WO2017064909A1 - 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ - Google Patents
二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ Download PDFInfo
- Publication number
- WO2017064909A1 WO2017064909A1 PCT/JP2016/073191 JP2016073191W WO2017064909A1 WO 2017064909 A1 WO2017064909 A1 WO 2017064909A1 JP 2016073191 W JP2016073191 W JP 2016073191W WO 2017064909 A1 WO2017064909 A1 WO 2017064909A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- biaxially oriented
- oriented polypropylene
- temperature
- stretching
- Prior art date
Links
- 229920006378 biaxially oriented polypropylene Polymers 0.000 title claims abstract description 82
- 239000011127 biaxially oriented polypropylene Substances 0.000 title claims abstract description 82
- 239000003990 capacitor Substances 0.000 title claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 30
- 239000002184 metal Substances 0.000 title claims abstract description 30
- -1 polypropylene Polymers 0.000 claims abstract description 79
- 239000004743 Polypropylene Substances 0.000 claims abstract description 77
- 229920001155 polypropylene Polymers 0.000 claims abstract description 76
- 239000011347 resin Substances 0.000 claims abstract description 52
- 229920005989 resin Polymers 0.000 claims abstract description 52
- 238000002844 melting Methods 0.000 claims abstract description 49
- 230000008018 melting Effects 0.000 claims abstract description 49
- 238000005259 measurement Methods 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 8
- 230000000630 rising effect Effects 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 61
- 230000015572 biosynthetic process Effects 0.000 description 26
- 239000011342 resin composition Substances 0.000 description 15
- 230000000704 physical effect Effects 0.000 description 12
- 230000005855 radiation Effects 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 238000001125 extrusion Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- 238000007740 vapor deposition Methods 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000003963 antioxidant agent Substances 0.000 description 8
- 230000003078 antioxidant effect Effects 0.000 description 8
- 238000002425 crystallisation Methods 0.000 description 8
- 230000008025 crystallization Effects 0.000 description 8
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 8
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000155 melt Substances 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000113 differential scanning calorimetry Methods 0.000 description 6
- 230000001737 promoting effect Effects 0.000 description 6
- 238000009736 wetting Methods 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000037303 wrinkles Effects 0.000 description 5
- 239000008096 xylene Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000003851 corona treatment Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- ADOBXTDBFNCOBN-UHFFFAOYSA-N 1-heptadecene Chemical compound CCCCCCCCCCCCCCCC=C ADOBXTDBFNCOBN-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000003484 crystal nucleating agent Substances 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- MGWAVDBGNNKXQV-UHFFFAOYSA-N diisobutyl phthalate Chemical compound CC(C)COC(=O)C1=CC=CC=C1C(=O)OCC(C)C MGWAVDBGNNKXQV-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- VAMFXQBUQXONLZ-UHFFFAOYSA-N icos-1-ene Chemical compound CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920005606 polypropylene copolymer Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 2
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- PCBPVYHMZBWMAZ-UHFFFAOYSA-N 5-methylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C)CC1C=C2 PCBPVYHMZBWMAZ-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- JWCYDYZLEAQGJJ-UHFFFAOYSA-N dicyclopentyl(dimethoxy)silane Chemical compound C1CCCC1[Si](OC)(OC)C1CCCC1 JWCYDYZLEAQGJJ-UHFFFAOYSA-N 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002989 phenols Chemical group 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000012791 sliding layer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/005—Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D7/00—Producing flat articles, e.g. films or sheets
- B29D7/01—Films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/085—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
- H01G4/18—Organic dielectrics of synthetic material, e.g. derivatives of cellulose
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/33—Thin- or thick-film capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2007/00—Flat articles, e.g. films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2009/00—Layered products
- B29L2009/003—Layered products comprising a metal layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/204—Di-electric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/406—Bright, glossy, shiny surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/16—Capacitors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
Definitions
- the present invention relates to a biaxially oriented polypropylene film, a metal film laminated film and a film capacitor which are excellent in high-temperature withstand voltage characteristics when used as a dielectric for a film capacitor. More specifically, the present invention relates to a biaxially oriented polypropylene film that has excellent withstand voltage characteristics at room temperature as well as withstand voltage characteristics at room temperature and can be suitably used for a dielectric for a film capacitor.
- Biaxially oriented polypropylene films are excellent in transparency, mechanical properties, electrical properties, etc., and are therefore used in various applications such as packaging applications, tape applications, cable wrapping and electrical applications including capacitors.
- capacitors are particularly preferably used for high voltage capacitors because of their excellent withstand voltage characteristics and low loss characteristics, not limited to DC applications and AC applications.
- various types of electrical equipment are being converted to inverters, and accordingly, there is an increasing demand for miniaturization and large capacity of capacitors.
- Patent Document 2 a method has been proposed in which two different types of stereoregular polypropylene are blended and the tan ⁇ peak temperature is controlled to a high temperature to improve the heat resistance and withstand voltage characteristics (see, for example, Patent Document 2).
- Patent Document 2 since the melting point of the film is 175 ° C. or less, the effect of heat resistance is limited, and the film does not satisfy the high-temperature withstand voltage characteristics exceeding 105 ° C. required for current capacitors.
- the object of the present invention is to solve the above-mentioned problems. That is, it is an object of the present invention to provide a biaxially oriented polypropylene film, a metal film laminated film, and a film capacitor that are excellent not only in withstand voltage characteristics at room temperature but also in withstand voltage characteristics at high temperatures.
- the above-described problem is a biaxially oriented polypropylene film containing a polypropylene resin as a main component, and the first melting peak Tm1 existing on the highest temperature side in the first temperature rising curve when the melting peak is measured using DSC.
- Tm1 existing on the highest temperature side in the first temperature rising curve when the melting peak is measured using DSC.
- the biaxially oriented polypropylene film of the present invention When used as a dielectric for a capacitor, it can be suitably used as a dielectric for a capacitor because of its excellent withstand voltage characteristics at high temperatures.
- the biaxially oriented polypropylene film of the present invention comprises a polypropylene resin composition containing a polypropylene resin as a main component.
- the “main component” means that the proportion of the polypropylene resin in the polypropylene resin composition is 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, particularly preferably. Is 95% by mass or more.
- polypropylene resin a homopolymer of propylene can be mainly used, but a copolymer of propylene and another unsaturated hydrocarbon may be used as long as the object of the present invention is not impaired.
- a homopolymer may be blended with a copolymer of propylene and another unsaturated hydrocarbon.
- Examples of monomer components constituting such a copolymer include ethylene, propylene (in the case of a copolymerized blend), 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene- 1,1-hexene, 4-methylpentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1- Examples include eicosene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, and 5-methyl-2-norbornene.
- the copolymerization amount of other unsaturated hydrocarbons or the blend amount of the copolymer is such that the proportion of the above-mentioned other unsaturated hydrocarbons in the propylene resin is less than 1 mol% from the viewpoint of voltage endurance characteristics and dimensional stability. Is preferred.
- the cold xylene soluble part (hereinafter referred to as CXS) of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention is preferably 4% by mass or less.
- CXS refers to a polypropylene component dissolved in xylene when the film is completely dissolved in xylene at 135 ° C. and then precipitated at 20 ° C., and has low stereoregularity and low molecular weight. This is considered to correspond to a component that is difficult to crystallize.
- the CXS of the polypropylene resin is more preferably 3% by mass or less, further preferably 2% by mass or less, and particularly preferably 1% by mass or less.
