WO2011115132A1 - アミド化合物の製造方法 - Google Patents

アミド化合物の製造方法 Download PDF

Info

Publication number
WO2011115132A1
WO2011115132A1 PCT/JP2011/056098 JP2011056098W WO2011115132A1 WO 2011115132 A1 WO2011115132 A1 WO 2011115132A1 JP 2011056098 W JP2011056098 W JP 2011056098W WO 2011115132 A1 WO2011115132 A1 WO 2011115132A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxime
reaction
lactam
catalyst
solvent
Prior art date
Application number
PCT/JP2011/056098
Other languages
English (en)
French (fr)
Inventor
釘本 純一
河井 譲治
和雄 倭
昌英 岡田
常実 杉本
紘 松本
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44649216&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011115132(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US13/635,092 priority Critical patent/US8816069B2/en
Priority to JP2012505705A priority patent/JP5708637B2/ja
Priority to CN201180024285.7A priority patent/CN102892752B/zh
Priority to EP11756317.1A priority patent/EP2548862B1/en
Priority to ES11756317.1T priority patent/ES2590347T3/es
Publication of WO2011115132A1 publication Critical patent/WO2011115132A1/ja
Priority to US14/141,867 priority patent/US9242931B2/en
Priority to US14/141,916 priority patent/US8962826B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement
    • C07D201/06Preparation of lactams from or via oximes by Beckmann rearrangement from ketones by simultaneous oxime formation and rearrangement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D225/00Heterocyclic compounds containing rings of more than seven members having one nitrogen atom as the only ring hetero atom
    • C07D225/02Heterocyclic compounds containing rings of more than seven members having one nitrogen atom as the only ring hetero atom not condensed with other rings

Definitions

  • the present invention relates to a method for producing amide compounds, such as lactams, which are useful as raw materials for pharmaceuticals, agricultural chemicals, dyes, polyamides and the like.
  • a method for industrially producing an amide compound a method in which an oxime compound is produced from a corresponding ketone and hydroxylamine and this is subjected to Beckmann rearrangement is common.
  • industrially useful ⁇ -caprolactam is produced by Beckmann rearrangement of cyclohexanone oxime.
  • Concentrated sulfuric acid and fuming sulfuric acid are used for rearrangement, but these strong acids are required in excess of the stoichiometric amount, and during neutralization, salts such as ammonium sulfate far exceeding the production of ⁇ -caprolactam are by-produced. That is, it is a process that requires a large amount of equipment, raw materials and energy for the production of a large amount of by-products (such as sulfuric acid) and the treatment of by-products (such as ammonium sulfate).
  • Patent Document 2 reports that the Beckmann rearrangement reaction is performed in a nonpolar solvent using the catalyst disclosed in Patent Document 1.
  • Patent Document 3 and Patent Document 4 report a method of performing Beckmann rearrangement of an oxime compound with an analogous compound of the catalyst disclosed in Patent Document 1.
  • Patent Documents 5 and 6 disclose Beckmann rearrangement of an oxime compound using an acid chloride such as thionyl chloride as a catalyst.
  • Patent Documents 7 and 8 specific processes for producing amide compounds that perform Beckmann rearrangement using the catalyst disclosed in Patent Document 1 are disclosed in Patent Documents 7 and 8, but the recycling of solvents and the like is specifically shown. Not.
  • lactam is a polymer or copolymer used for yarn, fiber, film, etc., and its purity may need to meet strict standard values.
  • the main standard values include, for example, absorbance, light transmittance difference (LT. Diff, details will be described later), UV value (UV absorbance (wavelength 290 nm) of lactam aqueous solution (50% by weight)) with a width of 1 cm. PAN number (ISO standard 8660).
  • Patent Document 14 discloses that the PAN number can be improved by preventing the nickel catalyst from being mixed into the reboiler by a method in which caprolactam is hydrotreated with a nickel catalyst and then purified by distillation. It is shown.
  • Patent Document 15 states that impurities in cyclododecanone as a raw material are LT. The effect on diff is disclosed.
  • Patent Document 9 discloses a method of hydrogenating caprolactam obtained by Beckmann rearrangement reaction in the presence of a suspended hydrogenation catalyst.
  • Patent Documents 10 and 11 disclose a method for hydrogenating caprolactam after treatment with activated carbon and an ion exchange resin.
  • Patent Document 12 discloses a method of hydrogenating a lactam obtained by cyclizing and hydrolyzing an aminonitrile in the presence of a hydrogenation catalyst.
  • the above technique relates to improvement of the standard value of lactam obtained by Beckmann rearrangement of oxime using strong acid such as sulfuric acid.
  • strong acid such as sulfuric acid.
  • the disclosed technology shows the relationship between the processing method and the UV value, PAN value, etc., and the relationship between the specification of the causative substance concentration causing the decrease in the standard value and the standard value is not shown. Absent.
  • the above standard is effective only when the impurities in the amide compound have a predetermined UV absorption or when they react with potassium permanganate, and the presence of other impurities cannot be detected.
  • the polymerization may be hindered and the physical properties of the polymer may be lowered.
  • a lactam and / or an amide compound having a structure different from that of the product lactam exists as an impurity, the above-mentioned standard value does not always fluctuate. Therefore, a method for detecting and quantifying the impurity is required and measures for reducing it are also required.
  • JP 2006-219470 A International Publication No. 07/125002 Pamphlet JP 2008-156277 A JP 2008-162935 A Japanese Patent Laid-Open No. 51-04376 Japanese Patent Publication No.52-012198 International Publication No. 08/096887 Pamphlet International Publication No. 09/069522 Pamphlet German Patent No. 1,253,716 German Patent No. 1,004,616 East German Patent No. 75-083 US Pat. No. 5,496,941 JP 2009-298706 A JP 2006-528649 A JP 2004-099585 A
  • An object of the present invention is to provide a method for producing an amide compound by Beckmann rearrangement of an oxime, without producing a large amount of by-products such as ammonium sulfate, and a method for producing the same. .
  • the present invention relates to the following matters.
  • a step of reacting a ketone and hydroxylamine in the presence of an organic solvent to produce an oxime (hereinafter referred to as an oximation step);
  • a step of producing an amide compound by carrying out Beckmann rearrangement of an oxime using a Beckmann rearrangement catalyst (hereinafter referred to as rearrangement step); Separating the produced amide compound and the solvent, and recycling the separated solvent to the oximation step (hereinafter referred to as a solvent recycling step);
  • a process for producing an amide compound comprising The content of halide, aldehyde compound, alcohol compound, and nitrile compound in the solvent separated by the solvent recycling step and recycled to the oximation step is 0.4 mol% or less with respect to the raw material ketone.
  • Lactam wherein impurities having double bonds are 15 ppm by weight or less.
  • the atom constituting the aromatic ring contains at least one carbon atom having a halogen atom as a leaving group.
  • the atom constituting the aromatic ring contains at least three of one or both of a hetero atom or a carbon atom having an electron withdrawing group.
  • Two of the carbon atoms having a hetero atom or an electron withdrawing group are located in the ortho or para position of the carbon atom having a halogen atom as the leaving group.
  • a lactam production method by Beckmann rearrangement of cycloalkanone oxime characterized in that impurities having a bridged cyclic structure in the Beckmann rearrangement reaction solution are 300 ppm by weight or less with respect to the target lactam. Manufacturing method.
  • ketone having a bridged cyclic structure is a ketone having a dicyclo ring structure and / or a ketone having a tricyclo ring structure.
  • 21 The method for producing a lactam according to any one of the above 17 to 20, wherein the cycloalkanone is a cycloalkanone having 8 to 20 carbon atoms and purified by recrystallization.
  • an amide compound can be obtained in a high yield using a small amount of catalyst by removing from the solvent by-products and its precursors that lead to a decrease in the activity of the Beckmann rearrangement catalyst. Furthermore, according to the present invention, a high-quality amide compound having high purity can be obtained by a simple method.
  • the present invention relates to a method for producing a higher quality amide compound, particularly lactam, according to the following first to third embodiments.
  • the first aspect of the present invention relates to a method for identifying and removing impurities that lead to a decrease in the conversion rate of the Beckmann rearrangement reaction.
  • the second aspect of the present invention relates to a method for identifying and removing impurities having a double bond as a substance that increases the light transmittance difference of an amide compound.
  • a third aspect of the present invention relates to a method for removing impurities having a bridged ring structure.
  • Amide compounds are (1) “Oxidation process” to produce the corresponding oxime, (2) “Transposition process” in which oxime is subjected to Beckmann rearrangement reaction using Beckmann rearrangement catalyst to produce amide compounds It is manufactured by the manufacturing method which has this. In that case, it is preferable to further have a “solvent recycling step” in which the reaction solution after the Beckmann rearrangement reaction is separated into an amide compound and a solvent, and the solvent is recycled to the oximation step.
  • the inventors examined the influence of impurities in the reaction solution of the Beckmann rearrangement reaction in the rearrangement step. As a result, it was found that aldoxime, amidoxime and alcohol inhibit Beckmann rearrangement reaction (see Example A). When the solvent is recycled in the solvent recycling step after the Beckmann rearrangement reaction, it is preferable to avoid accumulation of substances that inhibit the Beckmann rearrangement reaction in the solvent and mixing into the recycle solvent.
  • Aldoxime and amidoxime are known to be produced by the reaction of aldehyde, nitrile and hydroxylamine, respectively (Kyoritsu Shuppan Co., Ltd. “Chemical Dictionary”, June 1, 1993, Reprinted Edition, 34th edition, 1st p244 and p418). Nitrile is produced by dehydration of aldoxime (Kyoritsu Shuppan Co., Ltd. “Chemical Dictionary”, June 1, 1993, Reprinted Edition, Volume 34, Volume 2, p99-p100), and aldehyde is produced by hydrolysis of R—CHCl 2. (Kyoritsu Shuppan Co., Ltd. “Chemical Dictionary” published on June 1, 1993, 34th edition, Volume 1 p412).
  • R-CHCl 2 published in Kyoritsu Shuppan Co., Ltd. “Chemical Dictionary”, June 1, 1993, Reprinted Edition, Volume 34, Volume 1 p1071, Toluene and phosphorus trichloride corresponding to R-CHCl 2 corresponding to R-CHCl 2 It has been shown that methylbenzene is formed.
  • Alcohol is known to be generated by hydrolysis of R—CH 2 Cl or alkaline decomposition of aldehyde (Kyoritsu Shuppan Co., Ltd. “Chemical Dictionary”, June 1, 1993, Reprinted Edition, Volume 34, Volume 8, p466). .
  • the solvent in the rearrangement step and the oximation step is often used in common. Therefore, it is preferable to prevent nitrides, aldehydes, and chlorinated substances such as R—CH 2 Cl and R—CHCl 2 that are precursors of aldoxime and amidoxime from being mixed into the solvent recycled in the solvent recycling step. .
  • nitrides, aldehydes, and chlorinated substances such as R—CH 2 Cl and R—CHCl 2 that are precursors of aldoxime and amidoxime from being mixed into the solvent recycled in the solvent recycling step.
  • R—CH 2 Cl and R—CHCl 2 chlorinated substances
  • the allowable accumulation amount of the Beckmann rearrangement reaction inhibiting substance varies depending on the type of raw material ketone in the oximation step, the type and amount of Beckmann rearrangement catalyst used in the rearrangement step, the type of solvent, and the like.
  • thionyl chloride is used as the Beckmann rearrangement catalyst in the rearrangement step
  • toluene is used as the solvent, amidoxime, which is a by-product contained in the oxime solution sent from the oximation step to the rearrangement step.
  • the amount is preferably 0.4 mol% or less, more preferably 0.1 mol% or less, based on the amount of raw material ketone used.
  • the rearrangement reaction when the amidoxime content in the rearrangement reaction solution is too large, the rearrangement reaction is not completed with a small amount of catalyst, and oxime remains.
  • the Beckmann rearrangement reaction can be completed by increasing the Beckmann rearrangement catalyst, a large amount of catalyst is required, which is not preferable.
  • the content thereof may be in the same range as the allowable amount of amidoxime.
  • the contents of chloride, aldehyde, alcohol, and nitrile in the solvent recycled in the solvent recycling step are each set to 0. 0 relative to the amount of raw material ketone used for oximation. It is preferable to suppress to 4 mol% or less, and it is more preferable to suppress to 0.1 mol% or less.
  • the reaction solution after the Beckmann rearrangement reaction (hereinafter referred to as rearrangement solution) is usually obtained by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, adsorption, column chromatography, or a combination thereof.
  • separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, adsorption, column chromatography, or a combination thereof.
  • post-treatment is performed (details will be described later)
  • water washing, alkali washing, and acid treatment may be performed for the purpose of hydrolysis / extraction removal of the aforementioned by-products.
  • nitrile can be converted to carboxylic acid by hydrolysis using a strong acid such as sulfuric acid or sodium hydroxide, or a strong base.
  • the rearrangement solution is subjected to the post-treatment and then separated into a solvent and an amide compound in a solvent recycling step, and the solvent is recycled to the oximation step.
  • the solvent recycling step the component derived from the leaving group of the Beckmann rearrangement catalyst, the residue of the Beckmann rearrangement catalyst, the by-product and the like that are generated in the rearrangement step and dissolved in the reaction solution are removed.
  • solvent recycling step methods for separating the solvent and the target product amide compound include distillation, extraction, crystallization, recrystallization, and the like, but distillation is usually used.
  • the content of impurities in the solvent recycled by the solvent recycling step is suppressed within the above-described allowable range.
  • the by-product In the solvent recycling step, when the solvent is recovered and impurities are removed by distillation, the by-product generally generated from a ketone as a reaction raw material (for example, when the ketone is cyclododecanone, 1-chlorododecane, lauronitrile, 12-chlorododecane nitrile, etc.)
  • the by-products generated from the solvent for example, when the solvent is toluene, benzyl chloride, benzal chloride, benzaldehyde, benzyl alcohol, benzonitrile, etc.
  • Solvent distillation recovery can be performed by a single distillation operation, but by combining multiple distillation operations, fractions containing by-products are returned to the previous distillation step to prevent solvent recovery loss and some of them. It is further preferred to purify the solvent by draining and preventing the accumulation of by-products.
