WO2011016563A1 - 電気化学デバイス及びバインダー組成物 - Google Patents

電気化学デバイス及びバインダー組成物 Download PDF

Info

Publication number
WO2011016563A1
WO2011016563A1 PCT/JP2010/063420 JP2010063420W WO2011016563A1 WO 2011016563 A1 WO2011016563 A1 WO 2011016563A1 JP 2010063420 W JP2010063420 W JP 2010063420W WO 2011016563 A1 WO2011016563 A1 WO 2011016563A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
mass
structural unit
electrode
meth
Prior art date
Application number
PCT/JP2010/063420
Other languages
English (en)
French (fr)
Inventor
武志 茂木
達朗 本多
照明 手塚
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN2010800350452A priority Critical patent/CN102473921A/zh
Priority to US13/388,827 priority patent/US20120177991A1/en
Priority to EP10806562.4A priority patent/EP2463943A4/en
Priority to JP2011525958A priority patent/JPWO2011016563A1/ja
Priority to CA2770285A priority patent/CA2770285C/en
Publication of WO2011016563A1 publication Critical patent/WO2011016563A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrochemical device and a binder composition. More specifically, the present invention relates to an electrochemical device and a binder composition having excellent charge / discharge characteristics.
  • electrochemical devices eg, secondary batteries, capacitors, etc.
  • electrochemical devices used as power sources for driving electronic devices have also become smaller and higher in energy density.
  • electrochemical devices batteries
  • nickel hydride secondary batteries, lithium ion secondary batteries, electric double layer capacitors, lithium ion capacitors and the like have been developed recently.
  • a lithium ion secondary battery is composed of a positive electrode mainly composed of a lithium-containing transition metal oxide, a negative electrode mainly composed of a carbon material that can occlude and desorb lithium ions, and an organic electrolyte containing a lithium salt. ing.
  • a positive electrode mainly composed of a lithium-containing transition metal oxide
  • a negative electrode mainly composed of a carbon material that can occlude and desorb lithium ions
  • an organic electrolyte containing a lithium salt containing a lithium salt.
  • the electric double layer capacitor generally includes an aqueous electrolyte type using an inorganic aqueous electrolyte such as sulfuric acid and potassium hydroxide, and an organic solvent that does not contain water such as propylene carbonate and acetonitrile, depending on the type of electrolyte used. It is classified into a non-aqueous electrolytic solution type using an electrolytic solution as a solvent and tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) or the like as an electrolyte.
  • Such an electrochemical device is naturally required to have a long life or a high capacity, and therefore, an electrochemical device having a long life and a high capacity has been developed. Recently, in addition to long life and high capacity, it has been required to improve charge / discharge characteristics such as low temperature characteristics and high rate characteristics (hereinafter sometimes referred to as “rate characteristics”).
  • the electrode includes a current collector and an electrode layer disposed on one surface of the current collector.
  • a method for manufacturing this electrode for example, the following methods are known. First, a paste or slurry in which an active material such as a hydrogen storage alloy, graphite, metal oxide or activated carbon, a thickener such as carboxymethylcellulose, and a binder made of latex containing polymer particles are dispersed in water. After the obtained paste or slurry is applied to the surface of the current collector and dried, the resulting coating film is pressed to form an electrode layer on the surface of the current collector to produce an electrode To do.
  • an active material such as a hydrogen storage alloy, graphite, metal oxide or activated carbon
  • a thickener such as carboxymethylcellulose
  • a binder made of latex containing polymer particles are dispersed in water.
  • the binder has a function of binding the active materials to each other and a function of improving the adhesion between the electrode layer and the current collector.
  • the characteristics of the electrochemical device can be improved. Improvements are being made.
  • a binder obtained by emulsion polymerization of a monomer composition containing a conjugated diene, an aromatic vinyl compound, a (meth) acrylate compound, and an unsaturated carboxylic acid is known (for example, see Patent Document 1).
  • the electrochemical device provided with the electrode using the composition (binder) described in Patent Document 1 ensures the current collecting property of the electrode active material, improves its utilization efficiency, and has little influence on the electrode active material. Therefore, long life and high capacity can be achieved.
  • charge / discharge characteristics specifically, low temperature characteristics and high rate characteristics in secondary batteries, and capacitor cycle characteristics in capacitors (hereinafter sometimes simply referred to as “cycle characteristics”)). Therefore, the development of electrochemical devices with excellent charge / discharge characteristics has been eagerly desired.
  • the present invention has been made in order to solve the above-mentioned problems of the prior art, and charge / discharge characteristics of electrochemical devices, specifically, low temperature characteristics and high rate characteristics in secondary batteries, and cycle in capacitors.
  • An object is to provide an electrochemical device having excellent characteristics.
  • the present invention provides the following electrochemical device and binder composition.
  • a positive electrode and a negative electrode paired with the positive electrode wherein at least one of the positive electrode and the negative electrode is a flat plate current collector and an electrode layer disposed on at least one surface of the current collector And the electrode layer includes an electrode active material, a binder that bonds and fixes the electrode active materials and the electrode active material and the current collector, and the configuration of the binder
  • a polymer having a structural unit hereinafter sometimes referred to as “(a2) structural unit”
  • (A) polymer”) Is an electrochemical device satisfying the following condition (1) or (2) (first Electrochemical device).
  • Lithium hexafluorophosphate is added to a solvent composed of ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate having a volume fraction of 1: 1: 1, and the concentration of lithium hexafluorophosphate is 1 mol / L.
  • a solution (i) hereinafter sometimes referred to as “electrolyte solution A”
  • the obtained solution (i) adjusts the obtained solution (i) to 80 ° C., and then add the polymer (A) to 80
  • the swelling ratio of the polymer (A) when immersed in the solution (i) at 24 ° C. for 24 hours is 120 to 600%.
  • Methyl triethylammonium tetrafluoroborate is dissolved in propylene carbonate so that the concentration of methyltriethylammonium tetrafluoroborate is 1 mol / L.
  • Solution (ii) (hereinafter sometimes referred to as “electrolytic solution B”) And the solution (ii) is adjusted to 80 ° C., and then the polymer (A) is immersed in the solution (ii) at 80 ° C. for 24 hours.
  • the swelling ratio is 110 to 300%.
  • the polymer (A), which is a constituent component of the binder, is a polymer containing 1 to 10% by mass of a constituent unit derived from the amide group-containing monomer (a1) with respect to all constituent units.
  • the polymer (A) which is a constituent component of the binder contains 0.3 to 5% by mass of the constituent unit derived from the (a2) (meth) acrylic acid with respect to the total constituent units.
  • a positive electrode and a negative electrode that forms a pair with the positive electrode wherein at least one of the positive electrode and the negative electrode is a flat plate current collector and an electrode layer disposed on at least one surface of the current collector And the electrode layer includes an electrode active material, a binder that bonds and fixes the electrode active materials and the electrode active material and the current collector, and the configuration of the binder
  • A 1 to 10% by mass of (a1) a structural unit derived from an amide group-containing monomer with respect to all the structural units, and 0.3 to 5% by mass with respect to all structural units
  • An electrochemical device (second electrochemical device) comprising a polymer containing a structural unit derived from (meth) acrylic acid.
  • R 1 is a hydrogen atom or a methyl group.
  • R 2 and R 3 are each independently a hydrogen atom or a C 1-10 carbon atom that may have a substituent. It is a hydrocarbon group.
  • the polymer (A), which is a constituent component of the binder, further comprises 20 to 60% by mass of a constituent unit derived from (a3) conjugated diene, based on the total constituent units thereof.
  • the electrochemical device according to any one of [6].
  • the polymer (A) as a constituent component of the binder is a polymer raw material containing an amide group-containing monomer and (meth) acrylic acid with respect to 100 parts by mass of the total amount of the polymer raw material.
  • (A) (a1) A structural unit derived from an amide group-containing monomer, (a2) a polymer having a structural unit derived from (meth) acrylic acid, and (B) a dispersion medium.
  • a binder composition (first binder composition) containing and wherein the (A) polymer satisfies the following condition (1) or (2).
  • Lithium hexafluorophosphate is added to a solvent composed of ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate having a volume fraction of 1: 1: 1, and the concentration of lithium hexafluorophosphate is 1 mol / L.
  • a solution (i) that is, “electrolytic solution A”
  • adjust the obtained solution (i) to 80 ° C. and then add the polymer (A) to the solution (80 ° C.)
  • the swelling ratio of the polymer (A) when immersed in i) for 24 hours is 120 to 600%.
  • Methyl triethylammonium tetrafluoroborate is dissolved in propylene carbonate so that the concentration of methyltriethylammonium tetrafluoroborate is 1 mol / L to obtain a solution (ii) (that is, “electrolytic solution B”), After the obtained solution (ii) is adjusted to 80 ° C., the swelling ratio of the (A) polymer when the (A) polymer is immersed in the solution (ii) at 80 ° C. for 24 hours, 110 to 300%.
  • a solution (ii) that is, “electrolytic solution B”
  • the first electrochemical device of the present invention includes (A) (a1) a structural unit derived from an amide group-containing monomer and (a2) a structural unit derived from (meth) acrylic acid as a constituent component of the binder.
  • the polymer (A) satisfies the above condition (1) or (2), the diffusibility of electrolyte ions in the polymer network is improved, and the charge / discharge characteristics are excellent. This is an effect.
  • the second electrochemical device of the present invention comprises (A) a structural unit derived from a predetermined amount of (a1) an amide group-containing monomer and a predetermined amount of (a2) (meth) acrylic as a constituent component of the binder. Since a polymer containing a structural unit derived from an acid is included, the diffusibility of electrolyte ions in the polymer network is improved, and the effect of excellent charge / discharge characteristics is achieved.
  • the 1st binder composition of this invention contains (A) polymer and this (A) polymer satisfy
  • the second binder composition of the present invention comprises (A) a structural unit derived from a predetermined amount of (a1) an amide group-containing monomer, and a structural unit derived from a predetermined amount of (a2) (meth) acrylic acid. Therefore, it can be used as a material for an electrode constituting an electrochemical device having excellent charge / discharge characteristics.
  • a first electrochemical device of the present invention includes a positive electrode and a negative electrode that is paired with the positive electrode, and at least one of the positive electrode and the negative electrode is a flat plate current collector and at least one surface of the current collector
  • the electrode layer has an electrode active material, and a binder for bonding and fixing the electrode active materials and the electrode active material and the current collector,
  • a constituent component of the binder a polymer having (A) (a1) constituent unit and (a2) constituent unit is included, and this (A) polymer satisfies the above condition (1) or (2) It is.
  • the polymer (A) is included as a constituent component of the binder, and the polymer (A) satisfies the above condition (1) or (2).
  • the diffusibility of the electrolyte ions becomes good and the charge / discharge characteristics are excellent.
  • the first electrochemical device of the present invention include a lithium ion secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
  • Positive electrode and negative electrode In the first electrochemical device of the present invention, at least one of the positive electrode and the negative electrode includes a flat plate current collector, and an electrode layer disposed on at least one surface of the current collector, The electrode layer satisfies the above predetermined requirement.
  • a battery electrochemical device having excellent charge / discharge characteristics can be obtained.
  • the 1st electrochemical device of this invention may be provided with multiple electrode groups which consist of a positive electrode and a negative electrode.
  • one electrochemical device includes a plurality of the electrode groups. You may have.
  • an appropriate material can be selected from metal materials such as aluminum, copper, nickel, tantalum, stainless steel, and titanium according to the type of the target electrochemical device.
  • the thickness of the current collector is preferably 5 to 30 ⁇ m, and more preferably 8 to 25 ⁇ m, for example, in the case of constituting an electrode for a lithium secondary battery. Further, for example, when constituting an electrode for a capacitor, it is preferably 5 to 100 ⁇ m, more preferably 10 to 70 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • Electrode layer As described above, the electrode layer is disposed on at least one surface side of the current collector, the electrode active material, the electrode active material, and the predetermined binder that adheres and fixes the electrode active material and the current collector. ,have.
  • Electrode active material is preferably used in the form of powder having a particle size of 3 to 400 ⁇ m.
  • a hydrogen storage alloy powder is preferably used in an aqueous battery, for example, a nickel metal hydride battery. More specifically, a material in which a part of Ni is substituted with an element such as Mn, Al, Co or the like based on MmNi 5 is preferably used.
  • Mm indicates Misch metal, which is a mixture of rare earth elements.
  • lithium cobaltate lithium nickelate, lithium manganate, lithium iron phosphate, ternary nickel cobalt lithium manganate, MnO 2 , MoO 3 , V 2 O 5 , V 6 O 13 , Fe 2 O 3 , Fe 3 O 4 , Li (1-x) CoO 2 , Li (1-x) ⁇ NiO 2 , Li x Co y Sn z O 2 , Li (1-x ) Co (1-y) Inorganic compounds such as Ni y O 2 , TiS 2 , TiS 3 , MoS 3 , FeS 2 , CuF 2 , NiF 2 ; fluorinated carbon, graphite, vapor grown carbon fiber and / or pulverized thereof , Carbon materials such as PAN-based carbon fiber and / or pulverized product thereof, pitch-based carbon fiber and / or pulverized product thereof; polyacetylene, poly-p-phenylene,
  • Examples of the negative electrode active material include carbon such as carbon fluoride, graphite, vapor-grown carbon fiber and / or pulverized product thereof, PAN-based carbon fiber and / or pulverized product thereof, pitch-based carbon fiber and / or pulverized product thereof.
  • Preferred examples include materials, conductive polymers such as polyacetylene and poly-p-phenylene, and amorphous compounds composed of compounds such as tin oxide and fluorine.
  • a graphite material such as natural graphite, artificial graphite, or graphitized mesophase carbon having a high graphitization degree is used, a battery having good charge / discharge cycle characteristics and high capacity can be obtained.
  • the average particle size of the carbonaceous material is preferably 0.1 to 50 ⁇ m, more preferably 1 to 45 ⁇ m, and 3 to 40 ⁇ m. It is particularly preferred. Within the above range, there are advantages that problems such as a decrease in current efficiency, a decrease in paste stability, and an increase in interparticle resistance within the coating film of the obtained electrode are unlikely to occur.
  • activated carbon and polyacene organic semiconductor can be used in addition to the active material exemplified in the non-aqueous battery.
  • Binder contains, as its constituent components, a polymer having (A) (a1) structural unit and (a2) structural unit ((A) polymer), and the (A) polymer is subjected to the conditions (1). ) Or (2) is satisfied.
  • the polymer (A) satisfies either of the above conditions (1) or (2), that is, the polymer (A) is an electrolytic solution. Since it has a specific swelling ratio with respect to A or electrolytic solution B, the charge / discharge characteristics are excellent. That is, by containing a polymer having (a1) structural unit and (a2) structural unit, and this polymer has a specific swelling property (swelling rate) with respect to the electrolytic solution A or the electrolytic solution B The diffusibility of electrolyte ions (lithium ions in a lithium secondary battery) in the polymer network of the binder composition is improved, so that the conductivity is improved, and as a result, the charge / discharge characteristics are considered to be improved.
  • (A) Polymer As described above, the (A) polymer has the (a1) structural unit and the (a2) structural unit, and the (A) polymer is included in the electrode layer (the (A) polymer is a binder. Thus, an electrochemical device having excellent charge / discharge characteristics can be obtained.
  • (a1) Structural unit By including (A) a polymer having a structural unit derived from (a1) an amide group-containing monomer as a binder, the affinity for the electrolyte is improved, or the adhesion between the electrode layer and the current collector is improved. improves. Therefore, it is considered that the charge / discharge characteristics of the electrochemical device can be improved.
  • the structural unit is not particularly limited as long as it is derived from an amide group-containing monomer.
  • A By arranging an amide group outside the polymer, electrolyte ions in the polymer network Since the diffusibility of (lithium ion in a lithium secondary battery) becomes better, it is preferably a structural unit derived from a monomer having an amide group in the side chain. Examples of such a structural unit include a structural unit derived from a monomer represented by the following general formula (1) and a structural unit derived from a monomer represented by the following general formula (2). Can do. Among these, the structural unit derived from the monomer represented by the general formula (1) is preferable from the viewpoint that an electrochemical device having further excellent charge / discharge characteristics can be obtained.
  • R 1 is a hydrogen atom or a methyl group.
  • R 2 and R 3 are each independently a carbon atom having 1 to 10 carbon atoms which may have a hydrogen atom or a substituent. It is a hydrogen group.
  • R 1 is a hydrogen atom or a methyl group.
  • R 4 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms which may have a substituent.
  • R 5 Is an optionally substituted hydrocarbon group having 1 to 20 carbon atoms.
  • R 1 in the general formula (1) is preferably a methyl group because an electrochemical device having further excellent charge / discharge characteristics can be obtained.
  • the hydrocarbon group represented by R 2 and R 3 in the general formula (1) is an aliphatic hydrocarbon group having 1 to 10 carbon atoms such as a straight chain hydrocarbon group, a branched hydrocarbon group, or a cyclic hydrocarbon group; Group hydrocarbon group and the like.
  • Examples of the substituent for the hydrocarbon group having 1 to 10 carbon atoms of R 2 and R 3 include a hydroxyl group, an amino group, and a carboxyl group.
  • R 2 and R 3 are each independently preferably a hydrocarbon group or a hydrogen atom having no substituent.
  • the hydrocarbon group represented by R 4 in the general formula (2) is an aliphatic hydrocarbon group having 1 to 10 carbon atoms such as a linear hydrocarbon group, a branched hydrocarbon group, or a cyclic hydrocarbon group; an aromatic hydrocarbon Examples include groups.
  • Examples of the substituent of the hydrocarbon group having 1 to 10 carbon atoms of R 4 include a hydroxyl group, an amino group, and a carboxyl group, as in R 2 and R 3 .
  • R 2 to R 4 include a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a butyl group, an octyl group, a hydroxymethyl group, a 2-hydroxyethyl group, a 2-hydroxypropyl group, and a 3-hydroxypropyl group. Carboxymethyl group, aminomethyl group, 2-aminoethyl group and the like.
  • the hydrocarbon group of R 5 in the general formula (2) is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, such as a linear hydrocarbon group, a branched hydrocarbon group, or a cyclic hydrocarbon group; an aromatic hydrocarbon Examples include groups.
  • Examples of the substituent of the hydrocarbon group having 1 to 20 carbon atoms of R 5 include a hydroxyl group, an amino group, and a carboxyl group, as in R 2 and R 3 .
  • the content ratio of the structural unit (a1) is preferably 1 to 10% by mass, more preferably 2 to 8% by mass, and more preferably 2 to 5% by mass with respect to all the structural units of the polymer (A). % Is particularly preferred. (A1) When the content rate of a structural unit is in the said range, the charge / discharge characteristic of an electrochemical device is fully exhibited and it is preferable from a viewpoint that the slurry for electrodes which has high coating property is obtained.
  • a polymer contains the structural unit derived from (a2) (meth) acrylic acid other than the structural unit derived from the (a1) amide group containing monomer. (A2) Since the structural unit has a carboxyl group, when (a2) the structural unit is contained, the polymer (A) is considered to exhibit high dispersibility with respect to the electrode active material. Further, (meth) acrylic acid (acrylic acid and / or methacrylic acid) exhibits high copolymerizability with respect to other monomers.
  • (a2) when (meth) acrylic acid is included as a raw material in the synthesis of (A) polymer, (a2) the structural unit is efficiently introduced into the obtained (A) polymer, in other words, For example, a carboxyl group can be efficiently introduced.
  • the (a1) structural unit and the (a2) structural unit are combined, that is, the (A2) structural unit allows the (A) polymer to be well dispersed, and the (a1) structural unit is contained. Since the (A) polymer makes the diffusibility of the electrolyte ions good, the charge / discharge characteristics of the electrochemical device can be improved.
  • the content of the structural unit (a2) is preferably 0.3 to 5% by mass, more preferably 1 to 4% by mass, based on the total structural units of the polymer (A). It is especially preferable that it is 3 mass%. (A2) It is preferable from a viewpoint that the content rate of a structural unit exists in the said range from the viewpoint that the charge / discharge characteristic of an electrochemical device is further improved and the slurry for electrodes which has high coating property is obtained.
