WO2016039067A1 - 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス - Google Patents

蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス Download PDF

Info

Publication number
WO2016039067A1
WO2016039067A1 PCT/JP2015/072886 JP2015072886W WO2016039067A1 WO 2016039067 A1 WO2016039067 A1 WO 2016039067A1 JP 2015072886 W JP2015072886 W JP 2015072886W WO 2016039067 A1 WO2016039067 A1 WO 2016039067A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
active material
electricity storage
device electrode
polymer
Prior art date
Application number
PCT/JP2015/072886
Other languages
English (en)
French (fr)
Inventor
卓哉 中山
颯一 西條
雅史 飯田
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to PL15840298T priority Critical patent/PL3193397T3/pl
Priority to US15/509,305 priority patent/US10403896B2/en
Priority to CN201580039880.6A priority patent/CN106663812B/zh
Priority to JP2015558299A priority patent/JP5999399B2/ja
Priority to KR1020177005272A priority patent/KR101909846B1/ko
Priority to EP15840298.2A priority patent/EP3193397B1/en
Publication of WO2016039067A1 publication Critical patent/WO2016039067A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrical storage device electrode binder composition, an electrical storage device electrode slurry containing the binder composition and an active material, an electrical storage device electrode prepared by applying and drying the slurry to a current collector, and the electrode It is related with the electrical storage device provided with.
  • a power storage device having a high voltage and a high energy density has been required as a power source for driving electronic equipment.
  • a lithium ion battery, a lithium ion capacitor, and the like are expected.
  • An electrode used for such an electricity storage device is usually produced by applying and drying a composition (electrode slurry) containing an active material and a polymer functioning as a binder on the surface of the current collector.
  • the Properties required for the polymer used as a binder include the ability to bond between active materials and the adhesion between the active material and the current collector, abrasion resistance in the step of winding the electrode, and subsequent cutting, etc.
  • An example is powder resistance that prevents fine powders of the active material from falling off from the applied and dried composition coating (hereinafter also referred to as “active material layer”).
  • the quality of the above-described active materials is almost proportionally related to the ability to bond the active materials to each other, the ability to adhere the active material to the current collector, and the resistance to dusting. Therefore, in the present specification, hereinafter, the term “adhesiveness” may be used in a comprehensive manner.
  • Patent Document 1 a method of utilizing a silicon material having a maximum lithium storage capacity of about 4,200 mAh / g as an active material is promising.
  • an active material using such a material having a large lithium storage amount is accompanied by a large volume change due to the storage and release of lithium. For this reason, when the conventionally used binder for electrodes is applied to such a material having a large lithium storage amount, the adhesive cannot be maintained, and the active material is peeled off. Capacity drop occurs.
  • the above-mentioned technique is used by controlling the surface acid amount of the particulate binder particles (see Patent Documents 2 and 3), and a binder having an epoxy group or a hydroxyl group.
  • Techniques for improving characteristics have been proposed.
  • Patent Document 6 there has been proposed a technique (see Patent Document 6) that constrains the active material with a rigid molecular structure of polyimide and suppresses the volume change of the active material.
  • lithium-containing phosphate compounds having an olivine structure are attracting attention as positively active positive electrode active materials.
  • the olivine-type lithium-containing phosphate compound has high thermal stability because phosphorus and oxygen are covalently bonded, and does not release oxygen even at high temperatures.
  • the olivine-type lithium-containing phosphate compound has a low output voltage because the occlusion / release voltage of Li ions is around 3.4V.
  • attempts have been made to improve the properties of peripheral materials such as electrode binders and electrolytes (see Patent Documents 7 to 9).
  • JP 2004-185810 A International Publication No. 2011/096463 International Publication No. 2013/191080 JP 2010-205722 A JP 2010-3703 A JP 2011-204592 A JP 2007-294323 A International Publication No. 2010/113940 JP 2012-216322 A
  • electrode binders such as those disclosed in Patent Documents 1 to 6 have practically used new active materials represented by silicon materials that have a large amount of lithium occlusion and a large volume change due to insertion and extraction of lithium.
  • the adhesion was not sufficient.
  • the active material falls off due to repeated charge and discharge, and the electrode deteriorates, so that there is a problem that the durability required for practical use cannot be obtained sufficiently.
  • a power storage device including a positive electrode using an olivine-type lithium-containing phosphate compound as a positive electrode active material. It has been difficult to sufficiently improve the charge / discharge durability characteristics of the device.
  • some embodiments according to the present invention provide a binder composition for an electricity storage device electrode that is capable of producing an electricity storage device electrode that exhibits excellent adhesion and exhibits excellent charge / discharge durability characteristics.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • One aspect of the binder composition for an electricity storage device electrode according to the present invention is: Containing a polymer (A) and a liquid medium (B),
  • the polymer (A) is polymer particles, Value of ratio (DA / DB) of average particle diameter (DA) measured by dynamic light scattering method of said polymer particles and average particle diameter (DB) measured by TEM observation of said polymer particles Is from 2 to 10.
  • the average particle diameter (DA) measured by the dynamic light scattering method of the polymer particles may be 250 nm or more and 1000 nm or less.
  • the repeating unit (A1) derived from the unsaturated carboxylic acid can be contained in an amount of 10 to 70 parts by mass.
  • the swelling ratio of the polymer (A) with respect to the electrolytic solution may be 130% or less.
  • the pH can be 3 or more and 6 or less.
  • One aspect of the slurry for the electricity storage device electrode according to the present invention is: It contains the binder composition for electrical storage device electrodes of any one example of the application example 1 thru
  • a silicon material can be contained as the active material.
  • One aspect of the electricity storage device electrode according to the present invention is: It is characterized by comprising: a current collector; and an active material layer formed by applying and drying the electricity storage device electrode slurry of Application Example 6 or Application Example 7 on the surface of the current collector.
  • 100 parts by mass of the active material layer may contain 2 parts by mass or more and 30 parts by mass or less of silicon element.
  • One aspect of the electricity storage device electrode according to the present invention is: It is characterized by comprising a current collector and an active material layer formed by applying and drying the slurry for an electricity storage device electrode of Application Example 10 on the surface of the current collector.
  • Application Example 12 One aspect of the electricity storage device according to the present invention is: The power storage device electrode according to Application Example 8 or Application Example 9 is provided.
  • One aspect of the electricity storage device according to the present invention is: The power storage device electrode according to Application Example 11 is provided.
  • the binder composition for an electricity storage device electrode according to the present invention is excellent in adhesion, an electricity storage device electrode exhibiting good charge / discharge durability characteristics can be produced.
  • the binder composition for an electricity storage device electrode according to the present invention exhibits the above-described effect particularly when the electricity storage device electrode contains an active material having a large lithium storage capacity as an active material, for example, a carbon material such as graphite or a silicon material. .
  • the above-described effects are exhibited particularly when an olivine type lithium-containing phosphate compound is used as the active material.
  • (meth) acrylic acid is a concept encompassing both “acrylic acid” and “methacrylic acid”.
  • ⁇ (meth) acrylate is a concept encompassing both “ ⁇ acrylate” and “ ⁇ methacrylate”.
  • binder composition for an electricity storage device electrode is a binder composition for producing an electrode used for an electricity storage device. And it contains a polymer (A) and a liquid medium (B).
  • A polymer
  • B liquid medium
  • the polymer (A) contained in the binder composition according to the present embodiment is latex dispersed as particles in the liquid medium (B), that is, polymer particles.
  • the stability of the slurry for an electricity storage device electrode (hereinafter, also simply referred to as “slurry”) produced by mixing with the active material is improved, and the slurry is a current collector. The applicability of is improved.
  • Ratio of average particle diameter (DA) measured by dynamic light scattering method of polymer particles contained in binder composition according to this embodiment and average particle diameter (DB) measured by TEM observation The value of (DA / DB) is 2 to 10, preferably 2.5 to 8, and more preferably 2.5 to 6.5.
  • DA / DB value of the polymer particles is within the above range, active materials having a large volume change accompanying charge / discharge can be suitably bound to each other, and the adhesion between the active material layer and the current collector is good. You can continue to maintain. As a result, it is possible to obtain an electric storage device that can be repeatedly charged and discharged, suppress the separation of the active material, and maintain good charge and discharge characteristics despite repeated expansion and contraction of the volume of the active material.
  • the binding between the active materials and the adhesion between the active material layer and the current collector are improved.
  • the mechanism that can suppress the peeling of the active material is not clear, but an active material as described later, particularly a carbon material or silicon material used as a negative electrode active material, or an olivine-type lithium-containing phosphate compound used as a positive electrode active material This is because the binder can wrap the particle surface in a wide range.
  • the particle size measurement by the dynamic light scattering method is an evaluation of polymer particles dispersed in the liquid medium (B), that is, the binder composition. That is, it is considered that the polymer particles measured by the dynamic light scattering method are in a swollen state by absorbing the liquid medium (B).
  • the particle size measurement by TEM observation the dried polymer particles are observed by TEM, and thus the particle size in a dry state is measured. Therefore, the DA / DB value of the polymer particles is considered to be an index of the swellability of the polymer particles.
  • the surface of the active material can be encased in a wide range like a net by preparing a slurry for an electrode using polymer particles having swelling properties such that the DA / DB value is 2 to 10.
  • the active material surface is covered over a wide area and covered with the polymer (A) like a network. Can be maintained. Thereby, it is presumed that the function of binding the active material is enhanced, and an electricity storage device exhibiting good charge / discharge durability characteristics can be manufactured.
  • the swelling property of the polymer particles is influenced by the monomer composition constituting the polymer (A), but it is added that it is not determined only by the monomer composition. That is, it is generally known that the swellability of polymer particles changes depending on polymerization conditions and the like even with the same monomer composition, and the examples of the present application only show an example.
  • the monomer composition is the same, when all of the unsaturated carboxylic acid is initially charged in the polymerization reaction solution and then other monomers are added in succession, a monomer other than the unsaturated carboxylic acid is added.
  • the amount of carboxylic acid derived from the unsaturated carboxylic acid exposed on the surface of the polymer particles is different from the case of adding the unsaturated carboxylic acid to the polymerization reaction solution and finally adding the unsaturated carboxylic acid.
  • the swellability of the polymer particles varies greatly only by changing the order in which the monomers are added by the polymerization method.
  • the average particle diameter (DA) of such polymer particles measured by the dynamic light scattering method is preferably in the range of 250 to 1000 nm, and more preferably in the range of 300 to 800 nm. Since the average particle diameter (DA) measured by the dynamic light scattering method of the polymer particles is within the above range, the adsorption of the polymer particles to the active material surface is effectively performed. Along with this, the polymer particles follow and become easy to move. As a result, it is possible to suppress only one of the two particles from migrating alone, so that it is possible to suppress deterioration of the electrical characteristics of the electrode.
  • the average particle size (DA) measured by the dynamic light scattering method is a particle size distribution measuring device using a particle size distribution measuring device based on the dynamic light scattering method, and the light scattering intensity is determined as a particle having a small particle size. Is the value of the particle diameter (D50) at which the cumulative frequency of the scattering intensity is 50% when the particles are accumulated in order from the first to the larger particles.
  • a particle size distribution measuring apparatus examples include HORIBA LB-550, SZ-100 series (above, manufactured by Horiba, Ltd.), FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.), and the like.
  • These particle size distribution measuring devices are not intended to evaluate only the primary particles of the polymer, but can also evaluate the secondary particles formed by aggregation of the primary particles. Therefore, the particle size distribution measured by these particle size distribution measuring devices can be used as an indicator of the dispersion state of the polymer contained in the binder composition.
  • the average particle size of the polymer particles can also be measured by a method of centrifuging a slurry, which will be described later, to precipitate the active material, and then measuring the supernatant with the above particle size distribution measuring apparatus.
  • the average particle diameter (DB) measured by TEM observation of such polymer particles is preferably in the range of 50 to 400 nm, more preferably in the range of 70 to 200 m.
  • the average particle diameter (DB) measured by TEM observation can be calculated from an average value of 50 particle diameters obtained from an image of particles observed with a transmission electron microscope.
  • Examples of the transmission electron microscope include “H-7650” manufactured by Hitachi High-Technologies Corporation.
  • composition of Polymer (A) is a repeating unit derived from an unsaturated carboxylic acid (A1) when the total number of repeating units contained in the polymer (A) is 100 parts by mass. ) Is preferably contained in an amount of 10 to 70 parts by mass. As a result, acidic functional groups such as carboxyl groups are present on the surface of the polymer particles.
  • the composition of the polymer (A) includes a repeating unit (A2) derived from a conjugated diene compound, a repeating unit (A3) derived from an aromatic vinyl compound, and a repeating unit derived from an unsaturated carboxylic acid ester ( A composition having A4) and a repeating unit (A5) derived from an ⁇ , ⁇ -unsaturated nitrile compound is preferable.
  • a repeating unit (A2) derived from a conjugated diene compound
  • A3 derived from an aromatic vinyl compound
  • a composition having A4 a repeating unit derived from an unsaturated carboxylic acid ester
  • a composition having A5 a repeating unit derived from an unsaturated carboxylic acid ester
  • each repeating unit constituting the polymer (A) will be described in detail.
  • repeating unit (A1) When the polymer (A) has a repeating unit (A1) derived from an unsaturated carboxylic acid (hereinafter also referred to as “repeating unit (A1)”), the active material is aggregated when a slurry described later is prepared. Without making it, a slurry in which the active material is well dispersed can be produced. Accordingly, since the active material layer produced by applying and drying the slurry has a nearly uniform distribution, an electricity storage device electrode with very few binding defects can be produced. That is, the binding ability between the active materials and the adhesion ability between the active material layer and the current collector can be dramatically improved. Further, since the dispersion stability of the active material becomes good, the storage stability of the slurry is also improved.
  • the unsaturated carboxylic acid may include mono- or dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and the like. Can do.
  • the polymer (A) preferably has two or more types of repeating units (A1) derived from the unsaturated carboxylic acids exemplified above, and one or more monocarboxylic acids such as acrylic acid and methacrylic acid, and fumaric acid. More preferably, one or more dicarboxylic acids such as itaconic acid are used in combination.
  • the monocarboxylic acid can enhance the effect of improving the binding ability between the active materials containing the silicon material
  • the dicarboxylic acid can enhance the effect of improving the adhesion ability between the active material layer and the current collector. Therefore, the adhesiveness of a polymer (A) can be improved greatly by using monocarboxylic acid and dicarboxylic acid together.
  • the content ratio of the repeating unit (A1) derived from the unsaturated carboxylic acid is preferably 10 to 70 parts by mass when the total number of repeating units in the polymer (A) is 100 parts by mass, The amount is more preferably part by mass, and particularly preferably 20 to 55 parts by mass.
  • the polymer (A) can bind the active materials having a polar functional group on the surface, such as an active material containing a silicon material, and Both the adhering ability between the active material layer and the current collector are improved.
  • the dispersion stability of the active material is improved during slurry preparation, aggregates are hardly generated, and an increase in slurry viscosity over time can be suppressed.
  • the content ratio of the repeating unit (A1) is less than the above range, the binding ability between the active materials by the binder composition containing the polymer (A) obtained, and the active material layer and the current collector Adhesion ability becomes insufficient, and it becomes difficult to follow changes such as volume shrinkage and volume expansion of the active material. For this reason, the active material is peeled off by repeating charging and discharging, and the electrode is deteriorated such that a crack occurs in the active material layer. Moreover, since the obtained polymer particles aggregate easily, a binder composition having poor storage stability is obtained. On the contrary, when the content rate of a repeating unit (A1) exceeds the said range, the viscosity of a binder composition will raise significantly.
  • the viscosity of the slurry obtained using this binder composition also increases significantly, making it difficult to form an active material layer homogeneously. If it does so, deterioration of an active material layer will progress, for example by applying an excess potential to the non-uniform location of an active material layer, and charge / discharge characteristics will deteriorate.
  • conjugated diene compound examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, and substituted linear conjugated pentadiene. , Substituted and side chain conjugated hexadienes, and the like, and can be one or more selected from these. Of the above, 1,3-butadiene is particularly preferable as the conjugated diene compound.
  • the content of the repeating unit (A2) derived from the conjugated diene compound is preferably 15 to 50 parts by mass, and 20 to 50 parts by mass when the total number of repeating units in the polymer (A) is 100 parts by mass. Is more preferable, and 20 to 45 parts by mass is particularly preferable.
  • the content ratio of the repeating unit (A2) is within the above range, a polymer excellent in viscoelasticity and strength can be easily produced.
  • the mass of the repeating unit (A2) derived from the conjugated diene compound is W A2
  • the mass of the repeating unit (A1) derived from the unsaturated carboxylic acid is W A1.
  • the ratio W A1 / W A2 is preferably in the range of 0.1 to 3.5, more preferably in the range of 0.2 to 3, and preferably in the range of 0.3 to 2.7. Particularly preferred.
  • W A1 / W A2 is within the above range, the polymer (A) is a bond between active materials having polar functional groups on the surface, such as an active material containing a carbon material such as graphite or a silicon material. The balance between the ability and the adhesion ability between the active material layer and the current collector becomes better.
  • repeating units derived from aromatic vinyl compounds (A3) When the polymer (A) has a repeating unit (A3) derived from an aromatic vinyl compound (hereinafter also referred to as “repeating unit (A3)”), the glass transition temperature (Tg) of the polymer (A). Therefore, the flexibility of the obtained active material layer becomes appropriate, and the adhesion ability between the current collector and the active material layer becomes good.
  • aromatic vinyl compound examples include, for example, styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene, and the like. Can do. Of the above, the aromatic vinyl compound is particularly preferably styrene.
  • the content ratio of the repeating unit (A3) derived from the aromatic vinyl compound is preferably 10 to 60 parts by mass, when the total number of repeating units in the polymer (A) is 100 parts by mass, The amount is more preferably part by mass, and particularly preferably 20 to 50 parts by mass.
  • the Tg of the resulting polymer is suitable. As a result, it is possible to enhance the binding ability between active materials containing a carbon material such as graphite or a silicon material. Further, the obtained active material layer has better flexibility and adhesion ability to the current collector.
  • the mass of the repeating unit (A2) derived from the conjugated diene compound is W A2 and the mass of the repeating unit (A3) derived from the aromatic vinyl compound is W A3
  • the mass The ratio W A3 / W A2 is preferably in the range of 0.3 to 1.5, more preferably in the range of 0.45 to 1.45, and in the range of 0.6 to 1.4. It is particularly preferred.
  • W A3 / W A2 is within the above range, the hydrophobic component in the polymer (A) can have an appropriate thermoplasticity, and especially by the fusion of the polymer when the electrode is heated and dried, especially graphite. When using such a carbon material as an active material, it is preferable because the resulting active material layer has better adhesion.
  • repeating unit (A4) derived from unsaturated carboxylic acid ester
  • the affinity for the electrolyte solution is improved, and the electricity storage While suppressing the raise of internal resistance by a polymer (A) becoming an electrical resistance component in a device, the fall of adhesiveness by absorbing an electrolyte solution excessively can be prevented.
  • the polymer (A) contains a repeating unit (A5) derived from an ⁇ , ⁇ -unsaturated nitrile compound (hereinafter also referred to as “repeating unit (A5)”)
  • the degree of swelling with respect to the electrolyte increases and the electrode While the resistance is lowered, the adhesion between the active materials and between the active material layer and the current collector is lowered, and the electrode structure cannot be sufficiently maintained, and the charge / discharge characteristics may be deteriorated.
  • the polymer (A) has both the repeating unit (A4) and the repeating unit (A5), the synergistic effect thereof increases the degree of swelling with respect to the electrolytic solution and decreases the electrode resistance. It becomes possible to improve the adhesion between the active material layer and the current collector to better maintain the electrode structure.
  • (Meth) acrylate is preferable as the unsaturated carboxylic acid ester.
  • Specific examples of (meth) acrylate include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, and i-butyl.
  • R 1 is a hydrogen atom or a monovalent hydrocarbon group.