- the withstand voltage characteristic and dimensional stability of a biaxially oriented polypropylene film may be inferior.
- there are a method for increasing the catalytic activity in obtaining the polypropylene resin a method for washing the obtained polypropylene resin with a solvent or the propylene monomer itself, and the like.
- the mesopentad fraction (mmmm) of the biaxially oriented polypropylene film of the present invention and the polypropylene resin constituting the film is preferably in the range of 0.950 to 0.990, preferably 0.960 to 0.990. Is more preferable, 0.970 to 0.990 is further preferable, and 0.970 to 0.985 is particularly preferable.
- the mesopentad fraction is an index indicating the stereoregularity of the crystal phase of polypropylene resin measured by a nuclear magnetic resonance method (so-called NMR method). The higher the value, the higher the crystallinity and melting point, and not only at room temperature. It is preferable because of its excellent withstand voltage characteristics even at high temperatures.
- the withstand voltage characteristics and dimensional stability may be inferior.
- the biaxially oriented polypropylene film and the mesopentad fraction of the polypropylene resin are more than 0.990, the biaxially oriented polypropylene film cannot be obtained stably due to inferior film forming property, and the crystallinity becomes too high. Withstand voltage characteristics may deteriorate.
- a method of washing the polypropylene resin powder obtained with a solvent such as n-heptane, a catalyst and / or a promoter A method of appropriately selecting a component and selecting a component of the polypropylene resin composition is preferably employed.
- melt flow rate (hereinafter referred to as MFR) of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention is measured in accordance with the condition M (230 ° C., 2.16 kg) of JIS K 7210 (1995) Is preferably 0.5 to 10 g / 10 minutes, more preferably 1 to 8 g / 10 minutes, further preferably 1.5 to 5 g / 10 minutes, and 2 to 5 g / 10 minutes. And particularly preferred.
- MFR of the polypropylene resin is less than 0.5 g / 10 minutes, the biaxially oriented polypropylene film may not be obtained stably due to poor film forming properties.
- the withstand voltage characteristics may be inferior.
- a method of controlling the average molecular weight or molecular weight distribution of the polypropylene resin is preferably employed.
- the first melting peak Tm1 existing on the highest temperature side is 176 to 180 ° C. in the first temperature rising curve by melting peak measurement using DSC (Differential Scanning Calorimetry). .
- the first melting peak Tm1 is more preferably 176 to 179 ° C., further preferably 176 to 178 ° C., and particularly preferably 177 to 178 ° C.
- a plurality of melting peaks may exist in the first temperature rise curve by DSC measurement.
- the first melting peak Tm1 existing on the side is in the above range, which is effective for improving the withstand voltage characteristics at high temperatures.
- the first melting peak Tm1 is inferior in the withstand voltage characteristics at high temperatures regardless of whether the temperature is too high or too low.
- the first melting of the biaxially oriented polypropylene film is made through careful study. It was possible to control the peak Tm1 within a preferable temperature range. In order to control the first melting peak Tm1 within the above temperature, the above-described polypropylene resin is used, and the stretching process at the time of film formation may be a specific condition as described later.
- the biaxially oriented polypropylene film of the present invention is present on the highest temperature side in the second temperature rise curve obtained when the melting peak is measured again after the first temperature raising and cooling after the melting peak measurement using DSC.
- the temperature difference (Tm1 ⁇ Tm2) between the second melting peak Tm2 and the first melting peak Tm1 is preferably 3 to 15 ° C.
- Tm1-Tm2 is more preferably 3 to 10 ° C., further preferably 4 to 9 ° C., and particularly preferably 5 to 8 ° C.
- the second melting peak Tm2 means the original melting peak of the propylene resin forming the film, and is a value obtained by canceling the temperature shift of the melting peak in stretching during film formation.
- the second melting peak Tm2 reflects resin degradation caused by passing through the extruder at the time of film formation. Therefore, unlike the melting peak of the raw material resin before film formation, the original melting point of the raw material resin is different. A value 1 to 5 ° C. higher than the melting point is obtained. That is, the temperature difference (Tm1 ⁇ Tm2) means the magnitude of the temperature shift of the melting point resulting from the crystallization being promoted in the stretching process during film formation. When the temperature difference (Tm1 ⁇ Tm2) is less than 3 ° C., crystallization promotion by the stretching process is insufficient and the withstand voltage characteristics may be inferior.
- the orientation may be excessively oriented in the stretching process and the film may be broken or dielectric breakdown may easily occur, resulting in poor withstand voltage characteristics.
- the temperature difference (Tm1-Tm2) within the above temperature, the above-described polypropylene resin is used, and as described later, the extrusion process and the stretching process during film formation may be specified conditions.
- the biaxially oriented polypropylene film of the present invention preferably has a glossiness of 120 to 150% on both sides.
- the glossiness is more preferably 123 to 145% on both sides, further preferably 125 to 140%, and particularly preferably 128 to 138%.
- the glossiness of at least one surface is less than 120%, the density of light scattering on the film surface increases. That is, it means that there are many irregularities on the film surface, and the withstand voltage characteristics may be deteriorated due to the irregularities.
- the glossiness of at least one side exceeds 150%, the film surface has less unevenness, so it is inferior in slipperiness and easily causes wrinkles in the film transport process during film formation and processing, and deteriorates the roll shape of the film roll. In some cases, the film may break.
- the above-described polypropylene resin is used, and the casting process and the longitudinal stretching process at the time of film formation may be specified conditions as described later.
- the biaxially oriented polypropylene film of the present invention has a heat shrinkage in the longitudinal direction (direction in which the film flows during film formation) and in the width direction (direction orthogonal to the longitudinal direction on the film plane) at 120 ° C. for 15 minutes. Both ratios are preferably -1 to 5%.
- the thermal contraction rate in the longitudinal direction and the width direction at 120 ° C. for 15 minutes is more preferably ⁇ 0.5 to 4.5%, further preferably ⁇ 0.3 to 4%, ⁇ 0 It is particularly preferably 2 to 3.5%.
- the thermal shrinkage rate in either the longitudinal direction or the width direction at 120 ° C. for 15 minutes is less than ⁇ 1% (that is, when the thermal expansion coefficient exceeds 1%), it is greatly increased on the cooling can during metal deposition processing.
- the film Since the film is thermally expanded, wrinkles are generated, which may cause vapor deposition spots. Moreover, it may be inferior to the withstand voltage characteristic under high temperature.
- the thermal shrinkage rate in either the longitudinal direction or the width direction under the processing conditions at 120 ° C. for 15 minutes exceeds 5%, the film is thermally shrunk on the cooling can during metal vapor deposition processing in the same manner as described above. Wrinkles may occur and cause deposition spots. Moreover, it may be inferior to the withstand voltage characteristic under high temperature.
- the above-described polypropylene resin is used, and as described later, the longitudinal stretching step during film formation
- the transverse stretching step and the heat treatment step may be set as specific conditions.
- the biaxially oriented polypropylene film of the present invention preferably has a thermal shrinkage rate of ⁇ 1 to 10% in both the longitudinal direction and the width direction at 140 ° C. for 15 minutes.
- the thermal shrinkage in the longitudinal direction and the width direction under the treatment conditions of 140 ° C. for 15 minutes is more preferably 0 to 8%, further preferably 0 to 7%, and particularly preferably 0 to 6%.
- the thermal shrinkage rate in either the longitudinal direction or the width direction at 140 ° C. for 15 minutes is less than ⁇ 1% (that is, when the thermal expansion coefficient exceeds 1%), it is greatly increased on the cooling can during metal deposition processing. Since the film is thermally expanded, wrinkles are generated, which may cause vapor deposition spots.