  • the (A) polymer preferably further contains a structural unit derived from a conjugated diene ((a3) structural unit) in addition to the (a1) structural unit and the (a2) structural unit.
  • a3 structural unit derived from a conjugated diene
  • flexibility is imparted to the polymer (A), and cracks are unlikely to occur in the obtained electrode layer, and adhesion to the current collector is improved. It is preferable at the point which can obtain a layer.
  • Examples of the monomer (conjugated diene) for providing a structural unit derived from a conjugated diene include 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene, chloroprene and the like.
  • 1,3-butadiene is preferable from the viewpoint that an electrode layer with improved adhesion to the current collector can be obtained and that the copolymerizability is good.
  • the content of the structural unit (a3) is preferably 20 to 60% by mass, more preferably 25 to 55% by mass, and more preferably 30 to 53% by mass with respect to all the structural units of the polymer (A). % Is particularly preferred.
  • (A3) When the content rate of a structural unit is in the said range, it is preferable from a viewpoint that the glass transition temperature of (A) polymer will become moderate.
  • the electrode layer containing such a polymer (A) has appropriate flexibility, and cracks are less likely to occur when the electrode (electrode plate) is wound. Furthermore, since the adhesiveness of the surface of the electrode layer becomes appropriate, problems such as roll contamination are less likely to occur when the electrode is pressed and compressed.
  • the polymer may contain other structural units in addition to the (a1) structural unit, (a2) structural unit, and (a3) structural unit.
  • structural units for example, structural units derived from aromatic vinyl compounds, structural units derived from unsaturated carboxylic acids (excluding (meth) acrylic acid), structural units derived from vinyl cyanide compounds, (meta )
  • structural units derived from an alkyl acrylate ester compound for example, structural units derived from aromatic vinyl compounds, structural units derived from unsaturated carboxylic acids (excluding (meth) acrylic acid), structural units derived from vinyl cyanide compounds, (meta )
  • a structural unit derived from an alkyl acrylate ester compound for example, structural units derived from aromatic vinyl compounds, structural units derived from unsaturated carboxylic acids (excluding (meth) acrylic acid), structural units derived from vinyl cyanide compounds, (meta )
  • a structural unit derived from an alkyl acrylate ester compound for example, structural units derived from aromatic vinyl compounds, structural units derived from unsatur
  • Examples of the monomer (aromatic vinyl compound) that provides a structural unit derived from an aromatic vinyl compound include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, and the like. Among these, styrene is preferable.
  • the content ratio of the structural unit derived from the aromatic vinyl compound is preferably 5 to 55% by weight, more preferably 10 to 53% by weight, based on all the structural units of the polymer (A). It is particularly preferably 15 to 50% by mass.
  • Examples of the monomer that gives a structural unit derived from unsaturated carboxylic acid include itaconic acid, maleic acid, fumaric acid, and the like. Of these, itaconic acid is preferred.
  • the content of the structural unit derived from unsaturated carboxylic acid (excluding (meth) acrylic acid) is preferably 0 to 5% by mass relative to the total structural unit of the polymer (A), and preferably 1 to 4%. More preferably, it is more preferably 1 to 3% by mass.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert- Butyl (meth) acrylate, pentyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2- Ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth)
  • Phenoxyalkyl (meth) acrylates such as methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, methoxybutyl (meth) acrylate, etc.
  • alkoxyalkyl (meth) acrylates such as methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, methoxybutyl (meth) acrylate, etc.
  • alkoxyalkyl (meth) acrylates such as methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, butoxyethyl (meth)
  • Polyethylene glycol (meth) acrylates such as polyethylene glycol mono (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, and nonylphenoxypolyethylene glycol (meth) acrylate; polypropylene Polypropylene glycol (meth) acrylates such as glycol mono (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, ethoxypolypropylene glycol (meth) acrylate, nonylphenoxypolypropylene glycol (meth) acrylate; cyclohexyl (meth) acrylate, 4-butyl Cyclohexyl (meth) acrylate, Cycloalkyls such as cyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopent
  • Examples of the vinyl cyanide compound for providing a structural unit derived from the vinyl cyanide compound include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile and the like. Among these, acrylonitrile and methacrylonitrile are preferable because of good polymerizability and easy availability of raw materials.
  • the content ratio of the structural unit derived from the vinyl cyanide compound is preferably 5 to 25% by weight, more preferably 5 to 23% by weight, based on all the structural units of the polymer (A). It is particularly preferably 5 to 20% by mass. When the content ratio of the structural unit derived from the vinyl cyanide compound is within the above range, it is preferable from the viewpoint that the degree of swelling of the polymer (A) can be moderated.
  • the polymer can be synthesized by a conventionally known method such as emulsion polymerization.
  • emulsion polymerization is a method in which polymerization is carried out in an aqueous medium containing a predetermined amount of a monomer for giving each structural unit in the presence of an emulsifier, a polymerization initiator, a molecular weight regulator, and a chain transfer agent. is there.
  • the temperature of emulsion polymerization is preferably 40 to 80 ° C., and the polymerization time is preferably 2 to 20 hours.
  • an anionic surfactant As the emulsifier, an anionic surfactant, a nonionic surfactant, an amphoteric surfactant and the like can be used. These can be used alone or in combination of two or more.
  • anionic surfactant sulfates of higher alcohols, alkylbenzene sulfonates, aliphatic sulfonates, sulfates of polyethylene glycol alkyl ethers, and the like can be used.
  • nonionic surfactant an alkyl ester type of polyethylene glycol, an alkyl ether type, an alkylphenyl ether type, or the like can be used.
  • amphoteric surfactant for example, an anionic moiety is a carboxylate, sulfate ester, sulfonate, phosphate ester salt and a cation moiety is an amine salt or a quaternary ammonium salt. it can.
  • amino acid types such as bentines such as lauryl betaine and stearyl betaine, lauryl- ⁇ -alanine, lauryl di (aminoethyl) glycine, and octyldi (aminoethyl) glycine.
  • the amount of the emulsifier used is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of monomers for giving each of the structural units.
  • polymerization initiator examples include water-soluble polymerization initiators such as sodium persulfate, potassium persulfate, and ammonium persulfate, and oil-soluble polymerization such as benzoyl peroxide, lauryl peroxide, and 2,2′-azobisisobutyronitrile.
  • water-soluble polymerization initiators such as sodium persulfate, potassium persulfate, and ammonium persulfate
  • oil-soluble polymerization such as benzoyl peroxide, lauryl peroxide, and 2,2′-azobisisobutyronitrile.
  • An initiator, a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite, and the like can be used. These can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the total amount of monomers for providing the above structural units.
  • chain transfer agents examples include mercaptans such as octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl mercaptan, t-tetradecyl mercaptan; dimethylxanthogen disulfide, diethylxanthogen disulfide Xanthogen disulfides such as diisopropylxanthogen disulfide; thiuram disulfides such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide; halogenated hydrocarbons such as chloroform, carbon tetrachloride, ethylene bromide; pentaphenylethane, Hydrocarbons such as ⁇ -methylstyrene
  • chain transfer agents can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the chain transfer agent used is preferably 0.3 to 4 parts by mass with respect to 100 parts by mass of the total amount of the polymer raw material containing the monomer for providing each structural unit, and 0.35 It is more preferably 3 to 3 parts by mass, and particularly preferably 0.4 to 2 parts by mass.
  • the swelling ratio with respect to the electrolytic solution A is preferably 150 to 400%, more preferably 200 to 350%, from the viewpoint of improving the low temperature characteristics and rate characteristics.
  • the swelling ratio with respect to the electrolytic solution B is preferably 120 to 250%, more preferably 150 to 250%, from the viewpoint of improving the capacitor cycle characteristics.
  • the swelling ratio with respect to the electrolytic solution is a value measured by either of the above conditions (1) or (2), and specifically, a value measured by the following method. .
  • (A) water (dispersion medium) is added to the polymer to adjust the solid content to 30% to obtain a dispersion.
  • 25 g of the dispersion (converted to solid content) 25 g is poured into a frame of 8 cm ⁇ 14 cm and dried at room temperature for 5 days to obtain a dry film.
  • the dried film is taken out from the frame and further dried at 80 ° C. for 3 hours to obtain a test film.
  • a plurality of the test films obtained are cut into a size of 2 cm ⁇ 2 cm, and the initial mass (W 0 ) is measured. Then, it puts into the screw bottle containing the electrolytic solution A and the screw bottle containing the electrolytic solution B, respectively, and is immersed at 80 ° C. for 24 hours. Thereafter, the test film is taken out from each of the electrolytic solutions A and B, and after wiping off the electrolytic solution adhering to the film surface, the post-immersion mass (W 1 ) after the test is measured. Then, the swelling ratio (%) with respect to the electrolytic solution is calculated by the formula: mass after immersion (W 1 ) / initial mass (W 0 ) ⁇ 100.
  • the swelling ratio with respect to the electrolytic solution can be controlled, for example, by adjusting the polarity of the polymer (A) by copolymerizing a component having high affinity and a component having low affinity with the electrolytic solution.
  • Components having high affinity for the electrolyte include, for example, vinyl cyanide compounds such as acrylonitrile and methacrylonitrile; carbon numbers of 1 to 3 such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate (Meth) acrylates having 4 alkyl groups; amide group-containing monomers such as acrylamide and methacrylamide; polymethene glycols such as polyethylene glycol mono (meth) acrylate and methoxypolyethylene glycol mono (meth) acrylate (meth) An acrylate compound etc. are mentioned. Among these, acrylonitrile is preferable.
  • C8 or more such as a conjugated diene compound; aromatic vinyl compound; octyl (meth) acrylate, 2 ethylhexyl (meth) acrylate, stearyl (meth) acrylate, etc., for example (Meth) acrylate compounds having an alkyl group of
  • Composition ratio of components having high affinity to electrolyte and components having low affinity for electrolyte in order to keep the swelling ratio for electrolyte in the above range (component having high affinity for electrolyte / affinity to electrolyte)
  • the low component varies depending on the combination of specific components to be copolymerized, but is generally preferably 5/95 to 70/30.
  • the content ratio of the structural unit derived from the crosslinkable monomer such as divinylbenzene or polyfunctional (meth) acrylate is preferably 1% by mass or less based on the total structural unit in the polymer (A). More preferably, it is 0.1 mass% or less.
  • the content ratio is more than 1% by mass, the (A) polymer is cross-linked so that a sufficient swelling rate cannot be obtained, and an electrochemical device having excellent charge / discharge characteristics such as low-temperature characteristics and high-rate characteristics is obtained. It is because it becomes difficult to use as a material of the electrode which comprises.
  • the number average particle diameter of the polymer is preferably 40 to 500 nm, and more preferably 50 to 300 nm.
  • the number average particle diameter is within the above range, the dispersion stability of the polymer particles is increased, which is preferable from the viewpoint of easily obtaining a slurry for an electrode having good properties. Furthermore, it is preferable at the point which can improve the adhesiveness of a collector and an electrode layer.
  • the “number average particle diameter” in the present specification is a value measured by a dynamic light scattering method using water as a dispersion medium.
  • the glass transition temperature of the polymer is preferably ⁇ 50 to 50 ° C., more preferably ⁇ 40 to 40 ° C. If the glass transition temperature is less than ⁇ 50 ° C., the surface of the electrode plate becomes excessively sticky, and problems such as roll contamination may occur when the electrode plate is pressed and compressed. On the other hand, if the temperature exceeds 50 ° C., the electrode plate becomes hard, and thus cracks tend to occur when the electrode plate is wound.
  • the glass transition temperature (Tg) is a value measured as follows. 4 g of the polymer (A) is poured into a 5 cm ⁇ 4 cm frame and dried in a constant temperature bath at 70 ° C.
  • each member used in conventionally known electrochemical devices such as a separator and an exterior member can be appropriately selected and used.
  • the separator is an insulating thin plate and needs to be a material through which the electrolyte solution can easily penetrate.
  • a polyolefin nonwoven fabric such as polyethylene and polypropylene can be used.
  • Exterior member is not particularly limited as long as it accommodates the positive electrode, the negative electrode, and the separator and can be filled with the electrolytic solution.
  • the thing which consists of a metal film and the laminated film which bonded metal foil and the polyolefin-type film can be mentioned.
  • Examples of the electrolytic solution include a lithium ion secondary battery in which an electrolyte composed of a lithium compound is dissolved in a solvent.
  • LiClO 4 LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, LiCH 3 SO 3, LiC 4 F 9 SO 3, Li (C 4 F 3 SO 2) 2 N, Li [CO 2) 2] such as 2 B and the like.
  • solvent examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, lactones such as ⁇ -butyrolactone, trimethoxysilane, 1,2-dimethoxyethane, and diethyl ether.
  • carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate
  • lactones such as ⁇ -butyrolactone, trimethoxysilane, 1,2-dimethoxyethane, and diethyl ether.
  • Ethers such as 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran, sulfoxides such as dimethyl sulfoxide, oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane, nitrogen such as acetonitrile and nitromethane Containing compounds, esters such as methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, phosphate triester, diglyme, triglyme, tetrag Glymes such as Im, ketones such as acetone, diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, sulfones such as sulfolane, oxazolidinones such as 2-methyl-2-oxazolidinone, 1,3-propane sultone, 4-butane
  • the first electrochemical device of the present invention can be produced, for example, as follows.
  • a positive electrode and a negative electrode are each formed in a strip shape, and a separator is disposed between the strip-shaped positive electrode and negative electrode to form an electrode group.
  • the formed electrode group is wound in a spiral shape, it is housed in an exterior member.
  • an electrolytic solution is injected into the exterior member in which the electrode group is accommodated, and the electrode group is impregnated with the electrolytic solution.
  • an electrochemical device can be produced by sealing the opening of the exterior member.
  • At least one of the positive electrode and the negative electrode can be obtained by applying an electrode slurry to at least one surface of the current collector to form an electrode layer.
  • an electrode slurry a conventionally known method can be appropriately employed. Examples thereof include a doctor blade method, a reverse roll method, a comma bar method, a gravure method, and an air knife method.
  • the treatment temperature is preferably 20 to 250 ° C., more preferably 50 to 150 ° C.
  • the treatment time is preferably 1 to 120 minutes, more preferably 5 to 60 minutes.
  • a pressing method for example, a method using a high pressure super press, a soft calender, a one-ton press, or the like can be employed.
  • the electrode slurry contains the binder composition containing the polymer (A) and the dispersion medium (B) and the electrode active material. Since the electrode (positive electrode, negative electrode, or both) is prepared using the slurry for an electrode containing the polymer (A), the diffusibility of the electrolyte ions in the polymer network is improved in the prepared electrode, An electrochemical device having excellent charge / discharge characteristics such as low temperature characteristics and high rate characteristics can be obtained.
  • the dispersion medium is an aqueous electrode slurry. This is because the use of a water-based electrode slurry can reduce the environmental load and increase the safety of the electrode manufacturing process.
  • Dispersion medium is water; organic dispersion medium such as aromatic hydrocarbon compound, non-aromatic hydrocarbon compound, oxygen-containing hydrocarbon compound, chlorine-containing hydrocarbon compound, nitrogen-containing hydrocarbon compound, sulfur-containing hydrocarbon compound And so on.
  • organic dispersion medium such as aromatic hydrocarbon compound, non-aromatic hydrocarbon compound, oxygen-containing hydrocarbon compound, chlorine-containing hydrocarbon compound, nitrogen-containing hydrocarbon compound, sulfur-containing hydrocarbon compound And so on.
  • water when using water as a dispersion medium, you may use the water dispersion medium used at the time of emulsion polymerization of (A) polymer as it is.
  • organic dispersion medium examples include toluene, N-methylpyrrolidone (NMP), methyl isobutyl ketone (MIBK), cyclohexanone, dimethyl sulfoxide (DMSO), dimethylformamide (DMF) and the like.
  • the concentration of the (A) polymer in the binder composition can be appropriately set so that the viscosity range is easy to handle depending on the type of the (B) dispersion medium to be used.
  • the solid content concentration of the binder composition to be used is preferably 15 to 50% by mass, and more preferably 20 to 40% by mass.
  • the solid content concentration is less than 15%, the solid content of the electrode slurry decreases when a specified amount of the binder composition in terms of solid content is added to the active material, conductive carbon, and the like. There is a possibility that an electrode having a desired thickness cannot be produced.
  • it exceeds 50% the viscosity of the binder composition becomes high, which may make it difficult to handle in a blending process such as weighing.
  • solid content conversion shows converting into the component remove
  • the binder composition contains an emulsifier, a polymerization initiator, a chain transfer agent, etc. used in the polymerization of the polymer (A). May be.
  • the solid content of the binder composition is preferably 0.5 to 5 parts by mass, more preferably 0.75 to 4 parts by mass with respect to 100 parts by mass of the electrode active material. If the content is less than 0.5 parts by mass, good adhesion between the electrode layer and the current collector may not be obtained. On the other hand, if it exceeds 5 parts by mass, it may be difficult to sufficiently improve the electrochemical device characteristics.
  • the electrode slurry may further contain additives such as a thickener, a dispersant such as sodium polyacrylate, a surfactant, and an antifoaming agent, in addition to the binder composition and the electrode active material described above.
  • additives such as a thickener, a dispersant such as sodium polyacrylate, a surfactant, and an antifoaming agent, in addition to the binder composition and the electrode active material described above.
  • the electrode slurry can be prepared by mixing a binder composition, an electrode active material, and, if necessary, an additive using a mixer such as a stirrer, a defoamer, a bead mill, or a high-pressure homogenizer. In addition, it is preferable to perform the said mixing under reduced pressure. When the mixing is performed under reduced pressure, bubbles can be prevented from being generated in the obtained electrode layer.
  • the second electrochemical device of the present invention includes a positive electrode and a negative electrode that is paired with the positive electrode, and at least one of the positive electrode and the negative electrode is a flat plate current collector and at least one surface of the current collector.
  • the electrode layer has an electrode active material, and a binder for bonding and fixing the electrode active materials and the electrode active material and the current collector, As a constituent component of the binder, a constituent unit derived from 1 to 10% by mass of (a1) an amide group-containing monomer (hereinafter referred to as “(c1) constituent unit” with respect to all constituent units (A).
  • (c2) component unit a structural unit derived from 0.3 to 5% by mass of (a2) (meth) acrylic acid (hereinafter sometimes referred to as “(c2) component unit”) with respect to all the structural units.
  • (c2) component unit a structural unit derived from 0.3 to 5% by mass of (a2) (meth) acrylic acid (hereinafter sometimes referred to as “(c2) component unit”) with respect to all the structural units.
  • a2) (meth) acrylic acid hereinafter sometimes referred to as “(c2) component unit”
  • the second electrochemical device of the present invention include a lithium ion secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
  • (C) Polymer (C) The polymer is 1 to 10% by mass of (c1) structural unit with respect to 100% by mass of all structural units, and 0.3 to 5% by mass of (100% by mass of all structural units) ( c2) Containing structural units.
  • a binder composition that can be used as an electrode material constituting an electrochemical device having excellent charge / discharge characteristics can be obtained.
  • Such a polymer (C) has a specific affinity for the electrolytic solution A or the electrolytic solution B. Specifically, the swelling rate with respect to the electrolytic solution A under the above conditions is 120% to 600%, and the swelling rate with respect to the electrolytic solution B under the above conditions is 110% to 300%.
  • (c1) Structural unit By including (C) a polymer having a structural unit derived from (c1) an amide group-containing monomer as a binder, the affinity for the electrolytic solution is improved, and the adhesion between the electrode layer and the current collector is improved. improves. Therefore, it is considered that the charge / discharge characteristics of the electrochemical device can be improved.