  • R 1 is preferably a monovalent hydrocarbon group, more preferably a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and particularly preferably a methyl group.
  • R 2 is a divalent hydrocarbon group, and is preferably a methylene group or a substituted or unsubstituted alkylene group having 2 to 6 carbon atoms.
  • Specific examples of the compound represented by the general formula (1) include hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and hydroxypentyl (meth) acrylate. , Hydroxyhexyl (meth) acrylate and the like.
  • methyl (meth) acrylate, ethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hydroxymethyl (meth) acrylate, and hydroxyethyl (meth) acrylate are preferable. Particularly preferred are (meth) acrylate, hydroxymethyl (meth) acrylate, and hydroxyethyl (meth) acrylate.
  • these (meth) acrylate compounds can be used individually by 1 type or in combination of 2 or more types.
  • the content of the repeating unit (A4) derived from the unsaturated carboxylic acid ester is preferably 1 to 10 parts by mass when the total number of repeating units in the polymer (A) is 100 parts by mass.
  • the amount is more preferably 10 parts by mass, and particularly preferably 5 to 10 parts by mass.
  • the content ratio of the repeating unit (A4) is within the above range, the obtained polymer (A) has better affinity with the electrolytic solution, and the polymer (A) becomes an electric resistance component in the electricity storage device. In addition to suppressing an increase in internal resistance, it is possible to prevent a decrease in adhesion due to excessive absorption of the electrolytic solution.
  • ⁇ , ⁇ -unsaturated nitrile compound examples include, for example, acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile, vinylidene cyanide, and one or more selected from these. be able to. Of these, at least one selected from acrylonitrile and methacrylonitrile is preferable, and acrylonitrile is more preferable.
  • the content of the repeating unit (A5) derived from the ⁇ , ⁇ -unsaturated nitrile compound is 1 to 10 parts by mass when the total number of repeating units in the polymer (A) is 100 parts by mass. Preferably, it is 2 to 10 parts by mass, more preferably 5 to 10 parts by mass.
  • the content ratio of the repeating unit derived from the ⁇ , ⁇ -unsaturated nitrile compound is within the above range, the affinity with the electrolytic solution to be used is excellent, the adhesion and the strength are excellent, and the mechanical properties and electrical properties are excellent.
  • An excellent binder composition can be produced by a balance with characteristics.
  • the polymer (A) contained in the binder composition according to the present embodiment can contain, in addition to the above repeating units, repeating units derived from monomers copolymerizable therewith.
  • Examples of the copolymerizable monomer include fluorine-containing compounds having an ethylenically unsaturated bond such as vinylidene fluoride, ethylene tetrafluoride and propylene hexafluoride; ethylenic compounds such as (meth) acrylamide and N-methylolacrylamide Unsaturated carboxylic acid alkylamides; carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; ethylenically unsaturated dicarboxylic acid anhydrides; ethylene such as aminoethylacrylamide, dimethylaminomethylmethacrylamide, and methylaminopropylmethacrylamide An aminoalkylamide of an unsaturated carboxylic acid can be used, and it can be one or more selected from these.
  • fluorine-containing compounds having an ethylenically unsaturated bond such as vinylidene fluoride, ethylene tetrafluoride and propylene hexaflu
  • the method for synthesizing the polymer (A) is not particularly limited, but for example, by an emulsion polymerization method performed in the presence of a known emulsifier (surfactant), a chain transfer agent, a polymerization initiator and the like. be able to.
  • a known emulsifier surfactant
  • a chain transfer agent chain transfer agent
  • a polymerization initiator polymerization initiator
  • emulsifiers include, for example, sulfate esters of higher alcohols, alkylbenzene sulfonates, alkyl diphenyl ether disulfonates, aliphatic sulfonates, aliphatic carboxylates, dehydroabietic acid salts, naphthalene sulfonic acid / formalin condensates.
  • Anionic surfactants such as sulfate salts of nonionic surfactants; nonionic surfactants such as alkyl esters of polyethylene glycol, alkyl phenyl ethers of polyethylene glycol, and alkyl ethers of polyethylene glycol; perfluorobutyl sulfonic acid Fluorosurfactants such as salts, perfluoroalkyl group-containing phosphates, perfluoroalkyl group-containing carboxylates, and perfluoroalkylethylene oxide adducts. It can be used one or more selected from these.
  • chain transfer agents include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan; dimethylxanthogen disulfide, diisopropyl Xanthogen compounds such as xanthogen disulfide; thiuram compounds such as terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide; phenols such as 2,6-di-t-butyl-4-methylphenol and styrenated phenol Compounds; allyl compounds such as allyl alcohol; halogenated hydrocarbon compounds such as dichloromethane, dibromomethan
  • polymerization initiator examples include water-soluble polymerization initiators such as lithium persulfate, potassium persulfate, sodium persulfate, and ammonium persulfate; cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide Oil-soluble polymerization initiators such as oxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, azobisisobutyronitrile, 1,1′-azobis (cyclohexanecarbonitrile), etc. It can be appropriately selected and used.
  • water-soluble polymerization initiators such as lithium persulfate, potassium persulfate, sodium persulfate, and ammonium persulfate
  • cumene hydroperoxide benzoyl peroxide
  • t-butyl hydroperoxide acetyl peroxide
  • Oil-soluble polymerization initiators such as
  • potassium persulfate, sodium persulfate, cumene hydroperoxide or t-butyl hydroperoxide is particularly preferably used. It is also preferable to use a redox initiator that combines an oxidizing agent and a reducing agent, such as the persulfate and sodium bisulfite.
  • the use ratio of the polymerization initiator is not particularly limited, but is appropriately set in consideration of the monomer composition, the pH of the polymerization reaction system, a combination of other additives, and the like.
  • the emulsion polymerization method for synthesizing the polymer (A) may be performed by one-stage polymerization or multistage polymerization of two or more stages, but the DA / DB value is 2 to 10. In order to obtain polymer particles having swelling properties, it is preferable to carry out multistage polymerization of two or more stages.
  • the mixture of the above monomers is preferably present at 40 to 80 ° C. in the presence of a suitable emulsifier, chain transfer agent, polymerization initiator, etc. It can be by emulsion polymerization for 4-18 hours.
  • the polymerization at each stage is preferably set as follows.
  • the proportion of the monomer used for the first stage polymerization is the total mass of the monomer (the sum of the mass of the monomer used for the first stage polymerization and the mass of the monomer used for the second stage polymerization). On the other hand, it is preferably in the range of 40 to 95% by mass, and preferably in the range of 45 to 90% by mass.
  • the type of monomer used in the first stage polymerization and the usage ratio thereof may be the same as or different from the type of monomer used in the second stage polymerization and the usage ratio thereof.
  • a monomer having a high reactivity with a diene monomer such as an ⁇ , ⁇ -unsaturated nitrile compound is used as the monomer, the polymerization reaction proceeds rapidly, so that the reaction heat is increased at a time. May occur, making it difficult to control the polymerization temperature.
  • a monomer having a high reactivity with a diene monomer such as an ⁇ , ⁇ -unsaturated nitrile compound is used as the monomer
  • the polymerization reaction proceeds rapidly, so that the reaction heat is increased at a time. May occur, making it difficult to control the polymerization temperature.
  • preferably 10 to 60% by mass, more preferably 15 to 50% by mass is preferably used for the second stage polymerization.
  • the monomer used for the second stage polymerization is a single monomer containing an unsaturated carboxylic acid. It is preferred to use a body mixture.
  • the content ratio of the unsaturated carboxylic acid in the monomer mixture used for the second-stage polymerization is preferably 50% by mass or more, more preferably 75% by mass or more, and particularly preferably 100% by mass. By doing so, the surface acid of the polymer particles increases, and it becomes easy to synthesize polymer particles having swelling properties such that the DA / DB value is 2 to 10.
  • the polymerization conditions at each stage are preferably as follows from the viewpoint of the dispersibility of the resulting polymer.
  • First stage polymerization preferably a temperature of 40 to 80 ° C .; preferably a polymerization time of 2 to 24 hours; preferably a polymerization conversion rate of 50% by mass or more, more preferably 60% by mass or more.
  • Second stage polymerization preferably at a temperature of 40 to 80 ° C .; preferably 2 to 6 hours of polymerization time.
  • the polymerization reaction can be allowed to proceed with good dispersion stability of the resulting polymer.
  • This total solid content concentration is preferably 45% by mass or less, more preferably 40% by mass or less.
  • the pH is adjusted to 3 to 3 by adding a neutralizing agent to the polymerization mixture after the completion of the emulsion polymerization. It is preferable to adjust to about 6, preferably 3.5 to 5.5, more preferably 4 to 5. Although it does not specifically limit as a neutralizing agent used here, For example, metal hydroxides, such as sodium hydroxide and potassium hydroxide; Ammonia etc. can be mentioned.
  • a neutralizing agent for example, metal hydroxides, such as sodium hydroxide and potassium hydroxide; Ammonia etc. can be mentioned.
  • THF insoluble content of the polymer (A) is preferably 75% by mass or more, and more preferably 80% by mass or more. It has been empirically confirmed that this THF insoluble matter is approximately proportional to the amount of insoluble matter with respect to the electrolyte used in the electricity storage device. For this reason, if an electrical storage device is manufactured using the polymer (A) whose THF-insoluble content is in the above range, elution of the polymer (A) into the electrolytic solution can be suppressed even when charging and discharging are repeated over a long period of time. Therefore, it is preferable.
  • the polymer (A) preferably has only one endothermic peak in the temperature range of ⁇ 40 to + 30 ° C. when measured by differential scanning calorimetry (DSC) according to JIS K7121.
  • the temperature of the endothermic peak (that is, the glass transition temperature (Tg)) is more preferably in the range of ⁇ 30 to + 25 ° C., and more preferably in the range of ⁇ 25 to + 20 ° C.
  • the polymer (A) when the polymer (A) has only one endothermic peak and the peak temperature is in the above range, the polymer exhibits good adhesion and is better for the active material layer. Flexibility and tackiness can be imparted, which is preferable.
  • the binder composition according to the present embodiment contains a liquid medium (B).
  • the liquid medium (B) is preferably an aqueous medium containing water.
  • the aqueous medium can contain a non-aqueous medium other than water. Examples of the non-aqueous medium include amide compounds, hydrocarbons, alcohols, ketones, esters, amine compounds, lactones, sulfoxides, sulfone compounds, and the like. One or more selected from these can be used. it can.
  • the binder composition according to the present embodiment uses an aqueous medium as the liquid medium (B), so that the degree of adverse effects on the environment is reduced and the safety for handling workers is increased.
  • the content ratio of the non-aqueous medium contained in the aqueous medium is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, particularly not substantially contained in 100 parts by mass of the aqueous medium. preferable.
  • substantially does not contain means that a non-aqueous medium is not intentionally added as a liquid medium, and includes a non-aqueous medium inevitably mixed when a binder composition is produced. But you can.
  • the binder composition according to the present embodiment can contain additives other than the polymer (A) and the liquid medium (B) described above as necessary.
  • additives include polymers other than the polymer (A), preservatives, thickeners and the like.
  • the polymer other than the polymer (A) can be selected for the purpose of improving the adhesion with the active material according to the type of the active material contained in the slurry.
  • the polymer other than the polymer (A) can be selected for the purpose of improving the adhesion with the active material according to the type of the active material contained in the slurry.
  • poly (meth) acrylic acid poly (meth) acrylamide, polyvinylpyrrolidone, acrylic emulsion, styrene butadiene copolymer latex, and the like.
  • the binder composition according to the present embodiment contains a preservative, it can suppress the generation of foreign substances due to growth of bacteria, sputum and the like when the binder composition is stored.
  • 1,2-benzisothiazolin-3-one, 2-methyl-4,5-trimethylene-4-isothiazolin-3-one, -Methyl-4-isothiazolin-3-one, 5-chloro-2-methyl-4-isothiazolin-3-one, Nn-butyl-1,2-benzisothiazolin-3-one, 2-n-octyl- 4-isothiazolin-3-one, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, and the like can be used, and one or more of these can be used.
  • 2-methyl-4-isothiazolin-3-one, 2-n-octyl-4-isothiazolin-3-one, 5-chloro-2-methyl-4-isothiazolin-3-one, 1,2- Benzoisothiazolin-3-one is preferred.
  • the content of the preservative is preferably 50 ppm or more and less than 200 ppm, and 50 ppm or more with respect to 100 parts by mass of the total solid content of the binder composition. More preferably, it is 150 ppm or less.
  • the binder composition according to the present embodiment can further improve its applicability, charge / discharge characteristics of the obtained electricity storage device, and the like.
  • thickeners examples include cellulose compounds such as carboxymethyl cellulose, methyl cellulose, and hydroxypropyl cellulose; ammonium salts or alkali metal salts of the above cellulose compounds; polyvinyl alcohol, modified polyvinyl alcohol, and ethylene-vinyl alcohol copolymers.
  • examples include polyvinyl alcohol-based (co) polymers; water-soluble polymers such as saponified products of copolymers of unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid and fumaric acid and vinyl esters.
  • particularly preferred thickeners include alkali metal salts of carboxymethyl cellulose and alkali metal salts of poly (meth) acrylic acid.
  • Examples of commercially available products of these thickeners include alkali metal salts of carboxymethyl cellulose such as CMC1120, CMC1150, CMC2200, CMC2280, and CMC2450 (manufactured by Daicel Corporation).
  • the content of the thickener is preferably 5 parts by mass or less with respect to 100 parts by mass of the total solid content of the binder composition.
  • the amount is more preferably 0.1 to 3 parts by mass.
  • the pH of the electricity storage device electrode binder composition according to the present embodiment is preferably 3 to 6, more preferably 3.5 to 5.5, and particularly preferably 3.5 to 5. preferable. If the pH is within the above range, problems such as insufficient leveling and liquid sag can be suppressed, and it becomes easy to produce an electrode having both good electrical characteristics and adhesion.
  • PH in the present specification refers to physical properties measured as follows. It is a value measured according to JIS Z8802: 2011 with a pH meter using a glass electrode calibrated with a neutral phosphate standard solution and a borate standard solution as a standard solution of adjusted pH at 25 ° C. Examples of such a pH meter include “HM-7J” manufactured by Toa DKK Corporation and “D-51” manufactured by Horiba Ltd.
  • the surface of the active material is corroded to such an extent that the charge / discharge characteristics are not deteriorated due to the low pH, and is exposed to the atmosphere and contaminated. It is possible to clean the surface of the active material to which is adhered. As a result, it is considered that obstruction of occlusion and release of lithium ions can be suppressed between the active material and the electrolytic solution in the obtained active material layer, and good charge / discharge characteristics can be expressed.
  • the pH of the binder composition for an electricity storage device electrode is affected by the monomer composition constituting the polymer (A), but it is added that it is not determined only by the monomer composition. deep.
  • the pH of the binder composition for an electricity storage device electrode changes depending on the polymerization conditions and the like even with the same monomer composition, and the examples of the present application only show an example. .
  • the monomer composition is the same, when all of the unsaturated carboxylic acid is initially charged in the polymerization reaction solution and then other monomers are added in succession, a monomer other than the unsaturated carboxylic acid is added.
  • the amount of carboxylic acid derived from the unsaturated carboxylic acid exposed on the surface of the obtained binder composition for an electricity storage device electrode is different from the case of adding the unsaturated carboxylic acid to the polymerization reaction solution and finally adding the unsaturated carboxylic acid.
  • the pH of the binder composition for an electricity storage device electrode is greatly different only by changing the order in which the monomers are added by the polymerization method.
  • the electrolytic solution swell rate of the binder composition for an electricity storage device electrode according to the present embodiment is preferably 100 to 130%, more preferably 105 to 125%, and 110 to 120%. It is particularly preferred.
  • the electrolytic solution swelling ratio is within the above range, the polymer particles can be appropriately swollen with respect to the electrolytic solution. As a result, solvated lithium ions can easily reach the active material, effectively reducing the electrode resistance, and realizing better charge / discharge characteristics.
  • the large volume change does not generate
  • the electrolytic solution swelling ratio of the binder composition according to the present embodiment can be calculated by the following procedure.
  • the binder composition is poured into a predetermined frame and dried at room temperature to obtain a dry film. Thereafter, the dried film is taken out of the frame and further dried by heating at 160 ° C. for 0.5 hour to obtain a test film.
  • the obtained test film (W0 (g)) is immersed in a standard electrolyte solution and heated at 70 ° C. for 1 day to swell. Thereafter, the test film is taken out from the standard electrolytic solution, and after the electrolytic solution adhering to the film surface is wiped off, the post-immersion mass (W1 (g)) after the test is measured.
  • the “standard electrolyte solution” in the measurement of the electrolyte swelling rate is LiPF as an electrolyte with respect to a mixed solvent in which propylene carbonate (PC) and diethyl carbonate (DEC) are mixed at a volume ratio of 5: 5.
  • the storage device electrode slurry according to the present embodiment can be produced by using the binder composition described above.
  • “Slurry for electricity storage device electrode” refers to a dispersion used to form an active material layer on the surface of a current collector.
  • the slurry for an electricity storage device electrode according to the present embodiment contains the binder composition described above and an active material.
  • each material contained in the slurry for electrical storage device electrodes which concerns on this Embodiment is demonstrated, since it is as above-mentioned about a binder composition, description is abbreviate
  • Active material examples include carbon materials, silicon materials, oxides containing lithium atoms, lead compounds, tin compounds, arsenic compounds, antimony compounds, and aluminum compounds. And so on.
  • Examples of the carbon material include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon fibers.
  • Examples of the silicon material include silicon simple substance, silicon oxide, and silicon alloy.
  • the silicon oxide is preferably a silicon oxide represented by the composition formula SiO x (0 ⁇ x ⁇ 2, preferably 0.1 ⁇ x ⁇ 1).
  • the silicon alloy is preferably an alloy of silicon and at least one transition metal selected from the group consisting of titanium, zirconium, nickel, copper, iron and molybdenum. These transition metal silicon alloys are preferably used because they have high electronic conductivity and high strength. Moreover, since the transition metal existing on the surface of the active material is oxidized and becomes an oxide having a hydroxyl group on the surface when the active material contains these transition metals, the binding force with the binder is also improved. preferable.
  • As the silicon alloy it is more preferable to use a silicon-nickel alloy or a silicon-titanium alloy, and it is particularly preferable to use a silicon-titanium alloy.
  • the silicon content in the silicon alloy is preferably 10 mol% or more, more preferably 20 to 70 mol%, based on all the metal elements in the alloy. Note that the silicon material may be single crystal, polycrystalline, or amorphous.
  • oxide containing a lithium atom examples include one or more selected from a lithium atom-containing oxide (olivine-type lithium-containing phosphate compound) represented by the following general formula (3) and having an olivine-type crystal structure: Is mentioned.
  • a lithium atom-containing oxide olivine-type lithium-containing phosphate compound represented by the following general formula (3) and having an olivine-type crystal structure: Is mentioned.
  • Li 1-x M x (AO 4 ) (3) (In Formula (3), M is at least 1 selected from the group consisting of Mg, Ti, V, Nb, Ta, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, Ge, and Sn. (A) is at least one selected from the group consisting of Si, S, P, and V, and x is a number that satisfies the relationship of 0 ⁇ x ⁇ 1. The value of x in the general formula (3) is selected according to the valences of M and A so that the overall valence of the general formula (3) becomes zero.
  • Examples of the olivine-type lithium-containing phosphate compound include lithium cobaltate, lithium nickelate, lithium manganate, ternary nickel cobalt lithium manganate, LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 0.90 Ti 0.05 Nb. 0.05 Fe 0.30 Co 0.30 Mn 0.30 PO 4 and the like.
  • LiFePO 4 lithium iron phosphate
  • LiMnPO 4 LiMnPO 4
  • LiFePO 4 lithium iron phosphate
  • LiFePO 4 lithium iron phosphate
  • the average particle size of the olivine-type lithium-containing phosphate compound is preferably in the range of 1 to 30 ⁇ m, more preferably in the range of 1 to 25 ⁇ m, and particularly preferably in the range of 1 to 20 ⁇ m.
  • the active material exemplified below may be included in the active material layer.
  • conductive polymer such as polyacene; A X B Y O Z (where A is an alkali metal or transition metal, B is at least one selected from transition metals such as cobalt, nickel, aluminum, tin, manganese, O Represents an oxygen atom, and X, Y, and Z are numbers in the range of 1.10>X> 0.05, 4.00>Y> 0.85, and 5.00>Z> 1.5, respectively.
  • composite metal oxides represented by the above and other metal oxides.
  • the slurry for an electricity storage device electrode according to the present embodiment can be used for producing either an anode or an electricity storage device electrode, and is more preferably used for both a cathode and an anode.
  • lithium iron phosphate LiPO 4
  • Lithium iron phosphate is preferable because it is easy to obtain an iron compound as a raw material and is inexpensive.
  • Lithium iron phosphate has a fine primary particle size and is known to be a secondary agglomerate thereof. When charging and discharging are repeated, the aggregation of the active material layer collapses, causing a separation between the active materials. It is considered that one of the factors is that peeling from the current collector and the conductive network inside the active material layer are easily cut off.
  • the above-described problems do not occur, and good electrical characteristics are obtained. Can show. This is because the polymer (A) can firmly bind lithium iron phosphate and, at the same time, can maintain the state in which lithium iron phosphate is firmly bound even during charge and discharge. It is believed that there is.
  • the active material illustrated above contains a silicon material. Since the silicon material has a larger amount of occlusion of lithium per unit weight than other active materials, the active material contains the silicon material, so that the power storage capacity of the obtained power storage device can be increased. The output and energy density of the electricity storage device can be increased.
  • the negative electrode active material is more preferably a mixture of a silicon material and a carbon material. Since the carbon material has a small volume change due to charge / discharge, the use of a mixture of the silicon material and the carbon material as the negative electrode active material can alleviate the influence of the volume change of the silicon material, and the active material layer And the current collector can be further improved in adhesion.
