WO2012057144A1 - シアン酸エステル化合物、シアン酸エステル化合物を含む硬化性樹脂組成物、およびその硬化物 - Google Patents

シアン酸エステル化合物、シアン酸エステル化合物を含む硬化性樹脂組成物、およびその硬化物 Download PDF

Info

Publication number
WO2012057144A1
WO2012057144A1 PCT/JP2011/074559 JP2011074559W WO2012057144A1 WO 2012057144 A1 WO2012057144 A1 WO 2012057144A1 JP 2011074559 W JP2011074559 W JP 2011074559W WO 2012057144 A1 WO2012057144 A1 WO 2012057144A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
cyanatophenyl
cyanate ester
mass
resin composition
Prior art date
Application number
PCT/JP2011/074559
Other languages
English (en)
French (fr)
Inventor
亮 津布久
健人 池野
誠之 片桐
辻本 智雄
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201180052284.3A priority Critical patent/CN103180366B/zh
Priority to KR1020137010315A priority patent/KR20130127444A/ko
Priority to EP11836277.1A priority patent/EP2634205A4/en
Priority to US13/878,584 priority patent/US9453126B2/en
Priority to JP2012540880A priority patent/JP5861942B2/ja
Publication of WO2012057144A1 publication Critical patent/WO2012057144A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/12Derivatives of isocyanic acid having isocyanate groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C261/00Derivatives of cyanic acid
    • C07C261/02Cyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • C08G73/0655Preparatory processes from polycyanurates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors

Definitions

  • the present invention relates to a novel cyanate ester compound, a curable resin composition containing the novel cyanate ester compound and a cured product thereof, and more particularly, liquid at room temperature and thermal expansion of the cured product.
  • the present invention relates to a novel cyanate ester compound used in a resin composition capable of improving the rate.
  • liquid encapsulants tend to increase the thermal expansion coefficient of encapsulants because it is difficult to increase the filling of fillers and to increase the Tg (glass transition temperature) of the matrix resin itself. is there. Therefore, the liquid encapsulant is inferior in solder heat resistance and heat shock resistance compared to the powder encapsulant to be molded by transfer, and as a result, the resin or the resin due to the stress generated by the difference in thermal expansion coefficient from the chip. There is a problem that the chip is easily cracked and the reliability of the semiconductor device is lowered. Therefore, a resin for a liquid sealing material having a high Tg and a small thermal expansion coefficient is required.
  • a liquid sealing resin composition for sealing a semiconductor element As a liquid sealing resin composition for sealing a semiconductor element, a bisphenol A type epoxy resin, an alicyclic epoxy resin, or the like as a main component, a liquid acid anhydride or a phenol novolac as a curing agent, an inorganic filler, etc.
  • An epoxy resin composition containing these additives has been proposed (see, for example, Patent Documents 1, 2, and 3).
  • a resin composition mainly composed of a bisphenol A type epoxy resin or an alicyclic epoxy resin has a low Tg and a large coefficient of thermal expansion in a high temperature range.
  • these resin compositions have a large dielectric constant and dielectric loss in a high frequency region, and do not always satisfy the demands for miniaturization, high density and high speed of the semiconductor device.
  • cyanate ester resin is a resin that has long been known as a thermosetting resin having excellent heat resistance, low dielectric constant, and low dielectric loss, and is particularly proposed in Patent Document 4.
  • a resin composition in which a bisphenol A type cyanate ester resin and a bismaleimide compound are used together is called BT resin, and has excellent characteristics such as electrical characteristics, mechanical characteristics, chemical resistance, etc. Suitable as material.
  • bisphenol A type cyanate ester is a crystalline compound having a melting point of 80 ° C., it cannot be used as it is as a liquid sealing material, and must be used in combination with other components that are liquid at room temperature.
  • the combined use of other components is not only influenced by the added components, but also reduces the degree of freedom in blending the composition, which may hinder functional improvement.
  • Patent Document 5 discloses a resin composition using a cyanate ester compound using a triphenylmethane type cyanate ester compound.
  • the triphenylmethane cyanate ester compound is solid at room temperature, and is insufficient as a liquid sealing material.
  • Patent Document 6 a bifunctional cyanatophenyl type cyanate ester compound in which two cyanatophenyl groups are bonded via an asymmetric alkylene group has low viscosity and non-crystallinity. It is disclosed that cured resin products are excellent in heat distortion temperature and bending strength. Examples thereof include bis (4-cyanatophenyl) -2,2-propane and bis (4-cyanatophenyl) -1. , 1-ethane, bis (4-cyanatophenyl) -2,2-butane and the like.
  • JP 2002-241469 A Japanese Patent Laid-Open No. 2003-160639 JP 2007-5750 A JP-A-7-70315 JP 2006-169317 A Japanese Patent No. 2753831
  • the inventors of the present invention have recently identified a specific bifunctional cyanate ester compound as a cyanate ester resin, in particular, a bifunctional cyanic acid obtained by substituting hydrogen of a methylene group for bonding cyanatophenyl groups with a specific alkyl group. It has been found that the ester compound is liquid at room temperature and can realize a cured product having an excellent low coefficient of thermal expansion and heat resistance. The present invention is based on this finding.
  • an object of the present invention is to provide a novel bifunctional cyanatophenyl type cyanate ester that is capable of obtaining a cured product that is liquid at room temperature and has an excellent low thermal expansion coefficient.
  • Another object of the present invention is to provide a curable resin composition comprising the above-described cyanate ester compound.
  • the cyanate ester compound according to the present invention has the following formula (I): (In the formula, R 1 represents a hydrocarbon group having 2 to 20 carbon atoms.) It is shown by.
  • the compound of formula (I) is preferably 1,1-bis (4-cyanatophenyl) isobutane.
  • a curable resin composition according to another aspect of the present invention comprises a cyanate ester compound represented by the above formula (I).
  • a cured product obtained by curing the curable resin composition, a sealing material and an adhesive comprising the curable resin composition are also provided.
  • the curable resin composition containing the cyanate ester compound represented by the above formula (I) is liquid at room temperature, and can realize a cured product having an excellent low thermal expansion coefficient and heat resistance.
  • FIG. 1 is a 1 H-NMR chart of 1,1-bis (4-cyanatophenyl) isobutane obtained in Synthesis Example 1.
  • FIG. 2 is a 1 H-NMR chart of 1,1-bis (4-cyanatophenyl) ethane obtained in Synthesis Example 2.
  • FIG. 3 is a 1 H-NMR chart of bis (4-cyanatophenyl) ether obtained in Synthesis Example 3.
  • FIG. 4 is a 1 H-NMR chart of 1,1-bis (4-cyanatophenyl) cyclohexane obtained in Synthesis Example 4.
  • FIG. 5 is a 1 H-NMR chart of 2,2-bis (4-cyanatophenyl) butane obtained in Synthesis Example 5.
  • the cyanate ester compound according to the present invention has the following formula (I): (In the formula, R 1 represents a hydrocarbon group having 2 to 20 carbon atoms.) It is shown by.
  • Such cyanate esters include 1,1-bis (4-cyanatophenyl) propane, 1,1-bis (4-cyanatophenyl) butane, 1,1-bis (4-cyanatophenyl) isobutane.
  • 1,1-bis (4-cyanatophenyl) pentane 1,1-bis (4-cyanatophenyl) -3-methylbutane, 1,1-bis (4-cyanatophenyl) -2-methylbutane, , 1-bis (4-cyanatophenyl) -2,2-dimethylpropane, 1,1-bis (4-cyanatophenyl) hexane, 1,1-bis (4-cyanatophenyl) -4-methylpentane 1,1-bis (4-cyanatophenyl) -3-methylpentane, 1,1-bis (4-cyanatophenyl) -2-methylpentane, 1,1-bis (4-cyanatophenyl)- 2,3-jime Rubutane, 1,1-bis (4-cyanatophenyl) -3,3-dimethylbutane, bis (4-cyanatophenyl) cyclopentylmethane, bis (4-cyanatophenyl) cyclohexylme
  • 1,1-bis (4-cyanatophenyl) isobutane having a structure in which one of hydrogens in a methylene group (—CH 2 —) that bonds cyanatophenyl groups is replaced with an isopropyl group is obtained at room temperature. Since it is liquid, it is suitable as a resin for a liquid sealing material.
  • 1,1-bis (4-cyanatophenyl) isobutane is an amorphous liquid and has little change in physical properties under a high temperature environment.
  • a curable resin composition containing 1,1-bis (4-cyanatophenyl) isobutane as a cyanate ester compound is a dicisic resin in which hydrogen in a methylene group (—CH 2 —) is substituted with another alkyl group or the like.
  • the cured product can have a low linear expansion coefficient even at high temperatures, and can be a resin for a liquid sealing material having excellent heat resistance.
  • 1,1-bis (4-cyanatophenyl) isobutane is included as the cyanate compound, it may further contain other bifunctional cyanate compounds described above. Needless to say.
  • the production method of the cyanate ester compound represented by the above formula (I) is not particularly limited, and a desired method can be obtained by applying a known method as a cyanate synthesis method from a phenol represented by the following formula (V). A compound can be obtained.
  • R 1 has the same definition as in the above formula (I)).
  • the cyanate ester of the above formula (I) is obtained by cyanating the phenol of the above formula (V) by the method described in IAN HAMERTON, “Chemistry and Technology of Cyanate Esters Resins”, BLACKIE ACADEMIC & PROFESSIONAL. Can do.
  • a method in which cyanogen halide is always present in excess in excess of the base US Pat. No. 3,553,244
  • a tertiary amine is used as a base, which is obtained from cyanogen halide.
  • the curable resin composition according to the present invention comprises the cyanate ester compound (A) represented by the above formula (I).
  • the cyanate ester compound (A) represented by the above formula (I) in addition to the cyanate ester compound (A) represented by the above formula (I), other compounds may be included, and the cyanate ester represented by the following general formula (II) or (III): It is preferable to comprise at least one of compound (B), epoxy resin (C), and maleimide compound (D).
  • R 2 represents the following general formulas (i) to (v): [Wherein, R 3 and R 4 are each a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a trifluoromethyl group, and n is an integer of 4 to 7]. ] Is selected from the group consisting of )
  • R 5 represents hydrogen or a methyl group
  • n represents an integer of 1 to 50, but may be a mixture of compounds in which n is different.
  • the cyanate ester compound represented by the general formula (II) can be obtained by cyanating a phenol represented by the following general formula (VI) by the same method as described above.
  • the cyanate ester compound represented by the general formula (III) can be obtained by cyanating a phenol represented by the following general formula (VII) by the same method as described above. (Wherein R 5 and n are the same as defined above.)
  • cyanate ester compound (B) represented by the general formulas (II) and (III) that may be contained as an optional component in the curable resin composition generally known compounds can be used.
  • epoxy resin (C) contained as an optional component in the curable resin composition generally known compounds can be used as long as they are compounds having two or more epoxy groups in one molecule.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, brominated bisphenol A type epoxy resin, brominated phenol novolac type epoxy resin, naphthalene type epoxy resin, Biphenyl type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, alicyclic epoxy resin, polyol type epoxy resin, phosphorus-containing epoxy resin, glycidylamine, glycidyl ester, etc.
  • bisphenol A Type epoxy resin bisphenol F type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, phenol aralkyl type epoxy resin Biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resins, alicyclic epoxy resins are more preferable. These epoxy resins can be used alone or in combination.
  • a compound represented by the following general formula (IV) can be suitably used as the maleimide compound (D) contained as an optional component in the curable resin composition.
  • R 5 and R 6 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 3 carbon atoms
  • e and f are each an integer of 1 to 4
  • M is A single bond, an alkylene group having 1 to 5 carbon atoms, an alkylidene group, or an arylene group having 6 to 14 carbon atoms.
  • maleimide compound represented by the general formula (IV) examples include bis (4-maleimidophenyl) methane, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, and bis (3,5-dimethyl-4 -Maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane are preferred.
  • maleimide compound (D) examples include a prepolymer of the maleimide compound described above or a prepolymer of a maleimide compound and an amine compound. These compounds and prepolymers may be used alone or in combination of two or more. It is also possible to do.
  • 0 to 250 parts by mass of the cyanate ester compound (B), 0 to 250 parts by mass of the epoxy resin (C), and maleimide compound (D) with respect to 100 parts by mass of the cyanate ester compound (A).
  • a benzoxazine compound and / or a compound having a polymerizable unsaturated group can be added.
  • the benzoxazine compound generally known compounds can be used as long as they have two or more dihydrobenzoxazine rings in one molecule. Examples thereof include benzoxazine compounds described in JP-A-2009-096874. These benzoxazine compounds can be used alone or in combination.
  • the compound having a polymerizable unsaturated group generally known compounds can be used.
  • vinyl compounds such as ethylene, propylene, styrene, divinylbenzene, divinylbiphenyl, methyl (meth) acrylate, 2-hydroxyethyl (Meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipenta Monohydric or polyhydric alcohol (meth) acrylates such as erythritol hexa (meth) acrylate, bisphenol A type epoxy (meth) acrylate, bisphenol F type epoxy (meth) acrylic Epoxy (meth) acrylates such as over preparative, benzocyclobutene resins.
  • the curable resin composition according to the present invention further contains a compound that catalyzes the polymerization of a cyanate ester, an epoxy resin, an oxetane resin, or a compound having a polymerizable unsaturated group. be able to.
  • the polymerization catalyst examples include metal complex compounds composed of zinc such as zinc octylate, zinc stearate, zinc naphthenate and zinc acetylacetone, phenol compounds such as octylphenol and nonylphenol, alcohols such as 1-butanol and 2-ethylhexanol, 2 -Methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethyl Imidazole, imidazole derivatives such as 2-phenyl-4-methyl-5-hydroxymethylimidazole, dicyandiamide, benzyldimethylamine, amine compounds such as 4-methyl-N, N-dimethylbenzylamine, phosphine It can be mentioned phosphorus compounds phosphonium.
  • peroxides such as epoxy-imidazole adduct compounds, benzoyl peroxide, p-chlorobenzoyl peroxide, di-t-butyl peroxide, diisopropyl peroxycarbonate, di-2-ethylhexyl peroxycarbonate, or azobis
  • An azo compound such as isobutyronitrile may be used.
  • catalysts such as Amicure PN-23 (manufactured by Ajinomoto Fine Techno Co., NovaCure HX-3721 (manufactured by Asahi Kasei Co., Ltd.), Fujicure FX-1000 (manufactured by Fuji Kasei Kogyo Co., Ltd.) and the like. It is done.
  • a metal complex compound composed of zinc is particularly preferable, and when used in combination with the cyanate ester compound represented by the above formula (I), curing having further excellent heat resistance and a low coefficient of thermal expansion. Realize things.
  • the curable resin composition according to the present invention may contain an inorganic filler.
  • Inorganic fillers include silicates such as talc, calcined clay, unfired clay, mica and glass, oxides such as titanium oxide, alumina, silica and fused silica, carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite.
  • hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate And borate salts such as sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride, and carbon nitride, and titanates such as strontium titanate and barium titanate.
  • silica is particularly preferable, and fused silica is preferable in that it has excellent low thermal expansion. Further, although crushed and spherical silica exists, spherical silica is preferable in terms of lowering the melt viscosity of the resin composition.
  • the spherical silica may be further treated with a treatment agent for surface treatment in advance.
  • a treatment agent for surface treatment at least one compound selected from the group consisting of functional group-containing silanes, cyclic oligosiloxanes, organohalosilanes, and alkylsilazanes can be suitably used.
