WO2012002123A1 - 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ - Google Patents

二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ Download PDF

Info

Publication number
WO2012002123A1
WO2012002123A1 PCT/JP2011/063213 JP2011063213W WO2012002123A1 WO 2012002123 A1 WO2012002123 A1 WO 2012002123A1 JP 2011063213 W JP2011063213 W JP 2011063213W WO 2012002123 A1 WO2012002123 A1 WO 2012002123A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biaxially oriented
capacitor
oriented polypropylene
temperature
Prior art date
Application number
PCT/JP2011/063213
Other languages
English (en)
French (fr)
Inventor
水島まさみ
岡本克哉
浅野哲也
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US13/703,173 priority Critical patent/US9093219B2/en
Priority to CN201180030683.XA priority patent/CN102959656B/zh
Priority to EP11800591.7A priority patent/EP2590191A4/en
Priority to JP2011527132A priority patent/JP5825103B2/ja
Priority to KR1020137000454A priority patent/KR101811079B1/ko
Publication of WO2012002123A1 publication Critical patent/WO2012002123A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a biaxially oriented polypropylene film suitable for capacitor use. More specifically, the present invention relates to a biaxially oriented propylene film that can be easily processed and can provide a capacitor having a high withstand voltage and small squeal when processed into a capacitor.
  • the characteristics of such a biaxially oriented propylene film are referred to as element processability, voltage resistance, and squeal characteristics, respectively.
  • Polypropylene films are widely used for electrical applications because of their excellent electrical characteristics.
  • the growth as a dielectric material in capacitor applications is remarkable.
  • there has been a strong demand for downsizing and cost reduction and the thickness of the dielectric film has been reduced.
  • the requirements for withstand voltage characteristics and device processability are becoming stricter.
  • the surface of the film needs to be appropriately roughened. This is particularly important for improving the slipperiness of the film. Further, it is particularly important for a vapor deposition capacitor because it provides security.
  • security refers to a metal-deposited capacitor in which a metal-deposited film serving as an electrode is formed on a dielectric film, whereby the deposited metal is scattered by discharge energy during abnormal discharge, thereby recovering insulation and preventing a short circuit. This is a function that maintains the function of the capacitor and prevents destruction. This security is an extremely useful function from the viewpoint of safety.
  • the film is roughened in order to obtain safety and slipperiness, while suppressing the generation of corona and squealing. It is necessary to narrow the gap between the layers.
  • Patent Documents 1 and 2 A method of stretching a sheet that has been made has been proposed (Patent Documents 1 and 2).
  • the mechanical method and the chemical method have a low roughness density, and the method of stretching the sheet on which the ⁇ crystal is formed tends to cause coarse protrusions.
  • Films roughened by these methods have non-uniform gaps between the film layers, and corona discharge tends to occur when AC voltage is applied in areas where the gaps are widened by coarse protrusions.
  • the squealing characteristics deteriorate.
  • the method of stretching a sheet in which a different polymer such as polyethylene is blended there are few bubbles remaining at the time of capacitor formation, but there is a problem that the different polymer may have an adverse effect when the film is recycled, resulting in poor recyclability.
  • Patent Document 4 a high melt tension polypropylene film has been proposed as a film having uniform film surface roughness density and projection size.
  • Patent Document 3 A film in which this high melt tension polypropylene film and a normal polypropylene film are laminated has also been proposed (Patent Document 3).
  • Patent Document 5 a biaxially stretched polypropylene film in which the roughness of the film surface is controlled and a method for producing the same are disclosed.
  • Patent Documents a technique is disclosed in which the ⁇ crystal fraction of the cast raw sheet is within a certain range, thereby forming a film surface with a fine roughness and balancing element winding properties and pressure resistance (Patent Documents). 5, 6).
  • Patent Documents 5 and 6 the roughness of one surface of the film is defined.
  • Patent Document 6 a method for winding a capacitor element under reduced pressure has been proposed.
  • Patent Document 7 corona treatment discharge treatment on both surfaces of a polypropylene film
  • the object of the present invention is to solve the above-mentioned problems and to provide a biaxially oriented polypropylene film having high voltage resistance, suitable device processability and excellent squealing characteristics, particularly in the application of capacitors for AC voltage.
  • Another object of the present invention is to provide a metallized film and a film capacitor using the biaxially oriented polypropylene film.
  • the present invention for solving the above problems has the following features.
  • a biaxially oriented polypropylene film can be provided.
  • the metallized film and film capacitor which use this biaxially oriented polypropylene film can be provided.
  • Each index of the present invention described below is defined in order to express the gap between film layers and the ease of sliding, which are deeply related to the voltage resistance of the polypropylene film and the workability of the capacitor element.
  • Each of these indices represents a surface form that cannot be expressed by the conventional two-dimensional or three-dimensional centerline surface roughness and has been difficult to realize so far.
  • the biaxially oriented polypropylene film of the present invention has protrusions on both surfaces, and the height (PhZ) of the protrusions having the largest number among the protrusions present on each surface is 100 nm or more and less than 400 nm on both surfaces, and each The number of projections (Pc) per 0.1 mm 2 of the surface is 150 or more and less than 500 on both surfaces.
  • the projection height (PhZ) which is the largest of the projections on each surface, is less than 100 nm, the interlayer of the film becomes extremely narrow, so that the slipperiness deteriorates and the device processability deteriorates, or the capacitor breaks down. Security may be reduced.
  • the squealing characteristics are deteriorated because the interlayer between the films is wide, or the withstand voltage is lowered due to the generation of corona discharge between the film layers.
  • Biaxially oriented polypropylene film of the present invention by PhZ is in the above range, so that the no coarse projections. Therefore, when the number of protrusions (Pc) per 0.1 mm 2 on each side is less than 150 on both sides, the film surface becomes extremely smooth and the film cannot be wound up due to poor air leakage. The roll shape is disturbed, and there is a risk that the slit process and capacitor element formation may not be performed successfully. Furthermore, the number of protrusions that maintain the film layer is reduced, and the film layer is locally extremely narrow, which may significantly deteriorate the security. Moreover, when it is 500 or more, since adhesiveness deteriorates by containing much air at the time of winding, there exists a possibility that a squeal characteristic may deteriorate.
  • the biaxially oriented polypropylene film of the present invention preferably has a film thickness t1 by a micrometer method of 2.5 to 20 ⁇ m from the viewpoint of capacitor element size and film formation stability. More preferably, it is 3 to 15 ⁇ m, and particularly preferably 3.5 to 7 ⁇ m.
  • the thickness t1 of the film is 2.5 ⁇ m or more, the mechanical strength and the dielectric breakdown strength are sufficient.
  • the film thickness t1 is 20 ⁇ m or less, a film having a uniform thickness can be formed, and when used as a capacitor dielectric, the capacity per volume can be increased.
  • the SRz of any surface is preferably 400 nm or more and 850 nm or less. More preferably, it is 450 nm or more and 800 nm or less, More preferably, it is 500 nm or more and less than 750 nm.
  • SRz is 850 nm or less, the gap between the films is not partially expanded by the coarse protrusions, no corona discharge is generated when an AC voltage is applied, the life of the capacitor is extended, and the squealing characteristics are further improved.
  • SRz is 400 nm or more, wrinkles and film breakage do not occur during film conveyance, and the film can be conveyed stably.
  • SRa on any surface is preferably 10 nm or more and 40 nm or less. More preferably, they are 10 nm or more and less than 35 nm, More preferably, they are 10 nm or more and less than 30 nm.
  • SRa is 40 nm or less, it is difficult for air to enter between the layers when the films are laminated, and corona discharge is less likely to occur when an AC voltage is applied, and the deterioration of the capacitor element and the withstand voltage can be suppressed. In addition, the squealing characteristics are further improved.
  • the thickness of the metal film becomes uniform, and no holes are formed in the metal layer.
  • a voltage is applied in a high-temperature environment, dielectric breakdown, device life reduction, or charge concentration occurs. Generation of insulation defects can be prevented.
  • SRa is 10 nm or more, the slipperiness of the film is good and the handling property is good.
  • the air can be easily removed, the film can be wound well, the roll shape is not disturbed, wrinkles are formed between the film layers, and the gaps between the film layers are not uniform. For this reason, the withstand voltage characteristic and the squealing characteristic are further improved.
  • the space between the film layers is sufficient, the safety is good, and when used as a capacitor element, no short circuit or capacitor element breakdown occurs.
  • the film has a characteristic surface excellent in the balance between the projection density on the surface and the projection height.
  • a capacitor made of such a biaxially oriented polypropylene film has a large number of protrusions between the film layers even if dielectric breakdown occurs, so that the capacitor life can be maintained without breakdown as a capacitor. That is, the capacitor can stably exhibit safety.
  • a capacitor made of such a biaxially oriented polypropylene film has a narrow gap between the film layers. Further, since such a biaxially oriented polypropylene film has a good slipping property on the film surface, the winding of the capacitor becomes good, and the gap between the film layers of the capacitor becomes uniform. Since the distance between the film layers is narrow and uniform, film vibration when an alternating electric field is applied can be suppressed, and the capacitor has excellent squeal characteristics.
  • the film has a more excellent balance between the protrusion density on the surface and the protrusion height.
  • the biaxially oriented polypropylene film of the present invention preferably contains 0.02 to 10% by mass of branched polypropylene (H).
  • the branched polypropylene (H) mentioned here is a polypropylene having 5 or less internal 3-substituted olefins per 10,000 carbon atoms. The presence of the internal trisubstituted olefin can be confirmed by the proton ratio in the 1 H-NMR spectrum.
  • the size of the spherulite generated in the cooling process of the melt-extruded resin sheet can be controlled more easily, and the insulation defects generated in the stretching process can be reduced. Formation can be suppressed small, and a polypropylene film excellent in voltage resistance can be obtained. Furthermore, the branched polypropylene can also form a rough surface by crystal transformation as long as it is added in a certain range, while having an action as an ⁇ crystal nucleating agent. Thereby, coupled with the effect of reducing the spherulite size, the size of the crater-like projection group described later can be made small and dense, and the projection has excellent uniformity of projection and has no coarse projection.
  • a biaxially oriented polypropylene film having a surface roughness can be provided.
  • the content of the branched polypropylene (H) is more preferably 0.05 to 6% by mass.
  • the content of the branched polypropylene (H) is in the above range, a film excellent in element workability and capacitor characteristics can be obtained with improved winding properties and voltage resistance.
  • a typical method is to obtain the desired protrusions and surface roughness by using crystal transformation from the viewpoint that electrical characteristics such as dielectric breakdown voltage are not deteriorated without adding electrical impurities. Can be adopted.
  • the surface formation method by crystal transformation is, for example, a surface using two crystal systems possessed by polypropylene as described in M. Fujiyama, Journal of Applied Polymer Science 36, P.985-1948 (1988). It is a method of forming. This is because an ⁇ -crystal (monoclinic system, crystal density 0.936 g / cm 2 ) spherulite and ⁇ -crystal (hexagonal system, crystal density 0.922 g / cm 2 ) spherulite are used as an unstretched sheet.
  • ⁇ -crystal monoclinic system, crystal density 0.936 g / cm 2
  • ⁇ -crystal hexagonal system, crystal density 0.922 g / cm 2
  • the unevenness is not formed and it is relatively flat.
  • the crater-shaped protrusions described above change corresponding to the ratio of the vertical and horizontal stretching ratios when biaxially stretching, and the aspect ratio is 1, that is, substantially circular when isotropic stretching, and flattened as the aspect ratio increases.
  • the shape obtained by the sequential biaxial stretching method often has a major axis in the transverse direction of the film (the width direction of the film roll).
  • a plurality of craters having different shapes may be overlapped, and the arc may be arcuate or semi-arc-shaped without being closed in an annular shape.
  • a method of increasing the nucleation ability by adding a raw material having a nucleating agent effect can be employed.
  • the number of nuclei is increased so that many small fine protrusions are present, relatively flat portions (parts where no protrusions are present) are reduced, and a surface form in which protrusions are uniformly formed as a whole can be obtained. Since such a surface has projections densely formed, it is easy to satisfy the above-described surface shape defined by the present invention.
  • Examples of the raw material having a nucleating agent effect include the above-described branched polypropylene (H). Since the above crater shape can be controlled by controlling the content of branched polypropylene (H) and the film forming conditions, as a result, the characteristic surface shape of the present invention described above can be generated.
  • the biaxially oriented polypropylene film of the present invention is preferably composed of a mixture of the above-described branched polypropylene (H) and linear polypropylene.
  • the melt crystallization temperature of ordinary polypropylene is about 110 ° C., but can be increased to 115 ° C. or higher. That is, in the self-recovery process of the capacitor, the high crystallization temperature makes it easy to recover the safety, and the breakdown voltage is improved without breaking.
  • the vapor deposition metal around the discharge part is scattered by the discharge energy generated when the dielectric film causes dielectric breakdown for some reason, and the film itself partially melts due to partial high temperature at that time.
  • High crystallization temperature makes it easy to recrystallize immediately and to recover the insulating property.
  • the ambient temperature of the capacitor becomes high, it is difficult to recrystallize normally and it is difficult to recover the insulation.
  • melt crystallization temperature as described above, it is easy to recrystallize at high temperatures during dielectric breakdown. Therefore, security can be improved.
  • the surface roughness for example, by roughening the surface and securing a gap between the film layers, the insulating property is further improved and the withstand voltage is further improved.
  • the branched polypropylene (H) is not particularly limited, but preferably has a melt flow index (MFR) in the range of 1 to 20 g / 10 minutes from the viewpoint of film forming properties. What is in the range for 10 minutes is more preferable.
  • MFR melt flow index
  • the MFR is less than 1 g / 10 min, the viscosity becomes extremely high, so that there is a concern that the internal pressure of the extruder is excessively increased at the time of film formation, and the film forming property is deteriorated to cause tearing.
  • MFR exceeds 20 g / 10min, since a viscosity is very low, there exists a possibility that a film cannot be formed.
  • the melt tension is preferably in the range of 1 to 30 cN, more preferably in the range of 2 to 20 cN.
  • the melt tension is less than 1 cN, the uniformity of the protrusion is inferior, while when it is 30 cN or more, the preferable protrusion height cannot be maintained.
  • branched polypropylene In order to obtain branched polypropylene (H), a method of blending oligomers or polymers having a branched structure, a long chain branched structure is introduced into the polypropylene molecule as described in JP-A-62-1121704.
  • the method and the method described in Japanese Patent No. 2869606 are preferably used. Alternatively, it may be one introduced with a short chain branch as described in JP-A-2009-542872.
  • Specific examples include “Profax PF-814” manufactured by Basell, and “Daploy HMS-PP” manufactured by Borealis (WB130HMS, WB135HMS, etc.).
  • the resin obtained by the electron beam cross-linking method is a gel component in the resin.
  • melt crystallization temperature of PP is usually in the vicinity of 110 ° C., but in the range of 115 to 130 ° C. To rise.
  • the content of the branched polypropylene (H) in the entire film is up to 10% by mass. It is preferable that A more preferable content is 0.02 to 8% by mass, and still more preferably 0.05 to 6% by mass.
  • the melting peak observed when measuring with 2nd-Run can have a shoulder peak temperature of 148 to 157 ° C. in addition to the first melting peak temperature of 160 to 172 ° C.
  • a film having a dense surface shape with few coarse protrusions can be obtained.
  • a biaxially oriented polypropylene film that exhibits high voltage resistance can be produced.
  • the polymer is usually used for a packaging material or a capacitor, and preferably has a cold xylene-soluble part (hereinafter CXS) of 4% by mass or less.
  • CXS cold xylene-soluble part
  • the cold xylene soluble part (CXS) is a polypropylene component which is dissolved in xylene after being completely dissolved in xylene and then precipitated at room temperature.
  • Reasons such as low stereoregularity and low molecular weight This is considered to correspond to a component that is difficult to crystallize. If many such components are contained in the resin, problems such as inferior thermal dimensional stability of the film and reduction in dielectric breakdown voltage at high temperatures may occur.
  • CXS is preferably 4% by mass or less. More preferably, it is 3 mass% or less, Most preferably, it is 2 mass% or less.
  • the above range is preferably satisfied for the linear polypropylene to be used, but it is also preferable that the entire film containing the polymer as a constituent component is satisfied. In addition, although it is so preferable that there is little CXS, a substantial lower limit is about 1 mass%.
  • the mesopentad fraction of the linear polypropylene is preferably 0.95 or more, more preferably 0.97 or more.
  • the mesopentad fraction is an index indicating the stereoregularity of the crystal phase of polypropylene measured by nuclear magnetic resonance (NMR) method. The higher this value, the higher the crystallinity, the higher the melting point, and the higher the temperature. This is preferable because the dielectric breakdown voltage is increased.
  • the upper limit of the mesopentad fraction is not particularly specified.
  • a method of washing resin powder obtained with a solvent such as n-heptane as described above can be exemplified.
  • the substantial upper limit is about 0.995.
  • the linear polypropylene has a melt flow index (MFR) of 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), particularly preferably 2 to 5 g / 10 minutes (230 ° C., 21.18 N load). ) Is preferable from the viewpoint of film forming property.
  • MFR melt flow index
  • the linear polypropylene is mainly composed of a propylene homopolymer, but may contain other unsaturated hydrocarbon copolymerization components or the like as long as the object of the present invention is not impaired.
  • a polymer may be blended.
  • the copolymerization amount or blend amount is preferably less than 1 mol% in copolymerization amount and less than 10
  • the linear polypropylene has various additives such as a crystal nucleating agent, an antioxidant, a heat stabilizer, a slipping agent, an antistatic agent, an antiblocking agent, a filler, and the like within a range not impairing the object of the present invention. Viscosity modifiers, anti-coloring agents and the like can also be contained.
  • the selection of the type and content of the antioxidant may be important for improving long-term heat resistance. That is, the antioxidant is a phenolic compound having steric hindrance, and at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more.
  • BHT 2,6-di-t-butyl-p-cresol
  • 1,3,5-trimethyl-2,4,6- Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene
  • Irganox registered trademark 1330: molecular weight 775.2 manufactured by Ciba Geigy
  • tetrakis [methylene-3 (3,5-di-t- Butyl-4-hydroxyphenyl) propionate] methane
  • Irganox 1010 manufactured by Ciba Geigy, Inc., molecular weight 1,177.7
  • Irganox 1010 manufactured by Ciba Geigy, Inc., molecular weight 1,177.7
  • the total content of these antioxidants is preferably in the range of 0.03 to 1% by mass relative to the total amount of polypropylene. If the amount of the antioxidant is too small, the long-term heat resistance may be poor. If the amount of the antioxidant is too large, the capacitor element may be adversely affected by blocking at a high temperature due to bleeding out of these antioxidants.
  • a more preferable content is 0.1 to 0.9% by mass, particularly preferably 0.2 to 0.8% by mass.
  • a crystal nucleating agent can be added as long as it does not contradict the purpose of the present invention.
  • branched polypropylene already has an ⁇ -crystal or ⁇ -crystal nucleating agent effect itself, but another ⁇ -crystal nucleating agent (dibenzylidene sorbitols, sodium benzoate, etc.), It is also preferable to add ⁇ crystal nucleating agents (amide compounds such as potassium 1,2-hydroxystearate, magnesium benzoate, N, N′-dicyclohexyl-2,6-naphthalene dicarboxamide, quinacridone compounds, etc.) and the like. .
  • the content is preferably less than 0.1% by mass. More preferably, it is preferably substantially not added.
  • the glossiness of the film surface of the present invention is preferably in the range of 100 to 150%. More preferably, it is 120 to 140%. That is, reducing the glossiness means increasing the light scattering density on the film surface, that is, increasing the unevenness of the film surface, and means increasing the number of protrusions per unit area. However, when the glossiness is reduced to less than 100%, the handling properties of the film are improved. However, as the number of protrusions increases, the amount of air between the protrusions increases, the interlamellar gap increases, and the noise characteristics tend to deteriorate. is there. On the other hand, when the glossiness exceeds 150%, the number of protrusions decreases, and it is difficult for the film layers to slip and to form a flat capacitor element.