  • a carbon-coated silicon material in which a carbon material film is formed on the surface of the silicon material can also be used.
  • a carbon-coated silicon material By using a carbon-coated silicon material, the effect of volume change associated with charging / discharging of the silicon material can be effectively mitigated by the carbon material existing on the surface, so that the active material layer and the current collector It becomes easy to improve the adhesion ability.
  • silicon (Si) When silicon (Si) is used as an active material, silicon can occlude up to 22 lithium atoms per 5 atoms (5Si + 22Li ⁇ Li 22 Si 5 ). As a result, the theoretical silicon capacity reaches 4200 mAh / g.
  • silicon causes a large volume change when occludes lithium. Specifically, the carbon material expands in volume up to about 1.2 times by occluding lithium, whereas the silicon material expands in volume up to about 4.4 times by occluding lithium. For this reason, the silicon material has the property that it is pulverized by repeated expansion and contraction, delamination from the current collector, and separation of the active materials, and the conductive network inside the active material layer is easily broken. As a result, the cycle characteristics are extremely deteriorated in a short time.
  • the above-described problems do not occur, and excellent electrical characteristics are exhibited. Can do. This is because the polymer (A) can firmly bind the silicon material, and at the same time, the polymer (A) expands and contracts even if the silicon material expands by occluding lithium, and the silicon material becomes It is thought that this is because the firmly bonded state can be maintained.
  • the proportion of the silicon material in 100% by mass of the active material is preferably 1% by mass or more, preferably 1 to 50% by mass from the viewpoint of the balance between the output of the electricity storage device and the improvement of energy density and the charge / discharge durability characteristics. More preferred is 5 to 45% by mass, still more preferred is 10 to 40% by mass.
  • the amount of silicon material used is 4 to 40 parts by mass when the total mass of the active material is 100 parts by mass from the viewpoint of maintaining sufficient adhesion. It is preferably 5 to 35 parts by mass, more preferably 5 to 30 parts by mass. Since the volume expansion of the carbon material relative to the volume expansion of the silicon material due to occlusion of lithium is small when the amount of silicon material used is within the above range, the volume change due to charge / discharge of the active material layer containing these active materials And the adhesion between the current collector and the active material layer can be further improved.
  • the shape of the active material is preferably granular.
  • the average particle diameter of the active material is preferably 0.1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the average particle diameter of the active material is a volume average particle diameter calculated from a particle size distribution measured by a particle size distribution measuring apparatus using a laser diffraction method as a measurement principle.
  • a laser diffraction particle size distribution measuring apparatus examples include HORIBA LA-300 series, HORIBA LA-920 series (above, manufactured by Horiba, Ltd.), and the like.
  • This particle size distribution measuring apparatus does not only evaluate primary particles of the active material, but also evaluates secondary particles formed by aggregation of the primary particles. Therefore, the average particle diameter obtained by the particle size distribution measuring apparatus can be used as an index of the dispersion state of the active material contained in the slurry for the electricity storage device electrode.
  • the average particle diameter of the active material can also be measured by centrifuging the slurry to settle the active material, removing the supernatant, and measuring the precipitated active material by the above method. .
  • the active material is preferably used in such a ratio that the content of the polymer (A) with respect to 100 parts by mass of the active material is 0.1 to 25 parts by mass, It is more preferable to use in such a ratio. By setting it as such a use ratio, it will be excellent in adhesiveness, and also an electrode with small electrode resistance and excellent charge / discharge characteristics can be manufactured.
  • additives may be added to the electricity storage device electrode slurry according to the present embodiment as necessary.
  • examples of such components include a conductivity-imparting agent, a thickener, and a liquid medium (however, the amount brought in from the binder composition is excluded).
  • Conductivity-imparting agent examples include carbon in a lithium ion secondary battery.
  • Examples of carbon include activated carbon, acetylene black, ketjen black, furnace black, graphite, carbon fiber, and fullerene.
  • acetylene black and furnace black can be preferably used.
  • the proportion of the conductive agent used is preferably 20 parts by mass or less, more preferably 1 to 15 parts by mass, and particularly preferably 2 to 10 parts by mass with respect to 100 parts by mass of the active material. .
  • a thickener may be added.
  • the thickener include cellulose derivatives such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose; ammonium salts or alkali metal salts of the above cellulose derivatives; poly (meth) acrylic acid, modified Polycarboxylic acids such as poly (meth) acrylic acid; alkali metal salts of the above polycarboxylic acids; polyvinyl alcohol (co) polymers such as polyvinyl alcohol, modified polyvinyl alcohol, and ethylene-vinyl alcohol copolymers; (meth) acrylic Examples thereof include water-soluble polymers such as saponified products of copolymers of unsaturated carboxylic acids such as acid, maleic acid and fumaric acid and vinyl esters.
  • the use ratio of the thickener is preferably
  • the slurry for an electricity storage device electrode according to the present embodiment contains the binder composition described above, it contains the liquid medium (B) contained in the binder composition.
  • a liquid medium other than the liquid medium (B) may be added to the slurry for the electricity storage device electrode according to the present embodiment as necessary.
  • the liquid medium that can be additionally added to the electricity storage device electrode slurry according to the present embodiment may be the same as or different from the liquid medium (B) contained in the binder composition.
  • the liquid medium (B) in the composition is preferably selected from the liquid medium described above.
  • the use ratio of the liquid medium (including the amount brought in from the binder composition) in the slurry for the electricity storage device electrode according to the present embodiment is the solid content concentration in the slurry (the total mass of components other than the liquid medium in the slurry is The ratio to the total mass of the slurry, the same shall apply hereinafter) is preferably 30 to 70% by mass, more preferably 40 to 60% by mass.
  • the slurry for power storage device electrode according to the present embodiment is manufactured by any method as long as it contains the binder composition and the active material described above. Also good.
  • an active material and optional additional components used as necessary are added to the binder composition described above, It is preferable to produce them by mixing them. In order to mix a binder composition and other components, it can carry out by stirring by a well-known method.
  • a mixing and stirring means for producing a slurry for an electricity storage device electrode it is necessary to select a mixer that can stir to such an extent that no agglomerates of active material particles remain in the slurry and sufficient dispersion conditions as necessary. is there.
  • the degree of dispersion can be measured by a particle gauge, but it is preferable to mix and disperse so that aggregates larger than at least 100 ⁇ m are eliminated.
  • the mixer that meets such conditions include a ball mill, a bead mill, a sand mill, a defoamer, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer. it can.
  • the preparation of the slurry for an electricity storage device electrode is preferably performed at least part of the process under reduced pressure. Thereby, it can prevent that a bubble arises in the active material layer obtained.
  • the degree of pressure reduction is preferably about 5.0 ⁇ 10 3 to 5.0 ⁇ 10 5 Pa as an absolute pressure.
  • An electricity storage device electrode includes a current collector and a layer formed by applying and drying the above-mentioned slurry for an electricity storage device electrode on the surface of the current collector. is there.
  • Such an electricity storage device electrode is formed by applying the above-mentioned slurry for an electricity storage device electrode on the surface of a current collector such as a metal foil to form a coating film, and then drying the coating film to form an active material layer.
  • a current collector such as a metal foil
  • the electricity storage device electrode manufactured in this way is formed by binding an active material layer containing the above-described polymer (A) and an active material, and an optional component added as necessary, on a current collector. Is.
  • Such an electricity storage device electrode has excellent adhesiveness and good charge / discharge durability characteristics.
  • the current collector is not particularly limited as long as it is made of a conductive material.
  • a current collector made of metal such as iron, copper, aluminum, nickel, and stainless steel is used.
  • the binder composition described above is used. The effect of the slurry for the electricity storage device electrode produced using the above is most apparent.
  • a punching metal, an expanded metal, a wire mesh, a foam metal, a mesh metal fiber sintered body, a metal plated resin plate, or the like is used.
  • the shape and thickness of the current collector are not particularly limited, but it is preferable that the current collector be a sheet having a thickness of about 0.001 to 0.5 mm.
  • the coating can be performed by an appropriate method such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, or a brush coating method.
  • the coating amount of the power storage device electrode slurry is not particularly limited, but the active material layer formed after the liquid medium is removed preferably has an amount of 0.005 to 5 mm, preferably 0.01 to 2 mm. It is more preferable to set the amount to be. When the thickness of the active material layer is within the above range, the active material layer can be effectively infiltrated with the electrolytic solution.
  • the metal ions can be easily transferred between the active material and the electrolytic solution in the active material layer, so that the electrode resistance can be further reduced.
  • the thickness of the active material layer is within the above range, the active material layer does not peel from the current collector even when it is processed by folding or winding the electrode. Therefore, it is also preferable in that a power storage device electrode rich in flexibility can be easily obtained.
  • drying method for removing the liquid medium from the coated film by drying (method for removing water and optionally used non-aqueous medium), for example, drying with hot air, hot air, low-humidity air; ; (Far) Drying by irradiation with infrared rays, electron beam or the like.
  • the drying speed is appropriately set so that the liquid medium can be removed as quickly as possible within a speed range in which the active material layer does not crack due to stress concentration or the active material layer does not peel from the current collector. be able to.
  • the density of the active material layer by, for example, pressing the coating film after removing the liquid medium.
  • the pressing method include a mold press and a roll press.
  • the press conditions should be set appropriately depending on the type of press equipment used and the desired density of the active material layer. This condition can be easily set by a few preliminary experiments by those skilled in the art.
  • the linear pressure of the roll press machine is 0.1 to 10 t / cm, preferably 0.5 to 5 t.
  • the film feed rate (roll rotation speed) after removal of the liquid medium is 1 to 80 m / min, preferably 5 to 50 m / min. it can.
  • Density of the active material layer after pressing, when using electrodes as the positive electrode is preferably in the 1.5 ⁇ 4.0g / cm 3, be 1.7 ⁇ 3.8g / cm 3 More preferably; when the electrode is used as a negative electrode, it is preferably 1.2 to 1.9 g / cm 3 , more preferably 1.3 to 1.8 g / cm 3 .
  • the coated film after pressing is preferably further heated under reduced pressure to completely remove the liquid medium.
  • the degree of reduced pressure in this case is preferably 50 to 200 Pa as an absolute pressure, and more preferably 75 to 150 Pa.
  • the heating temperature is preferably 100 to 200 ° C, more preferably 120 to 180 ° C.
  • the heating time is preferably 2 to 12 hours, and more preferably 4 to 8 hours.
  • the electricity storage device electrode produced in this way is excellent in adhesion and exhibits good charge / discharge durability characteristics.
  • the content of silicon element in 100 parts by mass of the active material layer is preferably 2 to 30 parts by mass, and 2 to 20 parts by mass More preferred is 3 to 10 parts by mass.
  • the content of the silicon element in the active material layer is within the above range, an active material layer having a uniform silicon element distribution can be obtained in addition to improving the storage capacity of an electricity storage device manufactured using the active element layer.
  • the content of the silicon element in the active material layer is less than the above range, the storage capacity of the storage device is reduced, which is not preferable.
  • the content of silicon element in the active material layer exceeds the above range, the storage capacity of the electricity storage device increases, but the active material layer easily peels off from the electrode with repeated charge and discharge, and electrode deterioration occurs. Moreover, if the silicon element content is large, aggregation of silicon element-containing components tends to occur, and the distribution of the silicon element in the active material layer becomes non-uniform, resulting in poor binding properties as the entire active material layer, This is not preferable because the powder fallability is insufficient.
  • the content of silicon element in the active material layer can be measured by the following procedure. That is, (1) Using a fluorescent X-ray analyzer (product name “Panalytic MagixPRO” manufactured by Spectris Co., Ltd.), a plurality of samples prepared in advance with a known silicon element content are measured, and a calibration curve is created. (2) 3 g of the entire active material layer (not to collect only a part in the depth direction) is scraped from the power storage device electrode with a spatula or the like, and mixed with a mortar or the like so that the whole becomes uniform. Press into a disk-shaped plate. If the active material layer alone cannot be formed, an adhesive having a known elemental composition may be used as appropriate.
  • a fluorescent X-ray analyzer product name “Panalytic MagixPRO” manufactured by Spectris Co., Ltd.
  • an adhesive for example, styrene / maleic acid resin, boric acid powder, cellulose powder and the like can be used. Further, even when the silicon content is high and the linearity of the calibration curve cannot be ensured, the sample can be diluted and measured using the adhesive. In addition, when using the said adhesive agent, in order to avoid the shift
  • the power storage device includes the above-described power storage device electrode, further contains an electrolytic solution, and can be manufactured according to a conventional method using components such as a separator.
  • a negative electrode and a positive electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery, and stored in a battery container, and an electrolytic solution is injected into the battery container.
  • the shape of the battery can be an appropriate shape such as a coin shape, a cylindrical shape, a square shape, or a laminate shape.
  • the electrolytic solution may be liquid or gel, and a material that effectively expresses the function as a battery may be selected from known electrolytic solutions used for the electricity storage device, depending on the type of active material.
  • the electrolytic solution can be a solution in which an electrolyte is dissolved in a suitable solvent.
  • any conventionally known lithium salt can be used, and specific examples thereof include, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 CO 2 , LiAsF. 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCF 3 SO 3 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lithium of lower fatty acid carboxylate etc.
  • an aqueous potassium hydroxide solution having a conventionally known concentration of 5 mol / liter or more can be used.
  • the solvent for dissolving the electrolyte is not particularly limited, but specific examples thereof include carbonate compounds such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; Lactone compounds such as butyl lactone; ether compounds such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxide compounds such as dimethyl sulfoxide; One or more selected from these can be used.
  • the concentration of the electrolyte in the electrolytic solution is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
  • Binder Composition A binder composition containing particles of the polymer (A) was obtained by two-stage polymerization as shown below. In the first stage polymerization, 211 parts by weight of water, 79 parts by weight of a monomer mixture consisting of 32 parts by weight of 1,3-butadiene, 42 parts by weight of styrene, 2 parts by weight of methacrylic acid and 3 parts by weight of acrylic acid were added to the reactor.
  • 0.1 part by mass of t-dodecyl mercaptan as a chain transfer agent, 1 part by mass of sodium alkyldiphenyl ether disulfonate as an emulsifier, and 0.2 part by mass of potassium persulfate as a polymerization initiator were added at 60 ° C. with stirring. Polymerization was carried out for 18 hours, and the reaction was terminated at a polymerization conversion of 96%. Subsequently, in the second stage polymerization, 189 parts by mass of water, 21 parts by mass of methacrylic acid, 0.05 parts by mass of potassium persulfate as a polymerization initiator, and 0.1 parts by mass of sodium carbonate were added to this reactor.
  • the measurement conditions for the dynamic light scattering are as follows.
  • -Dispersion medium water-Measurement temperature: 25 ° C ⁇
  • Dilution factor 0.1 wt%
  • -Scattering angle 160 ° -Light source laser wavelength: 632.8 nm
  • Electrolytic solution swelling rate (%) (W1 / W0) ⁇ 100 (2)
  • the binder composition obtained above was added in an amount corresponding to 2 parts by mass of the polymer (A) contained therein, and further stirred for 1 hour to obtain a paste.
  • Water is added to the obtained paste, and the solid content concentration is adjusted to 50% by mass.
  • using a stirring defoaming machine (trade name “Netaro Awatori” manufactured by Shinky Co., Ltd.) for 2 minutes at 200 rpm.
  • a stirring defoaming machine trade name “Netaro Awatori” manufactured by Shinky Co., Ltd.
  • a power storage device that does not contain Si in the negative electrode active material in the same manner as the slurry for power storage device electrodes (C / Si (5%)), except that the amount of artificial graphite and graphite coating film silicon oxide powder was adjusted.
  • Device electrode slurry (C), power storage device electrode slurry (C / Si (10%)) containing 10% by mass of Si in the negative electrode active material, and power storage containing 20% by mass of Si in the negative electrode active material A device electrode slurry (C / Si (20%)) was prepared.
  • the type of the slurry for the electricity storage device electrode to be applied is a slurry for the electricity storage device electrode (C), the slurry for the electricity storage device electrode (C / Si (10%)) that does not contain Si in the negative electrode active material obtained above, or An electricity storage device electrode (negative electrode) containing each active material in the active material layer in the same manner as in the method for producing an electricity storage device electrode, except that the slurry was changed to an electricity storage device electrode slurry (C / Si (20%)).
  • the positive electrode slurry was prepared by stirring and mixing at 1,800 rpm for 5 minutes and further under reduced pressure (about 2.5 ⁇ 10 4 Pa) at 1,800 rpm for 1.5 minutes.
  • the positive electrode slurry was uniformly applied to the surface of the current collector made of aluminum foil by a doctor blade method so that the film thickness after solvent removal was 80 ⁇ m, and the solvent was removed by heating at 120 ° C. for 20 minutes. .
  • the counter electrode positive electrode was obtained by pressing with a roll press so that the density of an active material layer might be 3.0 g / cm ⁇ 3 >.
  • a lithium ion battery cell (power storage device) was assembled by placing the positive electrode manufactured in the above-described method by punching and molding the positive electrode to a diameter of 16.16 mm, and sealing the outer body of the bipolar coin cell with a screw.
  • 1C in the measurement condition indicates a current value at which discharge is completed in one hour after constant-current discharge of a cell having a certain electric capacity.
  • 0.1 C is a current value at which discharge is completed over 10 hours
  • 10 C is a current value at which discharge is completed over 0.1 hours.
  • a slurry for an electricity storage device electrode was prepared in the same manner as in Example 1 except that the binder composition prepared above was used, and an electricity storage device electrode and an electricity storage device were produced, respectively, as in Example 1 above. evaluated.
  • Example 18 5.4.1. Production and evaluation of electricity storage device (1) Preparation of positive electrode slurry and production of electricity storage device positive electrode A biaxial planetary mixer (product name "TK Hibismix 2P-03" manufactured by PRIMIX Corporation) and a thickener (product) Name “CMC1120” (manufactured by Daicel Corporation) 1 part by mass (solid content conversion), Hosen Co., Ltd. lithium iron phosphate (LiFePO 4 ) 100 parts by mass, acetylene black 5 parts by mass, and water 68 parts by mass And stirring at 60 rpm for 1 hour. The lithium iron phosphate is pulverized in an agate mortar and classified using a sieve to have an average particle diameter (D50 value) of 10 ⁇ m. The lithium iron phosphate is an example of a positive electrode active material.
  • the input amount of the binder composition prepared in Example 1 was an amount containing 1 part by mass of the polymer (A).
  • the amount of the preservative used was such that the concentration of the preservative in the total amount of the positive electrode slurry was 100 ppm.
  • the slurry for positive electrode was prepared by stirring and mixing at 800 rpm for 5 minutes and further under vacuum (about 5.0 ⁇ 10 3 Pa) at 1,800 rpm for 1.5 minutes.
  • the positive electrode slurry was uniformly applied to the surface of the current collector made of aluminum foil by a doctor blade method so that the film thickness after solvent removal was 80 ⁇ m, and the solvent was removed by heating at 120 ° C. for 20 minutes. .
  • the positive electrode was obtained by pressing with a roll press so that the density of an active material layer might be set to 3.0 g / cm ⁇ 3 >.
  • Example 19-30, Comparative Examples 5-7 In Example 18, except that the binder composition used was as described in Table 3, each was prepared as an electricity storage device electrode slurry in the same manner as in Example 18 to produce an electricity storage device electrode and an electricity storage device, respectively. Then, the evaluation was made in the same manner as in Example 18 above.
  • the slurry prepared using the binder composition according to the present invention shown in Examples 18 to 30 was more than that of Comparative Examples 5 to 7. It has been found that the deterioration of the discharge capacity retention rate when the discharge is repeated is suppressed and the good charge / discharge characteristics are maintained. This is presumed to be because the collapse of the aggregation of the active material can be suppressed and the conductive network inside the active material layer can be maintained.
  • the use of the binder composition of the present invention in producing a negative electrode rather than a positive electrode has a higher effect of maintaining good charge / discharge characteristics.
  • the direction which uses a binder composition containing a SBR copolymer rather than using PVDF showed the tendency for a capacity
  • the copolymer described in Examples of the present invention having a repeating unit derived from an unsaturated carboxylic acid on the surface of the particles tends to improve the binding force, and the capacity retention rate is recognized. Was found to improve further.
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 密着性に優れると共に、良好な充放電耐久特性を示す蓄電デバイス電極を製造可能な蓄電デバイス電極用バインダー組成物を提供する。 本発明に係る蓄電デバイス電極用バインダー組成物は、重合体(A)と、液状媒体(B)と、を含有し、前記重合体(A)が重合体粒子であり、前記重合体粒子の動的光散乱法により測定された平均粒子径(DA)と、前記重合体粒子のTEM観察により測定された平均粒子径(DB)と、の比(DA/DB)の値が2~10であることを特徴とする。