  • by-products are converted into substances that do not affect the rearrangement reaction by acid treatment, alkali treatment, oxidation treatment, reduction treatment, etc. It is also preferable to convert to a compound that can be easily separated. For example, hydrolysis of nitrile to carboxylic acid or reduction of aldehyde to alcohol by acid treatment or alkali treatment can be mentioned.
  • an amide compound having a light transmittance difference of preferably 35% or less, more preferably less than 35%, and a method for producing the amide compound are provided.
  • the inventors have also identified impurities that lead to an increase in the light transmittance difference.
  • Light transmittance difference of amide compound When an amide compound is used as a polymer raw material, the presence of a substance that inhibits polymerization, a substance that deteriorates physical properties, a substance that causes deterioration or coloration becomes a problem.
  • a light transmittance difference (differential light transmission, hereinafter referred to as LT.diff.), UV value, and PAN value are used.
  • the light transmittance difference is one of the standard values related to the quality of the amide compound, and the difference in absorbance at 410 nm between when the sample is added to 0.00909 N potassium permanganate in methanol and when it is not added. I mean.
  • the amide compound, particularly lactam has a difference in light transmittance of preferably 35% or less, more preferably less than 35%, and even more preferably 25% or less even after the above-described rearrangement solution is subjected to post-treatment or distillation purification. Not shown and may not be satisfactory depending on the application. Although acid treatment, alkali treatment, oxidation treatment, extraction purification, and crystallization purification, which are conventionally performed as purification methods for amide compounds such as lactam, were also performed, LT. diff. No significant decrease was observed.
  • the inventors first made an LT. Of 35% or less by hydrorefining amide compounds, particularly lactams, after distillation purification or without distillation purification. diff. It was found that a high-purity lactam, particularly laurolactam, was obtained (see Example B). A method for hydrotreating the amide compound will be described later.
  • an amide compound having a light transmittance difference (LT. Diff.) Of preferably 35% or less can be obtained.
  • the permissible range of these impurities in the amide compound is preferably 15 ppm or less, and more preferably 10 ppm or less. When the impurity concentration exceeds the allowable range, the light transmittance difference exceeds 35%.
  • the method for producing an amide compound includes an oximation step and a rearrangement step.
  • an oxime is produced from a starting material ketone by the oximation step
  • an amide compound is produced from the oxime by the rearrangement step (the following formula) reference).
  • the inventors of the present invention not only remove the above-mentioned impurities having a double bond by hydrorefining of the amide compound described above, but also hydrotreating the amide compound, crystallization purification of oxime or hydrorefining, It has been found that by performing at least one purification treatment of the raw material ketone hydrotreating, it can be reduced within an acceptable range and a high purity amide compound can be obtained.
  • methods for hydrotreating amide compounds, hydrotreating ketones, hydrotreating oximes, and crystallizing oximes will be described.
  • the reaction mixture (rearrangement liquid) containing the amide compound produced in the rearrangement step, or the residual catalyst and / or catalyst residue in the rearrangement liquid is removed, for example, as shown in Reference Example B5 described later.
  • the rearrangement liquid after the post-treatment such as water washing and / or alkali washing may be hydrogenated as it is.
  • the rearrangement solution is hydrorefined without post-treatment, the rearrangement catalyst and / or catalyst residue remains, so that the hydrogenation catalyst may be poisoned depending on the type of rearrangement catalyst.
  • the type of hydrogenation catalyst and the conditions for the hydrogenation treatment may be restricted.
  • the reaction mixture after the water-washing and / or alkali-washing post-treatment is less affected by the rearrangement catalyst and / or catalyst residue than the rearrangement liquid not subjected to the post-treatment, but the type of hydrogenation catalyst and hydrogen In some cases, the conditions of the conversion process are restricted.
  • the solvent used in the Beckmann rearrangement reaction is removed from the rearrangement solution, or the reaction mixture from which the solvent has been removed is further distilled and purified as it is (without solvent). May be.
  • the reaction mixture after purification by distillation is not affected by catalyst residues, and can be selected from a wide variety of hydrogenation catalyst types and hydrogenation conditions. Alternatively, it may be hydrogenated by dissolving it in a solvent that is not reduced under hydrogen reduction conditions.
  • the solvent include aliphatic alcohols having 1 to 3 carbon atoms (methanol, ethanol, etc.), aliphatic hydrocarbons (hexane, heptane, octane, cyclododecane, etc.) and the like. Depending on the case, aromatic hydrocarbons (benzene, toluene, xylene, etc.) can be used.
  • the hydrotreatment process is performed in the presence of a hydrogenation catalyst.
  • the hydrogenation catalyst may be a suspension bed suspended in the system, a fixed bed, or other commonly used hydrogenation processes. Further, typically, as the hydrogenation catalyst, a bulk catalyst or a supported catalyst is used.
  • Suitable hydrogenation catalysts include iron (Fe), nickel (Ni), copper (Cu), cobalt (Co), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium ( Examples thereof include those derived from one or a combination of metals selected from the group consisting of Ir), gold (Au), and platinum (Pt).
  • the catalyst carrier examples include activated carbon (C), alumina (Al 2 O 3 ), silica (SiO 2 ), titanium oxide (TiO 2 ), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), or zinc oxide (ZnO). ), Calcium oxide (CaO), diatomaceous earth, clay minerals, rare earth metal oxides such as lanthanum oxide (La 2 O 3 ) or cerium oxide (Ce 2 O 3 ). Moreover, you may use the mixture or composite oxide of these oxides. Magnesium, aluminum or boron silicates or phosphates may also be used as catalyst supports.
  • the shape of the hydrogenation catalyst either granular or powdery may be used, and any of spherical, cylindrical, irregular, and special shapes may be used as the granular.
  • Ni / Al 2 O 3 and the like examples include palladium and platinum supported on activated carbon (Pd / C, Pt / C), Ni / alumina (sulfur resistance, Ni / Al 2 O 3 and the like), Ni / diatomaceous earth, and the like.
  • a so-called stabilized nickel catalyst with controlled nickel activity (a catalyst obtained by dry-reducing and stabilizing nickel salt supported on purified diatomaceous earth) is inexpensive and easy to handle, and is a particularly preferred catalyst.
  • sulfur resistance Ni / Al 2 O 3 and the like, pretreated ones such as prereduction are used.
  • Hydrogenation may be carried out in one stage with the catalyst alone, but may be carried out in multiple stages.
  • a treatment tank using a catalyst having high resistance to poisoning such as sulfur and chlorine, and the above-described general use.
  • a hydrogenation treatment may be performed by connecting a treatment tank using a hydrogenation catalyst to be connected in series.
  • the concentration of the catalyst element is preferably 0.01 to 80% by weight, more preferably 0.1 to 50% by weight, based on the total weight of the catalyst, as the weight of the metal.
  • an additive for improving the activity of the catalyst for example, zirconium, manganese, copper, chromium, titanium, molybdenum, tungsten, iron or zinc may be contained.
  • additives are generally used in an amount corresponding to 50% by weight or less based on the catalytically active metal, and an amount corresponding to 0.1 to 10% by weight is preferable.
  • the hydrogenation treatment is performed at atmospheric pressure or pressure of 0.1 to 10 MPa, preferably 0.1 to 5 MPa, more preferably 0.1 to 1 MPa.
  • the temperature of the hydrogenation treatment is usually preferably 50 ° C. or higher and 170 ° C. or lower, and more preferably 70 ° C. or higher and 160 ° C. or lower because polymerization of the amide compound can be prevented.
  • the amide compound is ⁇ -caprolactam
  • it is more preferably lower than 160 ° C.
  • the melting point (152 ° C.) or higher of laurolactam is preferable.
  • a solvent may be used. However, in order to avoid hydrogenation of the solvent, it is preferable to directly hydrogenate without solvent.
  • the hydrogenation catalyst those derived from the metals mentioned in the hydrogenation treatment of amide compounds can be used.
  • these transition metals palladium (Pd), ruthenium (Ru), platinum (Pt ) Is excellent in the selective hydrogenation characteristics of double bonds without hydrogenating cyclic ketones, and is preferable in removing impurities.
  • transition metals can be used as a salt or a complex dissolved in a ketone or a solution thereof, but can also be used by being supported on a carrier.
  • the catalyst carrier examples include activated carbon (C) or alumina (Al 2 O 3 ), silica (SiO 2 ), titanium oxide (TiO 2 ), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), or zinc oxide (ZnO). ), Calcium oxide (CaO), barium oxide (BaO), diatomaceous earth, clay minerals, metal oxides such as lanthanum oxide (La 2 O 3 ) or cerium oxide (Ce 2 O 3 ).
  • the hydrogenation conditions vary depending on the type of ketone and catalyst.
  • the catalyst metal / Ketone ratio is preferably 0.001 to 1 wt%, more preferably 0.01 to 0.5 wt%
  • hydrogen partial pressure is preferably 0.1 to 20 MPa, more preferably 0.2 to 10 MPa
  • reaction temperature Is preferably 75 to 200 ° C., more preferably 90 to 150 ° C.
  • reaction time average residence time in the case of using a continuous flow apparatus
  • oxime oil a solution containing oxime (hereinafter referred to as “oxime oil”) is also effective in reducing the difference in light transmittance of lactam.
  • the catalyst, solvent and conditions for the hydrorefining of oxime oil are the same as in the amide compound hydrotreating.
  • a solvent it is preferable on the process structure that it is the same as the solvent or rearrangement solvent used for an oximation process.
  • Impurities can also be removed by crystallizing oxime.
  • the solvent for crystallization purification of oxime is not particularly limited as long as it does not react with oxime and can dissolve oxime appropriately.
  • organic acids such as acetic acid, propionic acid, trifluoroacetic acid; nitriles such as acetonitrile, propionitrile, benzonitrile; amides such as formamide, acetamide, dimethylformamide (DMF), dimethylacetamide; hexane, heptane, Aliphatic hydrocarbons such as octane and cyclododecane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as chloroform, dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene and trifluoromethylbenzene; nitrobenzene, nitromethane, nitromethane,
  • lower aliphatic alcohols such as methanol, ethanol, and propanol are preferable solvents because of high solubility of impurities and hardly remaining in the crystallized crystals.
  • the lower aliphatic alcohol may react with the rearrangement catalyst and reduce the activity of the Beckmann rearrangement reaction, depending on the choice of the rearrangement catalyst, the crystallized crystals must be dried and the alcohol solvent must be removed.
  • lactam When lactam is used as a polymer raw material, the presence of a substance that inhibits polymerization, a substance that lowers physical properties, a substance that causes deterioration or coloring, becomes a problem.
  • the evaluation method the light transmittance difference, UV value, and PAN value are used.
  • the specific substances that deteriorate these evaluation indices are not specified, the compound in which the double bond remains is determined from the correspondence between the analysis results of impurities in the raw material cycloalkanone and the above evaluation index of lactam. It is considered to be a compound containing an aldehyde group, a compound containing a carbonyl group, etc. (for example, JP-A-2004-99585).
  • the inventors extracted and concentrated impurities detected by gas chromatography (GC) from a lactam using a solvent having a low solubility that slightly dissolves the target lactam.
  • the mass spectrum (GC-Mass) was analyzed carefully.
  • a plurality of impurities having a molecular weight of 2 or 4 smaller than that of the intended lactam and the M / Z value of the fragment being 2 or 4 smaller than that of the intended lactam were detected.
  • Most of these impurities did not change the retention time of GC (Gachromatography) analysis, the parent peak of GC-Mass analysis, and fragmentation even after hydrogenation. From this, it was estimated that these are amide compounds having a dicyclo ring structure or a tricyclo ring structure, which are compounds having a bridged cyclic structure.
  • Impurities which are amide compounds having a bridged cyclic structure and do not have other highly functional bonds such as functional groups and / or double bonds are those described above. It is not detected by an evaluation method based on a difference in transmittance or the like, and remains in the lactam compound as an impurity even after hydrogenation treatment. In addition, even when the product lactam solution is directly analyzed by gas chromatography, if the amount of the impurities is very small, it is difficult to separate from the lactam and difficult to detect.
  • the impurities having these cross-linked structures in the lactam are preferably 50 ppm by weight or less, and more preferably 30 ppm by weight or less.
  • the impurity concentration is high, the degree of polymerization of the amide compound is hardly increased in the polymerization of lactam, and a polymer having a cyclic side chain is mixed, which is not preferable.
  • the inventors have analyzed cycloalkanone oxime produced from cycloalkanone and hydroxylamine and cycloalkanone which is the starting material for elucidating the origin of impurities having a bridged cyclic structure. As a result, a ketone having a corresponding bridged cyclic structure was detected in the starting material cycloalkanone.
  • the main impurities in the lactam are amides having a tricyclo ring structure.
  • the existence of a tricyclo ring structure amide as well as a tricyclo ring structure amide as a starting material is not known, but as one of the formation pathways of cyclododecanone as an example, butadiene It is estimated that bicyclo [6,4,0] cyclododeca-4,10-diene is by-produced during the quantification and a diketone produced during the oxidation is caused by intramolecular aldol condensation.
  • the amount of the ketone having a bridged cyclic structure in the cycloalkanone used for the reaction is preferably 500 ppm by weight or less.
  • a method for removing impurities having a crosslinked cyclic structure in the lactam will be described.
  • the adaptive solvent is not particularly limited as long as it does not react with cycloalkanone in addition to the requirement that the target cycloalkanone dissolves moderately but has low solubility, and it is not limited to chain hydrocarbons, alicyclic hydrocarbons, condensed aromatics. Examples thereof include cyclic hydrogenated aromatic hydrocarbons, ethers and esters. Note that basic solvents such as amines are not preferable because they form a Schiff base with a cycloalkanone. Moreover, use of alcohol is limited because it forms acetal and hemiacetal depending on the type of ketone, alcohol, and processing conditions. In general, when steric hindrance is small for both ketone and alcohol, use under acidic conditions should be avoided.
  • Ketones and aldehydes do not affect the recrystallization itself, but when the solvent remains, it reacts with hydroxylamine to produce an oxime different from the target product, which is not preferable.
  • the amount of the solvent used is preferably 5% by weight to 80% by weight and more preferably 10% by weight to 50% by weight with respect to the cycloalkanone. When the amount of the solvent used is too small, the solution in which the impurities are dissolved remains in the voids between the purified cycloalkanone crystals, and the impurities remain, which is not preferable. If the amount of the solvent used is excessive, the one-pass yield of recrystallization is lowered, and a large-scale apparatus is required for recovery and recycling of the solvent, and energy is wasted.