  • the heat shrinkage stress characteristic value in the longitudinal direction of the biaxially oriented polypropylene film of the present invention is preferably 0.8 to 3.0 N / mm 2 .
  • the temperature showing the peak of heat absorption stress value is preferably in the range of 110 to 130 ° C.
  • the heat absorption stress value is more preferably 1.0 to 3.0 N / mm 2 . If the heat yield stress value is less than 0.8 N / mm 2 , the winding between the film layers is not filled because the winding due to the heat shrinkage hardly occurs when the capacitor element is wound, and the squealing characteristics may be deteriorated. On the other hand, if the heat stress value exceeds 3.0 N / mm 2 , the film may be tightened too tightly in the annealing process at the time of element formation, so that uniform element formation may not be performed.
  • the heat shrinkage starting temperature in the longitudinal direction is preferably 60 to 100 ° C., more preferably 65 to 90 ° C., and particularly preferably 70 to 85 ° C. If the heat shrinkage start temperature is lower than 60 ° C., wrinkles may occur during vapor deposition, and heat loss may occur due to poor adhesion with the cooling drum. On the other hand, if the heat shrinkage start temperature exceeds 100 ° C., the interlayer adhesion in the annealing process at the time of element formation becomes poor, which may cause a problem particularly in AC applications.
  • Examples of the method for controlling the heat yield stress value and the heat shrinkage start temperature include a method of appropriately selecting the stretching temperature and the stretching ratio during production of the film of the present invention. Specifically, by lowering the stretching temperature and / or increasing the stretching ratio, the heat shrinkage start temperature can be lowered and the heat yield stress value can be increased.
  • the ash content of the biaxially oriented polypropylene film of the present invention is preferably 50 ppm or less (mass basis, the same applies hereinafter). More preferably, it is 30 ppm or less, Especially preferably, it is 20 ppm or less. When the ash content exceeds 50 ppm, the dielectric breakdown resistance of the film is lowered, and the dielectric breakdown strength may be lowered when a capacitor is used.
  • the ash content In order to make the ash content within this range, it is important to use a raw material with little catalyst residue, but a method of reducing contamination from the extrusion system at the time of film formation as much as possible, for example, bleed time (raw material before film formation) It is possible to adopt a method such as taking 1 hour or more to pass through the extrusion system and washing the inside of the piping. The smaller the ash content, the better. However, the practical lower limit is about 10 ppm.
  • the biaxially oriented polypropylene film of the present invention is preferably used as a dielectric film for a capacitor, but is not limited to a specific type of capacitor.
  • the electrode configuration may be either a foil wound capacitor or a metal-deposited film capacitor, and is preferably used for an oil-immersion type capacitor impregnated with insulating oil or a dry type capacitor not using insulating oil at all. In particular, it is particularly useful in an oil immersion type capacitor impregnated with insulating oil. Also, from the viewpoint of shape, a winding type or a lamination type may be used. Among the above, it is particularly preferably used as a wound capacitor of a metal vapor deposition film because of the characteristics of the film of the present invention.
  • polypropylene film has a low surface energy, and it is difficult to stably deposit metal. Therefore, it is preferable to perform surface treatment in advance in order to improve the metal adhesion.
  • Specific examples of the surface treatment include corona discharge treatment, plasma treatment, glow treatment, and flame treatment.
  • the surface wetting tension of polypropylene film is about 30 mN / m, but by these surface treatments, the wetting tension is set to 37 to 50 mN / m, preferably about 39 to 48 mN / m. And a film with good security.
  • the biaxially oriented polypropylene film of the present invention is obtained by biaxially stretching using a raw material that can give the above-described properties.
  • the biaxial stretching method can be obtained by any of the inflation simultaneous biaxial stretching method, the stenter simultaneous biaxial stretching method, and the stenter sequential biaxial stretching method.
  • high melt tension polypropylene resin (branched polypropylene (H)) is blended with linear polypropylene (PP) and melt extruded.
  • the melt-extruded resin is passed through a filter and then extruded from a slit die (flat die) at a temperature of 220 to 280 ° C.
  • the polymer extruded from the die is solidified on a cooling drum to obtain an unstretched sheet.
  • the temperature of the resin is preferably 115 to 135 ° C.
  • the time for maintaining the temperature is preferably 1 to 3 seconds. If the holding time is too short, ⁇ crystals are not sufficiently formed, and the protrusion density may be insufficient. On the other hand, if the holding time is too long, the crystallization of the film proceeds excessively, and stretching in a later step may be difficult.
  • the process may be appropriately determined according to the resin temperature, the extrusion amount, the take-up speed, and the like.
  • the diameter of the cooling drum is preferably at least 1 m.
  • the cooling drum temperature to be selected is preferably 50 to 100 ° C. although it includes a certain degree of freedom because other factors influence as described above. More preferably, it is in the range of 60 to 80 ° C, particularly preferably 60 to 70 ° C. If the cooling drum temperature is too high, the crystallization of the film may proceed excessively, making it difficult to stretch in the subsequent process, or forming voids in the film and reducing the dielectric breakdown resistance. Or the influence of the adhesiveness of a cooling drum and a film falling and producing temperature nonuniformity tends to come out. In addition, since the ⁇ crystal grows greatly, coarse protrusions are likely to occur.
  • the air temperature of the air knife is preferably 20 to 60 ° C. More preferably, it is in the range of 25 to 50 ° C., particularly preferably 30 to 40 ° C.
  • the air temperature of the air knife is higher than 60 ° C., the crystallization of the film proceeds too much, making it difficult to stretch in the subsequent process, and large growth of ⁇ crystals, which tends to cause coarse protrusions. In some cases, voids are formed in the film and the dielectric breakdown resistance is lowered. Further, if the air temperature of the air knife is less than 20 ° C., crystal formation may be insufficient and it may be difficult to obtain the target number of protrusions on the surface.
  • the blown air speed of the air knife is preferably 130 to 150 m / s.
  • a double tube structure is preferable. If the air speed is less than 130 m / s, the film may not be sufficiently adhered to the cooling drum and the film-forming property may deteriorate. If it exceeds 150 m / s, the film may not be uniformly adhered to the cooling drum, resulting in poor film formation, quality unevenness, thickness unevenness and the like. In order to prevent vibration of the film, it is preferable to adjust the position of the air knife so that air flows downstream of the film formation.
  • this unstretched film is biaxially stretched and oriented biaxially.
  • the unstretched film is preheated by passing it through a plurality of rolls maintained at 120 to 140 ° C. Preheating is performed so that there is no temperature difference so that both sides of the film have the same surface shape. While maintaining this temperature state, the film is stretched 2 to 6 times in the longitudinal direction through a film between rolls having a difference in peripheral speed, and cooled to room temperature. Moreover, it is necessary to make an appropriate relationship between the preheating roll temperature and the contact time of the film. Even if only the temperature is appropriate, there may be a difference between the front and back of the film surface temperature even if the contact time of the preheating roll is too short or too long.
  • the preheating temperature is inappropriate, there may still be a difference between the front and back of the film surface temperature.
  • the output is preferably 2.0 to 3.5 kW. If the output of the radiation heater is too low, stretching may occur at a low temperature, and tearing may occur in the stretching process. On the other hand, if it is too high, voids may be formed in the film and the dielectric breakdown resistance may be lowered, or the protrusion height may be too high.
  • the uniaxially oriented film is guided to a stenter, stretched 5 to 15 times in the width direction at a temperature of 150 to 170 ° C., and then given a relaxation of 2 to 20% in the width direction. Heat-fix at a temperature of °C.
  • a corona discharge treatment is performed in air, nitrogen, carbon dioxide or a mixed gas thereof to obtain a biaxially oriented film.
  • discharge treatment is performed with an output of about 10 to 20 kW.
  • the stretching ratio (%) is a value defined by (V 1 / V 0 ⁇ 1) ⁇ 100 (%), where V 0 and V 1 are the film conveyance speeds before and after stretching.
  • a metallized film by providing a metal film on at least one side of the above biaxially oriented polypropylene film.
  • the method of providing the metal film is not particularly limited.
  • a method of providing a metal film such as an aluminum vapor deposited film that is used to form an internal electrode of the film capacitor by depositing aluminum on at least one surface of the polypropylene film is preferably used.
  • other metal components such as nickel, copper, gold, silver, chromium, and zinc can be deposited simultaneously or sequentially with aluminum.
  • a protective layer can be provided on the deposited film with oil or the like.
  • the thickness of the metal film is preferably in the range of 20 to 100 nm from the viewpoint of the electric characteristics and self-heeling property of the film capacitor.
  • the surface electric resistance value of the metal film is preferably in the range of 1 to 20 ⁇ / ⁇ . Since the metal species has a specific resistance value, and the resistance value is inversely proportional to the film thickness, the surface electrical resistance value can be controlled by the metal species used and the film thickness.
  • the metallized film obtained after forming the metal film can be subjected to an aging treatment at a specific temperature or a heat treatment. Further, for insulation or other purposes, at least one surface of the metallized film can be coated with polyphenylene oxide or the like.
  • the metallized film thus obtained can be laminated or wound to form a film capacitor.
  • An example of a preferred method for producing a wound film capacitor is as follows.
  • a tape-shaped take-up reel having a margin on one side is prepared by inserting a blade into the center of each vapor deposition section on the surface and the center of each margin section.
  • Two each of a tape-shaped take-up reel having a margin on the left and a tape-like take-up reel having a margin on the right are overlapped and wound so that the vapor deposition part protrudes from the margin part in the width direction. Get a wound body. The core material is removed from the wound body and pressed, and the metallicon is sprayed on both end faces to form external electrodes, and a lead wire is welded to the metallicon to obtain a wound capacitor element.
  • the film capacitors are used for various purposes such as for vehicles, home appliances (TVs, refrigerators, etc.), general noise prevention, automobiles (hybrid cars, power windows, wipers, etc.) and power supplies.
  • the capacitor can be suitably used for any of them.
  • B. Analysis condition LB (line broadening factor) was set to 1.0, and Fourier transform was performed to set the mmmm peak to 21.86 ppm.
  • Peak splitting is performed using WINFIT software (manufactured by Bruker). At that time, the peak splitting from the peak on the high magnetic field side as follows, automatic soft fitting, and optimization of peak splitting, mmmm and ss (mmmm spinning sideband peak) The sum of the peak fractions is defined as the mesopentad fraction (mmmm). The measurement is performed 5 times and the average value is obtained.
  • Measurement conditions Apparatus: ECX400P type nuclear magnetic resonance apparatus manufactured by JEOL Measurement nucleus: 1 H nucleus (resonance frequency: 500 MHz) Measurement concentration: 2 wt% Solvent: Heavy orthodichlorobenzene Measurement temperature: 120 ° C Pulse width: 45 ° Pulse repetition time: 7 seconds Conversion count: 512 times Measurement mode: non-decoupling.
  • the height (PhZ ′) was determined. This measurement was repeated 10 times in the longitudinal direction, and the average value of each was determined. This average value is the center line average roughness (SRa), ten-point average roughness (SRz), number of protrusions (Pc) of the polypropylene film, and the height of the largest number of protrusions (PhZ) among the protrusions present on each surface. It was.
  • ⁇ Number of protrusions (Pc ′) (unit: piece / 0.1 mm 2 )
  • the detection values detected by the measuring device are output as a histogram with an interval of 50 nm. For example, when a protrusion having a detection value of 150 nm or more and less than 200 nm is present, the slice value (Z) is counted in a column labeled 150 nm.
  • the number of protrusions (Pc ′) is a value obtained by converting the number of protrusions in all slice values (Z) detected at the sampling intervals in the width direction and the length direction shown in the measurement condition item of PhZ ′ into the number per 0.1 mm 2. The total is shown.
  • the slice value (Z) where the number of the projections is the largest and indicates the vertex of the histogram is the height (PhZ ′) of the projection having the largest number among the projections existing on each surface.
  • the average of the slice values is the height of the largest number of protrusions (PhZ ′) among the protrusions existing on each surface.
  • Measurement conditions Measurement surface treatment: Aluminum was vacuum-deposited on the measurement surface to make a non-contact method Measurement direction: Film width direction Width direction feed rate: 0.1 mm / second Measurement range (width direction x length direction): 1 .0mm x 0.249mm Reference plane of height dimension: LOWER (lower side) Width direction sampling interval: 2 ⁇ m Sampling interval in the length direction: 10 ⁇ m Number of samplings in the length direction: 25 Cutoff: 0.25 mm / second Magnification in the width direction: 200 times Magnification in the length direction: 20,000 times Waviness, roughness Cut: None.
  • Measurement method Use a special sample holder for measurement.
  • the sample holder is a detachable metal plate with a circular hole in the center.
  • the sample holder is sandwiched between the sample holders, and the film is stretched to the four sides of the sample holder. It was measured.
  • Table 1 shows examples of measurement results obtained by the above method.
  • each parameter of the present invention is read as follows. ⁇ SRa '20.1nm SRz '715nm ⁇ Pc '109 / 0.1mm 2 -PhZ '150nm.
  • raw sheet slit yield The higher the raw fabric slit yield, the better. 95% or more was judged as “A”, “90” or more and less than 95% as “B”, and less than 90% as “C”. A or B is a practical level.
  • a metal was vapor-deposited on the corona-treated surface of the polypropylene film obtained in each example and comparative example by a vacuum vapor deposition machine in a stripe shape having a margin portion running in the longitudinal direction (the width of the vapor deposition portion was 20.0 mm, the margin portion). Of 2.0 mm width).
  • a blade was put in the center of each vapor deposition part and the center of each margin part and slitted, and a take-up reel was formed into a tape having a width of 21 mm and a margin of 1.0 mm on the left or right. Two each of the obtained left margin reel and right margin reel were overlapped and wound so that the vapor deposition part protruded 0.5 mm from the margin part in the width direction, and the capacitance was about 0.47 ⁇ F. A wound body was obtained. KAW-4NHB manufactured by Minato Seisakusho was used for element winding.
  • the capacitor after destruction was disassembled and the state of destruction was examined, and the safety was evaluated as follows. AA: No change in the shape of the capacitor and no penetration failure was observed. A: No change in the shape of the capacitor. B: A change in the capacitor shape is observed or a penetration failure exceeding 10 layers is observed. C: AA in which the capacitor shape is broken can be used without any problem. It can be used depending on the situation. B or C causes a practical problem.
  • the main conditions at this time are as follows. ⁇ Background noise level: 30-35dB ⁇ Test voltage: 205V ⁇ Distance between the element and the microphone: 5cm -Number of measurements: 10 AA: Sound level less than 45 dB A: Sound level 45 dB or more and less than 50 dB B: Sound level 50 dB or more and less than 55 dB C: Sound level 55 dB or more.
  • Example 1 Polypropylene resin (“Borclean (registered trademark)” manufactured by Borealis) having a mesopentad fraction of 0.985 and a melt mass flow rate (MFR) of 2.6 g / 10 min, and the number of internal trisubstituted olefins are carbon atoms.
  • Three out of 10,000 branched polypropylene resins (Profax PF-814 made by high melt tension polypropylene Basell) were mixed. The content of the branched polypropylene resin was 0.5% by mass with respect to the entire mixed resin.
  • This mixed resin was supplied to an extruder having a temperature of 260 ° C., and melt-extruded into a sheet form from a T-type slit die at a resin temperature of 255 ° C.
  • This molten sheet was cooled and solidified on a cooling drum having a diameter of 1.2 m held at 60 ° C.
  • the retention time at 115 to 135 ° C. was 2 seconds as a result of measurement with a radiation thermometer.
  • the cooled and solidified sheet was preheated at 130 ° C., passed between rolls provided with a peripheral speed difference, and stretched 4.6 times in the longitudinal direction. At that time, the drawing portion was stretched by using a radiation heater output of 3.5 kW to supplement the amount of heat. Subsequently, the film was guided to a tenter, stretched 10 times in the width direction at a temperature of 164 ° C., and then heat-treated at 155 ° C. while giving 6% relaxation in the width direction. Further, after biaxial stretching, the film was stretched with a stretching ratio of 2.5% in the longitudinal direction and then cooled to obtain a biaxially oriented polypropylene film having a film thickness of 7.0 ⁇ m.
  • Tables 2 and 3 also show the breakdown voltage, device processability, and squeal characteristics of the obtained film. The withstand voltage, device processability, and squeal were all excellent.
  • Example 2 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the longitudinal stretch ratio after biaxial stretching was 0.5%. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 3 Except that the cooling drum temperature was set to 80 ° C., a film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film.
  • the retention time at 115 to 135 ° C. during cooling and solidification was 2.4 seconds as a result of measurement with a radiation thermometer.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 4 Except that the cooling drum temperature was 50 ° C., film formation was performed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film.
  • the retention time at 115 to 135 ° C. during cooling and solidification was 1 second as a result of measurement with a radiation thermometer.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 5 A biaxially oriented polypropylene film was obtained in the same manner as in Example 4 except that the longitudinal stretch ratio after the biaxial stretching was 3.0%.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 6 A biaxially oriented polypropylene film was obtained in the same manner as in Example 3 except that the stretch ratio in the longitudinal direction after biaxial stretching was 0.0%. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 7 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the content of the branched polypropylene resin was 12% by mass. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 8 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the content of the branched polypropylene resin was 0.02% by mass. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 9 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the content of the branched polypropylene resin was 10% by mass. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 10 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the content of the branched polypropylene resin was 0.01% by mass. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 11 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the radiation heater output was 2.0 kW. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 12 Except that the preheating temperature before stretching was 140 ° C., a film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 1 Except for not adding the branched polypropylene resin, a film was formed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 2 (Comparative Example 2) Except that the cooling drum temperature was 90 ° C., film formation was performed in the same manner as in Example 1 to obtain a biaxially oriented polypropylene film.
  • the retention time at 115 to 135 ° C. during cooling and solidification was 3.1 seconds as a result of measurement with a radiation thermometer.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3. In the capacitor element after the test, traces of corona discharge were confirmed.
  • Example 3 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the radiation heater output was 10.5 kW. The characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3. In the capacitor element after the test, traces of corona discharge were confirmed.
  • Example 5 (Comparative Example 5) Except that the cooling drum temperature was 30 ° C. performs film formation as in Example 1 to obtain a biaxially oriented polypropylene film.
  • the retention time at 115 to 135 ° C. during cooling and solidification was 0.8 seconds as a result of measurement with a radiation thermometer.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3.
  • Example 7 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the cooling drum temperature was 90 ° C. and the preheating temperature before stretching was 115 ° C. Cooling and solidifying 115 ⁇ 135 ° C. retention time at was the result 3.1 seconds of the measurement of the radiation thermometer.
  • the characteristics of the obtained biaxially oriented polypropylene film are shown in Tables 2 and 3. Many meandering films were observed during film formation and during element winding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、フィルムの両面に突起を有し、各面の突起のうち最も多い突起の高さ(PhZ)が両面ともに100nm以上400nm未満であり、かつ各面の0.1mmあたりの突起個数(Pc)が両面ともに150個以上500個未満である二軸配向ポリプロピレンフィルムである。 本発明により、素子加工が容易であり、コンデンサに加工したときに高い耐電圧性および優れた鳴き特性を有するコンデンサとなる二軸配向ポリプロピレンフィルムが提供される。