Description

蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
 本発明は、蓄電デバイス電極用バインダー組成物、該バインダー組成物と活物質とを含む蓄電デバイス電極用スラリー、該スラリーを集電体に塗布および乾燥して作製された蓄電デバイス電極、ならびに該電極を備えた蓄電デバイスに関する。
 近年、電子機器の駆動用電源として、高電圧かつ高エネルギー密度を有する蓄電デバイスが要求されている。このような蓄電デバイスとしては、リチウムイオン電池やリチウムイオンキャパシタなどが期待されている。
 このような蓄電デバイスに使用される電極は、通常、活物質と、バインダーとして機能する重合体と、を含有する組成物(電極用スラリー)を集電体表面へ塗布・乾燥することにより製造される。バインダーとして使用される重合体に要求される特性としては、活物質同士の結合能力および活物質と集電体との密着能力、電極を巻き取る工程における耐擦性、その後の裁断などによっても、塗布・乾燥された組成物塗膜(以下、「活物質層」ともいう。)から活物質の微粉などが脱落しない粉落ち耐性などを挙げることができる。
 なお、上記の活物質同士の結合能力および活物質と集電体との密着能力、ならびに粉落ち耐性については、性能の良否がほぼ比例関係にあることが経験上明らかになっている。従って本明細書では、以下、これらを包括して「密着性」という用語を用いて表す場合がある。
 ところで最近になって、蓄電デバイスの高出力化および高エネルギー密度化の要求を達成する観点から、リチウム吸蔵量の大きい材料を利用する検討が進められている。例えば、特許文献1に開示されているようにリチウムの理論吸蔵量が最大で約4,200mAh/gであるケイ素材料を活物質として活用する手法が有望視されている。
 しかしながら、このようなリチウム吸蔵量の大きい材料を利用した活物質は、リチウムの吸蔵・放出により大きな体積変化を伴う。このため、従来使用されている電極用バインダーを、このようなリチウム吸蔵量の大きい材料に適用すると、密着性を維持することができずに活物質が剥離するなどし、充放電に伴って顕著な容量低下が発生する。
 電極用バインダーの密着性を改良するための技術としては、粒子状のバインダー粒子の表面酸量を制御する技術(特許文献2および3参照)や、エポキシ基やヒドロキシル基を有するバインダーを用いて上記特性を向上させる技術(特許文献4および5参照)などが提案されている。また、ポリイミドの剛直な分子構造で活物質を束縛し、活物質の体積変化を押さえ込もうとする技術(特許文献6参照)が提案されている。
 その一方で、安全性の高い正極活物質として、オリビン構造を有するリチウム含有リン酸化合物(オリビン型リチウム含有リン酸化合物)が注目されている。オリビン型リチウム含有リン酸化合物では、リンと酸素とが共有結合しているため熱的安定性が高く、高温下でも酸素を放出しない。
 オリビン型リチウム含有リン酸化合物は、Liイオンの吸蔵・放出電圧が3.4V付近であるため、出力電圧が低い。その欠点を補うために、電極バインダーや電解液等の周辺材料の特性を改良する試みがなされている(特許文献7~9参照)。
特開2004-185810号公報 国際公開第2011/096463号 国際公開第2013/191080号 特開2010-205722号公報 特開2010-3703号公報 特開2011-204592号公報 特開2007-294323号公報 国際公開第2010/113940号 特開2012-216322号公報
 しかしながら、上記特許文献1~6に開示されているような電極用バインダーは、リチウム吸蔵量が大きく、しかもリチウムの吸蔵・放出に伴う体積変化が大きいケイ素材料に代表される新たな活物質を実用化するにあたり密着性が十分とは言えなかった。このような電極用バインダーを使用すると、充放電を繰り返すことにより活物質が脱落するなどして電極が劣化するため、実用化に必要な耐久性が十分に得られないという課題があった。
 また、上記特許文献7~9に開示されているような電極バインダーや電解液等の周辺材料の特性を改良する技術では、オリビン型リチウム含有リン酸化合物を正極活物質とする正極を備えた蓄電デバイスの充放電耐久特性を十分に向上させることは困難であった。
 そこで、本発明に係る幾つかの態様は、密着性に優れると共に、良好な充放電耐久特性を示す蓄電デバイス電極を製造可能な蓄電デバイス電極用バインダー組成物を提供するものである。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 本発明に係る蓄電デバイス電極用バインダー組成物の一態様は、
 重合体(A)と、液状媒体(B)と、を含有し、
 前記重合体(A)が重合体粒子であり、
 前記重合体粒子の動的光散乱法により測定された平均粒子径(DA)と、前記重合体粒子のTEM観察により測定された平均粒子径(DB)と、の比(DA/DB)の値が2~10であることを特徴とする。
 [適用例2]
 適用例1の蓄電デバイス電極用バインダー組成物において、
 前記重合体粒子の動的光散乱法により測定された平均粒子径(DA)が250nm以上1000nm以下であることができる。
 [適用例3]
 適用例1または適用例2の蓄電デバイス電極用バインダー組成物において、
 前記重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、不飽和カルボン酸に由来する繰り返し単位(A1)を10質量部以上70質量部以下含有することができる。
 [適用例4]
 適用例1ないし適用例3のいずれか一例の蓄電デバイス電極用バインダー組成物において、
 前記重合体(A)の電解液に対する膨潤率が130%以下であることができる。
 [適用例5]
 適用例1ないし適用例4のいずれか一例の蓄電デバイス電極用バインダー組成物において、
 pHが3以上6以下であることができる。
 [適用例6]
 本発明に係る蓄電デバイス電極用スラリーの一態様は、
 適用例1ないし適用例5のいずれか一例の蓄電デバイス電極用バインダー組成物と、活物質と、を含有することを特徴とする。
 [適用例7]
 適用例6の蓄電デバイス電極用スラリーにおいて、
 前記活物質としてケイ素材料を含有することができる。
 [適用例8]
 本発明に係る蓄電デバイス電極の一態様は、
 集電体と、前記集電体の表面上に適用例6または適用例7の蓄電デバイス電極用スラリーが塗布および乾燥されて形成された活物質層と、を備えることを特徴とする。
 [適用例9]
 適用例8の蓄電デバイス電極において、
 前記活物質層100質量部中にシリコン元素を2質量部以上30質量部以下含有することができる。
 [適用例10]
 適用例6の蓄電デバイス電極用スラリーにおいて、
 前記活物質としてオリビン型リチウム含有リン酸化合物を含有することができる。
 [適用例11]
 本発明に係る蓄電デバイス電極の一態様は、
 集電体と、前記集電体の表面上に適用例10の蓄電デバイス電極用スラリーが塗布および乾燥されて形成された活物質層と、を備えることを特徴とする。
 [適用例12]
 本発明に係る蓄電デバイスの一態様は、
 適用例8または適用例9の蓄電デバイス電極を備えることを特徴とする。
 [適用例13]
 本発明に係る蓄電デバイスの一態様は、
 適用例11の蓄電デバイス電極を備えることを特徴とする。
 本発明に係る蓄電デバイス電極用バインダー組成物によれば、密着性に優れているため、良好な充放電耐久特性を示す蓄電デバイス電極を製造することができる。本発明に係る蓄電デバイス電極用バインダー組成物は、蓄電デバイス電極が活物質としてリチウム吸蔵量の大きい活物質、例えばグラファイトのような炭素材料やケイ素材料を含有する場合に特に上記の効果を発揮する。また、活物質としてオリビン型リチウム含有リン酸化合物を用いる場合にも特に上記の効果を発揮する。
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。なお、本明細書における「(メタ)アクリル酸~」とは、「アクリル酸~」および「メタクリル酸~」の双方を包括する概念である。また、「~(メタ)アクリレート」とは、「~アクリレート」および「~メタクリレート」の双方を包括する概念である。
 1.蓄電デバイス電極用バインダー組成物
 本実施の形態に係る蓄電デバイス電極用バインダー組成物(以下、単に「バインダー組成物」ともいう。)は、蓄電デバイスに使用される電極を作製するためのバインダー組成物であって、重合体(A)と、液状媒体(B)と、を含有する。以下、本実施の形態に係るバインダー組成物に含まれる各成分について詳細に説明する。
 1.1.重合体(A)
 1.1.1.重合体粒子の平均粒子径
 本実施の形態に係るバインダー組成物に含まれる重合体(A)は、液状媒体(B)中に粒子として分散されたラテックス、すなわち重合体粒子である。重合体(A)が粒子であると、活物質と混合して作製される蓄電デバイス電極用スラリー(以下、単に「スラリー」ともいう。)の安定性が良好となり、またスラリーの集電体への塗布性が良好となる。
 本実施の形態に係るバインダー組成物に含まれる重合体粒子の動的光散乱法により測定された平均粒子径(DA)と、TEM観察により測定された平均粒子径(DB)と、の比(DA/DB)の値が2~10であり、2.5~8であることが好ましく、2.5~6.5であることがより好ましい。重合体粒子のDA/DBの値が前記範囲であると、充放電に伴う体積変化が大きい活物質同士を好適に結着させることができ、しかも活物質層と集電体の密着性を良好に維持し続けることができる。その結果、充放電を繰り返し、活物質の体積の膨張と収縮の繰り返しにも関わらず、活物質の剥離を抑制し、良好な充放電特性を維持し続けることのできる蓄電デバイスが得られる。
 一方、DA/DBの値が前記範囲にない重合体粒子を用いて作製されたスラリーでは、充放電の繰り返しに抗い、活物質同士を結着することが困難となり、活物質層から徐々に活物質が剥離する。その結果、充放電を繰り返すことにより急速に容量が低下し、充放電特性が劣化してしまうため好ましくない。
 本実施の形態に係るバインダー組成物に含まれる重合体粒子のDA/DBの値が前記範囲である場合に、活物質同士の結着性や、活物質層と集電体の密着性を向上させて活物質の剥離を抑制できる機構は明らかでないが、後述するような活物質、特に負極活物質として使用される炭素材料やケイ素材料または正極活物質として使用されるオリビン型リチウム含有リン酸化合物の粒子表面を、バインダーが広範囲に包み込むことができるためと考えられる。
 動的光散乱法による粒子径測定は、液状媒体(B)中に分散された重合体粒子、すなわちバインダー組成物を評価するものである。すなわち、動的光散乱法により測定される重合体粒子は、液状媒体(B)を吸収することにより、膨潤したような状態になっていると考えられる。一方、TEM観察による粒子径測定は、乾燥させた重合体粒子をTEMにより観察するので、乾燥状態の粒子径を測定するものである。したがって、重合体粒子のDA/DBの値は、重合体粒子の膨潤性の指標となるものと考えられる。
 DA/DBの値が2~10となるような膨潤性を有する重合体粒子を用いて電極用スラリーを作製することにより、活物質表面を網のように広範囲に包み込むことができると考えられる。このような状態で液状媒体(B)を除去する等、乾燥して活物質層を作製することにより、活物質表面を広範囲にわたり、網目のように重合体(A)に覆われた状態のまま維持することができる。これにより、活物質を結着する機能が高まり、良好な充放電耐久特性を示す蓄電デバイスを製造できると推測される。
 なお、重合体粒子の膨潤性は、重合体(A)を構成する単量体組成に影響を受けることを否定しないが、単量体組成のみで定まるものではないことを付言しておく。すなわち、一般的に同じ単量体組成であっても重合条件等で重合体粒子の膨潤性が変化することが知られており、本願実施例ではその一例を示しているに過ぎない。
 例えば、同じ単量体組成であっても、重合反応液に最初から不飽和カルボン酸を全て仕込み、その後他の単量体を順次添加して加える場合と、不飽和カルボン酸以外の単量体を重合反応液へ仕込み、最後に不飽和カルボン酸を添加する場合とでは、得られる重合体粒子の表面に露出する不飽和カルボン酸に由来するカルボン酸の量は異なる。このように重合方法で単量体を加える順番を変更するだけでも、重合体粒子の膨潤性は大きく異なると考えられる。
 かかる重合体粒子の動的光散乱法により測定された平均粒子径(DA)は、250~1000nmの範囲にあることが好ましく、300~800nmの範囲にあることがより好ましい。重合体粒子の動的光散乱法により測定された平均粒子径(DA)が前記範囲内にあることにより、活物質表面への重合体粒子の吸着が効果的になされるため、活物質の移動に伴って重合体粒子も追随して移動しやすくなる。その結果、両者の粒子のうちのどちらかのみが単独でマイグレートすることを抑制できるので、電極の電気的特性の劣化を抑制することができる。
 動的光散乱法により測定された平均粒子径(DA)は、動的光散乱法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、光の散乱強度を粒子径の小さい粒子から粒子径の大きい粒子に順に累積したときの散乱強度の累積度数が50%となる粒子径(D50)の値である。このような粒度分布測定装置としては、例えばHORIBA LB-550、SZ-100シリーズ(以上、株式会社堀場製作所製)、FPAR-1000(大塚電子株式会社製)などを挙げることができる。これらの粒度分布測定装置は、重合体の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とすることができる。従って、これらの粒度分布測定装置によって測定された粒度分布は、バインダー組成物中に含有される重合体の分散状態の指標とすることができる。なお、重合体粒子の平均粒子径は、後述するスラリーを遠心分離して活物質を沈降させた後、その上澄み液を上記の粒度分布測定装置によって測定する方法によっても測定することができる。
 かかる重合体粒子のTEM観察により測定された平均粒子径(DB)は、50~400nmの範囲にあることが好ましく、70~200mの範囲にあることがより好ましい。
 TEM観察により測定された平均粒子径(DB)は、透過型電子顕微鏡により観察した粒子の画像より得られる粒子径50個の平均値より算出することができる。透過型電子顕微鏡としては、例えば株式会社日立ハイテクノロジーズ製の「H-7650」などが挙げられる。
 1.1.2.重合体(A)の組成
 重合体(A)の組成としては、重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、不飽和カルボン酸に由来する繰り返し単位(A1)を10~70質量部含有することが好ましい。これにより、重合体粒子表面にカルボキシル基等の酸性官能基が存在するようになる。また、重合体(A)の組成としては、共役ジエン化合物に由来する繰り返し単位(A2)と、芳香族ビニル化合物に由来する繰り返し単位(A3)と、不飽和カルボン酸エステルに由来する繰り返し単位(A4)と、α,β-不飽和ニトリル化合物に由来する繰り返し単位(A5)と、を有する組成であることが好ましい。以下、重合体(A)を構成する各繰り返し単位について詳細に説明する。
 1.1.2.1.不飽和カルボン酸に由来する繰り返し単位(A1)
 重合体(A)が不飽和カルボン酸に由来する繰り返し単位(A1)(以下、「繰り返し単位(A1)」ともいう。)を有することにより、後述するスラリーを作製する際に、活物質を凝集させることなく、活物質が良好に分散したスラリーを作製することができる。これにより、スラリーを塗布・乾燥して作製された活物質層が均一に近い分布となるので、結着欠陥が非常に少ない蓄電デバイス電極を作製することができる。すなわち、活物質同士の結着能力および活物質層と集電体との密着能力を飛躍的に向上できる。また、活物質の分散安定性が良好となるため、スラリーの貯蔵安定性も向上する。
 不飽和カルボン酸の具体例としては、例えばアクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等のモノまたはジカルボン酸を挙げることができ、これらから選択される一種以上であることができる。なお、重合体(A)は、上記例示した不飽和カルボン酸に由来する繰り返し単位(A1)を二種類以上有することが好ましく、アクリル酸、メタクリル酸等のモノカルボン酸の一種以上と、フマル酸、イタコン酸等のジカルボン酸の一種以上と、を併用することがより好ましい。モノカルボン酸はケイ素材料を含有する活物質同士の結合能力を向上させる効果を高め、ジカルボン酸は活物質層と集電体との密着能力を向上させる効果を高めることができる。そのため、モノカルボン酸とジカルボン酸とを併用することで、重合体(A)の密着性を飛躍的に高めることができる。
 不飽和カルボン酸に由来する繰り返し単位(A1)の含有割合は、重合体(A)中の繰り返し単位の合計を100質量部とした場合に10~70質量部であることが好ましく、15~60質量部であることがより好ましく、20~55質量部であることが特に好ましい。繰り返し単位(A1)の含有割合が前記範囲内にあると、重合体(A)は、ケイ素材料を含有する活物質などのように極性官能基を表面に有する活物質同士の結着能力および、活物質層と集電体との密着能力の両方が良好となる。また、スラリー調製時において、活物質の分散安定性が良好となるため、凝集物が生じにくく、経時的なスラリー粘度の上昇も抑えることができる。
 一方、繰り返し単位(A1)の含有割合が前記範囲未満の場合、得られる重合体(A)を含有するバインダー組成物による、活物質同士の結着能力、および活物質層と集電体との密着能力が不十分となり、活物質の体積収縮や体積膨張等の変化に追従することが困難となる。そのため、充放電を繰り返すことで活物質が剥落したり、活物質層に亀裂が発生するなど電極の劣化が発生する。また、得られる重合体粒子が容易に凝集するため、貯蔵安定性の悪いバインダー組成物となってしまう。逆に、繰り返し単位(A1)の含有割合が前記範囲を超える場合、バインダー組成物の粘度が大幅に上昇してしまう。その結果、このバインダー組成物を使用して得られたスラリーの粘度も大幅に上昇するため、活物質層を均質に形成することが困難となる。そうすると、活物質層の不均一な箇所に過剰電位が印加されるなどして活物質層の劣化が進行してしまうため、充放電特性が悪化してしまう。
 1.1.2.2.共役ジエン化合物に由来する繰り返し単位(A2)
 重合体(A)が共役ジエン化合物に由来する繰り返し単位(A2)(以下、「繰り返し単位(A2)」ともいう。)を有する場合には、粘弾性および強度に優れた重合体を製造することが容易となる。すなわち、重合体(A)が共役ジエン化合物に由来する繰り返し単位を有すると、得られる重合体に強い結着力を付与することができる。共役ジエン化合物に由来するゴム弾性が重合体に付与されるため、グラファイトのような炭素材料やケイ素材料を含有する活物質の体積収縮や体積膨張等の変化に追従することが可能となる。これにより、さらに密着性を向上させて、さらには長期に亘り充放電耐久特性を向上できると考えられる。
 共役ジエン化合物としては、例えば1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などを挙げることができ、これらのうちから選択される一種以上であることができる。共役ジエン化合物としては、上記のうち1,3-ブタジエンであることが特に好ましい。
 共役ジエン化合物に由来する繰り返し単位(A2)の含有割合は、重合体(A)中の繰り返し単位の合計を100質量部とした場合に15~50質量部であることが好ましく、20~50質量部であることがより好ましく、20~45質量部であることが特に好ましい。繰り返し単位(A2)の含有割合が前記範囲内にあると、粘弾性および強度に優れた重合体を容易に製造することができる。
 なお、重合体(A)中の、共役ジエン化合物に由来する繰り返し単位(A2)の質量をWA2、不飽和カルボン酸に由来する繰り返し単位(A1)の質量をWA1としたときに、質量比WA1/WA2が0.1~3.5の範囲内にあることが好ましく、0.2~3の範囲にあることがより好ましく、0.3~2.7の範囲にあることが特に好ましい。WA1/WA2が前記範囲内にあると、重合体(A)は、グラファイトのような炭素材料やケイ素材料を含有する活物質などのように極性官能基を表面に有する活物質同士の結合能力、および、活物質層と集電体との密着能力のバランスがより良好となる。
 1.1.2.3.芳香族ビニル化合物に由来する繰り返し単位(A3)
 重合体(A)が芳香族ビニル化合物に由来する繰り返し単位(A3)(以下、「繰り返し単位(A3)」ともいう。)を有する場合には、重合体(A)のガラス転移温度(Tg)が好適となるため、得られる活物質層の柔軟性が適度となり、集電体と活物質層との密着能力が良好となる。
 芳香族ビニル化合物の具体例としては、例えばスチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼンなどを挙げることができ、これらのうちから選択される一種以上であることができる。芳香族ビニル化合物としては、上記のうちスチレンであることが特に好ましい。
 芳香族ビニル化合物に由来する繰り返し単位(A3)の含有割合は、重合体(A)中の繰り返し単位の合計を100質量部とした場合に10~60質量部であることが好ましく、15~55質量部であることがより好ましく、20~50質量部であることが特に好ましい。繰り返し単位(A3)の含有割合が前記範囲内にあると、得られる重合体のTgが好適となる。その結果、グラファイトのような炭素材料やケイ素材料を含有する活物質同士の結合能力を高めることができる。また、得られる活物質層は、柔軟性や集電体に対する密着能力がより良好なものとなる。