  • the melting temperature of cycloalkanone is preferably below the melting point of cycloalkanone. If it is higher than the melting point of cycloalkanone, it may be fused at the time of crystal precipitation to entrap impurities.
  • the temperature at the time of crystal acquisition can be arbitrarily selected as long as it is equal to or higher than the melting point of the solvent.
  • the amount of the recrystallization solvent used is not particularly limited as long as it is equal to or higher than the amount at which the cycloalkanone is dissolved at the dissolution temperature.
  • the pressure during recrystallization may be any of normal pressure, pressurization, and reduced pressure, but it is usually performed at normal pressure.
  • recrystallization of cycloalkanone the content of ketone having a bridged cyclic structure as an impurity is reduced to about 1/10 to 1/50 before recrystallization.
  • the resulting cycloalkanone is converted into an oxime and Beckmann rearranged, whereby impurities having a bridged cyclic structure in the Beckmann rearrangement reaction liquid are controlled to 300 ppm by weight or less with respect to the desired product lactam.
  • a product lactam having impurities of 50 ppm by weight or less is obtained.
  • a solvent which dissolves cyclododecanone in an appropriate amount but has low solubility is preferable.
  • chain hydrocarbons such as n-hexane, n-heptane, n-octane, isooctane, n-decane, n-dodecane, etc.
  • Cycloaliphatic hydrocarbons such as cyclopentane, cyclopentane and cyclooctane, condensed aromatic ring hydrogenated products such as tetralin and decalin, aromatic hydrocarbons such as benzene, toluene and xylene, ethers such as diethyl ether, ethyl acetate, acetic acid Examples include esters such as butyl.
  • alcohols such as methanol and ethanol can also be used for purification of cyclododecanone.
  • chain aliphatic hydrocarbons having 6 to 8 carbon atoms such as n-hexane, n-heptane, and n-octane, which have a high one-pass yield of recrystallization, cyclopentane, cyclohexane, and cyclooctane
  • aliphatic alcohols having 1 or 2 carbon atoms such as alicyclic hydrocarbons having 5 to 8 carbon atoms such as methanol, ethanol, etc.
  • n-heptane, n-octane, methanol are considered in view of solvent recovery. Is more preferable.
  • the melting temperature of cyclododecanone is preferably 61 ° C. or lower, which is the melting point of cyclododecanone. If it is higher than the melting point of cyclododecanone, it may be fused during crystal precipitation to entrap impurities.
  • the temperature at the time of crystal acquisition can be arbitrarily selected as long as it is equal to or higher than the melting point of the solvent.
  • the amount of the recrystallization solvent used is not particularly limited as long as it is equal to or higher than the amount capable of dissolving cyclododecanone at the dissolution temperature, but the minimum amount is preferably used from the viewpoint of improving the one-pass yield.
  • the amount of the solvent used is preferably 15% by weight or less, more preferably 10% by weight or less, based on the total weight of cyclododecanone and the solvent.
  • the pressure during recrystallization is usually normal pressure.
  • recrystallization of cyclododecanone the content of ketone having a bridged cyclic structure as an impurity is reduced to about 1/10 to 1/50.
  • the obtained cyclododecanone is reacted with hydroxylamine to oxime, and the impurity having a bridge structure in laurolactam obtained by Beckmann rearrangement is 50 ppm by weight or less.
  • nylon 12 having high purity and high physical properties can be obtained with a high degree of polymerization.
  • the content of the halide, aldehyde compound, alcohol compound, and nitrile compound in the solvent recycled to the oximation step is 0.4 mol% or less with respect to the raw material ketone
  • hydrorefining and / or crystallization purification of one or more compounds selected from the group consisting of ketone, oxime and amide compounds is performed.
  • the main feature of the third aspect is that the ketone is recrystallized, but a plurality of purification methods in each aspect may be combined. Thereby, a higher quality amide compound or lactam can be obtained.
  • the amide compound of the present invention and the method for producing the amide compound, in particular, the oximation step for producing oxime, the rearrangement step for rearranging the oxime using the Beckmann rearrangement catalyst, and the amide compound usually performed after the rearrangement step
  • the purification of will be described. The following description applies in common to the first to third aspects unless otherwise specified.
  • the amide compound of the present invention is not particularly limited, but is preferably a lactam, and more preferably a lactam represented by the formula (3).
  • n is 3 to 20, preferably 3 to 15.
  • n is 5, 7, 8, 9, 10, 11 that is used industrially as a raw material for polymers or copolymers used for yarns, fibers, films and the like.
  • lactams 11 lactams, that is, laurolactam, which can obtain a polymer having excellent flexibility, water resistance and solvent resistance, are particularly useful compounds.
  • n is preferably a macrocyclic lactam having 7 or more.
  • the oximation step refers to a step of producing oxime.
  • the oxime produced by the oximation step can be appropriately selected according to the amide compound to be produced.
  • the amide compound to be produced is lactam
  • the corresponding oxime is represented by the formula (1).
  • m represents an integer of 3 or more.
  • m is 3 to 20, preferably 3 to 15.
  • Non-oxime, cyclopentadecanone oxime, cyclohexadecanone oxime, cyclooctadecanone oxime, cyclononadecanone oxime and the like can be mentioned.
  • cyclohexanone oxime, cyclooctanone oxime, cyclononanone oxime, cyclodecanone oxime, cycloundecanone oxime, and cyclododecanone oxime are useful oximes.
  • Nonoxime, cycloundecanone oxime, and cyclododecanone oxime are more preferable, and cyclododecanone oxime is particularly preferable.
  • a substituent may be bonded to the ring, and another ring may be condensed.
  • substituents which may be bonded to the ring include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, an aralkyl group, an aromatic or non-aromatic heterocyclic group. Etc.
  • examples of the alkyl group include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 12 carbon atoms, and more preferably an alkyl group having 2 to 8 carbon atoms. It is. Specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, hexyl group, isohexyl group, heptyl group, octyl group , Nonyl group, decyl group, dodecyl group, pentadecyl group and the like.
  • alkenyl group examples include an alkenyl group having 2 to 20 carbon atoms, preferably an alkenyl group having 2 to 12 carbon atoms, and more preferably an alkenyl group having 2 to 8 carbon atoms.
  • Specific examples include a vinyl group, an allyl group, a 1-propenyl group, a 1-butenyl group, a 1-pentenyl group, and a 1-octenyl group.
  • alkynyl group examples include an alkynyl group having 2 to 20 carbon atoms, preferably an alkynyl group having 2 to 12 carbon atoms, and more preferably an alkynyl group having 2 to 8 carbon atoms. Specific examples include ethynyl group and 1-propynyl group.
  • cycloalkyl group examples include a cycloalkyl group having 3 to 20 carbon atoms, and a cycloalkyl group having 3 to 15 carbon atoms is preferable. Specific examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group.
  • Examples of the cycloalkenyl group include a cycloalkenyl group having 3 to 20 carbon atoms, and a cycloalkenyl group having 3 to 15 carbon atoms is preferable. Specific examples include a cyclopentenyl group, a cyclohexenyl group, and a cyclooctenyl group.
  • aryl group examples include a phenyl group and a naphthyl group.
  • Examples of the aralkyl group include a benzyl group, a 2-phenylethyl group, and a 3-phenylpropyl group.
  • aromatic or non-aromatic heterocyclic group examples include a 2-pyridyl group, a 2-quinolyl group, a 2-furyl group, a 2-thienyl group, and a 4-piperidinyl group.
  • a method of reacting a ketone with an aqueous hydroxylamine solution (Ii) a method of reacting a ketone with ammonia and hydrogen peroxide in the presence of a catalyst such as titanosilicate; (Iii) In the presence of an N-hydroxyimide compound and a compound obtained by introducing a protecting group (for example, an acyl group such as an acetyl group) into the hydroxyl group of the N-hydroxyimide compound, a methyl group or a methylene group is A method of reacting a compound having a nitrite or a nitrite with the compound (for example, JP 2009-298706 A), (Iv) A method of photonitrosating an alkane and the like can be mentioned. In the present invention, the production method (i) is most preferably used.
  • hydroxylamine is unstable. Therefore, from the viewpoint of safety, the hydroxylamine salt is usually metathesized in the reaction vessel in the presence of the ketone, and the free hydroxylamine and ketone are separated. The method of making it react is taken. Here, it is preferable that equimolar amounts of ketone and hydroxylamine are reacted.
  • the N-hydroxyimide compound includes N-hydroxysuccinimide, N-hydroxyphthalimide, N, N′-dihydroxypyromellitic diimide, N-hydroxyglutarimide, N Aliphatic polycarboxylic anhydrides (cyclic anhydrides) or aromatics such as -hydroxy-1,8-naphthalenedicarboxylic imide, N, N'-dihydroxy-1,8,4,5-naphthalenetetracarboxylic diimide Derived from polyvalent carboxylic acid anhydride (cyclic anhydride).
  • the ketone to be used is not particularly limited, and can be appropriately selected according to the amide compound to be produced.
  • the amide compound to be produced is lactam
  • examples of the oxime corresponding thereto include a compound represented by the following formula (4).
  • p is 3 to 20, preferably 3 to 15. It is more preferable that p is 5, 7, 8, 9, 10, or 11, and it is particularly preferable that p is 11. Further, p is preferably 7 or more.
  • Examples of the ketone represented by the formula (4) include cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, cyclononanone, cyclodecanone, cyclododecanone, cyclotridecanone, cyclotetradecanone, cyclopentadecanone, Examples include cyclohexadecanone, cyclooctadecanone, and cyclononadecanone.
  • cyclohexanone, cyclooctanone, cyclononanone, cyclodecanone, cycloundecanone, and cyclododecanone are useful ketones, and cyclooctanone, cyclononanone, cyclodecanone, cycloundecanone, and cyclododecanone are more preferable, and cyclododecanone. Is particularly preferred.
  • a substituent may be bonded to the ring, and another ring may be condensed.
  • substituents include the same substituents as exemplified in the description of the oxime represented by the above formula (1).
  • Raw material ketone can be used by selecting one kind or two or more kinds.
  • Examples of the method for producing the raw material ketone include a method of oxidizing a corresponding hydrocarbon.
  • the oxidation of the hydrocarbon may be the oxidation of a saturated hydrocarbon or the oxidation of an unsaturated hydrocarbon.
  • oxygen molecular oxygen
  • air are generally used, but hydrogen peroxide, nitrous oxide, or the like may be used.
  • a cyclic ketone can be obtained by a general method of air-oxidizing a corresponding cycloalkane.
  • cyclic ketone cycloalkanone
  • cycloalkanol cyclic alcohol
  • the cycloalkanol in the mixture is dehydrogenated and converted to cyclic ketone (cycloalkanone).
  • cyclododecanone when producing cyclododecanone as a ketone, hydrogenate cyclododecane to make cyclododecane, then air oxidize to produce a cyclododecanone / cyclododecanol mixture, and dehydrogenate cyclododecanol.
  • a method for producing cyclododecanone can be employed.
  • a cyclic ketone when producing a cyclic ketone, it can also be produced by a method of oxidizing while leaving a double bond of an unsaturated compound that is a raw material for alkane production, followed by hydrogenation.
  • a method of producing cyclododecanone by oxidizing cyclododecatriene with nitrous oxide to produce cyclododecadienone, and further hydrogenating the remaining double bond for example, JP-T-2007-506695
  • a method of producing cyclododecanone by oxidizing cyclododecatriene with hydrogen peroxide to produce epoxycyclododecadiene and then hydrogenating double bonds to form epoxycyclododecane, followed by isomerization for example, JP-A 2000-256340, JP-A 2000-026441, JP-A 2001-302650, JP-A 2001-226411 may be employed.
  • a method of producing cyclohexanone by hydrogenation When a cyclic ketone is produced by these methods, a ketone having a double bond that causes impurities in the lactam or a ketone having a bridged cyclic structure may remain or be generated.
  • a cyclic compound as a starting material can be obtained by utilizing an addition reaction between dienes.
  • the starting material is cyclododecatriene, which is produced by trimerization of butadiene.
  • a butadiene addition reaction is performed while adjusting the activity of a catalyst (so-called Ziegler catalyst) prepared from a titanium halide and an alkylaluminum halide, and after the reaction, the catalyst is deactivated as appropriate.
  • Dodecatriene can be produced (for example, DE-A-1050333, JP-A-6-254398, JP-A-5-124982, and JP-A-5-070377).
  • cyclooctadiene can be produced by dimerization of butadiene.
  • the hydroxylamine used is unstable, and thus is produced and sold as an aqueous solution of a hydroxylamine acid salt such as hydroxylamine sulfate or hydroxylamine carbonate.
  • a base such as aqueous ammonia is added to liberate hydroxylamine for use.
  • a hydroxylamine aqueous solution from which hydroxylamine has been liberated in advance may be supplied.
  • an aqueous solution of hydroxylamine acid salt preferably sulfate
  • a base preferably aqueous ammonia
  • solvent for oximation process A solvent is used in the oxime production process. It is desirable that this solvent has high solubility in oximes. Depending on the type of oxime, the preferred solvent differs, but when the oxime is cyclododecanone oxime, the solubility parameter ⁇ defined by the following formula is 7.5 to 13.0, in particular 8.0 to 12.5. However, the solubility of cyclododecanone oxime is excellent and preferable.
  • solubility parameter ⁇ indicates the strength of intermolecular bonding force such as hydrogen bonding, and the larger the polarity, the higher the polarity. Those having similar solubility parameters have higher compatibility.
  • This parameter can be calculated from ⁇ (delta) E V , standard boiling point, and density data, and ⁇ E V can be estimated from the molecular structure.
  • is a solubility parameter
  • ⁇ E V is a change in internal energy of evaporation
  • V is a molar volume
  • a solvent used in the oxime production process it is preferable to exclude a solvent that reacts with a raw material in oxime production even if the solvent has excellent solubility in oxime.
  • a solvent that reacts with a raw material in oxime production even if the solvent has excellent solubility in oxime.
  • a ketone or aldehyde when used as a solvent, it reacts with hydroxylamine to produce ketoxime or aldoxime.
  • nitrile is used as a solvent, it reacts with hydroxylamine to produce amidoxime.
  • Amides also form adducts with hydroxylamine when used as a solvent.
  • an amine when used as a solvent, it reacts with a ketone to form a Schiff base. Therefore, even if these solvents have good oxime solubility, their use as solvents is excluded.