- the film is thermally shrunk on the cooling can during metal vapor deposition processing as described above, so that the film is conveyed. Wrinkles may occur and cause deposition spots.
- it may be inferior to the withstand voltage characteristic under high temperature.
- a longitudinal stretching step during film formation The transverse stretching step and the heat treatment step may be set as specific conditions.
- the biaxially oriented polypropylene film of the present invention preferably has a film thickness of 1.0 to 10 ⁇ m.
- the film thickness is more preferably 1.2 to 7 ⁇ m, further preferably 1.5 to 5 ⁇ m, and particularly preferably 1.5 to 3 ⁇ m.
- the film thickness is less than 1.0 ⁇ m, the mechanical strength and withstand voltage characteristics may be inferior, or film breakage may occur during film formation and processing.
- the film thickness exceeds 10 ⁇ m, the capacity per volume may be small when used as a capacitor dielectric.
- the film thickness can be appropriately set by adjusting the discharge amount of the resin or adjusting the draft ratio when forming the sheet. However, the thinner the film thickness, the more likely the film breaks during film formation. Become. Therefore, by using the above-described polypropylene resin, it is possible to stably form a film by setting the longitudinal stretching process and the lateral stretching process at the time of film formation to specific conditions as described later.
- the biaxially oriented polypropylene film of the present invention may contain a branched polypropylene for the purpose of improving the film forming property or controlling the film surface shape.
- the branched polypropylene satisfies the relational expression that the melt tension (MS) and the melt flow rate (MFR) measured at 230 ° C. are log (MS)> ⁇ 0.56 log (MFR) +0.74.
- a branched polypropylene is preferred.
- To obtain a branched polypropylene satisfying the relational expression that the melt tension (MS) and the melt flow rate (MFR) measured at 230 ° C. are log (MS)> ⁇ 0.56 log (MFR) +0.74.
- a method or a method described in Japanese Patent No. 2869606 is preferably used. Specific examples include “Profax (trademark) PF-814” manufactured by LyondellBasel, and “Daploy HMS-PP” (WB130HMS, WB135HMS, etc.) manufactured by Borealis.
- resins obtained by the electron beam crosslinking method are exemplified. It is preferably used because the gel component in the resin is small.
- the branched polypropylene referred to here is a polypropylene having 5 or less internal trisubstituted olefins per 10,000 carbon atoms, and the presence of these internal trisubstituted olefins is the proton in the 1 H-NMR spectrum. It can be confirmed by the ratio.
- the branched polypropylene can act as an ⁇ crystal nucleating agent, and can form a rough surface by a crystal form as long as the amount is within a certain range.
- the spherulite size of the polypropylene produced in the cooling process of the melt-extruded resin sheet can be controlled to be small, the occurrence of insulation defects produced in the stretching process is suppressed, and a biaxially oriented polypropylene film having excellent withstand voltage characteristics is obtained. be able to.
- the content is preferably 0.05 to 3% by mass, more preferably 0.1 to 2% by mass, It is more preferable that the amount is ⁇ 1.5% by mass, and it is particularly preferable that the amount is 0.5 to 1% by mass.
- the content of the branched polypropylene is less than 0.05% by mass, the above effect may not be obtained.
- the content of the branched polypropylene exceeds 3% by mass, the stereoregularity as a biaxially oriented polypropylene film is lowered, and the withstand voltage characteristic may be inferior.
- various additives such as a crystal nucleating agent, an antioxidant, a thermal stabilizer, a lubricant, It is also preferable to contain an inhibitor, an anti-blocking agent, a filler, a viscosity modifier, an anti-coloring agent and the like.
- the type and content of the antioxidant are important from the viewpoint of long-term heat resistance. That is, the antioxidant is a phenolic compound having steric hindrance, and at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more.
- 2,6-di-t-butyl-p-cresol BHT: molecular weight 220.4
- 1,3,5-trimethyl-2,4,6-tris (3,5-di- -T-butyl-4-hydroxybenzyl) benzene
- Irganox® 1330 manufactured by BASF: molecular weight 775.2 1,3,5-trimethyl-2,4,6-tris (3,5-di- -T-butyl-4-hydroxybenzyl) benzene
- the total content of these antioxidants is preferably 0.03 to 1.0% by mass, more preferably 0.1 to 0.9% by mass, based on the total amount of the polypropylene resin composition.
- the content is more preferably 15 to 0.8% by mass, and particularly preferably 0.15 to 0.6% by mass.
- the antioxidant content in the polypropylene resin composition is less than 0.03% by mass, the antioxidant effect is hardly obtained and the long-term heat resistance may be poor.
- the antioxidant content in the polypropylene resin composition exceeds 1.0 mass%, the high-temperature withstand voltage characteristics may be inferior.
- the biaxially oriented polypropylene film of the present invention preferably has an ash content of 50 ppm (mass basis, hereinafter the same) or less, more preferably 40 ppm or less, further preferably 30 ppm or less, and particularly preferably 20 ppm or less. .
- the withstand voltage characteristics of the biaxially oriented polypropylene film may be inferior.
- a method of sufficiently washing the flow path of the polymer with the polypropylene resin can be preferably employed.
- the biaxially oriented polypropylene film of the present invention preferably has a surface wetting tension of at least one side of 37 to 50 mN / m, more preferably 38 to 49 mN / m, and further preferably 39 to 48 mN / m. A range of 40 to 47 mN / m is particularly preferable. When the surface wetting tension is less than 37 mN / m, adhesion to the metal may be insufficient during metal deposition. On the other hand, when the surface wetting tension exceeds 50 mN / m, the withstand voltage characteristics may be inferior.
- the biaxially oriented polypropylene film usually has a low surface energy and a surface wetting tension of about 30 mN / m. In order to make the surface wetting tension within the above range, a method of performing surface treatment after biaxial stretching is preferably employed during film formation. Specifically, corona discharge treatment, plasma treatment, glow treatment, flame treatment, and the like can be employed.
- the biaxially oriented polypropylene film of the present invention is preferably obtained by preparing a sheet mainly composed of the above-described polypropylene resin and biaxially stretching.
- the biaxial stretching method can be obtained by any of the inflation simultaneous biaxial stretching method, the tenter simultaneous biaxial stretching method, and the tenter sequential biaxial stretching method, but from the viewpoint of film formation stability and thickness uniformity, It is preferable to employ an axial stretching method. In particular, it is preferable to stretch in the width direction after stretching in the longitudinal direction.
- a functional layer may be laminated on at least one side for the purpose of imparting various effects.
- the laminated structure may be a two-layered structure, a three-layered structure, or a larger number of stacked layers.
- a lamination method for example, a feed block method or a multi-manifold method by co-extrusion or a method of laminating polypropylene films by lamination may be used.
- an easy-sliding layer in which fine particles are uniformly arranged within a range in which the withstand voltage characteristic is not deteriorated.
- a polypropylene resin composition containing the above-described preferred polypropylene resin is supplied to a uniaxial melt extruder, and melt extrusion is performed at 200 to 220 ° C. from the viewpoint of suppressing polymer deterioration.
- melt extrusion is performed at 200 to 220 ° C. from the viewpoint of suppressing polymer deterioration.
- the filter is discharged from a T-die onto a cast drum to obtain an unstretched sheet.
- the shear rate at the T die is 100 to 1,000 sec ⁇ 1 from the viewpoint of suppressing the deterioration of the polymer.