 なお、重合体(A)中の、共役ジエン化合物に由来する繰り返し単位(A2)の質量をWA2、芳香族ビニル化合物に由来する繰り返し単位(A3)の質量をWA3としたときに、質量比WA3/WA2が0.3~1.5の範囲内にあることが好ましく、0.45~1.45の範囲にあることがより好ましく、0.6~1.4の範囲にあることが特に好ましい。WA3/WA2が前記範囲内にあると、重合体(A)中の疎水成分において適度な熱可塑性を持たせることができ、電極を加熱乾燥する際の重合体の融着により、特にグラファイトのような炭素材料を活物質として使用する場合、得られる活物質層の密着性がより良好となるため好ましい。
 1.1.2.4.不飽和カルボン酸エステルに由来する繰り返し単位(A4)
 重合体(A)が不飽和カルボン酸エステルに由来する繰り返し単位(A4)(以下、「繰り返し単位(A4)」ともいう。)を有する場合には、電解液との親和性が良好となり、蓄電デバイス中で重合体(A)が電気抵抗成分となることによる内部抵抗の上昇を抑制すると共に、電解液を過大に吸収することによる密着性の低下を防ぐことができる。
 重合体(A)がα,β-不飽和ニトリル化合物に由来する繰り返し単位(A5)(以下、「繰り返し単位(A5)」ともいう。)を含有する場合、電解液に対する膨潤度が大きくなり電極抵抗が低下する反面、活物質同士および活物質層と集電体との密着性が低下して電極構造を十分に保持できず充放電特性が劣化する場合がある。しかしながら、重合体(A)が繰り返し単位(A4)と繰り返し単位(A5)とを併有することで、それらの相乗効果により電解液に対する膨潤度が大きくなり電極抵抗を低下させると共に、活物質同士および活物質層と集電体との密着性を高めて電極構造をより良好に保持することが可能となる。
 不飽和カルボン酸エステルとしては、(メタ)アクリレートが好ましい。(メタ)アクリレートの具体例としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、i-アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレートなどを挙げることができ、これらのうちから選択される1種以上であることができる。
 また、(メタ)アクリレートとしては、下記一般式(1)で示される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)中、Rは水素原子または一価の炭化水素基である。Rは一価の炭化水素基であることが好ましく、炭素数が1~6の置換もしくは非置換のアルキル基であることがより好ましく、メチル基であることが特に好ましい。また、Rは二価の炭化水素基であるが、メチレン基または炭素数が2~6の置換もしくは非置換のアルキレン基であることが好ましい。上記一般式(1)で示される化合物の具体例としては、ヒドロキシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシペンチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等が挙げられる。
 上記例示した(メタ)アクリレートの中でも、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヒドロキシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレートであることが好ましく、メチル(メタ)アクリレート、ヒドロキシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレートであることが特に好ましい。なお、これら(メタ)アクリレート化合物は、一種単独でまたは二種以上を組み合わせて用いることができる。
 不飽和カルボン酸エステルに由来する繰り返し単位(A4)の含有割合は、重合体(A)中の繰り返し単位の合計を100質量部とした場合に1~10質量部であることが好ましく、2~10質量部であることがより好ましく、5~10質量部であることが特に好ましい。繰り返し単位(A4)の含有割合が前記範囲内にあると、得られる重合体(A)は電解液との親和性がより良好となり、蓄電デバイス中で重合体(A)が電気抵抗成分となることによる内部抵抗の上昇を抑制すると共に、電解液を過大に吸収することによる密着性の低下を防ぐことができる。
 1.1.2.5.α,β-不飽和ニトリル化合物に由来する繰り返し単位(A5)
 重合体(A)がα,β-不飽和ニトリル化合物に由来する繰り返し単位(A5)を有する場合には、重合体(A)は後述する電解液によって適度に膨潤することができる。すなわち、ニトリル基の存在によって重合体鎖からなる網目構造に電解液が侵入し、網目間隔が広がるため、溶媒和したリチウムイオンがこの網目構造をすり抜けて移動し易くなる。その結果、リチウムイオンの拡散性が向上すると考えられる。これにより、電極抵抗を低減させることができるので、電極のより良好な充放電特性が実現される。
 α,β-不飽和ニトリル化合物の具体例としては、例えばアクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エチルアクリロニトリル、シアン化ビニリデンなどを挙げることができ、これらから選択される一種以上であることができる。これらのうち、アクリロニトリルおよびメタクリロニトリルから選択される一種以上であることが好ましく、アクリロニトリルであることがより好ましい。
 α,β-不飽和ニトリル化合物に由来する繰り返し単位(A5)の含有割合は、重合体(A)中の繰り返し単位の合計を100質量部とした場合に、1~10質量部であることが好ましく、2~10質量部であることがより好ましく、5~10質量部であることが特に好ましい。α,β-不飽和ニトリル化合物に由来する繰り返し単位の含有割合が前記範囲にあると、使用する電解液との親和性により優れ、密着性および強度にもより優れ、かつ機械的特性と電気的特性とのバランスにより優れたバインダー組成物を製造することができる。
 1.1.2.6.その他の繰り返し単位
 本実施の形態に係るバインダー組成物に含まれる重合体(A)は、上記繰り返し単位以外に、これらと共重合可能な単量体に由来する繰り返し単位を含有することができる。
 共重合可能な単量体としては、例えばフッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレン等のエチレン性不飽和結合を有する含フッ素化合物;(メタ)アクリルアミド、N-メチロールアクリルアミド等のエチレン性不飽和カルボン酸のアルキルアミド;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル;エチレン性不飽和ジカルボン酸の酸無水物;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミド等のエチレン性不飽和カルボン酸のアミノアルキルアミド等を挙げることができ、これらのうちから選択される一種以上であることができる。
 1.1.3.重合体(A)の合成方法
 重合体(A)の合成方法については特に限定されないが、例えば公知の乳化剤(界面活性剤)、連鎖移動剤、重合開始剤などの存在下で行う乳化重合法によることができる。
 乳化剤の具体例としては、例えば高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、デヒドロアビエチン酸塩、ナフタレンスルホン酸・ホルマリン縮合物、非イオン性界面活性剤の硫酸エステル塩などのアニオン性界面活性剤;ポリエチレングリコールのアルキルエステル、ポリエチレングリコールのアルキルフェニルエーテル、ポリエチレングリコールのアルキルエーテルなどのノニオン性界面活性剤;パーフルオロブチルスルホン酸塩、パーフルオロアルキル基含有リン酸エステル、パーフルオロアルキル基含有カルボン酸塩、パーフルオロアルキルエチレンオキシド付加物などのフッ素系界面活性剤などを挙げることができ、これらのうちから選択される一種以上を使用することができる。
 連鎖移動剤の具体例としては、例えばn-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタンなどのアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイドなどのキサントゲン化合物;ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィドなどのチウラム化合物;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノールなどのフェノール化合物;アリルアルコールなどのアリル化合物;ジクロルメタン、ジブロモメタン、四臭化炭素などのハロゲン化炭化水素化合物;α-ベンジルオキシスチレン、α-ベンジルオキシアクリロニトリル、α-ベンジルオキシアクリルアミドなどのビニルエーテル化合物などのほか、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート、α-メチルスチレンダイマーなどを挙げることができ、これらのうちから選択される一種以上を使用することができる。
 重合開始剤の具体例としては、例えば過硫酸リチウム、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの水溶性重合開始剤;クメンハイドロパーオキサイド、過酸化ベンゾイル、t-ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサンカルボニトリル)などの油溶性重合開始剤などを適宜選択して用いることができる。これらのうち、特に過硫酸カリウム、過硫酸ナトリウム、クメンハイドロパーオキサイドまたはt-ブチルハイドロパーオキサイドを使用することが好ましい。また、上記過硫酸塩と重亜硫酸ナトリウムなどの、酸化剤と還元剤を組み合わせたレドックス開始剤を使用することも好ましい。重合開始剤の使用割合は特に制限されないが、単量体組成、重合反応系のpH、他の添加剤などの組み合わせなどを考慮して適宜設定される。
 重合体(A)を合成するための乳化重合法は、一段重合によって行ってもよく、二段重合以上の多段重合によって行ってもよいが、DA/DBの値が2~10となるような膨潤性を有する重合体粒子を得るためには、二段以上の多段重合を行うことが好ましい。
 重合体(A)の合成を一段重合によって行う場合、上記の単量体の混合物を、適当な乳化剤、連鎖移動剤、重合開始剤などの存在下で、好ましくは40~80℃において、好ましくは4~18時間の乳化重合によることができる。
 重合体(A)の合成を二段重合によって行う場合、各段階の重合は、以下のように設定することが好ましい。
 一段目重合に使用する単量体の使用割合は、単量体の全質量(一段目重合に使用する単量体の質量と二段目重合に使用する単量体の質量との合計)に対して、40~95質量%の範囲とすることが好ましく、45~90質量%の範囲とすることが好ましい。一段目重合をこのような量の単量体で行うことにより、分散安定性に優れ、凝集物が生じ難い重合体(A)の粒子を得ることができると共に、バインダー組成物の経時的な粘度上昇も抑制されることとなり好ましい。
 一段目重合に使用する単量体の種類およびその使用割合と、二段目重合に使用する単量体の種類およびその使用割合とは、同じであってよく、異なっていてもよい。しかしながら、単量体として、α,β-不飽和ニトリル化合物のようなジエン系単量体との反応性の高い単量体を使用する場合、急激に重合反応が進むために反応熱が一度に発生し、重合の温度制御が困難となる場合がある。このため、重合の温度制御をより安定化させるために、これらの単量体のうち、好ましくは10~60質量%、より好ましくは15~50質量%、二段目重合に供することが好ましい。
 また、DA/DBの値が2~10となるような膨潤性を有する重合体粒子を合成する観点から、二段目重合に使用する単量体には、不飽和カルボン酸を含有する単量体混合物を使用することが好ましい。この二段目重合に使用する単量体混合物中の不飽和カルボン酸の含有割合は、好ましくは50質量%以上、より好ましくは75質量%以上、特に好ましくは100質量%である。このようにすることで、重合体粒子の表面酸が多くなり、DA/DBの値が2~10となるような膨潤性を有する重合体粒子が合成しやすくなる。
 各段階の重合条件は、得られる重合体の分散性の観点から、以下のようにすることが好ましい。
・一段目重合;好ましくは40~80℃の温度;好ましくは2~24時間の重合時間;好ましくは50質量%以上、より好ましくは60質量%以上の重合転化率。
・二段目重合;好ましくは40~80℃の温度;好ましくは2~6時間の重合時間。
 乳化重合における全固形分濃度を50質量%以下とすることにより、得られる重合体の分散安定性が良好な状態で重合反応を進行させることができる。この全固形分濃度は、好ましくは45質量%以下であり、より好ましくは40質量%以下である。
 重合体(A)の合成を一段重合として行う場合であっても、二段重合法による場合であっても、乳化重合終了後には重合混合物に中和剤を添加することにより、pHを3~6程度、好ましくは3.5~5.5、より好ましくは4~5に調整することが好ましい。ここで使用する中和剤としては、特に限定されるものではないが、例えば水酸化ナトリウム、水酸化カリウムなどの金属水酸化物;アンモニアなどを挙げることができる。上記のpH範囲に設定することにより、重合体(A)の安定性が良好となる。中和処理を行った後に、重合混合物を濃縮することにより、重合体(A)の良好な安定性を維持しながら固形分濃度を高くすることができる。
 1.1.4.重合体(A)の物性
 1.1.4.1.テトラヒドロフラン(THF)不溶分
 重合体(A)のTHF不溶分は、75質量%以上であることが好ましく、80質量%以上であることがより好ましい。このTHF不溶分は、蓄電デバイスにおいて使用される電解液に対する不溶分量とほぼ比例することが経験的に確認されている。このため、THF不溶分が前記範囲である重合体(A)を用いて蓄電デバイスを製造すれば、長期間にわたって充放電を繰り返した場合でも電解液への重合体(A)の溶出を抑制できるため好ましい。
 1.1.4.2.ガラス転移温度(Tg)
 重合体(A)は、JIS K7121に準拠する示差走査熱量測定(DSC)によって測定したときに、-40~+30℃の温度範囲において吸熱ピークを1つしか有さないものであることが好ましい。この吸熱ピークの温度(すなわちガラス転移温度(Tg))は、-30~+25℃の範囲にあることがより好ましく、-25~+20℃であることがより好ましい。DSC分析における重合体(A)の吸熱ピークが1つのみであり、かつ該ピーク温度が上記範囲にある場合、該重合体は良好な密着性を示すとともに、活物質層に対してより良好な柔軟性と粘着性とを付与することができ好ましい。
 1.2.液状媒体(B)
 本実施の形態に係るバインダー組成物は、液状媒体(B)を含有する。液状媒体(B)としては、水を含有する水系媒体であることが好ましい。上記水系媒体には、水以外の非水系媒体を含有させることができる。この非水系媒体としては、例えばアミド化合物、炭化水素、アルコール、ケトン、エステル、アミン化合物、ラクトン、スルホキシド、スルホン化合物などを挙げることができ、これらのうちから選択される一種以上を使用することができる。本実施の形態に係るバインダー組成物は、液状媒体(B)として水系媒体を使用することにより、環境に対して悪影響を及ぼす程度が低くなり、取扱作業者に対する安全性も高くなる。
 水系媒体中に含まれる非水系媒体の含有割合は、水系媒体100質量部中、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、実質的に含有しないことが特に好ましい。ここで、「実質的に含有しない」とは、液状媒体として非水系媒体を意図的に添加しないという程度の意味であり、バインダー組成物を作製する際に不可避的に混入する非水系媒体を含んでもよい。
 1.3.その他の添加剤
 本実施の形態に係るバインダー組成物は、必要に応じて前述した重合体(A)、液状媒体(B)以外の添加剤を含有することができる。このような添加剤としては、例えば重合体(A)以外の重合体、防腐剤、増粘剤等が挙げられる。
<重合体(A)以外の重合体>
 重合体(A)以外の重合体は、スラリー中に含まれる活物質の種類に応じて、該活物質との密着性を向上させる目的などで選択することができ、例えばポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミド、ポリビニルピロリドン、アクリルエマルジョン、スチレンブタジエン共重合ラテックス等が挙げられる。本実施の形態に係るバインダー組成物に重合体(A)以外の重合体を添加する場合、重合体(A)以外の重合体の含有割合は、質量基準で、重合体(A):重合体(A)以外の重合体=1:99~80:20とすることが好ましい。
<防腐剤>
 本実施の形態に係るバインダー組成物は、防腐剤を含有することにより、バインダー組成物を貯蔵した際に、細菌や黴などが増殖して異物が発生することを抑制することができる。
 このような防腐剤としては、公知のものを使用することができるが、例えば1,2-ベンゾイソチアゾリン-3-オン、2-メチル-4,5-トリメチレン-4-イソチアゾリン-3-オン、2-メチル-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン、N-n-ブチル-1,2-ベンズイソチアゾリン-3-オン、2-n-オクチル-4-イソチアゾリン-3-オン、4,5-ジクロロ-2-n-オクチル-4-イソチアゾリン-3-オン等が挙げられ、これらの1種または2種以上を用いることができる。これらの中でも、2-メチル-4-イソチアゾリン-3-オン、2-n-オクチル-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン、1,2-ベンゾイソチアゾリン-3-オンが好ましい。
 本実施の形態に係るバインダー組成物が防腐剤を含有する場合、防腐剤の含有割合は、バインダー組成物の全固形分量100質量部に対して、50ppm以上200ppm未満であることが好ましく、50ppm以上150ppm以下であることがより好ましい。
<増粘剤>
 本実施の形態に係るバインダー組成物は、増粘剤を含有することにより、その塗布性や得られる蓄電デバイスの充放電特性等をさらに向上させることができる。
 このような増粘剤としては、例えばカルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース化合物;上記セルロース化合物のアンモニウム塩またはアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、エチレン-ビニルアルコール共重合体などのポリビニルアルコール系(共)重合体;(メタ)アクリル酸、マレイン酸およびフマル酸などの不飽和カルボン酸とビニルエステルとの共重合体の鹸化物などの水溶性ポリマーなどを挙げることができる。これらの中でも特に好ましい増粘剤としては、カルボキシメチルセルロースのアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩などである。
 これら増粘剤の市販品としては、例えばCMC1120、CMC1150、CMC2200、CMC2280、CMC2450(以上、株式会社ダイセル製)等のカルボキシメチルセルロースのアルカリ金属塩を挙げることができる。
 本実施の形態に係るバインダー組成物が増粘剤を含有する場合、増粘剤の含有割合は、バインダー組成物の全固形分量100質量部に対して、5質量部以下であることが好ましく、0.1~3質量部であることがより好ましい。
 1.4.バインダー組成物の物性
 1.4.1.pH
 本実施の形態に係る蓄電デバイス電極用バインダー組成物のpHは、3~6であることが好ましく、3.5~5.5であることがより好ましく、3.5~5であることが特に好ましい。pHが前記範囲内にあれば、レベリング性不足や液ダレ等の問題の発生を抑制することができ、良好な電気的特性と密着性とを両立させた電極を製造することが容易となる。
 本明細書における「pH」とは、以下のようにして測定される物性をいう。25℃で、調整pHの標準液に中性リン酸塩標準液およびほう酸塩標準液で校正したガラス電極を用いたpH計で、JIS Z8802:2011に準拠して測定した値である。このようなpH計としては、例えば東亜ディーケーケー株式会社製「HM-7J」や株式会社堀場製作所製「D-51」等が挙げられる。
 pHが前記範囲である蓄電デバイス電極用バインダー組成物を用いて作製されたスラリーでは、pHが低いことにより活物質表面を、充放電特性を劣化させない程度に腐食し、大気中に暴露されて汚染が付着した活物質表面をクリーニングすることができる。その結果、得られる活物質層において活物質と電解液との間でリチウムイオンの吸蔵と放出の障害を抑制することができ、良好な充放電特性を発現させることが可能となると考えられる。
 なお、蓄電デバイス電極用バインダー組成物のpHは、重合体(A)を構成する単量体組成に影響を受けることを否定しないが、単量体組成のみで定まるものではないことを付言しておく。すなわち、一般的に同じ単量体組成であっても重合条件等で蓄電デバイス電極用バインダー組成物のpHが変化することが知られており、本願実施例ではその一例を示しているに過ぎない。
 例えば、同じ単量体組成であっても、重合反応液に最初から不飽和カルボン酸を全て仕込み、その後他の単量体を順次添加して加える場合と、不飽和カルボン酸以外の単量体を重合反応液へ仕込み、最後に不飽和カルボン酸を添加する場合とでは、得られる蓄電デバイス電極用バインダー組成物の表面に露出する不飽和カルボン酸に由来するカルボン酸の量は異なる。このように重合方法で単量体を加える順番を変更するだけでも、蓄電デバイス電極用バインダー組成物のpHは大きく異なると考えられる。