  • the surface treatment of spherical silica using organohalosilanes and alkylsilazanes is suitable for hydrophobizing the silica surface, and improves the dispersibility of the spherical silica in the curable resin composition. It is preferable in terms of superiority.
  • the functional group-containing silane used as the treating agent is not particularly limited, and examples thereof include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycidoxypropylmethyldiethoxy.
  • Silane and epoxy silane compounds such as 2- (3,4-epoxycyclohexyl) ethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, and Mercapto such as (meth) acrylic silane such as 3-methacryloxypropylmethyldiethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropylmethyldimethoxysilane Runs, vinyl silanes such as vinyltriethoxysilane, vinyltrimethoxysilane, and vinyltrichlorosilane, isocyanate silanes such as 3-isocyanatopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, and 3-ureidopropyltrieth
  • a silicone resin powder may be added to the curable resin composition.
  • the silicone resin powder is a cured product powder having a structure in which a siloxane bond is cross-linked in a three-dimensional network represented by (RSiO 3/2 ) n , and a powder having an average particle size of 0.1 to 10 ⁇ m is preferable. It is.
  • KMP-590 (Shin-Etsu Silicone), KMP-701 (Shin-Etsu Silicone), X-52-854 (Shin-Etsu Silicone), X-52-1621 (Shin-Etsu Silicone), XC99-B5664 (Momentive) ⁇ Performance Materials), XC99-A8808 (Momentive Performance Materials), Tospearl 120 (Momentive Performance Materials), etc. It is also possible to use it.
  • the curable resin composition according to the present invention includes the above-described cyanate ester compound (A), and, if necessary, the cyanate ester compound (B) represented by the above general formula (II) or (III), an epoxy resin.
  • (C) a maleimide compound (D), a benzoxazine compound and / or a compound having a polymerizable unsaturated group and various additives, together with a solvent, a known mixer such as a high-speed mixer, a nauter mixer, a ribbon-type blender, It can be obtained by mixing using a kneader, intensive mixer, universal mixer, dissolver, static mixer or the like.
  • the mixing method of the cyanate ester compound, various additives, and the solvent during mixing is not particularly limited.
  • the curable resin composition according to the present invention can be cured by curing with heat or light.
  • the cured product can be obtained by melting or dissolving the curable resin composition in a solvent, pouring it into a mold, and curing it under normal conditions.
  • thermosetting if the curing temperature is too low, curing does not proceed, and if it is too high, the cured product is deteriorated. Therefore, it is preferably in the range of 120 ° C to 300 ° C.
  • a sealing material can be manufactured using the above-described curable resin composition.
  • the manufacturing method of a sealing material is not specifically limited, It can obtain by mixing each above-described component using a well-known mixer.
  • the mixing method of the cyanate ester compound, various additives, and the solvent during mixing is not particularly limited.
  • an inorganic and / or organic fiber base prepreg can be produced using the curable resin composition according to the present invention.
  • the manufacturing method of a prepreg is not specifically limited, The well-known method used for printed wiring material is applicable. For example, a method in which an inorganic and / or organic fiber base material is impregnated with a resin composition varnish, dried, and B-staged into a prepreg can be applied.
  • the curable resin composition according to the present invention can be used for the production of metal-clad laminates and multilayer boards.
  • the manufacturing method of these laminated sheets etc. is not specifically limited, A laminated sheet can be obtained by heat-pressing what laminated the above-mentioned prepreg and metal foil.
  • the heating temperature is not particularly limited, but is preferably 65 to 300 ° C, and particularly preferably 120 to 270 ° C.
  • the pressure to be applied is not particularly limited, but is preferably 2 to 5 MPa, more preferably 2.5 to 4 MPa.
  • a fiber-reinforced composite material can be produced using the curable resin composition according to the present invention.
  • the form and arrangement of the reinforcing fibers are not particularly limited, and can be appropriately selected from woven fabrics, nonwoven fabrics, mats, knits, braids, unidirectional strands, rovings, choppeds, and the like.
  • a preform a laminate of woven fabrics made of reinforcing fibers, or a structure in which these are stitched together with stitch yarn, or a fiber structure such as a three-dimensional woven fabric or a braid
  • the resin transfer molding method which is one of the liquid composite molding methods, is to set materials other than preforms such as metal plates, foam cores, and honeycomb cores in the mold in advance. Therefore, it can be used in various applications, and is therefore preferably used when a composite material having a relatively complicated shape is mass-produced in a short time.
  • the curable resin composition according to the present invention has excellent low thermal expansion and high heat resistance, it is extremely useful as a high-functional polymer material, and is electrically useful as a material excellent in thermal, electrical and mechanical properties.
  • Synthesis Example 2 Synthesis of 1,1-bis (4-cyanatophenyl) ethane (abbreviated as Bis-E CN) 1,1-bis (4-hydroxy) instead of 1,1-bis (4-hydroxyphenyl) isobutane
  • the reaction was conducted in the same manner as in Synthesis Example 1 except that hydroxyphenyl) ethane (manufactured by Wako Pure Chemical Industries, Ltd.) was used, and 23.1 g of 1,1-bis (4-cyanatophenyl) ethane was obtained.
  • the structure of the compound obtained as described above was identified by NMR spectrum. The NMR spectrum was as shown in FIG. 1H-NMR: (270 MHz, chloroform-d, internal standard TMS) ⁇ (ppm) 1.62 (d, 3H), 4.22 (q, 1H), 7.42 (complex, 8H)
  • Synthesis Example 3 Synthesis of bis (4-cyanatophenyl) ether (abbreviated as Bis-Ether CN ) 1,2-bis (4-hydroxyphenyl) isobutane instead of bis (4-hydroxyphenyl) ether (Tokyo Chemical Industry) 22.0 g of bis (4-cyanatophenyl) ether was obtained in the same manner as in Synthesis Example 1 except that the product manufactured by KK was used. The structure of the compound obtained as described above was identified by NMR spectrum. The NMR spectrum was as shown in FIG. 1H-NMR: (270 MHz, chloroform-d, internal standard TMS) ⁇ (ppm) 7.07 (d, 4H), 7.31 (d, 4H)
  • Synthesis Example 4 Synthesis of 1,1-bis (4-cyanatophenyl) cyclohexane (abbreviated as Bis-ZCN) 1,1-bis (4-hydroxy) instead of 1,1-bis (4-hydroxyphenyl) isobutane
  • the reaction was conducted in the same manner as in Synthesis Example 1 except that (hydroxyphenyl) cyclohexane (manufactured by Wako Pure Chemical Industries, Ltd.) was used, and 27.3 g of 1,1-bis (4-cyanatophenyl) cyclohexane was obtained.
  • the structure of the compound obtained as described above was identified by NMR spectrum.
  • the NMR spectrum was as shown in FIG. 1H-NMR: (270 MHz, chloroform-d, internal standard TMS) ⁇ (ppm) 1.53 (m, 6H), 2.24 (m, 4H), 7.16-7.33 (complex, 8H)
  • Synthesis Example 5 Synthesis of 2,2-bis (4-cyanatophenyl) butane (abbreviated as Bis-MEK CN) In place of 1,1-bis (4-hydroxyphenyl) isobutane, 2,2-bis (4- The procedure was the same as in Synthesis Example 1 except that hydroxyphenyl) butane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used, and 25.1 g of 2,2-bis (4-cyanatophenyl) butane was obtained. The structure of the compound obtained as described above was identified by NMR spectrum. The NMR spectrum was as shown in FIG. 1H-NMR: (270 MHz, chloroform-d, internal standard TMS) ⁇ (ppm) 0.73 (t, 3H), 1.61 (s, 3H), 2.13 (q, 2H), 7.22 (complex, 8H)
  • Synthesis Example 6 Synthesis of tris (4-cyanatophenyl) -1,1,1-methane (abbreviated as TRPCN) Based on the method described in the synthesis example of JP-A-2006-290933, tris (4-hydroxyphenyl) ) -1,1,1-methane to give tris (4-cyanatophenyl) -1,1,1-methane.
  • TRPCN tris (4-cyanatophenyl) -1,1,1-methane
  • Synthesis Example 7 Synthesis of naphthol aralkyl-type cyanate ester (abbreviated as SNCN)
  • SNCN naphthol aralkyl-type cyanate ester
  • Example 1 By heating 100 parts by mass of Bis-IB CN obtained in Synthesis Example 1 and zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name: zinc nikka octate, metal content: 18%), deaeration with a vacuum pump. To obtain a composition. About the obtained composition, the presence or absence of the insoluble matter in 50 degreeC and the progress of hardening were confirmed visually.
  • Example 2 In Example 1, instead of using 100 parts by mass of Bis-IB CN, 70 parts by mass of Bis-IB CN and 30 parts by mass of Bis-E CN obtained in Synthesis Example 2 were used. A cured product was obtained.
  • Example 3 In Example 1, instead of using 100 parts by mass of Bis-IB CN, it was the same as Example 1 except that 10 parts by mass of Bis-IB CN90 and 10 parts by mass of Bis-Ether CN obtained in Synthesis Example 3 were used. To obtain a cured product.
  • Example 4 In Example 1, instead of using 100 parts by mass of Bis-IB CN, 80 parts by mass of Bis-IB CN, 10 parts by mass of Bis-E CN obtained in Synthesis Example 2, and SNCN obtained in Synthesis Example 7 were used. A cured product was obtained in the same manner as in Example 1 except that 10 parts by mass was used.
  • Example 5 In Example 1, instead of using 100 parts by mass of Bis-IB CN, 70 parts by mass of Bis-IB CN and 30 parts by mass of bisphenol F type epoxy resin (trademark jER 806, abbreviated as DGEBF manufactured by Mitsubishi Chemical Corporation) A cured product was obtained in the same manner as in Example 1 except that the curing temperature in the oven was 200 ° C.
  • bisphenol F type epoxy resin trademark jER 806, abbreviated as DGEBF manufactured by Mitsubishi Chemical Corporation
  • Example 6 In Example 1, instead of using 100 parts by mass of Bis-IB CN, 93 parts by mass of Bis-IB CN and 7 parts by mass of cresol novolac epoxy resin (trademark Epilon N-680, abbreviated as ECN, manufactured by DIC Corporation) A cured product was obtained in the same manner as in Example 1 except that the curing temperature in the oven was 200 ° C.
  • ECN cresol novolac epoxy resin
  • Example 7 In Example 1, instead of using 100 parts by mass of Bis-IB CN, 95 parts by mass of Bis-IB CN and 5 parts by mass of 4,4′-bismaleimide diphenylmethane (Tokyo Chemical Industry Co., Ltd., abbreviated as BMI) A cured product was obtained in the same manner as in Example 1 except that was used.
  • BMI 4,4′-bismaleimide diphenylmethane
  • Example 8 In Example 1, instead of using 100 parts by mass of Bis-IB CN, 85 parts by mass of Bis-IB CN, 5 parts by mass of DGEBF, a bisphenol A type epoxy resin (trademarks jER 828, DGEBA, manufactured by Mitsubishi Chemical Corporation) , Abbreviated as DGEBA) and 5 parts by mass of maleimide compound (trade name BMI-70 manufactured by Kay Kasei Co., Ltd.), except that the oven curing temperature was 200 ° C. A cured product was obtained.
  • a bisphenol A type epoxy resin trademarks jER 828, DGEBA, manufactured by Mitsubishi Chemical Corporation
  • DGEBA bisphenol A type epoxy resin
  • maleimide compound trade name BMI-70 manufactured by Kay Kasei Co., Ltd.
  • Example 9 A cured product was obtained in the same manner as in Example 1 except that 100 parts by mass of Bis-IB CN obtained in Synthesis Example 2 was used instead of 100 parts by mass of Bis-IB CN in Example 1.
  • Example 10 In Example 1, instead of using 100 parts by mass of Bis-IB CN, 100 parts by mass of 2,2-bis (4-cyanatophenyl) propane (Mitsubishi Gas Chemical Co., Ltd., abbreviated as Bis-A CN) A cured product was obtained in the same manner as in Example 1 except that it was used.
  • Bis-A CN 2,2-bis (4-cyanatophenyl) propane
  • Example 11 In Example 1, a cured product was obtained in the same manner as in Example 1 except that 100 parts by mass of Bis-Ether CN obtained in Synthesis Example 3 was used instead of 100 parts by mass of Bis-IB CN.
  • Example 12 In Example 1, a cured product was obtained in the same manner as in Example 1 except that 100 parts by mass of Bis-Z CN obtained in Synthesis Example 4 was used instead of 100 parts by mass of Bis-IB CN.
  • Example 13 A cured product was obtained in the same manner as in Example 1 except that 100 parts by mass of Bis-MEK CN obtained in Synthesis Example 5 was used instead of 100 parts by mass of Bis-IB CN in Example 1.
  • Example 14 In Example 1, a cured product was obtained in the same manner as in Example 1 except that 100 parts by mass of TRPCN obtained in Synthesis Example 6 was used instead of 100 parts by mass of Bis-IB CN.
  • Example 15 In Example 1, instead of using 100 parts by mass of Bis-IB CN, the mass of Bis-E CN50 obtained in Synthesis Example 2 and 50 parts by mass of DGEBF were used, and the curing temperature in the oven was 200 ° C. Except for the above, a cured product was obtained in the same manner as in Example 1.
  • Example 16 In Example 1, instead of using 100 parts by mass of Bis-IB CN, 30 parts by mass of Bis-A CN and 70 parts by mass of DGEBF were used, and the curing temperature in the oven was set to 200 ° C. A cured product was obtained.
  • Example 17 In Example 1, instead of using 100 parts by mass of Bis-IB CN, 100 parts by mass of DGEBF, and instead of using 0.02 parts by mass of zinc octylate, 2-ethyl-4-methylimidazole (Wako Pure Chemical Industries, Ltd.) A cured product was obtained in the same manner as in Example 1 except that 2 parts by mass of 2E4MZ manufactured by the company was used and the curing temperature in the oven was 200 ° C.
  • Example 18 In Example 1, instead of using 100 parts by mass of Bis-IB CN, curing was performed in the same manner as in Example 1 except that 95 parts by mass of Bis-E CN obtained in Synthesis Example 2 and 5 parts by mass of BMI were used. I got a thing.
  • Example 19 In Example 1, a cured product was obtained in the same manner as in Example 1 except that 70 parts by mass of Bis-A CN and 30 parts by mass of DGEBF were used instead of 100 parts by mass of Bis-IB CN.
  • the glass transition temperature is measured according to JIS-K7244-7-2007, using a dynamic viscoelasticity measuring device (AR2000, manufactured by TA Instruments Inc.), start temperature 100 ° C., end temperature 350
  • the dynamic viscoelasticity measurement was carried out under the measurement conditions of 0 ° C., a heating rate of 3 ° C./min, and a measurement frequency of 1 Hz, and the maximum value of the loss tangent (tan ⁇ ) obtained at that time was taken as the glass transition temperature.
  • the linear expansion coefficient was measured in accordance with JIS-K-7197-1991, and a test piece (5 mm ⁇ 5 mm ⁇ 5 mm) was placed on a thermomechanical analyzer (TMA / SS7100, manufactured by SII Nano Technology Co., Ltd.). Is set, and a thermomechanical analysis is performed in an expansion / compression mode under the measurement conditions of a start temperature of 100 ° C., an end temperature of 300 ° C., a temperature increase rate of 5 ° C./min, and a weight of 0.05 N, and a predetermined temperature of 1 ° C. The average amount of thermal expansion per unit was measured. Except for Examples 5, 6, 8, 14, 15 and 16, the average linear expansion coefficient at 200 ° C. to 300 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 常温において液状で、かつ優れた低熱膨張率を有する硬化物が得られる新規なジシアナトフェニルタイプの2官能シアン酸エステルを提供する。下記式(I)で示されるシアン酸エステル化合物を開示する。(式中、Rは炭素数2~20の炭化水素基を示す。)

