle counter is more preferably 0 to 500,000, and more preferably 0 to 200000.
  • the binder tends to become a resistance component, and when this binder is localized, there is a problem that the resistance is likely to increase.
  • the binder is localized. It becomes difficult. Therefore, there is an advantage that the resistance is hardly increased.
  • the number of particles per mL is measured with a particle counter, and the number of particles is defined for each predetermined particle diameter.
  • the electrode binder composition according to this embodiment is obtained by polymerizing a polymerizable monomer as described above.
  • it includes polymer particles having a structural unit derived from the polymerizable monomer, and the function as a binder is expressed by the polymer particles.
  • the polymer particle concentration (in terms of solid content) is preferably 20 to 56% by mass, more preferably 23 to 55% by mass, and 25 It is particularly preferable that the content be ⁇ 54% by mass.
  • the concentration is within the above range, the polymer particles are stabilized in the binder (exist in a well dispersed state), and thus there is an advantage that a binder composition having excellent long-term stability can be obtained.
  • the concentration is less than 20% by mass, there is a problem that productivity is lowered. That is, when the reaction solution obtained by polymerization is used as a binder as it is, it is necessary to lower the concentration of the polymer particles obtained by polymerization. Therefore, productivity becomes low.
  • it exceeds 56% by mass the viscosity of the binder increases excessively, so that long-term stability may not be sufficiently obtained.
  • the above-described additives are added to the reaction solution obtained by synthesizing polymer particles as described above. Thereafter, the filtrate is obtained by filtering with a depth type or pleat type filter, and having a particle diameter of 20 ⁇ m or more per mL when measured with a particle counter. .
  • the separator is broken by the particles contained in the binder (that is, the separator is penetrated by the particles), and the occurrence rate of defects is extremely small and safety is high. An electrode binder composition capable of producing an electrode constituting a high electrochemical device is obtained.
  • the depth type filter is a high-precision filtration filter also referred to as a depth filtration or volume filtration type filter.
  • depth type filters include those having a laminated structure in which filtration membranes having a large number of pores are laminated, and those in which fiber bundles are wound up.
  • Specific examples of depth type filters include Profile II, Nexis NXA, Nexis NXT, Polyfine XLD, Ultiplez Profile, etc. (all manufactured by Nippon Pole), depth cartridge filters, wind cartridge filters, etc. (all, Advantech) Co., Ltd.), CP filter, BM filter, etc. (all manufactured by Chisso Corporation), slope pure, diamond, micro-Syria, etc. (all manufactured by Loki Techno Co.), and the like.
  • a filter having a rated filtration accuracy of 1.0 to 20 ⁇ m is preferably used, and a filter having a rated filtration accuracy of 5.0 to 10 ⁇ m is more preferable.
  • a filter having a rated filtration accuracy within the above range it is possible to efficiently obtain a filtrate in which the number of particles having a particle diameter of 20 ⁇ m or more per mL is 0 when measured with a particle counter. Also, the usable period of the filter is extended because the number of coarse particles trapped in the filter is minimized.
  • the pleated type filter is formed by fold-folding a microfiltration membrane sheet made of non-woven fabric, filter paper, metal mesh, etc., and then forming into a cylindrical shape and sealing the crease seam of the sheet in a liquid-tight manner, and It is a cylindrical high-precision filtration filter obtained by sealing both ends of a cylinder liquid-tightly.
  • a filter having a rated filtration accuracy of 1.0 to 20 ⁇ m is preferably used, and a filter having a rated filtration accuracy of 5.0 to 10 ⁇ m is more preferable.
  • a filter having a rated filtration accuracy within the above range it is possible to efficiently obtain a filtrate in which the number of particles having a particle diameter of 20 ⁇ m or more per mL is 0 when measured with a particle counter. Also, the usable period of the filter is extended because the number of coarse particles trapped in the filter is minimized.
  • pleat type filters include HDCII, Polyfine II, etc. (all manufactured by Nippon Pole), PP pleated cartridge filter (manufactured by Advantech), Porous Fine (manufactured by Chisso), Sirton Pore, Micropure, etc (All manufactured by Loki Techno Co., Ltd.).
  • the filtration conditions are as follows.
  • a filtrate with 0 particles having a particle diameter of 20 ⁇ m or more per mL is obtained.
  • the differential pressure may be appropriately set within a range not exceeding the maximum differential pressure resistance of the filter to be used, and specifically, 0.2 to 0.4 MPaG. Is preferred.
  • the liquid temperature is preferably 10 to 50 ° C.
  • the filtration step can be performed using, for example, a filtration device 100 as shown in FIG.
  • the filtration device 100 includes a supply tank 1 for storing and supplying an electrode binder composition before removing foreign matter, a metering pump 2 for flowing the electrode binder composition before removing foreign matter at a constant flow rate, a cartridge filter (FIG. A filter 4 having a housing in which the cartridge filter is housed (mounted), a pulsation preventer 3 located in the middle of the metering pump 2 and the filter 4, and between the pulsation preventer 3 and the filter 4.
  • positioned downstream of the filter 4 are provided.
  • the filtration device 100 includes a return conduit 6 that returns the binder from the filter 4 to the supply tank 1, and a discharge conduit 5 that discharges the electrode binder composition filtered by the filter 4.
  • the reaction solution obtained in the polymerization step is supplied from the supply tank 1 to the pulsation preventer 3 that has been pressurized by the metering pump 2.
  • the pulsation is reduced by the pulsation preventer 3.
  • the reaction liquid discharged from the pulsation preventer 3 is supplied to the filter 4 and removed through the discharge conduit 5 after removing foreign substances.
  • This recovered liquid is an electrode binder composition.
  • “foreign matter” means particles having a particle diameter of 20 ⁇ m or more.
  • the recovered liquid is returned to the supply tank 1 through the return conduit 6 without being used as the electrode binder composition, and again in the filter 4. It can also be filtered.
  • the pulsation preventer 3 may not be disposed.
  • the viscosity of the reaction solution when the viscosity of the reaction solution is high, the viscosity of the reaction solution can be lowered by heating the supply tank, the conduit, or both of them. That is, you may further provide the heating means which can heat a supply tank, a conduit
  • the filtration apparatus 100 is provided with the 1st pressure gauge 7a and the 2nd pressure gauge 7b, you may use the filtration apparatus which is not provided with a pressure gauge. However, by providing the first pressure gauge 7a and the second pressure gauge 7b, the differential pressure generated in the filter can be managed so that the filter functions normally. Moreover, it may replace with the supply tank 1 and may supply the binder composition for electrodes before a foreign material removal directly from the container for conveyance.
  • the filtration apparatus 100 is an example using the single filter 4, a several filter can also be used. When using a some filter, a some filter may be connected in series and you may arrange
  • Electrode Binder Composition Storage Method particles prepared with the above-described method and having a particle diameter of 20 ⁇ m or more per mL are prepared. It can use suitably for the binder composition for electrodes whose number is 0 pieces.
  • the method of the present application is effective when the polymer particles contained in the electrode binder composition contain a fluoropolymer that tends to aggregate.
  • the storage method it is essential to store such a binder composition for electrodes at a temperature of 2 to 30 ° C., preferably 10 to 25 ° C.
  • a temperature of 2 to 30 ° C. preferably 10 to 25 ° C.
  • the polymer particles tend to aggregate at the gas-liquid interface on the wall surface of the container during long-term storage, and foreign matter tends to be generated, and cannot be stably stored. If the amount is less than the above range, the polymer particles tend to aggregate in the liquid and a gel or foreign matter tends to be generated, and cannot be stored stably.
  • the ratio of the volume of the void portion excluding the volume occupied by the electrode binder composition to the internal volume of the container in the container that is filled and stored with the electrode binder composition ( %) (Hereinafter also referred to as “porosity”) is essential from 1 to 20%, preferably from 3 to 15%, more preferably from 5 to 10%.
  • porosity exceeds the above range, the volatilization of moisture increases when the storage temperature changes, and as a result, polymer particles agglomerate at the gas-liquid interface and foreign matter is generated. I can't.
  • the porosity is less than the above range, when the electrode binder composition undergoes a volume change due to a change in temperature, the container may be deformed or the container may be ruptured, so that it cannot be stably stored.
  • the oxygen concentration in the void atmosphere is preferably 1% or less.
  • the binder component is not oxidized or deteriorated during long-term storage, and aggregation of the polymer particles can be suppressed, and generation of foreign matters is effective. Can be suppressed.
  • the elution concentration of metal ions from the container for storing the electrode binder composition is 50 ppm or less.
  • the metal ions are eluted in the composition, the zeta potential balance on the surface of the polymer particles dispersed in the composition is lost, and thus aggregation easily occurs.
  • the particles aggregated in this way are not preferable because they have a high possibility of forming a fatal conductive bus when forming the active material layer.
  • such a container with little metal elution is preferably made of a glass or resin material.
  • a clean container produced by the method of JP-A-59-035043 can be preferably used.
  • the quality of the binder composition for electrodes hardly changes during storage even when the storage period is 6 months, preferably 12 months, and more preferably 18 months. Moreover, a gel-like thing is not produced. For this reason, the same active material layer can be formed on the same conditions as forming an active material layer using the binder composition for electrodes immediately after manufacture. Moreover, the effect which can improve the productivity of the binder composition for electrodes becomes so large that a storage period becomes long in June, December, and 18 months.
  • Electrode Slurry contains an active material and the above-described electrode binder composition. According to the electrode slurry according to the present embodiment, since the electrode binder composition is contained, an electrode having good binding properties and excellent charge / discharge characteristics can be produced. . In addition, it is possible to produce an electrode having a very low occurrence rate of defects in which the separator is damaged by the particles contained in the binder (that is, the separator is penetrated by the particles) and is extremely small.
  • the active material is not particularly limited.
  • carbon can be used as the negative electrode active material.
  • Specific examples of carbon include carbon materials obtained by firing organic polymer compounds such as phenol resin, polyacrylonitrile, and cellulose; carbon materials obtained by firing coke and pitch; artificial graphite; natural graphite and the like Can be mentioned.
  • Examples of the positive electrode active material include lithium iron phosphate, lithium cobaltate, lithium manganate, lithium nickelate, ternary nickel cobalt lithium manganate, lithium nickel cobalt aluminum composite oxide, and the like.
  • activated carbon, activated carbon fiber, silica, alumina, etc. can be used.
  • carbon materials such as graphite, non-graphitizable carbon, hard carbon, coke, polyacene organic semiconductor (PAS), and the like can be used.
  • the slurry for electrodes according to the present embodiment includes a thickener, a dispersant such as sodium hexametaphosphate, sodium tripolyphosphate, and sodium polyacrylate, and a nonionic or anionic surfactant as a latex stabilizer. Additives such as antifoaming agents can be added.
  • the electrode slurry according to the present embodiment contains 0.1 to 10 parts by mass of the electrode binder composition described above in terms of solid content with respect to 100 parts by mass of the active material.
  • the content is preferably 0.5 to 5 parts by mass.
  • the electrode binder composition is difficult to dissolve in the electrolytic solution, and adverse effects on battery characteristics due to an increase in overvoltage can be suppressed.
  • the preparation of the electrode slurry in order to mix the electrode binder composition, the active material, and the additive used as necessary, a stirrer, a defoamer, a bead mill, a high-pressure homogenizer, etc. Can be used.
  • the preparation of the electrode slurry is preferably performed under reduced pressure. Thereby, it can prevent that a bubble arises in the active material layer obtained.
  • Electrode The electrode according to the present embodiment includes a current collector and an active material layer formed by applying and drying the above-described electrode slurry on the surface of the current collector.
  • the active material layer may be formed on one surface of the current collector, or the active material layer may be formed on both surfaces of the current collector.
  • the electrode according to the present embodiment since the active material layer obtained by applying and drying the electrode slurry to the surface of the current collector is provided, the binding property is improved and the charge / discharge characteristics are improved. Even better.
  • the separator is damaged by the particles contained in the binder (that is, the separator is penetrated by the particles), so that the occurrence rate of defects is extremely small and the electrode is highly safe.
  • the current collector include metal foil, etching metal foil, and expanded metal.
  • Specific examples of the material constituting the current collector include metal materials such as aluminum, copper, nickel, tantalum, stainless steel, and titanium, and can be appropriately selected and used according to the type of the target power storage device.
  • the thickness of the current collector is preferably 5 to 30 ⁇ m, and more preferably 8 to 25 ⁇ m, when constituting an electrode for a lithium ion secondary battery. In the case of constituting an electrode for an electric double layer capacitor, the thickness of the current collector is preferably 5 to 100 ⁇ m, more preferably 10 to 70 ⁇ m, and particularly preferably 15 to 30 ⁇ m. .
  • the treatment temperature is preferably 20 to 250 ° C., more preferably 50 to 150 ° C.
  • the treatment time is preferably 1 to 120 minutes, more preferably 5 to 60 minutes.
  • the pressing means include a high pressure super press, a soft calender, a 1-ton press machine, and the like.
  • the conditions for press working are appropriately set according to the processing machine to be used.
  • the active material layer thus formed has a thickness of 40 to 100 ⁇ m and a density of 1.3 to 2.0 g / cm 3 .
  • the electrode thus obtained can be suitably used as an electrode for an electricity storage device such as a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor.
  • a power storage device such as a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor can be manufactured using the electrode according to this embodiment.
  • a lithium ion secondary battery when configured, an electrolytic solution in which an electrolyte made of a lithium compound is dissolved in a solvent is used.
  • electrolyte LiClO 4, LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, LiCH 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 2 N and the like.
  • an electrolyte such as tetraethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, tetraethylammonium hexafluorophosphate is dissolved in the above solvent.
  • the electrolyte solution used is used.
  • the same electrolytic solution as in the case of configuring the above lithium ion secondary battery can be used.
  • Example 1 5.1.1. Preparation of electrode binder composition
  • a temperature-controllable autoclave equipped with a stirrer 200 parts of water, 0.6 part of sodium dodecylbenzenesulfonate, 1.0 part of potassium persulfate, 0.5 part of sodium bisulfite, ⁇ -0.2 part of methylstyrene dimer, 0.1 part of dodecyl mercaptan and the first stage polymerization component shown in Table 1 were charged all at once, and the temperature was raised to 70 ° C. to carry out the polymerization reaction for 2 hours.
  • the second-stage polymerization component shown in Table 1 was added over 6 hours while maintaining the reaction temperature at 70 ° C.
  • 3 hours passed from the start of addition of the second stage polymerization component 0.5 part of ⁇ -methylstyrene dimer and 0.1 part of dodecyl mercaptan were added.
  • the temperature was raised to 80 ° C. and further reacted for 2 hours.
  • the pH of the latex was adjusted to 7.5, and 5 parts of sodium tripolyphosphate (in terms of solid content) was added. Then, the residual monomer was processed by steam distillation, and the binder composition for electrodes was obtained by concentrating to 50% of solid content under reduced pressure.
  • the number average particle diameter of the polymer particles contained in the obtained binder composition for an electrode was measured with a measuring device based on a dynamic light scattering method as a measurement principle. Met.
  • Electrolytic solution swelling rate (%) (W1 ′ / W0 ′) ⁇ 100 (3)
  • “1C” indicates a current value at which discharge is completed in one hour after constant-current discharge of a cell having a certain electric capacity.
  • “0.1 C” is a current value at which discharge is completed over 10 hours
  • “10 C” is a current value at which discharge is completed over 0.1 hours.
  • Capacitor capacity is the capacity when charged with constant current (10mA / F) constant voltage (2.7V) for 8 minutes and discharged with constant current (10mA / F) system.
  • the index was (F / cm 2 ).
  • Example 2 to 6 and Comparative Examples 1 to 5 An electrode binder composition was obtained in the same manner as in Example 1 except that the composition shown in Table 1 was used.
  • the above-described lithium ion secondary battery negative electrode and electric double layer capacitor electrode were prepared in the same manner as in Example 1 except that the obtained electrode binder composition was used, and various physical property values were measured. The measurement results are also shown in Table 1.
  • Example 7 5.3.1. Preparation of Binder Composition for Electrode
  • the composition shown in Table 2 was added, and after 3 hours from the start of addition of the second-stage polymerization component, 1.0 part of ⁇ -methylstyrene dimer and 0.3 part of dodecyl mercaptan were added. Except for the above, an electrode binder composition was obtained in the same manner as in Example 1.
  • the number average particle size, gel content, electrolyte swelling ratio, and pH were measured in the same manner as in Example 1. The results are also shown in Table 2.
  • Lithium Ion Secondary Battery Negative Electrode A lithium ion secondary battery negative electrode was produced in the same manner as in Example 1 except that the electrode binder composition obtained above was used, and the peel strength was measured. The results are also shown in Table 2.
  • Lithium Ion Secondary Battery (Laminate Type) (1) Production Method Inside the glove box inside the bipolar single-layer laminate cell, cut out to 50 mm ⁇ 25 mm on a film-like exterior aluminum seal made of aluminum A negative electrode was placed. Next, on the negative electrode, a separator (made by Celgard, trade name “Celguard # 2400”, thickness 25 ⁇ m) made of a polypropylene porous film cut out to 54 mm ⁇ 27 mm is placed, and air is prevented from entering. An electrolyte was injected into the cell. Thereafter, the positive electrode cut out to 48 mm ⁇ 23 mm was placed on the separator. And the exterior aluminum seal similar to the said exterior aluminum seal was mounted on this positive electrode.
  • a separator made by Celgard, trade name “Celguard # 2400”, thickness 25 ⁇ m
  • the laminated body which consists of an exterior aluminum seal, a negative electrode, a separator, a positive electrode, and an exterior aluminum seal was obtained. Then, the outer peripheral edge part of the two exterior aluminum seals was joined together and sealed with the heating sealing device. And the secondary battery (electrochemical device) which consists of a bipolar
  • a graph was created with the applied current value (A) as the horizontal axis and the voltage value (V) as the vertical axis, and the slope value of the straight line connecting the plot points was calculated at each charge / discharge time.
  • the gradient values were taken as internal DC resistance values (DC-IR) during charging and discharging, respectively.
  • DC-IR internal DC resistance values
  • “DOD” indicates the ratio of the discharge capacity to the charge capacity. For example, “charge to 50% DOD” indicates that only 50% of the capacity is charged when the total capacity is 100%.
  • Examples 8-22, Comparative Examples 6-8 An electrode binder composition was obtained in the same manner as in Example 7 except that the composition shown in Table 2 or Table 3 was used.
  • the above-described lithium ion secondary battery negative electrode was produced in the same manner as in Example 7 except that the obtained electrode binder composition was used, and various physical properties were measured. The measurement results are also shown in Table 2 or Table 3.
  • Comparative Example 9 In a temperature-controllable autoclave equipped with a stirrer, water 200 parts, sodium dodecylbenzenesulfonate 0.6 part, potassium persulfate 1.0 part, sodium bisulfite 0.5 part, ⁇ -methylstyrene dimer 0.2 Part, 0.6 part of dodecyl mercaptan, and the first-stage polymerization component shown in Table 3 were charged all at once, and the temperature was raised to 70 ° C. to carry out the polymerization reaction for 2 hours. After confirming that the polymerization addition rate was 80% or more, the second-stage polymerization component shown in Table 3 was added over 6 hours while maintaining the reaction temperature at 70 ° C.
  • the above-described lithium ion secondary battery negative electrode was produced in the same manner as in Example 7 except that the above electrode binder composition was used, and various physical properties were measured. The measurement results are also shown in Table 3.
  • Comparative Example 10 In a temperature-controllable autoclave equipped with a stirrer, 200 parts water, 0.6 parts sodium dodecylbenzenesulfonate, 1.0 part potassium persulfate, 0.5 parts sodium bisulfite, 0.2 parts dodecyl mercaptan, and The first-stage polymerization components shown in Table 3 were charged all at once, heated to 70 ° C., and allowed to undergo a polymerization reaction for 2 hours. After confirming that the polymerization addition rate was 80% or more, the second-stage polymerization component shown in Table 3 was added over 6 hours while maintaining the reaction temperature at 70 ° C.
  • the above-described lithium ion secondary battery negative electrode was produced in the same manner as in Example 7 except that the above electrode binder composition was used, and various physical properties were measured. The measurement results are also shown in Table 3.
  • the electrode binder composition according to the present invention has a current collector and an active material in a lithium ion secondary battery as compared with the electrode binder compositions of Comparative Examples 1 to 10.
  • the result was excellent in the binding property with the layer, the charge / discharge rate property and the cycle property, and the properties of the current collector and the electrode layer in the electric double layer capacitor and the various properties of the internal resistance.
  • a filtration device 100 shown in FIG. 1 includes a supply tank 1 for storing and supplying an electrode binder composition before foreign matter removal, a metering pump 2 for flowing the electrode binder composition before foreign matter removal at a constant flow rate, Filter 4 having a cartridge filter (not shown) and a housing housing (mounting) the cartridge filter, pulsation preventer 3 located in the middle of metering pump 2 and filter 4, pulsation preventer 3 and filter 4, and a second pressure gauge 7 b disposed downstream of the filter 4.
  • the filtration device 100 includes a return conduit 6 that returns the binder from the filter 4 to the supply tank 1, and a discharge conduit 5 that discharges the electrode binder filtered by the filter 4.
  • the filter 4 is one in which a depth type cartridge filter “Profile II” (manufactured by Nippon Pall Co., Ltd., rated filtration accuracy 10 ⁇ m, length 1 inch) is mounted in the housing.
  • the metering pump 2 was an air-driven diaphragm pump, and the differential pressure before and after the filter was 0.34 MPaG.
  • the number average particle diameter in the binder composition for electrodes after filtration by the filtration apparatus 100 shown in FIG. 1 was not confirmed as compared with that before filtration.
  • the number average particle diameter is a value measured by a concentrated particle size analyzer “FPAR1000” (manufactured by Otsuka Electronics Co., Ltd.) with an autosampler.
  • the electrode binder composition after the foreign substance removal has no change in various properties as a binder (that is, as an electrode binder composition). It maintains a function equivalent to that of a conventional binder).
  • the number of coarse particles to be measured is “4000 particles / mL (0.56 ⁇ m)” (that is, “4000 particles having a particle diameter larger than 0.56 ⁇ m in 1 mL or less”).
  • the blank measurement was repeated with ultrapure water.
  • 100 mL of a binder (sample) diluted 100 times with ultrapure water was prepared, and this sample was set in the particle size distribution analyzer. After the setting, the sample is automatically diluted to the optimum concentration by the particle size distribution analyzer.
  • the particle size distribution measuring device measures the number of particles per mL of the sample twice, and calculates an average value. This average value was multiplied by 100 to obtain the number of particles per 1 mL of binder.
  • the electrode binder composition after filtration by the filtration device 100 is the number of particles having a particle diameter of 20 ⁇ m or more per mL when measured with a particle counter, and particles having a particle diameter of 15 ⁇ m or more and less than 20 ⁇ m. And the number of particles having a particle diameter of more than 10 ⁇ m and less than 15 ⁇ m were all zero. By passing through the filtration step, the number of particles was greatly reduced. As a result, it was found that the yield rate of secondary batteries was 99.9%, and the productivity was greatly improved.
  • Experimental example 2 The electrode binder composition obtained in Example 1 was filtered using a filtration device.
  • the filtration apparatus used in this experimental example is replaced with a depth type cartridge filter “Profile II” (manufactured by Nihon Pall Co., Ltd., rated filtration accuracy 10 ⁇ m, length 1 inch) of the filtration apparatus 100 shown in FIG.
  • a type cartridge filter “Profile II” manufactured by Nippon Pole Co., Ltd., rated filtration accuracy 20 ⁇ m, length 1 inch
  • the differential pressure before and after the filter was 0.25 MPaG.
  • the number average particle diameter in the binder composition for electrodes after filtration was not confirmed as compared with that before filtration.
  • Various evaluations were performed on each of the electrode binder composition before filtration and the electrode binder composition obtained through the filtration step. The evaluation results are shown in Table 5.
  • the electrode binder composition after filtration by the filtration device 100 is the number of particles having a particle diameter of 20 ⁇ m or more per mL when measured with a particle counter, and particles having a particle diameter of 15 ⁇ m or more and less than 20 ⁇ m. And the number of particles having a particle diameter of more than 10 ⁇ m and less than 15 ⁇ m were significantly reduced. As a result, it was found that the yield rate of secondary batteries was 99.9%, and the productivity was greatly improved.
  • Experimental example 3 The electrode binder composition obtained in Example 1 was filtered using the filtration apparatus 100 shown in FIG.
  • the differential pressure before and after filtration was 0.38 MPaG, and the filtrate after 5 minutes from the start of filtration by the filtration device 100 was sampled.
  • Various evaluations were performed on each of the electrode binder composition before filtration and the electrode binder composition obtained through the filtration step. The evaluation results are shown in Table 6.
  • the number average particle diameter in the binder composition for electrodes after filtration was not confirmed as compared with that before filtration.
  • Experimental Example 4 The filtrate (binder composition for electrode after filtration by a filtration device) was sampled in the same manner as in Experimental Example 3 except that the filtrate after 10 minutes from the start of filtration was sampled. Said various evaluation was performed about the obtained filtrate. The evaluation results are shown in Table 6. In addition, the number average particle diameter in the binder for electrodes after filtration was not confirmed as compared with that before filtration.
  • Experimental Example 5 The filtrate (binder composition for an electrode after filtration by a filtration device) was sampled in the same manner as in Experimental Example 3 except that the filtrate after 15 minutes from the start of filtration was sampled. Said various evaluation was performed about the obtained filtrate. The evaluation results are shown in Table 6. In addition, the number average particle diameter in the binder for electrodes after filtration was not confirmed as compared with that before filtration.
  • the occurrence rate of defects that cause the separator to break is higher than that of the electrode binder composition before filtration. It was confirmed that it can be used as a material for constituting an electrode of an electrochemical device that is extremely small and highly safe.
  • cleaning bottle used was a 20 liter square can type clean bottle commercially available from Aicello Chemical Co., Ltd.
  • the presence or absence of foreign matter was visually indicated as “poor” when there was an aggregate, and “good” when there was no aggregate.
  • the container mode a case where the container appearance did not change visually was judged as good, and a case where the container appearance changed was indicated as x. The presence or absence of hard shorts and the yield rate were evaluated by the method described above.
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • the electrode binder composition according to the present invention is suitable as a material for an electrode constituting an electrochemical device used as a power source for driving electronic equipment, for example.
  • the slurry for an electrochemical device electrode according to the present invention is suitable as a material for an electrode constituting an electrochemical device used as a power source for driving an electronic device, for example.
  • the electrochemical device electrode according to the present invention is suitable as an electrode constituting an electrochemical device used as a power source for driving electronic equipment, for example.
  • the manufacturing method of the binder for electrodes which concerns on this invention is a method of manufacturing the binder for electrodes of the material of the electrode which comprises the electrochemical device used, for example as a drive power supply of an electronic device.