 1.4.2.電解液膨潤率
 本実施の形態に係る蓄電デバイス電極用バインダー組成物の電解液膨潤率は、100~130%であることが好ましく、105~125%であることがより好ましく、110~120%であることが特に好ましい。電解液膨潤率が前記範囲内にあると、重合体粒子は電解液に対して適度に膨潤することができる。その結果、溶媒和したリチウムイオンが容易に活物質へ到達することができ、効果的に電極抵抗を低下させて、より良好な充放電特性を実現できる。また、前記範囲内の電解液膨潤率であれば、大きな体積変化が発生しないため結着性にも優れる。
 本実施の形態に係るバインダー組成物の電解液膨潤率は、以下の手順により算出することができる。
 まず、バインダー組成物を所定の枠内に流し込み、常温にて乾燥させて乾燥フィルムを得る。その後、乾燥フィルムを枠から取り出し、さらに160℃×0.5時間で加熱乾燥させて試験用フィルムを得る。次に、得られた試験用フィルム(W0(g))を標準電解液に浸漬して70℃加温を1日間行い膨潤させる。その後、試験用フィルムを標準電解液から取り出し、フィルム表面に付着した電解液を拭き取った後に試験後の浸漬後質量(W1(g))を測定する。電解液膨潤率(%)は、上記で得られた値から、下記式(2)に従い算出することができる。
 電解液膨潤率(%)=(W1/W0)×100 ・・・・・(2)
 なお、上記の電解液膨潤率の測定における「標準電解液」とは、プロピレンカーボネート(PC)とジエチルカーボネート(DEC)とを体積比にして5:5に混合した混合溶媒に対して電解質としてLiPFを1Mの濃度となるように溶解させた電解液をいう。
 2.蓄電デバイス電極用スラリー
 本実施の形態に係る蓄電デバイス電極用スラリーは、上記で説明したバインダー組成物を用いることにより作製することができる。「蓄電デバイス電極用スラリー」とは、集電体の表面上に活物質層を形成するために用いられる分散液のことをいう。本実施の形態に係る蓄電デバイス電極用スラリーは、上述のバインダー組成物と、活物質と、を含有する。以下、本実施の形態に係る蓄電デバイス電極用スラリーに含まれる各材料について説明するが、バインダー組成物については上述の通りであるので説明を省略する。
 2.1.活物質
 本実施の形態に係る蓄電デバイス電極用スラリーに使用される活物質としては、例えば炭素材料、ケイ素材料、リチウム原子を含む酸化物、鉛化合物、錫化合物、砒素化合物、アンチモン化合物、アルミニウム化合物などを挙げることができる。
 上記炭素材料としては、例えばアモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などが挙げられる。
 上記ケイ素材料としては、例えばケイ素単体、ケイ素酸化物、ケイ素合金などを挙げることができるほか、例えばSiC、SiO(0<x≦3、0<y≦5)、Si、SiO、SiO(0<x≦2)で表記されるSi酸化物複合体(例えば特開2004-185810号公報や特開2005-259697号公報に記載されている材料など)、特開2004-185810号公報に記載されたケイ素材料を使用することができる。上記ケイ素酸化物としては、組成式SiO(0<x<2、好ましくは0.1≦x≦1)で表されるケイ素酸化物が好ましい。上記ケイ素合金としては、ケイ素と、チタン、ジルコニウム、ニッケル、銅、鉄およびモリブデンよりなる群から選ばれる少なくとも1種の遷移金属との合金が好ましい。これらの遷移金属のケイ素合金は、高い電子伝導度を有し、かつ高い強度を有することから好ましく用いられる。また、活物質がこれらの遷移金属を含むことにより、活物質の表面に存在する遷移金属が酸化されて表面に水酸基を有する酸化物となるから、バインダーとの結着力がより良好になる点でも好ましい。ケイ素合金としては、ケイ素-ニッケル合金またはケイ素-チタン合金を使用することがより好ましく、ケイ素-チタン合金を使用することが特に好ましい。ケイ素合金におけるケイ素の含有割合は、該合金中の金属元素の全部に対して10モル%以上とすることが好ましく、20~70モル%とすることがより好ましい。なお、ケイ素材料は、単結晶、多結晶および非晶質のいずれであってもよい。
 上記リチウム原子を含む酸化物としては、例えば、下記一般式(3)で表され、かつオリビン型結晶構造を有するリチウム原子含有酸化物(オリビン型リチウム含有リン酸化合物)から選択される1種以上が挙げられる。
 Li1-x(AO) ・・・・・(3)
(式(3)中、Mは、Mg、Ti、V、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Ga、Ge及びSnよりなる群から選択される少なくとも1種の金属のイオンであり、Aは、Si、S、P及びVよりなる群から選択される少なくとも1種であり、xは、0<x<1の関係を満たす数である。)
 なお、前記一般式(3)におけるxの値は、M及びAの価数に応じて、前記一般式(3)全体の価数が0価となるように選択される。
 オリビン型リチウム含有リン酸化合物としては、例えばコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、三元系ニッケルコバルトマンガン酸リチウム、LiFePO、LiCoPO、LiMnPO、Li0.90Ti0.05Nb0.05Fe0.30Co0.30Mn0.30POなどが挙げられる。これらのうち、特にLiFePO(リン酸鉄リチウム)は、原料となる鉄化合物の入手が容易であるとともに安価であるため好ましい。
 オリビン型リチウム含有リン酸化合物の平均粒子径は、1~30μmの範囲にあることが好ましく、1~25μmの範囲にあることがより好ましく、1~20μmの範囲にあることが特に好ましい。
 また、活物質層中には、以下に例示する活物質を含んでもよい。例えばポリアセン等の導電性高分子;A(但し、Aはアルカリ金属または遷移金属、Bはコバルト、ニッケル、アルミニウム、スズ、マンガン等の遷移金属から選択される少なくとも1種、Oは酸素原子を表し、X、YおよびZはそれぞれ1.10>X>0.05、4.00>Y>0.85、5.00>Z>1.5の範囲の数である。)で表される複合金属酸化物や、その他の金属酸化物等が挙げられる。
 本実施の形態に係る蓄電デバイス電極用スラリーは、正極および負極のいずれの蓄電デバイス電極を作製する際にも使用することができ、正極および負極の両方に使用することが更に好ましい。
 正極を作製する場合には、上記例示した活物質の中でもリチウム原子を含む酸化物を使用することが好ましく、オリビン型リチウム含有リン酸化合物がより好ましく、リン酸鉄リチウム(LiPO)が特に好ましい。リン酸鉄リチウムは、原料となる鉄化合物の入手が容易であるとともに安価であるため好ましい。
 正極活物質としてリン酸鉄リチウムを使用する場合、充放電特性が十分でなく密着性が劣るという課題があった。リン酸鉄リチウムは微細な一次粒径を有し、その二次凝集体であることが知られており、充放電を繰り返す際に活物質層中で凝集が崩壊し活物質同士の乖離を引き起こし、集電体からの剥離や、活物質層内部の導電ネットワークが寸断されやすいことが要因の一つであると考えられる。
 しかしながら、本実施の形態に係る蓄電デバイス電極用スラリーを用いて作製された蓄電デバイス電極では、リン酸鉄リチウムを使用した場合でも上述のような問題が発生することなく、良好な電気的特性を示すことができる。これは、重合体(A)がリン酸鉄リチウムを強固に結着させることができると同時に、充放電中においてもリン酸鉄リチウムを強固に結着させた状態を維持することができるからであると考えられる。
 負極を作製する場合には、上記例示した活物質の中でもケイ素材料を含有するものであることが好ましい。ケイ素材料は単位重量当たりのリチウムの吸蔵量がその他の活物質と比較して大きいことから、活物質がケイ素材料を含有することにより、得られる蓄電デバイスの蓄電容量を高めることができ、その結果、蓄電デバイスの出力およびエネルギー密度を高くすることができる。
 また、負極用活物質としては、ケイ素材料と炭素材料との混合物であることがより好ましい。炭素材料は、充放電に伴う体積変化が小さいから、負極用活物質としてケイ素材料と炭素材料との混合物を使用することにより、ケイ素材料の体積変化の影響を緩和することができ、活物質層と集電体との密着能力をより向上させることができる。かかる混合物としては、ケイ素材料の表面に炭素材料の被膜が形成された炭素被膜ケイ素材料を用いることもできる。炭素被膜ケイ素材料を用いることで、ケイ素材料の充放電に伴う体積変化の影響を表面に存在する炭素材料によって効果的に緩和することができるようになるため、活物質層と集電体との密着能力を向上させることが容易となる。
 シリコン(Si)を活物質として使用する場合、シリコンは5原子あたり最大22個のリチウムを吸蔵することができる(5Si+22Li→Li22Si)。この結果、シリコン理論容量は4200mAh/gにも達する。しかしながら、シリコンはリチウムを吸蔵する際に大きな体積変化を生じる。具体的には、炭素材料はリチウムを吸蔵することにより最大1.2倍程度に体積膨張するのに対して、ケイ素材料はリチウムを吸蔵することにより最大4.4倍程度に体積膨張する。このため、ケイ素材料は膨張と収縮の繰り返しによって微粉化、集電体からの剥離や、活物質同士の乖離を引き起こし、活物質層内部の導電ネットワークが寸断されやすいという性質がある。これにより、短時間でサイクル特性が極端に劣化してしまうのである。
 しかしながら、本実施の形態に係る蓄電デバイス電極用スラリーを用いて作製された蓄電デバイス電極では、ケイ素材料を使用した場合でも上述のような問題が発生することなく、良好な電気的特性を示すことができる。これは、重合体(A)がケイ素材料を強固に結着させることができると同時に、リチウムを吸蔵することによりケイ素材料が体積膨張しても重合体(A)が伸び縮みしてケイ素材料を強固に結着させた状態を維持することができるからであると考えられる。
 活物質100質量%中に占めるケイ素材料の割合は、蓄電デバイスの出力およびエネルギー密度の向上と充放電耐久特性とのバランスの観点から、1質量%以上とすることが好ましく、1~50質量%とすることがより好ましく、5~45質量%とすることがさらに好ましく、10~40質量%とすることが特に好ましい。
 活物質としてケイ素材料と炭素材料とを併用する場合、ケイ素材料の使用量は、十分な密着性を維持する観点から、活物質の全質量を100質量部としたときに4~40質量部であること好ましく、5~35質量部であることがより好ましく、5~30質量部であることが特に好ましい。ケイ素材料の使用量が前記範囲内であると、リチウムの吸蔵に伴うケイ素材料の体積膨張に対する炭素材料の体積膨張が小さいため、これらの活物質を含有する活物質層の充放電に伴う体積変化を低減させることができ、集電体と活物質層との密着性をより向上させることができる。
 活物質の形状としては、粒状であることが好ましい。活物質の平均粒子径としては、0.1~100μmであることが好ましく、1~20μmであることがより好ましい。
 ここで、活物質の平均粒子径とは、レーザー回折法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、その粒度分布から算出される体積平均粒子径である。このようなレーザー回折式粒度分布測定装置としては、例えばHORIBA LA-300シリーズ、HORIBA LA-920シリーズ(以上、株式会社堀場製作所製)などを挙げることができる。この粒度分布測定装置は、活物質の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とする。従って、この粒度分布測定装置によって得られた平均粒子径は、蓄電デバイス電極用スラリー中に含まれる活物質の分散状態の指標とすることができる。なお、活物質の平均粒子径は、スラリーを遠心分離して活物質を沈降させた後、その上澄み液を除去し、沈降した活物質を上記の方法により測定することによっても測定することができる。
 活物質の使用割合は、活物質100質量部に対する重合体(A)の含有割合が、0.1~25質量部となるような割合で使用することが好ましく、0.5~15質量部となるような割合で使用することがより好ましい。このような使用割合とすることにより、密着性により優れ、しかも電極抵抗が小さく充放電特性により優れた電極を製造することができることとなる。
 2.2.その他の添加剤
 本実施の形態に係る蓄電デバイス電極用スラリーには、前述した成分以外に、必要に応じてその他の成分を添加してもよい。このような成分としては、例えば導電付与剤、増粘剤、液状媒体(ただし、バインダー組成物からの持ち込み分を除く。)などが挙げられる。
 2.2.1.導電付与剤
 導電付与剤の具体例としては、リチウムイオン二次電池においてはカーボンなどを挙げることができる。カーボンとしては、活性炭、アセチレンブラック、ケッチェンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレンなどを挙げることができる。これらの中でも、アセチレンブラック、ファーネスブラックを好ましく使用することができる。導電付与剤の使用割合は、活物質100質量部に対して、20質量部以下であることが好ましく、1~15質量部であることがより好ましく、2~10質量部であることが特に好ましい。
 2.2.2.増粘剤
 蓄電デバイス電極用スラリーの塗工性を改善する観点から、増粘剤を添加してもよい。増粘剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースなどのセルロース誘導体;上記セルロース誘導体のアンモニウム塩またはアルカリ金属塩;ポリ(メタ)アクリル酸、変性ポリ(メタ)アクリル酸などのポリカルボン酸;上記ポリカルボン酸のアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、エチレン-ビニルアルコール共重合体などのポリビニルアルコール系(共)重合体;(メタ)アクリル酸、マレイン酸およびフマル酸などの不飽和カルボン酸とビニルエステルとの共重合体の鹸化物などの水溶性ポリマーなどが挙げられる。増粘剤の使用割合は、活物質100質量部に対して、0.1~10質量部であることが好ましく、0.5~5質量部であることがより好ましい。
 2.2.3.液状媒体
 本実施の形態に係る蓄電デバイス電極用スラリーは、上述のバインダー組成物を含有するから、バインダー組成物に含まれていた液状媒体(B)を含有することとなる。本実施の形態に係る蓄電デバイス電極用スラリーには、バインダー組成物から持ち込まれた液状媒体(B)に加えて、必要に応じてさらに液状媒体(B)以外の液状媒体を添加してもよい。
 本実施の形態に係る蓄電デバイス電極用スラリーに追加で添加し得る液状媒体は、バインダー組成物に含まれていた液状媒体(B)と同種であってもよく、異なっていてもよいが、バインダー組成物における液状媒体(B)について説明した液状媒体の中から選択して使用されることが好ましい。
 本実施の形態に係る蓄電デバイス電極用スラリーにおける液状媒体(バインダー組成物からの持ち込み分を含む。)の使用割合は、スラリー中の固形分濃度(スラリー中の液状媒体以外の成分の合計質量がスラリーの全質量に占める割合をいう。以下同じ。)が、30~70質量%となる割合とすることが好ましく、40~60質量%となる割合とすることがより好ましい。
 2.3.蓄電デバイス電極用スラリーの調製方法
 本実施の形態に係る蓄電デバイス電極用スラリーは、上述のバインダー組成物と活物質とを含有するものである限り、どのような方法によって製造されたものであってもよい。
 しかしながら、より良好な分散性および安定性を有するスラリーを、より効率的且つ安価に製造するとの観点から、上述のバインダー組成物に、活物質および必要に応じて用いられる任意的添加成分を加え、これらを混合することにより製造することが好ましい。バインダー組成物とそれ以外の成分とを混合するためには、公知の手法による攪拌によって行うことができる。
 蓄電デバイス電極用スラリーを製造するための混合撹拌手段としては、スラリー中に活物質粒子の凝集体が残らない程度に撹拌し得る混合機と、必要にして十分な分散条件とを選択する必要がある。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物がなくなるように混合分散することが好ましい。このような条件に適合する混合機としては、例えばボールミル、ビーズミル、サンドミル、脱泡機、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを例示することができる。
 蓄電デバイス電極用スラリーの調製(各成分の混合操作)は、少なくともその工程の一部を減圧下で行うことが好ましい。これにより、得られる活物質層内に気泡が生じることを防止することができる。減圧の程度としては、絶対圧として、5.0×10~5.0×10Pa程度とすることが好ましい。
 3.蓄電デバイス電極
 本実施の形態に係る蓄電デバイス電極は、集電体と、前記集電体の表面上に上述の蓄電デバイス電極用スラリーが塗布および乾燥されて形成された層と、を備えるものである。かかる蓄電デバイス電極は、金属箔などの集電体の表面に、上述の蓄電デバイス電極用スラリーを塗布して塗膜を形成し、次いで該塗膜を乾燥して活物質層を形成することにより製造することができる。このようにして製造された蓄電デバイス電極は、集電体上に、上述の重合体(A)および活物質、さらに必要に応じて添加した任意成分を含有する活物質層が結着されてなるものである。かかる蓄電デバイス電極は、密着性に優れると共に、良好な充放電耐久特性を示す。
 集電体は、導電性材料からなるものであれば特に制限されない。リチウムイオン二次電池においては、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属製の集電体が使用されるが、特に正極にアルミニウムを、負極に銅を用いた場合、上述のバインダー組成物を用いて製造された蓄電デバイス電極用スラリーの効果が最もよく現れる。ニッケル水素二次電池における集電体としては、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、金属メッキ樹脂板などが使用される。集電体の形状および厚さは特に制限されないが、厚さ0.001~0.5mm程度のシート状のものとすることが好ましい。
 蓄電デバイス電極用スラリーの集電体への塗布方法についても特に制限はない。塗布は、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの適宜の方法によることができる。蓄電デバイス電極用スラリーの塗布量も特に制限されないが、液状媒体を除去した後に形成される活物質層の厚さが、0.005~5mmとなる量とすることが好ましく、0.01~2mmとなる量とすることがより好ましい。活物質層の厚さが上記範囲内にあることによって、活物質層に効果的に電解液を染み込ませることができる。その結果、活物質層中の活物質と電解液との充放電に伴う金属イオンの授受が容易に行われるため、電極抵抗をより低下させることができるため好ましい。また、活物質層の厚さが上記範囲内にあることで、電極を折り畳んだり、捲回するなどして加工する場合においても、活物質層が集電体から剥離することなく密着性が良好で、柔軟性に富む蓄電デバイス電極が得られやすい点でも好ましい。
 塗布後の塗膜からの液状媒体を乾燥除去する方法(水および任意的に使用される非水系媒体の除去方法)についても特に制限されず、例えば温風、熱風、低湿風による乾燥;真空乾燥;(遠)赤外線、電子線などの照射による乾燥などによることができる。乾燥速度としては、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離したりしない程度の速度範囲の中で、できるだけ速く液状媒体が除去できるように適宜に設定することができる。
 さらに、液状媒体を除去した後にさらに塗膜をプレスするなどして、活物質層の密度を高めることが好ましい。プレス方法としては、金型プレス、ロールプレスなどの方法が挙げられる。プレスの条件は、使用するプレス機器の種類および活物質層の密度の所望値によって適宜に設定されるべきである。この条件は、当業者による少しの予備実験により、容易に設定することができるが、例えばロールプレスの場合、ロールプレス機の線圧力は0.1~10t/cm、好ましくは0.5~5t/cmの圧力において、例えばロール温度が20~100℃において、液状媒体除去後の塗膜の送り速度(ロールの回転速度)が1~80m/分、好ましくは5~50m/分で行うことができる。
 プレス後の活物質層の密度は、電極を正極として使用する場合には、1.5~4.0g/cmとすることが好ましく、1.7~3.8g/cmとすることがより好ましく;電極を負極として使用する場合には、1.2~1.9g/cmとすることが好ましく、1.3~1.8g/cmとすることがより好ましい。
 プレス後の塗膜は、さらに、減圧下で加熱して液状媒体を完全に除去することが好ましい。この場合の減圧の程度としては、絶対圧として50~200Paとすることが好ましく、75~150Paとすることがより好ましい。加熱温度としては、100~200℃とすることが好ましく、120~180℃とすることがより好ましい。加熱時間は、2~12時間とすることが好ましく、4~8時間とすることがより好ましい。
 このようにして製造された蓄電デバイス電極は、密着性に優れると共に、良好な充放電耐久特性を示す。