Description

シアン酸エステル化合物、シアン酸エステル化合物を含む硬化性樹脂組成物、およびその硬化物 発明の背景
発明の分野
 本発明は、新規なシアン酸エステル化合物、ならびに新規なシアン酸エステル化合物を含む硬化性樹脂組成物およびその硬化物に関し、より詳細には、常温で液状で、かつ硬化物の熱膨張率を改善することができる樹脂組成物に使用される新規なシアン酸エステル化合物に関する。
背景技術
 近年、半導体関連材料の分野においては携帯電話、超薄型の液晶やプラズマTV、軽量ノート型パソコンなど、軽・薄・短・小がキーワードとなるような電子機器があふれ、これによりパッケージ材料にも非常に高い特性が求められてきている。特に先端パッケージはその構造が複雑になり、液状封止でなくては封止が困難な素子が増加している。例えば、EBGAのようなキャビティーダウンタイプの構造を有する素子は部分封止を行う必要があり、トランスファー成型では対応できない。このような理由により、封止材としての高機能な液状の硬化性樹脂材料の開発が求められている。
 液状封止材は、粉粒状封止材と異なり、フィラーの高充填化や、マトリクス樹脂そのものの高Tg(ガラス転移温度)化が困難なため、封止材の熱膨張係数が大きくなる傾向がある。そのため、液状封止材は、トランスファー成型される粉粒状封止材に比べて半田耐熱性や耐ヒートショック性が劣り、その結果、チップとの熱膨張係数の差によって発生する応力によって、樹脂やチップにクラックが生じやすく、半導体装置の信頼性が低下してしまう問題があった。そのため、高Tgで、かつ熱膨張係数の小さな液状封止材用の樹脂が求められている。
 半導体素子を封止する液状封止用樹脂組成物として、ビスフェノールA型エポキシ樹脂や脂環式エポキシ樹脂等を主成分とし、硬化剤として液状の酸無水物やフェノールノボラックを含み、無機充填材等の添加物を含有するエポキシ樹脂組成物が提案されている(例えば、特許文献1、2、3参照)。しかしながら、ビスフェノールA型エポキシ樹脂や脂環式エポキシ樹脂等を主成分とする樹脂組成物はTgが低く、高い温度領域での熱膨張係数が大きい。また、これらの樹脂組成物は、高周波数領域における誘電率および誘電損失が大きく、半導体装置の小型化、高密度化および高速化の要求を必ずしも満足させるものではない。
 これに対し、シアン酸エステル樹脂は、耐熱性に優れるほか、低誘電率、低誘電損失である熱硬化性樹脂として古くから知られた樹脂であり、特に、特許文献4において提案されているような、ビスフェノールA型シアン酸エステル樹脂とビスマレイミド化合物とを併用した樹脂組成物はBTレジンと称され、電気特性、機械特性、耐薬品性などに優れた特性を有するため、半導体素子の封止材料として適している。しかしながら、ビスフェノールA型シアン酸エステルは、融点が80℃の結晶性化合物であるため、液状封止材料としてそのまま使用することができず、他の常温で液状である成分と併用する必要がある。ところが、他成分の併用は、添加した成分の影響を受けるほか、組成物の配合の自由度を低下させてしまい、機能向上の妨げになる場合がある。 
 また、熱膨張性の改善として、例えば特許文献5には、トリフェニルメタン型のシアン酸エステル化合物を用いたシアン酸エステル化合物を用いた樹脂組成物が開示されている。しかしながら、トリフェニルメタン型シアン酸エステル化合物は常温では固体であり、液状封止材料としては不十分である。さらに、特許文献6には、非対称性のアルキレン基を介して2個のシアナトフェニル基が結合した2官能シアナトフェニルタイプのシアン酸エステル化合物が低粘度非結晶性であり、この化合物を用いた樹脂硬化物は熱変形温度や曲げ強度に優れることが開示されており、それらの例として、ビス(4-シアナトフェニル)-2,2-プロパン、ビス(4-シアナトフェニル)-1,1-エタン、ビス(4-シアナトフェニル)-2,2-ブタンなどが開示されている。
特開2002-241469号公報 特開2003-160639号公報 特開2007-5750号公報 特開平7-70315号公報 特開2006-169317号公報 特許第2753831号公報
 本発明者らは、今般、シアン酸エステル樹脂として特定の2官能型シアン酸エステル化合物、とりわけ、シアナトフェニル基同士を結合するメチレン基の水素を特定のアルキル基で置換した2官能型シアン酸エステル化合物は、常温において液状で、かつ優れた低熱膨張率および耐熱性を有する硬化物を実現できるとの知見を得た。本発明はかかる知見によるものである。
 したがって、本発明の目的は、常温において液状で、かつ優れた低熱膨張率を有する硬化物が得られる新規な2官能シアナトフェニルタイプのシアン酸エステルを提供することである。
 また、本発明の別の目的は、上記のシアン酸エステル化合物を含んでなる硬化性樹脂組成物を提供することである。
 そして、本発明によるシアン酸エステル化合物は、下記式(I):
Figure JPOXMLDOC01-appb-C000006
(式中、Rは炭素数2~20の炭化水素基を示す。)
で示されるものである。
 また、本発明の実施態様においては、式(I)の化合物が1,1-ビス(4-シアナトフェニル)イソブタンであることが好ましい。
 また、本発明の別の態様による硬化性樹脂組成物は、上記した式(I)で示されるシアン酸エステル化合物を含んでなるものである。
 さらに、本発明の別の態様においては、上記硬化性樹脂組成物を硬化させてなる硬化物、上記硬化性樹脂組成物を含んでなる封止用材料および接着剤も提供される。
 本発明によれば、上記した式(I)で示されるシアン酸エステル化合物を含む硬化性樹脂組成物は、常温において液状で、かつ優れた低熱膨張率および耐熱性を有する硬化物を実現できる。
図1は、合成例1で得た1,1-ビス(4-シアナトフェニル)イソブタンのH-NMRチャートである。 図2は、合成例2で得た1,1-ビス(4-シアナトフェニル)エタンのH-NMRチャートである。 図3は、合成例3で得たビス(4-シアナトフェニル)エーテルのH-NMRチャートである。 図4は、合成例4で得た1,1-ビス(4-シアナトフェニル)シクロヘキサンのH-NMRチャートである。 図5は、合成例5で得た2,2-ビス(4-シアナトフェニル)ブタンのH-NMRチャートである。
発明の具体的説明
<シアン酸エステル化合物>
 本発明によるシアン酸エステル化合物は、下記式(I):
Figure JPOXMLDOC01-appb-C000007
(式中、Rは炭素数2~20の炭化水素基を示す。)
で示されるものである。このようなシアン酸エステルとしては、1,1-ビス(4-シアナトフェニル)プロパン、1,1-ビス(4-シアナトフェニル)ブタン、1,1-ビス(4-シアナトフェニル)イソブタン、1,1-ビス(4-シアナトフェニル)ペンタン、1,1-ビス(4-シアナトフェニル)-3-メチルブタン、1,1-ビス(4-シアナトフェニル)-2-メチルブタン、1,1-ビス(4-シアナトフェニル)-2,2-ジメチルプロパン、1,1-ビス(4-シアナトフェニル)ヘキサン、1,1-ビス(4-シアナトフェニル)-4-メチルペンタン、1,1-ビス(4-シアナトフェニル)-3-メチルペンタン、1,1-ビス(4-シアナトフェニル)-2-メチルペンタン、1,1-ビス(4-シアナトフェニル)-2,3-ジメチルブタン、1,1-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、ビス(4-シアナトフェニル)シクロペンチルメタン、ビス(4-シアナトフェニル)シクロヘキシルメタン、ビス(4-シアナトフェニル)フェニルメタン、1,1-ビス(4-シアナトフェニル)ヘプタン、1,1-ビス(4-シアナトフェニル)-2-メチルヘキサン、1,1-ビス(4-シアナトフェニル)-3-メチルヘキサン、1,1-ビス(4-シアナトフェニル)-4-メチルヘキサン、1,1-ビス(4-シアナトフェニル)-5-メチルヘキサン、1,1-ビス(4-シアナトフェニル)-3,4-ジメチルペンタン、1,1-ビス(4-シアナトフェニル)-2,3-ジメチルペンタン、1,1-ビス(4-シアナトフェニル)-3-エチルペンタン、1,1-ビス(4-シアナトフェニル)-2-エチルペンタン、ビス(4-シアナトフェニル)-1-ナフチルメタン、1,1-ビス(4-シアナトフェニル)-2-フェニルメチルヘキサン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)プロパン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)ブタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)イソブタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)ペンタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-3-メチルブタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-2-メチルブタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-2,2-ジメチルプロパン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)ヘキサン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-4-メチルペンタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-3-メチルペンタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-2-メチルペンタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-2,3-ジメチルブタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-3,3-ジメチルブタン、[(2-シアナトフェニル)-(4-シアナトフェニル)メチル]シクロペンタン、[(2-シアナトフェニル)-(4-シアナトフェニル)メチル]シクロヘキサン、2,4’-ジシアナトトリフェニルメタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)ヘプタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-2-メチルヘキサン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-3-メチルヘキサン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-4-メチルヘキサン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-5-メチルヘキサン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-3,4-ジメチルペンタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-2,3-ジメチルペンタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-3-エチルペンタン、1-(2-シアナトフェニル)-1-(4-シアナトフェニル)-2-エチルペンタン、[(2-シアナトフェニル)-(4-シアナトフェニル)メチル]ナフタレンが挙げられる。
 上記したシアン酸エステルの中でも、1,1-ビス(4-シアナトフェニル)プロパン、1,1-ビス(4-シアナトフェニル)ブタン、1,1-ビス(4-シアナトフェニル)イソブタン、1,1-ビス(4-シアナトフェニル)ペンタン、1,1-ビス(4-シアナトフェニル)-3-メチルブタン、1,1-ビス(4-シアナトフェニル)-2-メチルブタン、1,1-ビス(4-シアナトフェニル)-2,2-ジメチルプロパン、1,1-ビス(4-シアナトフェニル)-2,3-ジメチルブタン、1,1-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、シクロペンチルビス(4-シアナトフェニル)メタン、シクロヘキシルビス(4-シアナトフェニル)メタン、ビス(4-シアナトフェニル)フェニルメタンが好ましく、特に、1,1-ビス(4-シアナトフェニル)プロパン、1,1-ビス(4-シアナトフェニル)ブタン、1,1-ビス(4-シアナトフェニル)イソブタン、1,1-ビス(4-シアナトフェニル)ペンタン、1,1-ビス(4-シアナトフェニル)-3-メチルブタン、1,1-ビス(4-シアナトフェニル)-2-メチルブタン、1,1-ビス(4-シアナトフェニル)-2,2-ジメチルプロパン、1,1-ビス(4-シアナトフェニル)-2,3-ジメチルブタン、1,1-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、シクロペンチルビス(4-シアナトフェニル)メタンがより好ましく、さらには、1,1-ビス(4-シアナトフェニル)プロパン、1,1-ビス(4-シアナトフェニル)イソブタン、1,1-ビス(4-シアナトフェニル)-2,2-ジメチルプロパンがより一層好ましい。とりわけ、シアナトフェニル基同士を結合するメチレン基(-CH-)中の水素の一つをイソプロピル基に置換した構造である1,1-ビス(4-シアナトフェニル)イソブタンは、常温で液状であるため、液状封止材用の樹脂として好適である。また、1,1-ビス(4-シアナトフェニル)イソブタンは、非結晶性液体であり、高温環境下での物性変化が少ない。さらに、シアン酸エステル化合物として1,1-ビス(4-シアナトフェニル)イソブタンを含む硬化性樹脂組成物は、メチレン基(-CH-)中の水素を他のアルキル基等で置換したジシアナトフェニルタイプの2官能シアン酸エステルを含む樹脂組成物と比較して、硬化物の線膨張係数が高温下でも小さく、耐熱性に優れた液状封止材用の樹脂とすることができる。無論、シアン酸エステル化合物として1,1-ビス(4-シアナトフェニル)イソブタンを含む場合であっても、それに加えて上記した他の2官能シアン酸エステル化合物がさらに含まれていてもよいことは言うまでもない。
 上記式(I)で示されるシアン酸エステル化合物の製造方法は、特に制限されるものではなく、下記式(V)で示されるフェノールからシアネート合成法として公知の方法を適用することにより、所望の化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000008
(式中、Rは上記式(I)の定義と同じである)
 例えば、IAN HAMERTON,“Chemistry and Technology of Cyanate Ester Resins”,BLACKIE ACADEMIC & PROFESSIONALに記載された方法により、上記式(V)のフェノールをシアネート化して上記式(I)のシアン酸エステル化合物を得ることができる。また、溶媒中、塩基の存在下で、ハロゲン化シアンが常に塩基より過剰に存在するようにして反応させる方法(米国特許3553244号)や、塩基として3級アミンを用い、これをハロゲン化シアンよりも過剰に用いながら合成する方法(特開平7-53497号公報)、連続プラグフロー方式で、トリアルキルアミンとハロゲン化シアンを反応させる方法(特表2000-501138号)、フェノールとハロゲン化シアンとを、tert-アミンの存在下、非水溶液中で反応させる際に副生するtert-アンモニウムハライドを、カチオンおよびアニオン交換対で処理する方法(特表2001-504835号公報)、フェノール化合物を、水と分液可能な溶媒の存在下で、3級アミンとハロゲン化シアンとを同時に添加して反応させた後、水洗分液し、得られた溶液から2級または3級アルコール類もしくは炭化水素の貧溶媒を用いて沈殿精製する方法(特許2991054号)、さらには、ナフトール類、ハロゲン化シアン、および3級アミンを、水と有機溶媒との二相系溶媒中で、酸性条件下で反応させる方法(特開2007-277102公報)等が知られており、本発明においては、これらの方法を好適に使用して、シアン酸エステル化合物を得ることができる。上記のような方法により得られたシアン酸エステル化合物は、NMR等の公知の方法により同定することができる。