Abstract

本発明に係る電極用バインダー組成物は、(A)α,β-不飽和ニトリル化合物に由来する構成単位5~40質量部と、(B)不飽和カルボン酸に由来する構成単位0.3~10質量部と、を含有し、かつ数平均粒子径が50~400nmである重合体粒子を含み、ゲル含有率が90~99%であり、電解液膨潤率が110~400%であることを特徴とする。

Description

電極用バインダー組成物、電極用スラリー、電極、電気化学デバイス、ならびに電極用バインダー組成物の製造方法および保管方法
 本発明は、電極用バインダー組成物、該バインダー組成物と活物質とを含む電極用スラリー、該スラリーを集電体に塗布した電極、該電極を備えた電気化学デバイス、ならびに該バインダー組成物の製造方法および保管方法に関する。
 近年、電子機器の駆動用電源として高電圧、高エネルギー密度を有する蓄電デバイスが要求されている。特にリチウムイオン二次電池やリチウムイオンキャパシタは、高電圧、高エネルギー密度を有する蓄電デバイスとして期待されている。
 このような蓄電デバイスに使用される電極は、活物質と電極用バインダーの混合物を集電体へ塗布・乾燥することで作製される。このような電極用バインダーに要求される特性としては、活物質同士の結合能力および活物質と集電体との接着能力(以下、まとめて単に「結着性」ともいう)を高めることや、電極を巻き取る工程での耐擦性、その後の裁断等で塗布された電極用組成物層(以下、単に「活物質層」ともいう)から活物質の微粉等が発生しない耐粉落ち適性等がある。これらの要求特性を電極用バインダーが満足することで、電極の折り畳み方法や捲回半径等の設計の自由度が高くなり、蓄電デバイスの小型化を達成することができる。さらには、電極用バインダーに起因する電池の内部抵抗を低減させることが挙げられる。これにより、良好な充放電特性を実現することができる。
 たとえば、特開2000-299109号公報では、電極用バインダーの組成を制御することで上記特性を向上させる技術が検討されている。また、特開2010-205722号公報や特開2010-3703号公報では、エポキシ基やヒドロキシル基を有するバインダーを用いて上記特性を向上させる技術が検討されている。さらに、特開2010-245035号公報では、残留不純物の含有量を制御する技術が検討されている。
 しかしながら、このような従来のバインダー組成物では、バインダー自身が電極の抵抗成分となるため、良好な充放電特性と良好な結着性とを両立させることは困難であった。また、良好な充放電特性と良好な結着性とを長期に亘り維持することはさらに困難であった。
 さらに、電極用バインダー組成物は、有機粒子が分散媒に分散した状態であるため、製造後の処理や保管環境の変化により凝集体が発生する場合がある。このようにして発生した凝集体は、電極を作製する際にショートの原因となる場合がある。さらに、このような凝集体が発生したバインダー組成物を用いて作製された電気化学デバイスは、電極に不具合が生じることに起因して発火などの問題が生じるおそれがある。そのため、前記不具合の発生が極力少ない電極を製造することができる異物を低減させた新たなバインダーの開発が切望されていた。また、異物の発生しない電極バインダー組成物の保管方法についても要求があった。
 そこで、本発明に係る幾つかの態様は、上記課題を解決することで、良好な結着性を有し、充放電特性に優れる電極を作製可能な電極用バインダー組成物を提供するものである。さらに、良好な結着性と良好な充放電特性とを長期に亘って維持できる電極を作製可能な電極用バインダー組成物を提供するものである。
 さらに、本発明の別の態様は、上述のような従来技術の課題を解決するためになされたものであり、セパレータが破損するような不良の発生率が極めて小さく、発火などの問題が極めて生じ難く、安全性が高い電気化学デバイスの電極の材料として用いることのできる電極用バインダー組成物を提供するものである。さらに、本発明の別の態様は、電極の歩留まりを向上させる観点から、このような電極用バインダー組成物を保管するに当たり、異物が発生しない保管方法を提供するものである。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 本発明に係る電極用バインダー組成物の一態様は、
 (A)α,β-不飽和ニトリル化合物に由来する構成単位5~40質量部と、
 (B)不飽和カルボン酸に由来する構成単位0.3~10質量部と、
を含有し、かつ数平均粒子径が50~400nmである重合体粒子を含み、
 ゲル含有率が90~99%であり、
 電解液膨潤率が110~400%であることを特徴とする。
 [適用例2]
 適用例1の電極用バインダー組成物において、
 前記重合体粒子が下記一般式(1)で示される化合物に由来する構成単位をさらに含有することができる。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素原子または一価の炭化水素基、Rは二価の炭化水素基である。)
 [適用例3]
 適用例2の電極用バインダー組成物において、
 前記一般式(1)で示される化合物がヒドロキシエチルメタクリレートであることができる。
 [適用例4]
 適用例1ないし適用例3のいずれか一例の電極用バインダー組成物において、
 前記重合体粒子が(C)共役ジエン化合物に由来する構成単位をさらに含有することができる。
 [適用例5]
 適用例1ないし適用例4のいずれか一例の電極用バインダー組成物において、
 pHが6以上8以下であることができる。
 [適用例6]
 適用例1ないし適用例5のいずれか一例の電極用バインダー組成物において、
 パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であることができる。
 [適用例7]
 本発明に係る電極用バインダー組成物の製造方法の一態様は、
 ろ過処理によって、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数を0個とする工程を含むことを特徴とする。
 [適用例8]
 本発明に係る電極用スラリーの一態様は、
 活物質と、適用例1ないし適用例6のいずれか一例の電極用バインダー組成物と、を含有することを特徴とする。
 [適用例9]
 本発明に係る電極の一態様は、
 集電体と、前記集電体の表面上に適用例8の電極用スラリーが塗布および乾燥されて形成された活物質層と、を備えることを特徴とする。
 [適用例10]
 本発明に係る電気化学デバイスの一態様は、
 適用例9の電極を備えることを特徴とする。
 [適用例11]
 本発明に係る電極用バインダー組成物の保管方法の一態様は、
 適用例1ないし適用例6のいずれか一例の電極バインダー組成物を2℃以上30℃以下の温度に制御された容器に充填して、前記容器の内容積に対して前記電極用バインダー組成物の占める容積を除いた空隙部の容積の比率を1~20%とすることを特徴とする。
 [適用例12]
 適用例11の電極用バインダー組成物の保管方法において、
 前記空隙部雰囲気の酸素濃度が1%以下であることができる。
 [適用例13]
 適用例11または適用例12の電極用バインダー組成物の保管方法において、
 前記容器からの金属イオンの溶出濃度が50ppm以下であることができる。
 本発明に係る電極用バインダー組成物によれば、結着性に優れると共に、充放電特性に優れた電極を作製することができる。また、本発明に係る電極用バインダー組成物によれば、良好な結着性と良好な充放電特性とを長期に亘って維持できる電極を作製することができる。
 本発明に係る電極用バインダー組成物の保管方法によれば、異物の発生を抑制することができ、その結果電極歩留まりの向上を図ることができる。
図1は、本発明に係る電極用バインダー組成物の製造方法の一実施形態において使用されるろ過装置を模式的に示す説明図である。
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。
 1.電極用バインダー組成物
 本実施の形態に係る電極用バインダー組成物は、(A)α,β-不飽和ニトリル化合物に由来する構成単位5~40質量部と、(B)不飽和カルボン酸に由来する構成単位0.3~10質量部と、を含有し、かつ数平均粒子径が50~400nmである重合体粒子を含み、該重合体粒子を凝固して得られたポリマーのトルエンに対する不溶解分(ゲル含有率)が90~99%であり、該重合体粒子を乾燥して得られた連続フィルムを標準電解液に浸漬した際の膨潤率(電解液膨潤率)が110~400%であることを特徴とする。
 本実施の形態に係る電極用バインダー組成物は、活物質のバインダーとして使用されるものであり、具体的には正極活物質の粒子同士および正極活物質と集電体金属箔とのバインダー、もしくは負極活物質の粒子同士および負極活物質と集電体金属箔とのバインダーとして作用するものである。その際、前記重合体粒子は、正極活物質もしくは負極活物質100質量部に対して固形分で0.1~10質量部、好ましくは0.5~5質量部の割合で含有することにより電極用スラリーとして調製することができる。前記重合体粒子の含有量が0.1質量部未満では結着性が低下することがあり、10質量部を超えると電池として組み立てた際の電池諸特性に悪影響を及ぼす傾向がある。以下、本実施の形態に係る電極用バインダー組成物に含まれる各成分について詳細に説明する。
 1.1.重合体粒子
 本実施の形態に係る電極用バインダーに含まれる重合体粒子は、(A)α,β-不飽和ニトリル化合物に由来する構成単位(以下、「(A)構成単位」ともいう)と、(B)不飽和カルボン酸に由来する構成単位(以下、「(B)構成単位」ともいう)と、を含有する。なお、本発明において「構成単位」とは、単量体が重合することにより重合体となり該単量体が繰り返し単位を構成するが、この繰り返し単位のことをいう。
 1.1.1.(A)α,β-不飽和ニトリル化合物に由来する構成単位
 (A)構成単位を含有することにより、重合体粒子は電解液によって適度に膨潤することができる。すなわち、重合体鎖からなる網目構造に溶媒が侵入し、網目間隔が広がるため、溶媒和したリチウムイオンがこの網目構造をすり抜けて移動し易くなる。その結果、リチウムイオンの拡散性が向上すると考えられる。これにより、電極抵抗を低減させることができるので、電極の良好な充放電特性が実現される。
 (A)構成単位を構成するために用いられるα,β-不飽和ニトリル化合物の具体例としては、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-エチルアクリロニトリル、シアン化ビニリデン等が挙げられる。これらの中でも、アクリロニトリル、メタクリロニトリルが好ましく、アクリロニトリルが特に好ましい。なお、これら(A)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
 (A)構成単位の含有割合は、全構成単位を100質量部とした場合に5~40質量部であり、7~35質量部であることが好ましく、10~30質量部であることがより好ましい。(A)構成単位の含有割合が前記範囲にあると、使用する電解液との親和性に優れ、かつ膨潤率が大きくなりすぎず、電池特性の向上に寄与することができる。
 1.1.2.(B)不飽和カルボン酸に由来する構成単位
 重合体粒子が(B)構成単位を含有することにより、本願発明の電極用バインダー組成物と活物質を混合した際に、活物質を凝集させることなく、活物質が良好に分散した混合物(スラリー)を作製することができる。これにより、混合物を塗布して作製された電極が均一に近い分布となる。その結果、結着欠陥が少ない電極を作製することができる。すなわち、結着性が向上すると考えられる。
 (B)構成単位を構成するために用いられる不飽和カルボン酸の具体例としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等のモノまたはジカルボン酸(無水物)等が挙げられる。これらの中でも、アクリル酸、メタクリル酸、イタコン酸が特に好ましい。なお、これら(B)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
 (B)構成単位の含有割合は、全構成単位を100質量部とした場合に0.3~10質量部であり、0.3~6質量部であることが好ましい。(B)構成単位の含有割合が前記範囲にあると、電極用スラリーの調製時、重合体粒子の分散安定性に優れ、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
 1.1.3.(C)共役ジエン化合物に由来する構成単位
 本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子は、(C)共役ジエン化合物に由来する構成単位(以下、「(C)構成単位」ともいう)をさらに含有するものであることが好ましい。
 (C)構成単位を含有することにより、重合体粒子が強い結着力を有することができる。すなわち、共役ジエン化合物に由来するゴム弾性が重合体粒子に付与されるため、電極の体積収縮や拡大等の変化に追従することが可能となる。これにより、結着性を向上させて、さらには長期に充放電特性を維持する耐久性を有するものと考えられる。
 (C)構成単位を構成するために用いられる共役ジエン化合物の具体例としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類等が挙げられる。これらの中でも、1,3-ブタジエンが特に好ましい。なお、これら(C)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
 (C)構成単位の含有割合は、全構成単位を100質量部とした場合に60質量部以下であることが好ましく、25~55質量部であることがより好ましく、35~50質量部であることが特に好ましい。(C)構成単位の含有割合が前記範囲にあると、結着性のさらなる向上が可能となる。
 1.1.4.(D)芳香族ビニル化合物に由来する構成単位
 本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子は、(D)芳香族ビニル化合物に由来する構成単位(以下、「(D)構成単位」ともいう)をさらに含有するものであることが好ましい。
 (D)構成単位を構成するために用いられる芳香族ビニル化合物の具体例としては、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロロスチレン、ジビニルベンゼン等が挙げられる。これらの中でも、スチレンが特に好ましい。なお、これら(D)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
 (D)構成単位の含有割合は、全構成単位を100質量部とした場合に60質量部以下であることが好ましく、10~55質量部であることがより好ましく、20~50質量部であることが特に好ましい。(D)構成単位の含有割合が前記範囲にあると、重合体粒子が活物質として用いられるグラファイトに対して適度な結着性を有する。また、得られる電極層は、柔軟性や集電体に対する結着性が良好なものとなる。
 1.1.5.(E)(メタ)アクリレート化合物に由来する構成単位
 本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子は、(E)(メタ)アクリレート化合物に由来する構成単位(以下、「(E)構成単位」ともいう)をさらに含有するものであることが好ましい。なお、本明細書において「~(メタ)アクリレート」というときは、「~アクリレート」と「~メタクリレート」のいずれをも意味する。
 (A)構成単位を含有し、かつ(E)構成単位を含有しない重合体粒子を含む電極用バインダー組成物を用いた場合、該重合体粒子の電解液に対する膨潤度が大きくなり電極抵抗が低下する反面、活物質同士および活物質層と集電体との界面の結着性が低下して、電極構造を十分に保持できず充放電特性が劣化する場合がある。しかしながら、(A)構成単位と(E)構成単位とを含有する重合体粒子を含む電極用バインダー組成物を用いることで、それらの相乗効果により該重合体粒子の電解液に対する膨潤度が大きくなり電極抵抗が低下すると共に、活物質を十分に保持することが可能となる。
 (E)構成単位を構成するために用いられる(メタ)アクリレート化合物としては、下記一般式(1)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)中、Rは水素原子または一価の炭化水素基であるが、一価の炭化水素基であることが好ましく、炭素数が1~6の置換もしくは非置換のアルキル基であることがより好ましく、メチル基であることが特に好ましい。また、Rは二価の炭化水素基であるが、炭素数が1~6の置換もしくは非置換のアルキレン基であることが好ましい。(E)構成単位を構成するために用いられる上記一般式(1)で示される化合物の具体例としては、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート、5-ヒドロキシペンチルメタクリレート、6-ヒドロキシヘキシルメタクリレート等が挙げられる。これらの中でも、2-ヒドロキシエチルメタクリレートが好ましい。なお、これら(E)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