 本実施の形態に係る蓄電デバイス電極において、活物質としてケイ素材料を用いる場合、活物質層100質量部中のシリコン元素の含有割合が2~30質量部であることが好ましく、2~20質量部であることがより好ましく、3~10質量部であることが特に好ましい。活物質層中のシリコン元素の含有量が前記範囲内であると、それを用いて作製される蓄電デバイスの蓄電容量が向上することに加え、シリコン元素の分布が均一な活物質層が得られる。活物質層中のシリコン元素の含有量が前記範囲未満であると、蓄電デバイスの蓄電容量が低下するため好ましくない。活物質層中のシリコン元素の含有量が前記範囲を超えると、蓄電デバイスの蓄電容量は増大するものの、充放電の繰り返しに伴って電極より活物質層が剥離しやすくなり電極劣化が発生する。しかも、シリコン元素含有量が多いと、シリコン元素含有成分同士の凝集が発生しやすく、活物質層内のシリコン元素の分布が不均一となるため、活物質層全体としての結着性に劣り、粉落ち性も不十分となるため好ましくない。
 本発明において活物質層中のシリコン元素の含有量は、以下の手順により測定することができる。すなわち、
(1)蛍光X線分析装置(スペクトリス社製、製品名「パナリティカルMagixPRO」)にて、あらかじめ準備しておいたシリコン元素の含有量既知のサンプルを複数点測定し、検量線を作成する。
(2)蓄電デバイス電極から活物質層の全体(深さ方向の一部のみを採取しないようにする)をスパチュラなどで3g掻き取り、全体が均一になるように乳鉢などで混合した後に直径3cmの円盤状のプレートにプレスする。活物質層単独では成形できない場合は、元素組成既知の凝着剤を適宜使用してもよい。このような凝着剤としては、例えばスチレン・マレイン酸樹脂、ホウ酸粉末、セルロース粉などを使用できる。また、シリコン含有量が高く検量線のリニアリティが確保できない場合も、上記凝着剤を用いてサンプルを希釈して測定することができる。なお、上記凝着剤を使用する際は、マトリックス効果による検量線のズレを回避するため、検量線作成サンプルも同様に凝着剤を使用することが好ましい。
(3)得られたプレートを蛍光X線分析装置にセットして分析し、上記検量線からシリコン元素含有量を算出する。上記凝着剤を使用した場合は、凝着剤の重量を差し引いた上でシリコン元素含有量を算出する。
 4.蓄電デバイス
 本実施の形態に係る蓄電デバイスは、上述の蓄電デバイス電極を備えるものであり、さらに電解液を含有し、セパレーターなどの部品を用いて、常法に従って製造することができる。具体的な製造方法としては、例えば、負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に収納し、該電池容器に電解液を注入して封口する方法などを挙げることができる。電池の形状は、コイン型、円筒型、角形、ラミネート型など、適宜の形状であることができる。
 電解液は、液状でもゲル状でもよく、活物質の種類に応じて、蓄電デバイスに用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。電解液は、電解質を適当な溶媒に溶解した溶液であることができる。
 上記電解質としては、リチウムイオン二次電池では、従来から公知のリチウム塩のいずれをも使用することができ、その具体例としては、例えばLiClO、LiBF、LiPF、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、LiCFSO、LiCHSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウムなどを例示することができる。ニッケル水素二次電池では、例えば従来公知の濃度が5モル/リットル以上の水酸化カリウム水溶液を使用することができる。
 上記電解質を溶解するための溶媒は、特に制限されるものではないが、その具体例として、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどのカーボネート化合物;γ-ブチルラクトンなどのラクトン化合物;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル化合物;ジメチルスルホキシドなどのスルホキシド化合物などを挙げることができ、これらのうちから選択される一種以上を使用することができる。電解液中の電解質の濃度としては、好ましくは0.5~3.0モル/Lであり、より好ましくは0.7~2.0モル/Lである。
 5.実施例
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
 5.1.実施例1
 5.1.1.バインダー組成物の調製および評価
(1)バインダー組成物の調製
 以下に示すような二段重合により、重合体(A)の粒子を含有するバインダー組成物を得た。一段目の重合では、反応器に水211質量部と、1,3-ブタジエン32質量部、スチレン42質量部、メタクリル酸2質量部およびアクリル酸3質量部からなる単量体混合物79質量部と、連鎖移動剤としてt-ドデシルメルカプタン0.1質量部と、乳化剤としてアルキルジフェニルエーテルジスルホン酸ナトリウム1質量部と、重合開始剤として過硫酸カリウム0.2質量部とを仕込み、攪拌しながら60℃で18時間重合し、重合転化率96%で反応を終了した。続いて、二段目の重合では、この反応器に水189質量部と、メタクリル酸21質量部と、重合開始剤として過硫酸カリウム0.05質量部と、炭酸ナトリウム0.1質量部とを添加して80℃にて2時間重合反応を継続した後、反応を終了させた。このときの重合転化率は98%であった。得られた重合体(A)のラテックス(重合体(A)の粒子分散液)から未反応単量体を除去し、濃縮後10%水酸化ナトリウム水溶液および水を添加して、重合体(A)の粒子分散液の固形分濃度およびpHを調整し、重合体(A)の粒子を20%含有するpH4.4のバインダー組成物を得た。
(2)動的光散乱法による平均粒子径(DA)の測定
 動的光散乱法を測定原理とする粒度分布測定装置(大塚電子株式会社製、型式「FPAR-1000」)を用いて、上記で得られたバインダー組成物の粒度分布を測定し、その粒度分布から平均粒子径D50(DA)を求めたところ500nmであった。
 上記動的光散乱の測定条件は以下の通りである。
・分散媒:水
・測定温度:25℃
・希釈倍数:0.1wt%
・散乱角度:160°
・光源レーザー波長:632.8nm
(3)TEM観察による平均粒子径(DB)の測定
 上記で得られたバインダー組成物をコロジオン支持膜に0.1wt%に希釈したラテックスをピペットで1滴滴下し、さらに0.02wt%の四酸化オスミウム溶液をピペットで1滴滴下し、12時間風乾させ試料を準備した。このようにして準備した試料を、透過型電子顕微鏡(TEM、株式会社日立ハイテクノロジーズ製、型式H-7650)を用いて、倍率を10K(倍率)で観察し、HITACH EMIPのプログラムにより画像解析を実施し、ランダムに選択した50個の粒子の平均粒子径(DB)を算出したところ120nmであった。
(4)電解液膨潤率の測定
 上記で得られたバインダー組成物を直径8cmのペトリ皿に得られた分散液を固形分換算で5g流しこみ、40℃にて1日間乾燥させて乾燥フィルムを得た。その後、乾燥フィルムをペトリ皿から取り出し、さらに160℃で0.5時間乾燥させて試験用フィルムを得た。次に、得られた試験用フィルムを2cm×2cmの大きさに複数枚切り出し、初期質量(W0(g))を測定した。その後、標準電解液が入ったスクリュー瓶に試験用フィルムを70℃にて24時間浸漬した。その後、試験用フィルムを標準電解液から取り出し、フィルム表面に付着した電解液を拭き取った後に試験後の浸漬後質量(W1(g))を測定した。得られた初期質量(W0(g))および浸漬後質量(W1(g))から、下記式(2)に従い電解液膨潤率を算出した。
 電解液膨潤率(%)=(W1/W0)×100 ・・・・・(2)
(5)pHの測定
 上記で得られたバインダー組成物について、pHメーター(株式会社堀場製作所製)を用いて25℃におけるpHを測定したところ、4.4であった。
(6)粘度の測定
 上記で得られたバインダー組成物について、B型粘度計を用いて粘度を測定したところ、30mPa・s(60rpm、25.0℃)であった。
(7)Tgの測定
 上記で得られたバインダー組成物について、JIS K7121に準拠する示差走査熱量計(NETZSCH社製、DSC204F1 Phoenix)を用いて測定したところ、重合体(A)の吸熱ピークが5℃に1つ観測された。
 5.1.2.蓄電デバイス電極用スラリーの調製および評価
(1)ケイ素材料(活物質)の合成
 粉砕した二酸化ケイ素粉末(平均粒子径10μm)と炭素粉末(平均粒子径35μm)との混合物を、温度を1100~1600℃の範囲に調整した電気炉中で、窒素気流下(0.5NL/分)、10時間の加熱処理を行い、組成式SiOx(x=0.5~1.1)で表される酸化ケイ素の粉末(平均粒子径8μm)を得た。この酸化ケイ素の粉末300gをバッチ式加熱炉内に仕込み、真空ポンプにより絶対圧100Paの減圧を維持しながら、300℃/hの昇温速度にて室温(25℃)から1100℃まで昇温した。次いで、加熱炉内の圧力を2000Paに維持しつつ、メタンガスを0.5NL/分の流速にて導入しながら、1100℃、5時間の加熱処理(黒鉛被膜処理)を行った。黒鉛被膜処理終了後、50℃/hの降温速度で室温まで冷却することにより、黒鉛被膜酸化ケイ素の粉末約330gを得た。この黒鉛被膜酸化ケイ素は、酸化ケイ素の表面が黒鉛で被覆された導電性の粉末(活物質)であり、その平均粒子径は10.5μmであり、得られた黒鉛被膜酸化ケイ素の全体を100質量%とした場合の黒鉛被膜の割合は2質量%であった。
(2)蓄電デバイス電極用スラリーの調製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に増粘剤(商品名「CMC2200」、株式会社ダイセル製)を1質量部(固形分換算値、濃度2質量%の水溶液として添加)、負極活物質として結晶性の高いグラファイトである人造黒鉛(日立化成工業株式会社製、商品名「MAG」)94質量部(固形分換算値)、上記で得られた黒鉛被覆膜酸化ケイ素の粉末を6質量部(固形分換算値)、および水68質量部を投入し、60rpmで1時間攪拌を行った。その後、上記で得られたバインダー組成物を、これに含有される重合体(A)2質量部に相当する量だけ加え、さらに1時間攪拌しペーストを得た。得られたペーストに水を投入し、固形分濃度を50質量%に調整した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに減圧下(約2.5×104Pa)において1800rpmで1.5分間攪拌混合することにより、負極活物質中にSiを5質量%含有する蓄電デバイス電極用スラリー(C/Si(5%))を調製した。
 また、人造黒鉛と黒鉛被覆膜酸化ケイ素の粉末の使用量を調整した以外は蓄電デバイス電極用スラリー(C/Si(5%))と同様にして、負極活物質中にSiを含有しない蓄電デバイス電極用スラリー(C)と、負極活物質中にSiを10質量%含有する蓄電デバイス電極用スラリー(C/Si(10%))と、負極活物質中にSiを20質量%含有する蓄電デバイス電極用スラリー(C/Si(20%))とをそれぞれ調製した。
 5.1.3.蓄電デバイスの製造および評価
(1)蓄電デバイス電極(負極)の製造
 厚み20μmの銅箔よりなる集電体の表面に、上記で得られた蓄電デバイス電極用スラリー(C/Si(5%))を、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、60℃で10分乾燥し、次いで120℃で10分間乾燥処理した。その後、活物質層の密度が表1に記載の値になるようにロールプレス機によりプレス加工することにより、蓄電デバイス電極(負極)を得た。
 また、塗布する蓄電デバイス電極用スラリーの種類を、上記で得た負極活物質中にSiを含有しない蓄電デバイス電極用スラリー(C)、蓄電デバイス電極用スラリー(C/Si(10%))または蓄電デバイス電極用スラリー(C/Si(20%))に変更した以外は、上記の蓄電デバイス電極の製造方法と同様にして、それぞれの活物質を活物質層に含有する蓄電デバイス電極(負極)を得た。
(2)対極(正極)の製造
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、電気化学デバイス電極用バインダー(株式会社クレハ製、商品名「KFポリマー#1120」、以下「PVDF」と略す。)4.0質量部(固形分換算値)、導電助剤(電気化学工業株式会社製、商品名「デンカブラック50%プレス品」)3.0質量部、正極活物質として平均粒子径5μmのLiCoO(ハヤシ化成株式会社製)100質量部(固形分換算値)およびN-メチルピロリドン(NMP)36質量部を投入し、60rpmで2時間攪拌を行った。得られたペーストにNMPを追加し、固形分濃度を65質量%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1,800rpmで5分間、さらに減圧下(約2.5×10Pa)において1,800rpmで1.5分間攪拌混合することにより、正極用スラリーを調製した。アルミニウム箔よりなる集電体の表面に、この正極用スラリーを、溶媒除去後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間加熱して溶媒を除去した。その後、活物質層の密度が3.0g/cmとなるようにロールプレス機によりプレス加工することにより、対極(正極)を得た。
(3)リチウムイオン電池セルの組立て
 露点が-80℃以下となるようAr置換されたグローブボックス内で、上記で製造した負極を直径15.95mmに打ち抜き成形したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレーター(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、上記で製造した正極を直径16.16mmに打ち抜き成形したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを1モル/Lの濃度で溶解した溶液である。
(4)充放電サイクル特性の評価
 上記で製造した蓄電デバイスにつき、25℃に調温された恒温槽にて、定電流(1.0C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(1.0C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返し、100サイクル目の放電容量を算出した。このようにして測定した100サイクル目の放電容量を、1サイクル目の放電容量で割った値を100サイクル放電維持率(%)とした。全ての活物質に対して100サイクル目の放電容量維持率が80%以上である場合、充放電サイクルで起こる電極の劣化が抑制されており良好と判断できる。
 なお、測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値のことを示す。例えば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、10Cとは0.1時間かけて放電完了となる電流値のことをいう。
 5.2.実施例2~17、比較例1~4
 上記実施例1の「5.1.1.バインダー組成物の調製および評価」において、各単量体の種類および量を、それぞれ表1または表2に記載の通りとした以外は同様にして重合体成分を20%含有するバインダー組成物を得た。
 さらに、上記で調製したバインダー組成物を用いた以外は実施例1と同様にして、蓄電デバイス電極用スラリーをそれぞれ調製し、蓄電デバイス電極および蓄電デバイスをそれぞれ作製し、上記実施例1と同様に評価した。
 5.3.評価結果
 下表1及び下表2に、実施例1~17および比較例1~4で使用した重合体組成、各物性および各種評価結果をまとめた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 5.4.実施例18
 5.4.1.蓄電デバイスの製造および評価
(1)正極用スラリーの調製と蓄電デバイス正極の作製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に、増粘剤(商品名「CMC1120」、株式会社ダイセル製)1質量部(固形分換算)、宝泉株式会社製リン酸鉄リチウム(LiFePO)100質量部、アセチレンブラック5質量部、及び水68質量部を投入し、60rpmで1時間攪拌を行った。前記リン酸鉄リチウムは、めのう乳鉢で粉砕し、ふるいを用いて分級することで、平均粒子径(D50値)を10μmとしたものである。また、前記リン酸鉄リチウムは、正極活物質の一例である。
 次に、実施例1で調製したバインダー組成物と、防腐剤である5-クロロ-2-メチル-4-イソチアゾリン-3-オンとを投入した。実施例1で調製したバインダー組成物の投入量は、(A)重合体を1質量部含む量とした。また、防腐剤の投入量は、正極用スラリー全量おける防腐剤の濃度が100ppmになる量とした。
 その後、1時間攪拌してペーストを得た。得られたペーストに水を加えて固形分濃度を50%に調整した後、攪拌脱泡機(株式会社シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1,800rpmで5分間、さらに真空下(約5.0×10Pa)において1,800rpmで1.5分間攪拌混合することにより、正極用スラリーを調製した。アルミニウム箔よりなる集電体の表面に、この正極用スラリーを、溶媒除去後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間加熱して溶媒を除去した。その後、活物質層の密度が3.0g/cmとなるようにロールプレス機によりプレス加工することにより、正極を得た。
(2)対極(負極)の製造
 実施例1で作製した負極のうち、負極活物質中にSiを10質量%含有する蓄電デバイス電極用スラリー(C/Si(10%))を使用して作製したものを用いた。
(3)リチウムイオン電池セルの組立て
 上記で作製した蓄電デバイス電極を用いた以外は実施例1と同様にして、蓄電デバイスを作製した。上記実施例1と同様に評価した。
(4)充放電サイクル特性の評価
 上記で作製した蓄電デバイスにつき、実施例1と同様にして、100サイクル放電維持率(%)を算出した。加えて、200サイクル、300サイクル、500サイクルと充放電を繰り返し、それぞれのサイクル数での放電維持率を算出した。100サイクル時の放電維持率と500サイクル時の放電維持率の差が16%以下である場合、充放電を繰り返した際の劣化が抑制されており良好と判断することができる。
 5.5.実施例19~30、比較例5~7
 上記実施例18において、使用したバインダー組成物をそれぞれ表3に記載の通りとした以外は実施例18と同様にして、蓄電デバイス電極用スラリーをそれぞれ調製し、蓄電デバイス電極および蓄電デバイスをそれぞれ作製し、上記実施例18と同様に評価した。
 5.6.評価結果
 下表3及び下表4に、実施例18~30および比較例5~7で使用した重合体組成、各物性および各種評価結果をまとめた。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 上表1~上表4における単量体の略称は、それぞれ以下の意味である。
・BD:1,3-ブタジエン
・ST:スチレン
・MMA:メタクリル酸メチル
・HEMA:メタクリル酸2-ヒドロキシエチル
・AA:アクリル酸
・MAA:メタクリル酸
・TA:イタコン酸
・AN:アクリロニトリル
・PVDF:電気化学デバイス電極用バインダー(株式会社クレハ製、商品名「KFポリマー#1120」)
 上表1及び上表2から明らかなように、実施例1~17に示した本発明に係るバインダー組成物を用いて調製されたスラリーは、比較例1~4の場合と比較して、充放電に伴う体積変化が大きい活物質同士を好適に結着させることができ、しかも活物質層と集電体の密着性を良好に維持し続けることが判明した。その結果、充放電を繰り返して、活物質が体積の膨張と収縮を繰り返したにも関わらず、活物質層の剥離を抑制し、良好な充放電特性を維持し続けることのできる蓄電デバイス電極が得られた。また、これらの蓄電デバイス電極を備える蓄電デバイス(リチウムイオン二次電池)は、充放電レート特性も良好となることが判明した。また、表1に示す実施例1~17に係る電極は、比較例1~4の場合と比較して、充電による活物質層の膜厚変化を低減できていることから、活物質層内に活物質を強固に保持でき、活物質の剥落が抑制できると推測される。
 上記表3及び上表4から明らかなように、実施例18~30に示した本発明に係るバインダー組成物を用いて調製されたスラリーは、比較例5~7の場合と比較して、充放電を繰り返した際の放電容量維持率の劣化を抑制し、良好な充放電特性を維持し続けることが判明した。これは、活物質の凝集の崩壊を抑制でき、活物質層内部の導電ネットワークを維持できるためと推測される。
 また、本実施例における評価結果より、正極よりも負極を作製する際に本願発明のバインダー組成物を用いる方が、良好な充放電特性を維持し続ける効果が高いことが判明した。そして、正極を作製する際には、PVDFを用いるよりもSBR共重合体を含有するバインダー組成物を用いる方が、容量保持率が良好となる傾向が認められた。この理由としては、正極にPVDFを用いるよりもSBR共重合体を使用した方が結着力が向上するためであると推測される。さらに、SBR共重合体の中でも、粒子の表面に不飽和カルボン酸に由来する繰り返し単位を有する本願実施例に記載の共重合体の方がより結着力が向上する傾向が認められ、容量保持率はさらに向上することが判明した。
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。