Description

二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
 本発明は、コンデンサ用途に好適な二軸配向ポリプロピレンフィルムに関する。さらに詳しくは、素子加工が容易であり、コンデンサに加工したときに耐電圧が高く、鳴きが小さいコンデンサを得ることができる二軸配向プロピレンフィルムに関する。以後、このような二軸配向プロピレンフィルムの特性をそれぞれ、素子加工性、耐電圧性、鳴き特性とする。
 ポリプロピレンフィルムは、その電気特性が優れていることなどの理由から、電気用途に広く用いられている。中でもコンデンサ用途における誘電体材料としての伸びは著しい。近年、小型化、低価格化の要求が強く、誘電体であるフィルム厚みの薄膜化が進んでいる。それに加え、耐電圧特性および素子加工性の要求も厳しくなってきている。
 さらに、安全規格コンデンサに代表される扁平型コンデンサにおいては、フィルムの振動に起因する鳴き(音圧振動)を軽減する要求が高まっている。この鳴きは、コンデンサ素子に巻回されたフィルムなどの誘電体が、印加された交番電界によって振動することで発生する。特に高周波入力やパルス入力に対しては顕著に発生する。
 耐電圧性と素子加工性を向上させるためには、フィルムの表面を適度に粗くする必要がある。これは特にフィルムの滑り性を向上するために重要である。また、蒸着コンデンサにおいては保安性を付与するため特に重要である。ここで、保安性とは、誘電体フィルム上に電極となる金属蒸着膜を形成した金属蒸着コンデンサにおいて、異常放電時に蒸着金属が放電エネルギーによって飛散することで絶縁性を回復し、ショートを防止することでコンデンサの機能を維持したり破壊を防止する機能である。この保安性は安全性の面からも極めて有用な機能である。
 また、交流電圧を印加して使用するコンデンサにおいては、フィルムの表面粗さが大きいと、フィルム層間においてコロナ放電が発生し層間でのコロナ破壊が生じやすくなる。そのため、フィルム層間の間隙を狭くする必要がある。また、フィルム層間の間隙を狭くすると、交番電界の印加によるフィルムの振動を抑制して鳴きを低減できる。そのため、フィルム層間の間隔を狭くすることは、鳴きを低減するためにも重要である。
 すなわち、高い耐電圧性、好適な素子加工性および鳴き特性を達成するためには、保安性とすべり性を得るためにフィルムの表面を粗くしつつ、コロナ発生と鳴きとを抑制するためにフィルム層間の間隔を狭くすることが必要である。
 フィルム表面を粗くする方法としては、これまでエンボス法やサンドブラスト法などの機械的方法、溶剤によるケミカルエッチング等の化学的方法、ポリエチレン等の異種ポリマーを混合したシートを延伸する方法、β晶を生成させたシートを延伸する方法等が提案されている(特許文献1、2)。
 しかしながら、機械的方法および化学的方法では粗さ密度が低く、またβ晶を生成させたシートを延伸する方法では粗大突起が生じやすい。そして、これらの方法で表面を粗くしたフィルムは、フィルム層間の間隙が不均一となり、粗大突起によって間隙が広がった部位においては、交流電圧を印加したときにコロナ放電が発生しやすくなり、コンデンサ寿命が低下し、さらには鳴き特性が悪化するなどの問題がある。ポリエチレン等の異種ポリマーを配合したシートを延伸する方法では、コンデンサ形成時に気泡の残存は少ないが、フィルムをリサイクルした場合に異種ポリマーが悪影響を及ぼす場合があり、リサイクル性に劣るという問題がある。
 また、フィルム表面の粗さ密度や突起の大きさを均一にしたフィルムとして、高溶融張力ポリプロピレンフィルムが提案されている(特許文献4)。また、この高溶融張力ポリプロピレンフィルムと通常のポリプロピレンフィルムとを積層したフィルムも提案されている(特許文献3)。
 しかしながら、高溶融張力ポリプロピレン樹脂そのものをコンデンサ用途して使用する場合は樹脂の構造上充分な耐熱性、耐圧性を得ることができず、特に高温での絶縁破壊電圧が著しく低下する問題がある。また、高溶融張力ポリプロピレン樹脂を積層する技術では、特にフィルム厚みが5μm以下の薄膜フィルムでは均一な積層厚み構成を得ることが非常に困難となり、均一性を損ねて実用上満足のいく誘電体フィルムとはならない。
 また、フィルム表面の粗さを制御した二軸延伸ポリプロピレンフィルムとその製造方法が開示されている(特許文献5)。
 しかしながら、この技術では、フィルム両面の層間の間隔を狭くしつつ、均一な突起密度を得るには不十分である。
 また、キャスト原反シートのβ晶分率をある範囲内とすることで、微細な粗さのフィルム面を形成し、素子巻き性と耐圧性とをバランスさせる技術が開示されている(特許文献5,6)。この特許文献5,6ではフィルムの片方の面の粗さを規定している。
 しかしながら、この製造方法では、フィルムの両方の面の粗さを十分に制御できず、かつ得られるフィルムの微細な表面粗さでは、高い耐電圧性と鳴き特性とを両立できない。   
 