 また、本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子は、上記一般式(1)で示される化合物以外の(E)(メタ)アクリレート化合物に由来する構成単位を含有してもよい。このような(メタ)アクリレート化合物の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、i-アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート等が挙げられる。これらの中でも、メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレートが好ましく、メチル(メタ)アクリレートがより好ましい。なお、これら(E)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
 (E)構成単位の含有割合は、全構成単位を100質量部とした場合に40質量部以下であることが好ましく、5~35質量部であることがより好ましく、10~30質量部であることが特に好ましい。特に(E)構成単位が上記一般式(1)で示される化合物である場合には、20質量部以下であることが好ましく、1~10質量部であることがより好ましく、2~5質量部であることが特に好ましい。(E)構成単位の含有割合が前記範囲にあると、得られる重合体粒子は電解液との親和性が適度なものとなり、電池中で電極用バインダー組成物が電気抵抗成分となることによる内部抵抗の上昇を抑制すると共に、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
 1.1.6.その他の共重合単量体に由来する構成単位
 本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子は、上記構成単位以外に、これらと共重合可能な単量体化合物(以下、単に「その他の共重合単量体」ともいう)に由来する構成単位を含有することができる。
 その他の共重合単量体の具体例としては、(メタ)アクリルアミド、N-メチロールアクリルアミド等のエチレン性不飽和カルボン酸のアルキルアミド;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル;エチレン性不飽和ジカルボン酸の酸無水物;モノアルキルエステル;モノアミド類;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミド等のエチレン性不飽和カルボン酸のアミノアルキルアミド等が挙げられる。なお、これら共重合単量体は、一種単独でまたは二種以上を組み合わせて用いることができ、また架橋性の共重合単量体を併用することもできる。
 1.1.7.重合体粒子の数平均粒子径
 重合体粒子の数平均粒子径は、50~400nmの範囲にあり、70~350nmの範囲にあることが好ましい。重合体粒子の数平均粒子径が前記範囲にあると、電極を形成する際の乾燥工程において、結着性が向上する傾向がある。また、得られる電極は、活物質・重合体粒子・集電体の各相互間に十分な数の有効接着点が形成される傾向があるため好ましい。なお、重合体粒子の数平均粒子径は、動的光散乱法を測定原理とする粒度分布測定装置を使用することにより求めることができる。
 このような粒度分布測定装置としては、たとえば、コールターLS230、LS100、LS13 320(以上、Beckman Coulter.Inc製)や、ALV5000(ALV社製)、FPAR-1000(大塚電子(株)製)などを挙げることができる。これらの粒度分布測定装置は、重合体粒子の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とすることができる。従って、これらの粒度分布測定装置によって測定された粒度分布は、電極用スラリー中に含まれる重合体粒子の分散状態の指標とすることができる。なお、重合体粒子の数平均粒子径は、電極用スラリーを遠心分離して活物質粒子を沈降させた後、その上澄み液を上記の粒度分布測定装置によって測定する方法によっても測定することができる。
 1.1.8.重合体粒子のガラス転移温度(Tg)
 重合体粒子のガラス転移温度(Tg)は、JIS K7121に準拠する示差走査熱量測定(DSC)によって測定した場合、-50~25℃であることが好ましく、-30~5℃であることがより好ましい。ガラス転移温度が前記範囲にある場合、重合体粒子は活物質層に対してより良好な柔軟性と粘着性とを付与することができ、従って結着性をより向上させることができることとなるため好ましい。
 1.2.重合体粒子の作製方法
 本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子の合成方法については特に限定されないが、二段階の乳化重合工程により容易に作製することができる。
 1.2.1.1段目の重合工程
 1段目の乳化重合工程に用いられる(I)単量体成分には、例えば、α,β-不飽和ニトリル化合物、共役ジエン化合物、芳香族ビニル化合物、(メタ)アクリレート化合物、およびその他の共重合単量体等の非カルボン酸系単量体と、不飽和カルボン酸等のカルボン酸系単量体と、が含有される。(I)単量体成分に含まれる非カルボン酸系単量体の含有割合は、非カルボン酸系単量体とカルボン酸系単量体の合計100質量%中、80~92質量%であることが好ましく、82~92質量%であることがより好ましい。非カルボン酸系単量体の含有割合が80~92質量%であると、電極用スラリー調製時、重合体粒子の分散安定性に優れ、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
 (I)単量体成分において、前記非カルボン酸系単量体中の(メタ)アクリレート化合物の含有割合は14~30質量%であることが好ましい。(メタ)アクリレート化合物の含有割合が前記範囲にあると、電極用スラリー調製時、重合体粒子の分散安定性に優れ、凝集物が生じにくい。また、得られる重合体粒子は電解液との親和性が適度なものとなり、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
 (I)単量体成分において、非カルボン酸系単量体中の共役ジエン化合物の含有割合は10~60質量%であることが好ましく、芳香族ビニル化合物の割合は20~50質量%であることが好ましい。また、カルボン酸系単量体中のイタコン酸の割合は、50~85質量%であることが好ましい。
 1.2.2.2段目の重合工程
 2段目の乳化重合工程に用いられる(II)単量体成分には、例えば、α,β-不飽和ニトリル化合物、共役ジエン化合物、芳香族ビニル化合物、(メタ)アクリレート化合物、およびその他の共重合単量体等の非カルボン酸系単量体と、不飽和カルボン酸等のカルボン酸系単量体と、が含有される。(II)単量体成分に含まれる非カルボン酸系単量体の含有割合は、非カルボン酸系単量体とカルボン酸系単量体の合計100質量%中、94~99質量%であることが好ましく、96~98質量%であることがより好ましい。非カルボン酸系単量体の含有割合が前記範囲にあると、電極用スラリー調製時、重合体粒子の分散安定性に優れ、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
 (II)単量体において、非カルボン酸系単量体中の(メタ)アクリレート化合物の含有割合は11.5質量%以下であることが好ましい。(メタ)アクリレート化合物の含有割合が11.5質量%以下であると、得られる重合体粒子は電解液との親和性が適度なものとなり、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
 また、重合体粒子構成単量体において、(I)単量体成分と(II)単量体成分との質量比((I)/(II)比)は、0.05~0.5であることが好ましく、0.1~0.4であることがより好ましい。(I)/(II)比が前記範囲にあると、電極用スラリー調製時、重合体粒子の分散安定性に優れ、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
 1.2.3.乳化重合
 乳化重合工程は、水性媒体中において、乳化剤、重合開始剤、および分子量調節剤の存在下に行われる。以下、乳化重合工程で用いられる各材料について説明する。
 1.2.3.1.乳化剤
 乳化剤の具体例としては、高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、デヒドロアビエチン酸塩、ナフタレンスルホン酸のホルマリン縮合物、非イオン性界面活性剤の硫酸エステル塩等のアニオン性界面活性剤;ポリエチレングリコールのアルキルエステル型、アルキルフェニルエーテル型、アルキルエーテル型等のノニオン性界面活性剤;パーフルオロブチルスルホン酸塩、パーフルオロアルキル基含有リン酸エステル、パーフルオロアルキル基含有カルボン酸塩、パーフルオロアルキルエチレンオキシド付加物等のフッ素系界面活性剤が挙げられる。なお、乳化重合工程では、これらの乳化剤を一種単独でまたは二種以上組み合わせて使用することができる。
 1.2.3.2.重合開始剤
 重合開始剤の具体例としては、過硫酸リチウム、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の水溶性重合開始剤;クメンハイドロパーオキサイド、過酸化ベンゾイル、t-ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド等の油溶性重合開始剤が挙げられる。これらの中でも、過硫酸カリウム、過硫酸ナトリウム、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイドが好ましい。なお、乳化重合工程では、これらの重合開始剤を一種単独でまたは二種以上組み合わせて使用することができる。重合開始剤の使用量は特に制限されず、単量体組成、重合反応系のpH、他の添加剤等の組み合わせを考慮して適宜調整される。
 1.2.3.3.分子量調節剤
 分子量調節剤の具体例としては、n-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタン等のアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物;ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のフェノール系化合物;アリルアルコール等のアリル化合物;ジクロロメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物;α-ベンジルオキシスチレン、α-ベンジルオキシアクリロニトリル、α-ベンジルオキシアクリルアミド等のビニルエーテル;トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート、α-メチルスチレンダイマー等が挙げられる。なお、乳化重合工程では、これらの分子量調節剤を一種単独でまたは二種以上組み合わせて使用することができる。
 1.2.4.乳化重合の条件
 1段目の乳化重合工程は、重合温度が40~80℃、重合時間が2~4時間の条件で行うことが好ましい。1段目の乳化重合工程においては、重合転化率が50%以上であることが好ましく、60%以上であることがより好ましい。また、2段目の乳化重合工程は、重合温度が40~80℃、重合時間が2~6時間の条件で行うことが好ましい。
 乳化重合終了後は中和剤を添加することにより分散液のpHが5~10程度となるように中和処理することが好ましい。使用する中和剤としては、特に限定されるものではないが、通常水酸化ナトリウム、水酸化カリウム等の金属水酸化物やアンモニアが挙げられる。分散液のpHを5~10の範囲に設定することで分散液の配合安定性が良好となるが、好ましくは6~9、より好ましくは6~8、さらに好ましくは7~8.5である。乳化重合工程における全固形分濃度は50質量%以下とすると分散安定性良く反応を進行させることができるが、好ましくは45質量%以下、より好ましくは40質量%以下である。また、中和処理を行った後に濃縮することにより粒子の安定性をさらに良好にさせながら高固形分化させることができる。
 1.3.その他の添加剤
 本実施の形態に係る電極用バインダー組成物には、必要に応じて水溶性増粘剤等の各種添加剤を添加してもよい。添加剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼイン等の水溶性増粘剤;ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、ピロリン酸ソーダ、ポリアクリル酸ソーダ等の分散剤;ノニオン性、アニオン性界面活性剤等のラテックスの安定化剤が挙げられる。
 1.4.ゲル含有率
 本実施の形態に係る電極用バインダー組成物のゲル含有率は90~99%であり、好ましくは92~99%、より好ましくは94~99%である。ゲル含有率が前記範囲にあると、重合体粒子が電解液に溶解し難くなり、長期に亘って過電圧の上昇による電池特性への悪影響を抑制できる。ゲル含有率が前記範囲未満では、活物質を長期に亘って固定するための電極用バインダーとしての能力が不足するため好ましくない。また、ゲル含有量が前記範囲を超えると、集電体への密着力が低下するため好ましくない。
 本実施の形態に係る電極用バインダー組成物のゲル含有率は、以下の手順により算出することができる。
 まず、電極用バインダー組成物にメタノールを添加して凝固させ、その得られた凝固物を真空乾燥して水分を除去する。このようにして得られた凝固物(W0(g))にトルエンを加えて膨潤溶解させる。その後、これを秤量済みの300メッシュの金網で濾過し、その濾液からトルエンを蒸発乾燥させて、その乾燥物の質量(W1(g))を測定する。ゲル含有率(%)は、上記で得られた値から下記式(2)に従い算出することができる。
 ゲル含有率(%)=((W0-W1)/W0)×100 …(2)
 1.5.電解液膨潤率
 本実施の形態に係る電極用バインダー組成物の電解液膨潤率は110~400%であり、130~350%であることが好ましく、150~300%であることがより好ましい。電解液膨潤率が前記範囲にあると、重合体粒子は電解液に対して適度に膨潤することができる。その結果、溶媒和したリチウムイオンが容易に活物質へ到達することができ、効果的に電極抵抗を低下させて、より良好な充放電特性を実現できる。さらに、大きな体積変化が発生しないため結着性にも優れる。一方、電解液膨潤率が前記範囲未満の場合、結着性は良好であるものの、リチウムイオンが活物質へ到達することを阻害され、電極抵抗が増大してしまうため好ましくない。電解液膨潤率が前記範囲を超えると、電極抵抗は低下するものの、結着性が劣化してしまうため好ましくない。
 本実施の形態に係る電極用バインダー組成物の電解液膨潤率は、以下の手順により算出することができる。
 まず、電極用バインダー組成物を所定の枠内に流し込み、常温にて乾燥させて乾燥フィルムを得る。その後、乾燥フィルムを枠から取り出し、さらに80℃×3時間で加熱乾燥させて試験用フィルムを得る。次に、得られた試験用フィルム(W0’(g))を標準電解液に浸漬して80℃加温を1日間行い膨潤させる。その後、試験用フィルムを標準電解液から取り出し、フィルム表面に付着した電解液を拭き取った後に試験後の浸漬後質量(W1’(g))を測定する。電解液膨潤率(%)は、上記で得られた値から、下記式(3)に従い算出することができる。
 電解液膨潤率(%)=(W1’/W0’)×100 …(3)
 なお、本明細書において「標準電解液」とは、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比にして5:5に混合した混合溶媒に対して電解質としてLiPFを1Mの濃度となるように溶解させた電解液をいう。
 1.6.その他の特徴
 本実施の形態に係る電極用バインダー組成物は、上述のような電極用バインダー組成物を使用することができるが、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であることが好ましい。このような電極用バインダー組成物によれば、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であるため、バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成する電極の材料として用いることができる。