  • the same solvent used in the oximation step and the rearrangement step described below does not require solvent exchange, simplifies the process, and reduces equipment costs and energy costs. is there.
  • the solvent for the rearrangement step is preferably 1) high solubility in amide, 2) no reaction with amide, and 3) no reaction with Beckmann rearrangement catalyst.
  • the above 1) and 2) are not often problematic.
  • the solubility parameter of an amide compound is almost the same as that of the corresponding oxime, and there is no great difference in reactivity.
  • the catalyst used for the Beckmann rearrangement has an electron-withdrawing leaving group as described later, it is preferable to exclude a solvent that is susceptible to nucleophilic substitution reaction. Specifically, it is preferable not to use water, alcohols, amines, mercaptans, and amides as a solvent. Moreover, when using a highly reactive rearrangement catalyst, it is preferable not to use carboxylic acids and carboxylic acid esters.
  • the solvent is easily separated in the oil / water separation step described later, has a small dissolution loss in the aqueous phase, and can be easily recovered in the solvent recycling step.
  • the solvent is preferably an aromatic hydrocarbon, a hydrogenated compound of a condensed polycyclic hydrocarbon, and an alicyclic hydrocarbon (particularly, an alicyclic hydrocarbon having a side chain).
  • aromatic hydrocarbon benzene, toluene, xylene, ethylbenzene, propylbenzene, butylbenzene, trimethylbenzene, tetramethylbenzene, and cyclohexylbenzene are preferable, and benzene, toluene, and xylene are particularly preferable.
  • the hydrogenated compound of the condensed polycyclic hydrocarbon tetralin, decalin, and dihydronaphthalene are preferable, and tetralin and decalin are particularly preferable.
  • the alicyclic hydrocarbon having a side chain is preferably isopropylcyclohexane, methylcyclohexane, dimethylcyclohexane, or ethylcyclohexane, and particularly preferably isopropylcyclohexane.
  • solvents exemplified above toluene or xylene is most preferable.
  • the temperature at which the oximation reaction is carried out is not particularly limited, but since hydroxylamine is used as an aqueous solution, a pressure vessel is required when the reaction temperature is too high, for example, when the reaction is carried out at 100 ° C. or higher. On the other hand, when the reaction temperature is too low, the reaction rate becomes slow. Therefore, the oximation reaction is preferably performed at 100 ° C. or lower and normal pressure, more preferably 60 ° C. or higher, and more preferably 75 ° C. or higher.
  • reaction apparatus used in the oximation step may include commonly used reaction apparatuses such as a batch reaction apparatus, a semi-batch reaction apparatus, a tubular continuous reaction apparatus, a stirred tank type continuous reaction apparatus, and the like.
  • a continuous multistage reactor is preferred.
  • a stirred tank type continuous multistage reactor a hydroxylamine aqueous solution is fed to the first tank, a ketone solution (a solution of the above ketone solvent) is fed to the final tank, the aqueous phase is directed to the latter tank, and the oil phase It is desirable that the liquid is sequentially fed toward the preceding tank and reacted without leaving unreacted raw materials.
  • reaction time of oximation process The reaction time of the oximation step varies depending on the reaction conditions such as ketone, solvent, temperature, and the reactor type, but when using cyclododecanone as the ketone, toluene as the solvent, and a stirred tank type continuous multistage reactor, 1 Time to 20 hours, preferably 5 to 15 hours. If the reaction time is too short, the raw materials, hydroxylamine and / or cyclododecanone, remain and are not preferable because they need to be recycled. When the reaction time is excessive, the reaction tank becomes long, which is not preferable. It should be noted that the addition of a surfactant or the like can improve the mass transfer rate between oil and water, and shorten the reaction time.
  • the oil / water separation step refers to a step of separating the reaction solution after the oximation step into an oil phase and an aqueous phase and obtaining an oil phase in which the oxime is dissolved.
  • a method for separating the oil phase and the aqueous phase general separation methods such as stationary separation, centrifugal separation, and separation using a cyclone can be used.
  • a reaction liquid is sent from a reaction apparatus in an oximation process to a separator, where an oil phase and an aqueous phase are separated and extracted.
  • the oil phase and the aqueous phase may be extracted from the reactor.
  • the solvent and dissolved water are removed from the solution containing the oxime obtained as an oil phase in the oil / water separation step, and the solution is sent to the rearrangement step.
  • the water content of the solution at this time is 1000 ppm or less, preferably 500 ppm, more preferably 100 ppm or less.
  • the removal of water is performed by azeotropic distillation with a solvent, and the solvent containing the distilled water is recycled to the oximation step.
  • the solution containing the dehydrated oxime after the oil / water separation step is sent to the rearrangement step.
  • an amide compound is produced from the oxime by a Beckmann rearrangement reaction using a Beckmann rearrangement catalyst.
  • One or more oximes can be selected and used.
  • Beckmann rearrangement catalyst As the Beckmann rearrangement catalyst, a compound having at least two electron-withdrawing leaving groups can be used. For example, a compound containing at least two structures represented by the following formula (5) can be mentioned. Note that this includes a case where a plurality of Xs are bonded to A. Further, when a plurality of AX are present, they may be the same or different.
  • A represents C (carbon atom), P, N, S, B, or Si atom, X represents an electron-withdrawing leaving group, and A represents one or more atoms other than X. Or bonded to a group.
  • the electron-withdrawing leaving group in X may be a general leaving functional group such as a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), —OR group (R is An organic group), a carboxyl group, an amino group, a sulfonyloxy group, and the like.
  • a halogen atom is preferable, and a chlorine atom is more preferable.
  • the Beckmann rearrangement catalyst is not particularly limited as long as it is a compound containing at least two structures represented by formula (5) in the molecule (including those in which a plurality of Xs are bonded to A). Or an acyclic compound.
  • Beckmann rearrangement catalyst in the present invention include, for example, phosphazene compounds (phosphazene derivatives), phosphate ester compounds (phosphate ester derivatives) containing polyhalophosphates, phosphine compounds (phosphine derivatives), imide compounds (imides). Derivatives), sulfonyl or sulfinyl compounds (sulfonyl or sulfinyl derivatives), silane compounds (silane derivatives), cyclic compounds containing silicon atoms as ring constituents, phosphorus halides, halosulfyls, or mixtures thereof. .
  • phosphazene compound examples include halophosphazene derivatives such as hexachlorophosphazene, hexafluorophosphazene and hexabromophosphazene.
  • Examples of the phosphoric acid ester compound include dimethyl chlorophosphate, diethyl chlorophosphate, 2-chloro-1,3,2-dioxaphosphorane-2-oxide, methyl dichlorophosphate, ethyl dichlorophosphate, diphenyl chlorophosphate, 1, Examples thereof include 2-phenylene phosphorochloridate and phenyl dichlorophosphate.
  • phosphine compound examples include halophosphine derivatives such as chlorodimethylphosphine, chlorodiethylphosphine, chlorodipropylphosphine, chlorodiphenylphosphine, dichloroethylphosphine, dichlorobutylphosphine, and dichlorohexylphosphine.
  • halophosphine derivatives such as chlorodimethylphosphine, chlorodiethylphosphine, chlorodipropylphosphine, chlorodiphenylphosphine, dichloroethylphosphine, dichlorobutylphosphine, and dichlorohexylphosphine.
  • the imide compounds include succinimide derivatives such as N-halosuccinimide derivatives (N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide, N-fluorosuccinimide, etc.); N-halophthalimide derivatives (N-chlorophthalimide, Phthalimide derivatives such as N-bromophthalimide, N-iodophthalimide, N-fluorophthalimide, etc .; N-halomaleimide derivatives (N-chloromaleimide, N-bromomaleimide, N-iodomaleimide, N-fluoromalein) Maleimide derivatives such as imide, etc .; hydantoin derivatives such as halohydantoin derivatives such as 1,3-dichloro-5,5-dimethylhydantoin, 1,3-dibromo-5,5-dimethylhydantoin, Li chlor
  • sulfonyl or sulfinyl compound examples include methanesulfonyl chloride, ethanesulfonyl chloride, propanesulfonyl chloride, trichloromethanesulfonyl chloride, trifluoromethanesulfonyl chloride, benzenesulfonyl chloride, toluenesulfonyl chloride, nitrobenzenesulfonyl chloride, chlorobenzenesulfonyl chloride, fluorobenzenesulfonyl Sulfonyl halide derivatives such as chloride and naphthalenesulfonyl chloride; sulfanyl chloride; thionyl chloride and the like.
  • silane compound examples include halosilane derivatives such as chlorotriphenylsilane, dichlorodiphenylsilane, and phenyltrichlorosilane.
  • Examples of the cyclic compound containing a silicon atom as a ring component include halogenated silicon nitride.
  • Examples of phosphorus halides include phosphorus trichloride and phosphorus pentachloride.
  • halosulfuryl examples include sulfuryl chloride.
  • examples of the Beckmann rearrangement catalyst of the present invention include the following catalyst a or catalyst b. In particular, in the second aspect of the present invention, it is preferable to use these.
  • Catalyst a is represented by the following formula (2) and is included in the Beckmann rearrangement catalyst represented by the above formula (5).
  • Z represents a P, N, S, B, or Si atom
  • X represents a halogen atom.
  • Z is bonded to one or more atoms or groups.
  • the catalyst b shown below is particularly suitable for compounds in which A in the formula (5) is a carbon atom.
  • the catalyst b is an aromatic ring-containing compound that satisfies all the following conditions (b1) to (b3).
  • B1 As an atom constituting the aromatic ring, at least one carbon atom having a halogen atom as a leaving group is contained.
  • B2 As an atom constituting the aromatic ring, at least three of one or both of a hetero atom or a carbon atom having an electron withdrawing group are included.
  • B3 Two of the carbon atoms having the hetero atom or the electron withdrawing group are located in the ortho or para position of the carbon atom having the halogen atom as the leaving group.
  • “comprising at least three of one or both of hetero atoms or carbon atoms having an electron withdrawing group” means a carbon atom having a hetero atom or an electron withdrawing group as an atom constituting the aromatic ring. , Each alone or in combination, as long as it has at least 3 or more.
  • the aromatic ring of the aromatic ring-containing compound means an aromatic hydrocarbon ring such as a benzene ring and an aromatic heterocyclic ring.
  • aromatic hydrocarbon ring-containing compound a monocyclic hydrocarbon ring such as a benzene ring, and a polycyclic hydrocarbon ring such as a naphthalene ring, an anthracene ring, a fluorene ring, a phenanthrene ring, an azulene ring, Besides a condensed ring such as a pyrene ring, a biphenyl ring, a terphenyl ring, a triphenyl ring and the like are also included.
  • a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, a pyrazole ring, a triazole ring, a tetrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, a furazane, and the like examples thereof include 6-membered rings such as a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, and a triazine ring, and a nitrogen-containing aromatic ring is particularly preferable.
  • aromatic ring-containing compound containing the aromatic ring in addition to the monocyclic aromatic ring-containing compound composed of the aromatic ring, condensation such as indole ring, benzimidazole ring, benzotriazole ring, quinoline ring, bipyridyl ring, phenanthroline ring, etc. Heterocyclic compounds are also included. Of these, a benzene ring, a pyridine ring, and a triazine ring can be preferably exemplified. Further, the atoms constituting these aromatic rings only need to satisfy all the above conditions (b1) to (b3).
  • the electron withdrawing group under the conditions (b1) to (b3) is not particularly limited as long as it is a known electron withdrawing group, but is a cyano group, trifluoromethyl group, trichloromethyl group, nitro group, halogen atom, carbonyl group. , A sulfonyl group, and the like, among which a cyano group and a nitro group are preferable.
  • hetero atom under the above conditions (b1) to (b3) include nitrogen, oxygen, sulfur, silicon, etc. Among these, nitrogen is particularly preferable.
  • aromatic ring-containing compounds that satisfy all the conditions (b1) to (b3), 4-chloro-3,5-dinitrobenzonitrile, 4-fluoro-3,5-dinitrobenzonitrile, 4-bromo-3, Benzene cyclic compounds such as 5-dinitrobenzonitrile, 4-chloro-1,3,5-trinitrobenzene, picryl chloride, picryl bromide, picryl fluoride and the like can be mentioned, among which 4-chloro-3 , 5-dinitrobenzonitrile and picryl chloride can be preferably exemplified.
  • heterocyclic compound examples include 2-chloro-3,5-dinitropyridine, 2-bromo-3,5-dinitropyridine, 2-fluoro-3,5-dinitropyridine, trichlorotriazine (also known as isocyanuric chloride). , Cyanuric chloride, trichlorotriazole, trichloroisocyanuric acid), tribromotriazine, trifluorotriazine, etc., among which 2-chloro-3,5-dinitropyridine and trichlorotriazine can be preferably exemplified.
  • a compound having a conjugated ⁇ electron between at least two structures of the formula (5) or a compound in which a plurality of Xs are bonded to A is preferable.
  • Triazine, thionyl chloride, phosphorus trichloride, and phosphorus pentachloride can be used more suitably.
  • the Beckmann rearrangement catalyst and all the oximes can be mixed and the rearrangement reaction can be performed at the temperature of the rearrangement step, but it is more preferable to perform the rearrangement reaction after preparing the rearrangement catalyst in advance.
  • the pre-preparation of the catalyst means that at least a part of the oxime and the Beckmann rearrangement catalyst are mixed and reacted at a temperature lower than the temperature of the rearrangement step.
  • a pre-preparation step in which the catalyst and at least a part of the oxime are mixed and reacted, and at a temperature higher than the temperature of the pre-preparation step, It is preferable to produce a lactam by a method having a rearrangement reaction step for performing a rearrangement reaction.
  • the catalytically active species are generated by this pre-preparation step.
  • thionyl chloride is used as the catalyst a and cyclododecanone oxime is used as the oxime, cyclododecanone O-azacyclotridecen-2-yloxime hydrochloride represented by the following formula (6) as the catalytically active species (note that The present inventors confirmed that this compound represents a compound represented by the following formula (6), a stereoisomer other than the compound represented by the following formula (6), or a mixture of these combinations). ing.
  • Preparation step of oxime and catalyst a The oxime and the catalyst a are prepared at a temperature lower than the reaction temperature of the oxime Beckmann rearrangement reaction (hereinafter referred to as “pre-preparation”).