 一方、鳴きに関しては、巻回されたフィルムの各層間の容積を最小限にとどめ、フィルム同士の密着性を高めるための提案されている。例えば、減圧状態下でコンデンサ素子を巻き取る方法が提案されている(特許文献6)。また、ポリプロピレンフィルムの両面にコロナ処理放電処理を施す提案されている(特許文献7)。
 しかしながら、減圧状態下で素子を巻回する方法では、コンデンサ素子の巻取り工程が複雑であるため、生産性が低下する。また、コンデンサ素子の巻取り後に素子を大気中に戻した時に、フィルム層間へ空気が再び侵入することを防止できない。また、フィルムの両面にコロナ放電処理を施す方法では、コンデンサ素子に巻き上げるまでの工程、例えば、真空蒸着工程などでブロッキングを起こす場合がある。
 また、長手方向における120℃の熱収縮応力値とヒートシール強度を最適化することで、高温環境下で長期間電圧をかけたとき静電容量の低下率が小さく、かつコンデンサの鳴きを小さくするコンデンサ用フィルムを得る提案がされている(特許文献8)。
 しかしながら、長手方向における120℃の熱収縮応力値とヒートシール強度を最適化するのみでは、鳴き特性やコロナ放電の発生を抑制することはできるが、フィルム同士の密着性が高すぎるためにコンデンサの保安性が十分に確保できず、高い耐電圧特性を得られない。
特開昭51-63500号公報 特開2001-324607号公報 特開2001-129944号公報 特開2001-72778号公報 特許第3508515号公報 特開昭54-53253号公報 特開昭61-145812号公報 特開2009-088492号公報
 本発明の目的は、上記問題を解決し、特に交流電圧用のコンデンサ用途において、高い耐電圧性、好適な素子加工性および優れた鳴き特性を有する二軸配向ポリプロピレンフィルムを提供することである。また本発明の目的は、この二軸配向ポリプロピレンフィルムを使用した金属化フィルムおよびフィルムコンデンサを提供することである。
 上記課題を解決するための本発明は、以下の特徴を有する。
 (1)フィルムの両面に突起を有し、各面に存在する突起のうち最も個数の多い突起の高さ(PhZ)が両面ともに100nm以上400nm未満であり、かつ各面の0.1mmあたりの突起個数(Pc)が両面ともに150個以上500個未満である二軸配向ポリプロピレンフィルム。
 (2)本発明の二軸配向ポリプロピレンフィルムの少なくとも片面に金属膜が設けられた金属化フィルム。
 (3)本発明の金属化フィルムを用いたフィルムコンデンサ。
 本発明によれば、フィルムの両面に高さの低い突起を多数もった表面を有することにより、特に交流電圧用コンデンサ用途において、高い耐電圧性、好適な素子加工性および優れた鳴き特性を有する二軸配向ポリプロピレンフィルムを提供できる。また、この二軸配向ポリプロピレンフィルムを使用した金属化フィルムおよびフィルムコンデンサを提供できる。
 以下、さらに詳しく本発明の二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサについて説明する。
 まず、本発明の技術的背景について説明する。
 以下に説明する本発明の各指標は、ポリプロピレンフィルムの耐電圧性とコンデンサ素子加工性とに深く関係するフィルム層間の間隙とすべり易さとを表すために規定されたものである。これら各指標は、従来の2次元または3次元の中心線表面粗さでは表現できず、またこれまで実現が難しかった表面形態を表している。
 鳴き特性を向上させるためには、フィルム表面を平滑にし、コンデンサ素子作成時にフィルム層間の間隙をできる限り小さくすることが望ましい。しかしながら、フィルム層間の間隙を小さくするために、フィルム表面の突起の個数密度を小さくして平滑にしていくと、すべり性が著しく低下するために、製膜過程や素子作成過程においてシワなどの不具合が発生してしまう。また、高速製膜においては、フィルム搬送時に持ち込まれる空気量が多くなる。そのために、フィルム表面が平滑過ぎると持ち込まれた空気を適切に排除できず、結果としてフィルムの層間が広がってしまうことがある。これを防ぐためには、低速での製膜などが考えられるが、その場合生産性が悪化してしまう。そのために、従来は、両面が極度に平滑なフィルムは、コンデンサ用途として通常使用されなかった。
 さらに、フィルム表面を平滑にしていくと、コンデンサ素子として利用した場合において、ショートが発生し、コンデンサの素子破壊が起こるなど、保安性が低下する。
 本発明では、従来の粗さとは異なり、フィルム表面の突起の個数密度(Pc)と各面に存在する突起のうち最も個数の多い突起の高さ(PhZ)を規定することにより、高い耐電圧性、好適な素子加工性および優れた鳴き特性を備えたポリプロピレンフィルムを得ることができた。これによって前述の問題点を解決した。なお、個数密度Pcと突起高さPhZの測定方法は後述する。
 本発明の二軸配向ポリプロピレンルフィルムは、両面に突起を有し、各面に存在する突起のうち最も個数の多い突起の高さ(PhZ)が両面いずれについても100nm以上400nm未満であり、かつ各面の0.1mmあたりの突起個数(Pc)が両面いずれについても150個以上500個未満である。
 各面の突起のうち最も多い突起の高さ(PhZ)が100nm未満である場合、フィルムの層間が極めて狭くなるために、滑り性が悪化し素子加工性が悪くなったり、コンデンサの破壊が起こったりするなど保安性が低下する恐れがある。また、400nm以上の場合では、フィルムの層間が広いために鳴き特性が悪化したり、フィルム層間においてコロナ放電が発生して耐圧が低下する恐れがある。
 本発明の二軸配向ポリプロピレンフィルムは、PhZが上記範囲にあることにより、粗大な突起を有さないこととなる。このことから、各面の0.1mmあたりの突起個数(Pc)が両面いずれについても150個未満であると、フィルム表面が極めて平滑となり、空気抜け不良等によりフィルムの巻き取りがうまくいかず、ロール形状に乱れが生じ、スリット工程、コンデンサ素子形成がうまく行かなくなる恐れがある。さらには、フィルム層間を維持する突起数が少なくなり局所的にフィルム層間が極端に狭くなり保安性が著しく悪化する恐れもある。また、500個以上である場合、巻き取り時に空気を多く含有することによって密着性が悪化するために、鳴き特性が悪化する恐れがある。
 本発明の二軸配向ポリプロピレンフィルムは、コンデンサ素子サイズと製膜安定性の点から、マイクロメータ法によるフィルム厚みt1が2.5~20μmであることが好ましい。より好ましくは3~15μmであり、特に好ましくは3.5~7μmである。フィルムの厚みt1が2.5μm以上であると、機械的強度や絶縁破壊強度が十分となる。また、フィルムの厚みt1が20μm以下であると、均一な厚みのフィルムを製膜することができ、またコンデンサ用の誘電体として用いた場合、体積当たりの容量も大きくできる。
 また、本発明の二軸配向ポリプロピレンフィルムは、10点平均粗さをSRzとしたとき、いずれの表面のSRzも400nm以上850nm以下であることが好ましい。より好ましくは、450nm以上800nm以下であり、さらに好ましくは500nm以上750nm未満である。SRzが850nm以下であると、粗大突起によって部分的にフィルムの間隙が広がることがなく、交流電圧を印加したときにコロナ放電が発生せず、コンデンサの寿命が伸び、鳴き特性もさらに良くなる。SRzが400nm以上であると、フィルム搬送時にシワやフィルム切れ等が発生せず、安定してフィルムを搬送できる。
 また、本発明の二軸配向ポリプロピレンフィルムは、中心線平均粗さをSRaとしたとき、いずれの表面のSRaも10nm以上40nm以下であることが好ましい。より好ましくは、10nm以上35nm未満であり、さらに好ましくは10nm以上30nm未満である。SRaが40nm以下であると、フィルムを積層した場合に層間に空気が入りにくく、交流電圧を印加したときにコロナ放電が発生しにくくなり、コンデンサ素子の劣化や耐電圧の低下が抑えられる。それに加えて、鳴き特性もさらに良好となる。またフィルムに金属層を形成したとき金属膜の厚みが均一となり、金属層に穴アキ等が発生せず、高温の環境下で電圧をかけたときに絶縁破壊や素子寿命の低下あるいは電荷集中による絶縁欠陥の発生等を防ぐことができる。SRaが10nm以上であると、フィルムの滑り性がよくハンドリング性が良好となる。また空気の抜けもよく、フィルムの巻き取りが良好となり、ロール形状に乱れが生じたり、フィルム層間にシワが入ったり、フィルム層間の間隙が不均一になったりしない。そのため、耐電圧特性や鳴き特性がさらに良くなる。加えて、フィルム層間の間隔も十分であるため、保安性も良好であり、コンデンサ素子として利用した場合において、ショートやコンデンサの素子破壊も起こらない。
 突起高さPhZと突起個数Pcとが上記の範囲内のフィルムであれば、表面の突起密度と突起高さのバランスに優れた特徴的な表面を有するフィルムとなる。そして、このような二軸配向ポリプロピレンフィルムで作られたコンデンサは、たとえ絶縁破壊を起こしても、フィルム層間に多数の突起を有するので、コンデンサとしての破壊が起こることなくコンデンサ寿命を維持できる。つまり、保安性を安定的に発揮できるコンデンサとなる。また、このような二軸配向ポリプロピレンフィルムで作られたコンデンサはフィルム層間の間隙が狭くなる。さらに、このような二軸配向ポリプロピレンフィルムはフィルム表面の滑り性が良好なために、コンデンサにするときの巻き取りが良好となり、コンデンサのフィルム層間の間隙が均一になる。このフィルム層間の間隔が狭くて均一であることにより、交番電界を印加した際のフィルム振動を抑制することができ、鳴き特性に非常に優れたコンデンサとなる。
 さらに、10点平均粗さSRzや中心線平均粗さSRaも上記の範囲内のフィルムであれば、表面の突起密度と突起高さのバランスがさらに優れたフィルムとなる。
 本発明の二軸配向ポリプロピレンフィルムは、分岐鎖状ポリプロピレン(H)を0.02~10質量%含有することが好ましい。なお、ここでいう分岐鎖状ポリプロピレン(H)とは、カーボン原子10,000個中に対し5箇所以下の内部3置換オレフィンを有するポリプロピレンである。この内部3置換オレフィンの存在はH-NMRスペクトルのプロトン比により確認することができる。
 分岐鎖状ポリプロピレン(H)を0.05~10質量%含有することで、溶融押出した樹脂シートの冷却工程で生成する球晶サイズをより容易に小さく制御でき、延伸工程で生成する絶縁欠陥の生成を小さく抑えることができ、耐電圧性に優れたポリプロピレンフィルムを得ることができる。さらに、分岐鎖状ポリプロピレンは、α晶核剤的な作用を有しながら、一定範囲の添加量であれば結晶変態による粗面の形成もできる。これにより、前記の球晶サイズを小さくする効果と相まって、後述するクレータ状の突起群のサイズを小さく、緻密に形成することができ、突起の均一性に優れ、かつ粗大突起のない特徴的な表面粗さを有する二軸配向ポリプロピレンフィルムを提供することができる。分岐鎖状ポリプロピレン(H)の含有量は、より好ましくは0.05~6質量%である。分岐鎖状ポリプロピレン(H)の含有量が上記範囲にあることにより、巻き取り性や耐電圧性が改善され素子加工性、コンデンサ特性に優れたフィルムを得ることができる。
 以下、上記した本発明のフィルム表面を形成する方法について説明する。
代表的な方法として、電気的な不純物を添加せず絶縁破壊電圧等の電気特性を悪化する可能性が低いという観点から、結晶変態を利用して、目的とする突起や表面粗さを得る手法を採用することができる。
 ここで結晶変態により得られる表面形態について説明する。結晶変態による面形成法とは、例えば、M.Fujiyama, Journal of Applied Polymer Science 36,P.985-1948(1988)等に記載されるように、ポリプロピレンが有する2つの結晶系を利用して表面形成を行う方法である。これは、α晶(単斜晶系、結晶密度0.936g/cm)系の球晶とβ晶(六方晶系、結晶密度0.922g/cm)系の球晶を未延伸シートに生成させておき、延伸工程で、熱的に不安定なβ晶をα晶に結晶変態させることで、フィルム表面に凹凸を形成する方法である。この方法により得られる表面凹凸の基本単位は球晶の変形に起因するものであることから、この形状は、突起群により楕円状や円弧状に形成されたクレータ形状となる場合がある。この結晶変態により得られる表面形状は、このクレータ形状が多数存在することで形成されることがあり、個々の突起が楕円状や円弧状に連なることでクレータ形状となる場合がある。
 さらに、本技術によれば、β晶系球晶が存在しないところでは凹凸が形成されず比較的平坦になることが特徴である。上記したクレータ形状の突起は二軸延伸する際の縦横の延伸倍率比に対応し変化し、縦横比が1、すなわち等方的な延伸ではほぼ円状となり、縦横比が大きくなるに従い扁平化する。通常逐次二軸延伸法で得られる形状はフィルムの横方向(フイルムロールの幅方向)に長軸を有することが多い。また、球晶のでき方によっては、形状の異なるクレータが複数重畳した形状となることもあり、また円弧が環状に閉じられることなく、弓状や半弧状の形状となることもある。
 本発明において規定した表面形状を生成する手法の一つとして、核剤効果のある原料を添加して核形成能力を高める方法が採用できる。これにより、核個数を増やして小さな微細突起が多数存在させ、比較的平坦な箇所(突起が存在しない部分)を少なくし、全体として均一に突起が形成された表面形態を得ることができる。このような表面は、突起が緻密に形成されているため、上記した本発明規定の表面形状を満足させやすい。
 核剤効果がある原料としては、上述した分岐鎖状ポリプロピレン(H)が例示できる。分岐鎖状ポリプロピレン(H)の含有量と製膜条件を制御することにより上記のクレータ形状をコントロールすることができるため、結果として、上記した本発明の特徴的な表面形状を生成できる。
 また、本発明の二軸配向ポリプロピレンフィルムは、前記した分岐鎖状ポリプロピレン(H)と直鎖状ポリプロピレンとの混合物により構成されていることが好ましい。これにより、通常のポリプロピレンの溶融結晶化温度が、およそ110℃付近であるのに対して、115℃以上に高めることができる。すなわち、コンデンサの自己回復のプロセスにおいて溶融結晶化温度が高いことにより保安性が回復しやすくなり、破壊せず耐電圧性が向上する。つまり、何らかの原因で誘電体フィルムが絶縁破壊を起こした際に発生する放電エネルギーによって放電部周辺の蒸着金属が飛散し、その際に部分的に高温になるためフィルム自身も部分融解するが、溶融結晶化温度が高いことですぐに再結晶化しやすくなり、絶縁性を回復しやすくなる。コンデンサの雰囲気温度が高温になると通常再結晶化し難くなり、絶縁性を回復しにくくなるが、上記のように溶融結晶化温度を高めることで絶縁破壊時の高温下での再結晶化がしやすくなり、保安性を向上させることができる。また、表面粗さを制御することで例えば表面を粗くしフィルム層間のギャップを確保することでさらに絶縁性の回復が良好となりより耐電圧性が向上する。
 分岐鎖状ポリプロピレン(H)としては、特に限定されるものではないが、製膜性の観点から溶融流動指数(MFR)は1~20g/10分の範囲にあるものが好ましく、1~10g/10分の範囲にあるものがより好ましい。MFRが1g/10分未満の場合、粘度が極めて高くなるために製膜時に押出機の内圧が上がりすぎたり、製膜性が悪化するために破れが生じたりするなどの懸念がある。また、MFRが20g/10分を上回ると、粘度が極めて低いために、フィルムを形成することができないおそれがある。また溶融張力については、1~30cNの範囲にあるものが好ましく、2~20cNの範囲にあるものがより好ましい。溶融張力が1cN未満であると突起の均一性に劣る一方で、30cN以上であると好ましい突起高さを保てなくなる。
 分岐鎖状ポリプロピレン(H)を得るには、分岐構造を持つオリゴマーやポリマーをブレンドする方法、特開昭62-121704号公報に記載されているようにポリプロピレン分子中に長鎖分岐構造を導入する方法や特許第2869606号公報に記載されているような方法等が好ましく用いられる。あるいは特開2009-542872号に記載されているような短鎖分岐を導入したものでも良い。具体的にはBasell社製“Profax PF-814”、Borealis社製“Daploy HMS-PP”(WB130HMS、WB135HMS等)が例示できるが、この中でも電子線架橋法により得られる樹脂が樹脂中のゲル成分が少ないために好ましく用いられる。こうした分岐鎖状ポリプロピレン(H)を通常の直鎖状ポリプロピレン(PP)に添加した際の特徴は、PPの溶融結晶化温度が通常110℃付近にあるのに対して、115~130℃の範囲に上昇することである。
 本発明においては、このような分岐鎖状ポリプロピレン(H)を通常の直鎖状ポリプロピレン(PP)に添加する場合、フィルム全体における分岐鎖状ポリプロピレン(H)の含有量は、10質量%を上限としておくことが好ましい。より好ましい含有量は0.02~8質量%、さらに好ましくは0.05~6質量%である。
 このような樹脂組成をとることで、フィルムには少なくとも2つの融解ピーク温度が観察されることになる。すなわち、2nd-Runで測定する際に観測される融解ピークとして、第一の融解ピーク温度160~172℃に加えて、ショルダーピーク温度148~157℃を持つことができ、これにより均一な突起を有し、粗大突起の少ない緻密な表面形状を有するフィルムが得られる。また、このような含有量とすることにより、突起の均一性に優れ、しかも粗大突起の少ない優れた表面形状と、-40℃から80℃を超える広範囲の雰囲気温度条件下でも優れた加工性と高耐電圧性とを発揮する二軸配向ポリプロピレンフィルムを製造することができる。
 次に、上記の直鎖状ポリプロピレン(PP)について説明する。同ポリマーは、通常、包装材やコンデンサ用に使用されるものであるが、好ましくは冷キシレン可溶部(以下CXS)が4質量%以下であることが好ましい。ここで冷キシレン可溶部(CXS)とは試料をキシレンで完全溶解した後に室温で析出させた後にキシレン中に溶解しているポリプロピレン成分であり、立体規則性の低い、分子量が低い等の理由で結晶化し難い成分に該当していると考えられる。このような成分が多く樹脂中に含まれているとフィルムの熱寸法安定性に劣ったり、高温での絶縁破壊電圧が低下したりする等の問題を生じることがある。従って、CXSは4質量%以下であることが好ましい。さらに好ましくは3質量%以下であり、特に好ましくは2質量%以下である。上記範囲は、使用する直鎖状ポリプロピレンについて満足していることが好ましいが、同ポリマーを構成成分とするフィルム全体が満足していることも好ましい。なお、CXSは少なければ少ないほど好ましいが、実質的な下限値は1質量%程度である。
 上記のようなCXSを有するポリマーやポリプロピレンフィルムとするには、ポリマーを得る際の触媒活性を高める方法、得られたポリマーを溶媒あるいはプロピレンモノマー自身で洗浄する方法等を使用できる。同様な観点から直鎖状ポリプロピレンのメソペンタッド分率は0.95以上であることが好ましく、さらに好ましくは0.97以上である。メソペンタッド分率は核磁気共鳴法(NMR法)で測定されるポリプロピレンの結晶相の立体規則性を示す指標であり、この数値が高いものほど結晶化度が高く、融点が高くなり、高温での絶縁破壊電圧が高くなるので好ましい。メソペンタッド分率の上限については特に規定するものではない。このように立体規則性の高いポリマーを得るには上述のようにn-ヘプタン等の溶媒で得られた樹脂パウダーを洗浄する方法等が例示できる。なお、メソペンタッド分率は高ければ高い程好ましいが、実質的な上限値は0.995程度である。
 直鎖状ポリプロピレンとしては、より好ましくは溶融流動指数(MFR)が1~10g/10分(230℃、21.18N荷重)、特に好ましくは2~5g/10分(230℃、21.18N荷重)の範囲のものが、製膜性の点から好ましい。
 直鎖状ポリプロピレンとしては、主としてプロピレンの単独重合体からなるが、本発明の目的を損なわない範囲で他の不飽和炭化水素による共重合成分などを含有してもよいし、プロピレンが単独ではない重合体がブレンドされていてもよい。このような共重合成分やブレンド物を構成する単量体成分として例えばエチレン、プロピレン(共重合されたブレンド物の場合)、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテンー1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどが挙げられる。共重合量またはブレンド量は、耐絶縁破壊特性、寸法安定性の点から、共重合量では1mol%未満とし、ブレンド量では10質量%未満とするのが好ましい。
 また、直鎖状ポリプロピレンには、本発明の目的を損なわない範囲で種々の添加剤、例えば結晶核剤、酸化防止剤、熱安定剤、すべり剤、帯電防止剤、ブロッキング防止剤、充填剤、粘度調整剤、着色防止剤などを含有することもできる。
 これらの中で、酸化防止剤の種類および含有量の選定は長期耐熱性を向上させるために重要となる場合がある。すなわち、酸化防止剤としては立体障害性を有するフェノール系のもので、そのうち少なくとも1種は分子量500以上の高分子量型のものが好ましい。その具体例としては種々のものが挙げられるが、例えば2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)とともに1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えばチバガイギー社製Irganox(登録商標)1330:分子量775.2)またはテトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えばチバガイギー社製Irganox1010:分子量1,177.7)等を併用することが好ましい。これら酸化防止剤の総含有量はポリプロピレン全量に対して0.03~1質量%の範囲が好ましい。酸化防止剤が少なすぎると長期耐熱性に劣る場合がある。酸化防止剤が多すぎるとこれら酸化防止剤のブリードアウトによる高温下でのブロッキングにより、コンデンサ素子に悪影響を及ぼす場合がある。より好ましい含有量は0.1~0.9質量%であり、特に好ましくは0.2~0.8質量%である。
 本発明においては、本発明の目的に反しない範囲で、結晶核剤を添加することができる。既述の通り、分岐鎖状ポリプロピレンは既にそれ自身でα晶乃至はβ晶の結晶核剤効果を有するものであるが、別種のα晶核剤(ジベンジリデンソルビトール類、安息香酸ナトリウム等)、β晶核剤(1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウム、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキサミド等のアミド系化合物、キナナクリドン系化合物等)等を添加することも好ましい。但し、本発明ではこれらの結晶核剤を添加することにより、目的とする表面粗さが得難くなるなど、高温での体積固有抵抗の低下等電気特性にも悪影響を与える可能性もあるため、含有量としては、0.1質量%未満とするのが好ましい。さらに好ましくは実質的に添加されていないことが好ましい。
 また、本発明のフィルム表面の光沢度は、100~150%の範囲であることが好ましい。より好ましくは120~140%である。すなわち、光沢度を低下させることはフィルム表面での光散乱の密度をアップすること、すなわちフィルム表面の凹凸を緻密にすることを意味し、単位面積当たりの突起個数が増えることを意味する。ただし、光沢度を100%未満まで低下させると、フィルムのハンドリング性は良好となるが、突起個数が増えることによって突起間のエアー量が増え、フィルム層間間隙が広がり、鳴き特性が悪化する傾向がある。一方、光沢度が150%を超えると突起個数が減少するためにフィルム層間が滑りにくく扁平状のコンデンサ素子に成形することが困難になる。加えて、空気抜け不良が起こりやすく、コンデンサ素子にした際にフィルム層間間隙が広がり、鳴きが悪化する場合がある。また、充分なフィルム層間のクリアランスを維持できずに保安性が悪化する等の問題が生じることがある。光沢度が上記範囲であれば、素子巻き取り性、耐圧、保安性、鳴き特性が良好となる。
 本発明の二軸配向ポリプロピレンィルムの長手方向の熱収縮応力特性値(以下、熱収応力値)は0.8~3.0N/mmであることが好ましい。また、熱収応力値のピークを示す温度は110~130℃の範囲であると好ましい。熱収応力値は、より好ましくは1.0~3.0N/mmである。熱収応力値が0.8N/mmを下回ると、コンデンサ素子巻き時に熱収縮による巻き締まりが起こりにくいために、フィルム層間の間隙が埋まらず、鳴き特性が悪化する場合がある。また、熱収応力値が3.0N/mmを上回ると、素子形成時のアニーリング工程において、フィルムの巻き締まりが強すぎるために、均一な素子形成が行えない場合がある。
 また、長手方向の熱収縮開始温度は60~100℃であることが好ましく、さらに好ましくは65~90℃、特に好ましくは70~85℃である。熱収縮開始温度が60℃を下回ると蒸着加工時のシワの発生、クーリングドラムとの密着不良による熱負けの発生の恐れがある。一方熱収縮開始温度が100℃を超えると、素子形成時のアニーリング工程での層間密着性が不良となり、特に交流用途で問題を生じる恐れがある。このような熱収応力値、熱収縮開始温度を制御する方法としては、本発明フィルム製造時の延伸温度と延伸倍率を適宜選択する方法が例示できる。具体的には、延伸温度を下げるおよび/または延伸倍率を上げることで熱収縮開始温度を下げ、また熱収応力値を高めることができる。
 また、本発明の二軸配向ポリプロピレンフィルムの灰分は50ppm以下(質量基準、以下同じ)であることが好ましい。より好ましくは30ppm以下であり、特に好ましくは20ppm以下である。灰分が50ppmを超えると、フィルムの耐絶縁破壊特性が低下し、コンデンサとした場合に絶縁破壊強度が低下する場合がある。灰分をこの範囲とするためには、触媒残渣の少ない原料を用いることが重要であるが、製膜時の押出系からの汚染も極力低減するなどの方法、例えばブリード時間(製膜前に原料を押出系に通し配管内を洗浄する時間)を1時間以上かけるなどの方法を採用することができる。なお、灰分は少なければ少ない程好ましいが、実質的な下限値は、10ppm程度である。
 本発明の二軸配向ポリプロピレンフィルムは、コンデンサ用誘電体フィルムとして好ましく用いられるものであるが、コンデンサの特定のタイプに限定されるものではない。具体的には電極構成からは箔巻きコンデンサ、金属蒸着膜コンデンサのいずれであってもよく、絶縁油を含浸させた油浸タイプのコンデンサや絶縁油を全く使用しない乾式コンデンサにも好ましく用いられる。中でも絶縁油を含浸させた油浸タイプのコンデンサにおいて、特に有用である。また、形状の観点からも捲巻式であっても積層式であっても構わない。上記の中では、本発明のフィルムの特性から特に金属蒸着膜の捲巻式コンデンサとして好ましく使用される。