 従来の電極用バインダー組成物は、所定の粒子径よりも大きな粒子を除去する操作を行っていないため、所定の粒子径よりも大きな粒子が含まれていると考えられる。そうすると、電流が流れた際に前記大きな粒子が帯電していると、前記大きな粒子がセパレータを跨いだ電極側に引き寄せられ、セパレータを貫通してしまったり、セパレータを貫通する亀裂を生じさせる可能性があった。このように従来の電極用バインダー組成物はセパレータが破損される不良(具体的には、前記大きな粒子がセパレータを貫通してしまったり、セパレータを貫通する亀裂を生じさせてしまう不良)が発生する可能性があった。そして、セパレータが破損すると、通電してしまうため電気化学デバイスがハードショートを起こす可能性があり、ハードショートを起こすと電気化学デバイスが発火するなどの問題があった。一方、本実施の形態に係る電極用バインダー組成物によれば、セパレータを貫通したりセパレータを貫通する亀裂を生じさせたりするような粒子(所定の粒子径よりも大きな粒子)を含まないため、前記のような問題が無く安全性が高い電気化学デバイスの電極を作製することができる。ここで、所定の粒子径よりも大きな粒子とは、具体的には、正極と負極とを分けるセパレータの厚みと同程度の大きさの粒子径を有する粒子のことである。なお、セパレータの厚さは、通常、10~30μmである。セパレータの厚みが10μmよりも薄過ぎると、破損し易く電気化学デバイスの不良の原因となるおそれがある。
 本実施の形態に係る電極用バインダー組成物は、前記条件を満たす限り特に制限はないが、前記条件に加えて、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径15μm以上で20μm未満の粒子の数が0~35000個であることが好ましく、0~4000個であることがより好ましい。更に、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径10μm超で15μm未満の粒子の数が0~500000個であることがより好ましく、0~200000個であることがより好ましい。このように所定の粒子径の粒子が前記範囲内であると、これらの粒子によってセパレータが破損してしまう可能性を更に低くすることができる。また、バインダーは、抵抗成分になり易く、このバインダーが局在化すると、抵抗が増大し易いという不具合があるが、所定の粒子径の粒子を前記範囲内とすることにより、バインダーが局在化し難くなる。従って、前記抵抗が増大し難いという利点がある。
 なお、本実施の形態に係る電極用バインダー組成物においては、1mL当たりにおける粒子の数をパーティクルカウンタで測定し、所定の粒子径ごとに分けて粒子の数を規定している。
 本実施の形態に係る電極用バインダー組成物は、上述したように、重合性の単量体を重合させて得られるものである。別言すれば、前記重合性の単量体に由来する構造単位を有する重合体粒子を含むものであり、この重合体粒子によりバインダーとしての機能が発現する。
 本実施の形態に係る電極用バインダー組成物においては、前記重合体粒子の(固形分換算)濃度が20~56質量%であることが好ましく、23~55質量%であることがより好ましく、25~54質量%であることが特に好ましい。前記濃度が前記範囲内であると、重合体粒子がバインダー中で安定化する(良好に分散した状態で存在する)ため、長期安定性に優れるバインダー組成物が得られるという利点がある。前記濃度が20質量%未満であると、生産性が低くなるという不具合がある。即ち、重合により得られる反応液をそのままバインダーとして使用する場合、重合によって得られる重合体粒子の濃度を低くする必要がある。そのため、生産性が低くなる。一方、56質量%超であると、バインダーの粘度が増加し過ぎるため、長期安定性が十分に得られないおそれがある。
 1.7.電極用バインダー組成物の製造方法
 本実施の形態に係る電極用バインダー組成物の製造方法は、上記のようにして重合体粒子を合成した反応液に、必要に応じて上記の添加剤を添加した後、デプスタイプまたはプリーツタイプのフィルタでろ過して、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であるろ液を得ることを特徴とするものである。本実施の形態に係る電極用バインダー組成物の製造方法によれば、バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成する電極が作製可能な電極用バインダー組成物が得られる。
 ここで、本明細書においてデプスタイプのフィルタとは、深層ろ過または体積ろ過タイプのフィルタとも称される高精度ろ過フィルタである。このようなデプスタイプのフィルタは、多数の孔が形成されたろ過膜を積層させた積層構造をなすものや、繊維束を巻き上げたものなどがある。デプスタイプのフィルタとしては、具体的には、プロファイルII、ネクシスNXA、ネクシスNXT、ポリファインXLD、ウルチプリーツプロファイル等(全て、日本ポール社製)、デプスカートリッジフィルタ、ワインドカートリッジフィルタ等(全て、アドバンテック社製)、CPフィルタ、BMフィルタ等(全て、チッソ社製)、スロープピュア、ダイア、マイクロシリア等(全て、ロキテクノ社製)等が挙げられる。
 デプスタイプのフィルタとしては、定格ろ過精度が1.0~20μmであるものを用いることが好ましく、定格ろ過精度が5.0~10μmであるものを用いることがより好ましい。定格ろ過精度が前記範囲のものを用いることにより、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であるろ液を効率良く得ることができる。また、フィルタに捕捉される粗大粒子の数が最小限になるため、フィルタの使用可能期間が延びる。
 また、プリーツタイプのフィルタとは、不織布、ろ紙、金属メッシュなどからなる精密ろ過膜シートをひだ折り加工した後、筒状に成形するとともに前記シートのひだの合わせ目を液密にシールし、かつ、筒の両端を液密にシールして得られる筒状の高精度ろ過フィルタのことである。
 プリーツタイプのフィルタとしては、定格ろ過精度が1.0~20μmであるものを用いることが好ましく、定格ろ過精度が5.0~10μmであるものを用いることがより好ましい。定格ろ過精度が前記範囲のものを用いることにより、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であるろ液を効率良く得ることができる。また、フィルタに捕捉される粗大粒子の数が最小限になるため、フィルタの使用可能期間が延びる。
 プリーツタイプのフィルタとしては、具体的には、HDCII、ポリファインII等(全て、日本ポール社製)、PPプリーツカートリッジフィルタ(アドバンテック社製)、ポーラスファイン(チッソ社製)、サートンポア、ミクロピュア等(全て、ロキテクノ社製)等を挙げることができる。
 ろ過する際の条件(フィルタ前後の圧力差(差圧)、液温など)は、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であるろ液を得ることができる限り特に制限はないが、例えば、差圧は、使用するフィルタの最大耐差圧を超えない範囲で適宜設定すればよいが、具体的には0.2~0.4MPaGであることが好ましい。また、液温は10~50℃であることが好ましい。
 ろ過工程は、例えば、図1に示すようなろ過装置100を用いて行うことができる。ろ過装置100は、異物除去前の電極用バインダー組成物を貯蔵し供給する供給タンク1と、異物除去前の電極用バインダー組成物を一定の流量で流すための定量ポンプ2と、カートリッジフィルタ(図示せず)及びこのカートリッジフィルタを収納(装着)したハウジングを有するろ過器4と、定量ポンプ2とろ過器4の途中に位置する脈動防止器3と、脈動防止器3とろ過器4との間に配置された第一圧力計7aと、ろ過器4の下流に配置された第二圧力計7bと、を備えている。そして、ろ過装置100は、ろ過器4から供給タンク1にバインダーを戻す戻り導管6と、ろ過器4によりろ過された電極用バインダー組成物を排出する排出導管5と、を備えている。
 ろ過装置100において、前記重合工程で得られた反応液は、供給タンク1から定量ポンプ2により昇圧された脈動防止器3に供給される。定量ポンプ2による脈動がある場合は、脈動防止器3によって脈動が低減される。脈動防止器3から排出された反応液は、ろ過器4に供給され、異物が除去された後、排出導管5を通って回収される。この回収された回収液が電極用バインダー組成物である。ここで、本明細書において「異物」とは、粒子径が20μm以上の粒子のことである。
 排出導管5を通って回収された液体の異物の除去が十分でない場合には、回収液を電極用バインダー組成物とすることなく、戻り導管6を通して供給タンク1に戻し、再びろ過器4にてろ過することもできる。また、定量ポンプ2による脈動が生じない場合には、脈動防止器3を配置しなくてもよい。更に、反応液の粘度が高い場合には、供給タンク、導管、またはこれらの両方を加温することにより、反応液の粘度を低下させることができる。即ち、供給タンク、導管、またはこれらの両方を加温可能な加温手段を更に備えていてもよい。このようにして、反応液の粘度が高い場合に生産性を向上させることができる。
 なお、ろ過装置100は、第一圧力計7aと第二圧力計7bとを備えているが、圧力計を備えないろ過装置を用いてもよい。但し、第一圧力計7aと第二圧力計7bとを備えることにより、ろ過器が正常に機能するようにろ過器に生じる差圧を管理することができる。また、供給タンク1に代えて、運搬用のコンテナから直接、異物除去前の電極用バインダー組成物を供給してもよい。そして、ろ過装置100は、1つのろ過器4を用いた例であるが、複数のろ過器を用いることもできる。複数のろ過器を用いる場合、複数のろ過器を直列に連結してもよいし、並列に配置してもよい。
 1.8.電極用バインダー組成物の保管方法
 本実施の形態に係る電極用バインダーの保管方法(以下、単に「保管方法」ともいう)では、上述の方法で作製され、1mL当たりにおける粒子径20μm以上の粒子の数が0個である電極用バインダー組成物に好適に用いることができる。特に、電極用バインダー組成物に含有される重合体粒子が、凝集しやすい傾向のあるフッ素系重合体を含有する場合に本願の方法は効果を発揮する。
 本実施の形態に係る保管方法は、かかる電極用バインダー組成物を2~30℃の温度で保管することが必須であり、好ましくは10~25℃である。前記範囲を超える場合、長期間の保存の間に容器の壁面の気液界面において重合体粒子が凝集し、異物が発生する傾向にあり、安定に保管することができない。前記範囲未満では、液中で重合体粒子が凝集し、ゲル状物や異物が発生する傾向にあり、安定に保管することができない。
 本実施の形態に係る保管方法は、上記の電極用バインダー組成物を充填して保存する容器において、該容器の内容積に対する電極用バインダー組成物の占める容積を除いた空隙部の容積の比率(%)(以下、「空隙率」ともいう)が1~20%であることが必須であり、好ましくは3~15%であり、より好ましくは5~10%である。空隙率が前記範囲を超えると、保管温度が変化した場合に水分の揮発が大きくなり、その結果気液界面にて重合体粒子の凝集が発生し、異物が発生するため、安定に保管することができない。空隙率が前記範囲未満では、温度の変化により電極用バインダー組成物が体積変化を起こした場合、容器の変形や容器の破裂が発生するため、安定に保管することができない。
 本実施の形態に係る保管方法は、該空隙部雰囲気の酸素濃度が1%以下であることが好ましい。該空隙部雰囲気の酸素濃度が前記の範囲であると、長期間の保存の間にバインダー成分が酸化、変質することなく、重合体粒子の凝集を抑制することができ、異物の発生を効果的に抑制することができる。
 本実施の形態に係る保管方法では、上記の電極用バインダー組成物を保管する容器からの金属イオンの溶出濃度が50ppm以下であることが好ましい。金属イオンが組成物中に溶出すると、組成物中に分散している重合体粒子表面のゼータ電位バランスが崩れるため、凝集が発生しやすくなる。このようにして凝集した粒子は活物質層を形成する際に致命的な導電バスを形成する可能性が高いため好ましくない。
 なお、このような金属溶出の少ない容器は、ガラス製、樹脂製の材質により構成されているものが好ましい。たとえば、特開昭59-035043号方法等により製造されたクリーンな容器を好ましく使用することができる。
 本実施の形態に係る保管方法によれば、保存期間が6月でも、好ましくは12月でも、さらに好ましくは18月でも、保管中に電極用バインダー組成物の品質がほとんど変化しない。また、ゲル状物を生ずることもない。このため、製造直後の電極用バインダー組成物を用いて活物質層を形成するのと同じ条件で、同様の活物質層を形成することができる。また、電極用バインダー組成物の生産性を向上できる効果は、保存期間が6月、12月、18月と長くなるほど大きくなる。
 2.電極用スラリー
 本実施の形態に係る電極用スラリーは、活物質と、上記の電極用バインダー組成物と、を含有するものである。本実施の形態に係る電極用スラリーによれば、上記の電極用バインダー組成物を含有するものであるため、良好な結着性を有し、充放電特性に優れた電極を作製することができる。また、前記バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電極を作製することができる。
 2.1.活物質
 活物質は、特に限定されるものではない。リチウムイオン二次電池電極に用いる場合には、負極活物質としてカーボンを用いることができる。カーボンの具体例としては、フェノール樹脂、ポリアクリロニトリル、セルロース等の有機高分子化合物を焼成することにより得られる炭素材料;コークスやピッチを焼成することにより得られる炭素材料;人造グラファイト;天然グラファイト等が挙げられる。正極活物質としては、例えば、リン酸鉄リチウム、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、三元系ニッケルコバルトマンガン酸リチウム、リチウムニッケルコバルトアルミニウム複合酸化物等が挙げられる。また、電気二重層キャパシタ電極に用いる場合には、活性炭、活性炭繊維、シリカ、アルミナ等を用いることができる。また、リチウムイオンキャパシタ電極に用いる場合には、黒鉛、難黒鉛化炭素、ハードカーボン、コークスなとの炭素材料や、ポリアセン系有機半導体(PAS)等を用いることができる。
 2.2.添加剤
 本実施の形態に係る電極用スラリーには、増粘剤、ヘキサメタリン酸ナトリウム、トリポリリン酸ナトリウム、ポリアクリル酸ナトリウム等の分散剤、ラテックスの安定化剤としてのノニオン性またはアニオン性界面活性剤、消泡剤等の添加剤を添加することができる。
 2.3.電極用スラリーの調製
 本実施の形態に係る電極用スラリーには、活物質100質量部に対して、前述の電極用バインダー組成物が、固形分換算で0.1~10質量部含有されていることが好ましく、0.5~5質量部含有されていることがより好ましい。電極用バインダー組成物の含有量が前記範囲にあると、電極用バインダー組成物が電解液に溶解し難くなり、過電圧の上昇による電池特性への悪影響を抑制できる。
 本実施の形態に係る電極用スラリーの調製において、電極用バインダー組成物と、活物質と、必要に応じて用いられる添加剤とを混合するには、攪拌機、脱泡機、ビーズミル、高圧ホモジナイザー等を利用することができる。また、電極用スラリーの調製は、減圧下で行うことが好ましい。これにより、得られる活物質層内に気泡が生じることを防止することができる。
 3.電極
 本実施の形態に係る電極は、集電体と、前記集電体の表面上に前述の電極用スラリーが塗布および乾燥されて形成された活物質層と、を備えるものである。なお、本実施の形態に係る電極は、集電体の一方の面に活物質層が形成されていてもよく、集電体の両方の面に活物質層が形成されていてもよい。本実施の形態に係る電極によれば、上記の電極用スラリーを集電体の表面に塗布・乾燥して得られる活物質層を備えるものであるため、結着性が良好となり、充放電特性にも優れたものとなる。また、前記バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電極となる。
 3.1.集電体
 集電体の具体例としては、金属箔、エッチング金属箔、エキスパンドメタル等が挙げられる。集電体を構成する材料の具体例としては、アルミニウム、銅、ニッケル、タンタル、ステンレス、チタン等の金属材料が挙げられ、目的とする蓄電デバイスの種類に応じて適宜選択して用いることができる。集電体の厚みは、リチウムイオン二次電池用の電極を構成する場合には、5~30μmであることが好ましく、8~25μmであることがより好ましい。また、電気二重層キャパシタ用の電極を構成する場合には、集電体の厚みは5~100μmであることが好ましく、10~70μmであることがより好ましく、15~30μmであることが特に好ましい。