  • (c1) structural unit the thing similar to (a1) structural unit can be illustrated.
  • the content ratio of the structural unit (c1) is 1 to 10% by mass, preferably 2 to 8% by mass, preferably 2 to 5% by mass with respect to 100% by mass of all the structural units in the polymer (C). % Is more preferable.
  • the content ratio is less than 1% by mass, the amide group content is small, so that the charge / discharge characteristics of the electrochemical device are not sufficiently exhibited.
  • it exceeds 10% by mass the coating property of the electrode slurry is lowered, and a battery (electrochemical device) having excellent charge / discharge characteristics cannot be obtained.
  • (c2) Structural unit (C2)
  • the structural unit is a structural unit derived from (meth) acrylic acid, and the (c1) structural unit and the (c2) structural unit combine to improve the charge / discharge characteristics. Can be obtained.
  • the structural unit (c2) when only a structural unit derived from an unsaturated carboxylic acid other than (meth) acrylic acid (for example, a structural unit derived from itaconic acid) is used, sufficient dispersion is achieved. The charge / discharge characteristics cannot be sufficiently improved.
  • unsaturated carboxylic acids other than (meth) acrylic acid for example, itaconic acid
  • have low copolymerizability with other monomers so that carboxylic acid is introduced into the resulting (A) polymer. It is difficult to improve the charge / discharge characteristics of the electrochemical device.
  • the content of the structural unit (c2) is 0.3 to 5% by mass, preferably 1 to 4% by mass, and preferably 1 to 3% by mass with respect to all the structural units in the polymer (C). More preferably.
  • the content ratio is less than 0.3% by mass, an electrochemical device that sufficiently exhibits charge / discharge characteristics cannot be obtained.
  • it exceeds 5% by mass the coating property of the electrode slurry is lowered, and a battery (electrochemical device) having excellent charge / discharge characteristics cannot be obtained.
  • the (C) polymer preferably further contains a structural unit derived from a conjugated diene ((c3) structural unit) in addition to the (c1) structural unit and the (c2) structural unit.
  • a structural unit derived from a conjugated diene ((c3) structural unit)
  • flexibility can be imparted to the polymer (C), and an electrode layer having high adhesion to the current collector can be obtained.
  • Examples of the structural unit include those similar to the structural unit (a3) described above. Moreover, the content rate can be made into the content rate similar to the (a3) structural unit mentioned above.
  • the polymer (C) may contain other structural units in addition to the (c1) structural unit, (c2) structural unit, and (c3) structural unit.
  • the same structural units as those described above can be exemplified.
  • the content ratio of the structural unit derived from the crosslinkable monomer such as divinylbenzene or polyfunctional (meth) acrylate is preferably 1% by mass or less based on the total structural unit in the polymer (C). More preferably, it is 0.1 mass% or less.
  • the polymer (C) is used as a material for an electrode constituting an electrochemical device having an excellent charge / discharge characteristic because the polymer is cross-linked and the swelling rate is not sufficiently obtained. This is because it becomes difficult.
  • the polymer can be prepared in the same manner as the (A) polymer.
  • Components other than the polymer (C) used in the second electrochemical device of the present invention that is, the positive electrode, the negative electrode, the separator, the electrolytic solution, the exterior member, the current collector, the electrode active material, etc.
  • (A) Constituent elements other than the polymer used in the first electrochemical device, that is, the same materials as the positive electrode, the negative electrode, the separator, the electrolytic solution, the exterior member, the current collector, and the electrode active material are preferably used. Can do.
  • the second electrochemical device of the present invention can be produced in the same manner as the first electrochemical device production method described above except that (C) the polymer is used.
  • the first binder composition of the present invention comprises (A) (a1) a structural unit derived from an amide group-containing monomer, and (a2) a polymer having a structural unit derived from (meth) acrylic acid, (B) a dispersion medium, and (A) the polymer satisfies the above condition (1) or (2).
  • Such a binder composition contains (A) a polymer, and since this (A) polymer satisfies either of the above conditions (1) or (2), that is, (A) polymer. Since it has a specific swelling ratio with respect to the electrolytic solution A or the electrolytic solution B, it can be used as a material for an electrode constituting an electrochemical device having excellent charge / discharge characteristics.
  • it contains (A) a polymer having (a1) structural unit and (a2) structural unit, and (A) the polymer has a specific swelling property with respect to the electrolytic solution A or the electrolytic solution B ( Swell ratio), the diffusibility of the electrolyte ions (lithium ions in the lithium secondary battery) in the polymer network of the electrode layer is improved, so that the conductivity is improved, and as a result, the charge / discharge characteristics are improved. Conceivable.
  • the (A) polymer contained in the first binder composition of the present invention can be the same as the (A) polymer used in the first electrochemical device of the present invention.
  • the (B) dispersion medium contained in the first binder composition of the present invention is the same as the (B) dispersion medium used in the first method for producing an electrochemical device of the present invention. it can.
  • the concentration of the polymer (A) in the first binder composition of the present invention can be appropriately set so as to be in a viscosity range that is easy to handle depending on the type of the (B) dispersion medium to be used.
  • the solid content concentration of the first binder composition of the present invention is preferably 15 to 50% by mass, and more preferably 20 to 40% by mass.
  • the solid content concentration is less than 15%, the solid content of the electrode slurry decreases when a specified amount of the binder composition in terms of solid content is added to the active material, conductive carbon, and the like. There is a possibility that an electrode having a desired thickness cannot be produced.
  • it exceeds 50% the viscosity of the binder composition becomes high, which may make it difficult to handle in a blending process such as weighing.
  • the first binder composition of the present invention includes an emulsifier, a polymerization initiator, and a chain transfer agent that were used in the polymerization of the (A) polymer. Etc. may be contained.
  • the second binder composition of the present invention comprises (A) 1 to 10% by mass of (a1) an amide group-containing monomer and 100% by mass of all structural units, and all of the structural units. It contains 0.3 to 5% by mass of (a2) a polymer containing a structural unit derived from (meth) acrylic acid and (B) a dispersion medium with respect to 100% by mass. Since such a binder composition contains the polymer (A), it can be used as a material for an electrode constituting an electrochemical device having excellent charge / discharge characteristics.
  • an electrolyte ion (lithium secondary battery) in the polymer network of the electrode layer by containing (A) a polymer having a predetermined amount of (a1) structural unit and a predetermined amount of (a2) structural unit.
  • the diffusibility of lithium ions is improved, so that the conductivity is improved, and as a result, the charge / discharge characteristics are considered to be improved.
  • the (A) polymer contained in the second binder composition of the present invention can be the same as the (A) polymer used in the second electrochemical device of the present invention.
  • the (B) dispersion medium contained in the second binder composition of the present invention is the same as the (B) dispersion medium used in the first method for producing an electrochemical device of the present invention. it can.
  • the concentration of the (A) polymer in the second binder composition of the present invention can be appropriately set so that the viscosity range is easy to handle depending on the type of the (B) dispersion medium to be used.
  • the solid content concentration of the second binder composition of the present invention is preferably 15 to 50% by mass, and more preferably 20 to 40% by mass.
  • the solid content concentration is less than 15%, the solid content of the electrode slurry decreases when a specified amount of the binder composition in terms of solid content is added to the active material, conductive carbon, and the like. There is a possibility that an electrode having a desired thickness cannot be produced.
  • it exceeds 50% the viscosity of the binder composition becomes high, which may make it difficult to handle in a blending process such as weighing.
  • the second binder composition of the present invention includes an emulsifier, a polymerization initiator, and a chain transfer agent used during the polymerization of the (A) polymer. Etc. may be contained.
  • peel strength (mN / 2 cm).
  • low temperature characteristic (%) ⁇ (C 10 Cycle ) / (C 0.2 ) ⁇ ⁇ 100.
  • this evaluation is indicated as “low temperature characteristics (0 ° C.) [%]”.
  • Capacitor cycle characteristics (%) First, for the fabricated capacitor secondary battery, after charging with a constant current (1C) -constant voltage (3.5 V) method, a charge / discharge cycle of discharging with a constant current (1C) method was repeated three times to obtain an average The discharge capacity (C 3 ) was calculated. Thereafter, the charge / discharge cycle was further repeated to perform a total of 100 charge / discharge cycles, and the average discharge capacity (C 100 ) was calculated. Next, the retention rate of discharge capacity with respect to the third cycle (value calculated by the formula: ⁇ (C 100 ) / (C 3 ) ⁇ ⁇ 100) was defined as capacitor cycle characteristics (%). In addition, all this measurement was implemented at 25 degreeC.
  • Example 1 Evaluation of negative electrode of lithium ion secondary battery: In a temperature-controllable autoclave equipped with a stirrer, 200 parts of water as a dispersion medium, 0.6 part of sodium dodecylbenzenesulfonate, 1.0 part of potassium persulfate, 0.5 part of sodium bisulfite, shown in Table 1 The monomers and chain transfer agent were charged all at once in the amounts shown in Table 1 and reacted at 80 ° C. for 6 hours. After completion of the polymerization reaction, the pH of the reaction solution was adjusted to 7.2.
  • the prepared slurry for negative electrode was uniformly applied to the surface of the current collector made of copper foil by a doctor blade method so that the film thickness after drying was 100 ⁇ m, followed by drying at 120 ° C. for 20 minutes. Then, the lithium ion secondary battery negative electrode was obtained by pressing with a roll press so that the density of the obtained electrode layer might be 1.8 g / cm ⁇ 3 >.
  • PVdF positive electrode a positive electrode was produced as a counter electrode used for evaluation.
  • 4 parts of PVdF (polyvinylidene fluoride) (in terms of solid content) is added to a biaxial planetary mixer (TK Hibismix 2P-03: manufactured by Primex), and 100 parts of lithium iron phosphate as the positive electrode active material (solid content) Conversion), 5 parts of acetylene black (converted to solid content) and 25 parts of NMP (N-methylpyrrolidone) were added as conductive agents, and the mixture was stirred at 60 rpm for 1 hour.
  • the prepared positive electrode slurry was uniformly applied to the surface of the current collector made of aluminum foil by a doctor blade method so that the film thickness after drying was 90 ⁇ m, and was dried at 120 ° C. for 20 minutes. Then, it pressed with the roll press machine so that the density of the electrode layer obtained might be 3.8 g / cm ⁇ 3 >. In this way, a lithium ion secondary battery positive electrode was obtained.
  • the negative electrode of the lithium ion secondary battery punched to a diameter of 16.16 mm was placed on a bipolar coin cell (trade name “HS Flat Cell” (made by Hosen Co., Ltd.)) in a glove box.
  • a separator (trade name “Celguard # 2400” (manufactured by Celgard)) made of a polypropylene porous film punched to a diameter of 18 mm is placed on the negative electrode, and the electrolytic solution A is used to prevent air from entering. Injected.
  • the lithium ion secondary battery positive electrode punched out to a diameter of 15.95 mm is placed on the separator, and the outer body of the two-pole coin cell is tightened and sealed to seal the lithium ion secondary battery (electrochemical device). ) was produced.
  • Each evaluation (number average particle diameter, electrolyte solution swelling ratio, peel strength, rate characteristic, low temperature characteristic) was performed on the produced lithium ion secondary battery by the method described above. As shown in Table 1, the evaluation result shows that the number average particle size is 120 nm, the electrolytic solution swelling ratio (electrolytic solution A) is 170%, the peel strength is 490 (mN / 2 cm), and the rate characteristics are The low-temperature characteristic was 85%.
  • Examples 1 to 14 and Comparative Examples 1 to 4 are cases in which the electrode layer of the lithium ion secondary battery negative electrode contains (A) a polymer and a binder that satisfies the condition (1) or (2). is there. The column “Evaluation” in Tables 1 and 2 indicates “Evaluation for negative electrode of lithium ion secondary battery”.
  • Examples 2 to 14, Comparative Examples 1 to 4 A binder composition was obtained in the same manner as in Example 1 except that the components shown in Tables 1 and 2 were used in the blending amounts (parts by mass) shown in Tables 1 and 2. Then, the lithium ion secondary battery was produced by the same method as Example 1 except having used the obtained binder composition. Each evaluation (number average particle diameter, electrolytic solution swelling ratio, peel strength, rate characteristic, low temperature characteristic) was performed on the produced lithium ion secondary battery by the method described above. The evaluation results are shown in Table 1 or Table 2.
  • Example 15 [Evaluation of positive electrode for lithium ion secondary battery]: First, a binder composition was obtained in the same manner as in Example 1 except that the components shown in Tables 1 and 2 were used in the blending amounts (parts by mass) shown in Tables 1 and 2.
  • the prepared positive electrode slurry was uniformly applied to the surface of the current collector made of aluminum foil by a doctor blade method so that the film thickness after drying was 90 ⁇ m, followed by drying treatment at 120 ° C. for 20 minutes. Then, the lithium ion secondary battery positive electrode was obtained by pressing with a roll press so that the density of the electrode layer obtained may be 3.5 g / cm ⁇ 3 >.
  • PVdF negative electrode Preparation of counter electrode (PVdF negative electrode)
  • 4 parts of PVdF (in terms of solid content), 100 parts of graphite (in terms of solid content), and 80 parts of NMP as the negative electrode active material are added to a twin-screw planetary mixer (TK Hibismix 2P-03: manufactured by Primex). The mixture was stirred at 60 rpm for 1 hour. Then, after adding 20 parts of NMP further, using a stirring defoaming machine (product name “THINKYO NITERO” manufactured by THINKY), 1 minute at 1800 rpm under vacuum, 2 minutes at 200 rpm, 5 minutes at 1800 rpm. A slurry for negative electrode was prepared by sequentially stirring and mixing for 5 minutes.
  • the prepared slurry for negative electrode was uniformly applied to the surface of the current collector made of copper foil by a doctor blade method so that the film thickness after drying was 150 ⁇ m, and was dried at 120 ° C. for 20 minutes. Then, the lithium ion secondary battery negative electrode was obtained by pressing with a roll press so that the density of the obtained electrode layer might be 1.8 g / cm ⁇ 3 >.
  • a lithium ion secondary battery negative electrode punched to a diameter of 16.16 mm was placed on a bipolar coin cell (trade name “HS Flat Cell” (made by Hosen Co., Ltd.)) in a glove box.
  • a separator (trade name “Celguard # 2400” (manufactured by Celgard)) made of a polypropylene porous film punched to a diameter of 18 mm is placed on the negative electrode, and the electrolytic solution A is used to prevent air from entering. Injected.
  • each evaluation (number average particle diameter, electrolyte solution swelling ratio, peel strength, rate characteristic, low temperature characteristic) was performed on the produced lithium ion secondary battery by the method described above. As shown in Table 1, the evaluation result is that the number average particle diameter is 120 nm, the electrolyte swelling ratio is 150%, the peel strength is 480 (mN / 2 cm), and the rate characteristic is 88%. The low temperature characteristic was 90%.
  • the electrode layer of the lithium ion secondary battery positive electrode contains (A) a polymer and a binder satisfying the condition (1) or (2). is there.
  • the column “Evaluation” in Tables 1 and 2 indicates “Evaluation for positive electrode of lithium ion secondary battery”.
  • Example 16 comparative example 5
  • a separable flask having a volume of 7 liters was charged with 150 parts by mass of water, and the inside was sufficiently purged with nitrogen.
  • 60 parts by mass of water 60 parts by mass of water, 2 parts of an ether sulfate type emulsifier (Adekaria soap SR1025: made by ADEKA) as an emulsifier (in terms of solid content)
  • the monomers shown in Tables 1 and 2 are shown in Tables 1 and 2
  • a monomer emulsified liquid was prepared by adding in the indicated blending amount (parts by mass) and stirring sufficiently.
  • a lithium ion secondary battery was produced in the same manner as in Example 15 except that the binder composition thus obtained was used.
  • Each evaluation (number average particle diameter, electrolytic solution swelling ratio, peel strength, rate characteristic, low temperature characteristic) was performed on the produced lithium ion secondary battery by the method described above. The evaluation results are shown in Table 1 or Table 2.
  • Example 6 A binder composition was obtained in the same manner as in Example 1 except that the components shown in Tables 1 and 2 were used in the blending amounts (parts by mass) shown in Tables 1 and 2. Then, the lithium ion secondary battery was produced by the same method as Example 15 except having used the obtained binder composition. Each evaluation (number average particle diameter, electrolytic solution swelling ratio, peel strength, rate characteristic, low temperature characteristic) was performed on the produced lithium ion secondary battery by the method described above. The evaluation results are shown in Table 2.
  • Example 17 The inside of an autoclave having an internal volume of about 6 liters equipped with an electromagnetic stirrer was sufficiently purged with nitrogen. Thereafter, 2.5 liters of deoxygenated pure water and 25 g of ammonium perfluorodecanoate as an emulsifier were charged, and the temperature was raised to 60 ° C. while stirring at 350 rpm. Next, a mixed gas composed of 44.2% vinylidene fluoride (VdF) and 55.8% propylene hexafluoride (HFP) was charged until the internal pressure reached 20 kg / cm 2 G.
  • VdF vinylidene fluoride
  • HFP propylene hexafluoride
  • a lithium ion secondary battery was produced in the same manner as in Example 15 except that the binder composition thus obtained was used.
  • Each evaluation (number average particle diameter, electrolytic solution swelling ratio, peel strength, rate characteristic, low temperature characteristic) was performed on the produced lithium ion secondary battery by the method described above. The evaluation results are shown in Table 1.
  • Example 18 [Capacitor evaluation]: First, a binder composition was obtained in the same manner as in Example 1 except that the components shown in Table 3 were used in the amounts (parts by mass) shown in Table 3.
  • the slurry for capacitor electrodes was prepared by sequentially stirring and mixing at 1800 rpm for 1.5 minutes under vacuum for 5 minutes.
  • the prepared capacitor electrode slurry was uniformly applied to the surface of the current collector made of aluminum foil by a doctor blade method so that the film thickness after drying was 150 ⁇ m, thereby obtaining a capacitor electrode. .
  • a capacitor electrode punched to a diameter of 16.16 mm was placed on a bipolar coin cell (trade name “HS Flat Cell” (made by Hosen Co., Ltd.)) (exterior member).
  • a cellulose separator (trade name “TF45” (manufactured by Nippon Kogyo Paper Industries Co., Ltd.)) punched to a diameter of 18 mm is placed on the capacitor electrode, and electrolyte B is injected so that air does not enter. did.
  • another capacitor electrode punched to a diameter of 15.95 mm was placed on the separator, and the outer body of the bipolar coin cell was sealed with a screw to produce a capacitor (electrochemical device).
  • Examples 18 to 22 and Comparative Examples 7 to 9 are cases in which the electrode layer of the capacitor electrode contains (A) a binder that satisfies the condition (1) or (2). “Evaluation for capacitor electrodes” is shown in the column of “Evaluation” in Tables 1 and 2.
  • Example 19 to 22, Comparative Examples 7 to 9 A binder composition was obtained in the same manner as in Example 1 except that the components shown in Table 2 or Table 3 were used in the amounts (parts by mass) shown in Table 2 or Table 3. Thereafter, a capacitor was produced in the same manner as in Example 18 except that the obtained binder composition was used. Each evaluation (number average particle diameter, electrolyte solution swelling ratio, peel strength, capacitor cycle characteristics) was performed on the produced capacitor by the method described above. The evaluation results are shown in Table 2 or Table 3.
  • the swelling rate is in the range of 200 to 350% (more preferable range) (swelling rate is 210% and 320%), and by such a range, the rate characteristics and the low temperature characteristics are particularly good. It has become.
  • the above-mentioned swelling rate is obtained by setting the content of acrylonitrile used as a raw material (that is, the content ratio of structural units derived from acrylonitrile) to an appropriate value.
  • the electrochemical device of the present invention can be suitably used as a power source for driving electronic equipment, for example.
  • the binder composition of the present invention is suitable as a material for an electrode constituting an electrochemical device used as a power source for driving electronic equipment, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 低温特性などの充放電特性が優れ、正極及び負極を有し、正極及び負極の少なくとも一方は、集電体及び電極層を備え、電極層は、電極活物質及びバインダーを有しており、バインダーの構成成分として、アミド基含有単量体に由来する構成単位と(メタ)アクリル酸に由来する構成単位を有する重合体が含まれ、かつ、前記(A)重合体が、下記条件(1)または(2)を満たす電気化学デバイス。 (1)エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネートと六フッ化リン酸リチウムとを含む80℃の溶液(i)に24時間浸漬させたときの(A)重合体の膨潤率が120~600%である。 (2)プロピレンカーボネートとメチルトリエチルアンモニウムテトラフルオロボレートとを含む80℃の溶液(ii)に24時間浸漬させたときの(A)重合体の膨潤率が110~300%である。