 一般にポリプロピレンフィルムは表面エネルギーが低く、金属蒸着を安定的に施すことは困難である。従って、金属付着力を良好とするために、事前に表面処理を行うことが好ましい。表面処理とは具体的にコロナ放電処理、プラズマ処理、グロー処理、火炎処理等が例示できる。通常ポリプロピレンフィルムの表面濡れ張力は30mN/m程度であるが、これらの表面処理によって、濡れ張力を37~50mN/m、好ましくは39~48mN/m程度とすることで、金属膜との接着性に優れ、保安性も良好なフィルムとすることができる。
 本発明の二軸配向ポリプロピレンフィルムは、上述した特性を与えうる原料を用い、二軸延伸されることによって得られる。二軸延伸の方法としては、インフレーション同時二軸延伸法、ステンター同時二軸延伸法、ステンター逐次二軸延伸法のいずれによっても得られるが、その中でも、製膜安定性、厚み均一性、フィルムの表面形状を制御する点においてステンター逐次二軸延伸法により製膜されたものが好ましく用いられる。
 次に本発明の二軸配向ポリプロピレンフィルムの製造方法を以下に説明するが、必ずしもこれに限定されるものではない。
 まず、直鎖状ポリプロピレン(PP)に高溶融張力ポリプロピレン樹脂(分岐鎖状ポリプロピレン(H))をブレンドして溶融押出しする。溶融押出しした樹脂を濾過フィルターを通した後、220~280℃の温度でスリット状口金(フラットダイ)から押出す。口金から押出したポリマーを冷却ドラム上で固化させ未延伸シートを得る。本発明のフィルムを得るためにはβ晶を適正に生成させることが好ましく、そのためには冷却ドラムの温度制御を適切に行うことが重要である。β晶を効率的に生成させるためには、樹脂の温度をβ晶が生成し得る温度に所定時間維持することが好ましい。具体的には樹脂の温度は115~135℃であることが好ましい。またその温度に保持する時間は1秒~3秒が好ましい。保持時間が短すぎるとβ晶が十分に生成せず、突起密度が不十分となる場合がある。また、保持時間が長すぎるとフィルムの結晶化が進行しすぎ、後の工程での延伸が困難となる可能性がある。
 これらの条件を実現するためには樹脂温度や押出量、引き取り速度等に応じて適宜プロセスを決定すればよい。特に生産性の観点からすると、冷却ドラムの径が保持時間に大きく影響するために、冷却ドラムの直径は少なくとも1m以上であることが好ましい。
 さらに、本発明のフィルムを得るためには、これらの保持時間に合わせて冷却ドラム温度を選定することが重要である。選定すべき冷却ドラム温度としては上述のように他の要素が影響するためにある程度の任意性を含むものの、50~100℃であることが好ましい。さらに好ましくは60~80℃、特に好ましくは60~70℃の範囲である。冷却ドラム温度が高すぎるとフィルムの結晶化が進行しすぎ、後の工程での延伸が困難になったり、フィルム内にボイドができ耐絶縁破壊特性が低下したりする場合がある。あるいは冷却ドラムとフィルムとの密着性が低下して温度ムラが生じるなどの影響も出やすい。また、β晶が大きく成長するために、粗大な突起が生じやすくなる。冷却ドラムへの密着方法としては静電印加法、水の表面張力を利用した密着方法、エアーナイフ法、プレスロール法、水中キャスト法などのうちいずれの手法を用いてもよいが、平面性が良好でかつ表面粗さの制御ができるエアーナイフ法が好ましい。特に厚みを厚くする場合においては、フィルム表裏の形態差ができやすいために、エアーナイフの温度を適切に管理することによって、表裏ともに平滑とすることができる。エアーナイフのエアー温度は、20~60℃が好ましい。さらに好ましくは25~50℃、特に好ましくは30~40℃の範囲である。エアーナイフのエアー温度が60℃よりも高いと、フィルムの結晶化が進行しすぎ、後の工程での延伸が困難になったり、β晶が大きく成長するために、粗大な突起が生じ易くなったり、フィルム内にボイドができ耐絶縁破壊特性が低下する場合がある。また、エアーナイフのエアー温度が20℃未満であると、結晶生成が不十分となり目的とする表面の突起個数を得ることが困難となる場合がある。
 また、エアーナイフの吹き出しエアー速度は、130~150m/sが好ましい。また、幅方向均一性を向上させるために2重管構造となっていることが好ましい。エアー速度が130m/s未満であると、フィルムが冷却ドラムに十分に密着せずに製膜性が悪化する場合がある。150m/sを超えると、フィルムが冷却ドラムに均一に密着せずに製膜性が悪くなったり、品質ムラ、厚みムラ等が生じる場合がある。また、フィルムの振動を生じさせないために製膜下流側にエアーが流れるようにエアーナイフの位置を調整することが好ましい。
 次にこの未延伸フィルムを二軸延伸し、二軸配向させる。まず未延伸フィルムを120~140℃に保たれた複数のロールに通して予熱する。予熱はフィルムの両面が同様の面形状となるように温度差がないように行う。この温度状態を保ったまま周速差を設けたロール間にフィルムを通して、長手方向に2~6倍に延伸し、室温に冷却する。また、予熱ロール温度とフィルムの接触時間とを適切な関係にする必要がある。温度のみが適切であっても、予熱ロールの接触時間が短すぎても長すぎてもフィルム表面の温度に表裏差が生じる場合がある。一方で、ロール接触時間が適切であっても予熱温度が不適切であればやはりフィルム表面の温度に表裏差が生じる場合がある。また、熱収応力値、熱収縮開始温度を制御する観点からも、延伸温度と延伸倍率を適宜選択する必要がある。具体的には、延伸温度を下げるおよび/または延伸倍率を上げることで熱収縮開始温度を下げ、また熱収応力値を高めることができる。
 さらに高出力のラジエーションヒーターを使用して延伸する際には、その出力を2.0~3.5kWにすることが好ましい。ラジエーションヒーターの出力が低すぎると、低温延伸となり、延伸過程において破れが生じる場合がある。また、高すぎると、フィルム内にボイドができ耐絶縁破壊特性が低下したり、突起高さが高くなりすぎる場合がある。
 長手方向への延伸に引き続き、一軸配向フィルムをステンターに導いて150~170℃の温度で幅方向に5~15倍に延伸し、次いで幅方向に2~20%の弛緩を与えつつ140~160℃の温度で熱固定する。さらに、蒸着を施す面に蒸着金属の接着性を良くするため、空気中、窒素中、炭酸ガス中あるいはこれらの混合気体中でコロナ放電処理を行い、二軸配向フィルムを得る。コロナ放電処理の例として、10~20kW程度の出力で放電処理を行う。さらに、本発明のように厳密な表面構造制御を行う場合には、その製膜過程において、フィルムの結晶化が高まるため、低熱収縮応力化してしまう傾向がある。そのため、上記したようにフラットダイ法にて二軸延伸した後に、さらに周速の異なるロールを用いて延伸を行うことが好ましい。この場合、100~130℃で長手方向に延伸比0.1~3%で延伸を行うことにより、最適な熱収縮特性と安定した延伸特性を両立させることができる。なお、延伸比(%)とは、延伸前後でのフィルム搬送速度をそれぞれV,Vとすると、(V/V-1)×100(%)で定義される値である。
 本発明においては、上記の二軸配向ポリプロピレンフィルムの少なくとも片面に金属膜を設けて金属化フィルムとすることが好ましい。金属膜を設ける方法は特に限定されないが、例えば、ポリプロピレンフィルムの少なくとも片面に、アルミニウムを蒸着してフィルムコンデンサの内部電極となるアルミニウム蒸着膜等の金属膜を設ける方法が好ましく用いられる。このとき、アルミニウムと同時あるいは逐次に、例えば、ニッケル、銅、金、銀、クロムおよび亜鉛などの他の金属成分を蒸着することもできる。また、蒸着膜上にオイルなどで保護層を設けることもできる。
 金属膜の厚みは、フィルムコンデンサの電気特性とセルフヒール性の点から20~100nmの範囲であることが好ましい。また、同様の理由により、金属膜の表面電気抵抗値が1~20Ω/□の範囲であることが好ましい。金属種には固有の抵抗値があり、さらに抵抗値は膜厚に反比例するので、表面電気抵抗値は使用する金属種と膜厚で制御できる。
 本発明では、必要により、金属膜を形成後に得られる金属化フィルムを特定の温度でエージング処理を行なったり、熱処理を行なったりすることができる。また、絶縁もしくは他の目的で、金属化フィルムの少なくとも片面に、ポリフェニレンオキサイドなどをコーティングすることもできる。
 このようして得られた金属化フィルムは、積層もしくは巻回してフィルムコンデンサとすることができる。巻回型フィルムコンデンサの好ましい製造方法を例示すると、次のとおりである。
 まず、ポリプロピレンフィルムの片面にアルミニウムを真空蒸着する。その際、フィルム長手方向に走るマージン部を有するストライプ状に蒸着する。次に、表面の各蒸着部の中央と各マージン部の中央に刃を入れてスリットし、表面が一方にマージンを有した、テープ状の巻取リールを作成する。左にマージンを有するテープ状の巻取リールと右にマージンを有するテープ状の巻取リールの各1本ずつを、幅方向に蒸着部分がマージン部よりはみ出すように2枚重ね合わせて巻回し、巻回体を得る。この巻回体から芯材を抜いてプレスし、両端面にメタリコンを溶射して外部電極とし、メタリコンにリード線を溶接して巻回型コンデンサ素子を得ることができる。
 フィルムコンデンサの用途は、車両用、家電用(テレビや冷蔵庫など)、一般雑防用、自動車用(ハイブリットカー、パワーウインドウやワイパーなど)および電源用等、多岐に渡っており、本発明のフィルムコンデンサはそのいずれにも好適に使用できる。
 以下、本発明における特性値の測定方法、並びに効果の評価方法を述べる。
 (1)フィルム厚み(μm)
 JIS C-2330(2001)の7.4.1.1によりマイクロメータ法厚みを測定した。
 (2)溶融流動指数(MFR)
 JIS-K7210(1999)に準じて、測定温度230℃、荷重21.18Nで測定した。
 (3)メソペンタッド分率(mmmm)
 試料を溶媒に溶解し、13C-NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)を求めた(参考文献:新版 高分子分析ハンドブック 社団法人日本分析化学会・高分子分析研究懇談会 編 1995年 P609~611)。
 A.測定条件
  装置:Bruker社製、DRX-500
  測定核:13C核(共鳴周波数:125.8MHz)
  測定濃度:10wt%
  溶媒:ベンゼン/重オルトジクロロベンゼン=質量比1:3混合溶液
  測定温度:130℃
  NMR試料管:5mm管
  パルス幅:45°(4.5μs)
  パルス繰り返し時間:10秒
  換算回数:10,000回
  測定モード:complete decoupling。
 B.解析条件
 LB(ラインブロードニングファクター)を1.0としてフーリエ変換を行い、mmmmピークを21.86ppmとした。WINFITソフト(Bruker社製)を用いて、ピーク分割を行う。その際に、高磁場側のピークから以下のようにピーク分割を行い、さらにソフトの自動フィッテイングを行い、ピーク分割の最適化を行った上で、mmmmとss(mmmmのスピニングサイドバンドピーク)のピーク分率の合計をメソペンタッド分率(mmmm)とする。
尚、測定は5回行い、その平均値を求める。
・ピーク 
 (a)mrrm
 (b)(c)rrrm(2つのピークとして分割)
 (d)rrrr
 (e)mrmm+rmrr
 (f)mmrr
 (g)mmmr
 (h)ss(mmmmのスピニングサイドバンドピーク)
 (i)mmmm
 (j)rmmr。
 (4)内部3置換オレフィン個数
 試料を溶媒に溶解し、H-NMRを用いて、以下の条件にて内部3置換オレフィンの個数を求める。
 A.測定条件
  装置:日本電子製ECX400P型核磁気共鳴装置
  測定核:H核(共鳴周波数:500MHz)
  測定濃度:2wt%
  溶媒:重オルトジクロロベンゼン
  測定温度:120℃
  パルス幅:45°
  パルス繰り返し時間:7秒
  換算回数:512回
  測定モード:non decoupling。
 B.解析条件
 オルトジクロロベンゼンの化学シフト7.10ppmを基準とし、5.0~5.2ppm領域のシグナルを内部3置換オレフィンのプロトンと帰属、0.5~2.0ppmのブロードなシグナルとの積分比から内部3置換オレフィンのプロトン比を求める。
 (5)中心線平均粗さ(SRa)、十点平均粗さ(SRz)、突起個数(Pc)、各面に存在する突起のうち最も個数の多い突起の高さ(PhZ)
 JIS-B-0601(1982)により、株式会社小坂研究所製「非接触三次元微細形状測定器(ET-30HK)」および「三次元粗さ分析装置(MODEL SPA-11)」を用いて測定した。まず、1回分の測定を行い、中心線平均粗さ(SRa’)、十点平均粗さ(SRz’)、突起個数(Pc’)、各面に存在する突起のうち最も個数の多い突起の高さ(PhZ’)を求めた。この測定を長手方向に10回繰り返し、それぞれの平均値を求めた。この平均値をポリプロピレンフィルムの中心線平均粗さ(SRa)、十点平均粗さ(SRz)、突起個数(Pc)、各面に存在する突起のうち最も個数の多い突起の高さ(PhZ)とした。
 1回分の詳細条件とデータ処理については下記の通りとした
 ・突起個数(Pc’)(単位:個/0.1mm
 測定器により検出された検出値は、50nm間隔のヒストグラムとして出力される。たとえば検出値として150nm以上200nm未満の突起が存在した場合には、スライス値(Z)として150nmと表記された欄にカウントされる。突起個数(Pc’)はPhZ’の測定条件の項目に示す幅方向、長さ方向サンプリング間隔で検出された全てのスライス値(Z)における突起個数を0.1mmあたりの個数に換算した値を合計したものを示す。
 ・各面に存在する突起のうち最も個数の多い突起の高さ(PhZ’)(単位:nm)
 上記ヒストグラムうち、最も個数が多くヒストグラムの頂点を示すところのスライス値(Z)を、各面に存在する突起のうち最も個数の多い突起の高さ(PhZ’)とした。また、最も突起個数が多いスライス値(Z)が複数存在する場合においては、それぞれのスライス値の平均を各面に存在する突起のうち最も個数の多い突起の高さ(PhZ’)とした。
 ・測定条件
   測定面処理:測定面にアルミニウムを真空蒸着し、非接触法とした
   測定方向:フィルムの幅方向
   幅方向送り速度:0.1mm/秒
   測定範囲(幅方向×長さ方向):1.0mm×0.249mm
   高さ方向寸法の基準面:LOWER(下側)
   幅方向サンプリング間隔:2μm
   長さ方向サンプリング間隔:10μm
   長さ方向サンプリング本数:25本
   カットオフ:0.25mm/秒
   幅方向拡大倍率:200倍
   長さ方向拡大倍率:20,000倍
   うねり、粗さカット:なし。
 ・測定方法
 測定には専用のサンプルホルダーを使用する。サンプルホルダーは中心に円形の穴が空いた脱着可能な2枚の金属板であり、その間にサンプルを挟んでサンプルホルダーの四方までフィルムを張って装着することで固定し、中央円形部のフィルムを測定した。
 ・測定結果
 上記方法によって得られた測定結果の例を表1に示す。データが表1に示す値の場合、本発明の各パラメータは次のとおり読み取る。
・SRa’  20.1nm
・SRz’  715nm
・Pc’   109個/0.1mm
・PhZ’  150nm。
 (6)フィルム原反特性(絶縁破壊電圧、原反スリット収率)
 JIS C2330(2001)7.4.11.2のB法(平板電極法)に準じて、50個のサンプルについてそれぞれ絶縁破壊時の電圧を測定し、その平均値を求めた。この平均値を測定したサンプルのフィルム厚み(μm)で除した値を、最終的な絶縁破壊電圧(V/μm)とした。
 また、フィルム原反のスリットで巻きズレやしわが発生したものを不合格とし、不合格となったものの数の製造数全体に対する割合を百分率で示し加工性の指標とした(以下原反スリット収率という)。原反スリット収率は高いほど好ましい。95%以上を良好“A”、 90%以上95%未満を“B”、90%未満を不良“C”とした。AまたはBが実用可能なレベルである。
 (7)金属膜の表面電気抵抗(単位:Ω/□)
 金属化フィルムを長さ方向に10mm、幅方向に全幅(50mm)の長方形にカットして試料とした。4端子法により、この試料の幅方向30mm間の金属膜の抵抗を測定した。得られた測定値に測定幅(10mm)を乗じ、電極間距離(30mm)を除して、膜抵抗を算出した。
 (8)コンデンサ製造の際の素子加工性(素子巻収率)
 各実施例および比較例で得られたポリプロピレンフィルムのコロナ処理面に、真空蒸着機にて、長手方向に走るマージン部を有するストライプ状に金属を蒸着した(蒸着部の幅20.0mm、マージン部の幅2.0mmの繰り返し)。蒸着する金属種は、金属アルミニウムと金属亜鉛とし、蒸着部が膜抵抗18Ω/□のアロイ金属蒸着膜(アルミニウム:亜鉛=5:95(質量比))になるように蒸着を施した。次に各蒸着部の中央と各マージン部の中央に刃を入れてスリットし、左もしくは右に1.0mmのマージンを有する全幅21mmのテープ状に巻取リールにした。得られた左マージンのリールと右マージンのリールの各1本ずつを、幅方向に蒸着部分がマージン部より0.5mmはみ出すように2枚重ね合わせて巻回し、静電容量約0.47μFの巻回体を得た。素子巻回には皆藤製作所製KAW-4NHBを用いた。
 上記のコンデンサの製造の際、巻き始めから巻き終わりまでを目視で観察し、しわやずれが発生したものを不合格とした。不合格となったものの数の製造数全体に対する割合を百分率で示し加工性の指標とした(以下素子巻収率と称する)。素子巻収率は高いほど好ましい。95%以上を良好“A”、 80%以上95%未満を“B”、80%未満を不良“C”とした。AまたはBが実用可能なレベルである。
 (9)蒸着コンデンサ特性の評価
 (8)項で得たコンデンサ素子(巻回体)から10個を抜き取り、120℃の温度および30kg/cmの圧力で6分間のプレス処理を行い、メタリコンおよびリード端子付けを行った。この素子をウレタン樹脂で外装し、静電容量0.47μFのコンデンサを作製した。
 こうして得られたコンデンサ10個を用いて、常温下でコンデンサに900Vの交流電圧を印加した。900Vで3分間経過後にステップ状に50V/3分で徐々に印加電圧を上昇させることを繰り返し、いわゆるステップアップ試験を行なった。ここでは印加機器の電流が激変したポイントを破壊とした。破壊電圧は、nV印加時t秒で破壊した場合に、[n+50×t/180]の式で算出した。
例えば950V印加時53秒で破壊した場合:
  950+50×53/180=965V
 算出電圧をフィルム厚みで割り返して耐電圧評価とした。
 また、破壊後のコンデンサを解体し破壊の状態を調べて、保安性を以下の通り評価した
 AA:コンデンサ形状の変化は無く貫通状の破壊は観察されない
 A:コンデンサ形状の変化は無くフィルム10層以内の貫通状破壊が観察される
 B:コンデンサ形状に変化が認められる若しくは10層を超える貫通状破壊が観察される
 C:コンデンサ形状が破壊されている
AAは問題なく使用できるが、Aでは条件次第で使用可能である。BまたはCでは実用上の問題を生じる。
 (10)鳴き特性の評価
 (8)項で得たコンデンサ素子(巻回体)から10個を抜き取り、120℃の温度および30kg/cmの圧力で6分間のプレス処理を行い、メタリコンおよびリード端子付けを行い、静電容量1.0μFの扁平プレス型コンデンサを10個作成した。耐圧パルス試験器MODEL:TP-500(武南測器社製)にてコンデンサに60Hzの方形波を印加した。その際コンデンサが発生する騒音をRION(株)製の精密騒音計:NA-29Eを用いて測定し、その平均値を鳴き音レベルとして算出した。その結果を下記基準にて判定した。またこのときの主要条件は次のとおりである。
・暗騒音レベル:30~35dB
・テスト電圧:205V
・素子~集音マイク間の距離:5cm
・測定数:10個
 AA:鳴き音レベル 45dB未満
 A:鳴き音レベル 45dB以上50dB未満
 B:鳴き音レベル 50dB以上55dB未満
 C:鳴き音レベル 55dB以上。
 以下、実施例を挙げて本発明の効果をさらに説明する。
 (実施例1)
 ポリプロピレンのメソペンタッド分率が0.985で、メルトマスフローレイト(MFR)が2.6g/10分であるポリプロピレン樹脂(Borealis社製“Borclean(登録商標)”)と、内部3置換オレフィン個数がカーボン原子10,000個中に対し3個である分岐鎖状ポリプロピレン樹脂(高溶融張力ポリプロピレンBasell社製Profax PF-814)とを混合した。分岐鎖状ポリプロピレン樹脂の含有量は、混合した樹脂全体に対して0.5質量%であった。この混合した樹脂を温度260℃の押出機に供給し、樹脂温度255℃でT型スリットダイよりシート状に溶融押出した。この溶融シートを60℃に保持された直径1.2mの冷却ドラム上で冷却固化した。115~135℃の保持時間は放射温度計の測定の結果2秒であった。
 次いで冷却固化したシートを130℃で予熱し、周速差を設けたロール間に通して長手方向に4.6倍に延伸した。その際、延伸部でラジエーションヒーター出力3.5kWを用い熱量を補い延伸した。引き続きフィルムをテンターに導き、164℃の温度で幅方向に10倍延伸し、次いで幅方向に6%の弛緩を与えながら155℃で熱処理を行なった。さらに二軸延伸後に、長手方向の延伸比を2.5%として延伸を行った上で冷却し、フィルム厚みが7.0μmの二軸配向ポリプロピレンフィルムを得た。さらにこのフィルムの冷却ドラムに接していない面に20W・min/mの処理強度で大気中でコロナ放電処理を行った。こうして得られた二軸配向ポリプロピレンフィルムの特性は表2、3に示す通りである。
 得られたフィルムの絶縁破壊電圧と素子加工性および鳴き特性についても表2、3に示す。耐電圧、素子加工性、鳴きのいずれも優れるものであった。
 (実施例2)
 二軸延伸後に行う長手方向の延伸比を0.5%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (実施例3)
 冷却ドラム温度を80℃とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。冷却固化時の115~135℃の保持時間は放射温度計の測定の結果2.4秒であった。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (実施例4)
 冷却ドラム温度を50℃とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。冷却固化時の115~135℃の保持時間は放射温度計の測定の結果1秒であった。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (実施例5)
 二軸延伸後に行う長手方向の延伸比を3.0%とした以外は実施例4と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (実施例6)
 二軸延伸後に行う長手方向の延伸比を0.0%とした以外は実施例3と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (実施例7)
 分岐鎖状ポリプロピレン樹脂の含有量を12質量%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (実施例8)
 分岐鎖状ポリプロピレン樹脂の含有量を0.02質量%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (実施例9)
 分岐鎖状ポリプロピレン樹脂の含有量を10質量%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (実施例10)
 分岐鎖状ポリプロピレン樹脂の含有量を0.01質量%とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (実施例11)
 ラジエーションヒーター出力を2.0kWとした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (実施例12)
 延伸前の予熱温度を140℃とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (比較例1)
 分岐鎖状ポリプロピレン樹脂を添加しないこと以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (比較例2)
 冷却ドラム温度を90℃とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。冷却固化時の115~135℃の保持時間は放射温度計の測定の結果3.1秒であった。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。試験後のコンデンサ素子において、コロナ放電の痕跡が確認された。
 (比較例3)
 ラジエーションヒーター出力を10.5kWとした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。試験後のコンデンサ素子において、コロナ放電の痕跡が確認された。
 (比較例4)
 延伸前の予熱温度を150℃とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (比較例5)
 冷却ドラム温度を30℃とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。冷却固化時の115~135℃の保持時間は放射温度計の測定の結果0.8秒であった。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (比較例6)
 ラジエーションヒーター出力を1.5kWとした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
 (比較例7)
 冷却ドラム温度を90℃とし、延伸前の予熱温度を115℃とした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。冷却固化時の115~135℃の保持時間は放射温度計の測定の結果3.1秒であった。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。製膜時および素子巻き時にフィルムの蛇行が多く観察された。
 (比較例8)
 ラジエーションヒーター出力を5.5kWとした以外は実施例1と同様に製膜を行い、二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの特性を表2、3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (8)