- the shear rate at the T-die is expressed by equation (1).
- shear rate at the T die is less than 100 sec ⁇ 1 , shear is not sufficient and the crystal arrangement in the unstretched sheet becomes insufficient, so that uniform stretching becomes difficult in the subsequent stretching step, and the crystallinity is uniform. A biaxially oriented polypropylene film may not be obtained.
- shear rate at the T die exceeds 1,000 sec ⁇ 1 , excessive shearing is applied, resulting in polymer deterioration and poor withstand voltage characteristics.
- Shear rate (sec ⁇ 1 ) 6Q / ⁇ Wt 2 (1)
- Q Flow rate (kg / sec) ⁇ : specific gravity (kg / cm 3 )
- W T die groove width (cm)
- t T-die groove gap (cm)
- the polypropylene resin composition flow rate, the groove width of the T die, and the groove gap are appropriately adjusted so that the shear rate at the T die is within the above-described range.
- the flow rate of the polypropylene resin composition is preferably in the range of 150 to 500 kg / hr from the viewpoint of extrusion stability.
- the groove width of the T die is preferably in the range of 500 to 1,000 mm from the viewpoint of productivity.
- the groove gap of the T die is preferably in the range of 0.8 to 2 mm from the viewpoint of internal pressure in the extrusion system and casting accuracy.
- the surface temperature of the cast drum is preferably 60 to 100 ° C. from the viewpoint of controlling the glossiness within an appropriate range.
- the surface temperature of the cast drum is more preferably 70 to 98 ° C., further preferably 80 to 96 ° C., and particularly preferably 85 to 95 ° C.
- the time for the molten sheet discharged from the T die to land on the cast drum and adhere to the cast drum is 1 second from the viewpoint of solidifying the molten sheet and promoting crystal growth, that is, not causing longitudinal thickness unevenness. Preferably, it is 1.5 seconds or more, more preferably 2 seconds or more, and particularly preferably 2.5 seconds or more.
- methods such as an electrostatic application method, an air knife method, a nip roll method, and an underwater casting method can be adopted.
- the method is preferred.
- the unstretched sheet can be uniformly stretched so that crystallization can be promoted in a stretching process described later, the first melting peak Tm1 and the temperature difference (Tm1-Tm2) of the biaxially oriented polypropylene film are preferable.
- the range can be suppressed.
- the temperature at which the unstretched sheet is stretched in the longitudinal direction is controlled.
- a temperature control method a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted.
- the film temperature for stretching in the longitudinal direction is preferably 100 to 125 ° C., more preferably 105 to 123 ° C., and still more preferably 110 to 120 ° C.
- the draw ratio is preferably 5.7 to 6.5 times, more preferably 5.8 to 6.4 times, and still more preferably 5.9 times from the viewpoint of promoting crystallization of the film and stable film formation. 6.3 times, particularly preferably 6.0 to 6.2 times. The higher the draw ratio, the more the crystallinity in the film is promoted and the voltage resistance characteristics at high temperatures are excellent. However, if the film is stretched over 6.5 times, the film breaks in the longitudinal stretching process or in the next transverse stretching process. Film tearing may occur easily.
- the stretching speed in the longitudinal direction is preferably 3,550,000 to 5,500,000% / min from the viewpoint of promoting crystallization of the film and stable film formation, and 3,600,000 to 5,400. More preferably, 3,700,000-5,200,000% / min, particularly preferably 3,800,000-5,000,000% / min. .
- the stretching speed in the longitudinal direction it is possible to control the orientation and further the crystallinity of the biaxially oriented polypropylene film, and the first melting peak Tm1 is controlled by stretching in the above preferred range. It is possible.
- the stretching speed in the longitudinal direction is less than 3,550,000% / min, the first melting peak Tm1 falls below the preferred range, and the withstand voltage characteristics at high temperatures may be inferior.
- stretching speed in the longitudinal direction exceeds 5,500,000% / min
- the first melting peak Tm1 exceeds the preferable range
- the withstand voltage characteristics at high temperatures may be inferior.
- film breakage may occur.
- a method of calculating the stretching speed in the longitudinal direction is represented by the formula (2).
- stretching by a rotating roll system is made into the tangential distance between the rolls with a peripheral speed difference, and assumes that extending
- Stretching speed (% / min) (MDX-1) ⁇ 100 / (L / V) (2) MDX: Longitudinal draw ratio (times) L: Extension section (m) V: Film forming speed after stretching (m / min)
- the above-mentioned radiation heater is used to give heat to at least one side of the film immediately before stretching, from the viewpoint of improving the stretchability of the film, and the above high magnification, high-speed stretching. It is more preferable to achieve the above. Heating by the radiation heater is a non-contact method, so it is effective for stable film formation because it suppresses sticking of the film to the roll and the film can be heated uniformly by momentarily applying heat. .
- the distance between the radiation heater and the film is preferably 10 to 50 mm.
- the distance between the radiation heater and the film is less than 10 mm, an excessive amount of heat is given to the film, and the crystallinity may be insufficiently promoted.
- the distance between the radiation heater and the film exceeds 50 mm, the amount of heat applied to the film becomes insufficient, and the film may break.
- the surface temperature of the radiation heater is preferably 500 to 1,200 ° C., more preferably 550 to 1,000 ° C., further preferably 600 to 900 ° C., and particularly preferably 700 to 800 ° C.
- the surface temperature of the radiation heater is less than 500 ° C., the film temperature just before stretching does not rise to the above temperature range, and film breakage may occur.
- the surface temperature of the radiation heater exceeds 1,200 ° C., the film temperature immediately before stretching exceeds the above-described temperature, and the crystallinity may not be sufficiently promoted.
- the neck-down ratio (film width after stretching / film width before stretching ⁇ 100) is preferably 90 to 99%.
- the film end is held by a tenter type stretching machine and introduced. From the viewpoint of promoting crystallization of the film and from the viewpoint of stable film formation, it is preferably heated to 140 to 165 ° C., more preferably 142 to 163 ° C., further preferably 144 to 160 ° C., and particularly preferably 145 to 155 ° C. Then, the film is stretched in the width direction by 8 to 15 times, more preferably 9 to 14 times, still more preferably 10 to 13 times, particularly preferably 10 to 12 times.
- the lateral stretching speed at this time is preferably 15,000 to 45,000% / minute from the viewpoint of promoting crystallization of the film and stable film formation, and 18,000 to 40,000% / minute. More preferably 20,000 to 35,000% / min, and particularly preferably 25,000 to 30,000% / min.
- heat treatment of the film is performed.
- the heat treatment may be carried out as it is in the tenter without changing the heat treatment temperature.
- the heat treatment temperature is preferably 147 to 167 ° C., and 150 to 165 ° C. More preferably, it is 152 to 163 ° C., further preferably 155 to 160 ° C.
- the heat treatment may be performed while relaxing in the longitudinal direction and / or the width direction of the film, and in particular, the relaxation rate in the width direction is 5 to 15%, more preferably 8 to 13%, still more preferably 9 to 12%. Particularly preferably, it is 10 to 12% from the viewpoint of thermal dimensional stability in the width direction.
- the surface on which the biaxially stretched polypropylene film is vapor-deposited is in air, nitrogen, carbon dioxide, or Corona discharge treatment can be performed in these mixed gases to obtain a metal film laminated film.