 3.2.活物質層の作製
 電極用スラリーを塗布する手段の具体例としては、ドクターブレード法、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法等が挙げられる。また、電極用スラリーの塗布膜の乾燥処理の条件としては、処理温度が20~250℃であることが好ましく、50~150℃であることがより好ましい。また、処理時間は1~120分間であることが好ましく、5~60分間であることがより好ましい。
 プレス加工する手段の具体例としては、高圧スーパープレス、ソフトカレンダー、1トンプレス機等が挙げられる。プレス加工の条件は、用いる加工機に応じて適宜設定される。このようにして形成される活物質層は、厚みが40~100μmであり、密度が1.3~2.0g/cmである。このようにして得られる電極は、リチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等の蓄電デバイスの電極として好適に用いることができる。
 4.蓄電デバイス
 本実施の形態に係る電極を用いてリチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ、等の蓄電デバイスを作製することができる。たとえば、リチウムイオン二次電池を構成する場合には、リチウム化合物からなる電解質を溶媒中に溶解した電解液が用いられる。
 電解質の具体例としては、LiClO、LiBF、LiI、LiPF、LiCFSO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSON等が挙げられる。
 溶媒の具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類;γ-ブチロラクトン等のラクトン類;トリメトキシシラン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン等の窒素含有化合物;ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類;ジグライム、トリグライム、テトラグライム等のグライム類;アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;スルホラン等のスルホン類;2-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,8-ナフタスルトン等のスルトン類等が挙げられる。
 本実施の形態に係る電極を用いて電気二重層キャパシタを構成する場合には、上記の溶媒中に、テトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロホスフェート等の電解質を溶解した電解液が用いられる。また、本実施の形態に係る電極を用いてリチウムイオンキャパシタを構成する場合には、上記のリチウムイオン二次電池を構成する場合と同様の電解液を用いることができる。
 5.実施例
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
 5.1.実施例1
 5.1.1.電極用バインダー組成物の調製
 攪拌機を備えた温度調節可能なオートクレーブ中に、水200部、ドデシルベンゼンスルホン酸ナトリウム0.6部、過硫酸カリウム1.0部、重亜硫酸ナトリウム0.5部、α-メチルスチレンダイマー0.2部、ドデシルメルカプタン0.1部、および表1に示した1段目重合成分を一括して仕込み、70℃に昇温し2時間重合反応させた。重合添加率が80%以上であることを確認した後、反応温度を70℃に維持したまま、表1に示す2段目重合成分を6時間かけて添加した。2段目重合成分添加開始から3時間経過した時点で、α-メチルスチレンダイマー0.5部およびドデシルメルカプタン0.1部を添加した。2段目重合成分添加終了後、温度を80℃に昇温し、さらに2時間反応させた。重合反応終了後、ラテックスのpHを7.5に調節し、トリポリリン酸ナトリウム5部(固形分換算)を添加した。その後、残留モノマーを水蒸気蒸留で処理し、減圧下で固形分50%まで濃縮することで、電極用バインダー組成物を得た。
 得られた電極用バインダー組成物について、以下の各物性値を測定した。その結果を表1に併せて示す。
(1)重合体粒子の数平均粒子径
 得られた電極用バインダー組成物に含まれる重合体粒子の数平均粒子径を、動的光散乱法を測定原理とする測定装置により測定したところ、150nmであった。この測定装置には、22mWのHe-Neレーザー(λ=632.8nm)を光源とする光散乱測定装置(ALV社製、商品名「ALV5000」)を使用した。
(2)ゲル含有率
 得られた電極用バインダー組成物の水分散体2.0gをメタノール100g中に投入して凝固させ、300メッシュの金網で濾過して水分散体凝固物を取り出した。取り出した水分散体凝固物をメタノールで洗浄した後、60℃で5時間真空乾燥を行って乾燥水分散体凝固物を得た。得られた乾燥水分散体凝固物の質量(W0(g))を測定し、この乾燥水分散体凝固物を50mLのトルエンに投入し、50℃で3時間攪拌した後、25℃まで冷却し300メッシュの金網でろ過した。ろ液を10mL採取し、120℃のホットプレートでその質量が一定となるまで乾燥させて、その乾燥物の質量(W1(g))を測定した。ゲル含有率(%)は、下記式(2)より算出した。
 ゲル含有率(%)=((W0-W1)/W0)×100 …(2)
(3)電解液膨潤率
 電極用バインダー組成物に水を加えて固形分濃度30%の分散液を調製し、8cm×14cmの枠内に得られた分散液を固形分換算で25g流しこみ、常温にて5日間乾燥させて乾燥フィルムを得た。その後、乾燥フィルムを枠から取り出し、さらに80℃×3時間乾燥させて試験用フィルムを得た。次に、得られた試験用フィルムを2cm×2cmの大きさに複数枚切り出し、初期質量(W0’(g))を測定した。その後、標準電解液が入ったスクリュー瓶に試験用フィルムを80℃にて24時間浸漬した。その後、試験用フィルムを標準電解液から取り出し、フィルム表面に付着した電解液を拭き取った後に試験後の浸漬後質量(W1’(g))を測定した。得られた初期質量(W0’(g))および浸漬後質量(W1’(g))から、下記式(3)に従い電解液膨潤率を算出した。
 電解液膨潤率(%)=(W1’/W0’)×100 …(3)
(4)pH
 得られた電極用バインダー組成物のpHを、pHメーター(東亜ティーディーケー株式会社製、「HM-7J」)を用いて測定したところ、7.5であった。
 5.1.2.リチウムイオン二次電池負極の作製
(1)作製方法
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に増粘剤(商品名「CMC2200」、ダイセル化学工業株式会社製)1部(固形分換算)、負極活物質としてグラファイト100部(固形分換算)、水68部を投入し、60rpmで1時間攪拌を行った。その後、上記で調製された電極用バインダー組成物1部(固形分換算)を加え、さらに1時間攪拌しペーストを得た。得られたペーストに水を投入し、固形分を50%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。銅箔よりなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、活物質層の密度が1.8g/cmとなるようにロールプレス機によりプレス加工することにより、リチウムイオン二次電池負極を得た。
(2)結着性評価(ピール強度の測定)
 作製した負極から、幅2cm×長さ12cmの試験片を切り出し、この試験片の活物質層側の表面を、両面テープを用いてアルミ板に貼り付けた。一方、試験片の集電体の表面に、幅18mmテープ(ニチバン株式会社製、商品名「セロテープ(登録商標)」、JIS Z1522に規定)を貼り付けた。この幅18mmテープを90°方向に50mm/minの速度で2cm剥離したときの力(mN/2cm)を6回測定し、その平均値を密着強度(ピール強度、mN/2cm)として算出した。なお、ピール強度の値が大きいほど、集電体と活物質層との密着強度が高く、集電体から電極層が剥離し難いと評価することができるが、ピール強度の値が20mN/2cm以上である場合には良好であると判断できる。
 5.1.3.リチウムイオン二次電池正極の作製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に電極用バインダー(株式会社クレハ製、商品名「KFポリマー#1120」)4.0部(固形分換算)、導電助剤(電気化学工業株式会社製、商品名「デンカブラック50%プレス品」)3.0部、正極活物質として粒径5μmのLiCoO(ハヤシ化成株式会社製)100部(固形分換算)、N-メチルピロリドン(NMP)36部を投入し、60rpmで2時間攪拌を行った。得られたペーストにNMPを投入し、固形分を65%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。アルミ箔よりなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、電極層の密度が3.0g/cmとなるようにロールプレス機によりプレス加工することにより、リチウムイオン二次電池正極を得た。
 5.1.4.リチウムイオン二次電池(コイン型)の作製
(1)作製方法
 露点が-80℃以下となるようAr置換されたグローブボックス内で、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)に、上記で作製した負極を直径15.95mmに打ち抜き成型したものを載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した。その後、上記で作製した正極を直径16.16mmに打ち抜き成型したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより本願発明の二次電池を作製した。なお、使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1の溶媒に、LiPFを1モル/リットルの濃度で溶解した溶液である。
(2)充電レートおよび放電レートの評価
 上記で作製したリチウムイオン二次電池を定電流(0.2C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として0.2Cでの充電容量を測定した。その後、定電流(0.2C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、0.2Cでの放電容量を測定した。0.2Cでの放電容量に対する3Cでの放電容量の割合(%)を計算し、放電レート特性(%)とした。
 次に、同じセルを定電流(3C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として3Cでの充電容量を測定した。その後、定電流(3C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、3Cでの放電容量を測定した。0.2Cでの充電容量に対する3Cでの充電容量の割合(%)を計算し、充電レート特性(%)とした。放電レート特性および充電レート特性が80%以上である場合、負極表面に形成された皮膜抵抗が低く高速放電が可能なため良好と判断できる。
 なお、本実施例の測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値を示す。たとえば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、「10C」とは0.1時間かけて放電完了となる電流値のことをいう。
(3)サイクル特性の評価
 上記で作製したリチウムイオン二次電池を、定電流(1C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(1C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして50回充放電を繰り返し、50サイクル目の放電容量を算出した。このようにして測定した50サイクル目の放電容量を、1サイクル目の放電容量で割った値を放電容量維持率(%)とした。放電容量維持率が80%以上である場合、良好と判断できる。
 5.1.5.電気二重層キャパシタ電極の作製
(1)作製方法
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、活性炭(クラレケミカル株式会社製、商品名「クラレコールYP」)100部、導電性カーボン(電気化学工業株式会社製、商品名「デンカブラック」)6部、増粘剤(ダイセル化学工業株式会社製、商品名「CMC2200」)2部、水278部を投入し、60rpmで1時間攪拌を行った。その後、上記で調製された電極用バインダー組成物を4部加え、さらに1時間攪拌を行いペーストを得た。得られたペーストに水を投入し、固形分を25%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。アルミ箔よりなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理することにより電気二重層キャパシタ電極を得た。
(2)結着性評価(ピール強度の測定)
 電気二重層キャパシタ電極から、幅2cm×長さ12cmの試験片を切り出し、この試験片のアルミ箔面を、両面テープを用いてアルミ板に貼り付けた。また、試験片の活物質層側の表面に、幅18mmテープ(ニチバン株式会社製、商品名「セロテープ(登録商標)」、JIS Z1522に規定)を貼り付けた。この幅18mmテープを90°方向に50mm/minの速度で2cm剥離したときの力(mN/2cm)を6回測定し、その平均値を密着強度(ピール強度、mN/2cm)として算出した。なお、ピール強度の値が大きいほど、集電体と活物質層との密着強度が高く、集電体から活物質層が剥離し難いと評価することができる。
(3)キャパシタ特性
 グローブボックス内で2極式コインセル(宝泉社製、商品名「HSフラットセル」)に、直径15.95mmに打ち抜いた電気二重層キャパシタ電極を載置した。次いで、直径18mmに打ち抜いたセパレータ(日本高度紙社製、商品名「TF4535」)を載置し、空気が入らないように電解液を注入した。その後、直径16.16mmに打ち抜いた同様の電気二重層キャパシタ電極を載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することによりキャパシタを作製した。なお、使用した電解液は、プロピレンカーボネートの溶媒に、(CNBFが1モル/リットルの濃度で溶解した溶液である。
(3-1)キャパシタ容量
 定電流(10mA/F)一定電圧(2.7V)方式にて8分間かけて充電し、定電流(10mA/F)方式にて放電したときの容量を、キャパシタ容量(F/cm)の指標とした。
(4)内部抵抗
 放電終止電圧と充電初期電圧の差(ΔV)を放電電流で割った値を、Rintとし、内部抵抗の指標とした。
 5.2.実施例2~6、比較例1~5
 表1に示す組成とした以外は実施例1と同様にして電極用バインダー組成物を得た。得られた電極用バインダー組成物を使用した以外は、実施例1と同様にして前述のリチウムイオン二次電池負極および電気二重層キャパシタ電極を作製し、それぞれの各種物性値を測定した。測定結果を表1に併せて示す。
 5.3.実施例7
 5.3.1.電極用バインダー組成物の調製
 表2に示す組成とし、2段目重合成分添加開始から3時間経過した時点で、「α-メチルスチレンダイマー1.0部およびドデシルメルカプタン0.3部」を添加した以外は、実施例1と同様にして電極用バインダー組成物を得た。
 得られた電極用バインダー組成物について、実施例1と同様にして、数平均粒子径、ゲル含有率、電解液膨潤率、pHを測定した。その結果を表2に併せて示す。
 5.3.2.リチウムイオン二次電池負極の作製
 上記で得られた電極用バインダー組成物を用いた以外は、実施例1と同様にしてリチウムイオン二次電池負極を作製し、ピール強度を測定した。その結果を表2に併せて示す。
 5.3.3.正極の作製
 実施例1と同様にしてリチウムイオン二次電池正極を作製した。
 5.3.4.リチウムイオン二次電池(ラミネート型)の作製
(1)作製方法