  1.  フィルムの両面に突起を有し、各面の突起のうち最も多い突起の高さ(PhZ)が両面ともに100nm以上400nm未満であり、かつ各面の0.1mmあたりの突起個数(Pc)が両面ともに150個以上500個未満である二軸配向ポリプロピレンフィルム。
  2.  いずれの表面の10点平均粗さ(SRz)も400nm以上850nm以下である、請求項1の二軸配向ポリプロピレンフィルム。
  3.  いずれの表面の中心線表面粗さ(SRa)も20nm以上40nm以下である、請求項1または2の二軸配向ポリプロピレンフィルム。
  4.  長手方向の120℃の熱収応力値が0.8~3.0N/mmである、請求項1~3のいずれかの二軸配向ポリプロピレンフィルム。
  5.  分岐鎖状ポリプロピレン(H)を0.02~10質量%含有する、請求項1~4のいずれかの二軸配向ポリプロピレンフィルム。
  6.  請求項1~5のいずれかの二軸配向ポリプロピレンフィルムの少なくとも片面に金属膜が設けられた金属化フィルム。
  7.  前記金属膜の表面電気抵抗が1~20Ω/□の範囲内にある、請求項6の金属化フィルム。
  8.  請求項6または7の金属化フィルムを用いたフィルムコンデンサ。
PCT/JP2011/063213 2010-06-29 2011-06-09 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ WO2012002123A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/703,173 US9093219B2 (en) 2010-06-29 2011-06-09 Biaxially oriented polypropylene film, metallized film, and film capacitor
CN201180030683.XA CN102959656B (zh) 2010-06-29 2011-06-09 双轴取向聚丙烯膜、金属化膜和膜电容器
EP11800591.7A EP2590191A4 (en) 2010-06-29 2011-06-09 BIAXIAL-ORIENTED POLYPROPYLENE FILM, METALLIZED FILM AND FILM CONDENSER
JP2011527132A JP5825103B2 (ja) 2010-06-29 2011-06-09 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
KR1020137000454A KR101811079B1 (ko) 2010-06-29 2011-06-09 이축 배향 폴리프로필렌 필름, 금속화 필름 및 필름 컨덴서