- the biaxially oriented polypropylene film of the present invention is preferably used as a dielectric for a capacitor, but is not limited to the type of capacitor. Specifically, from the viewpoint of electrode configuration, either a foil-wound capacitor or a metal-deposited film capacitor may be used, and it is also preferable for an oil-immersion type capacitor containing insulating oil or a dry-type capacitor not using insulating oil at all. Used. Further, from the viewpoint of shape, it may be a winding type or a laminated type. In view of the characteristics of the biaxially oriented polypropylene film of the present invention, it is particularly preferably used as a metal vapor deposition film capacitor.
- a metal film laminated film by providing a metal film on the surface of the biaxially oriented polypropylene film.
- the method is not particularly limited, for example, a method in which aluminum is vapor-deposited on at least one surface of the film to provide a metal film such as an aluminum vapor-deposited film that serves as an internal electrode of the film capacitor is preferably used.
- other metal components such as nickel, copper, gold, silver, chromium, and zinc can be deposited simultaneously or sequentially with aluminum.
- a protective layer can be provided on the deposited film with oil or the like.
- the thickness of the metal film of the metal film laminated film is preferably 20 to 100 nm from the viewpoint of the electrical characteristics and self-heeling property of the film capacitor.
- the surface resistance value of the metal film is preferably 1 to 20 ⁇ / ⁇ . The surface resistance value can be controlled by the type of metal used and the film thickness.
- the metal film laminated film can be subjected to aging treatment at a specific temperature or heat treatment after forming a metal film as necessary.
- a coating of polyphenylene oxide or the like can be applied to at least one surface of the metal film laminated film.
- the film capacitor can be obtained by laminating or winding the metal film laminated film thus obtained by various methods. A preferred method for manufacturing a wound capacitor will be described below, but is not necessarily limited thereto.
- Aluminum is vacuum-deposited on one side of the biaxially oriented polypropylene film of the present invention.
- aluminum is vapor-deposited in the stripe form which runs in the longitudinal direction of a film.
- a margin portion where aluminum is not vapor deposited.
- a tape-shaped take-up reel having a margin on one side is prepared by inserting a blade into the center of each vapor deposition section on the surface and the center of each margin section.
- Two tape-shaped take-up reels with margins on the left or right are wound on the left margin and one on the right margin, overlapping each other so that the vapor deposition part protrudes from the margin part in the width direction. Get the body.
- the core material is removed from the wound body and pressed, and the metallicon is thermally sprayed on both end sides to form external electrodes, and then a lead wire is welded to the metallicon to obtain a wound film capacitor.
- the film capacitors are used for various purposes such as for vehicles, home appliances (TVs, refrigerators, etc.), general noise prevention, automobiles (hybrid cars, power windows, wipers, etc.), and power supplies. Capacitors can also be suitably used for these applications.
- CXS Cold xylene soluble part
- First melting peak Tm1 and second melting peak Tm2 A biaxially oriented polypropylene film (5 mg) was sealed in an aluminum pan as a sample, and measured using a differential scanning calorimeter (DSC) (RDC220 manufactured by Seiko Denshi Kogyo Co., Ltd.). The first temperature rise (first run) was performed at 40 ° C./min from room temperature to 280 ° C. in a nitrogen atmosphere, and held for 5 minutes, then cooled to 30 ° C. at 40 ° C./min and held for 5 minutes. The melting peak observed in the first run was determined. Next, the second temperature increase (second run) was performed at 40 ° C./min from 30 ° C. to 280 ° C.
- DSC differential scanning calorimeter
- the temperature was maintained for 5 minutes, and then cooled to 30 ° C. at 40 ° C./min.
- the melting peak observed in the second run was determined.
- this measurement was performed 3 times, and the average value of three data about the melting peak present on the highest temperature side obtained from the first run was obtained from the first melting peak Tm1 and the second run of the biaxially oriented polypropylene film of the present invention.
- the average value of the three data for the melting peak present on the highest temperature side was determined as the second melting peak Tm2 of the biaxially oriented polypropylene film of the present invention.
- Ash content (W 1 / W 0 ) ⁇ 1,000,000 (ppm)
- Example 1 A Production of Polypropylene Resin Composition Anhydrous magnesium chloride, decane and 2-ethylhexyl alcohol were mixed, and phthalic anhydride was added to the heated solution, followed by further stirring. The solution was cooled and then added dropwise to titanium tetrachloride cooled to ⁇ 20 ° C. Next, the temperature of the mixture was raised, diisobutyl phthalate was added and stirred, and then a solid was obtained by filtration. The obtained solid was washed with decane and hexane to obtain a titanium catalyst used for propylene polymerization.
- Propylene polymerization was performed using the titanium catalyst, triethylaluminum, dicyclopentyldimethoxysilane as a co-catalyst, and hydrogen as a chain transfer agent.
- the obtained product was deactivated and then thoroughly washed with a propylene monomer to obtain a polypropylene resin.
- the polypropylene resin had a melting point of 165 ° C., an MFR of 4.0 g / 10 min, and a mesopentad fraction (mmmm) of 0.980.
- BHT as an antioxidant
- Irganox-1010 as an antioxidant
- 0.2 mass% to 99.7 mass% of the obtained polypropylene resin
- the unstretched sheet was preheated using a heated ceramic roll, and a radiation heater heated to a surface temperature of 800 ° C. was brought close to the film at a distance of 15 mm, and heated to a film temperature of 115 ° C.
- the film was stretched 6.2 times. At this time, the stretching speed in the longitudinal direction was 3,800,000% / min, and the neck-down rate was 98%.
- the edge part was hold
- one side of the film was subjected to corona discharge treatment at a treatment strength of 25 W ⁇ min / m 2 , and the film ears held by the clips were cut and removed.
- the surface treated surface is referred to as the A surface
- the other untreated surface is referred to as the B surface.
- the film from which the end portion was removed was wound up by a winder to obtain a biaxially oriented polypropylene film having a thickness of 2.5 ⁇ m. There was no film breakage when the film was formed for 1 hour. Table 1 shows the physical properties of the obtained film.
- Example 2 A biaxially oriented polypropylene film having a thickness of 2.5 ⁇ m was obtained in the same manner as in Example 1 except that the stretching speed in the longitudinal stretching step was 3,550,000% / min. There was no film breakage when the film was formed for 1 hour. Table 1 shows the physical properties of the obtained film.
- Example 3 The thickness was adjusted in the same manner as in Example 1 except that the amount of triethylaluminum serving as a co-catalyst during the production of the polypropylene resin was adjusted and the mesopentad fraction (mmmm) of the polypropylene resin was changed to 0.950. A 5 ⁇ m biaxially oriented polypropylene film was obtained. There was no film breakage when the film was formed for 1 hour. Table 1 shows the physical properties of the obtained film.
- Example 4 A biaxially oriented polypropylene film having a thickness of 2.5 ⁇ m was obtained in the same manner as in Example 1 except that the surface temperature of the radiation heater in the longitudinal stretching step was 500 ° C. When the film was formed for 1 hour, one film breakage occurred. Table 1 shows the physical properties of the obtained film.
- Example 5 A biaxially oriented polypropylene film having a thickness of 2.5 ⁇ m was obtained in the same manner as in Example 1 except that the stretching speed in the longitudinal stretching step was 5,000,000% / min. There was no film breakage when the film was formed for 1 hour. Table 1 shows the physical properties of the obtained film.