<硬化性樹脂組成物>
 本発明による硬化性樹脂組成物は、上記した式(I)で示されるシアン酸エステル化合物(A)を含んでなるものである。本発明においては、上記式(I)で示されるシアン酸エステル化合物(A)に加えて他の化合物等を含んでいてもよく、下記一般式(II)や(III)で示されるシアン酸エステル化合物(B)、エポキシ樹脂(C)、およびマレイミド化合物(D)の少なくとも1種以上を含んでなることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、
 Rは、下記一般式(i)~(v):
Figure JPOXMLDOC01-appb-C000010
[式中、R、Rは、いずれもが水素原子であるか、または炭素数1~8のアルキル基もしくはトリフルオロメチル基であり、nは4~7の整数である。]からなる群から選択されるいずれかである。)
Figure JPOXMLDOC01-appb-C000011
(式中、Rは水素またはメチル基を示し、nは1~50の整数を示すが、nが異なる化合物の混合物であってもよい。)
 上記一般式(II)で示されるシアン酸エステル化合物は、下記一般式(VI)で示されるフェノールを、上記と同様の方法によりシアネート化することにより得ることができる。
Figure JPOXMLDOC01-appb-C000012
(式中、Rは上記の定義と同じである。)
 また、上記一般式(III)で示されるシアン酸エステル化合物は、下記一般式(VII)で示されるフェノールを、上記したのと同様の方法によりシアネート化することにより得ることができる。
Figure JPOXMLDOC01-appb-C000013
(式中、Rおよびnは、上記の定義と同じである。)
 硬化性樹脂組成物中の任意成分として含有されてよい上記一般式(II)および(III)で表わされるシアン酸エステル化合物(B)としては、一般に公知のものを使用することができる。例えば、ビス(4-シアナトフェニル)メタン、2,4’-ジシアナトジフェニルメタン、1,1-ビス(4-シアナトフェニル)エタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)ペンタン、2,2-ビス(4-シアナトフェニル)ヘキサン、2,2-ビス(4-シアナトフェニル)-3-メチルブタン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、3,3-ビス(4-シアナトフェニル)ヘキサン、3,3-ビス(4-シアナトフェニル)ヘプタン、3,3-ビス(4-シアナトフェニル)オクタン、3,3-ビス(4-シアナトフェニル)-2-メチルペンタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルペンタン、4,4-ビス(4-シアナトフェニル)-3-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,4-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2,4-トリメチルペンタン、2,2-ビス(4’-シアナトフェニル)-1,1,1,3,3,3-ヘキサフロロプロパン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、ビス-(4-シアナトフェニル)エーテル、ビス-(4-シアナトフェニル)スルフィド、1,3-ビス(4-シアナト-α、α-ジメチルベンジル)ベンゼン、1,1-ビス(4’-シアナトフェニル)シクロペンタン、1,1-ビス(4’-シアナトフェニル)シクロヘキサンが挙げられる。これらのなかでも、ビス(4-シアナトフェニル)メタン、2,4’-ジシアナトジフェニルメタン、1,1-ビス(4-シアナトフェニル)エタン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)ヘキサン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、3,3-ビス(4-シアナトフェニル)ヘキサン、3,3-ビス(4-シアナトフェニル)-2-メチルペンタン、2,2-ビス(4’-シアナトフェニル)-1,1,1,3,3,3-ヘキサフロロプロパン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、ビス-(4-シアナトフェニル)エーテル、ビス-(4-シアナトフェニル)スルフィド、1,1-ビス(4’-シアナトフェニル)シクロペンタン、1,1-ビス(4’-シアナトフェニル)シクロヘキサンが好ましく、ビス(4-シアナトフェニル)メタン、2,4’-ジシアナトジフェニルメタン、1,1-ビス(4-シアナトフェニル)エタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4’-シアナトフェニル)-1,1,1,3,3,3-ヘキサフロロプロパン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、ビス-(4-シアナトフェニル)-エーテル、ビス-(4-シアナトフェニル)スルフィド、1,1-ビス(4’-シアナトフェニル)-シクロヘキサンがより好ましい。これらのシアン酸エステル化合物は1種または2種以上混合して用いることができる。
 硬化性樹脂組成物中の任意成分として含有されるエポキシ樹脂(C)は、1分子中に2個以上のエポキシ基を有する化合物であれば、一般に公知のものを用いることができる。例えば、ビスフェノールA 型エポキシ樹脂、ビスフェノールF 型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA ノボラック型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられる。これらのなかでも、ビスフェノールA 型エポキシ樹脂、ビスフェノールF 型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、臭素化ビスフェノールA 型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル等が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、脂環式エポキシ樹脂等がより好ましい。これらのエポキシ樹脂は1種または2種以上混合して用いることができる。
 硬化性樹脂組成物中の任意成分として含有されるマレイミド化合物(D)としては、下記一般式(IV)で示される化合物を好適に使用することができる。
Figure JPOXMLDOC01-appb-C000014
(式中、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~3のアルキル基を示し、e、fは、それぞれ1~4の整数であり、Mは、単結合、もしくは炭素数1~5のアルキレン基、アルキリデン基、または炭素数6~14のアリーレン基である。)
 上記一般式(IV)で示されるマレイミド化合物としては、ビス(4-マレイミドフェニル)メタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタンが好ましい。また、マレイミド化合物(D)としては、上記したマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマーなどが挙げられ、これら化合物およびプレポリマーを1種または2種以上を適宜混合して使用することも可能である。
 本発明においては、シアン酸エステル化合物(A)100質量部に対して、シアン酸エステル化合物(B)を0~250質量部、エポキシ樹脂(C)を0~250質量部、およびマレイミド化合物(D)を0~100質量部含んでなることが好ましく、シアン酸エステル化合物(B)を0~100質量部、エポキシ樹脂(C)を0~100質量部、およびマレイミド化合物(C)を0~50質量部、含んでなることがより好ましい。上記した割合で各化合物および樹脂を含むことにより、より一層、硬化物の線膨張係数が高温下でも小さく、耐熱性に優れた硬化性樹脂組成物とすることができる。
 また、本発明においては、上記した(A)~(D)の化合物の他に、ベンゾオキサジン化合物および/または重合可能な不飽和基を有する化合物等を添加することもできる。ベンゾオキサジン化合物としては、1 分子中に2 個以上のジヒドロベンゾオキサジン環を有していれば一般に公知のものを用いることができる。例えば、特開2009-096874号公報に記載のベンゾオキサジン化合物が挙げられる。これらのベンゾオキサジン化合物は1種または2種以上混合して用いることができる。
 上記の重合可能な不飽和基を有する化合物としては、一般に公知のものが使用でき、例えば、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物、メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価または多価アルコールの(メタ)アクリレート類、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類、ベンゾシクロブテン樹脂等が挙げられる。これらの不飽和基を有する化合物は1種または2種以上混合して用いることができる。
 本発明による硬化性樹脂組成物には、上記した化合物ないし樹脂に加えて、さらに、シアン酸エステル、エポキシ樹脂、オキセタン樹脂、重合可能な不飽和基を有する化合物の重合を触媒する化合物を配合することができる。重合触媒としては、オクチル酸亜鉛、ステアリン酸亜鉛、ナフテン酸亜鉛、アセチルアセトン亜鉛等の亜鉛からなる金属錯体化合物、オクチルフェノール、ノニルフェノール等のフェノール化合物、1-ブタノール、2-エチルヘキサノール等のアルコール類、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール誘導体、ジシアンジアミド、ベンジルジメチルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、ホスフィン系はホスホニウム系のリン化合物が挙げられる。また、エポキシ-イミダゾールアダクト系化合物、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジイソプロピルパーオキシカーボネート、ジ-2-エチルヘキシルパーオキシカーボネート等の過酸化物、またはアゾビスイソブチロニトリル等のアゾ化合物等を使用してもよい。これら触媒は市販のものを使用してもよく、例えば、アミキュアPN-23(味の素ファインテクノ社製、ノバキュア HX-3721(旭化成社製)、フジキュアFX-1000(富士化成工業社製)等が挙げられる。
 上記した重合触媒の中でも、特に亜鉛からなる金属錯体化合物が好ましく、上記式(I)で表されるシアン酸エステル化合物と併用することにより、より一層、優れた耐熱性および低熱膨張率を有する硬化物を実現できる。
 本発明による硬化性樹脂組成物は、無機充填剤を含んでいてもよい。無機充填剤としては、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等を挙げることができる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用することもできる。これらの中でも特に、シリカが好ましく、溶融シリカが低熱膨張性に優れる点で好ましい。また、破砕状、球状のシリカが存在するが、樹脂組成物の溶融粘度を下げる点において、球状シリカが好ましい。
 球状シリカは、さらに予め表面処理する処理剤で処理されたものであってよい。処理剤としては、官能基含有シラン類、環状オリゴシロキサン類、オルガノハロシラン類、およびアルキルシラザン類からなる群から選ばれる少なくとも1種類以上の化合物を好適に使用することができる。これらのなかでも、オルガノハロシラン類およびアルキルシラザン類を用いて球状シリカの表面処理することは、シリカ表面を疎水化するのに好適であり、硬化性樹脂組成物中における球状シリカの分散性に優れる点において好ましい。
 処理剤として用いる官能基含有シラン類は、特に限定されるものではなく、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、および2-(3、4-エポキシシクロヘキシル)エチルジメトキシシラン等のエポキシシラン化合物、3-メタクロキシプロピルトリメトキシシラン、3-メタクロキシプロピルメチルジメトキシシラン、3-メタクロキシプロピルトリエトキシシラン、および3-メタクロキシプロピルメチルジエトキシシラン等の(メタ)アクリルシラン、3-メルカトプロピルトリメトキシシラン、3-メルカトプロピルトリエトキシシラン、および3-メルカプトプロピルメチルジメトキシシラン等のメルカプトシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、およびビニルトリクロロシラン等のビニルシラン、3-イソシアネートプロピルトリエトキシシラン等のイソシアネートシラン、3-ウレイドプロピルトリメトキシシラン、および3-ウレイドプロピルトリエトキシシラン等のウレイドシラン、(5-ノルボルネン-2-イル)トリメトキシシラン、(5-ノルボルネン-2-イル)トリエトキシシラン、および(5-ノルボルネン-2-イル)エチルトリメトキシシラン等の(5-ノルボルネン-2-イル)アルキルシラン、フェニルトリメトキシシラン等のフェニルシランなどを挙げることができる。
 また、硬化性樹脂組成物には、シリコーンレジンパウダーを添加してもよい。シリコーンレジンパウダーは、シロキサン結合が(RSiO3/2で表わさせる三次元網目状に架橋した構造を持つ硬化物粉末であり、その平均粒子径は、0.1~10μmのパウダーが好適である。具体的には、KMP-590(信越シリコーン製)、KMP-701(信越シリコーン製)、X-52-854(信越シリコーン製)、X-52-1621(信越シリコーン製)、XC99-B5664(モメンティブ・パフォーアンス・マテリアルズ製)、XC99-A8808(モメンティブ・パフォーアンス・マテリアルズ製)、トスパール120(モメンティブ・パフォーマンス・マテリアルズ製)などが挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。
 本発明による硬化性樹脂組成物は、上記したシアン酸エステル化合物(A)、ならびに、必要に応じて、上記一般式(II)や(III)で示されるシアン酸エステル化合物(B)、エポキシ樹脂(C)、マレイミド化合物(D)、ベンゾオキサジン化合物および/または重合可能な不飽和基を有する化合物や各種添加剤を、溶媒とともに、公知のミキサー、例えば高速ミキサー、ナウターミキサー、リボン型ブレンダー、ニーダー、インテンシブミキサー、万能ミキサー、ディゾルバー、スタティックミキサーなどを用いて混合して得ることができる。混合の際の、シアン酸エステル化合物、各種添加剤、溶媒の添加方法は、特に限定されるものではない。