  • the purpose of the pre-preparation step is to produce a catalytic activity of the Beckmann rearrangement reaction (hereinafter referred to as “catalytically active species”).
  • the oxime in the pre-preparation step and the oxime in the rearrangement reaction step are not necessarily the same, but are preferably the same.
  • the mixing ratio of oxime and catalyst a ((oxime / catalyst a) molar ratio) varies depending on the selection of oxime and catalyst a.
  • thionyl chloride is selected as a, it is preferably 0.5 or more and 10.0 or less, more preferably 1.0 or more and 5.0 or less, still more preferably greater than 1 and 5.0 or less, particularly preferably 1.5 or more. 3.0 or less.
  • the amount of catalyst a is preferably 0.01 mol% to 20 mol%, more preferably 0.1 mol% to 5 mol%, based on the total amount of oxime charged in the pre-preparation step and the rearrangement step. Mix.
  • the pre-preparation apparatus becomes undesirably long.
  • cyclododecanone oxime when used as the oxime and thionyl chloride is used as the catalyst a, cyclododecanone oxime has a higher melting point than the catalytically active species and has low solubility in the solvent described later at the temperature described later.
  • the pre-preparation apparatus becomes undesirably long.
  • the energy cost required for solvent recovery and recycling increases, which is not preferable. To avoid such inactivation, too much oxime must be avoided.
  • the temperature of the pre-preparation is not particularly limited, but it is preferably carried out at or below the temperature of the Beckmann rearrangement reaction described below, preferably 50 ° C. or less, more preferably 30 ° C. or less, and most preferably room temperature or less.
  • the pre-preparation temperature is too high, most of the catalytically active species are changed to lactam.
  • thionyl chloride is used, hydrogen chloride is eliminated and the catalytic activity is lowered, which is not preferable.
  • the lower limit of the preparation temperature is not particularly limited as long as the reaction system does not solidify, but if it is 10 ° C. or lower, and further 0 ° C. or lower, a cooling device is required, which is not economical.
  • solvent for the pre-preparation step You may use a solvent in the pre-preparation process of this invention. Suitable solvents in each embodiment are as follows.
  • the solvent used is not particularly limited as long as it does not react with the rearrangement catalyst and the oxime.
  • usable solvents include, for example, organic acids such as acetic acid, propionic acid, and trifluoroacetic acid; nitriles such as acetonitrile, propionitrile, and benzonitrile; formamide, acetamide, dimethylformamide ( Amides such as DMF) and dimethylacetamide; aliphatic hydrocarbons such as hexane, heptane, octane and cyclododecane; aromatic hydrocarbons such as benzene, toluene and xylene; chloroform, dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene, tri Halogenated hydrocarbons such as fluoromethylbenzene; nitro compounds such as
  • solvents other than water, alcohols, amines, mercaptans, and amides can be used.
  • the solvent used for the preparation is not particularly limited as long as it does not react with thionyl chloride and oxime.
  • usable solvents include nitriles such as acetonitrile, propionitrile, and benzonitrile; aliphatic hydrocarbons such as hexane, heptane, octane, and cyclododecane; aromatic hydrocarbons such as benzene, toluene, and xylene; chloroform Halogenated hydrocarbons such as dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene and trifluoromethylbenzene; nitro compounds such as nitrobenzene, nitromethane and nitroethane; or a mixed solvent thereof.
  • the use of aliphatic hydrocarbons or aromatic hydrocarbons is a particularly suitable solvent because the control of the Beckmann rearrangement reaction rate in
  • organic bases such as amines, water, alcohols, those having an active hydroxyl group such as mercaptans and functional groups similar thereto, those in which thionyl chloride such as carboxylic acid or carboxylic acid ester acts as a chlorinating agent I can not use it.
  • the amount of the solvent used in the pre-preparation step is not particularly limited, and depends on the temperature and the size of the reaction vessel. However, when cyclododecanone oxime is used as the oxime and toluene is used as the solvent, the weight concentration of the oxime is 1%. It is preferably 60% or less and particularly preferably 3% or more and 30% or less. If the amount of the solvent is too small, the oxime cannot be sufficiently dissolved, and if the amount of the solvent is too large, the recovery is troublesome and not economical.
  • the time required for pre-preparation varies depending on the type of catalyst a, the mixing ratio of oxime / catalyst a, the preparation temperature, the amount of solvent used, etc., and is particularly limited. Although it is not a thing, 1 minute or more and 24 hours or less are preferable, and 1 minute or more and 10 hours or less are still more preferable.
  • the lower limit of the time required for the pre-preparation is determined by the time required for homogeneous mixing of the rearrangement catalyst, but if the time required for the pre-preparation is too short, it will be generated when the rearrangement catalyst is put directly into the rearrangement reaction tank and by the Beckmann rearrangement reaction. Since the results such as the yield of lactam to be used are not changed, it is not preferable. If the preparation time is too long, a part of the catalytically active species gradually changes to an inactive compound, so that the rearrangement rate decreases, which is not preferable.
  • the catalyst a is thionyl chloride
  • the oxime is cyclododecanone oxime
  • the preparation ratio is 1
  • the solvent is toluene
  • the preparation temperature is 25 ° C.
  • the concentration of cyclododecanone oxime at the previous preparation is 3% by weight, 10 minutes or more
  • the time is preferably 1 hour or less and more preferably 1 minute or more and 3 hours or less, but when the preparation ratio is greater than 1, the preparation time may be longer.
  • the upper limit of the time required for pre-preparation is determined by the size of the reaction vessel, but if a residence time of 3 hours or more is provided, the apparatus becomes long, and it is preferable that the time is less than 3 hours. There is.
  • the pre-preparation may be performed using any commonly used mixing tank such as a batch system, a semi-batch system, and a continuous system. Moreover, if a predetermined residence time can be ensured, they may be mixed in the pipe. In addition to mixing with a stirring blade, the mixing method may be mixing in a line using a static mixer or the like.
  • the amount of the Beckmann rearrangement catalyst used in the Beckmann rearrangement reaction is preferably 0.01 mol with respect to the total amount of oxime introduced into the pre-preparation step and the rearrangement reaction step, assuming that all the reactants after the pre-preparation are used. % To 20 mol%, more preferably 0.1 mol% to 5 mol%. When the amount of the Beckmann rearrangement catalyst is too small, the Beckmann rearrangement reaction is stopped, which is not preferable. On the other hand, when the amount of the Beckmann rearrangement catalyst is excessive, the catalyst cost increases, and the cost for the post-treatment or recycling of the catalyst increases, which is not preferable from an industrial viewpoint.
  • the amount of catalyst b used is preferably 0.0001 to 1 mol, more preferably 0.0005 to 0.5 mol, and still more preferably 0.001 to 0.2 mol, per 1 mol of oxime.
  • the rearrangement reaction rate can be improved by adding Lewis acid or Bronsted acid as a co-catalyst.
  • a Lewis acid is preferable because the rearrangement reaction rate can be improved without accelerating the hydrolysis of oxime, particularly cyclododecanone oxime.
  • the Lewis acid is a halide of one or more metals selected from the group consisting of zinc, cobalt, antimony, tin and bismuth.
  • Zinc chloride, cobalt chloride, antimony pentachloride, tin tetrachloride and bismuth trichloride are suitable, and zinc chloride is particularly preferred because it is inexpensive and has a remarkable effect of improving the reaction rate.
  • Bronsted acids include inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as sulfonic acids such as p-toluenesulfonic acid and methanesulfonic acid.
  • the addition amount is preferably 0.01-fold to 10-fold, more preferably 0.1-fold to 5-fold, with respect to the Beckmann rearrangement catalyst.
  • the amount of the cocatalyst added is too small, the effect of improving the reaction rate of the Beckmann rearrangement reaction is poor. On the other hand, even if it is added more than necessary, the reaction rate is not further improved.
  • solvent used for Beckmann rearrangement reaction As a solvent used for the rearrangement reaction (hereinafter referred to as rearrangement solvent), it is a preferable embodiment that the manufacturing process is simplified and the same solvent as that used in the previous preparation is used. However, a different solvent may be used. . In addition, when using a different solvent, for example, a rearrangement solvent can be added to a pre-preparation liquid, and solvent exchange can be performed to a rearrangement solvent by distilling off the pre-preparation solvent. Moreover, you may perform a Beckmann rearrangement reaction, mixing a pre-preparation solvent and a rearrangement solvent.
  • the temperature of the Beckmann rearrangement reaction is preferably 60 to 160 ° C, more preferably 80 to 130 ° C.
  • the reaction temperature is too low, the reaction rate becomes slow and the reaction is stopped, which is not preferable.
  • the reaction temperature is too high, the Beckmann rearrangement reaction becomes exothermic and the temperature rises rapidly, making it impossible to control the reaction.
  • reaction temperature is too high, while a rearrangement yield falls because of side reactions, such as a condensation reaction, product quality falls by coloring etc.
  • the reaction conditions are controlled so that the reaction is easy to control and the volume of the reactor is not excessive.
  • the Beckmann rearrangement reaction can be performed under reduced pressure, normal pressure, or increased pressure. It is not necessary to actively carry out the reaction under pressure, but a component produced from the rearrangement catalyst by carrying out the reaction in a sealed state (for example, a hydrogen halide when the leaving group X to be eliminated is a halogen atom) Can be prevented from scattering out of the reaction system.
  • a component produced from the rearrangement catalyst by carrying out the reaction in a sealed state for example, a hydrogen halide when the leaving group X to be eliminated is a halogen atom
  • the adoption of such a closed process does not require a separate adsorption / detoxification facility for components such as hydrogen halide generated from the rearrangement catalyst.
  • hydrogen halide when hydrogen halide is generated, it is preferable because it is an acid itself and promotes the rearrangement reaction as a cocatalyst.
  • the method shown above for the Beckmann rearrangement reaction it is more preferable to use the method shown above for the Beckmann rearrangement reaction.
  • a dislocation method Japanese Patent Laid-Open No. 2000-229939, etc. may be used.
  • an apparatus used in the Beckmann rearrangement reaction As an apparatus used in the Beckmann rearrangement reaction, a commonly used reaction apparatus such as a batch reaction apparatus, a tubular continuous reaction apparatus, and a stirred tank continuous reaction apparatus can be used, but the reaction temperature can be easily controlled. A tank-type continuous multistage reaction apparatus that can be easily operated is suitable.
  • generated by the Beckmann rearrangement reaction removes the component derived from the leaving group of the Beckmann rearrangement catalyst and the residue of the Beckmann rearrangement catalyst dissolved in the reaction liquid.
  • separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, adsorption, column chromatography, or a combination thereof can be employed.
  • the rearrangement solution is washed with water (a method of removing water as an aqueous solution) and / or alkali washed (washing to remove acidic catalyst components and the like with an aqueous solution of an alkali metal hydroxide such as sodium or potassium).
  • the method of removing the catalyst component and the like is simple and preferable.
  • distillative purification of amide compounds In order to further purify the separated amide compound, particularly lactam, general purification methods such as distillation purification, crystallization / recrystallization, and melt crystallization can be used. Typically, a distillation operation (including extraction as a distillate, extraction as a bottoms, and rectification) is preferable, and distillation operations are more preferably combined in multiple stages.
  • a lactam having one more member can be efficiently produced from cycloalkanone oxime (for example, ⁇ -caprolactam from cyclohexanone oxime, 8-octane lactam from cyclooctanone oxime, and cyclododecanone oxime. Is 12-laurolactam).
  • a present Example shows an example of the embodiment of this invention, and this invention is not limited to a present Example.
  • Example A> impurities in the laurolactam solution (rearrangement liquid) obtained by the Beckmann rearrangement reaction of cyclododecanone oxime were analyzed. Further, in Examples A1 to A23 and Comparative Examples A1 to A7, the influence of impurities on the conversion rate of cyclododecanone oxime was examined.
  • the reaction temperature was set to 95 ° C., 25 wt% aqueous ammonia was fed into each chamber at 32 g / h to carry out an oximation reaction, and an oil phase consisting of cyclododecanone oxime and toluene was obtained.
  • the aqueous phase was fed to the second oxime reactor.
  • the second oxime reactor is a pillow reactor of 15 L and divided into four chambers.
  • the aqueous phase of the oximation reaction solution and a toluene solution of 25 wt% cyclododecanone in 2 kg / h (first reactor). was fed to the same reactor, the reaction temperature was set to 95 ° C., and 25 wt% aqueous ammonia was fed to each chamber at 16 g / h to carry out an oximation reaction.
  • the obtained reaction liquid was separated, and the oil phase was fed to the first oximation reactor.
  • a 50 wt% cyclododecanone oxime solution was diluted with toluene to prepare a 20 wt% cyclododecanone oxime / toluene solution (hereinafter referred to as a 20 wt% cyclododecanone oxime solution).
  • a toluene solution of 10% by weight thionyl chloride (Beckmann rearrangement catalyst) is 27.15 g / h, and a 20% by weight cyclododecanone oxime solution heated to 50 ° C. is 56
  • the mixture was fed at a rate of 3 g / h, and stirred with a stirrer stirrer to prepare a Beckmann rearrangement catalyst.
  • a 50 wt% cyclododecanone oxime / zinc chloride solution was fed at 580 g / h to the reaction vessel for the Beckmann rearrangement reaction.
  • the rearrangement reaction tank was composed of 2 160 ml CSTRs (Continuous Stirred Tank Flow Reactor: continuous stirring tank type flow reactor), and the heating medium temperature of the jacket was adjusted so that the liquid temperature was 105 ° C. The reaction was continued for 10 hours.
  • CSTRs Continuous Stirred Tank Flow Reactor: continuous stirring tank type flow reactor
  • the production ratio of by-product to laurolactam was benzaldehyde 0.0012 mol%, benzyl chloride 0.0021 mol%, benzyl alcohol 0.0004 mol%, benzonitrile 0.0038 mol%, cyclododecene 0.005 mol%, benz Aldoxime 0.0007 mol%, 1-chlorododecane 0.0098 mol%, lauronitrile 0.0036 mol%, cyclododecanone 0.1618 mol%, cyclododecanone oxime 0.0647 mol%, 12-chlorododecanenitrile They were 0.0398 mol% and dodecanedinitrile 0.0159 mol%.
  • the production ratio of by-product to laurolactam was 0.0013 mol% benzaldehyde, 0.0015 mol% benzyl chloride, 0.0009 mol% benzyl alcohol, 0.0031 mol% benzonitrile, 0.0015 mol% benzaldoxime.