- Example 6 A biaxially oriented polypropylene film having a thickness of 2.5 ⁇ m was obtained in the same manner as in Example 1 except that the stretching speed in the longitudinal stretching process was changed to 5,200,000% / min. In addition, the film fracture
- Example 7 A biaxially oriented polypropylene film having a thickness of 2.5 ⁇ m was obtained in the same manner as in Example 1 except that the stretching speed in the longitudinal stretching step was changed to 5,400,000% / min. When the film was formed for 1 hour, one film breakage occurred. Table 1 shows the physical properties of the obtained film.
- Example 8 A biaxially oriented polypropylene film having a thickness of 2.5 ⁇ m was obtained in the same manner as in Example 1 except that the stretching speed in the longitudinal stretching step was changed to 5,500,000% / min. When the film was formed for 1 hour, one film breakage occurred. Table 1 shows the physical properties of the obtained film.
- Example 1 A biaxially oriented polypropylene film having a thickness of 2.5 ⁇ m was obtained in the same manner as in Example 1 except that the stretching speed in the longitudinal stretching step was changed to 5,600,000% / min. When the film was formed for 1 hour, the film was broken three times. Table 1 shows the physical properties of the obtained film.
- Example 2 A biaxially oriented polypropylene film having a thickness of 2.5 ⁇ m was obtained in the same manner as in Example 1 except that the stretching speed in the longitudinal stretching step was changed to 3,300,000% / min. There was no film breakage when the film was formed for 1 hour. Table 1 shows the physical properties of the obtained film.
- Example 3 A biaxial orientation with a thickness of 2.5 ⁇ m was prepared in the same manner as in Example 1 except that the amount of hydrogenation during the production of the polypropylene resin was adjusted and the mesopentad fraction (mmmm) of the polypropylene resin was changed to 0.940. A polypropylene film was obtained. There was no film breakage when the film was formed for 1 hour. Table 1 shows the physical properties of the obtained film.
- Example 4 It was produced in the same manner as in Example 1 except that the surface temperature of the radiation heater in the longitudinal stretching step was set to 450 ° C. As a result, film breakage occurred frequently, and a biaxially oriented polypropylene film could not be obtained.
- the biaxially oriented polypropylene film of the present invention can be provided as a biaxially oriented polypropylene film having excellent withstand voltage characteristics under high temperature conditions because the melting peak of the film is controlled when used as a capacitor dielectric. .
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
せん断速度(sec-1)=6Q/ρWt2 ・・・(1)
Q:流量(kg/sec)
ρ:比重(kg/cm3)
W:Tダイの溝幅(cm)
t:Tダイの溝間隙(cm)
延伸速度(%/分)=(MDX-1)×100/(L/V) ・・・(2)
MDX:長手方向の延伸倍率(倍)
L:延伸区間(m)
V:延伸後の製膜速度(m/分)
ポリプロピレン樹脂試料0.5gを135℃のキシレン100mlに溶解して放冷後、20℃の恒温水槽で1時間再結晶させた後にろ過液に溶解しているポリプロピレン系成分を液体クロマトグラフ法にて定量する(X(g))。試料0.5gの精量値(X0(g))を用いて下記式から算出した。
CXS(%)=(X/X0)×100
ポリプロピレン樹脂、または二軸配向ポリプロピレンフィルムを試料として溶媒に溶解し、13C-NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)を求めた(参考文献:新版 高分子分析ハンドブック 社団法人日本分析化学会・高分子分析研究懇談会 編 1995年 P609~611)。
A.測定条件
装置:Bruker社製 DRX-500
測定核:13C核(共鳴周波数:125.8MHz)
測定濃度:10wt%
溶媒:ベンゼン/重オルトジクロロベンゼン=質量比1:3混合溶液
測定温度:130℃
スピン回転数:12Hz
NMR試料管:5mm管
パルス幅:45°(4.5μs)
パルス繰り返し時間:10秒
データポイント:64K
換算回数:10,000回
測定モード:complete decoupling
B.解析条件
LB(ラインブロードニングファクター)を1.0としてフーリエ変換を行い、mmmmピークを21.86ppmとした。WINFITソフト(Bruker社製)を用いて、ピーク分割を行う。その際に、高磁場側のピークから以下のようにピーク分割を行い、さらに付属ソフトの自動フィッティングを行った。ピーク分割の最適化を行った上で、mmmmのピーク分率の合計を求めた。なお、上記測定を5回行い、その平均値を本試料のメソペンタッド分率(mmmm)とした。
ピーク
(a)mrrm
(b)(c)rrrm(2つのピークとして分割)
(d)rrrr
(e)mrmr
(f)mrmm+rmrr
(g)mmrr
(h)rmmr
(i)mmmr
(j)mmmm
JIS K7210(1995)の条件M(230℃、2.16kg)に準拠して測定した。
JIS K7210(1999)に示されるMFR測定用の装置に準じて測定した。株式会社東洋精機社製メルトテンションテスターを用いて、プロピレン樹脂試料を230℃に加熱し、溶融ポリマーを押出速度15mm/分で吐出しストランドとした。このストランドを6.5m/分の速度で引き取る際の張力を測定し、溶融張力を求めた。
二軸配向ポリプロピレンフィルム5mgを試料としてアルミニウム製パンに封入し、示差走査熱量計(DSC)(セイコー電子工業株式会社製RDC220)を用いて測定した。窒素雰囲気下で室温から280℃まで40℃/分で1回目の昇温(ファーストラン)を行い、5分間保持した後、30℃まで40℃/分で冷却し、5分間保持した。上記ファーストランで観察された融解ピークを求めた。ついで、同じく窒素雰囲気下で30℃から280℃まで40℃/分で2回目の昇温(セカンドラン)を行い、5分間保持した後、30℃まで40℃/分で冷却した。上記セカンドランで観察された融解ピークを求めた。なお、本測定を3回行い、ファーストランより求められた最も高温側に存在する融解ピークについて3個のデータの平均値を本発明の二軸配向ポリプロピレンフィルムの第1融解ピークTm1、セカンドランより求められた最も高温側に存在する融解ピークについて3個のデータの平均値を本発明の二軸配向ポリプロピレンフィルムの第2融解ピークTm2とした。
JIS K7105(1981)に準じ、スガ試験機株式会社製デジタル変角光沢計UGV-5Dを用いて入射角60°、受光角60°の条件で測定した。なお、本測定を5回行い、その平均値を本発明の二軸配向ポリプロピレンフィルムの光沢度とした。
二軸配向ポリプロピレンフィルムの長手方向もしくは幅方向について、測定方向200mm、測定方向と直角の方向10mmとなるように試料を5本切り出し、両端から50mmの位置に印を付けて試長100mmとした。次に、荷重3gを付けて120℃または140℃に保温されたオーブン内に吊し、15分加熱後に取り出して、室温で冷却後、寸法(l1)を測定して下記式にて求め、長手方向、幅方向ともにそれぞれ5本の平均値を本発明の二軸配向ポリプロピレンフィルムの熱収縮率とした。
熱収縮率={(l0-l1)/l0}×100(%)
JIS C2330(2001)の7.4.1.1に準じ、マイクロメーター法厚みを測定した。
JIS C2330(1995)に従い、初期質量W0の二軸配向ポリプロピレンフィルムを白金坩堝に入れ、まずガスバーナーで十分に燃焼させた後、750~800℃の電気炉で1時間処理して完全に灰化し、得られた灰の質量W1を測定し、下記式から算出した。
灰分=(W1/W0)×1,000,000(ppm)
ホルムアルデヒドとエチレングリコールモノエチルエーテルとの混合液によるJIS K6768(1999)に規定された測定方法に基づいて測定した。