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-147234 2010-06-29
JP2010147234 2010-06-29

Publications (1)

Publication Number Publication Date
WO2012002123A1 true WO2012002123A1 (ja) 2012-01-05

Family

ID=45401853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063213 WO2012002123A1 (ja) 2010-06-29 2011-06-09 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ

Country Status (6)

Country Link
US (1) US9093219B2 (ja)
EP (1) EP2590191A4 (ja)
JP (1) JP5825103B2 (ja)
KR (1) KR101811079B1 (ja)
CN (1) CN102959656B (ja)
WO (1) WO2012002123A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146367A1 (ja) 2012-03-28 2013-10-03 東レ株式会社 コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
WO2014142264A1 (ja) * 2013-03-15 2014-09-18 東レ株式会社 コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
WO2014148547A1 (ja) * 2013-03-22 2014-09-25 東レ株式会社 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
WO2015072291A1 (ja) * 2013-11-14 2015-05-21 東レ株式会社 二軸配向ポリプロピレンフィルムおよびその製造方法
JP2015178594A (ja) * 2014-02-27 2015-10-08 東レ株式会社 二軸配向ポリプロピレンフィルム
WO2016043217A1 (ja) * 2014-09-19 2016-03-24 東レ株式会社 ポリプロピレンフィルムおよびフィルムコンデンサ
KR20160138108A (ko) * 2014-03-28 2016-12-02 도레이 카부시키가이샤 2축 배향 폴리프로필렌 필름
JP2017035884A (ja) * 2015-08-06 2017-02-16 東レ株式会社 二軸配向ポリプロピレンフィルム
WO2017064909A1 (ja) * 2015-10-13 2017-04-20 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2017528565A (ja) * 2014-09-11 2017-09-28 ボレアリス エージー コンデンサフィルム用のポリプロピレン組成物
WO2018124300A1 (ja) 2016-12-28 2018-07-05 王子ホールディングス株式会社 二軸延伸ポリプロピレンフィルム、金属化フィルム及びコンデンサ
WO2018181271A1 (ja) * 2017-03-30 2018-10-04 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
WO2019131815A1 (ja) 2017-12-26 2019-07-04 王子ホールディングス株式会社 ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール
KR20200098502A (ko) 2017-12-26 2020-08-20 오지 홀딩스 가부시키가이샤 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름, 필름 콘덴서 및 필름 롤
JP2022514249A (ja) * 2018-12-20 2022-02-10 ボレアリス エージー 破壊強度が改善された二軸配向ポリプロピレンフィルム
WO2023127535A1 (ja) * 2021-12-28 2023-07-06 東洋紡株式会社 二軸配向ポリプロピレン系フィルム
WO2023127534A1 (ja) * 2021-12-28 2023-07-06 東洋紡株式会社 二軸配向ポリプロピレンフィルム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111225994B (zh) * 2018-04-27 2022-05-17 东丽先端材料研究开发(中国)有限公司 一种金属化薄膜
US11795282B2 (en) * 2018-08-23 2023-10-24 Toray Industries, Inc. Polypropylene film, metal film laminated film using same, and film capacitor
CN110596556A (zh) * 2019-10-21 2019-12-20 国网电力科学研究院武汉南瑞有限责任公司 基于声压强的金属化膜电容器自愈放电测试系统及方法
CN111978630A (zh) * 2020-07-23 2020-11-24 东莞市普隆电子有限公司 一种新型高频介质高储能电容器