  • 1-chlorododecanone 0.0017 mol%, lauronitrile 0.0056 mol%, cyclododecanone 1.262 mol%, cyclododecanone oxime 0.4661 mol%, 12-chlorododecanenitrile 0.1023 mol%, It was 0.0060 mol% dodecanedinitrile.
  • Examples A10 to A13, Comparative Example A4 effect of amidoxime addition amount
  • the reaction was performed in the same manner as in Comparative Example A3 except that the amount of benzamidoxime added was changed as shown in Table 2 (Examples A10 to A12 and Comparative Example A4).
  • Example A13 the molar amount of benzamidoxime added and the amount of the pre-prepared solution were increased. The experimental results are shown in Table 2.
  • Example A23 analysis of impurities when the solvent after the Beckmann rearrangement reaction is recycled to perform oximation and Beckmann rearrangement reaction.
  • 6 kg of laurolactam in toluene was obtained.
  • the solution was placed in a 20 L evaporator and toluene was collected at 90 ° C.
  • Toluene in the remaining crude laurolactam was 0.2% by weight.
  • the recovered toluene obtained was simply distilled using a 30 cm Vigreux tube to obtain 3030 g of distillate and 150 g of can.
  • Example B> cyclododecanone oxime was produced and dried.
  • laurolactam was produced by Beckmann rearrangement of cyclododecanone oxime in the presence of a catalyst, followed by post-treatment, distillation, etc., and the difference in light transmittance of laurolactam (LT. Diff. ) was measured.
  • laurolactam produced in the Reference Example was purified by hydrogenation, and the light transmittance difference (LT. Diff) was measured.
  • the light transmittance difference (LT. Diff) of laurolactam was measured by the following measuring method.
  • the difference in light transmittance (LT. Diff) of the test laurolactam was calculated by the following formula.
  • a 10 wt% thionyl chloride-toluene solution and a cyclododecanone oxime-toluene solution obtained by diluting the 50 wt% cyclododecanone oxime solution obtained in Reference Example B2 to a concentration of 20 wt% were line mixed. . Thereafter, this was fed to a catalyst pre-preparation tank with a water-cooled jacket to prepare a catalytically active species and supplied to the first tank.
  • the feed amount of thionyl chloride and cyclododecanone oxime was 1.5 mol% and 3.75 mol% relative to the raw material cyclododecanone oxime, and the residence time in the catalyst pre-preparation tank was 30 minutes.
  • the temperature of the rearrangement reaction tank was 105 ° C., and the total residence time of the first and second tanks was 25 minutes.
  • the reaction solution obtained from the second tank of the reactor was analyzed by gas chromatography. As a result, the conversion of cyclododecanone oxime was 100% and the laurolactam yield was 99.7%.
  • the obtained reaction solution was concentrated, and the light transmittance difference (LT. Diff) of laurolactam was measured. As a result, it was 66.8%.
  • reaction solution was transferred to a 1 L jacketed separable flask, 50 g of ultrapure water was added, and the mixture was stirred at a temperature of 80 ° C. for 15 minutes. Then, it left still for 15 minutes and extracted the water layer. Next, 50 g of a 1 wt% NaOH aqueous solution was added and stirred for 15 minutes, and then allowed to stand for 15 minutes to extract the aqueous layer. After this operation was further performed twice, 50 g of ultrapure water was added and stirred for 15 minutes. Thereafter, the mixture was allowed to stand for 15 minutes, the aqueous layer was extracted, the obtained reaction solution was concentrated, and the difference in light transmittance (LT. Diff) of laurolactam was measured to be 69.5%.
  • LT. Diff difference in light transmittance
  • the washed reaction solution was concentrated with a rotary evaporator.
  • LT. Diff light transmittance difference
  • LT. Diff light transmittance difference
  • Example B7 130 g of the reaction solution obtained in Reference Example B4 after washing, 13 g of 5 wt% Pt / C (powder) was added to a 300 ml autoclave, the inside of the system was replaced with hydrogen gas, and the pressure was 0.5 MPa and the temperature was 90 ° C. Reacted for hours. After completion of the reaction, the filtrate obtained by filtration using 5C filter paper at a temperature of 90 ° C. was concentrated (recovery rate 90%). The light transmittance difference (Lt. diff) of laurolactam thus obtained was measured and found to be 34.5%.
  • Lt. diff light transmittance difference
  • Example B8 130 g of laurolactam obtained in Reference Example B6, 15 g of 5 wt% Pt / C (powder) was added to a 300 ml autoclave, the system was replaced with hydrogen gas, and the reaction was performed at a pressure of 0.5 Mpa and a temperature of 165 ° C. for 2 hours. I let you. After completion of the reaction, the reaction mixture was diluted with 600 g of toluene and filtered at a temperature of 90 ° C. using 5C filter paper. The obtained filtrate was concentrated by a rotary evaporator (recovery rate 90%). The light transmittance difference (Lt. diff) of laurolactam thus obtained was measured and found to be 7.9%.
  • Lt. diff light transmittance difference
  • Example C> cyclododecanone oxime is first produced using cyclododecanone, and in the process of producing laurolactam by rearranging the cyclododecanone oxime in the presence of a catalyst, hydrotreatment or crystallization is performed. Analysis and purification were performed. And the measurement of the light transmittance difference (LT.diff) of the laurolactam obtained by this, and gas chromatography mass spectrometry were performed. In Examples C1 to C7 and Reference Examples C1 to C6 below, the light transmittance difference (LT.diff) was measured in the same manner as in Example B above.
  • Step C1 Preparation of cyclododecanone
  • Cyclododecanone obtained by subjecting a cyclododecanone / cyclododecanol mixture (Invista) to a dehydrogenation reaction was used as a raw material.
  • the light transmittance difference (LT. Diff) of this cyclododecanone was 48%.
  • 230 ppm by weight of impurities was detected at a retention time of 23 minutes.
  • the molecular weight was 180, which was cyclododecenone from the results of fragment ion analysis.
  • Step C2 Production of cyclododecanone oxime
  • Cyclododecanone oxime was produced in the same manner as in Reference Example B1 using 7241 g of cyclododecanone prepared in Step C1.
  • Step C3 Drying of cyclododecanone oxime
  • the toluene solution of cyclododecanone oxime prepared in Step C2 was dried by the same method as in Reference Example B2 until the water content became 350 ppm.
  • a portion of the resulting toluene solution of cyclododecanone oxime was collected, diluted with toluene, and subjected to gas chromatography analysis under the above conditions.
  • Impurities of 51 wt ppm, 50 wt ppm, and 51 wt ppm were detected in 3 minutes, respectively.
  • the molecular weight of these three types of impurities was all 195.
  • Step C4 Production of laurolactam (thionyl chloride catalyst)
  • thionyl chloride-toluene solution 10% by weight thionyl chloride-toluene solution and the above 50% by weight cyclododecanone oxime solution were mixed with cyclododecanone oxime-toluene solution diluted with toluene to a concentration of 15% by weight to obtain catalytic activity.
  • a seed was prepared (the mixing tank is referred to as a pre-preparation tank) and supplied to the rearrangement reaction first tank.
  • the pre-preparation tank was equipped with a water cooling jacket to prevent temperature rise due to heat generation, and was controlled so that the temperature did not exceed 35 ° C.
  • the feed amounts of thionyl chloride and cyclododecanone oxime fed to the pre-preparation tank are 1.5 mol% and 3 mol, respectively, with respect to the total amount of cyclododecanone oxime fed to the pre-preparation tank and the rearrangement reaction first tank. It was 75 mol%, and the residence time of the pre-preparation tank was 20 minutes. The temperature of the rearrangement reaction tank was set to 105 ° C., and the residence time of the rearrangement reaction tank was 25 minutes in total for the first rearrangement reaction tank and the second rearrangement reaction tank.
  • the conversion of cyclododecanone oxime was 100%, and the laurolactam yield was 99.7%.
  • the obtained laurolactam had a light transmittance difference (LT. Diff) of 65.3%.
  • Step C5 Post-treatment of rearrangement liquid, distillation purification
  • 50 g of water was added to 500 g of the laurolactam / toluene solution obtained in Step C4, and the mixture was stirred at 85 ° C. for 10 minutes and then allowed to stand for separation to obtain a light liquid phase.
  • This operation was further repeated twice, and 64 g of a 1 mol / L sodium hydroxide aqueous solution was added to the resulting light liquid phase, and the mixture was stirred at 85 ° C. for 10 minutes and allowed to stand to separate the light liquid phase (referred to as a post-treatment liquid). ).
  • Toluene was distilled off from the obtained light liquid phase, and further distillation (bottom temperature 190 ° C., degree of vacuum 3 to 4 torr, reflux ratio 1, through the packing 7 stages) was performed to obtain laurolactam.
  • Step C4 ′ Production of Laurolactam (Cyanuric Chloride Catalyst)]
  • zinc chloride is added to the 50 wt% cyclododecanone oxime-toluene solution obtained as in the step C3 so as to have a ratio of 1.0 mol% to the cyclododecanone oxime.
  • the solution obtained by dissolving in was supplied so that the total residence time in the two tanks was 25 minutes.
  • the cyanuric chloride-toluene solution was supplied to the first tank so that cyanuric chloride was 1.5 mol% with respect to cyclododecanone oxime.
  • the conversion of cyclododecanone oxime was 100%, and the laurolactam yield was 99.7%.
  • the obtained laurolactam had a light transmittance difference (LT. Diff) of 66.8%.
  • the obtained laurolactam was purified by the method shown in Step C5.
  • the impurities (isomer mixture of dodeceno-12 lactam) shown in Reference Example C1 were detected, and the respective concentrations were 5 ppm by weight and 9 wt. ppm and 20 ppm by weight.
  • the obtained laurolactam had a light transmittance difference (LT. Diff) of 47.0%.
  • Example C1 (hydrorefining of cyclododecanone)
  • 10 g of cyclododecanone obtained in the step C1 was added with 10 g of Pt / C catalyst (manufactured by NE Chemcat) supporting 5% by weight of platinum, and the molten and homogenized slurry was pressurized with a stirring volume of 1 L. While introducing into the flow reactor at a rate of 1 L / hour (average residence time of 1 hour), hydrogen was circulated and hydrogenation was performed under conditions of 100 ° C. and 1.1 MPa.
  • the treatment liquid discharged from the pressurized flow reactor was subjected to pressurized continuous filtration to separate the Pt / C catalyst, and then cyclododecanone was obtained.
  • cyclododecanone was obtained by gas chromatography (the above conditions).
  • LT. Diff The transmittance difference
  • Laurolactam was produced in the same manner as in Reference Example C1, except that this cyclododecanone was used.
  • dodeceno-12 lactam found in Reference Example C1 was not detected, and the light transmittance difference (LT. Diff) was 10.1%.
  • Example C2 (Hydropurification of cyclododecanone)] Laurolactam was produced in the same manner as in Example C1, except that a part of the production method of laurolactam was changed to the method of Step C4 ′ as in Reference Example C2. In the laurolactam, dodeceno-12 lactam found in Reference Example C1 and Reference Example C2 was not detected, and the light transmittance difference (LT. Diff) was 12.1%.
  • Example C3 Hydrodropurification of cyclododecanone oxime
  • a toluene solution of cyclododecanone oxime was obtained in the same manner as in Step C2.
  • the hydrogenation treatment of cyclododecanone oxime was performed with the addition amount of 5% Pt / C being 1% by weight, the hydrogen pressure being 0.2 MPa, and the average residence time being 60 minutes.
  • purified laurolactam was produced in the same manner as Steps C4 and C5.
  • Example C4 (crystallization purification of cyclododecanone oxime) Cyclododecanone oxime was produced in the same manner as in Reference Example C1, except that the solvent in Step C2 was changed to methanol and the reaction temperature was 65 ° C. After completion of the reaction, the aqueous phase was separated, the reaction solution (cyclododecanone oxime / methanol slurry) was cooled to room temperature, and the cyclododecanone oxime crystals were separated by filtration.
  • Methanol was distilled off from the methanol mother liquor containing cyclododecanone oxime at normal pressure, concentrated about 10 times, cooled to room temperature, and precipitated crystals of cyclododecanone oxime were separated by filtration.
  • the obtained crystals of cyclododecanone oxime were rinsed with 500 ml of water and methanol together with the crystals precipitated during cooling of the reaction solution, dried in a vacuum dryer and dried at 70 ° C.
  • the dried cyclododecanone oxime was dissolved in toluene to prepare a 50 wt% cyclododecanone oxime / toluene solution, and purified laurolactam was produced in the same manner as in Steps C4 and C5.
  • the concentrations of isomers of dodeceno-12 lactam in the purified laurolactam were 1 ppm by weight, 3 ppm by weight, and 10 ppm by weight, respectively, and the difference in light transmittance (LT. Diff) was 21.0%.
  • Example C5 (hydrotreating of post-treatment liquid)
  • a post-treatment liquid was prepared in the same manner as in Reference Example C1 except that the distillation purification in Step C5 was not performed, and this was combusted with an automatic sample combustion apparatus (AQF-100 type manufactured by Mitsubishi Chemical Corporation).
  • AQF-100 automatic sample combustion apparatus
  • 10 g of a stabilized nickel catalyst (F33B manufactured by JGC Catalysts & Chemicals Co., Ltd.
  • the light transmittance difference (LT. Diff) was 29.7%, which contained 75.5 ppm of chlorine and 5.3 ppm of sulfur.
  • Example C6 hydrofluorefining of laurolactam
  • N113F Ni (52% by weight) carrier: diatomaceous earth manufactured by JGC Catalysts & Chemicals
  • the treatment was performed at a pressure of 0.5 MPa and 165 ° C. for 2 hours. Neither chlorine nor sulfur was detected from the obtained laurolactam by ion chromatography analysis, and dodeceno-12 lactam was not detected.
  • the light transmittance difference (LT. Diff) was 4.3%.
  • Example C7 Hydrolauric purification of laurolactam was carried out in the same manner as in Example C6 except that the production method of laurolactam was carried out in the same manner as in Reference Example C2. Neither chlorine nor sulfur was detected from the obtained laurolactam by ion chromatography analysis, and dodeceno-12 lactam was not detected.
  • the light transmittance difference (LT. Diff) was 5.1%.