 本発明による硬化性樹脂組成物は、熱や光などによって硬化させることにより硬化物とすることができる。硬化物は、硬化性樹脂組成物を溶融または溶媒に溶解させた後、型内に流し込み、通常の条件で硬化させることにより得ることができる。熱硬化の場合、硬化温度は、低すぎると硬化が進まず、高すぎると硬化物の劣化が起こることから、120℃から300℃の範囲内が好ましい。
<硬化性樹脂組成物の用途>
 上記した硬化性樹脂組成物を用いて封止材料を製造することができる。封止材料の製造方法は特に限定されるものでなく、上記した各成分を、公知のミキサーを用いて混合して得ることができる。混合の際の、シアン酸エステル化合物、各種添加剤、溶媒の添加方法は、特に限定されるものではない。
 また、本発明による硬化性樹脂組成物を用いて、無機および/または有機繊維基材プリプレグを製造することができる。プリプレグの製造方法は、特に限定されるものではなくなく、プリント配線材料に使用される周知の方法が適用可能である。例えば、樹脂組成物ワニスを無機および/または有機繊維基材に含浸させて乾燥し、Bステージ化してプリプレグとする方法などが適用できる。
 また、本発明による硬化性樹脂組成物は、金属張積層板および多層板の製造に使用することができる。これらの積層板等の製造方法は、特に限定されるものでなく、上記したプリプレグと金属箔とを重ねたものを加熱加圧成形することで積層板を得ることができる。加熱する温度は、特に限定されるものではないが、65~300℃が好ましく、特に120~270℃が好ましい。また、加圧する圧力は、特に限定されるものではないが、2~5MPaであることが好ましく、2.5~4MPaであることがより好ましい。
 また、本発明による硬化性樹脂組成物を用いて繊維強化複合材料を製造することができる。強化繊維の形態や配列については、特に限定されず、織物、不織布、マット、ニット、組み紐、一方向ストランド、ロービング、チョップド等から適宜選択できる。また、強化繊維の形態としてプリフォーム(強化繊維からなる織物基布を積層したもの、またはこれをステッチ糸により縫合一体化したもの、あるいは立体織物・編組物などの繊維構造物)を適用することもできる。これら繊維強化複合材料の製造方法として、具体的には、リキッド・コンポジット・モールディング法、レジン・フィルム・インフュージョン法、フィラメント・ワインディング法、ハンド・レイアップ法、プルトルージョン法等が挙げられる。これらのなかでも、リキッド・コンポジット・モールディング法の一つであるレジン・トランスファー・モールディング法は、金属板、フォームコア、ハニカムコア等、プリフォーム以外の素材を成形型内に予めセットしておくことができることから、種々の用途に対応可能であるため、比較的、形状が複雑な複合材料を短時間で大量生産する場合に好ましく用いられる。
 本発明による硬化性樹脂組成物は、優れた低熱膨張性、および高い耐熱性を有するため、高機能性高分子材料として極めて有用であり、熱的、電気的および機械物性に優れた材料として電気絶縁材料、封止材料、接着剤、積層材料、レジスト、ビルドアップ積層板材料のほか、土木・建築、電気・電子、自動車、鉄道、船舶、航空機、スポーツ用品、美術・工芸などの分野における固定材、構造部材、補強剤、型どり材などに好ましく使用される。これらの中でも、低熱膨張性、耐燃性および高度の機械強度が要求される半導体封止材料や電子部品の接着剤、航空機構造部材、衛星構造部材および鉄道車両構造部材に好適である。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。
<シアン酸エステル化合物の合成>
合成例1:1,1-ビス(4-シアナトフェニル)イソブタン(Bis-IB CNと略記)の合成
 1,1-ビス(4-ヒドロキシフェニル)イソブタン(和光純薬工業株式会社製)24.2g(100mmol)およびトリエチルアミン 28.3g(280mmol)をテトラヒドロフラン100mLに溶解させた( 溶液1) 。塩化シアン18.4g(300mmol)の塩化メチレン溶液46.2gとテトラヒドロフラン100mLを混合させた液に-10 ℃ で溶液1を1.5 時間かけて滴下した。反応の完結が確認されたところで反応液を濃縮し、得られた粗製物を塩化メチレン300mLに溶解した。これを1M塩酸、蒸留水で洗浄し、無水硫酸マグネシウムで乾燥した。塩化メチレンを留去することで、目的とする1,1-ビス(4-シアナトフェニル)イソブタンを28.3g得た。上記のようにして得られた化合物の構造をNMRスペクトルにより同定した。NMRスペクトルは、図1に示される通りであった。
1H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)0.88 (d,6H)、2.41(m,1H)、3.51(d,1H)、7.20-7.35(complex,8H)
合成例2:1,1-ビス(4-シアナトフェニル)エタン(Bis-E CNと略記)の合成
 1,1-ビス(4-ヒドロキシフェニル)イソブタンの代わりに1,1-ビス(4-ヒドロキシフェニル)エタン(和光純薬工業株式会社製)を用いた以外は合成例1と同様に実施し、1,1-ビス(4-シアナトフェニル)エタンを23.1g得た。上記のようにして得られた化合物の構造をNMRスペクトルにより同定した。NMRスペクトルは、図2に示される通りであった。
1H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)1.62 (d,3H)、4.22(q,1H)、7.42(complex,8H)
合成例3:ビス(4-シアナトフェニル)エーテル(Bis-Ether CNと略記)の合成
 1,1-ビス(4-ヒドロキシフェニル)イソブタンの代わりにビス(4-ヒドロキシフェニル)エーテル(東京化成工業株式会社製)を用いた以外は合成例1と同様に実施し、ビス(4-シアナトフェニル)エーテルを22.0g得た。上記のようにして得られた化合物の構造をNMRスペクトルにより同定した。NMRスペクトルは、図3に示される通りであった。
1H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)7.07 (d,4H)、7.31(d,4H)
合成例4:1,1-ビス(4-シアナトフェニル)シクロヘキサン(Bis-Z CNと略記)の合成
 1,1-ビス(4-ヒドロキシフェニル)イソブタンの代わりに1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(和光純薬工業株式会社製)を用いた以外は合成例1と同様に実施し、1,1-ビス(4-シアナトフェニル)シクロヘキサンを27.3g得た。上記のようにして得られた化合物の構造をNMRスペクトルにより同定した。NMRスペクトルは、図4に示される通りであった。
1H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)1.53(m,6H)、2.24(m,4H)、7.16-7.33(complex,8H)
合成例5:2,2-ビス(4-シアナトフェニル)ブタン(Bis-MEK CNと略記)の合成
 1,1-ビス(4-ヒドロキシフェニル)イソブタンの代わりに2,2-ビス(4-ヒドロキシフェニル)ブタン(東京化成工業株式会社製)を用いた以外は合成例1と同様に実施し、2,2-ビス(4-シアナトフェニル)ブタンを25.1g得た。上記のようにして得られた化合物の構造をNMRスペクトルにより同定した。NMRスペクトルは、図5に示される通りであった。
1H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)0.73 (t,3H)、1.61(s,3H)、2.13(q,2H)、7.22(complex,8H)
合成例6:トリス(4-シアナトフェニル)-1,1,1-メタン(TRPCNと略記)の合成
 特開2006-290933号公報の合成例に記載の方法に基づき、トリス(4-ヒドロキシフェニル)-1,1,1-メタンからトリス(4-シアナトフェニル)-1,1,1-メタンを得た。
合成例7:ナフトールアラルキル型シアン酸エステル(SNCNと略記)の合成
 特開2006-193607号公報の合成例1に記載の方法に基づき、α-ナフトールアラルキル樹脂からナフトールアラルキル型シアン酸エステルを得た。
<硬化性樹脂組成物の調製>
例1
 合成例1で得られたBis-IB CN100質量部とオクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチック酸亜鉛、金属含有量18%)とを加熱して、真空ポンプで脱気して組成物を得た。得られた組成物について、50℃における不溶分の有無、硬化の進行具合を目視にて確認した。
<硬化物の作製>
 上記のようにして得られた組成物を、再度加熱し、ガラス板(120mm×120mm×5mm)、ポリイミドフィルム(カプトン200H:東レデュポン株式会社製)、フッ素ゴム製Oリング(S-100:株式会社森清化工製)で作製した型に注型し、オーブンで250℃、4時間加熱して硬化させた。冷却後、ポリイミドフィルムを研磨により除去して、硬化物を得た。
例2
 例1において、Bis-IB CNを100質量部用いる代わりに、Bis-IB CNを70質量部と合成例2で得られたBis-E CNを30質量部とを用いた以外は例1と同様にして硬化物を得た。
例3
 例1において、Bis-IB CNを100質量部用いる代わりに、Bis-IB CN90を質量部と合成例3で得られたBis-Ether CNを10質量部とを用いた以外は例1と同様にして硬化物を得た。
例4
 例1において、Bis-IB CNを100質量部用いる代わりに、Bis-IB CNを80質量部と合成例2で得られたBis-E CNを10質量部と、合成例7で得られたSNCNを10質量部とを用いた以外は例1と同様にして硬化物を得た。
例5
 例1において、Bis-IB CNを100質量部用いる代わりに、Bis-IB CNを70質量部とビスフェノールF型エポキシ樹脂(三菱化学株式会社製 商標jER 806、DGEBFと略記)を30質量部とを用い、オーブンでの硬化温度を200℃とした以外は例1と同様にして硬化物を得た。
例6
 例1において、Bis-IB CNを100質量部用いる代わりに、Bis-IB CNを93質量部とクレゾールノボラック型エポキシ樹脂(DIC株式会社製 商標EpiclonN-680、ECNと略記)を7質量部とを用い、オーブンでの硬化温度を200℃とした以外は例1と同様にして硬化物を得た。
例7
 例1において、Bis-IB CNを100質量部用いる代わりに、Bis-IB CNを95質量部と4,4’-ビスマレイミドジフェニルメタン(東京化成工業株式会社製、BMIと略記)を5質量部とを用いた以外は例1と同様にして硬化物を得た。
例8
 例1において、Bis-IB CNを100質量部用いる代わりに、Bis-IB CNを85質量部とDGEBFを5質量部と、ビスフェノールA型エポキシ樹脂(三菱化学株式会社製 商標jER 828、DGEBAと略記、DGEBAと略記)を5質量部と、マレイミド化合物(ケイ・アイ化成株式会社製 商標BMI-70)を5質量部とを用い、オーブンでの硬化温度を200℃とした以外は例1と同様にして硬化物を得た。
例9
 例1において、Bis-IB CNを100質量部用いる代わりに、合成例2で得られたBis-E CNを100質量部用いた以外は例1と同様にして硬化物を得た。
例10
 例1において、Bis-IB CNを100質量部用いる代わりに、2,2-ビス(4-シアナトフェニル)プロパン(三菱ガス化学株式会社製、Bis-A CNと略記)を100質量部とを用いた以外は例1と同様にして硬化物を得た。
例11
 例1において、Bis-IB CNを100質量部用いる代わりに、合成例3で得られたBis-Ether CNを100質量部用いた以外は例1と同様にして硬化物を得た。
例12
 例1において、Bis-IB CNを100質量部用いる代わりに、合成例4で得られたBis-Z CNを100質量部用いた以外は例1と同様にして硬化物を得た。
例13
 例1において、Bis-IB CNを100質量部用いる代わりに、合成例5で得られたBis-MEK CNを100質量部用いた以外は例1と同様にして硬化物を得た。
例14
 例1において、Bis-IB CNを100質量部用いる代わりに、合成例6で得られたTRPCNを100質量部用いた以外は例1と同様にして硬化物を得た。
例15
 例1において、Bis-IB CNを100質量部用いる代わりに、合成例2で得られたBis-E CN50を質量部とDGEBFを50質量部とを用い、オーブンでの硬化温度を200℃とした以外は例1と同様にして硬化物を得た。
例16
 例1において、Bis-IB CNを100質量部用いる代わりに、Bis-A CNを30質量部とDGEBFを70質量部とを用い、オーブンでの硬化温度を200℃とした以外は例1と同様にして硬化物を得た。
例17
 例1において、Bis-IB CNを100質量部用いる代わりに、DGEBFを100質量部用い、オクチル酸亜鉛を0.02質量部用いる代わりに、2-エチル-4-メチルイミダゾール(和光純薬工業株式会社製、2E4MZと略記)を2質量部用い、オーブンでの硬化温度を200℃とした以外は例1と同様にして硬化物を得た。
例18
 例1において、Bis-IB CNを100質量部用いる代わりに、合成例2で得られたBis-E CNを95質量部とBMIを5質量部とを用いた以外は例1と同様にして硬化物を得た。
例19
 例1において、Bis-IB CNを100質量部用いる代わりに、Bis-A CNを70質量部とDGEBFを30質量部とを用いた以外は例1と同様にして硬化物を得た。
<硬化物の評価>
 上記のようにして得られた各硬化物について、ガラス転移温度および線膨張係数の測定を行った。ガラス転移温度は、JIS-K7244-7-2007に準拠して測定を行い、動的粘弾性測定装置(AR2000、ティー・エイ・インスツルメント社製)を用い、開始温度100℃、終了温度350℃、昇温速度3℃/分、測定周波数1Hzの測定条件において動的粘弾性測定を実施し、その際得られた損失正接(tanδ)の最大値をガラス転移温度とした。また、線膨張係数は、JIS-K-7197-1991に準拠して測定を行い、熱機械分析装置(TMA/SS7100、エスアイアイ・ナノテクノロジー株式会社製)に試験片(5mm×5mm×5mm)をセットし、開始温度100℃、終了温度300℃、昇温速度5℃/分、加重0.05Nの測定条件において、膨張・圧縮モードでの熱機械分析を実施し、所定の温度における1℃当たりの平均熱膨張量を測定した。なお、例5、6、8、14、15および16以外については、200℃~300℃における平均線膨張係数を測定し、例5、6、8、14、15、16および19については、150℃~250℃における平均線膨張係数の測定を行った。測定結果は、下記の表1に示される通りであった。なお、表1中の数値の単位は質量部表し、「-」の記載部分は該当する原料の配合がないことを意味する。また、表1中のガラス転移温度(Tg)において、「350以上」とは、測定温度範囲内においてtanδの最大ピーク値が明瞭でなく、その範囲内でTgが確認できなかったことを意味する。
Figure JPOXMLDOC01-appb-T000015