 グローブボックス内で2極式単層ラミネートセルの内側に、アルミニウムからなるフィルム状の外装アルミシール上に、50mm×25mmに切り出した前記負極を載置した。次いで、この負極上に、54mm×27mmに切り出したポリプロピレン製の多孔膜からなるセパレータ(セルガード社製、商品名「セルガード#2400」、厚み25μm)を載置するとともに、空気が入らないように前記セル内に電解液を注入した。その後、48mm×23mmに切り出した前記正極を前記セパレータ上に載置した。そして、この正極上に、上記外装アルミシールと同様の外装アルミシールを載置した。このようにして、外装アルミシール、負極、セパレータ、正極、及び外装アルミシールからなる積層体を得た。その後、外装アルミシールを加温シーリング装置で2つの外装アルミシールの外周縁部を互いに接合させ封止した。そして、各層の間に空気が入らないように電解液を注入することにより2極式単層ラミネートセルからなる二次電池(電気化学デバイス)を作製した。なお、使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1の溶媒に、LiPFが1モル/リットルの濃度で溶解した溶液である。これらの操作は、グローブボックス内で行った。
(2)充電レートおよび放電レートの評価
 実施例1と同様にして、充電レートおよび放電レートの評価を行った。その結果を表2に併せて示す。
(3)サイクル特性の評価
 実施例1と同様にして、サイクル特性の評価を行った。その結果を表2に併せて示す。
(4)サイクル特性評価前の内部直流抵抗値(DC-IR)の評価
 25℃に設定した恒温槽に、上記にて作製したリチウムイオン二次電池を配置し、定電流(0.2C)にて50%DOD(3.8V)まで充電した。その後、定電流(0.5C)にて10秒間充電を行った際の電圧変化を読み取り、1分間休止した後、さらに定電流(0.5C)にて10秒間放電を行った際の電圧変化を読み取った。電流値を0.5Cから1.0C、2.0C、3.0C、5.0Cに変更した以外は同様の方法で充放電時の電圧を読み取った。印加した電流値(A)を横軸、電圧値(V)を縦軸としたグラフを作成し、充放電各時において、プロット点を結んだ直線の勾配値を算出した。その勾配値をそれぞれ充電時および放電時の内部直流抵抗値(DC-IR)とした。なお、測定条件において、「DOD」とは、充電容量に対する放電容量の割合を示す。たとえば、「50%DODまで充電する」とは、全容量を100%とした場合、50%の容量だけ充電することを示す。
(5)60℃サイクル特性の評価
 前記「(4)内部直流抵抗値(DC-IR)の評価」の評価後、60℃に設定した恒温槽に同じリチウムイオン二次電池を配置し、定電流(2.0C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(2.0C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返し、100サイクル目の放電容量を算出した。このようにして測定した100サイクル目の放電容量を、1サイクル目の放電容量で割った値を100サイクル放電維持率(%)とした。100サイクル目の放電容量維持率が40%以上である場合、良好と判断できる。
(6)抵抗変化率の評価
 前記「(5)60℃サイクル特性の評価」の評価後に、「(4)サイクル特性評価前の内部直流抵抗値(DC-IR)の評価」に記載と同様な手法でサイクル特性評価後の放電時の内部直流抵抗値(DC-IR)を測定した。サイクル特性評価前の内部直流抵抗値(DC-IR)に対する、本項で測定したサイクル特性評価後の内部直流抵抗値の割合を抵抗変化率と定義し、この数値が低いものほど、抵抗劣化が小さいと判断することができる。なお、抵抗変化率が10以下である場合、良好と判断できる。
 5.4.実施例8~22、比較例6~8
 表2または表3に示す組成とした以外は実施例7と同様にして電極用バインダー組成物を得た。得られた電極用バインダー組成物を使用した以外は、実施例7と同様にして前述のリチウムイオン二次電池負極を作製し、各種物性値を測定した。測定結果を表2または表3に併せて示す。
 5.5.比較例9
 攪拌機を備えた温度調節可能なオートクレーブ中に、水200部、ドデシルベンゼンスルホン酸ナトリウム0.6部、過硫酸カリウム1.0部、重亜硫酸ナトリウム0.5部、α-メチルスチレンダイマー0.2部、ドデシルメルカプタン0.6部、および表3に示した1段目重合成分を一括して仕込み、70℃に昇温し2時間重合反応させた。重合添加率が80%以上であることを確認した後、反応温度を70℃に維持したまま、表3に示す2段目重合成分を6時間かけて添加した。2段目重合成分添加開始から3時間経過した時点で、α-メチルスチレンダイマー1.0部およびドデシルメルカプタン0.9部を添加した。2段目重合成分添加終了後、温度を80℃に昇温し、さらに2時間反応させた。重合反応終了後、ラテックスのpHを7.5に調節し、トリポリリン酸ナトリウム5部(固形分換算)を添加した。その後、残留モノマーを水蒸気蒸留で処理し、減圧下で固形分50%まで濃縮することで、電極用バインダー組成物を得た。
 上記の電極用バインダー組成物を用いたこと以外は、実施例7と同様にして前述のリチウムイオン二次電池負極を作製し、各種物性値を測定した。測定結果を表3に併せて示す。
 5.6.比較例10
 攪拌機を備えた温度調節可能なオートクレーブ中に、水200部、ドデシルベンゼンスルホン酸ナトリウム0.6部、過硫酸カリウム1.0部、重亜硫酸ナトリウム0.5部、ドデシルメルカプタン0.2部、および表3に示した1段目重合成分を一括して仕込み、70℃に昇温し2時間重合反応させた。重合添加率が80%以上であることを確認した後、反応温度を70℃に維持したまま、表3に示す2段目重合成分を6時間かけて添加した。2段目重合成分添加開始から3時間経過した時点で、ドデシルメルカプタン0.3部を添加した。2段目重合成分添加終了後、温度を80℃に昇温し、さらに2時間反応させた。重合反応終了後、ラテックスのpHを7.5に調節し、トリポリリン酸ナトリウム5部(固形分換算)を添加した。その後、残留モノマーを水蒸気蒸留で処理し、減圧下で固形分50%まで濃縮することで、電極用バインダー組成物を得た。
 上記の電極用バインダー組成物を用いたこと以外は、実施例7と同様にして前述のリチウムイオン二次電池負極を作製し、各種物性値を測定した。測定結果を表3に併せて示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1~表3に示すように、本発明に係る電極用バインダー組成物は、比較例1~10の電極用バインダー組成物と比較して、リチウムイオン二次電池での集電体と活物質層との結着性、充放電レート特性およびサイクル特性、ならびに電気二重層キャパシタでの集電体と電極層との結着性および内部抵抗の諸特性において優れているという結果であった。
 5.7.実験例1
 前記実施例1で調製した電極用バインダー組成物について、ろ過工程の有無による性能の差異について下記のようにして評価した。
 まず、実施例1で作製した電極用バインダー組成物について、図1に示すろ過装置100を用いてろ過を行った(ろ過工程)。図1に示すろ過装置100は、異物除去前の電極用バインダー組成物を貯蔵し供給する供給タンク1と、異物除去前の電極用バインダー組成物を一定の流量で流すための定量ポンプ2と、カートリッジフィルタ(図示せず)及びこのカートリッジフィルタを収納(装着)したハウジングを有するろ過器4と、定量ポンプ2とろ過器4の途中に位置する脈動防止器3と、脈動防止器3とろ過器4との間に配置された第一圧力計7aと、ろ過器4の下流に配置された第二圧力計7bと、を備えている。そして、ろ過装置100は、ろ過器4から供給タンク1にバインダーを戻す戻り導管6と、ろ過器4によりろ過された電極用バインダーを排出する排出導管5と、を備えている。
 本実験例において、ろ過器4は、ハウジング内にデプスタイプのカートリッジフィルタ「プロファイルII」(日本ポール社製、定格ろ過精度10μm、長さ1インチ)を1本装着したものである。定量ポンプ2は、エア駆動式のダイヤフラムポンプを用い、ろ過器前後の差圧が0.34MPaGとなるようにした。なお、図1に示すろ過装置100によるろ過後の電極用バインダー組成物における数平均粒子径はろ過前と比較して変化は確認されなかった。ここで、数平均粒子径は、オートサンプラー付き濃厚系粒径アナライザー「FPAR1000」(大塚電子株式会社製)により測定した値である。
 なお、異物除去(ろ過工程)前後の粒子において数平均粒子径に変化がなければ、異物除去後の電極用バインダー組成物はバインダーとしての諸特性に変化は無い(即ち、電極用バインダー組成物として従来のバインダーと同等の機能を維持している)と評価することができる。
 ろ過前の電極用バインダー組成物及びろ過工程を経て得られた電極用バインダー組成物のそれぞれについて、1mL当たりにおける粒子の数を下記のようにして測定した。また、それらを用いてそれぞれリチウムイオン二次電池を作製し、下記のようにして良品率を算出した。評価結果を表4に示す。
(1)1mL当たりにおける粒子数の測定
 パーティクルカウンタには、Particle Sizing Systems製の個数カウント式粒度分布測定器「Accusizer 780APS」を使用した。具体的には、測定される粗大粒子の数が「4000個/mL(0.56μm)」(即ち、「粒子径が0.56μmよりも大きな粒子が、1mL中に4000個以下」)となるまで超純水でブランク測定を繰り返した。その後、超純水で100倍に希釈したバインダー(サンプル)100mLを用意し、このサンプルを前記粒度分布測定器にセットした。セット後、前記粒度分布測定器により最適濃度になるように自動でサンプルの希釈が行われる。その後、前記粒度分布測定器により前記サンプルの1mL当りにおける粒子の数が2回測定され、平均値が算出される。この平均値を100倍して、バインダー1mL当りにおける粒子の数とした。
(2)ハードショートの有無
 実施例1と同様にして100個の二次電池を作製し、作製した二次電池について、60℃保存試験を行った。具体的には、定電流(0.2C)-定電圧(4.2V)方式にて2.5時間かけて充電し、定電流(0.2C)方式にて放電し、再度、定電流(0.2C)-定電圧(4.2V)方式にて2.5時間かけて充電した100個の二次電池を60℃に設定した恒温槽に30日間放置した。そして、30日間放置後の各二次電池の開回路電圧(OCV)を測定して評価を行った。評価においては、OCVの低下傾向をハードショート発生の指標とした。具体的には、著しい電圧降下が発生しなければ(OCVの低下が確認できなければ)、ハードショートが無いと判断し、急激な電圧降下(瞬間的に電圧が降下すること)が発生した場合にはハードショートが有りと判断した。
(3)良品率(%)
 上記「ハードショートの有無」の評価から二次電池の良品率(%)を算出した。具体的には、式:二次電池の良品率(%)=[{(ハードショートの有無の試験を実施した二次電池の個数)-(ハードショートが発生した二次電池の個数)}/(ハードショートの有無の試験を実施した二次電池の個数)]×100により算出した。良品率(%)が98%以上であれば良好と判断できるが、99%以上であれば生産性が向上するためより良好と判断できる。
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、ろ過装置100によるろ過後の電極用バインダー組成物は、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数、粒子径15μm以上で20μm未満の粒子の数、及び粒子径10μm超で15μm未満の粒子の数は全て0個であった。ろ過工程を経ることにより、前記粒子数が大幅に低減された。これにより、二次電池の良品率が99.9%となり、生産性が大幅に向上することが判った。
 5.8.実験例2
 前記実施例1で得られた電極用バインダー組成物について、ろ過装置を用いてろ過を行った。本実験例で使用したろ過装置は、図1に示すろ過装置100のデプスタイプのカートリッジフィルタ「プロファイルII」(日本ポール社製、定格ろ過精度10μm、長さ1インチ)1本に代えて、デプスタイプのカートリッジフィルタ「プロファイルII」(日本ポール社製、定格ろ過精度20μm、長さ1インチ)1本を装着したものを用いた。なお、ろ過器前後の差圧は0.25MPaGとした。なお、ろ過後の電極用バインダー組成物における数平均粒子径はろ過前と比較して変化は確認されなかった。ろ過前の電極用バインダー組成物及びろ過工程を経て得られた電極用バインダー組成物のそれぞれについて、前記各種評価を行った。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000008
 表5に示すように、ろ過装置100によるろ過後の電極用バインダー組成物は、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数、粒子径15μm以上で20μm未満の粒子の数、及び粒子径10μm超で15μm未満の粒子の数が大幅に低減された。これにより、二次電池の良品率が99.9%となり、生産性が大幅に向上することが判った。
 5.9.実験例3
 前記実施例1で得られた電極用バインダー組成物について、実験例1と同様にして図1に示すろ過装置100でろ過を行った。なお、本実験例においては、ろ過前後の差圧を0.38MPaGとし、ろ過装置100によるろ過開始から5分後のろ液をサンプリングした。ろ過前の電極用バインダー組成物及びろ過工程を経て得られた電極用バインダー組成物のそれぞれについて、前記各種評価を行った。評価結果を表6に示す。なお、ろ過後の電極用バインダー組成物における数平均粒子径は濾過前と比較して変化は確認されなかった。
 5.10.実験例4
 ろ過開始から10分後のろ液をサンプリングしたこと以外は、前記実験例3と同様にしてろ液(ろ過装置によるろ過後の電極用バインダー組成物)をサンプリングした。得られたろ液について前記各種評価を行った。評価結果を表6に示す。なお、ろ過後の電極用バインダーにおける数平均粒子径は濾過前と比較して変化は確認されなかった。
 5.11.実験例5
 ろ過開始から15分後のろ液をサンプリングしたこと以外は、前記実験例3と同様にしてろ液(ろ過装置によるろ過後の電極用バインダー組成物)をサンプリングした。得られたろ液について前記各種評価を行った。評価結果を表6に示す。なお、ろ過後の電極用バインダーにおける数平均粒子径は濾過前と比較して変化は確認されなかった。
Figure JPOXMLDOC01-appb-T000009
 表4~表6から明らかなように、ろ過工程を経て得られた電極用バインダー組成物によれば、ろ過前の電極用バインダー組成物に比べて、セパレータが破損するような不良の発生率が極めて小さく安全性が高い電気化学デバイスの電極を構成するための材料として用いることが可能であることが確認できた。
 5.12.実験例7(電極用バインダー組成物の保管試験)
 前記実施例1~3で作製された電極用バインダー組成物のいずれか1種を保存容器に入れ、容器の内容積との比率(空隙率)、保管温度、容器内に残留する気体中の酸素濃度を表7に記載の条件とし、静置して6ヶ月保管した。6ヶ月保管後の後の電極用バインダー組成物の異物発生有無、容器態様を目視にて判断した結果を表7に示す。なお、酸素濃度は電極用バインダー組成物を保管容器へ移し替えた後、容器内へ高純度窒素を吹き付けて置換することにより調整した。
 表7において、「クリーンボトル」はアイセロ化学株式会社より市販されている20リットルの角缶型のクリーンボトルを使用した。「洗浄ポリ容器」は、市販されている20リットルの角缶型のポリプロピレン容器の内部をクリーンルーム中で洗浄したものを使用した。「金属缶」は、市販の金属製の一斗缶を使用した。また、異物発生有無は、目視にて凝集物のある場合を不良として×、凝集物のない場合を良好として○と示した。容器態様は、目視にて容器外観に変化ない場合を良好と判断して○、容器外観に変化があるものを×と示した。ハードショートの有無、良品率は前述の方法にて評価した。
Figure JPOXMLDOC01-appb-T000010
 表7の結果によれば、本発明に係る電極用バインダー組成物の保管方法は有効であることが明らかになった。
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
 本発明に係る電極用バインダー組成物は、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極の材料として好適である。本発明に係る電気化学デバイス電極用スラリーは、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極の材料として好適である。本発明に係る電気化学デバイス電極は、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極として好適である。本発明に係る電極用バインダーの製造方法は、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極の材料の電極用バインダーを製造する方法である。
1…供給タンク、2…定量ポンプ、3…脈動防止器、4…ろ過器、5…排出導管、6…戻り導管、7a…第一圧力計、7b…第二圧力計、100…ろ過装置