Description

電気化学デバイス及びバインダー組成物
 本発明は、電気化学デバイス及びバインダー組成物に関する。更に詳しくは、充放電特性に優れた電気化学デバイス及びバインダー組成物に関する。
 近年、電子機器の小型化・軽量化の進歩は目覚しく、それに伴い、電子機器の駆動用電源として用いられる電気化学デバイス(例えば、二次電池、キャパシタなど)も、小型化・高エネルギー密度化の要求が一層高まっている。このような要求を満足する電気化学デバイス(電池)として、最近では、具体的には、ニッケル水素二次電池、リチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等が開発されている。
 リチウムイオン二次電池は、リチウム含有遷移金属酸化物を主成分とする正極、リチウムイオンを吸蔵し、脱離し得る炭素材料を主成分とする負極、及びリチウム塩を含む有機系電解液から構成されている。リチウムイオン二次電池を充電すると、正極からリチウムイオンが脱離して負極の炭素材料に吸蔵され、放電したときは逆に負極からリチウムイオンが脱離して正極の金属酸化物に吸蔵される。
 また、電気二重層キャパシタは、一般に、使用する電解液の種類により、硫酸、水酸化カリウムなどの無機系水溶液の電解液を用いる水系電解液タイプと、プロピレンカーボネート、アセトニトリルなどの水を含まない有機電解液を溶媒として、テトラエチルアンモニウムテトラフルオロボレート(EtNBF)などを電解質として用いる非水系電解液タイプとに分類される。
 このような電気化学デバイスは、長寿命であったり高容量であったりすることが当然に求められるため、長寿命・高容量の電気化学デバイスについては開発が行われている。そして、最近では、長寿命・高容量以外に、低温特性、ハイレート特性(以下、「レート特性」と記す場合がある)などの充放電特性を向上させることが要求されている。
 一方、充放電特性を向上させることを目的として、電気化学デバイスを構成する電極の改良が多数行われている。ここで、電極は、集電体と、この集電体の一方の面に配置された電極層と、を備えているものである。そして、この電極を製造する方法としては、例えば、以下の方法等が知られている。まず、水素吸蔵合金、黒鉛、金属酸化物、活性炭等の活物質と、カルボキシメチルセルロース等の増粘剤と、重合体粒子を含有するラテックスからなるバインダーと、が水に分散されてなるペーストまたはスラリーを得、得られたペーストまたはスラリーを集電体の表面に塗布して乾燥した後、得られる塗膜をプレス加工することにより、集電体の表面上に電極層を形成して電極を製造する。
 そして、上記バインダーは、活物質を互いに結着する機能や、電極層と集電体との密着性を向上させる機能などを有しており、バインダーを改良することによって、電気化学デバイスの特性を向上させることが行われている。バインダーとしては、具体的には、共役ジエン、芳香族ビニル化合物、(メタ)アクリレート化合物、及び、不飽和カルボン酸を含む単量体組成物を乳化重合して得られるものが知られている(例えば、特許文献1参照)。
特開平11-25989号公報
 しかしながら、特許文献1に記載された組成物(バインダー)を用いた電極を備える電気化学デバイスは、電極活物質の集電性を確保し、その利用効率を向上させ、電極活物質に対する影響が少ないものであるため、長寿命、高容量化を達成することができる。しかし、充放電特性(具体的には、二次電池においては低温特性及びハイレート特性、キャパシタにおいてはキャパシタサイクル特性(以下、単に「サイクル特性」と記す場合がある))については、未だ改良の余地があり、充放電特性に優れた電気化学デバイスの開発が切望されていた。
 本発明は、上述のような従来技術の課題を解決するためになされたものであり、電気化学デバイスの充放電特性、具体的には二次電池においては低温特性及びハイレート特性、キャパシタにおいてはサイクル特性に優れた電気化学デバイスを提供することを目的とする。
 本発明により、以下の電気化学デバイス及びバインダー組成物が提供される。
[1]正極と、前記正極と対をなす負極とを備え、前記正極及び前記負極の少なくとも一方は、平板状の集電体と、前記集電体の少なくとも一方の面に配置された電極層と、を備えており、前記電極層は、電極活物質と、前記電極活物質どうし及び前記電極活物質と前記集電体とを接着固定するバインダーと、を有しており、前記バインダーの構成成分として、(A)(a1)アミド基含有単量体に由来する構成単位(以下、「(a1)構成単位」と記す場合がある)、及び、(a2)(メタ)アクリル酸に由来する構成単位(以下、「(a2)構成単位」と記す場合がある)を有する重合体(以下、「(A)重合体」と記す場合がある)が含まれ、かつ、前記(A)重合体が、下記条件(1)または(2)を満たす電気化学デバイス(第一の電気化学デバイス)。
(1)体積分率が1:1:1のエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネートとからなる溶媒に六フッ化リン酸リチウムを、六フッ化リン酸リチウムの濃度が1mol/Lとなるように溶解して溶液(i)(以下、「電解液A」と記す場合がある)を得て、得られた前記溶液(i)を80℃に調節した後、前記(A)重合体を80℃の前記溶液(i)に24時間浸漬させたときの前記(A)重合体の膨潤率が、120~600%である。
(2)プロピレンカーボネートにメチルトリエチルアンモニウムテトラフルオロボレートを、メチルトリエチルアンモニウムテトラフルオロボレートの濃度が1mol/Lとなるように溶解して溶液(ii)(以下、「電解液B」と記す場合がある)を得て、得られた前記溶液(ii)を80℃に調節した後、前記(A)重合体を80℃の前記溶液(ii)に24時間浸漬させたときの前記(A)重合体の膨潤率が、110~300%である。
[2]前記バインダーの構成成分である前記(A)重合体は、その全構成単位に対して、前記(a1)アミド基含有単量体に由来する構成単位を1~10質量%含有する重合体である前記[1]に記載の電気化学デバイス。
[3]前記バインダーの構成成分である前記(A)重合体は、その全構成単位に対して、前記(a2)(メタ)アクリル酸に由来する構成単位を0.3~5質量%含有する重合体である前記[1]または[2]に記載の電気化学デバイス。
[4]正極と、前記正極と対をなす負極とを備え、前記正極及び前記負極の少なくとも一方は、平板状の集電体と、前記集電体の少なくとも一方の面に配置された電極層と、を備えており、前記電極層は、電極活物質と、前記電極活物質どうし及び前記電極活物質と前記集電体とを接着固定するバインダーと、を有しており、前記バインダーの構成成分として、(A)全構成単位に対して、1~10質量%の(a1)アミド基含有単量体に由来する構成単位、及び、全構成単位に対して、0.3~5質量%の(a2)(メタ)アクリル酸に由来する構成単位を含有する重合体が含まれる電気化学デバイス(第二の電気化学デバイス)。
[5]前記(a1)アミド基含有単量体に由来する構成単位が、下記一般式(1)で表される単量体に由来するものである前記[1]~[4]のいずれかに記載の電気化学デバイス。
Figure JPOXMLDOC01-appb-C000002
(前記一般式(1)中、Rは、水素原子またはメチル基である。R及びRは、それぞれ独立に、水素原子または置換基を有していてもよい炭素数1~10の炭化水素基である。)
[6]前記一般式(1)中のRが、メチル基である前記[5]に記載の電気化学デバイス。
[7]前記バインダーの構成成分である前記(A)重合体が、その全構成単位に対して、20~60質量%の(a3)共役ジエンに由来する構成単位を更に有する前記[1]~[6]のいずれかに記載の電気化学デバイス。
[8]前記バインダーの構成成分である前記(A)重合体は、アミド基含有単量体と(メタ)アクリル酸とを含有する重合体原料を、前記重合体原料の総量100質量部に対して、0.3~4質量部の連鎖移動剤の存在下で、重合して得られるものである前記[1]~[7]のいずれかに記載の電気化学デバイス。
[9](A)(a1)アミド基含有単量体に由来する構成単位、及び、(a2)(メタ)アクリル酸に由来する構成単位を有する重合体と、(B)分散媒と、を含有し、前記(A)重合体が、下記条件(1)または(2)を満たすバインダー組成物(第一のバインダー組成物)。
(1)体積分率が1:1:1のエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネートとからなる溶媒に六フッ化リン酸リチウムを、六フッ化リン酸リチウムの濃度が1mol/Lとなるように溶解して溶液(i)(即ち、「電解液A」)を得て、得られた前記溶液(i)を80℃に調節した後、前記(A)重合体を80℃の前記溶液(i)に24時間浸漬させたときの前記(A)重合体の膨潤率が、120~600%である。
(2)プロピレンカーボネートにメチルトリエチルアンモニウムテトラフルオロボレートを、メチルトリエチルアンモニウムテトラフルオロボレートの濃度が1mol/Lとなるように溶解して溶液(ii)(即ち、「電解液B」)を得て、得られた前記溶液(ii)を80℃に調節した後、前記(A)重合体を80℃の前記溶液(ii)に24時間浸漬させたときの前記(A)重合体の膨潤率が、110~300%である。
[10]前記(A)重合体は、その全構成単位に対して、前記(a1)アミド基含有単量体に由来する構成単位を1~10質量%含有する前記[9]に記載のバインダー組成物。
[11]前記(A)重合体は、その全構成単位に対して、前記(a2)(メタ)アクリル酸に由来する構成単位を0.3~5質量%含有する前記[9]または[10]に記載のバインダー組成物。
[12](A)全構成単位100質量%に対して、1~10質量%の(a1)アミド基含有単量体に由来する構成単位、及び、全構成単位100質量%に対して、0.3~5質量%の(a2)(メタ)アクリル酸に由来する構成単位を含有する重合体と、(B)分散媒と、を含有するバインダー組成物(第二のバインダー組成物)。
 本発明の第一の電気化学デバイスは、バインダーの構成成分として、(A)(a1)アミド基含有単量体に由来する構成単位、及び、(a2)(メタ)アクリル酸に由来する構成単位を有する重合体が含まれ、かつ、前記(A)重合体が、上記条件(1)または(2)を満たすため、重合体ネットワーク中における電解質イオンの拡散性が良好となり、充放電特性に優れるという効果を奏するものである。
 本発明の第二の電気化学デバイスは、バインダーの構成成分として、(A)所定量の(a1)アミド基含有単量体に由来する構成単位、及び、所定量の(a2)(メタ)アクリル酸に由来する構成単位を含有する重合体が含まれるため、重合体ネットワーク中における電解質イオンの拡散性が良好となり、充放電特性に優れるという効果を奏するものである。
 本発明の第一のバインダー組成物は、(A)重合体を含有し、この(A)重合体が上記条件(1)または(2)のいずれかを満たすものであるため、即ち、電解液Aまたは電解液Bに対して特定の膨潤率を有するものであるため、充放電特性が優れた電気化学デバイスを構成する電極の材料として用いることができる。
 本発明の第二のバインダー組成物は、(A)所定量の(a1)アミド基含有単量体に由来する構成単位、及び、所定量の(a2)(メタ)アクリル酸に由来する構成単位を含有する重合体を含有するものであるため、充放電特性が優れた電気化学デバイスを構成する電極の材料として用いることができる。
 以下、本発明を実施するための形態について説明するが、本発明は以下の実施の形態に限定されるものではない。即ち、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に属することが理解されるべきである。
[1]電気化学デバイス:
 本発明の第一の電気化学デバイスは、正極と、この正極と対をなす負極とを備え、正極及び負極の少なくとも一方は、平板状の集電体と、この集電体の少なくとも一方の面に配置された電極層と、を備えており、上記電極層は、電極活物質と、この電極活物質どうし及び電極活物質と集電体とを接着固定するバインダーと、を有しており、バインダーの構成成分として、(A)(a1)構成単位及び(a2)構成単位を有する重合体が含まれ、かつ、この(A)重合体が、上記条件(1)または(2)を満たすものである。このような電気化学デバイスは、バインダーの構成成分として(A)重合体が含まれ、かつ、この(A)重合体が、上記条件(1)または(2)を満たすため、重合体ネットワーク中における電解質イオンの拡散性が良好となり、充放電特性に優れるものである。
 本発明の第一の電気化学デバイスとしては、具体的にはリチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタなどを挙げることができる。
[1-1]正極及び負極:
 本発明の第一の電気化学デバイスにおいて、正極及び負極の少なくとも一方は、平板状の集電体と、この集電体の少なくとも一方の面に配置された電極層と、を備えており、上記電極層が上記所定の要件を満たすものである。このような電極(正極、負極、またはこれらの両方)を備えることにより、充放電特性が優れた電池(電気化学デバイス)を得ることができる。なお、本発明の第一の電気化学デバイスは、正極及び負極からなる電極群を複数備えていてもよい。即ち、例えば、正極及び負極を、それぞれ帯状に形成し、この帯状の正極及び負極の間にセパレータを配して1つの電極群を形成した場合、1つの電気化学デバイスは、上記電極群を複数備えていてもよい。
[1-1-1]集電体:
 集電体を構成する材料としては、例えば、アルミニウム、銅、ニッケル、タンタル、ステンレス、チタンなどの金属材料の中から目的とする電気化学デバイスの種類に応じて適宜選択して用いることができる。
 また、集電体の厚みは、例えば、リチウム二次電池用の電極を構成する場合には、5~30μmであることが好ましく、8~25μmであることが更に好ましい。また、例えば、キャパシタ用の電極を構成する場合には、5~100μmであることが好ましく、10~70μmであることが更に好ましく、15~30μmであることが特に好ましい。
[1-1-2]電極層:
 電極層は、上述したように、集電体の少なくとも一方の面側に配置され、電極活物質と、この電極活物質どうし及び電極活物質と集電体とを接着固定する上記所定のバインダーと、を有している。
[1-1-2-1]電極活物質:
 電極活物質は、その粒子径が3~400μmの粉末状のものを用いることが好ましい。電極活物質としては、水系電池、例えば、ニッケル水素電池では、水素吸蔵合金粉末が好適に用いられる。より具体的には、MmNiをベースに、Niの一部をMn、Al、Co等の元素で置換したものが好適に用いられる。なお、「Mm」は、希土類の混合物であるミッシュメタルを示す。また、非水系電池においては、例えば、正極活物質として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、三元系ニッケルコバルトマンガン酸リチウム、MnO、MoO、V、V13、Fe、Fe、Li(1-x)CoO、Li(1-x)・NiO、LiCoSn、Li(1-x)Co(1-y)Ni、TiS、TiS、MoS、FeS、CuF、NiF等の無機化合物;フッ化カーボン、グラファイト、気相成長炭素繊維及び/またはその粉砕物、PAN系炭素繊維及び/またはその粉砕物、ピッチ系炭素繊維及び/またはその粉砕物等の炭素材料;ポリアセチレン、ポリ-p-フェニレン等の導電性高分子等を挙げることができる。
 負極活物質としては、例えば、フッ化カーボン、グラファイト、気相成長炭素繊維及び/またはその粉砕物、PAN系炭素繊維及び/またはその粉砕物、ピッチ系炭素繊維及び/またはその粉砕物等の炭素材料、ポリアセチレン、ポリ-p-フェニレン等の導電性高分子、スズ酸化物やフッ素等の化合物からなるアモルファス化合物等を好適例として挙げることができる。特に、黒鉛化度の高い天然黒鉛や人造黒鉛、黒鉛化メソフェーズカーボン等の黒鉛質材料を用いた場合、充放電サイクル特性が良く、容量が高い電池を得ることができる。また、負極活物質として炭素質材料を用いた場合における、この炭素質材料の平均粒径は、0.1~50μmであることが好ましく、1~45μmであることが更に好ましく、3~40μmであることが特に好ましい。上記範囲内であると、電流効率の低下、ペーストの安定性低下、得られる電極の塗膜内での粒子間抵抗増大等の問題が生じ難いという利点がある。
 また、キャパシタにおいては、上記非水系電池で例示した活物質に加えて活性炭、ポリアセン系有機半導体を使用することができる。
[1-1-2-2]バインダー:
 バインダーは、その構成成分として、(A)(a1)構成単位及び(a2)構成単位を有する重合体((A)重合体)を含み、かつ、この(A)重合体が、上記条件(1)または(2)を満たすものである。
 本発明の第一の電気化学デバイスにおいては、上記(A)重合体が、上記条件(1)または(2)のいずれかを満たすものであるため、即ち、(A)重合体が、電解液Aまたは電解液Bに対して特定の膨潤率を有するものであるため、充放電特性が優れる。即ち、(a1)構成単位及び(a2)構成単位を有する重合体を含有し、かつ、この重合体が、電解液Aまたは電解液Bに対して特定の膨潤性(膨潤率)を有することによって、バインダー組成物の重合体ネットワーク中における電解質イオン(リチウム二次電池においてはリチウムイオン)の拡散性が良好となるため導電性が向上し、結果として充放電特性が向上すると考えられる。
[1-1-2-2-1](A)重合体:
 (A)重合体は、上述したように、(a1)構成単位及び(a2)構成単位を有しており、この(A)重合体を電極層に包含させること((A)重合体をバインダーの構成要素として用いること)によって、充放電特性が優れた電気化学デバイスを得ることができる。
[1-1-2-2-1a](a1)構成単位:
 バインダーとして、(a1)アミド基含有単量体に由来する構成単位を有する(A)重合体を含むことにより、電解液に対する親和性が向上したり、電極層と集電体との密着性が向上する。そのため、電気化学デバイスの充放電特性を向上させることができると考えられる。
 (a1)構成単位は、アミド基含有単量体に由来するものである限り特に制限はないが、(A)重合体の外側にアミド基が配置されることにより、重合体ネットワーク中における電解質イオン(リチウム二次電池においてはリチウムイオン)の拡散性がより良好となるため、側鎖にアミド基を有する単量体に由来する構成単位であることが好ましい。このような構成単位としては、例えば、下記一般式(1)で表される単量体に由来する構造単位、下記一般式(2)で表される単量体に由来する構造単位を挙げることができる。これらの中でも、充放電特性が更に優れた電気化学デバイスを得ることができるという観点から、一般式(1)で表される単量体に由来する構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、Rは、水素原子またはメチル基である。R及びRは、それぞれ独立に、水素原子または置換基を有していてもよい炭素数1~10の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000004