Claims (13)

  1.  下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素数2~20の炭化水素基を示す。)
    で示される、シアン酸エステル化合物。
  2.  前記式(I)の化合物が1,1-ビス(4-シアナトフェニル)イソブタンである、請求項1に記載のシアン酸エステル化合物。
  3.  請求項1または2に記載のシアン酸エステル化合物(A)を含んでなる、硬化性樹脂組成物。
  4.  50℃において非結晶性液体である、請求項3に記載の硬化性樹脂組成物。
  5.  下記一般式(II):
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     Rは、下記一般式(i)~(v):
    Figure JPOXMLDOC01-appb-C000003
    [式中、R、Rは、いずれもが水素原子であるか、または炭素数1~8のアルキル基もしくはトリフルオロメチル基であり、nは4~7の整数である。]からなる群から選択されるいずれかである。)
    または、
     下記一般式(III):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは水素またはメチル基を示し、nは1~50の整数を示すが、nが異なる化合物の混合物であってもよい。)
    で示される、シアン酸エステル化合物(B)、
     エポキシ樹脂(C)、および
     マレイミド化合物(D)、
    からなる群から選ばれる1種以上を、さらに含んでなる、請求項3または4に記載の硬化性樹脂組成物。
  6.  前記エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、およびジヒドロキシナフタレン型エポキシ樹脂、からなる群から選ばれる1種以上である、請求項5に記載の硬化性樹脂組成物。
  7.  前記マレイミド化合物が、下記一般式(IV): 
    Figure JPOXMLDOC01-appb-C000005
    (式中、
     RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~3のアルキル基を示し、
     e、fは、それぞれ1~4の整数であり、
     Mは、単結合、もしくは炭素数1~5のアルキレン基、アルキリデン基、または炭素数6~14のアリーレン基である。)
    で示される化合物である、請求項5または6に記載の硬化性樹脂組成物。
  8.  前記シアン酸エステル化合物(A)100質量部に対して、前記シアン酸エステル化合物(B)を0~250質量部、前記エポキシ樹脂(C)を0~250質量部、および前記マレイミド化合物(D)を0~100質量部、含んでなる、請求項5~7のいずれか一項に記載の硬化性樹脂組成物。
  9.  前記シアン酸エステル化合物(A)100質量部に対して、前記シアン酸エステル化合物(B)を0~100質量部、前記エポキシ樹脂(C)を0~100質量部、および前記マレイミド化合物(D)を0~50質量部、含んでなる、請求項8に記載の硬化性樹脂組成物。
  10.  重合触媒として、亜鉛からなる金属錯体化合物を含んでなる、請求項3に記載の硬化性樹脂組成物。
  11.  請求項3~10のいずれか一項に記載の硬化性樹脂組成物を硬化させてなる硬化物。
  12.  請求項3~10のいずれか一項に記載の硬化性樹脂組成物を含んでなる、封止用材料。
  13.  請求項3~10のいずれかに一項に記載の硬化性樹脂組成物を含んでなる、接着剤。
PCT/JP2011/074559 2010-10-29 2011-10-25 シアン酸エステル化合物、シアン酸エステル化合物を含む硬化性樹脂組成物、およびその硬化物 WO2012057144A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180052284.3A CN103180366B (zh) 2010-10-29 2011-10-25 氰酸酯化合物、含有氰酸酯化合物的固化性树脂组合物及其固化物
KR1020137010315A KR20130127444A (ko) 2010-10-29 2011-10-25 시안산에스테르 화합물, 시안산에스테르 화합물을 함유하는 경화성 수지 조성물, 및 그 경화물
EP11836277.1A EP2634205A4 (en) 2010-10-29 2011-10-25 CYANATE ESTER COMPOUND, CURABLE RESIN COMPOSITION CONTAINING CYANATE ESTER COMPOUND, AND CURED PRODUCT THEREOF
US13/878,584 US9453126B2 (en) 2010-10-29 2011-10-25 Cyanate ester compound, curable resin composition containing cyanate ester compound, and cured product thereof
JP2012540880A JP5861942B2 (ja) 2010-10-29 2011-10-25 シアン酸エステル化合物、シアン酸エステル化合物を含む硬化性樹脂組成物、およびその硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-244696 2010-10-29
JP2010244696 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012057144A1 true WO2012057144A1 (ja) 2012-05-03

Family

ID=45993851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074559 WO2012057144A1 (ja) 2010-10-29 2011-10-25 シアン酸エステル化合物、シアン酸エステル化合物を含む硬化性樹脂組成物、およびその硬化物

Country Status (7)