Claims (13)

  1.  (A)α,β-不飽和ニトリル化合物に由来する構成単位5~40質量部と、
     (B)不飽和カルボン酸に由来する構成単位0.3~10質量部と、
    を含有し、かつ数平均粒子径が50~400nmである重合体粒子を含み、
     ゲル含有率が90~99%であり、
     電解液膨潤率が110~400%である、電極用バインダー組成物。
  2.  前記重合体粒子が下記一般式(1)で示される化合物に由来する構成単位をさらに含有する、請求項1に記載の電極用バインダー組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子または一価の炭化水素基、Rは二価の炭化水素基である。)
  3.  前記一般式(1)で示される化合物がヒドロキシエチルメタクリレートである、請求項2に記載の電極用バインダー組成物。
  4.  前記重合体粒子が(C)共役ジエン化合物に由来する構成単位をさらに含有する、請求項1ないし請求項3のいずれか一項に記載の電極用バインダー組成物。
  5.  pHが6以上8以下である、請求項1ないし請求項4のいずれか一項に記載の電極用バインダー組成物。
  6.  パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個である、請求項1ないし請求項5のいずれか一項に記載の電極用バインダー組成物。
  7.  ろ過処理によって、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数を0個とする工程を含む、請求項6に記載の電極用バインダー組成物の製造方法。
  8.  活物質と、請求項1ないし請求項6のいずれか一項に記載の電極用バインダー組成物と、を含有する、電極用スラリー。
  9.  集電体と、前記集電体の表面上に請求項8に記載の電極用スラリーが塗布および乾燥されて形成された活物質層と、を備えた電極。
  10.  請求項9に記載の電極を備えた電気化学デバイス。
  11.  請求項1ないし請求項6のいずれか一項に記載の電極バインダー組成物を2℃以上30℃以下の温度に制御された容器に充填して、前記容器の内容積に対して前記電極用バインダー組成物の占める容積を除いた空隙部の容積の比率を1~20%とすることを特徴とする、電極用バインダー組成物の保管方法。
  12.  前記空隙部雰囲気の酸素濃度が1%以下である、請求項11に記載の電極用バインダー組成物の保管方法。
  13.  前記容器からの金属イオンの溶出濃度が50ppm以下である、請求項11または請求項12に記載の電極用バインダー組成物の保管方法。
PCT/JP2011/078373 2010-12-28 2011-12-08 電極用バインダー組成物、電極用スラリー、電極、電気化学デバイス、ならびに電極用バインダー組成物の製造方法および保管方法 WO2012090669A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/977,255 US20130323588A1 (en) 2010-12-28 2011-12-08 Electrode binder composition, electrode slurry, electrode, electrochemical device, method for producing electrode binder composition, and method for storing electrode binder composition
CN201180058004.XA CN103238243B (zh) 2010-12-28 2011-12-08 电极用粘结剂组合物、电极用浆料、电极、电化学设备以及电极用粘结剂组合物的制造方法及保管方法
KR1020137019775A KR101373976B1 (ko) 2010-12-28 2011-12-08 전극용 결합제 조성물, 전극용 슬러리, 전극, 전기 화학 디바이스, 및 전극용 결합제 조성물의 제조 방법 및 보관 방법
JP2012514664A JP5146710B2 (ja) 2010-12-28 2011-12-08 電極用バインダー組成物およびその製造方法、電極用スラリー、電極、ならびに電気化学デバイス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-291863 2010-12-28
JP2010291863 2010-12-28
JP2011005871 2011-01-14
JP2011-005871 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012090669A1 true WO2012090669A1 (ja) 2012-07-05

Family

ID=46382788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078373 WO2012090669A1 (ja) 2010-12-28 2011-12-08 電極用バインダー組成物、電極用スラリー、電極、電気化学デバイス、ならびに電極用バインダー組成物の製造方法および保管方法

Country Status (6)

Country Link
US (1) US20130323588A1 (ja)
JP (3) JP5146710B2 (ja)
KR (1) KR101373976B1 (ja)
CN (2) CN103238243B (ja)
TW (1) TWI547532B (ja)
WO (1) WO2012090669A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000866A (zh) * 2012-12-03 2013-03-27 彩虹集团公司 一种锂离子电池负极材料及电池负极制作方法
CN105190967A (zh) * 2013-03-22 2015-12-23 日本瑞翁株式会社 锂离子二次电池负极用浆料组合物、锂离子二次电池用负极及锂离子二次电池
JP2016015270A (ja) * 2014-07-03 2016-01-28 Jsr株式会社 蓄電デバイス用バインダー組成物およびその製造方法
WO2016039067A1 (ja) * 2014-09-08 2016-03-17 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
WO2016079996A1 (ja) * 2014-11-20 2016-05-26 日本ゼオン株式会社 電気化学素子用バインダー組成物の製造方法
WO2016080144A1 (ja) * 2014-11-18 2016-05-26 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物
WO2017099121A1 (ja) * 2015-12-11 2017-06-15 富士フイルム株式会社 半導体デバイス用処理液の保管方法、処理液収容体
JP2017134988A (ja) * 2016-01-27 2017-08-03 日本ゼオン株式会社 非水系二次電池用組成物の保管方法
WO2017169832A1 (ja) * 2016-03-31 2017-10-05 富士フイルム株式会社 半導体製造用処理液、半導体製造用処理液が収容された収容容器、パターン形成方法及び電子デバイスの製造方法
JP2017204520A (ja) * 2016-05-10 2017-11-16 Jsr株式会社 半導体洗浄用組成物の保管方法および洗浄方法
WO2018173839A1 (ja) * 2017-03-24 2018-09-27 日本ゼオン株式会社 バインダー組成物の保管方法
JP2020123590A (ja) * 2014-06-04 2020-08-13 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
CN116190566A (zh) * 2023-04-27 2023-05-30 中创新航科技集团股份有限公司 一种负极片、含有其的电池