Claims (13)

  1.  蓄電デバイスに使用される電極を作製するためのバインダー組成物であって、
     重合体(A)と、液状媒体(B)と、を含有し、
     前記重合体(A)が重合体粒子であり、
     前記重合体粒子の動的光散乱法により測定された平均粒子径(DA)と、前記重合体粒子のTEM観察により測定された平均粒子径(DB)と、の比(DA/DB)の値が2~10である、蓄電デバイス電極用バインダー組成物。
  2.  前記重合体粒子の動的光散乱法により測定された平均粒子径(DA)が250nm以上1000nm以下である、請求項1に記載の蓄電デバイス電極用バインダー組成物。
  3.  前記重合体(A)中に含まれる繰り返し単位の合計を100質量部としたときに、不飽和カルボン酸に由来する繰り返し単位(A1)を10質量部以上70質量部以下含有する、請求項1または請求項2に記載の蓄電デバイス電極用バインダー組成物。
  4.  前記重合体(A)の電解液に対する膨潤率が130%以下である、請求項1ないし請求項3のいずれか一項に記載の蓄電デバイス電極用バインダー組成物。
  5.  pHが3以上6以下である、請求項1ないし請求項4のいずれか一項に記載の蓄電デバイス電極用バインダー組成物。
  6.  請求項1ないし請求項5のいずれか一項に記載の蓄電デバイス電極用バインダー組成物と、活物質と、を含有する、蓄電デバイス電極用スラリー。
  7.  前記活物質としてケイ素材料を含有する、請求項6に記載の蓄電デバイス電極用スラリー。
  8.  集電体と、前記集電体の表面上に請求項6または請求項7に記載の蓄電デバイス電極用スラリーが塗布および乾燥されて形成された活物質層と、を備える蓄電デバイス電極。
  9.  前記活物質層100質量部中にシリコン元素を2質量部以上30質量部以下含有する、請求項8に記載の蓄電デバイス電極。
  10.  前記活物質としてオリビン型リチウム含有リン酸化合物を含有する、請求項6に記載の蓄電デバイス電極用スラリー。
  11.  集電体と、前記集電体の表面上に請求項10に記載の蓄電デバイス電極用スラリーが塗布および乾燥されて形成された活物質層と、を備える蓄電デバイス電極。
  12.  請求項8または請求項9に記載の蓄電デバイス電極を備える蓄電デバイス。
  13.  請求項11に記載の蓄電デバイス電極を備える蓄電デバイス。
PCT/JP2015/072886 2014-09-08 2015-08-13 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス WO2016039067A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL15840298T PL3193397T3 (pl) 2014-09-08 2015-08-13 Kompozycja spoiwa do elektrody urządzenia do magazynowania, zawiesina do elektrody urządzenia do magazynowania, elektroda urządzenia do magazynowania i urządzenie do magazynowania
US15/509,305 US10403896B2 (en) 2014-09-08 2015-08-13 Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device
CN201580039880.6A CN106663812B (zh) 2014-09-08 2015-08-13 蓄电设备电极用粘结剂组合物、蓄电设备电极用浆料、蓄电设备电极及蓄电设备
JP2015558299A JP5999399B2 (ja) 2014-09-08 2015-08-13 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
KR1020177005272A KR101909846B1 (ko) 2014-09-08 2015-08-13 축전 디바이스 전극용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
EP15840298.2A EP3193397B1 (en) 2014-09-08 2015-08-13 Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014182250 2014-09-08
JP2014-182250 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016039067A1 true WO2016039067A1 (ja) 2016-03-17

Family

ID=55458825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072886 WO2016039067A1 (ja) 2014-09-08 2015-08-13 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス

Country Status (8)

Country Link
US (1) US10403896B2 (ja)
EP (1) EP3193397B1 (ja)
JP (1) JP5999399B2 (ja)
KR (1) KR101909846B1 (ja)
CN (1) CN106663812B (ja)
PL (1) PL3193397T3 (ja)
TW (1) TWI648901B (ja)
WO (1) WO2016039067A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016084364A1 (ja) * 2014-11-25 2017-08-31 日本ゼオン株式会社 非水系二次電池用バインダー、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
EP3736893A1 (en) 2019-04-26 2020-11-11 Samsung SDI Co., Ltd. Binder for non-aqueous electrolyte rechargeable battery, negative electrode slurry for rechargeable battery including the same, negative electrode for rechargeable battery including the same, and rechargeable battery including the same
JP2021102709A (ja) * 2019-12-25 2021-07-15 旭化成株式会社 非水系二次電池用重合体組成物、非水系二次電池及び非水系二次電池用重合体組成物の製造方法
KR20220149513A (ko) 2020-02-28 2022-11-08 니폰 제온 가부시키가이샤 이차 전지용 바인더 조성물, 이차 전지용 슬러리 조성물, 이차 전지용 기능층, 이차 전지용 세퍼레이터, 이차 전지용 전극 및 이차 전지
WO2023074356A1 (ja) * 2021-10-29 2023-05-04 日本ゼオン株式会社 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池
WO2023074540A1 (ja) * 2021-10-29 2023-05-04 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極及び非水系二次電池
WO2024024913A1 (ja) * 2022-07-29 2024-02-01 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
KR20240037234A (ko) 2021-07-30 2024-03-21 니폰 제온 가부시키가이샤 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극, 및 비수계 이차 전지

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143344A1 (ja) * 2015-03-10 2016-09-15 日本ゼオン株式会社 電気化学キャパシタ電極用スラリー組成物、電気化学キャパシタ用電極および電気化学キャパシタ
KR101953765B1 (ko) * 2015-06-17 2019-06-12 주식회사 엘지화학 이차전지용 바인더 조성물, 이를 사용한 전극 및 리튬 이차전지
US20180301698A1 (en) * 2017-04-14 2018-10-18 Rhode Island Council On Postsecondary Education Carboxylic Acids As Surface Modifier for Improved Electrode
JP7234934B2 (ja) * 2017-10-24 2023-03-08 東亞合成株式会社 二次電池電極用バインダー及びその用途
EP4020636B1 (en) * 2017-12-01 2024-01-24 DIC Corporation Negative electrode active material
EP3968417A4 (en) 2019-05-08 2023-01-25 ENEOS Materials Corporation POWER STORAGE DEVICE BINDER COMPOSITION, POWER STORAGE DEVICE ELECTRODE SLURRY, POWER STORAGE DEVICE ELECTRODE AND POWER STORAGE DEVICE
US20220302455A1 (en) 2019-08-13 2022-09-22 Eneos Materials Corporation Composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device
JPWO2021039503A1 (ja) 2019-08-29 2021-03-04
EP4144772A4 (en) 2020-04-28 2023-09-27 ENEOS Materials Corporation ENERGY STORAGE DEVICE BINDER COMPOSITION, ENERGY STORAGE DEVICE ELECTRODE SLURRY, ENERGY STORAGE DEVICE ELECTRODE AND ENERGY STORAGE DEVICE
CN116075952A (zh) 2020-08-20 2023-05-05 株式会社引能仕材料 蓄电装置用粘合剂组合物、蓄电装置电极用浆料、蓄电装置电极和蓄电装置
CN117178389A (zh) 2021-04-15 2023-12-05 株式会社引能仕材料 蓄电设备用粘结剂组合物、蓄电设备电极用浆料、蓄电设备电极和蓄电设备
CN117795706A (zh) 2021-08-18 2024-03-29 株式会社引能仕材料 蓄电装置用粘结剂组合物、蓄电装置电极用浆料、蓄电装置电极和蓄电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299109A (ja) * 1999-04-15 2000-10-24 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物及びその利用
JP2008537841A (ja) * 2005-04-07 2008-09-25 エルジー・ケム・リミテッド 優れた速度特性及び寿命特性を有するリチウム二次電池用バインダー
JP2010140684A (ja) * 2008-12-09 2010-06-24 Nippon A&L Inc 電池電極用バインダー
JP2010182439A (ja) * 2009-02-03 2010-08-19 Nippon A&L Inc 二次電池電極用バインダー
WO2011016563A1 (ja) * 2009-08-07 2011-02-10 Jsr株式会社 電気化学デバイス及びバインダー組成物
WO2012090669A1 (ja) * 2010-12-28 2012-07-05 Jsr株式会社 電極用バインダー組成物、電極用スラリー、電極、電気化学デバイス、ならびに電極用バインダー組成物の製造方法および保管方法
WO2013008564A1 (ja) * 2011-07-14 2013-01-17 Jsr株式会社 電極用バインダー組成物
JP2013084502A (ja) * 2011-10-12 2013-05-09 Jsr Corp 電極用バインダー組成物

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
CN100547830C (zh) 2004-03-08 2009-10-07 三星Sdi株式会社 可充电锂电池的负极活性物质及其制法以及包含它的可充电锂电池
JP5070731B2 (ja) 2006-04-26 2012-11-14 株式会社Gsユアサ 非水電解質電池の製造方法
JP5547507B2 (ja) 2009-02-03 2014-07-16 日本エイアンドエル株式会社 非水電解液二次電池電極用バインダー。
TW201043672A (en) 2009-03-30 2010-12-16 Jsr Corp Composition for electrochemical-device electrode binder, electrode slurry for electrochemical device, and electrode for electrochemical device
JP5120351B2 (ja) 2009-09-10 2013-01-16 日本ゼオン株式会社 バインダー組成物、電池電極用スラリー、電極、およびリチウム二次電池
CN102823029A (zh) 2010-02-03 2012-12-12 日本瑞翁株式会社 锂离子二次电池负极用浆料组合物、锂离子二次电池负极以及锂二次电池
JP5583447B2 (ja) 2010-03-26 2014-09-03 三洋電機株式会社 リチウム二次電池及びその製造方法
EP2577779B1 (en) * 2010-05-28 2014-06-04 Basf Se Use of expanded graphite in lithium/sulphur batteries
EP2657947A4 (en) 2010-12-20 2018-03-28 JSR Corporation Electricity storage device, lithium ion capacitor, and negative electrode for lithium ion capacitor
KR20140044409A (ko) * 2011-02-15 2014-04-14 제이에스알 가부시끼가이샤 축전 디바이스용 전극, 전극용 슬러리, 전극용 바인더 조성물 및 축전 디바이스
JP5791935B2 (ja) 2011-03-31 2015-10-07 シャープ株式会社 非水電解質二次電池及びその製造方法
JP4849286B1 (ja) 2011-06-06 2012-01-11 Jsr株式会社 正極用バインダー組成物
WO2013026190A1 (en) 2011-08-19 2013-02-28 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Porous conductive active composite electrode for lithium ion batteries
JP4957932B1 (ja) 2011-08-30 2012-06-20 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
US9522995B2 (en) 2011-10-18 2016-12-20 Jsr Corporation Protective film and composition for preparing the same, slurry, and electrical storage device
JP4993150B1 (ja) 2012-02-13 2012-08-08 Jsr株式会社 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
CN102683712A (zh) * 2012-05-25 2012-09-19 浙江振龙电源股份有限公司 一种采用复合导电剂的磷酸铁锂电池及其制造方法
CN104205442A (zh) * 2012-06-18 2014-12-10 Jsr株式会社 蓄电设备电极用粘结剂组合物、蓄电设备电极用浆料、蓄电设备电极和蓄电设备
CN103606703A (zh) * 2013-11-15 2014-02-26 江苏天鹏电源有限公司 一种电流密度均匀且稳定的锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299109A (ja) * 1999-04-15 2000-10-24 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物及びその利用
JP2008537841A (ja) * 2005-04-07 2008-09-25 エルジー・ケム・リミテッド 優れた速度特性及び寿命特性を有するリチウム二次電池用バインダー
JP2010140684A (ja) * 2008-12-09 2010-06-24 Nippon A&L Inc 電池電極用バインダー
JP2010182439A (ja) * 2009-02-03 2010-08-19 Nippon A&L Inc 二次電池電極用バインダー
WO2011016563A1 (ja) * 2009-08-07 2011-02-10 Jsr株式会社 電気化学デバイス及びバインダー組成物
WO2012090669A1 (ja) * 2010-12-28 2012-07-05 Jsr株式会社 電極用バインダー組成物、電極用スラリー、電極、電気化学デバイス、ならびに電極用バインダー組成物の製造方法および保管方法
WO2013008564A1 (ja) * 2011-07-14 2013-01-17 Jsr株式会社 電極用バインダー組成物
JP2013084502A (ja) * 2011-10-12 2013-05-09 Jsr Corp 電極用バインダー組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3193397A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016084364A1 (ja) * 2014-11-25 2017-08-31 日本ゼオン株式会社 非水系二次電池用バインダー、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
EP3736893A1 (en) 2019-04-26 2020-11-11 Samsung SDI Co., Ltd. Binder for non-aqueous electrolyte rechargeable battery, negative electrode slurry for rechargeable battery including the same, negative electrode for rechargeable battery including the same, and rechargeable battery including the same
US11575133B2 (en) 2019-04-26 2023-02-07 Samsung Sdi Co., Ltd. Binder for non-aqueous electrolyte rechargeable battery, negative electrode slurry for rechargeable battery including the same, negative electrode for rechargeable battery including the same, and rechargeable battery including the same
JP2021102709A (ja) * 2019-12-25 2021-07-15 旭化成株式会社 非水系二次電池用重合体組成物、非水系二次電池及び非水系二次電池用重合体組成物の製造方法
JP7502859B2 (ja) 2019-12-25 2024-06-19 旭化成株式会社 非水系二次電池用重合体組成物、非水系二次電池及び非水系二次電池用重合体組成物の製造方法
KR20220149513A (ko) 2020-02-28 2022-11-08 니폰 제온 가부시키가이샤 이차 전지용 바인더 조성물, 이차 전지용 슬러리 조성물, 이차 전지용 기능층, 이차 전지용 세퍼레이터, 이차 전지용 전극 및 이차 전지
KR20240037234A (ko) 2021-07-30 2024-03-21 니폰 제온 가부시키가이샤 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극, 및 비수계 이차 전지
WO2023074356A1 (ja) * 2021-10-29 2023-05-04 日本ゼオン株式会社 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池
WO2023074540A1 (ja) * 2021-10-29 2023-05-04 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極及び非水系二次電池
KR20240088962A (ko) 2021-10-29 2024-06-20 니폰 제온 가부시키가이샤 비수계 이차 전지 부극용 바인더 조성물, 비수계 이차 전지 부극용 슬러리 조성물, 비수계 이차 전지용 부극, 및 비수계 이차 전지
WO2024024913A1 (ja) * 2022-07-29 2024-02-01 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池

Also Published As

Publication number Publication date
TW201611396A (zh) 2016-03-16
EP3193397B1 (en) 2018-12-26
JP5999399B2 (ja) 2016-09-28
EP3193397A1 (en) 2017-07-19
KR20170039227A (ko) 2017-04-10
JPWO2016039067A1 (ja) 2017-04-27
US10403896B2 (en) 2019-09-03
PL3193397T3 (pl) 2019-06-28
US20170279123A1 (en) 2017-09-28
CN106663812B (zh) 2019-08-06
CN106663812A (zh) 2017-05-10
EP3193397A4 (en) 2018-02-28
KR101909846B1 (ko) 2018-10-18
TWI648901B (zh) 2019-01-21

Similar Documents

Publication Publication Date Title
JP5999399B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
JP6988948B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP5477610B1 (ja) 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
TWI396322B (zh) An electrode composition for an electrode for a power storage device, a paste for an electrode for a power storage device, a power storage device electrode, and a power storage device
JP2016058185A (ja) 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP7020118B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP7323003B2 (ja) 二次電池電極用水系バインダー組成物、二次電池電極用スラリー、バインダー、二次電池電極、および二次電池
TWI431842B (zh) 電極用接合劑組成物,電極用漿料,電極及蓄電裝置
JP5904330B2 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP5499951B2 (ja) 二次電池用バインダー、製造方法、二次電池負極用組成物、及び二次電池
JP2015106488A (ja) 蓄電デバイス負極用スラリーおよび蓄電デバイス負極、蓄電デバイス正極用スラリーおよび蓄電デバイス正極、ならびに蓄電デバイス
JP2016058184A (ja) 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP6645101B2 (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
US10811686B2 (en) Slurry for positive electrode of lithium-ion secondary battery, positive electrode for lithium-ion secondary battery obtained using slurry for positive electrode of lithium-ion secondary battery and production method therefor, and lithium-ion secondary battery provided with positive electrode for lithium-ion secondary battery and production method therefor
JP6759589B2 (ja) 電気化学素子用導電性組成物、電気化学素子電極用組成物、接着剤層付集電体及び電気化学素子用電極
JP5835581B2 (ja) 蓄電デバイスの電極用バインダー組成物
JP7143114B2 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP7267142B2 (ja) 二次電池電極用バインダー及びその利用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015558299

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177005272

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15509305

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015840298

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015840298

Country of ref document: EP