Country Link
US (1) US9453126B2 (ja)
EP (1) EP2634205A4 (ja)
JP (1) JP5861942B2 (ja)
KR (1) KR20130127444A (ja)
CN (1) CN103180366B (ja)
TW (1) TWI503302B (ja)
WO (1) WO2012057144A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732642A (zh) * 2011-08-09 2014-04-16 三菱瓦斯化学株式会社 新型的氰酸酯化合物及其制造方法、以及包含该化合物的固化性树脂组合物及其固化物
WO2014065422A1 (ja) 2012-10-26 2014-05-01 三菱瓦斯化学株式会社 ハロゲン化シアンの製造方法、シアン酸エステル化合物及びその製造方法、並びに樹脂組成物
WO2014203865A1 (ja) 2013-06-18 2014-12-24 三菱瓦斯化学株式会社 シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
JPWO2013008667A1 (ja) * 2011-07-11 2015-02-23 三菱瓦斯化学株式会社 硬化性樹脂組成物およびそれを用いた硬化物の製造方法
WO2015060418A1 (ja) * 2013-10-25 2015-04-30 三菱瓦斯化学株式会社 シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
WO2016074184A1 (en) * 2014-11-13 2016-05-19 Ablestik (Shanghai) Ltd. Thermally curable sealant composition and use thereof
WO2016125657A1 (ja) * 2015-02-03 2016-08-11 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、及びプリント配線板
US9706651B2 (en) 2011-12-07 2017-07-11 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, and laminate
WO2017170375A1 (ja) 2016-03-31 2017-10-05 三菱瓦斯化学株式会社 シアン酸エステル化合物、その製造方法、樹脂組成物、硬化物、プリプレグ、封止用材料、繊維強化複合材料、接着剤、金属箔張積層板、樹脂シート及びプリント配線板
KR20170133356A (ko) 2015-03-31 2017-12-05 미츠비시 가스 가가쿠 가부시키가이샤 시안산에스테르 화합물, 그 화합물을 함유하는 경화성 수지 조성물 및 그 경화물
JP2018070553A (ja) * 2016-11-02 2018-05-10 三菱瓦斯化学株式会社 シアン酸エステル化合物、シアン酸エステル化合物の製造方法、樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
US10174149B2 (en) 2014-12-18 2019-01-08 Mitsubishi Gas Chemical Company, Inc. Cyanic acid ester compound and method for producing same, resin composition, and cured product
JP2019189761A (ja) * 2018-04-25 2019-10-31 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
WO2020059476A1 (ja) * 2018-09-19 2020-03-26 三菱瓦斯化学株式会社 シアン酸エステル化合物及びその製造方法、樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料、接着剤、並びに半導体装置
JPWO2019031178A1 (ja) * 2017-08-08 2020-07-02 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP2021084900A (ja) * 2019-11-29 2021-06-03 三菱瓦斯化学株式会社 シアン酸エステル及び樹脂組成物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101920106B1 (ko) * 2012-01-31 2018-11-19 미츠비시 가스 가가쿠 가부시키가이샤 프린트 배선판 재료용 수지 조성물, 그리고 그것을 사용한 프리프레그, 수지 시트, 금속박 피복 적층판 및 프린트 배선판
US9879163B2 (en) 2014-06-06 2018-01-30 General Electric Company Composition for bonding windings or core laminates in an electrical machine, and associated method
US9911521B2 (en) 2014-06-06 2018-03-06 General Electric Company Curable composition for electrical machine, and associated method
WO2016123458A1 (en) 2015-01-29 2016-08-04 Drexel University Thermoset polymers having a triazine network obtained by reaction of cyanate esters with dicyanamide room temperature ionic liquids
GB2546347B (en) * 2015-06-04 2021-07-07 Gen Electric Curable composition for electrical machine, and associated method
US10125231B2 (en) * 2015-10-05 2018-11-13 Raytheon Company Benzoxazine cyanate ester resin for pyrolisis densification of carbon-carbon composites
CN113354814B (zh) * 2021-06-22 2023-05-05 中国科学院长春应用化学研究所 一种改性氰酸酯树脂及其制备方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553244A (en) 1963-02-16 1971-01-05 Bayer Ag Esters of cyanic acid
JPH0753497A (ja) 1993-08-20 1995-02-28 Sumitomo Chem Co Ltd シアネート化合物の製造方法
JPH0770315A (ja) 1993-09-03 1995-03-14 Sumitomo Bakelite Co Ltd 半導体封止用熱硬化性樹脂組成物
JPH09272737A (ja) * 1996-04-04 1997-10-21 Sumitomo Chem Co Ltd シアネート樹脂組成物および銅張り積層板
JP2753831B2 (ja) 1986-11-24 1998-05-20 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 低粘度非結晶性ジシアネートエステルおよびジシアネートエステルプレポリマーとのブレンド
JP2991054B2 (ja) 1994-09-20 1999-12-20 住友化学工業株式会社 シアネート化合物の製造方法
JP2000501138A (ja) 1995-11-27 2000-02-02 アライドシグナル・インコーポレーテッド 独特の組成を有するシアネートエステル樹脂の改良された製造方法
JP2000119239A (ja) * 1998-10-07 2000-04-25 Sumitomo Chem Co Ltd シアン酸エステルの精製方法
JP2001504835A (ja) 1996-11-29 2001-04-10 ロンザ アーゲー アリールシアネートの製造方法
JP2001163972A (ja) * 1999-12-03 2001-06-19 Sumitomo Chem Co Ltd シアン酸エステルプレポリマーの製造方法
JP2002241469A (ja) 2001-02-14 2002-08-28 Nitto Denko Corp 熱硬化性樹脂組成物および半導体装置
JP2003160639A (ja) 2001-11-27 2003-06-03 Matsushita Electric Works Ltd エポキシ樹脂組成物及び半導体装置
JP2004182816A (ja) * 2002-12-02 2004-07-02 Hitachi Chem Co Ltd 難燃性の熱硬化性樹脂組成物及びその用途並びにその製造方法
JP2006169317A (ja) 2004-12-14 2006-06-29 Mitsubishi Gas Chem Co Inc 樹脂組成物及びその硬化物
JP2006193607A (ja) 2005-01-13 2006-07-27 Mitsubishi Gas Chem Co Inc 樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2006290933A (ja) 2005-04-06 2006-10-26 Mitsubishi Gas Chem Co Inc 樹脂組成物及びそれを用いた硬化物
JP2007005750A (ja) 2005-05-23 2007-01-11 Hitachi Chem Co Ltd 液状封止材の流動性評価方法及び液状封止材
WO2007049422A1 (ja) * 2005-10-25 2007-05-03 Mitsubishi Gas Chemical Company, Inc. シアン酸エステル重合体
JP2007277102A (ja) 2006-04-03 2007-10-25 Mitsubishi Gas Chem Co Inc 高純度シアン酸エステルの製造方法
JP2009096874A (ja) 2007-10-16 2009-05-07 Japan Aerospace Exploration Agency 熱硬化性樹脂組成物及びその硬化物並びに繊維強化複合材料
WO2010109861A1 (ja) * 2009-03-27 2010-09-30 三菱瓦斯化学株式会社 樹脂溶液の保存方法、並びに、プリプレグ及び積層板の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110760A (en) * 1980-02-06 1981-09-02 Mitsubishi Gas Chem Co Inc Curable resin composition
DE19947613A1 (de) 1998-10-07 2000-04-13 Sumitomo Chemical Co Cyanatreinigungsverfahren
US20080200636A1 (en) 2005-02-25 2008-08-21 Masataka Nakanishi Epoxy Resin, Hardenable Resin Composition Containing the Same and Use Thereof
SG160334A1 (en) 2005-02-25 2010-04-29 Nippon Kayaku Kk Epoxy resin, hardenable resin composition containing the same and use thereof
WO2007080998A1 (ja) * 2006-01-13 2007-07-19 Fushimi Pharmaceutical Co., Ltd. シアナト基含有環状ホスファゼン化合物およびその製造方法
JP5376137B2 (ja) * 2009-04-27 2013-12-25 三菱瓦斯化学株式会社 硬化性樹脂組成物
JP5487953B2 (ja) * 2009-12-24 2014-05-14 三菱瓦斯化学株式会社 高純度シアン酸エステルの製造方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553244A (en) 1963-02-16 1971-01-05 Bayer Ag Esters of cyanic acid
JP2753831B2 (ja) 1986-11-24 1998-05-20 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 低粘度非結晶性ジシアネートエステルおよびジシアネートエステルプレポリマーとのブレンド
JPH0753497A (ja) 1993-08-20 1995-02-28 Sumitomo Chem Co Ltd シアネート化合物の製造方法
JPH0770315A (ja) 1993-09-03 1995-03-14 Sumitomo Bakelite Co Ltd 半導体封止用熱硬化性樹脂組成物
JP2991054B2 (ja) 1994-09-20 1999-12-20 住友化学工業株式会社 シアネート化合物の製造方法
JP2000501138A (ja) 1995-11-27 2000-02-02 アライドシグナル・インコーポレーテッド 独特の組成を有するシアネートエステル樹脂の改良された製造方法
JPH09272737A (ja) * 1996-04-04 1997-10-21 Sumitomo Chem Co Ltd シアネート樹脂組成物および銅張り積層板
JP2001504835A (ja) 1996-11-29 2001-04-10 ロンザ アーゲー アリールシアネートの製造方法
JP2000119239A (ja) * 1998-10-07 2000-04-25 Sumitomo Chem Co Ltd シアン酸エステルの精製方法
JP2001163972A (ja) * 1999-12-03 2001-06-19 Sumitomo Chem Co Ltd シアン酸エステルプレポリマーの製造方法
JP2002241469A (ja) 2001-02-14 2002-08-28 Nitto Denko Corp 熱硬化性樹脂組成物および半導体装置
JP2003160639A (ja) 2001-11-27 2003-06-03 Matsushita Electric Works Ltd エポキシ樹脂組成物及び半導体装置
JP2004182816A (ja) * 2002-12-02 2004-07-02 Hitachi Chem Co Ltd 難燃性の熱硬化性樹脂組成物及びその用途並びにその製造方法
JP2006169317A (ja) 2004-12-14 2006-06-29 Mitsubishi Gas Chem Co Inc 樹脂組成物及びその硬化物
JP2006193607A (ja) 2005-01-13 2006-07-27 Mitsubishi Gas Chem Co Inc 樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2006290933A (ja) 2005-04-06 2006-10-26 Mitsubishi Gas Chem Co Inc 樹脂組成物及びそれを用いた硬化物
JP2007005750A (ja) 2005-05-23 2007-01-11 Hitachi Chem Co Ltd 液状封止材の流動性評価方法及び液状封止材
WO2007049422A1 (ja) * 2005-10-25 2007-05-03 Mitsubishi Gas Chemical Company, Inc. シアン酸エステル重合体
JP2007277102A (ja) 2006-04-03 2007-10-25 Mitsubishi Gas Chem Co Inc 高純度シアン酸エステルの製造方法
JP2009096874A (ja) 2007-10-16 2009-05-07 Japan Aerospace Exploration Agency 熱硬化性樹脂組成物及びその硬化物並びに繊維強化複合材料
WO2010109861A1 (ja) * 2009-03-27 2010-09-30 三菱瓦斯化学株式会社 樹脂溶液の保存方法、並びに、プリプレグ及び積層板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634205A4 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013008667A1 (ja) * 2011-07-11 2015-02-23 三菱瓦斯化学株式会社 硬化性樹脂組成物およびそれを用いた硬化物の製造方法
CN103732642A (zh) * 2011-08-09 2014-04-16 三菱瓦斯化学株式会社 新型的氰酸酯化合物及其制造方法、以及包含该化合物的固化性树脂组合物及其固化物
US10155835B2 (en) 2011-08-09 2018-12-18 Mitsubishi Gas Chemical Company, Inc. Cyanate ester compound and method for producing the same, and curable resin composition comprising the compound, and cured product thereof composition
CN103732642B (zh) * 2011-08-09 2015-05-27 三菱瓦斯化学株式会社 新型的氰酸酯化合物及其制造方法、以及包含该化合物的固化性树脂组合物及其固化物
US9706651B2 (en) 2011-12-07 2017-07-11 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, and laminate
US9475761B2 (en) 2012-10-26 2016-10-25 Mitsubishi Gas Chemical Company, Inc. Method for producing cyanogen-halide, cyanate ester compound and method for producing the same, and resin composition
WO2014065422A1 (ja) 2012-10-26 2014-05-01 三菱瓦斯化学株式会社 ハロゲン化シアンの製造方法、シアン酸エステル化合物及びその製造方法、並びに樹脂組成物
JP5578299B1 (ja) * 2012-10-26 2014-08-27 三菱瓦斯化学株式会社 ハロゲン化シアンの製造方法、シアン酸エステル化合物及びその製造方法、並びに樹脂組成物
KR20150075409A (ko) 2012-10-26 2015-07-03 미츠비시 가스 가가쿠 가부시키가이샤 할로겐화시안의 제조 방법, 시안산에스테르 화합물 및 그 제조 방법, 그리고 수지 조성물
KR20160021093A (ko) 2013-06-18 2016-02-24 미츠비시 가스 가가쿠 가부시키가이샤 시안산에스테르 화합물, 그 화합물을 포함하는 경화성 수지 조성물 및 그 경화물
US10160824B2 (en) 2013-06-18 2018-12-25 Mitsubishi Gas Chemical Company, Inc. Cyanate ester compound, curable resin composition containing said compound, and cured product of said composition
WO2014203865A1 (ja) 2013-06-18 2014-12-24 三菱瓦斯化学株式会社 シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
KR20160079006A (ko) 2013-10-25 2016-07-05 미츠비시 가스 가가쿠 가부시키가이샤 시안산에스테르 화합물, 그 화합물을 포함하는 경화성 수지 조성물 및 그 경화물
US9949369B2 (en) 2013-10-25 2018-04-17 Mitsubishi Gas Chemical Company, Inc. Cyanate ester compound, curable resin composition containing the same, and hardened product thereof
WO2015060418A1 (ja) * 2013-10-25 2015-04-30 三菱瓦斯化学株式会社 シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
JP5825544B2 (ja) * 2013-10-25 2015-12-02 三菱瓦斯化学株式会社 シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
WO2016074184A1 (en) * 2014-11-13 2016-05-19 Ablestik (Shanghai) Ltd. Thermally curable sealant composition and use thereof
US10174149B2 (en) 2014-12-18 2019-01-08 Mitsubishi Gas Chemical Company, Inc. Cyanic acid ester compound and method for producing same, resin composition, and cured product
US9974169B2 (en) 2015-02-03 2018-05-15 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal-foil-clad laminate, resin composite sheet, and printed wiring board
JP6010874B1 (ja) * 2015-02-03 2016-10-19 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、及びプリント配線板
WO2016125657A1 (ja) * 2015-02-03 2016-08-11 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、及びプリント配線板
US10370325B2 (en) 2015-03-31 2019-08-06 Mitsubishi Gas Chemical Company, Inc. Cyanate ester compound, curable resin composition containing the compound, and hardened product thereof
KR20170133356A (ko) 2015-03-31 2017-12-05 미츠비시 가스 가가쿠 가부시키가이샤 시안산에스테르 화합물, 그 화합물을 함유하는 경화성 수지 조성물 및 그 경화물
KR20180132648A (ko) 2016-03-31 2018-12-12 미츠비시 가스 가가쿠 가부시키가이샤 시안산에스테르 화합물, 그 제조 방법, 수지 조성물, 경화물, 프리프레그, 봉지용 재료, 섬유 강화 복합 재료, 접착제, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
WO2017170375A1 (ja) 2016-03-31 2017-10-05 三菱瓦斯化学株式会社 シアン酸エステル化合物、その製造方法、樹脂組成物、硬化物、プリプレグ、封止用材料、繊維強化複合材料、接着剤、金属箔張積層板、樹脂シート及びプリント配線板
JP2018070553A (ja) * 2016-11-02 2018-05-10 三菱瓦斯化学株式会社 シアン酸エステル化合物、シアン酸エステル化合物の製造方法、樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JPWO2019031178A1 (ja) * 2017-08-08 2020-07-02 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP7052797B2 (ja) 2017-08-08 2022-04-12 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP2019189761A (ja) * 2018-04-25 2019-10-31 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP7026887B2 (ja) 2018-04-25 2022-03-01 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JPWO2020059476A1 (ja) * 2018-09-19 2021-09-16 三菱瓦斯化学株式会社 シアン酸エステル化合物及びその製造方法、樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料、接着剤、並びに半導体装置
WO2020059476A1 (ja) * 2018-09-19 2020-03-26 三菱瓦斯化学株式会社 シアン酸エステル化合物及びその製造方法、樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料、接着剤、並びに半導体装置
JP7300110B2 (ja) 2018-09-19 2023-06-29 三菱瓦斯化学株式会社 シアン酸エステル化合物及びその製造方法、樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料、接着剤、並びに半導体装置
JP2021084900A (ja) * 2019-11-29 2021-06-03 三菱瓦斯化学株式会社 シアン酸エステル及び樹脂組成物
JP7344470B2 (ja) 2019-11-29 2023-09-14 三菱瓦斯化学株式会社 シアン酸エステル及び樹脂組成物

Also Published As

Publication number Publication date
TW201237016A (en) 2012-09-16
TWI503302B (zh) 2015-10-11
CN103180366A (zh) 2013-06-26
EP2634205A4 (en) 2016-12-28
US20130281640A1 (en) 2013-10-24
JPWO2012057144A1 (ja) 2014-05-12
CN103180366B (zh) 2015-09-09
KR20130127444A (ko) 2013-11-22
EP2634205A1 (en) 2013-09-04
JP5861942B2 (ja) 2016-02-16
US9453126B2 (en) 2016-09-27

Similar Documents

Publication Publication Date Title
JP5861942B2 (ja) シアン酸エステル化合物、シアン酸エステル化合物を含む硬化性樹脂組成物、およびその硬化物
JP5796788B2 (ja) 硬化性樹脂組成物およびその硬化物
WO2013008667A1 (ja) 硬化性樹脂組成物およびそれを用いた硬化物の製造方法
JP6546527B2 (ja) 組成物、エポキシ樹脂硬化剤、エポキシ樹脂組成物、熱硬化性組成物、硬化物、半導体装置、および層間絶縁材料
JP2014019815A (ja) 硬化性樹脂組成物、およびその硬化物
JP5630133B2 (ja) シアン酸エステル化合物、およびその硬化物
EP3702388B1 (en) Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
US11555092B2 (en) Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
JP6999335B2 (ja) 硬化性組成物、該組成物の硬化物、該組成物および該硬化物の製造方法
JP6203303B2 (ja) 熱硬化性樹脂組成物、その製造方法および用途
JP6946088B2 (ja) 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置
TW201943691A (zh) 氰酸酯化合物、樹脂組成物、硬化物、單層樹脂片、疊層樹脂片、預浸體、覆金屬箔疊層板、印刷配線板、密封用材料、纖維強化複合材料、以及黏接劑
JP6374714B2 (ja) エポキシ樹脂組成物、接着剤、硬化物及び電子部材
JP6575699B2 (ja) プリント配線板用樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
WO2020122045A1 (ja) 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置
WO2018235751A1 (ja) 組成物、エポキシ樹脂硬化剤、エポキシ樹脂組成物、熱硬化性組成物、硬化物、半導体装置、および層間絶縁材料
JP2009203266A (ja) 一液型エポキシ樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836277

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011836277

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137010315

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012540880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13878584

Country of ref document: US