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957932B1 (ja) 2011-08-30 2012-06-20 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
US9522995B2 (en) 2011-10-18 2016-12-20 Jsr Corporation Protective film and composition for preparing the same, slurry, and electrical storage device
JP4993150B1 (ja) 2012-02-13 2012-08-08 Jsr株式会社 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
KR102057573B1 (ko) * 2012-06-18 2019-12-19 제이에스알 가부시끼가이샤 축전 디바이스 전극용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극, 및 축전 디바이스
US9758629B2 (en) 2012-09-11 2017-09-12 Jsr Corporation Composition for producing protective film, protective film, and electrical storage device
HUE042852T2 (hu) * 2012-10-26 2019-07-29 Fujifilm Wako Pure Chemical Corp Térhálósított poliakrilsav alkalmazása kötõanyagban lítium akkumulátorhoz
WO2014073647A1 (ja) * 2012-11-09 2014-05-15 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極及びその製造方法、並びにリチウムイオン二次電池
KR20160103079A (ko) 2013-12-27 2016-08-31 닛폰고세이가가쿠고교 가부시키가이샤 리튬이온 2차 전지 전극용 바인더 조성물, 리튬이온 2차 전지 전극, 및 리튬이온 2차 전지
US10249879B2 (en) * 2014-05-14 2019-04-02 Zeon Corporation Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
JP2016015254A (ja) * 2014-07-02 2016-01-28 Jsr株式会社 蓄電デバイス用バインダー組成物を容器へ充填する方法
CN106575770B (zh) * 2014-08-11 2020-07-31 日本瑞翁株式会社 二次电池电极用粘结剂组合物、二次电池电极用浆料组合物、二次电池用电极和二次电池
KR102372832B1 (ko) * 2014-09-29 2022-03-08 니폰 제온 가부시키가이샤 전기 화학 소자용 접착제 조성물, 전기 화학 소자용 접착층, 및 전기 화학 소자
JP6601413B2 (ja) * 2014-11-14 2019-11-06 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
EP3342837A4 (en) * 2015-08-28 2019-03-27 JSR Corporation ADHESIVE AND ADHESIVE FILM COMPOSITION, ENERGY STORAGE DEVICE COMPOSITION, ENERGY STORAGE DEVICE ELECTRODE PASTE, ENERGY STORAGE DEVICE ELECTRODE, PROTECTIVE FILM PASTE, AND ENERGY STORAGE DEVICE
WO2017104770A1 (ja) * 2015-12-16 2017-06-22 日本合成化学工業株式会社 二次電池負極用バインダー組成物、二次電池負極及び二次電池
CN108701833B (zh) * 2016-03-10 2022-02-01 日本瑞翁株式会社 非水系二次电池电极用粘结剂、非水系二次电池电极用浆料、非水系二次电池用电极及非水系二次电池
JP6065150B1 (ja) * 2016-06-06 2017-01-25 Jsr株式会社 蓄電デバイス電極用バインダー組成物の保管方法
EP3598544A4 (en) * 2017-03-13 2020-12-30 Zeon Corporation CONDUCTIVE MATERIAL DISPERSION LIQUID FOR ELECTROCHEMICAL ELEMENT ELECTRODES, SLURRY COMPOSITION FOR ELECTROCHEMICAL ELEMENT, ITS PRODUCTION PROCESS, ELECTRODE FOR ELECTROCHEMICAL ELEMENTS, AND ELECTROCHEMICAL ELEMENT
CN108417836B (zh) * 2018-01-31 2021-05-04 闽南师范大学 一种锂离子电池的电极粘结剂及其制备方法
KR102101392B1 (ko) * 2019-12-03 2020-04-17 주식회사 로브 이종원소 나노입자가 도핑된 리튬이차전지용 니켈―코발트―망간 복합전구체의 제조방법
CN117678084A (zh) * 2021-05-14 2024-03-08 阿科玛股份有限公司 水基粘合剂组合物及其应用
WO2023227369A1 (en) * 2022-05-27 2023-11-30 Basf Se The use of an aqueous dispersion of a polymer p as a polymeric binder in electrode slurry composition for anodes of secondary batteries

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299109A (ja) * 1999-04-15 2000-10-24 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物及びその利用
JP2002216769A (ja) * 2001-01-19 2002-08-02 Hitachi Maxell Ltd 非水二次電池
JP2006269386A (ja) * 2005-03-25 2006-10-05 Nippon Zeon Co Ltd リチウムイオン二次電池正極用バインダー組成物、およびその利用
JP2007299738A (ja) * 2006-04-07 2007-11-15 Hitachi Chem Co Ltd 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物及びこれを用いた非水電解液系エネルギーデバイス用電極並びに非水電解液系エネルギーデバイス
WO2009128589A1 (en) * 2008-04-16 2009-10-22 Lg Chem. Ltd. Anode composition comprising acrylonitrile-acrylic acid copolymer as binder, method for preparing the anode composition and lithium secondary battery using the anode composition
JP2010140684A (ja) * 2008-12-09 2010-06-24 Nippon A&L Inc 電池電極用バインダー
JP2010146870A (ja) * 2008-12-19 2010-07-01 Nippon A&L Inc 二次電池電極用バインダー

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617124A (en) * 1982-07-13 1986-10-14 Pall Corporation Polymeric microfibrous filter sheet, preparation and use
JP3710826B2 (ja) * 1996-10-01 2005-10-26 日本ゼオン株式会社 ポリマー分散組成物
JP4325061B2 (ja) * 2000-03-09 2009-09-02 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダーおよびその利用
JP4139910B2 (ja) * 2001-09-03 2008-08-27 住友化学株式会社 着色感光性樹脂組成物の保存方法
US7273906B2 (en) * 2002-02-28 2007-09-25 Zeon Corproation Dip-forming latex, dip-forming composition and dip-formed article
US7914704B2 (en) * 2003-08-04 2011-03-29 Zeon Corporation Binder for electric double layer capacitor electrode
CN1938374A (zh) * 2004-03-25 2007-03-28 Jsr株式会社 共聚物胶乳组合物、纸涂布用组合物与涂布纸
JP4846587B2 (ja) * 2004-08-10 2011-12-28 東洋紡績株式会社 ポリスルホン系選択透過性中空糸膜モジュール及びその製造方法
CN101156264B (zh) * 2005-04-07 2011-05-25 Lg化学株式会社 用于锂二次电池的具有优良的倍率特性和长期循环性能的粘合剂
WO2006121169A1 (en) * 2005-05-09 2006-11-16 Kabushiki Kaisha Toshiba Liquid fuel, fuel cartridge and fuel cell
CN100583514C (zh) * 2005-05-17 2010-01-20 Lg化学株式会社 用于包括多层堆叠电化学电池的电化学元件的聚合物粘合剂
JP5109349B2 (ja) * 2006-12-04 2012-12-26 ソニー株式会社 二次電池
WO2010032784A1 (ja) * 2008-09-18 2010-03-25 日本ゼオン株式会社 二次電池電極用バインダー組成物およびその製造方法
JP5729799B2 (ja) * 2009-02-03 2015-06-03 日本エイアンドエル株式会社 二次電池電極用バインダー
JPWO2011016563A1 (ja) * 2009-08-07 2013-01-17 Jsr株式会社 電気化学デバイス及びバインダー組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299109A (ja) * 1999-04-15 2000-10-24 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物及びその利用
JP2002216769A (ja) * 2001-01-19 2002-08-02 Hitachi Maxell Ltd 非水二次電池
JP2006269386A (ja) * 2005-03-25 2006-10-05 Nippon Zeon Co Ltd リチウムイオン二次電池正極用バインダー組成物、およびその利用
JP2007299738A (ja) * 2006-04-07 2007-11-15 Hitachi Chem Co Ltd 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物及びこれを用いた非水電解液系エネルギーデバイス用電極並びに非水電解液系エネルギーデバイス
WO2009128589A1 (en) * 2008-04-16 2009-10-22 Lg Chem. Ltd. Anode composition comprising acrylonitrile-acrylic acid copolymer as binder, method for preparing the anode composition and lithium secondary battery using the anode composition
JP2010140684A (ja) * 2008-12-09 2010-06-24 Nippon A&L Inc 電池電極用バインダー
JP2010146870A (ja) * 2008-12-19 2010-07-01 Nippon A&L Inc 二次電池電極用バインダー

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000866A (zh) * 2012-12-03 2013-03-27 彩虹集团公司 一种锂离子电池负极材料及电池负极制作方法
CN105190967A (zh) * 2013-03-22 2015-12-23 日本瑞翁株式会社 锂离子二次电池负极用浆料组合物、锂离子二次电池用负极及锂离子二次电池
EP2978051A4 (en) * 2013-03-22 2016-12-07 Zeon Corp PULP COMPOSITION FOR NEGATIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY, NEGATIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY, AND LITHIUM-ION SECONDARY BATTERY
JP2020123590A (ja) * 2014-06-04 2020-08-13 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2016015270A (ja) * 2014-07-03 2016-01-28 Jsr株式会社 蓄電デバイス用バインダー組成物およびその製造方法
WO2016039067A1 (ja) * 2014-09-08 2016-03-17 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP5999399B2 (ja) * 2014-09-08 2016-09-28 Jsr株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
JPWO2016039067A1 (ja) * 2014-09-08 2017-04-27 Jsr株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
JPWO2016080144A1 (ja) * 2014-11-18 2017-08-31 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物
WO2016080144A1 (ja) * 2014-11-18 2016-05-26 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物
JPWO2016079996A1 (ja) * 2014-11-20 2017-08-31 日本ゼオン株式会社 電気化学素子用バインダー組成物の製造方法
WO2016079996A1 (ja) * 2014-11-20 2016-05-26 日本ゼオン株式会社 電気化学素子用バインダー組成物の製造方法
WO2017099121A1 (ja) * 2015-12-11 2017-06-15 富士フイルム株式会社 半導体デバイス用処理液の保管方法、処理液収容体
KR20180074755A (ko) * 2015-12-11 2018-07-03 후지필름 가부시키가이샤 반도체 디바이스용 처리액의 보관 방법, 처리액 수용체
JPWO2017099121A1 (ja) * 2015-12-11 2018-08-30 富士フイルム株式会社 半導体デバイス用処理液の保管方法、処理液収容体
KR102067444B1 (ko) * 2015-12-11 2020-01-17 후지필름 가부시키가이샤 반도체 디바이스용 처리액의 보관 방법, 처리액 수용체
JP2017134988A (ja) * 2016-01-27 2017-08-03 日本ゼオン株式会社 非水系二次電池用組成物の保管方法
WO2017169832A1 (ja) * 2016-03-31 2017-10-05 富士フイルム株式会社 半導体製造用処理液、半導体製造用処理液が収容された収容容器、パターン形成方法及び電子デバイスの製造方法
JPWO2017169832A1 (ja) * 2016-03-31 2019-01-31 富士フイルム株式会社 半導体製造用処理液、半導体製造用処理液が収容された収容容器、パターン形成方法及び電子デバイスの製造方法
US11693321B2 (en) 2016-03-31 2023-07-04 Fujifilm Corporation Treatment liquid for manufacturing semiconductor, storage container storing treatment liquid for manufacturing semiconductor, pattern forming method, and method of manufacturing electronic device
JP2017204520A (ja) * 2016-05-10 2017-11-16 Jsr株式会社 半導体洗浄用組成物の保管方法および洗浄方法
WO2018173839A1 (ja) * 2017-03-24 2018-09-27 日本ゼオン株式会社 バインダー組成物の保管方法
JP7024781B2 (ja) 2017-03-24 2022-02-24 日本ゼオン株式会社 バインダー組成物の保管方法
JPWO2018173839A1 (ja) * 2017-03-24 2020-01-23 日本ゼオン株式会社 バインダー組成物の保管方法
CN116190566A (zh) * 2023-04-27 2023-05-30 中创新航科技集团股份有限公司 一种负极片、含有其的电池

Also Published As

Publication number Publication date
US20130323588A1 (en) 2013-12-05
JP2012248546A (ja) 2012-12-13
JPWO2012090669A1 (ja) 2014-06-05
CN103238243A (zh) 2013-08-07
KR20130094351A (ko) 2013-08-23
JP5146710B2 (ja) 2013-02-20
CN103238243B (zh) 2015-03-25
TWI547532B (zh) 2016-09-01
JP2012209258A (ja) 2012-10-25
CN104078684A (zh) 2014-10-01
TW201226502A (en) 2012-07-01
KR101373976B1 (ko) 2014-03-12
JP5077612B2 (ja) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5146710B2 (ja) 電極用バインダー組成物およびその製造方法、電極用スラリー、電極、ならびに電気化学デバイス
JP5573966B2 (ja) 非水電解液系電池の電極用バインダー組成物、非水電解液系電池用電極および非水電解液系電池
US8663839B2 (en) Electrode binder composition, electrode slurry, electrode, and electrical storage device
JP5637142B2 (ja) 二次電池用バインダー組成物、それを用いた二次電池用電極合剤、及び二次電池
JP2006260782A (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー、及び二次電池電極
EP2624338A1 (en) Electrode binder composition, electrode slurry, electrode, and electrical storage device
JP5365835B2 (ja) 電気化学デバイス電極用バインダー、電気化学デバイス電極用スラリーおよび電気化学デバイス電極
KR20180050280A (ko) 점착제용 조성물 및 점착 필름, 그리고 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극, 보호막용 슬러리 및 축전 디바이스
JP5880899B2 (ja) リチウムイオン二次電池
WO2012066911A1 (ja) 電気化学デバイス電極用バインダー、その製造方法、及び電気化学デバイス電極用バインダーの保存方法
JP5359306B2 (ja) 電気化学デバイス電極バインダー用組成物、電気化学デバイス電極用組成物、電気化学デバイス電極および電気化学デバイス
JP6066142B2 (ja) 電極用スラリー、電極、および電気化学デバイス
JP2016015270A (ja) 蓄電デバイス用バインダー組成物およびその製造方法
JPWO2015119084A1 (ja) リチウムイオン二次電池電極形成用組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池、並びにリチウムイオン二次電池電極形成用組成物の製造方法
JP2016015254A (ja) 蓄電デバイス用バインダー組成物を容器へ充填する方法
JP2014212133A (ja) リチウムイオン二次電池
JP2011009116A (ja) 電気化学デバイス電極用バインダー組成物、電気化学デバイス電極用スラリー、及び電気化学デバイス電極
JP2016076311A (ja) 電極用バインダー組成物
JP2012146684A (ja) 二次電池電極用スラリー及び二次電池電極

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012514664

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137019775

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13977255

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11853467

Country of ref document: EP

Kind code of ref document: A1