  • Example D> cyclododecanone oxime was produced using cyclododecanone purified by recrystallization, and impurities in the laurolactam solution were analyzed.
  • Cyclododecanone was produced according to JP-T-2007-506695. That is, first, cyclododecatriene was produced by trimerizing butadiene using titanium tetrachloride and ethylaluminum sesquichloride as catalysts. Next, cyclododecatriene was oxidized with nitrous oxide to produce cyclododecadienone, and the remaining carbon-carbon double bond was hydrogenated using a palladium catalyst to produce crude cyclododecanone. The obtained crude cyclododecanone was purified by distillation to obtain cyclododecanone as a raw material.
  • the impurities having a retention time of 24.68 minutes, 24.73 minutes, and 24.87 minutes were dodecanone having a tricyclo ring structure, and 25.12 minutes being dodecenone or cyclododecadienone having a dicyclo ring structure.
  • Laurolactam was produced according to the method described in JP-A-5-4964. First, cyclohexanone prepared separately is fed to the first tank of oximation, stirred and mixed with the heavy liquid of the second tank of oxime consisting of hydroxylamine sulfate and ammonium sulfate aqueous solution, and ammonia water is added dropwise while adjusting the pH. An oxime was produced. The obtained cyclohexanone oxime melt was fed to the second oxime tank.
  • the cyclododecanone and hydroxylamine sulfate aqueous solution produced by the above method are fed to the second oximation tank, and ammonia water is added dropwise with stirring in the same manner as in the first oximation tank. Manufactured.
  • the feed amount of the hydroxylamine sulfate aqueous solution fed to the second oxime tank was the same as the total amount of cyclohexanone and cyclododecanone.
  • the light liquid phase discharged from the second oxime tank was a melt composed of cyclohexanone oxime and cyclododecanone oxime, and was sent to the rearrangement step.
  • the rearrangement reaction of cyclohexanone oxime and cyclododecanone oxime was carried out with concentrated sulfuric acid and fuming sulfuric acid.
  • aqueous ammonia was added to the rearrangement solution to neutralize the sulfuric acid to release caprolactam and laurolactam, and toluene was added for extraction.
  • Water was added to the obtained toluene solution of caprolactam and laurolactam, and caprolactam was extracted into an aqueous phase to separate them.
  • the obtained caprolactam aqueous solution and the toluene solution of laurolactam were each obtained by distilling off the solvent to obtain a crude lactam, which was further purified by distillation to obtain a product lactam.
  • the distillation purification of laurolactam was carried out by continuous distillation consisting of 3 towers, the first tower was a low boiling point removal tower, low boiling substances were distilled from the top of the tower, and the can liquid was fed to the second tower.
  • the product laurolactam was distilled from the top of the column, and the can liquid containing high-boiling impurities was fed to the third column.
  • the top distillate from the third column was recycled to the second column, and laurolactam containing high-boiling impurities was discharged from the bottom of the column.
  • the amount discharged from the bottom of the column was 0.01% by weight relative to the amount of product laurolactam obtained.
  • the filtrate was analyzed by gas chromatography (column: TC-1, GL Science Co., 30m capillary column; temperature: raised from 70 ° C. to 300 ° C. at a rate of 5 ° C. per minute). Impurities were detected at 7 minutes, and their contents were 3.1 ppm by weight in crude laurolactam and 6.0 ppm by weight, and 0.5 ppm by weight and 0.9 ppm by weight in distilled and purified product laurolactam. It was. As a result of analysis by gas chromatography-mass spectrum (JMS GC mate II manufactured by JEOL Ltd.), the molecular weight of these impurities was 193.
  • gas chromatography-mass spectrum JMS GC mate II manufactured by JEOL Ltd.
  • Example D1 except that no purification of cyclododecanone was performed and that the amount of discharge from the bottom of the column during the distillation purification of laurolactam was set to 0.12% by weight with respect to the obtained amount of laurolactam.
  • the product laurolactam was obtained in the same manner.
  • In crude laurolactam retention times of 30.9 minutes, 31.3 minutes, 31.6 minutes, 31.7 minutes, 32.0 minutes, 32.5 minutes, and 32.7 minutes were detected, and crude laurolactam was detected.
  • the molecular weight of the new impurity was 195. From the above results, the impurities of 30.9 minutes, 31.3 minutes, 31.6 minutes, 31.7 minutes, 32.0 minutes, 32.5 minutes are dodecanolactam of tricyclo ring structure, 32.7 minutes. The impurity was presumed to be dodecenolactam having a dicyclo ring structure.
  • Example D2 Laurolactam was obtained in the same manner as in Example D1, except that the recrystallization solvent of cyclododecanone was changed to methanol.
  • the one-pass yield during the crystallization purification of cyclododecanone was 87.6%
  • the retention periods were 24.68 minutes and 24.73 minutes
  • the impurities were 4 ppm by weight and 6 ppm by weight, respectively, and 24.87 minutes. , 25.12 minutes impurities were not detected.
  • the impurity of 31.3 minutes in the product laurolactam was 0.5 ppm by weight, and no impurity of 31.7 minutes was detected.
  • Example D3 Laurolactam was obtained in the same manner as in Example D1, except that the recrystallization solvent of cyclododecanone was changed to toluene.
  • the one-pass yield during recrystallization purification of cyclododecanone was 35.8%
  • the retention time was 24.68 minutes
  • the impurity of 24.87 minutes was 4 ppm by weight and 9 ppm by weight, respectively, 24.73 minutes
  • No impurities at 25.12 minutes were detected.
  • the impurities of 31.3 minutes and 31.7 minutes in the product laurolactam were 0.5 ppm by weight and 1.1 ppm by weight, respectively.
  • Example D4 Laurolactam was produced in the same manner as in Example D1, except that the production of cyclododecanone oxime and the rearrangement reaction step thereof were changed to the methods shown below.
  • the aqueous phase was fed to the second oxime reactor.
  • the second oximation reactor was a pillow reactor in which the interior was divided into four chambers in 15 L, and was prepared by dissolving the aqueous phase of the oximation reaction solution and the purified cyclododecanone obtained in Example D1 in toluene.
  • 2 kg / h of a 25 wt% cyclododecanone solution (equal molar amount with hydroxylamine sulfate to the first reactor) was fed to the same reactor, the reaction temperature was set to 95 ° C., and 25 wt% ammonia was added to each chamber. Water was fed at 16 g / h to carry out an oximation reaction.
  • the obtained reaction liquid was separated, and the oil phase was fed to the first oximation reactor.
  • the molar ratio of cyclododecanone oxime to thionyl chloride is 2.5.
  • the mixed solution was fed through a conduit to a pre-preparation vessel made of jacketed glass having an internal volume of 48 ml.
  • the residence time from a mixing part to a preparation tank was 1.5 minutes, and the residence time in a preparation tank was 29 minutes.
  • the internal temperature of the degassing tank was controlled at 35 ° C. with a jacket refrigerant, degassed with nitrogen (40 mL / min) while stirring with a stirrer, pre-prepared, and the overflow liquid was allowed to flow into the rearrangement reaction tank.
  • a liquid obtained by adding 1 mol% of zinc chloride to cyclododecanone oxime in a 50 wt% cyclododecanone oxime / toluene solution was fed at 613 g / h to the rearrangement reaction tank.
  • the rearrangement reaction tank was composed of 2 tanks of CSTR (Continuous Stirred Tank Flow Reactor: continuous stirring tank type flow reactor) having an internal volume of 163 ml.
  • the reaction time total of the average residence time of CSTR1 and 2 tanks was 0.4 hour, and the continuous reaction was continued for 9.5 hours under the same conditions.
  • the catalytically active species (cyclododecanone O-azacyclotridecene-2- (2) represented by the formula (6) in the pre-prepared solution introduced from the degassing tank to the rearrangement reaction tank for thionyl chloride added in the pre-preparation.
  • Iloxime hydrochloride (note that this compound is a compound represented by the formula (6), a stereoisomer other than the compound represented by the formula (6), or a stereoisomer including the compound represented by the formula (6)). Represents a mixture of combinations.))
  • the molar yield was 96.2%.
  • the conversion of cyclododecanone oxime in the rearrangement reaction using this pre-prepared solution was 99.97%, and the yield of laurolactam was 99.8%.
  • the resulting rearrangement reaction solution was washed with water and then with a 4 wt% aqueous sodium hydroxide solution to remove catalyst residues and the like, and toluene was distilled off to obtain crude laurolactam. Furthermore, distillation refinement
  • purification was performed similarly to Example D1, and the product laurolactam was acquired. Impurities of 31.3 minutes and 31.7 minutes in the crude laurolactam and in the purified product laurolactam were 3.5 ppm by weight, 5.5 ppm by weight, and 0.6 ppm by weight, respectively. The weight was ppm.