(一般式(2)中、Rは、水素原子またはメチル基である。Rは、水素原子または置換基を有していてもよい炭素数1~10の炭化水素基である。Rは、置換基を有していてもよい炭素数1~20の炭化水素基である。)
 一般式(1)中のRは、充放電特性が更に優れた電気化学デバイスを得ることができるため、メチル基であることが好ましい。
 一般式(1)中のR及びRの炭化水素基としては、炭素数1~10の、直鎖炭化水素基、分岐炭化水素基、環状炭化水素基などの脂肪族炭化水素基;芳香族炭化水素基などを挙げることができる。また、R及びRの炭素数1~10の炭化水素基の置換基としては、例えば、ヒドロキシル基、アミノ基、カルボキシル基などを挙げることができる。なお、R及びRとしては、それぞれ独立に、置換基を有していない炭化水素基または水素原子が好ましい。
 一般式(2)中のRの炭化水素基としては、炭素数1~10の、直鎖炭化水素基、分岐炭化水素基、環状炭化水素基などの脂肪族炭化水素基;芳香族炭化水素基などを挙げることができる。Rの炭素数1~10の炭化水素基の置換基としては、R及びRと同様に、例えば、ヒドロキシル基、アミノ基、カルボキシル基などを挙げることができる。
 R~Rの具体例としては、水素原子、メチル基、エチル基、イソプロピル基、ブチル基、オクチル基、ヒドロキシメチル基、2-ヒドロキシエチル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、カルボキシメチル基、アミノメチル基、2-アミノエチル基等が挙げられる。
 一般式(2)中のRの炭化水素基としては、炭素数1~20の、直鎖炭化水素基、分岐炭化水素基、環状炭化水素基などの脂肪族炭化水素基;芳香族炭化水素基などを挙げることができる。Rの炭素数1~20の炭化水素基の置換基としては、R及びRと同様に、例えば、ヒドロキシル基、アミノ基、カルボキシル基などを挙げることができる。
 (a1)構成単位の含有割合は、(A)重合体の全構成単位に対して、1~10質量%であることが好ましく、2~8質量%であることが更に好ましく、2~5質量%であることが特に好ましい。(a1)構成単位の含有割合が、上記範囲内であると、電気化学デバイスの充放電特性が十分に発揮され、高い塗工性を有する電極用スラリーが得られるという観点から好ましい。
[1-1-2-2-1b](a2)構成単位:
 (A)重合体は、(a1)アミド基含有単量体に由来する構成単位以外に、(a2)(メタ)アクリル酸に由来する構成単位を含有する。(a2)構成単位がカルボキシル基を有しているために、(a2)構成単位を含有する場合、(A)重合体は、電極活物質に対して高い分散性を示すことが考えられる。また、(メタ)アクリル酸(アクリル酸及び/またはメタクリル酸)は、他の単量体に対して高い共重合性を示す。従って、(A)重合体の合成に際して(メタ)アクリル酸が原料として含まれていると、得られる(A)重合体には(a2)構成単位が効率的に導入されること、別言すれば、カルボキシル基が効率的に導入されることが考えられる。このように、(a1)構成単位と(a2)構成単位とが相俟って、即ち、(a2)構成単位により(A)重合体が良好に分散し、かつ、(a1)構成単位を含有する(A)重合体により電解質イオンの拡散性が良好となるため、電気化学デバイスの充放電特性を向上させることができる。ここで、(a2)構成単位に代えて、(メタ)アクリル酸以外の不飽和カルボン酸に由来する構成単位(例えば、イタコン酸に由来する構成単位)のみを用いた場合には、十分な分散性が得られず、充放電特性を十分に向上させることができない。即ち、(メタ)アクリル酸以外の不飽和カルボン酸(例えば、イタコン酸)は、他の単量体との共重合性が低いことから、得られる(A)重合体にはカルボキシル基が導入され難く電気化学デバイスの充放電特性を向上させることができ難い。
 (a2)構成単位の含有割合は、(A)重合体の全構成単位に対して、0.3~5質量%であることが好ましく、1~4質量%であることが更に好ましく、1~3質量%であることが特に好ましい。(a2)構成単位の含有割合が、上記範囲内であると、電気化学デバイスの充放電特性が更に向上され、高い塗工性を有する電極用スラリーが得られるという観点から好ましい。
[1-1-2-2-1c](a3)構成単位:
 (A)重合体は、(a1)構成単位及び(a2)構成単位以外に、共役ジエンに由来する構成単位((a3)構成単位)を更に含有することが好ましい。このような(a3)構成単位を更に含有することによって、(A)重合体に柔軟性が付与され、得られる電極層にクラックが生じ難くなるとともに、集電体との密着性が向上した電極層を得ることができる点で好ましい。
 共役ジエンに由来する構成単位を与えるための単量体(共役ジエン)としては、例えば、1,3-ブタジエン、イソプレン、2-クロロ-1,3-ブタジエン、クロロプレンなどを挙げることができる。これらの中でも、集電体との密着性が向上した電極層を得ることができること、及び、共重合性が良好であるという観点から、1,3-ブタジエンが好ましい。
 (a3)構成単位の含有割合は、(A)重合体の全構成単位に対して、20~60質量%であることが好ましく、25~55質量%であることが更に好ましく、30~53質量%であることが特に好ましい。(a3)構成単位の含有割合が、上記範囲内であると、(A)重合体のガラス転移温度が適度なものとなるという観点から好ましい。このような(A)重合体を含む電極層は、適度な柔軟性を有し、電極(電極板)の倦回時にクラックが発生し難くなる。更に、電極層表面の粘着性も適度なものとなるため、電極をプレスして圧縮する際に、ロール汚れ等の問題を生じ難い。
[1-1-2-2-1d]その他の構成単位:
 (A)重合体は、(a1)構成単位、(a2)構成単位、及び(a3)構成単位以外に、その他の構成単位を含有してもよい。その他の構成単位としては、例えば、芳香族ビニル化合物に由来する構成単位、不飽和カルボン酸((メタ)アクリル酸を除く)に由来する構成単位、シアン化ビニル化合物に由来する構成単位、(メタ)アクリル酸アルキルエステル化合物に由来する構成単位などを挙げることができる。
 芳香族ビニル化合物に由来する構成単位を与える単量体(芳香族ビニル化合物)としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロルスチレンなどを挙げることができる。これらの中でも、スチレンが好ましい。
 芳香族ビニル化合物に由来する構成単位の含有割合は、(A)重合体の全構成単位に対して、5~55質量%であることが好ましく、10~53質量%であることが更に好ましく、15~50質量%であることが特に好ましい。
 不飽和カルボン酸((メタ)アクリル酸を除く)に由来する構成単位を与える単量体としては、例えば、イタコン酸、マレイン酸、フマル酸などを挙げることができる。これらの中でも、イタコン酸が好ましい。
 不飽和カルボン酸((メタ)アクリル酸を除く)に由来する構成単位の含有割合は、(A)重合体の全構成単位に対して、0~5質量%であることが好ましく、1~4質量%であることが更に好ましく、1~3質量%であることが特に好ましい。
 (メタ)アクリル酸アルキルエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等のフェノキシアルキル(メタ)アクリレート類;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、プロポキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、メトキシブチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート類;
 ポリエチレングリコールモノ(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート等のポリエチレングリコール(メタ)アクリレート類;ポリプロピレングリコールモノ(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート等のポリプロピレングリコール(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類などを挙げることができる。
 シアン化ビニル化合物に由来する構成単位を与えるためのシアン化ビニル化合物としては、例えば、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エチルアクリロニトリル等を挙げることができる。これらの中でも、重合性が良好であること及び原料の入手が容易であることからアクリロニトリル、メタクリロニトリルが好ましい。
 シアン化ビニル化合物に由来する構成単位の含有割合は、(A)重合体の全構成単位に対して、5~25質量%であることが好ましく、5~23質量%であることが更に好ましく、5~20質量%であることが特に好ましい。シアン化ビニル化合物に由来する構成単位の含有割合が、上記範囲内であると、(A)重合体の膨潤度を適度なものにできるという観点から好ましい。
[1-1-2-2-1e](A)重合体の調製:
 (A)重合体は、乳化重合などの従来公知の方法によって合成することができる。例えば、乳化重合は、乳化剤、重合開始剤、分子量調節剤、及び連鎖移動剤の存在下で、上記各構成単位を与えるための単量体を所定量含有する水性媒体中で重合を行う方法である。乳化重合の温度は、40~80℃であることが好ましく、重合時間は、2~20時間であることが好ましい。
 乳化剤としては、アニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤などを用いることができる。これらは1種単独でまたは2種以上組み合わせて用いることができる。
 アニオン性界面活性剤としては、高級アルコールの硫酸エステル、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、ポリエチレングリコールアルキルエーテルの硫酸エステルなどを用いることができる。ノニオン性界面活性剤としては、ポリエチレングリコールのアルキルエステル型のもの、アルキルエーテル型のもの、アルキルフェニルエーテル型のものなどを用いることができる。両性界面活性剤としては、例えば、アニオン部分が、カルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩で、カチオン部分が、アミン塩、第4級アンモニウム塩であるものを用いることができる。具体的には、ラウリルベタイン、ステアリルベタインなどのベンタイン類、ラウリル-β-アラニン、ウラリルジ(アミノエチル)グリシン、オクチルジ(アミノエチル)グリシンなどのアミノ酸タイプのものを例示することができる。
 乳化剤の使用量は、上記各構成単位を与えるための単量体の総量100質量部に対して0.5~5質量部であることが好ましい。
 重合開始剤としては、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムなどの水溶性重合開始剤、過酸化ベンゾイル、ラウリルパーオキサイド、2,2’-アゾビスイソブチロニトリル等の油溶性重合開始剤、重亜硫酸ナトリウム等の還元剤との組み合わせによるレドックス系重合開始剤などを用いることができる。これらは1種単独でまたは2種以上組み合わせて用いることができる。重合開始剤の使用量は、上記各構成単位を与えるための単量体の総量100質量部に対して、0.3~3質量部であることが好ましい。
 連鎖移動剤としては、例えば、オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン、t-テトラデシルメルカプタン等のメルカプタン類;ジメチルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲンジスルフィド類;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド等のチウラムジスルフィド類;クロロホルム、四塩化炭素、臭化エチレン等のハロゲン化炭化水素類;ペンタフェニルエタン、α-メチルスチレンダイマー等の炭化水素類;アクロレイン、メタクロレイン、アリルアルコール、2-エチルヘキシルチオグリコレート、ターピノーレン、α-テルピネン、γ-テルピネン、ジペンテンなどを挙げることができる。
 これらの中でも、メルカプタン類、キサントゲンジスルフィド類、チウラムジスルフィド類、四塩化炭素、α-メチルスチレンダイマーが好ましい。なお、これらの連鎖移動剤は、1種単独でまたは2種以上を組み合わせて使用することができる。
 連鎖移動剤の使用量は、上記各構成単位を与えるための単量体を含有する重合体原料の総量100質量部に対して、0.3~4質量部であることが好ましく、0.35~3質量部であることが更に好ましく、0.4~2質量部であることが特に好ましい。
[1-1-2-2-1f](A)重合体の物性:
 以下、(A)重合体の物性について、電解液に対する膨潤率、その他の物性の順に説明する。
[1-1-2-2-1fa]電解液に対する膨潤率:
 (A)重合体は、電解液Aまたは電解液Bに対して、特定の親和性を有する必要がある。即ち、電解液Aに対する膨潤率が120%~600%であるか、または、電解液Bに対する膨潤率が110%~300%であることが必要である。電解液Aに対する膨潤率が120%未満、または、電解液Bに対する膨潤率が110%未満である場合には、電解液A,Bに対する親和性が十分でなく、得られる電極は十分な充放電特性を得ることができない。一方、電解液Aに対する膨潤率が600%超、または、電解液Bに対する膨潤率が300%超である場合には、電解液A,Bによる電極の膨潤が過大となり電池の内部抵抗が上昇してしまうため、十分な充放電特性を得ることができない。
 電解液Aに対する膨潤率は、低温特性及びレート特性が良好になるという観点から150~400%であることが好ましく、200~350%であることが更に好ましい。一方、電解液Bに対する膨潤率は、キャパシタサイクル特性が良好になるという観点から120~250%であることが好ましく、150~250%であることが更に好ましい。
 ここで、本明細書において、電解液に対する膨潤率は、上記条件(1)または(2)のいずれかにより測定される値であるが、具体的には以下の方法にて測定した値である。まず、(A)重合体に水(分散媒)を加えて、固形分30%となるように調整して分散液を得る。その後、8cm×14cmの枠に得られた分散液(固形分換算)25gを流しこみ、常温にて5日間乾燥させて乾燥フィルムを得る。その後、乾燥フィルムを枠から取り出し、更に80℃×3時間乾燥を行い、試験用フィルムを得る。次に、得られた試験用フィルムを2cm×2cmの大きさに複数枚切り出し、初期質量(W)を測定する。その後、電解液Aが入ったスクリュー瓶及び電解液Bが入ったスクリュー瓶にそれぞれ投入して、80℃にて24時間浸漬する。その後、試験用フィルムを各電解液A,Bから取り出し、フィルム表面に付着した電解液を拭き取った後に試験後の浸漬後質量(W)を測定する。その後、式:浸漬後質量(W)/初期質量(W)×100によって電解液に対する膨潤率(%)を算出する。
 電解液に対する膨潤率は、例えば、電解液に対して親和性の高い成分と親和性の低い成分を共重合させることによって、(A)重合体の極性を調節することで制御可能である。
 電解液に対して親和性の高い成分としては、例えば、アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等の炭素数1~4のアルキル基を有する(メタ)アクリレート;アクリルアミド、メタクリルアミド等のアミド基含有単量体;ポリエチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールを有する(メタ)アクリレート化合物等が挙げられる。これらの中でも、アクリロニトリルが好ましい。また、電解液に対して親和性の低い成分としては、例えば、共役ジエン化合物;芳香族ビニル化合物;オクチル(メタ)アクリレート、2エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート等の炭素数8以上のアルキル基を有する(メタ)アクリレート化合物等が挙げられる。
 電解液に対する膨潤率を上述した範囲とするための、電解液に親和性の高い成分と電解液に親和性の低い成分の組成比(電解液に親和性の高い成分/電解液に親和性の低い成分)は、共重合させる具体的な成分の組み合わせにより異なるが、概ね、5/95~70/30とすることが好ましい。
 また、ジビニルベンゼンや多官能(メタ)アクリレートなどの架橋性モノマーに由来する構造単位の含有割合は、(A)重合体中の全構造単位に対して、1質量%以下であることが好ましく、0.1質量%以下であることが更に好ましい。上記含有割合が1質量%超であると、(A)重合体が架橋されることによって、膨潤率が十分に得られず、低温特性、ハイレート特性などの充放電特性が優れた電気化学デバイスを構成する電極の材料として用いることが困難になるためである。
[1-1-2-2-1fb]その他の物性:
 (A)重合体の数平均粒子径は、40~500nmであることが好ましく、50~300nmであることが更に好ましい。数平均粒子径が上記範囲内であると、重合体粒子の分散安定性が高くなり、良好な性状の電極用スラリーを得やすい点で好ましい。更に、集電体と電極層との密着性を向上させられる点で好ましい。ここで、本明細書において「数平均粒子径」は、水を分散媒として動的光散乱法によって測定される値である。
 (A)重合体のガラス転移温度は、-50~50℃であることが好ましく、-40~40℃であることが更に好ましい。上記ガラス転移温度が-50℃未満であると、電極板表面が過度に粘着質となり、電極板をプレスして圧縮する際に、ロール汚れ等の問題を発生するおそれがある。一方、50℃超であると、電極板が硬くなるため電極板の倦回時にクラックが発生し易い傾向にある。なお、本明細書において、ガラス転移温度(Tg)は、以下のようにして測定した値である。4gの(A)重合体を5cm×4cmの枠に注ぎ入れ、恒温槽中で70℃×24時間乾燥させ膜厚約100μmのフィルムを作製する。作製したフィルムから10mgの試験片を切り出し、この試験片をアルミ容器中に入れて密封する。空気雰囲気下で示差走査熱量測定装置(NETZSCH社製の型番「DSC204F1」)を用いて昇温速度20℃/分の条件で-80℃~100℃の温度領域についてDSCチャートを作成し、Tgを算出する。なお、DSCチャートからのTgの読み取り方法はJIS K7121に記載の中間点ガラス転移温度の求め方に従う。
 本発明の第一の電気化学デバイスには、上述した正極及び負極以外に、セパレータ、外装部材などの従来公知の電気化学デバイスに使用される各部材を適宜選択して使用することができる。
[1-2]セパレータ:
 セパレータは、絶縁性の薄板であり、電解液が浸透しやすい素材であることが必要である。セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン製不織布等を用いることができる。