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163500A (ja) 1974-11-29 1976-06-01 Mitsubishi Rayon Co
JPS5453253A (en) 1977-10-03 1979-04-26 Nichicon Capacitor Ltd Method of making winding type condenser
JPS61145812A (ja) 1984-12-19 1986-07-03 松下電器産業株式会社 フイルムコンデンサ
JPS62121704A (ja) 1985-01-31 1987-06-03 モンテル ノース アメリカ インコーポレイテッド 自由端長鎖枝分れを有するポリプロピレンおよびその製造法
JPH02308826A (ja) * 1989-05-23 1990-12-21 Mitsui Toatsu Chem Inc ポリプロピレンの延伸フイルム
JPH04348942A (ja) * 1991-05-28 1992-12-03 Toray Ind Inc ポリエステルフィルム
JP2869606B2 (ja) 1992-11-26 1999-03-10 チッソ株式会社 高溶融張力ポリプロピレンおよびその製造方法と成形品
JP2001072778A (ja) 1999-07-08 2001-03-21 Toray Ind Inc 二軸配向ポリプロピレンフィルム
JP2001129944A (ja) 1999-11-02 2001-05-15 Toray Ind Inc 二軸配向ポリプロピレンフィルム
JP2001324607A (ja) 2000-05-16 2001-11-22 Kimoto & Co Ltd 光拡散性シート
JP3508515B2 (ja) 1997-11-18 2004-03-22 王子製紙株式会社 粗面化二軸延伸ポリプロピレンおよびその製造方法
JP2007290380A (ja) * 2006-03-28 2007-11-08 Toray Ind Inc 金属化二軸配向ポリプロピレンフィルム及びこれからなるコンデンサ
JP2009088492A (ja) 2007-09-11 2009-04-23 Toray Ind Inc コンデンサ用ポリプロピレンフィルムおよびコンデンサ
JP2009542872A (ja) 2006-07-10 2009-12-03 ボレアリス テクノロジー オサケ ユキチュア 短鎖分岐ポリプロピレン

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223764A (en) * 1961-11-28 1965-12-14 Nat Distillers Chem Corp Process for production of biaxially oriented polypropylene film
DE3275959D1 (en) * 1981-03-30 1987-05-07 Teijin Ltd Magnetic recording medium
JPH1067972A (ja) * 1996-08-28 1998-03-10 Tokuyama Corp 開封テープ及びその製造方法
US6303233B1 (en) * 1998-04-06 2001-10-16 Mobil Oil Corporation Uniaxially shrinkable biaxially oriented polypropylene film
DE19943909A1 (de) * 1999-09-14 2001-03-15 Wolff Walsrode Ag Mehrschichtig coextrudierte biaxial gereckte Hochbarriere-Kunststoffhülle mit verminderter Haftung zum Füllgut sowie deren Verwendung als Nahrungsmittelhülle
US6908687B2 (en) * 2002-12-30 2005-06-21 Exxonmobil Oil Corporation Heat-shrinkable polymeric films
JP4715390B2 (ja) * 2004-08-26 2011-07-06 東レ株式会社 コンデンサ用ポリプロピレンフィルム及びそれからなるコンデンサ
JP2006093688A (ja) * 2004-08-26 2006-04-06 Toray Ind Inc コンデンサー用ポリプロピレンフィルムおよびそれを用いてなるコンデンサー
EP2481767A3 (en) * 2006-02-17 2012-09-05 Toray Industries, Inc. Biaxially oriented polypropylene film
JP5148841B2 (ja) * 2006-05-18 2013-02-20 王子ホールディングス株式会社 微細粗面化ポリプロピレンフィルム

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163500A (ja) 1974-11-29 1976-06-01 Mitsubishi Rayon Co
JPS5453253A (en) 1977-10-03 1979-04-26 Nichicon Capacitor Ltd Method of making winding type condenser
JPS61145812A (ja) 1984-12-19 1986-07-03 松下電器産業株式会社 フイルムコンデンサ
JPS62121704A (ja) 1985-01-31 1987-06-03 モンテル ノース アメリカ インコーポレイテッド 自由端長鎖枝分れを有するポリプロピレンおよびその製造法
JPH02308826A (ja) * 1989-05-23 1990-12-21 Mitsui Toatsu Chem Inc ポリプロピレンの延伸フイルム
JPH04348942A (ja) * 1991-05-28 1992-12-03 Toray Ind Inc ポリエステルフィルム
JP2869606B2 (ja) 1992-11-26 1999-03-10 チッソ株式会社 高溶融張力ポリプロピレンおよびその製造方法と成形品
JP3508515B2 (ja) 1997-11-18 2004-03-22 王子製紙株式会社 粗面化二軸延伸ポリプロピレンおよびその製造方法
JP2001072778A (ja) 1999-07-08 2001-03-21 Toray Ind Inc 二軸配向ポリプロピレンフィルム
JP2001129944A (ja) 1999-11-02 2001-05-15 Toray Ind Inc 二軸配向ポリプロピレンフィルム
JP2001324607A (ja) 2000-05-16 2001-11-22 Kimoto & Co Ltd 光拡散性シート
JP2007290380A (ja) * 2006-03-28 2007-11-08 Toray Ind Inc 金属化二軸配向ポリプロピレンフィルム及びこれからなるコンデンサ
JP2009542872A (ja) 2006-07-10 2009-12-03 ボレアリス テクノロジー オサケ ユキチュア 短鎖分岐ポリプロピレン
JP2009088492A (ja) 2007-09-11 2009-04-23 Toray Ind Inc コンデンサ用ポリプロピレンフィルムおよびコンデンサ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"High Polymer Analysis Handbook", 1995, pages: 609 - 611
M. FUJIYAMA, JOURNAL OF APPLIED POLYMER SCIENCE, vol. 36, 1988, pages 985 - 1948
See also references of EP2590191A4 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150050456A1 (en) * 2012-03-28 2015-02-19 Toray Industries, Inc. Biaxially stretched polypropylene film for capacitors, metallized film, and film capacitor
US9805868B2 (en) * 2012-03-28 2017-10-31 Toray Industries, Inc. Biaxially stretched polypropylene film for capacitors, metallized film, and film capacitor
CN104204043B (zh) * 2012-03-28 2017-11-21 东丽株式会社 电容器用双轴拉伸聚丙烯膜、金属化膜以及膜电容器
CN104204043A (zh) * 2012-03-28 2014-12-10 东丽株式会社 电容器用双轴拉伸聚丙烯膜、金属化膜以及膜电容器
KR20140143185A (ko) 2012-03-28 2014-12-15 도레이 카부시키가이샤 콘덴서용 2축 연신 폴리프로필렌 필름, 금속화 필름 및 필름 콘덴서
WO2013146367A1 (ja) 2012-03-28 2013-10-03 東レ株式会社 コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
JPWO2013146367A1 (ja) * 2012-03-28 2015-12-10 東レ株式会社 コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
KR102044577B1 (ko) 2012-03-28 2019-11-13 도레이 카부시키가이샤 콘덴서용 2축 연신 폴리프로필렌 필름, 금속화 필름 및 필름 콘덴서
WO2014142264A1 (ja) * 2013-03-15 2014-09-18 東レ株式会社 コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
EP2975080A4 (en) * 2013-03-15 2016-10-19 Toray Industries BIAXIALLY ORIENTED POLYPROPYLENE FILM FOR CAPACITOR, METALLIC FILM, AND FILM CAPACITOR
US9721728B2 (en) 2013-03-15 2017-08-01 Toray Industries, Inc. Biaxially oriented polypropylene film for capacitor, metallized film, and film capacitor
JPWO2014142264A1 (ja) * 2013-03-15 2017-02-16 東レ株式会社 コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
JP5660261B1 (ja) * 2013-03-22 2015-01-28 東レ株式会社 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
WO2014148547A1 (ja) * 2013-03-22 2014-09-25 東レ株式会社 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
WO2015072291A1 (ja) * 2013-11-14 2015-05-21 東レ株式会社 二軸配向ポリプロピレンフィルムおよびその製造方法
JP2015178594A (ja) * 2014-02-27 2015-10-08 東レ株式会社 二軸配向ポリプロピレンフィルム
KR102232102B1 (ko) * 2014-03-28 2021-03-25 도레이 카부시키가이샤 2축 배향 폴리프로필렌 필름
KR20160138108A (ko) * 2014-03-28 2016-12-02 도레이 카부시키가이샤 2축 배향 폴리프로필렌 필름
JP2017528565A (ja) * 2014-09-11 2017-09-28 ボレアリス エージー コンデンサフィルム用のポリプロピレン組成物
WO2016043217A1 (ja) * 2014-09-19 2016-03-24 東レ株式会社 ポリプロピレンフィルムおよびフィルムコンデンサ
JPWO2016043217A1 (ja) * 2014-09-19 2017-06-29 東レ株式会社 ポリプロピレンフィルムおよびフィルムコンデンサ
JP2017035884A (ja) * 2015-08-06 2017-02-16 東レ株式会社 二軸配向ポリプロピレンフィルム
WO2017064909A1 (ja) * 2015-10-13 2017-04-20 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6183563B1 (ja) * 2015-10-13 2017-08-23 東レ株式会社 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
KR20190082269A (ko) 2016-12-28 2019-07-09 오지 홀딩스 가부시키가이샤 2축 연신 폴리프로필렌 필름, 금속화 필름 및 콘덴서
WO2018124300A1 (ja) 2016-12-28 2018-07-05 王子ホールディングス株式会社 二軸延伸ポリプロピレンフィルム、金属化フィルム及びコンデンサ
WO2018181271A1 (ja) * 2017-03-30 2018-10-04 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
JPWO2018181271A1 (ja) * 2017-03-30 2020-03-05 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
JP7088019B2 (ja) 2017-03-30 2022-06-21 東レ株式会社 ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
WO2019131815A1 (ja) 2017-12-26 2019-07-04 王子ホールディングス株式会社 ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール
KR20230119251A (ko) 2017-12-26 2023-08-16 오지 홀딩스 가부시키가이샤 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름,필름 콘덴서 및 필름 롤
KR20200098502A (ko) 2017-12-26 2020-08-20 오지 홀딩스 가부시키가이샤 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름, 필름 콘덴서 및 필름 롤
US11492475B2 (en) 2017-12-26 2022-11-08 Oji Holdings Corporation Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll
US11661507B2 (en) 2017-12-26 2023-05-30 Oji Holdings Corporation Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll
US11926730B2 (en) 2017-12-26 2024-03-12 Oji Holdings Corporation Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll
JP2022514249A (ja) * 2018-12-20 2022-02-10 ボレアリス エージー 破壊強度が改善された二軸配向ポリプロピレンフィルム
JP7311605B2 (ja) 2018-12-20 2023-07-19 ボレアリス エージー 破壊強度が改善された二軸配向ポリプロピレンフィルム
WO2023127534A1 (ja) * 2021-12-28 2023-07-06 東洋紡株式会社 二軸配向ポリプロピレンフィルム
WO2023127535A1 (ja) * 2021-12-28 2023-07-06 東洋紡株式会社 二軸配向ポリプロピレン系フィルム
JP7509328B2 (ja) 2021-12-28 2024-07-02 東洋紡株式会社 二軸配向ポリプロピレン系フィルム

Also Published As

Publication number Publication date
KR101811079B1 (ko) 2017-12-20
CN102959656B (zh) 2015-09-16
US20130170096A1 (en) 2013-07-04
JP5825103B2 (ja) 2015-12-02
EP2590191A4 (en) 2015-11-25
KR20130100953A (ko) 2013-09-12
JPWO2012002123A1 (ja) 2013-08-22
EP2590191A1 (en) 2013-05-08
CN102959656A (zh) 2013-03-06
US9093219B2 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
JP5825103B2 (ja) 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
JP5472461B2 (ja) 二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
KR102500999B1 (ko) 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서 그리고 이들의 제조 방법
JP6120180B2 (ja) コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
JP5660261B1 (ja) 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
JP5664137B2 (ja) コンデンサ用二軸延伸ポリプロピレンフィルムおよび金属化フィルム、フィルムコンデンサ
JP6319293B2 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ
EP3124523B1 (en) Biaxially oriented polypropylene film
JP5664136B2 (ja) コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
EP3677620A1 (en) Polypropylene film, metallized film, and film capacitor
JP6032386B1 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属積層フィルムおよびフィルムコンデンサ
WO2012144015A1 (ja) コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ
JP2016187959A (ja) 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP2016188360A (ja) 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6682937B2 (ja) コンデンサ用二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ
WO2020040127A1 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
US20220135780A1 (en) Polypropylene film, metal layer laminated film using polypropylene film, and film capacitor
JP6885484B2 (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP2020132884A (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ
JP2020132883A (ja) ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030683.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011527132

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011800591

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10797/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137000454

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13703173

Country of ref document: US