金属膜積層フィルムを長手方向に10mm、幅方向に50mmの短冊状にサンプリングしたものを試料とし、4端子法により幅方向30mm間の金属膜の抵抗を測定した。得られた測定値に試料幅(10mm)を乗じて、電極間距離(30mm)を除して、10mm×10mm当たりの表面抵抗値を算出した。なお、表面抵抗値の単位はΩ/□とする。
後述する各実施例、および比較例における二軸配向ポリプロピレンフィルムを製膜する際のフィルム破れ回数を目視で観察し、製膜安定性を評価した。なお、製膜時間1時間中の縦延伸、もしくは横延伸でのフィルム破断回数を観察し、下記判断基準により評価した。
○(優良):フィルム破断なし
△(良好):フィルム破断1回
×(不可):フィルム破断2回以上
JIS C2330(2001)に準じて、125℃に温調した熱風オーブン中に電極を設置し、二軸配向ポリプロピレンフィルムの絶縁破壊電圧を測定した。なお、本測定を5回行い、その平均値を求め、上記(8)項で求めたフィルム厚みで除して1μm当たりの高温絶縁破壊電圧(V/μm)を求めた。高温耐電圧特性は、上記高温絶縁破壊電圧を下記の基準により評価した。
○(優良):450V/μm以上
△(良好):400V/μm以上、450V/μm未満
×(不可):400V/μm未満
A.ポリプロピレン樹脂組成物の製造
無水塩化マグネシウム、デカン、2-エチルヘキシルアルコールを混合し、加熱した溶液に無水フタル酸を添加し、さらに撹拌した。前記溶液を冷却した後、-20℃に冷却した四塩化チタンに滴下した。次いで、前記混合物を昇温し、フタル酸ジイソブチルを加え撹拌した後、ろ過により固体を得た。得られた固体をデカンおよびヘキサンで洗浄し、プロピレン重合に使用するチタン触媒を得た。
上記チタン触媒、および助触媒としてトリエチルアルミニウム、ジシクロペンチルジメトキシシラン、連鎖移動剤として水素を用いてプロピレン重合を行った。得られた生成物は失活した後、プロピレンモノマーで十分に洗浄を行い、ポリプロピレン樹脂を得た。このポリプロピレン樹脂の融点は165℃、MFRは4.0g/10分、メソペンタッド分率(mmmm)は0.980であった。
得られたポリプロピレン樹脂99.7質量%に酸化防止剤としてBHTが0.1質量%、同じく酸化防止剤としてIrganox-1010が0.2質量%となるように添加した後、260℃の温度で混練、ペレット化し、ポリプロピレン樹脂組成物を得た。
前記ポリプロピレン樹脂組成物100質量%を単軸の溶融押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物除去を行った。なお、押出の際のTダイでかかるせん断速度は500sec-1であった。Tダイから吐出された溶融シートを90℃に表面温度を制御したキャストドラム上に密着させ、ドラムに3秒間接するようにキャストして未延伸シートを得た。溶融シートをキャストドラム上に密着させるためにエアーナイフおよび端部スポットエアーを用いた。ついで、加熱したセラミックロールを用いて未延伸シートを予熱し、表面温度800℃に加熱したラジエーションヒーターをフィルムとの距離15mmで接近させ、フィルム温度が115℃になるように加熱した後、長手方向に6.2倍延伸を行った。この際の長手方向の延伸速度は3,800,000%/分であり、ネックダウン率は98%であった。次に端部をクリップで把持して145℃で幅方向に延伸速度27,000%/分で10倍延伸した。さらに、155℃で6秒間の熱処理を行い、幅方向に10%の弛緩を行った。その後、室温まで除冷した後にフィルムの片面に25W・min/m2の処理強度でコロナ放電処理を施し、クリップで把持したフィルムの耳部をカットして除去した。なお、表面処理した面をA面、もう片方の未処理面をB面と呼ぶこととした。端部を除去したフィルムを巻取機で巻取り、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際のフィルム破断はなかった。得られたフィルムの物性を表1に示す。
縦延伸工程の延伸速度を3,550,000%/分とした以外は実施例1と同様に作製し、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際のフィルム破断はなかった。得られたフィルムの物性を表1に示す。
ポリプロピレン樹脂製造時の助触媒であるトリエチルアルミニウム添加量を調整し、ポリプロピレン樹脂のメソペンタッド分率(mmmm)が0.950となるように変更した以外は実施例1と同様に作製し、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際のフィルム破断はなかった。得られたフィルムの物性を表1に示す。
縦延伸工程のラジエーションヒーターの表面温度を500℃とした以外は実施例1と同様に作製し、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際にフィルム破断が1回発生した。得られたフィルムの物性を表1に示す。
縦延伸工程の延伸速度を5,000,000%/分とした以外は実施例1と同様に作製し、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際のフィルム破断はなかった。得られたフィルムの物性を表1に示す。
縦延伸工程の延伸速度を5,200,000%/分とした以外は実施例1と同様に作製し、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際のフィルム破断が1回発生した。得られたフィルムの物性を表1に示す。
縦延伸工程の延伸速度を5,400,000%/分とした以外は実施例1と同様に作製し、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際にフィルム破断が1回発生した。得られたフィルムの物性を表1に示す。
縦延伸工程の延伸速度を5,500,000%/分とした以外は実施例1と同様に作製し、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際にフィルム破断が1回発生した。得られたフィルムの物性を表1に示す。
縦延伸工程の延伸速度を5,600,000%/分とした以外は実施例1と同様に作製し、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際にフィルム破断が3回発生した。得られたフィルムの物性を表1に示す。
縦延伸工程の延伸速度を3,300,000%/分とした以外は実施例1と同様に作製し、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際のフィルム破断はなかった。得られたフィルムの物性を表1に示す。
ポリプロピレン樹脂製造時の水素添加量を調整し、ポリプロピレン樹脂のメソペンタッド分率(mmmm)が0.940となるように変更した以外は実施例1と同様に作製し、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際のフィルム破断はなかった。得られたフィルムの物性を表1に示す。
縦延伸工程のラジエーションヒーターの表面温度を450℃とした以外は実施例1と同様に作製した。結果、フィルム破断が多発し、二軸配向ポリプロピレンフィルムを得ることができなかった。
ポリプロピレン樹脂製造時の水素添加量を調整し、ポリプロピレン樹脂のメソペンタッド分率(mmmm)が0.920となるように変更するとともに、縦延伸工程の延伸速度を5,800,000%/分とした以外は実施例1と同様に作製し、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。なお、1時間製膜した際にフィルム破断が3回発生した。得られたフィルムの物性を表1に示す。
Claims (6)
- ポリプロピレン樹脂を主成分とする二軸配向ポリプロピレンフィルムであって、DSCを用いた融解ピーク測定による1回目の昇温カーブにおいて、最も高温側に存在する第1融解ピークTm1が176~180℃である二軸配向ポリプロピレンフィルム。
- 前記DSCを用いた融解ピーク測定による1回目の昇温、冷却後に再度融解ピーク測定を行った場合に得られる2回目の昇温カーブにおいて、最も高温側に存在する第2融解ピークTm2と、前記第1融解ピークTm1との温度差(Tm1-Tm2)が3~15℃である、請求項1に記載の二軸配向ポリプロピレンフィルム。
- 光沢度が両面ともに120~150%である、請求項1または2に記載の二軸配向ポリプロピレンフィルム。
- コンデンサ用誘電体として用いられる、請求項1~3のいずれかに記載の二軸配向ポリプロピレンフィルム。
- 請求項1~4のいずれかに記載の二軸配向ポリプロピレンフィルムの少なくとも片面に金属膜を形成してなる金属膜積層フィルム。
- 請求項5に記載の金属膜積層フィルムを巻回してなるフィルムコンデンサ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016558157A JP6183563B1 (ja) | 2015-10-13 | 2016-08-05 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
KR1020187009643A KR102451416B1 (ko) | 2015-10-13 | 2016-08-05 | 2축 배향 폴리프로필렌 필름, 금속막 적층 필름 및 필름 콘덴서 |
EP16855163.8A EP3363616B1 (en) | 2015-10-13 | 2016-08-05 | Biaxially oriented polypropylene film, multilayered film including metal film, and film capacitor |
CN201680058836.4A CN108136661B (zh) | 2015-10-13 | 2016-08-05 | 双轴取向聚丙烯膜、金属膜叠层膜及膜电容器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-201800 | 2015-10-13 | ||
JP2015201800 | 2015-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017064909A1 true WO2017064909A1 (ja) | 2017-04-20 |
Family
ID=58517900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/073191 WO2017064909A1 (ja) | 2015-10-13 | 2016-08-05 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3363616B1 (ja) |
JP (1) | JP6183563B1 (ja) |
KR (1) | KR102451416B1 (ja) |
CN (1) | CN108136661B (ja) |
WO (1) | WO2017064909A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019172390A1 (ja) * | 2018-03-07 | 2019-09-12 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、フィルムコンデンサ、及び、フィルムロール |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6658953B1 (ja) * | 2018-08-23 | 2020-03-04 | 東レ株式会社 | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ |
KR20210047870A (ko) * | 2018-08-29 | 2021-04-30 | 오지 홀딩스 가부시키가이샤 | 금속층 일체형 폴리프로필렌 필름, 필름 콘덴서, 및 금속층 일체형 폴리프로필렌 필름의 제조 방법 |
US20220135780A1 (en) * | 2019-02-21 | 2022-05-05 | Toray Industries, Inc. | Polypropylene film, metal layer laminated film using polypropylene film, and film capacitor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012002123A1 (ja) * | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
JP2014011181A (ja) * | 2012-06-27 | 2014-01-20 | Mitsui Chemicals Inc | コンデンサ用フィルム、金属化フィルムおよびフィルムコンデンサ |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63265933A (ja) * | 1987-04-23 | 1988-11-02 | Sekisui Plastics Co Ltd | 熱収縮性シ−ト |
JPH10291284A (ja) * | 1997-04-21 | 1998-11-04 | Tokuyama Corp | 積層シート |
JP3432400B2 (ja) * | 1997-10-24 | 2003-08-04 | 株式会社トクヤマ | 積層シート |
CN101374891B (zh) * | 2006-02-17 | 2011-11-30 | 东丽株式会社 | 双轴取向聚丙烯薄膜 |
JP2008133351A (ja) | 2006-11-28 | 2008-06-12 | Prime Polymer:Kk | コンデンサーフィルム用プロピレン系重合体 |
WO2009060944A1 (ja) * | 2007-11-07 | 2009-05-14 | Oji Paper Co., Ltd. | コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー |
JP5149240B2 (ja) | 2009-06-04 | 2013-02-20 | 王子ホールディングス株式会社 | コンデンサー用二軸延伸ポリプロピレンフィルム、その金属蒸着フィルム及びキャスト原反シート |
JP5842743B2 (ja) * | 2012-06-15 | 2016-01-13 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム |
JP6221481B2 (ja) * | 2012-08-09 | 2017-11-01 | 東洋紡株式会社 | ポリプロピレンフィルム |
KR102352439B1 (ko) * | 2013-07-23 | 2022-01-18 | 도요보 가부시키가이샤 | 연신 폴리프로필렌 필름 |
CN104579695B (zh) * | 2013-10-23 | 2018-07-20 | 新华三技术有限公司 | 一种数据转发装置和方法 |
WO2015129581A1 (ja) | 2014-02-25 | 2015-09-03 | 日本化薬株式会社 | 新規な有機多環芳香族化合物、およびその利用 |
KR102388113B1 (ko) * | 2014-02-28 | 2022-04-19 | 도레이 카부시키가이샤 | 2축 배향 폴리프로필렌 필름 |
JP6217693B2 (ja) * | 2015-06-08 | 2017-10-25 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム |
-
2016
- 2016-08-05 WO PCT/JP2016/073191 patent/WO2017064909A1/ja active Application Filing
- 2016-08-05 EP EP16855163.8A patent/EP3363616B1/en active Active
- 2016-08-05 JP JP2016558157A patent/JP6183563B1/ja active Active
- 2016-08-05 CN CN201680058836.4A patent/CN108136661B/zh active Active
- 2016-08-05 KR KR1020187009643A patent/KR102451416B1/ko active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012002123A1 (ja) * | 2010-06-29 | 2012-01-05 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
JP2014011181A (ja) * | 2012-06-27 | 2014-01-20 | Mitsui Chemicals Inc | コンデンサ用フィルム、金属化フィルムおよびフィルムコンデンサ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3363616A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019172390A1 (ja) * | 2018-03-07 | 2019-09-12 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、フィルムコンデンサ、及び、フィルムロール |
JP2020041120A (ja) * | 2018-03-07 | 2020-03-19 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、フィルムコンデンサ、及び、フィルムロール |
CN111801373A (zh) * | 2018-03-07 | 2020-10-20 | 王子控股株式会社 | 双轴拉伸聚丙烯薄膜、金属化薄膜、薄膜电容器及薄膜卷 |
CN111801373B (zh) * | 2018-03-07 | 2022-12-27 | 王子控股株式会社 | 双轴拉伸聚丙烯薄膜、金属化薄膜、薄膜电容器及薄膜卷 |
JP7261389B2 (ja) | 2018-03-07 | 2023-04-20 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属化フィルム、フィルムコンデンサ、及び、フィルムロール |
Also Published As
Publication number | Publication date |
---|---|
CN108136661B (zh) | 2020-08-18 |
EP3363616B1 (en) | 2020-10-07 |
KR102451416B1 (ko) | 2022-10-07 |
EP3363616A4 (en) | 2019-05-15 |
JP6183563B1 (ja) | 2017-08-23 |
KR20180068971A (ko) | 2018-06-22 |
CN108136661A (zh) | 2018-06-08 |
EP3363616A1 (en) | 2018-08-22 |
JPWO2017064909A1 (ja) | 2017-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6115687B1 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6790398B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6120180B2 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
JP5472461B2 (ja) | 二軸延伸ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
JP5664137B2 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルムおよび金属化フィルム、フィルムコンデンサ | |
JP6319293B2 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属化フィルム、およびフィルムコンデンサ | |
JP6988244B2 (ja) | ポリプロピレンフィルムロール | |
JP5664136B2 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ | |
US20160024641A1 (en) | Biaxially oriented polypropylene film, metallized film and film capacitor | |
WO2012002123A1 (ja) | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ | |
JP2016188360A (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6183563B1 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
WO2012144015A1 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ | |
JP6682937B2 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ | |
WO2016158590A1 (ja) | コンデンサ用二軸配向ポリプロピレンフィルム、金属積層フィルムおよびフィルムコンデンサ | |
WO2020171163A1 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP2019172972A (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6988243B2 (ja) | ポリプロピレンフィルムロール | |
JP2019172973A (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP7524669B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルム、およびフィルムコンデンサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016558157 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16855163 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187009643 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016855163 Country of ref document: EP |