[1-3]外装部材:
 外装部材は、正極、負極、及びセパレータを収納し、かつ電解液を充填することができるものである限り特に制限はない。例えば、金属製のものや金属箔とポリオレフィン系フィルムを貼り合わせたラミネートフィルムからなるものなどを挙げることができる。
 電解液としては、リチウムイオン二次電池を構成する場合には、リチウム化合物からなる電解質が溶媒中に溶解されてなるものなどを挙げることができる。
 上記電解質としては、例えば、LiClO、LiBF、LiI、LiPF、LiCFSO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CSON、Li[COBなどが挙げられる。
 溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類、γ-ブチロラクトン等のラクトン類、トリメトキシシラン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類、ジメチルスルホキシド等のスルホキシド類、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類、アセトニトリル、ニトロメタン等の窒素含有化合物、ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、スルホラン等のスルホン類、2-メチル-2-オキサゾリジノン等のオキサゾリジノン類、1,3-プロパンスルトン、4-ブタンスルトン、ナフタスルトン等のスルトン類などが挙げられる。
 また、電気二重層キャパシタを構成する場合には、上記溶媒中に、テトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、テトラエラルアンモニウムヘキサフルオロホスフェート等の電解質が溶解されてなるものなどを用いることができる。
 更に、リチウムイオンキャパシタを構成する場合には、上記リチウムイオン二次電池を構成する場合と同様のものを用いることができる。
[1-4]本発明の第一の電気化学デバイスの製造方法:
 本発明の第一の電気化学デバイスは、例えば以下のように製造することができる。
 まず、正極及び負極を、それぞれ帯状に形成し、この帯状の正極及び負極の間にセパレータを配して電極群を形成する。形成した電極群を渦巻き状に巻回した後、外装部材に収納する。その後、電極群が収納された外装部材内に電解液を注液し、電極群を電解液に含浸させる。その後、外装部材の開口を封口することにより電気化学デバイスを作製することができる。なお、複数の電極群を形成した後、これらの複数の電極群を巻回して外装部材に収納してもよい。
 上記正極及び負極の少なくとも一方は、集電体の少なくとも一方の面に電極用スラリーを塗布して電極層を形成することにより得ることができる。電極用スラリーを塗布する方法としては、従来公知の方法を適宜採用することができるが、例えば、ドクターブレード法、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法などを挙げることができる。
 また、電極用スラリーの塗布膜の乾燥処理の条件としては、処理温度が20~250℃であることが好ましく、50~150℃であることが更に好ましい。また、処理時間が1~120分間であることが好ましく、5~60分間であることが更に好ましい。
 なお、上記集電体の少なくとも一方の面に電極用スラリーを塗布した後、上記条件で乾燥処理し、得られる塗膜をプレス加工することが好ましい。プレス加工する方法としては、例えば、高圧スーパープレス、ソフトカレンダー、1トンプレス機などを用いる方法を採用することができる。
[1-4-1]電極用スラリー:
 電極用スラリーは、上記(A)重合体及び(B)分散媒を含むバインダー組成物と、上記電極活物質とを含有するものである。上記(A)重合体を含有する電極用スラリーを用いて電極(正極、負極、またはこれらの両方)を作製するため、作製された電極において重合体ネットワーク中における電解質イオンの拡散性が良好となり、低温特性、ハイレート特性などの充放電特性が優れた電気化学デバイスを得ることができる。本発明の電気化学デバイスの製造方法においては、(B)分散媒が水系の電極用スラリーを用いることが好ましい。水系の電極用スラリーを用いると、環境への負荷を小さくでき、また電極作製プロセスの安全性を高めることが可能となるためである。
[1-4-1a]分散媒:
 (B)分散媒は、水;芳香族炭化水素化合物、非芳香族炭化水素化合物、含酸素炭化水素化合物、含塩素炭化水素化合物、含窒素炭化水素化合物、含硫黄炭化水素化合物などの有機物分散媒などを挙げることができる。なお、分散媒として水を用いる場合、(A)重合体の乳化重合時に使用した水分散媒をそのまま用いてもよい。
 有機系分散媒の具体例としては、トルエン、N-メチルピロリドン(NMP)、メチルイソブチルケトン(MIBK)、シクロヘキサノン、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)等を挙げることができる。
 バインダー組成物中の(A)重合体の濃度は、使用する(B)分散媒の種類によって取り扱い易い粘度範囲となるように適宜設定することが可能である。
 また、使用するバインダー組成物の固形分濃度は、15~50質量%であることが好ましく、20~40質量%であることが更に好ましい。上記固形分濃度が15%未満であると、活物質、導電カーボン等に対して、固形分換算における規定量のバインダー組成物を添加した際に、電極用スラリーの固形分が低下してしまうため、所望の厚さの電極が作製できなくなるおそれがある。一方、50%超であると、バインダー組成物の粘度が高くなるために、計量等の配合プロセス等における取り扱いが難しくなるおそれがある。なお、本明細書において「固形分換算」とは、組成物から分散媒を除いた成分に換算することを示す。
 なお、上記バインダー組成物には、(A)重合体及び(B)分散媒以外に、(A)重合体の重合の際に使用した、乳化剤、重合開始剤、連鎖移動剤などを含有していてもよい。
 バインダー組成物の固形分換算の含有割合は、電極活物質100質量部に対して、0.5~5質量部であることが好ましく、0.75~4質量部であることが更に好ましい。上記含有割合が0.5質量部未満であると、電極層と集電体との良好な密着性が得られなくなるおそれがある。一方、5質量部超であると、電気化学デバイス特性を十分に向上させることが困難になるおそれがある。
[1-4-1b]添加剤:
 電極用スラリーは、上述したバインダー組成物及び電極活物質以外に、増粘剤、ポリアクリル酸ナトリウムなどの分散剤、界面活性剤、消泡剤などの添加剤を更に含有していてもよい。
 電極用スラリーは、バインダー組成物、電極活物質、及び、必要に応じて添加剤を、攪拌機、脱泡機、ビーズミル、高圧ホモジナイザーなどの混合器によって混合することによって調製することができる。なお、減圧下で上記混合を行うことが好ましい。減圧下で上記混合を行うと、得られる電極層内に気泡が生じることを防止することができる。
[2]電気化学デバイス:
 本発明の第二の電気化学デバイスは、正極と、この正極と対をなす負極とを備え、正極及び負極の少なくとも一方は、平板状の集電体と、この集電体の少なくとも一方の面に配置された電極層と、を備えており、上記電極層は、電極活物質と、この電極活物質どうし及び電極活物質と集電体とを接着固定するバインダーと、を有しており、バインダーの構成成分として、(A)全構成単位に対して、1~10質量%の(a1)アミド基含有単量体に由来する構成単位(以下、「(c1)成単位」と記す場合がある)、及び、全構成単位に対して、0.3~5質量%の(a2)(メタ)アクリル酸に由来する構成単位(以下、「(c2)成単位」と記す場合がある)を含有する重合体(以下、「(C)重合体」と記す場合がある)が含まれるものである。このような電気化学デバイスは、バインダーの構成成分として(C)重合体を含むため、重合体ネットワーク中における電解質イオンの拡散性が良好となり、充放電特性に優れるものである。
 本発明の第二の電気化学デバイスとしては、具体的にはリチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタなどを挙げることができる。
[2-1](C)重合体:
 (C)重合体は、全構成単位100質量%に対して、1~10質量%の(c1)構成単位、及び、全構成単位100質量%に対して、0.3~5質量%の(c2)構成単位を含有するものである。この(C)重合体によって、充放電特性が優れた電気化学デバイスを構成する電極の材料として用いることが可能なバインダー組成物を得ることができる。このような(C)重合体は、電解液Aまたは電解液Bに対して、特定の親和性を有する。具体的には、上記条件における電解液Aに対する膨潤率が120%~600%となり、上記条件における電解液Bに対する膨潤率が110%~300%となる。
[2-1-1](c1)構成単位:
 バインダーとして、(c1)アミド基含有単量体に由来する構成単位を有する(C)重合体を含むことにより、電解液に対する親和性が向上したり、電極層と集電体との密着性が向上する。そのため、電気化学デバイスの充放電特性を向上させることができると考えられる。なお、(c1)構成単位としては、(a1)構成単位と同様のものを例示することができる。
 (c1)構成単位の含有割合は、(C)重合体中の全構成単位100質量%に対して、1~10質量%であり、2~8質量%であることが好ましく、2~5質量%であることが更に好ましい。上記含有割合が、1質量%未満であると、アミド基の含有量が少ないため、電気化学デバイスの充放電特性が十分に発揮されなくなる。一方、10質量%超であると、電極用スラリーの塗工性が低下し、充放電特性の優れた電池(電気化学デバイス)が得られない。
[2-1-2](c2)構成単位:
 (c2)構成単位は、(メタ)アクリル酸に由来する構成単位であり、(c1)構成単位と(c2)構成単位とが相俟って、充放電特性を向上させることができるバインダー組成物を得ることができる。ここで、(c2)構成単位に代えて、(メタ)アクリル酸以外の不飽和カルボン酸に由来する構成単位(例えば、イタコン酸に由来する構成単位)のみを用いた場合には、十分な分散性が得られず、充放電特性を十分に向上させることができない。即ち、(メタ)アクリル酸以外の不飽和カルボン酸(例えば、イタコン酸)は、他の単量体との共重合性が低いことから、得られる(A)重合体にはカルボン酸が導入され難く電気化学デバイスの充放電特性を向上させることができ難い。
 (c2)構成単位の含有割合は、(C)重合体中の全構成単位に対して、0.3~5質量%であり、1~4質量%であることが好ましく、1~3質量%であることが更に好ましい。上記含有割合が、0.3質量%未満であると、充放電特性が十分に発揮された電気化学デバイスが得られない。一方、5質量%超であると、電極用スラリーの塗工性が低下し、充放電特性の優れた電池(電気化学デバイス)が得られない。
[2-1-3](c3)構成単位:
 (C)重合体は、(c1)構成単位及び(c2)構成単位以外に、共役ジエンに由来する構成単位((c3)構成単位)を更に含有することが好ましい。このような(c3)構成単位を更に含有することによって、(C)重合体に柔軟性を付与することができるとともに、集電体との密着性が高い電極層を得ることができる。
 (c3)構成単位としては、上述した(a3)構成単位と同様のものを例示することができる。また、その含有割合は、上述した(a3)構成単位と同様の含有割合とすることができる。
[2-1-4]その他の構成単位:
 (C)重合体は、(c1)構成単位、(c2)構成単位、及び(c3)構成単位以外に、その他の構成単位を含有してもよい。その他の構成単位としては、上述したその他の構成単位と同様のものを例示することができる。
 また、ジビニルベンゼンや多官能(メタ)アクリレートなどの架橋性モノマーに由来する構造単位の含有割合は、(C)重合体中の全構造単位に対して、1質量%以下であることが好ましく、0.1質量%以下であることが更に好ましい。上記含有割合が1質量%超であると、(C)重合体が架橋されることによって、膨潤率が十分に得られず、充放電特性が優れた電気化学デバイスを構成する電極の材料として用いることが困難になるためである。
 (C)重合体は、(A)重合体と同様の方法で調製することができる。
 本発明の第二の電気化学デバイスに用いられる(C)重合体以外の構成要素、即ち、正極、負極、セパレータ、電解液、外装部材、集電体、及び電極活物質などは、本発明の第一の電気化学デバイスに用いられる(A)重合体以外の構成要素、即ち、正極、負極、セパレータ、電解液、外装部材、集電体、及び電極活物質などと同じものを好適に用いることができる。
 本発明の第二の電気化学デバイスは、(C)重合体を用いること以外は上述した第一の電気化学デバイスの製造方法と同様にして製造することができる。
[3]第一のバインダー組成物:
 本発明の第一のバインダー組成物は、(A)(a1)アミド基含有単量体に由来する構成単位、及び、(a2)(メタ)アクリル酸に由来する構成単位を有する重合体と、(B)分散媒と、を含有し、(A)重合体が、上記条件(1)または(2)を満たすものである。このようなバインダー組成物は、(A)重合体を含有し、この(A)重合体が上記条件(1)または(2)のいずれかを満たすものであるため、即ち、(A)重合体が電解液Aまたは電解液Bに対して特定の膨潤率を有するものであるため、充放電特性が優れた電気化学デバイスを構成する電極の材料として用いることができる。別言すれば、(a1)構成単位及び(a2)構成単位を有する(A)重合体を含有し、かつ、(A)重合体が電解液Aまたは電解液Bに対して特定の膨潤性(膨潤率)を有することによって、電極層の重合体ネットワーク中における電解質イオン(リチウム二次電池においてはリチウムイオン)の拡散性が良好となるため導電性が向上し、結果として充放電特性が向上すると考えられる。
 本発明の第一のバインダー組成物に含有される(A)重合体は、本発明の第一の電気化学デバイスに用いられる(A)重合体と同様のものを用いることができる。また、本発明の第一のバインダー組成物に含有される(B)分散媒は、本発明の第一の電気化学デバイスの製造方法で用いられる(B)分散媒と同様のものを用いることができる。
 本発明の第一のバインダー組成物中の(A)重合体の濃度は、使用する(B)分散媒の種類によって取り扱い易い粘度範囲となるように適宜設定することが可能である。
 また、本発明の第一のバインダー組成物の固形分濃度は、15~50質量%であることが好ましく、20~40質量%であることが更に好ましい。上記固形分濃度が15%未満であると、活物質、導電カーボン等に対して、固形分換算における規定量のバインダー組成物を添加した際に、電極用スラリーの固形分が低下してしまうため、所望の厚さの電極が作製できなくなるおそれがある。一方、50%超であると、バインダー組成物の粘度が高くなるために、計量等の配合プロセス等における取り扱いが難しくなるおそれがある。
 なお、本発明の第一のバインダー組成物には、(A)重合体及び(B)分散媒以外に、(A)重合体の重合の際に使用した、乳化剤、重合開始剤、連鎖移動剤などを含有していてもよい。
[4]第二のバインダー組成物:
 本発明の第二のバインダー組成物は、(A)全構成単位100質量%に対して、1~10質量%の(a1)アミド基含有単量体に由来する構成単位、及び、全構成単位100質量%に対して、0.3~5質量%の(a2)(メタ)アクリル酸に由来する構成単位を含有する重合体と、(B)分散媒と、を含有するものである。このようなバインダー組成物は、(A)重合体を含有するため、充放電特性が優れた電気化学デバイスを構成する電極の材料として用いることができる。別言すれば、所定量の(a1)構成単位及び所定量の(a2)構成単位を有する(A)重合体を含有することによって、電極層の重合体ネットワーク中における電解質イオン(リチウム二次電池においてはリチウムイオン)の拡散性が良好となるため導電性が向上し、結果として充放電特性が向上すると考えられる。
 本発明の第二のバインダー組成物に含有される(A)重合体は、本発明の第二の電気化学デバイスに用いられる(A)重合体と同様のものを用いることができる。また、本発明の第二のバインダー組成物に含有される(B)分散媒は、本発明の第一の電気化学デバイスの製造方法で用いられる(B)分散媒と同様のものを用いることができる。
 本発明の第二のバインダー組成物中の(A)重合体の濃度は、使用する(B)分散媒の種類によって取り扱い易い粘度範囲となるように適宜設定することが可能である。
 また、本発明の第二のバインダー組成物の固形分濃度は、15~50質量%であることが好ましく、20~40質量%であることが更に好ましい。上記固形分濃度が15%未満であると、活物質、導電カーボン等に対して、固形分換算における規定量のバインダー組成物を添加した際に、電極用スラリーの固形分が低下してしまうため、所望の厚さの電極が作製できなくなるおそれがある。一方、50%超であると、バインダー組成物の粘度が高くなるために、計量等の配合プロセス等における取り扱いが難しくなるおそれがある。
 なお、本発明の第二のバインダー組成物には、(A)重合体及び(B)分散媒以外に、(A)重合体の重合の際に使用した、乳化剤、重合開始剤、連鎖移動剤などを含有していてもよい。
 以下、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。なお、実施例の記載における「部」及び「%」は、特記しない限り質量基準である。また、各種物性値の測定方法、及び諸特性の評価方法を以下に示す。
[数平均粒子径]:
 分散媒として水を用いて、得られた(A)重合体を分散させた分散液を作製し、作製した分散液について、測定装置として、22mWのHe-Neレーザー(波長λ=632.8nm)を光源とするALV社製の光散乱測定装置「ALV5000」を使用して測定を行った。
[電解液膨潤率]:
 バインダー組成物を水で固形分30%に希釈した後、8cm×14cmの枠に調整後のバインダー組成物25gを流しこみ、常温にて5日間乾燥させて乾燥フィルムを得る。その後、乾燥フィルムを枠から取り出し、更に80℃×3時間乾燥を行い、試験用フィルムを得る。次に、得られた試験用フィルムを2cm×2cmの大きさに複数枚切り出し、初期質量(W)を測定する。その後、電解液Aが入ったスクリュー瓶及び電解液Bが入ったスクリュー瓶にそれぞれ投入して、80℃にて24時間浸漬する。その後、試験用フィルムを各電解液A,Bから取り出し、電解液A,Bを拭き取り、試験後の浸漬後質量(W)を測定する。その後、式:浸漬後質量(W)/初期質量(W)×100によって電解液に対する膨潤率(%)を算出する。表1,2中、本評価を「電解液膨潤率[%](電解液A)」または「電解液膨潤率[%](電解液B)」と示す。
[ピール強度]:
 評価対象の電極から、幅2cm×長さ12cmの試験片を切り出し、この試験片の電極層側の表面に両面テープを貼り付け、その後、この両面テープにより上記試験片をアルミ板に貼り付けた。次に、上記試験片の集電体の一部を電極層から剥離させ、上記集電体の剥離させた部分の表面に、幅18mmテープ(商品名「セロテープ(登録商標)」、ニチバン社製、JIS Z1522に規定されている)を貼り付けた後、このテープを90°方向に50mm/分の速度で引っ張った。そして、集電体が電極層から更に剥離されたときに上記テープを引っ張っている力(剥離力)(mN/2cm)を6回(6個の異なる試験片で)測定し、その平均値をピール強度(mN/2cm)として算出した。なお、ピール強度の値が大きいほど、集電体と電極層との密着強度が高く、集電体から電極層が剥離し難いと評価することができる。表1,表2中、本評価を「ピール強度[mN/2cm]」と示す。
[レート特性]:
 まず、作製したリチウムイオン二次電池について、定電流(0.2C)-定電圧(4.2V)方式にて充電した後、定電流(0.2C)方式にて放電する充放電サイクルを3回繰り返し、平均の放電容量(C0.2)を算出した。その後、更に、定電流(0.2C)-定電圧(4.2V)方式にて充電した後、定電流(1.0C)方式にて放電し、このときの容量(C1.0)を測定した。次に、これらの測定値を用い、式:レート特性(%)={(C1.0)/(C0.2)}×100によってレート特性(%)を算出した。なお、表1,表2中、本評価を「レート特性(1.0C/0.2C)[%]」と示す。なお、本測定は全て25℃にて実施した。
[低温特性]:
 まず、作製したリチウムイオン二次電池について、25℃にて定電流(0.2C)-定電圧(4.2V)方式にて充電した後、定電流(0.2C)方式にて放電する充放電サイクルを3回繰り返し、平均の放電容量(C0.2)を算出した。その後、0℃にて24時間放置した。放置後、0℃にて定電流(0.5C)-定電圧(4.2V)方式にて充電して定電流(0.5C)方式にて放電する充放電サイクルを10回繰り返し、平均の容量(C10Cycle)を算出した。その後、得られた測定値から、式:低温特性(%)={(C10Cycle)/(C0.2)}×100によって低温特性[%]を算出した。なお、表1,表2中、本評価を「低温特性(0℃)[%]」と示す。
[キャパシタサイクル特性(%)]:
 まず、作製したキャパシタ二次電池について、定電流(1C)-定電圧(3.5V)方式にて充電した後、定電流(1C)方式にて放電する充放電サイクルを3回繰り返し、平均の放電容量(C)を算出した。その後、更に充放電サイクルを繰り返して合計100回の充放電サイクルを行い、平均の放電容量(C100)を算出した。次に、3サイクル目に対する放電容量の維持率(式:{(C100)/(C)}×100で算出される値)をキャパシタサイクル特性(%)とした。なお、本測定は全て25℃にて実施した。
(実施例1)
[リチウムイオン二次電池負極の評価]:
 攪拌機を備えた温度調節の可能なオートクレーブ中に、分散媒として水200部、ドデシルベンゼンスルホン酸ナトリウム0.6部、過硫酸カリウム1.0部、重亜硫酸ナトリウム0.5部、表1に示したモノマー、及び、連鎖移動剤を表1に示す量で一括して仕込み80℃にて6時間反応させた。重合反応終了後、反応液のpHを7.2に調節した。その後、分散剤としてポリアクリル酸ナトリウムを1部添加した後、残留モノマーを水蒸気蒸留により除去し、減圧下で固形分48%まで濃縮して、バインダー組成物を得た(数平均粒子径120nm)。なお、上記重合反応において、表1に示したモノマーのほぼ全量が反応した。以下の実施例及び比較例においても同様である。
(リチウムイオン二次電池負極の作製)
 二軸型プラネタリーミキサー(プライミクス社製の「TKハイビスミックス 2P-03」)に、増粘剤としてダイセル化学社製の「CMC2200」を固形分換算で1部、負極活物質としてグラファイトを固形分換算で100部、及び、水68部を投入し、60rpmで1時間攪拌を行った。その後、バインダー組成物を固形分換算で1部加え、更に1時間攪拌を行い、ペーストを得た。得られたペーストに水34部を投入した後、攪拌脱泡機(THINKY社製の製品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間の順に攪拌混合した後、真空下、1800rpmで1.5分間攪拌混合して負極用スラリーを調製した。
 次に、銅箔よりなる集電体の表面に、調製した負極用スラリーを、乾燥後の膜厚が100μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、得られる電極層の密度が1.8g/cmとなるようにロールプレス機によりプレス加工することにより、リチウムイオン二次電池負極を得た。
(対極(PVdF系正極)の作製)
 次に、評価に用いる対極として正極を作製した。まず、二軸型プラネタリーミキサー(TKハイビスミックス 2P-03:プライミクス社製)にPVdF(ポリフッ化ビニリデン)を4部(固形分換算)、正極活物質としてリン酸鉄リチウムを100部(固形分換算)、導電剤としてアセチレンブラックを5部(固形分換算)、NMP(N-メチルピロリドン)を25部投入し、60rpmで1時間攪拌を行った。その後、更に、NMPを10部投入した後、攪拌脱泡機(THINKY社製の製品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、真空下において1800rpmで1.5分攪拌混合することにより、正極用スラリーを調製した。
 次に、アルミ箔よりなる集電体の表面に、調製した正極用スラリーを、乾燥後の膜厚が90μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、得られる電極層の密度が3.8g/cmとなるようにロールプレス機によりプレス加工した。このようにして、リチウムイオン二次電池正極を得た。
 次に、グローブボックス内で2極式コインセル(商品名「HSフラットセル」(宝泉社製))に、直径16.16mmに打ち抜いた上記リチウムイオン二次電池負極を載置した。次に、上記負極上に、直径18mmに打ち抜いたポリプロピレン製の多孔膜からなるセパレータ(商品名「セルガード#2400」(セルガード社製))を載置するとともに、空気が入らないように電解液Aを注入した。その後、直径15.95mmに打ち抜いた上記リチウムイオン二次電池正極をセパレータ上に載置し、2極式コインセルの外装ボディーをネジで締めて封止することによりリチウムイオン二次電池(電気化学デバイス)を作製した。
 作製したリチウムイオン二次電池について、上述した方法により各評価(数平均粒子径、電解液膨潤率、ピール強度、レート特性、低温特性)を行った。評価結果は、表1に示すように、数平均粒子径が120nmであり、電解液膨潤率(電解液A)が170%であり、ピール強度が490(mN/2cm)であり、レート特性が85%であり、低温特性が88%であった。なお、実施例1~14及び比較例1~4は、リチウムイオン二次電池負極の電極層中に(A)重合体を含み且つ条件(1)または(2)を満たすバインダーを含有する場合である。表1及び表2中の「評価」の欄に「リチウムイオン二次電池負極用評価」と示す。
(実施例2~14、比較例1~4)
 表1及び表2に示す各成分を表1及び表2に示す配合量(質量部)で用いたこと以外は、実施例1と同様の手法にて、バインダー組成物を得た。その後、得られたバインダー組成物を用いたこと以外は、実施例1と同様の手法にてリチウムイオン二次電池を作製した。作製したリチウムイオン二次電池について上述した方法により各評価(数平均粒子径、電解液膨潤率、ピール強度、レート特性、低温特性)を行った。評価結果を表1または表2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(実施例15)
[リチウムイオン二次電池正極の評価]:
 まず、表1及び表2に示す各成分を表1及び表2に示す配合量(質量部)で用いたこと以外は、実施例1と同様の手法にて、バインダー組成物を得た。
(リチウムイオン二次電池正極の作製)
 次に、二軸型プラネタリーミキサー(TKハイビスミックス 2P-03:プライミクス社製)に増粘剤としてダイセル化学社製の「CMC2200」を1部(固形分換算)、正極活物質としてリン酸鉄リチウムを100部(固形分換算)、導電剤としてアセチレンブラックを5部(固形分換算)、水を25部投入し、60rpmで1時間攪拌を行った。その後、バインダー組成物を2部(固形分換算)加え、更に1時間攪拌を行ってペーストを得た。得られたペーストに水を10部投入した後、攪拌脱泡機(THINKY社製の製品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、真空下において1800rpmで1.5分間順次攪拌混合することにより、正極用スラリーを調製した。
 次に、アルミ箔からなる集電体の表面に、調製した正極用スラリーを、乾燥後の膜厚が90μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、得られる電極層の密度が3.5g/cmとなるようにロールプレス機によりプレス加工することにより、リチウムイオン二次電池正極を得た。
(対極(PVdF系負極)の作製)
 まず、二軸型プラネタリーミキサー(TKハイビスミックス 2P-03:プライミクス社製)にPVdFを4部(固形分換算)、負極活物質としてグラファイトを100部(固形分換算)、NMPを80部投入し、60rpmで1時間攪拌を行った。その後、更にNMPを20部投入した後、攪拌脱泡機(THINKY社製の製品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、真空下において1800rpmで1.5分順次攪拌混合することにより、負極用スラリーを調製した。
 次に、銅箔からなる集電体の表面に、調製した負極用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、得られる電極層の密度が1.8g/cmとなるようにロールプレス機によりプレス加工することにより、リチウムイオン二次電池負極を得た。
 次に、グローブボックス内で2極式コインセル(商品名「HSフラットセル」(宝泉社製))に、直径16.16mmに打ち抜いたリチウムイオン二次電池負極を載置した。次に、上記負極上に、直径18mmに打ち抜いたポリプロピレン製の多孔膜からなるセパレータ(商品名「セルガード#2400」(セルガード社製))を載置するとともに、空気が入らないように電解液Aを注入した。その後、直径15.95mmに打ち抜いたリチウムイオン二次電池正極を上記セパレータ上に載置し、2極式コインセルの外装ボディーをネジで締めて封止することによりリチウムイオン二次電池(電気化学デバイス)を作製した。
 作製したリチウムイオン二次電池について、上述した方法により各評価(数平均粒子径、電解液膨潤率、ピール強度、レート特性、低温特性)を行った。評価結果は、表1に示すように、数平均粒子径が120nmであり、電解液膨潤率が150%であり、ピール強度が480(mN/2cm)であり、レート特性が88%であり、低温特性が90%であった。なお、実施例15~17及び比較例5,6は、リチウムイオン二次電池正極の電極層中に(A)重合体を含み且つ条件(1)または(2)を満たすバインダーを含有する場合である。表1及び表2中の「評価」の欄に「リチウムイオン二次電池正極用評価」と示す。
(実施例16、比較例5)
 容量7リットルのセパラブルフラスコに水150質量部を仕込み、内部を十分に窒素置換した。一方、別の容器に、水60質量部、乳化剤としてエーテルサルフェート型乳化剤(アデカリアソープSR1025:ADEKA製)2部(固形分換算)、表1及び表2に示すモノマーを表1及び表2に示す配合量(質量部)で加え、十分に攪拌することでモノマー乳化液を作製した。上記フラスコ内部の昇温を開始し、60℃に到達したところで、重合開始剤として過硫酸ナトリウム0.5部を加え、更に75℃に到達した時点でモノマー乳化液の添加を開始した。反応温度を75℃に維持したままモノマー乳化液を2時間かけて投入し、更に85℃にて1時間反応させた。冷却して反応を停止させた後、水酸化ナトリウム水溶液でpHを7.5に調整することでバインダー組成物を得た。
 このようにして得られたバインダー組成物を用いたこと以外は、実施例15と同様の手法にて、リチウムイオン二次電池を作製した。作製したリチウムイオン二次電池について上述した方法により各評価(数平均粒子径、電解液膨潤率、ピール強度、レート特性、低温特性)を行った。評価結果を表1または表2に示す。
(比較例6)
 表1及び表2に示す各成分を表1及び表2に示す配合量(質量部)で用いたこと以外は、実施例1と同様の手法にて、バインダー組成物を得た。その後、得られたバインダー組成物を用いたこと以外は、実施例15と同様の手法にてリチウムイオン二次電池を作製した。作製したリチウムイオン二次電池について上述した方法により各評価(数平均粒子径、電解液膨潤率、ピール強度、レート特性、低温特性)を行った。評価結果を表2に示す。
(実施例17)
 電磁式撹拌機を備えた内容積約6リットルのオートクレーブの内部を十分に窒素置換した。その後、脱酸素した純水2.5リットル、及び乳化剤としてパーフルオロデカン酸アンモニウム25gを仕込み、350rpmで撹拌しながら60℃まで昇温させた。次に、フッ化ビニリデン(VdF)44.2%、及び六フッ化プロピレン(HFP)55.8%からなる混合ガスを、内圧が20kg/cmGに達するまで仕込んだ。その後、重合開始剤としてジイソプロピルパーオキシジカーボネートを20質量%含有するフロン113溶液25gを、窒素ガスを使用して上記オートクレーブ内に圧入し、重合を開始させた。重合中は上記オートクレーブ内にVDF60.2%、及びHFP39.8%からなる混合ガスを逐次圧入して、圧力を20kg/cmGに維持した。また、重合の進行とともに重合速度が低下するため、3時間経過後に、上記重合開始剤と同量の重合開始剤を、窒素ガスを使用して上記オートクレーブ内に圧入し、更に3時間反応を継続させた。その後、反応液を冷却するとともに撹拌を停止し、未反応単量体を放出して反応を停止させ、フッ素重合体ラテックス(シード粒子)を得た。
 容量7リットルのセパラブルフラスコに、水150部、得られたフッ素重合体ラテックス10部(固形分換算)を仕込み、その後、上記セパラブルフラスコ内部を十分に窒素置換した。一方、別の容器に、水60部、乳化剤としてエーテルサルフェート型乳化剤(アデカリアソープSR1025:ADEKA製)2部(固形分換算)及び表1に示すモノマーを加え、十分に攪拌することでモノマー乳化液を作製した。その後、上記フラスコ内部の昇温を開始し、60℃に到達したところで、重合開始剤として過硫酸ナトリウム0.5部を加え、更に75℃に到達した時点でモノマー乳化液の添加を開始した。反応温度を75℃に維持したままモノマー乳化液を2時間かけて投入し、その後、85℃に昇温して1時間反応させた。反応後冷却して反応を停止させた後、水酸化ナトリウム水溶液でpHを7.5に調整することでバインダー組成物を得た。
 このようにして得られたバインダー組成物を用いたこと以外は、実施例15と同様の手法にて、リチウムイオン二次電池を作製した。作製したリチウムイオン二次電池について上述した方法により各評価(数平均粒子径、電解液膨潤率、ピール強度、レート特性、低温特性)を行った。評価結果を表1に示す。
(実施例18)
[キャパシタの評価]:
 まず、表3に示す各成分を表3に示す配合量(質量部)で用いたこと以外は、実施例1と同様の手法にてバインダー組成物を得た。
(キャパシタ用電極の作製)
 次に、二軸型プラネタリーミキサー(TKハイビスミックス 2P-03:プライミクス社製)に、活性炭「クラレコールYP」(クラレケミカル株式会社製)100部、導電性カーボン「デンカブラック」(電気化学工業社製)6部、増粘剤としてダイセル化学社製の「CMC2200」を2部、及び水278部を投入し、60rpmで1時間攪拌を行った。その後、得られたバインダー組成物(固形分換算)を4部加え、更に1時間攪拌を行ってペーストを得た。得られたペーストに水を投入して、固形分を25%に調整した後、攪拌脱泡機(THINKY社製の製品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、真空下において1800rpmで1.5分間順次攪拌混合することにより、キャパシタ電極用スラリーを調製した。
 次に、アルミ箔からなる集電体の表面に、調製したキャパシタ電極用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布することにより、キャパシタ用電極を得た。
 グローブボックス内で2極式コインセル(商品名「HSフラットセル」(宝泉社製))(外装部材)に、直径16.16mmに打ち抜いたキャパシタ用電極を載置した。次に、直径18mmに打ち抜いたセルロース製のセパレータ(商品名「TF45」(ニッポン高度紙工業社製))を上記キャパシタ用電極上に載置するとともに、空気が入らないように電解液Bを注入した。その後、直径15.95mmに打ち抜いた別のキャパシタ用電極を上記セパレータ上に載置し、2極式コインセルの外装ボディーをネジで締めて封止することによりキャパシタ(電気化学デバイス)を作製した。
 作製したキャパシタについて上述した方法により各評価(数平均粒子径、電解液膨潤率、ピール強度、キャパシタサイクル特性)を行った。評価結果を表2または表3に示す。なお、実施例18~22及び比較例7~9は、キャパシタ用電極の電極層中に(A)重合体を含み且つ条件(1)または(2)を満たすバインダーを含有する場合である。表1及び表2中の「評価」の欄に「キャパシタ用電極用評価」と示す。
Figure JPOXMLDOC01-appb-T000007
(実施例19~22、比較例7~9)
 表2または表3に示す各成分を表2または表3に示す配合量(質量部)で用いたこと以外は、実施例1と同様の手法にてバインダー組成物を得た。その後、得られたバインダー組成物を用いたこと以外は、実施例18と同様の手法にて、キャパシタを作製した。作製したキャパシタについて上述した方法により各評価(数平均粒子径、電解液膨潤率、ピール強度、キャパシタサイクル特性)を行った。評価結果を表2または表3に示す。
 表1~表3から明らかなように、実施例1~22の電気化学デバイスは、比較例1~9の電気化学デバイスに比べて、充放電特性に優れることが確認できた。
 実施例6,7は、膨潤率が200~350%の範囲(より好ましい範囲)にあり(膨潤率210%、320%)、このような範囲であることにより、レート特性及び低温特性が特に良好になっている。なお、実施例6,7おいては、原料として使用するアクリロニトリルの含有量(即ち、アクリロニトリルに由来する構成単位の含有割合)を適当な値とすることにより上記膨潤率としている。
 本発明の電気化学デバイスは、例えば電子機器の駆動用電源として好適に用いることができる。本発明のバインダー組成物は、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極の材料として好適である。

Claims (12)

  1.  正極と、前記正極と対をなす負極とを備え、
     前記正極及び前記負極の少なくとも一方は、平板状の集電体と、前記集電体の少なくとも一方の面に配置された電極層と、を備えており、
     前記電極層は、電極活物質と、前記電極活物質どうし及び前記電極活物質と前記集電体とを接着固定するバインダーと、を有しており、
     前記バインダーの構成成分として、(A)(a1)アミド基含有単量体に由来する構成単位、及び、(a2)(メタ)アクリル酸に由来する構成単位を有する重合体が含まれ、かつ、前記(A)重合体が、下記条件(1)または(2)を満たす電気化学デバイス。
    (1)体積分率が1:1:1のエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネートとからなる溶媒に六フッ化リン酸リチウムを、六フッ化リン酸リチウムの濃度が1mol/Lとなるように溶解して溶液(i)を得て、得られた前記溶液(i)を80℃に調節した後、前記(A)重合体を80℃の前記溶液(i)に24時間浸漬させたときの前記(A)重合体の膨潤率が、120~600%である。
    (2)プロピレンカーボネートにメチルトリエチルアンモニウムテトラフルオロボレートを、メチルトリエチルアンモニウムテトラフルオロボレートの濃度が1mol/Lとなるように溶解して溶液(ii)を得て、得られた前記溶液(ii)を80℃に調節した後、前記(A)重合体を80℃の前記溶液(ii)に24時間浸漬させたときの前記(A)重合体の膨潤率が、110~300%である。
  2.  前記バインダーの構成成分である前記(A)重合体は、その全構成単位に対して、前記(a1)アミド基含有単量体に由来する構成単位を1~10質量%含有する重合体である請求項1に記載の電気化学デバイス。
  3.  前記バインダーの構成成分である前記(A)重合体は、その全構成単位に対して、前記(a2)(メタ)アクリル酸に由来する構成単位を0.3~5質量%含有する重合体である請求項1または2に記載の電気化学デバイス。
  4.  正極と、前記正極と対をなす負極とを備え、
     前記正極及び前記負極の少なくとも一方は、平板状の集電体と、前記集電体の少なくとも一方の面に配置された電極層と、を備えており、
     前記電極層は、電極活物質と、前記電極活物質どうし及び前記電極活物質と前記集電体とを接着固定するバインダーと、を有しており、
     前記バインダーの構成成分として、(A)全構成単位に対して、1~10質量%の(a1)アミド基含有単量体に由来する構成単位、及び、全構成単位に対して、0.3~5質量%の(a2)(メタ)アクリル酸に由来する構成単位を含有する重合体が含まれる電気化学デバイス。
  5.  前記(a1)アミド基含有単量体に由来する構成単位が、下記一般式(1)で表される単量体に由来するものである請求項1~4のいずれか一項に記載の電気化学デバイス。
    Figure JPOXMLDOC01-appb-C000001
    (前記一般式(1)中、Rは、水素原子またはメチル基である。R及びRは、それぞれ独立に、水素原子または置換基を有していてもよい炭素数1~10の炭化水素基である。)
  6.  前記一般式(1)中のRが、メチル基である請求項5に記載の電気化学デバイス。
  7.  前記バインダーの構成成分である前記(A)重合体が、その全構成単位に対して、20~60質量%の(a3)共役ジエンに由来する構成単位を更に有する請求項1~6のいずれか一項に記載の電気化学デバイス。
  8.  前記バインダーの構成成分である前記(A)重合体は、アミド基含有単量体と(メタ)アクリル酸とを含有する重合体原料を、前記重合体原料の総量100質量部に対して、0.3~4質量部の連鎖移動剤の存在下で、重合して得られるものである請求項1~7のいずれか一項に記載の電気化学デバイス。
  9.  (A)(a1)アミド基含有単量体に由来する構成単位、及び、(a2)(メタ)アクリル酸に由来する構成単位を有する重合体と、(B)分散媒と、を含有し、
     前記(A)重合体が、下記条件(1)または(2)を満たすバインダー組成物。
    (1)体積分率が1:1:1のエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネートとからなる溶媒に六フッ化リン酸リチウムを、六フッ化リン酸リチウムの濃度が1mol/Lとなるように溶解して溶液(i)を得て、得られた前記溶液(i)を80℃に調節した後、前記(A)重合体を80℃の前記溶液(i)に24時間浸漬させたときの前記(A)重合体の膨潤率が、120~600%である。
    (2)プロピレンカーボネートにメチルトリエチルアンモニウムテトラフルオロボレートを、メチルトリエチルアンモニウムテトラフルオロボレートの濃度が1mol/Lとなるように溶解して溶液(ii)を得て、得られた前記溶液(ii)を80℃に調節した後、前記(A)重合体を80℃の前記溶液(ii)に24時間浸漬させたときの前記(A)重合体の膨潤率が、110~300%である。
  10.  前記(A)重合体は、その全構成単位に対して、前記(a1)アミド基含有単量体に由来する構成単位を1~10質量%含有する請求項9に記載のバインダー組成物。
  11.  前記(A)重合体は、その全構成単位に対して、前記(a2)(メタ)アクリル酸に由来する構成単位を0.3~5質量%含有する請求項9または10に記載のバインダー組成物。
  12.  (A)全構成単位100質量%に対して、1~10質量%の(a1)アミド基含有単量体に由来する構成単位、及び、全構成単位100質量%に対して、0.3~5質量%の(a2)(メタ)アクリル酸に由来する構成単位を含有する重合体と、(B)分散媒と、を含有するバインダー組成物。
PCT/JP2010/063420 2009-08-07 2010-08-06 電気化学デバイス及びバインダー組成物 WO2011016563A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800350452A CN102473921A (zh) 2009-08-07 2010-08-06 电化学器件和粘合剂组合物
US13/388,827 US20120177991A1 (en) 2009-08-07 2010-08-06 Electrochemical device and binder composition
EP10806562.4A EP2463943A4 (en) 2009-08-07 2010-08-06 ELECTROCHEMICAL DEVICE AND BINDER COMPOSITION
JP2011525958A JPWO2011016563A1 (ja) 2009-08-07 2010-08-06 電気化学デバイス及びバインダー組成物
CA2770285A CA2770285C (en) 2009-08-07 2010-08-06 Electrochemical device and binder composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009184939 2009-08-07
JP2009-184939 2009-08-07

Publications (1)

Publication Number Publication Date
WO2011016563A1 true WO2011016563A1 (ja) 2011-02-10

Family

ID=43544457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063420 WO2011016563A1 (ja) 2009-08-07 2010-08-06 電気化学デバイス及びバインダー組成物

Country Status (8)

Country Link
US (1) US20120177991A1 (ja)
EP (1) EP2463943A4 (ja)
JP (2) JPWO2011016563A1 (ja)
KR (1) KR20120038994A (ja)
CN (1) CN102473921A (ja)
CA (1) CA2770285C (ja)
TW (1) TWI489685B (ja)
WO (1) WO2011016563A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018862A1 (ja) * 2011-08-04 2013-02-07 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極材料、電気化学素子電極、及び電気化学素子
JP5146710B2 (ja) * 2010-12-28 2013-02-20 Jsr株式会社 電極用バインダー組成物およびその製造方法、電極用スラリー、電極、ならびに電気化学デバイス
EP2565969A1 (en) * 2011-08-30 2013-03-06 JSR Corporation Electrical storage device electrode binder composition, electrical storage device electrode slurry, electrical storage device electrode, and electrical storage device
JP2013084502A (ja) * 2011-10-12 2013-05-09 Jsr Corp 電極用バインダー組成物
EP2624338A1 (en) * 2012-02-02 2013-08-07 JSR Corporation Electrode binder composition, electrode slurry, electrode, and electrical storage device
JP2014130751A (ja) * 2012-12-28 2014-07-10 Mitsubishi Rayon Co Ltd 非水二次電池正極用バインダ樹脂、非水二次電池用正極、および非水二次電池
JP2014212122A (ja) * 2009-08-07 2014-11-13 Jsr株式会社 電気化学デバイス及びバインダー組成物
WO2016039067A1 (ja) * 2014-09-08 2016-03-17 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP2017168213A (ja) * 2016-03-14 2017-09-21 東洋インキScホールディングス株式会社 蓄電デバイス用樹脂微粒子、蓄電デバイス電極、蓄電デバイス。
US20180130987A1 (en) * 2014-11-28 2018-05-10 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
WO2019208419A1 (ja) 2018-04-26 2019-10-31 日本ゼオン株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー組成物、蓄電デバイス用電極、および蓄電デバイス

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9099735B2 (en) * 2011-09-13 2015-08-04 Wildcat Discovery Technologies, Inc. Cathode for a battery
JP6247211B2 (ja) * 2011-09-13 2017-12-13 ワイルドキャット・ディスカバリー・テクノロジーズ・インコーポレイテッドWildcat Discovery Technologies, Inc. 電池用正極
WO2013133167A1 (ja) * 2012-03-09 2013-09-12 日東電工株式会社 粘着テープ
EP2913874B1 (en) * 2012-10-26 2018-04-18 Wako Pure Chemical Industries, Ltd. Binder for lithium cell, composition for producing electrode, and electrode
WO2014112618A1 (ja) * 2013-01-21 2014-07-24 昭和電工株式会社 リチウムイオン二次電池電極用バインダー、スラリー、電極、及びリチウムイオン二次電池
US20150280239A1 (en) 2014-04-01 2015-10-01 Ppg Industries Ohio, Inc. Aqueous binder composition for lithium ion electrical storage devices
US9385374B2 (en) 2014-04-01 2016-07-05 Ppg Industries Ohio, Inc. Electrode binder composition for lithium ion electrical storage devices
EP3374194B1 (en) * 2015-11-13 2019-08-14 Exatec, LLC. Methods of printing with conductive paste
JP7215420B2 (ja) * 2017-07-20 2023-01-31 株式会社大阪ソーダ 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
KR20220006521A (ko) * 2019-05-08 2022-01-17 제이에스알 가부시끼가이샤 축전 디바이스용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
CN110828779B (zh) * 2019-12-11 2022-08-23 东莞维科电池有限公司 一种锂离子电池负极片及其制备方法、锂离子电池
WO2021132522A1 (ja) * 2019-12-27 2021-07-01 日本ゼオン株式会社 電気化学デバイス、電気化学デバイス用電極、電気化学デバイス用塗工液、及びその用途
EP4099450A4 (en) * 2020-01-30 2023-08-02 Lg Chem, Ltd. BINDER COMPOSITION FOR NEGATIVE ELECTRODE, NEGATIVE ELECTRODE COMPRISING THE SAME, AND SECONDARY LITHIUM BATTERY COMPRISING THE SAME
CN114212819B (zh) * 2021-12-16 2023-06-30 福州大学 一种放射状五氧化二钒及其在电容器电极上的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260665A (ja) * 2001-02-28 2002-09-13 Asahi Kasei Corp 非水電解液二次電池
JP2002353074A (ja) * 2001-05-28 2002-12-06 Showa Denko Kk 電気二重層コンデンサ、該コンデンサに用いる電極用ペースト及び電極
JP2007287570A (ja) * 2006-04-19 2007-11-01 Iwate Univ リチウムイオン二次電池
JP2008537841A (ja) * 2005-04-07 2008-09-25 エルジー・ケム・リミテッド 優れた速度特性及び寿命特性を有するリチウム二次電池用バインダー

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2765137B2 (ja) * 1988-12-15 1998-06-11 ジェイエスアール株式会社 紙塗被組成物用の共重合体ラテックスおよび紙塗被組成物
JPH04198291A (ja) * 1990-11-26 1992-07-17 Japan Synthetic Rubber Co Ltd 蓄電池のガラスマット接着用共重合体ラテックス
JP3562197B2 (ja) 1997-02-26 2004-09-08 Jsr株式会社 水素吸蔵電極用バインダー
JP3721727B2 (ja) * 1997-07-04 2005-11-30 Jsr株式会社 電池電極用バインダー
JPH1167213A (ja) * 1997-08-21 1999-03-09 Jsr Corp 電池電極用組成物および電池電極
JP3661382B2 (ja) * 1997-12-01 2005-06-15 Jsr株式会社 電気二重層コンデンサ電極用バインダー
JP3627586B2 (ja) * 1999-09-03 2005-03-09 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー、およびその利用
JP3563646B2 (ja) * 1999-09-14 2004-09-08 株式会社東芝 電気化学デバイス
JP5301753B2 (ja) * 2001-04-20 2013-09-25 日本エイアンドエル株式会社 二次電池負極用バインダーおよび二次電池電極用組成物
JP4795556B2 (ja) * 2001-04-27 2011-10-19 日本エイアンドエル株式会社 二次電池負極用バインダー
KR100491026B1 (ko) * 2003-03-05 2005-05-24 주식회사 엘지화학 전지특성, 접착성, 코팅특성이 조절된 2상 이상의 구조를가지는 리튬 2차 전지용 바인더
JP4483784B2 (ja) * 2003-10-24 2010-06-16 日本ゼオン株式会社 電気二重層キャパシタ電極用バインダー
JP2006127829A (ja) * 2004-10-27 2006-05-18 Mitsubishi Chemicals Corp 電気化学デバイス及びこれを用いた電池
CN101454929B (zh) * 2006-03-31 2011-05-25 日本瑞翁株式会社 锂离子二次电池
WO2007125924A1 (ja) * 2006-04-26 2007-11-08 Mitsui Chemicals, Inc. 電気化学セル電極用バインダー
JP2009004222A (ja) * 2007-06-21 2009-01-08 Jsr Corp 二次電池電極用バインダー組成物、二次電池電極用スラリー、及び二次電池電極
CN101465423A (zh) * 2007-12-18 2009-06-24 深圳市沃特玛电池有限公司 一种镍锌二次电池正极
TWI489685B (zh) * 2009-08-07 2015-06-21 Jsr Corp Electrochemical devices and binder compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260665A (ja) * 2001-02-28 2002-09-13 Asahi Kasei Corp 非水電解液二次電池
JP2002353074A (ja) * 2001-05-28 2002-12-06 Showa Denko Kk 電気二重層コンデンサ、該コンデンサに用いる電極用ペースト及び電極
JP2008537841A (ja) * 2005-04-07 2008-09-25 エルジー・ケム・リミテッド 優れた速度特性及び寿命特性を有するリチウム二次電池用バインダー
JP2007287570A (ja) * 2006-04-19 2007-11-01 Iwate Univ リチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2463943A1 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212122A (ja) * 2009-08-07 2014-11-13 Jsr株式会社 電気化学デバイス及びバインダー組成物
JP5146710B2 (ja) * 2010-12-28 2013-02-20 Jsr株式会社 電極用バインダー組成物およびその製造方法、電極用スラリー、電極、ならびに電気化学デバイス
JPWO2012090669A1 (ja) * 2010-12-28 2014-06-05 Jsr株式会社 電極用バインダー組成物およびその製造方法、電極用スラリー、電極、ならびに電気化学デバイス
WO2013018862A1 (ja) * 2011-08-04 2013-02-07 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極材料、電気化学素子電極、及び電気化学素子
US9520242B2 (en) 2011-08-30 2016-12-13 Jsr Corporation Electrical storage device electrode binder composition, electrical storage device electrode slurry, electrical storage device electrode, and electrical storage device
EP2565969A1 (en) * 2011-08-30 2013-03-06 JSR Corporation Electrical storage device electrode binder composition, electrical storage device electrode slurry, electrical storage device electrode, and electrical storage device
JP2013084502A (ja) * 2011-10-12 2013-05-09 Jsr Corp 電極用バインダー組成物
EP2624338A1 (en) * 2012-02-02 2013-08-07 JSR Corporation Electrode binder composition, electrode slurry, electrode, and electrical storage device
JP2014130751A (ja) * 2012-12-28 2014-07-10 Mitsubishi Rayon Co Ltd 非水二次電池正極用バインダ樹脂、非水二次電池用正極、および非水二次電池
WO2016039067A1 (ja) * 2014-09-08 2016-03-17 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP5999399B2 (ja) * 2014-09-08 2016-09-28 Jsr株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
JPWO2016039067A1 (ja) * 2014-09-08 2017-04-27 Jsr株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
US20180130987A1 (en) * 2014-11-28 2018-05-10 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
US10586966B2 (en) 2014-11-28 2020-03-10 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
JP2017168213A (ja) * 2016-03-14 2017-09-21 東洋インキScホールディングス株式会社 蓄電デバイス用樹脂微粒子、蓄電デバイス電極、蓄電デバイス。
WO2019208419A1 (ja) 2018-04-26 2019-10-31 日本ゼオン株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー組成物、蓄電デバイス用電極、および蓄電デバイス
KR20210004983A (ko) 2018-04-26 2021-01-13 니폰 제온 가부시키가이샤 축전 디바이스용 바인더 조성물, 축전 디바이스 전극용 슬러리 조성물, 축전 디바이스용 전극, 및 축전 디바이스
US11362334B2 (en) 2018-04-26 2022-06-14 Zeon Corporation Binder composition for electrical storage device, slurry composition for electrical storage device electrode, electrode for electrical storage device, and electrical storage device

Also Published As

Publication number Publication date
EP2463943A4 (en) 2015-10-28
JP2014212122A (ja) 2014-11-13
TW201121129A (en) 2011-06-16
TWI489685B (zh) 2015-06-21
CN102473921A (zh) 2012-05-23
EP2463943A1 (en) 2012-06-13
KR20120038994A (ko) 2012-04-24
CA2770285A1 (en) 2011-02-10
JPWO2011016563A1 (ja) 2013-01-17
US20120177991A1 (en) 2012-07-12
CA2770285C (en) 2014-03-25

Similar Documents

Publication Publication Date Title
WO2011016563A1 (ja) 電気化学デバイス及びバインダー組成物
TWI396322B (zh) An electrode composition for an electrode for a power storage device, a paste for an electrode for a power storage device, a power storage device electrode, and a power storage device
TWI431842B (zh) 電極用接合劑組成物,電極用漿料,電極及蓄電裝置
TWI390791B (zh) 正電極用黏合劑組成物
US9583278B2 (en) Binder composition for electrical storage device electrodes, slurry for electrical storage device electrodes, electrical storage device electrode, and electrical storage device
JP5854092B2 (ja) 電気化学デバイス用電極
KR101433512B1 (ko) 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스
JP5904330B2 (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
TWI469433B (zh) Electrode binder composition
JP5163919B1 (ja) 電極用バインダー組成物
WO2013062088A1 (ja) 導電性接着剤組成物、接着剤層付集電体および電気化学素子電極
JP2013098123A (ja) 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
WO2013069558A1 (ja) 電極用バインダー組成物
JP5446762B2 (ja) 電気化学デバイス電極用バインダー組成物、電気化学デバイス電極用スラリー、電気化学デバイス電極、及び電気化学デバイス
JP2013084502A (ja) 電極用バインダー組成物
WO2012023626A1 (ja) 電極用バインダー組成物
JP5057125B2 (ja) 電極用バインダー組成物、電極用スラリー、電極、及び電気化学デバイス
JP2016143553A (ja) 蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2011009116A (ja) 電気化学デバイス電極用バインダー組成物、電気化学デバイス電極用スラリー、及び電気化学デバイス電極
JP2016076311A (ja) 電極用バインダー組成物
JP2001155737A (ja) リチウムイオン二次電池電極用バインダー及びその利用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035045.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127002951

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011525958

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010806562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2770285

Country of ref document: CA

Ref document number: 2010806562

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13388827

Country of ref document: US