  • Example D5 Crude cyclododecanone was produced according to JP 2000-256340 A, JP 2000-026441 A, JP 2001-302650 A, and JP 2001-226111 A. That is, 1,5,9-cyclododecatriene is mixed with hydrogen peroxide solution, phosphotungstic acid and trioctylmethylammonium chloride are added as catalysts to oxidize, and 1,2-epoxy-5,9-cyclododecadiene is oxidized. Manufactured. Unreacted 1,5,9-cyclododecaline was recovered by distillation, and 1,2-epoxy-5,9-cyclododecadiene was purified by distillation.
  • the resulting 1,2-epoxy-5,9-cyclododecadiene was hydrogenated with platinum / carbon as a catalyst to hydrogenate double bonds.
  • Lithium iodide was added as a catalyst to the obtained epoxycyclododecane and heated to 230 ° C. to isomerize to obtain cyclododecanone.
  • Purification of cyclododecanone and production of laurolactam were carried out in the same manner as in Example D1, and impurities were analyzed. Impurities in the purified cyclododecanone at 24.68 minutes, 24.73 minutes, and 24.87 minutes are 2.4 ppm, 2.1 ppm, 4.1 ppm, and 25.12 minutes, respectively. Impurities were not detected. Impurities of 31.3 minutes and 31.7 minutes in the crude laurolactam and the product laurolactam were 2.1 ppm by weight, 4.0 ppm by weight, 0.3 ppm by weight and 0.6 ppm by

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

 本発明は、高純度、高品質のアミド化合物、特にラクタムを製造する方法に関する。 本発明の第一の態様においては、オキシム化工程にリサイクルされる溶液中のハロゲン化物、アルデヒド化合物、アルコール化合物、ニトリル化合物の含有量を、それぞれ原料であるケトンに対して0.4モル%以下とすることを特徴とする。本発明の第二の態様においては、ケトン、オキシム、およびアミド化合物から成る群から選ばれる1種類以上の化合物の水素化精製および/または晶析精製を行い、二重結合を含む不純物を除去することを特徴とする。本発明の第三の態様においては、再結晶により精製されたシクロアルカノンを用いて、橋かけ環状構造を有する不純物の含有量を抑制することを特徴とする。

Description

アミド化合物の製造方法
 本発明は、医薬、農薬、染料、ポリアミドなどの原料等として有用なアミド化合物、例えばラクタムの製造方法に関する。
 工業的にアミド化合物を製造する方法としては、対応するケトンとヒドロキシルアミンからオキシム化合物を製造し、これをベックマン転位させる方法が一般的である。例えば、工業的に有用であるε-カプロラクタムはシクロヘキサノンオキシムのベックマン転位によって製造される。転位には濃硫酸および発煙硫酸が用いられるが、これら強酸は化学量論量以上に必要であり、中和の際にε-カプロラクタムの生産量をはるかに越える硫酸アンモニウム等の塩が副生する。すなわち、大量の副原料(硫酸など)の製造と副生成物(硫安など)の処理のために、多大な設備と原材料・エネルギーが必要なプロセスである。
 これに対し、液相での触媒によるベックマン転位反応は副原料を必要とせず、副生物も少ないため、その実用化が期待されている。液相でのベックマン転位触媒については、多数の研究が行われているが、たとえば、特許文献1に開示されている(i)芳香環を構成する原子として、脱離基を有する炭素原子を少なくとも1つ含み、(ii)芳香環を構成する原子として、ヘテロ原子または電子吸引基を有する炭素原子のいずれかの一方または両方を少なくとも3つ含み、(iii)前記のヘテロ原子または電子吸引基を有する炭素原子のうち2つが、前記脱離基を有する炭素原子のオルトあるいはパラ位に位置する芳香環含有化合物を用いることができる。ベックマン転位触媒としては、例えば、トリクロロトリアジン(別称:塩化シアヌル、2,4,6―トリクロロ-1,3,5-トリアジン、略称:TCT)、ヘキサクロロホスファゼンなどが実用的である(特許文献13)。
 特許文献2には、特許文献1に開示されている触媒を用いて、非極性溶媒中でベックマン転位反応を行うことが報告されている。特許文献3及び特許文献4には、特許文献1に開示されている触媒の類縁化合物でオキシム化合物のベックマン転位を行う方法が報告されている。特許文献5、6には塩化チオニル等の酸塩化物を触媒に用いたオキシム化合物のベックマン転位について開示されている。
 一方、特許文献1に開示されている触媒を用いてベックマン転位を行うアミド化合物の具体的な製造プロセスが特許文献7,8に開示されているが、溶媒等のリサイクルに関しては具体的に示されていない。
 また、例えばラクタムの主な用途は、糸、ファイバー、フィルムなどに用いられるポリマー又はコポリマーであり、その純度は厳密な規格値を満たす事が必要な場合がある。
 主な規格値としては、例えば、吸光度によるものがあり、光透過率差(LT.diff、詳細は後述する)、UV価(ラクタム水溶液(50重量%)のUV吸光度(波長290nm)を幅1cmのセル内で測定)、PAN価(ISO規格8660)がある。
 これらの規格値のうちUV価、PAN価を向上させる方法として、ラクタム製品の蒸留、溶媒洗浄、晶析・再結晶、酸処理、アルカリ処理、酸化処理、水素添加処理等の技術が多数開示されている。例えば、特許文献14には、カプロラクタムをニッケル触媒を用いて水素化処理を行った後、蒸留精製を行う方法で、ニッケル触媒のリボイラーへの混入を防止することによって、PAN価が向上することが示されている。
 特許文献15には原料であるシクロドデカノン中の不純物が、目的化合物であるラウロラクタムのLT.diffに及ぼす影響について開示されている。
 また、低いUV価を得る方法としては、ラクタムを触媒の存在下で水素化する方法が知られている。例えば、特許文献9には、ベックマン転位反応によって得られたカプロラクタムを、懸濁した水素化触媒の存在下で水素化する方法が開示されている。また、特許文献10及び特許文献11には、活性炭及びイオン交換樹脂で処理した後にカプロラクタムを水素化する方法が開示されている。特許文献12には、アミノニトリルを環化加水分解する事によって得られたラクタムを水素化触媒の存在下で水素化する方法が開示されている。
 上記技術は、オキシムを硫酸等の強酸を用いてベックマン転位させて得られたラクタムの規格値向上に関するものである。しかし、ベックマン転位反応の副生物として大量の硫安を副生しない製造方法により得られたラクタムについて、上記規格値を改善するための精製方法については知られていない。また、上記開示技術は、処理方法とUV価、PAN価等との関係を示すものであって、規格値低下の原因物質の特定と当該原因物質濃度と規格値との関係に関しては示されていない。
 一方、上記規格はアミド化合物中の不純物が所定のUV吸収を有する場合や過マンガン酸カリウムと反応する場合にのみ有効であって、それ以外の不純物の存在を検知することはできない。
 また、目的とするラクタム以外のラクタムやアミド化合物が存在する場合、重合を妨げ、重合物の物性を低下させる場合があり好ましくない。不純物として製品ラクタムと構造の異なるラクタム及び/又はアミド化合物が存在する場合、必ずしも上記規格値が変動するとは限らないため、当該不純物を検知、定量する方法の確立と低減方策も必要とされる。
特開2006-219470号公報 国際公開第07/125002号パンフレット 特開2008-156277号公報 特開2008-162935号公報 特開昭51-041376号公報 特公昭52-012198号公報 国際公開第08/096873号パンフレット 国際公開第09/069522号パンフレット 独国特許第1,253,716号明細書 独国特許第1,004,616号明細書 東ドイツ国特許第75 083号明細書 米国特許第5,496,941号明細書 特開2009-298706号公報 特表2006-528649号公報 特開2004-099585号公報
 本発明は、オキシムをベックマン転位させアミド化合物を製造する方法であって、硫酸アンモニウムなどの副生物を大量に副生せず、より高品質のアミド化合物およびその製造方法を提供することを目的とする。
 本発明は、以下の事項に関する。
 1. ケトンとヒドロキシルアミンとを、有機溶媒の存在下で反応させ、オキシムを生成する工程(以下、オキシム化工程という)と、
 ベックマン転位触媒を用いて、オキシムをベックマン転位させることによりアミド化合物を製造する工程(以下、転位工程という)と、
 製造されたアミド化合物と溶媒とを分離し、分離した溶媒をオキシム化工程にリサイクルする工程(以下、溶媒リサイクル工程という)と、
を含むアミド化合物の製造方法であって、
 前記溶媒リサイクル工程により分離され、オキシム化工程にリサイクルされる溶媒中のハロゲン化物、アルデヒド化合物、アルコール化合物、ニトリル化合物の含有量を、それぞれ原料であるケトンに対して0.4モル%以下とすることを特徴とする、アミド化合物の製造方法。
 2. 前記オキシム化工程の反応液中のアルドキシム化合物、アミドキシム化合物の含有量を、オキシムに対して0.4モル%以下とすることを特徴とする上記1記載のアミド化合物の製造方法。
 3. 前記ベックマン転位触媒がハロゲン原子を含むことを特徴とする上記1記載のアミド化合物の製造方法。
 4. 前記有機溶媒が芳香族炭化水素であることを特徴とする上記1記載のアミド化合物の製造方法。
 5. 前記ケトンがシクロドデカノンであることを特徴とする上記1記載のアミド化合物の製造方法。
 6. 二重結合を有する不純物が15重量ppm以下であることを特徴とするラクタム。
 7. 環状ケトンとヒドロキシルアミンとの反応により、下式(1)で表されるオキシムを製造する工程と、
Figure JPOXMLDOC01-appb-C000003
(式中、mは3以上の整数を示す)

 ベックマン転位触媒を用いて、前記オキシムをベックマン転位させることによりラクタムを製造する工程と
を有するラクタムの製造方法であって、
 前記転位触媒が、
Figure JPOXMLDOC01-appb-C000004
(式中、ZはP、N、S、B又はSi原子を示し、Xはハロゲン原子を示す。ZはX以外に、1又は2以上の原子又は基と結合している。)、または、
 下記条件(i)~(iii)すべてを満足する芳香環含有化合物であり、
 かつ、環状ケトン、オキシム、およびラクタムから成る群から選ばれる1種類以上の化合物の水素化精製および/または晶析精製を行うことを特徴とする、上記6記載のラクタムの製造方法。
  (i)芳香環を構成する原子として、脱離基としてハロゲン原子を有する炭素原子を少なくとも1つ含む。
  (ii)芳香環を構成する原子として、ヘテロ原子又は電子吸引基を有する炭素原子のいずれかの原子の一方又は両方を少なくとも3つ含む。
  (iii)前記のヘテロ原子又は電子吸引基を有する炭素原子のうちの2つが、前記脱離基であるハロゲン原子を有する炭素原子のオルトあるいはパラ位に位置する。
 8. 前記環状ケトンの水素化精製を行うことを特徴とする、上記7に記載の製造方法。
 9. 前記オキシムの晶析精製を行うことを特徴とする、上記7または8に記載の製造方法。
 10. 前記オキシムの水素化精製を行うことを特徴とする、上記7~9のいずれかに記載の製造方法。
 11. 前記オキシムのベックマン転位により得られたラクタムの水素化精製を行うことを特徴とする、上記7~10のいずれかに記載の製造方法。
 12. 前記ラクタムがラウロラクタムであることを特徴とする、上記7~11のいずれかに記載の製造方法。
 13. 橋かけ環状構造を持つ不純物が50重量ppm以下であることを特徴とするラクタム。
 14. 前記橋かけ環状構造を持つ不純物が、ジシクロ環及び/又はトリシクロ環構造のラクタムであることを特徴とする、上記13に記載のラクタム。
 15. シクロアルカノンオキシムのベックマン転位によるラクタムの製造方法であって、ベックマン転位反応液中の橋かけ環状構造を持つ不純物が、目的生成物であるラクタムに対して300重量ppm以下であることを特徴とするラクタムの製造方法。
 16. 前記橋かけ環状構造を持つ不純物が、ジシクロ環及び/又はトリシクロ環構造のアミド化合物であることを特徴とする上記15に記載のラクタムの製造方法。
 17. 前記シクロアルカノンオキシムが、シクロアルカノンとヒドロキシルアミンとを反応させて製造したものである上記15または16に記載のラクタムの製造方法。
 18. 前記シクロアルカノンがブタジエンの付加反応生成物より製造したものである上記17記載のラクタムの製造方法。
 19. 前記シクロアルカノンに含まれる橋かけ環状構造を持つケトンが500重量ppm以下であることを特徴とする上記17または18に記載のラクタムの製造方法。
 20. 前記橋かけ環状構造を持つケトンがジシクロ環構造を有するケトン及び/又はトリシクロ環構造を有するケトンである、上記19に記載のラクタムの製造方法。
 21. 前記シクロアルカノンが炭素原子数8~20のシクロアルカノンであって、再結晶により精製されたものであることを特徴とする、上記17~20のいずれか記載のラクタムの製造方法。
 22. 前記ラクタムがラウロラクタムであることを特徴とする、上記15~21のいずれかに記載のラクタムの製造方法。
 本発明によれば、ベックマン転位触媒の活性の低下に繋がる副生物およびその前駆物質を溶媒から除去することにより、少量の触媒を用いて高収率でアミド化合物を得ることができる。さらに本発明によれば、簡便な方法で、高い純度を有する高品質のアミド化合物を得ることができる。
 本発明により、ベックマン転位触媒の活性の低下に繋がる不純物、光透過率差の上昇に繋がる不純物、およびアミド化合物の重合率の低下に繋がる不純物が明らかとなり、これら不純物の除去方法も見出された。本発明は下記第1~第3の態様により、より高品質なアミド化合物、特にラクタムを製造する方法に関する。
 本発明の第1の態様は、ベックマン転位反応の転化率の低下に繋がる不純物を特定し、これを除去する方法に関する。
 本発明の第2の態様は、アミド化合物の光透過率差を増加させる物質として、二重結合を有する不純物を特定し、これを除去する方法に関する。
 本発明の第3の態様は、橋かけ環状構造を有する不純物の除去方法に関する。
 まず、各態様における不純物の特徴とこれを除去する方法について説明する。第1~第3の態様に共通して適用される事項に関しては後述する。
<ベックマン転位反応を阻害する不純物>
 本発明の第1の態様においては、ベックマン転位反応の転化率の低下に繋がる不純物を特定し、これを除去する方法を提供する。
 アミド化合物は、
(1)対応オキシムを製造する「オキシム化工程」、
(2)オキシムを、ベックマン転位触媒を用いてベックマン転位反応を行い、アミド化合物を製造する「転位工程」
を有する製造方法により製造される。その際、ベックマン転位反応後の反応溶液をアミド化合物と溶媒とに分離し、溶媒をオキシム化工程にリサイクルする「溶媒リサイクル工程」をさらに有することが好ましい。
 発明者らは、転位工程におけるベックマン転位反応の反応液中における不純物の反応への影響について検討した。その結果、アルドキシム、アミドキシム及びアルコールがベックマン転位反応を阻害することが判明した(実施例A参照)。ベックマン転位反応の後、溶媒リサイクル工程により溶媒がリサイクルされる場合、これらベックマン転位反応を阻害する物質の溶媒への蓄積、リサイクル溶媒への混入を避けることが好ましい。
 アルドキシム、アミドキシム及びアルコールがベックマン転位反応の反応液中に含まれることには、下記のような原因が考えられる。
 アルドキシム、アミドキシムは、それぞれアルデヒドやニトリルとヒドロキシルアミンとの反応によって生成する事が知られている(共立出版株式会社発行「化学大辞典」1993年6月1日縮刷版第34刷第1 p244およびp418)。また、ニトリルはアルドキシムの脱水反応により(共立出版株式会社発行「化学大辞典」1993年6月1日縮刷版第34刷第2巻 p99~p100)、アルデヒドはR-CHClの加水分解によって生成する事が知られている(共立出版株式会社発行「化学大辞典」1993年6月1日縮刷版第34刷第1巻 p412)。また、R-CHClについては、共立出版株式会社発行「化学大辞典」1993年6月1日縮刷版第34刷第1巻 p1071に、トルエンと三塩化リンからR-CHClに対応するジクロロメチルベンゼンが生成することが示されている。
 アルコールはR-CHClの加水分解又はアルデヒドのアルカリ分解で生じる事が知られている(共立出版株式会社発行「化学大辞典」1993年6月1日縮刷版第34刷第8巻 p466)。
 従って、ベックマン転位反応を阻害する上記アルドキシム、アミドキシム及びアルコールもこれらの反応から生成するものと推察される。
 実際、ベックマン転位反応に用いることができる触媒と溶媒の組合せ、例えば、室温で塩化チオニルをトルエンで希釈した場合、ガスクロマトグラフィー分析により塩化ベンジル、塩化ベンザル、ベンズアルデヒドが検出される。このことから、上記アルドキシム、アミドキシムの生成に向けた一連の反応はアミド化合物を製造する各プロセスで進行するものと推察される。
 転位工程とオキシム化工程における溶媒は共通して用いられることが多い。従って、溶媒リサイクル工程によりリサイクルされる溶媒中に、アルドキシム、アミドキシムの前駆物質であるニトリル、アルデヒド、R-CHClやR-CHClのような塩素化物が混入することを防止することが好ましい。また、アルコールの蓄積を避けるために、アルコール自体のリサイクル溶媒への混入を防止すると共に、塩素化物、アルデヒドの混入を避けなければならない。これらの化合物を除去することによって、前記ベックマン転位反応阻害物質の生成経路を断つことができ、少量のベックマン転位触媒で安定してアミド化合物を製造することができる。
 上記ベックマン転位反応阻害物質の許容される蓄積量は、オキシム化工程における原料ケトンの種類、転位工程におけるベックマン転位触媒の種類及び使用量、溶媒の種類等によって異なる。例えば、オキシム化工程の原料ケトンとしてシクロドデカノン、転位工程のベックマン転位触媒として塩化チオニル、溶媒としてトルエンを用いる場合、オキシム化工程から転位工程に送られるオキシム溶液中に含まれる副生物であるアミドキシムの量は、原料ケトンの使用量に対して0.4mol%以下であることが好ましく、0.1mol%以下であることがより好ましい。
 転位工程において、転位反応液中のアミドキシム含有量が多すぎると、少量の触媒量では転位反応が完結せず、オキシムが残存してしまう。なお、ベックマン転位触媒の増量によって、ベックマン転位反応を完結することは可能であるが、大量の触媒が必要になるため好ましくない。
 アルドキシムやアルコールの転位反応への影響はアミドキシムと比較して軽微であるため、これらの含有量は、上記アミドキシムの許容量と同程度の範囲であればよい。
 前記の通り、副生物であるアミドキシム、アルドキシムはオキシム化工程で生成する。従って、転位反応への影響を避けるため、溶媒リサイクル工程によりリサイクルされる溶媒中の塩化物、アルデヒド、アルコール、ニトリルの含有量をそれぞれ、オキシム化に与る原料ケトンの使用量に対し、0.4mol%以下に抑えることが好ましく、0.1mol%以下に抑えることがより好ましい。
 上記副生物は以下の方法により、許容範囲内になるよう除去することができる。
 ベックマン転位反応後の反応液(以下、転位液と称する)は、通常、ろ過、濃縮、蒸留、抽出、晶析、再結晶、吸着、カラムクロマトグラフィーなどの分離手段やこれらの組合せの方法による「後処理」が施されるが(詳しくは後述する)、上記副生物の一部はこの後処理によって除去される。また、前述の副生物の加水分解・抽出除去の目的で水洗、アルカリ洗浄、酸処理を行ってもよい。例えば、ニトリルは硫酸や水酸化ナトリウム等の強酸、強塩基を用いて加水分解することで、カルボン酸に転換することができる。
 転位液は、上記後処理を施された後、溶媒リサイクル工程で、溶媒とアミド化合物とに分離され、溶媒はオキシム化工程にリサイクルされる。溶媒リサイクル工程では、転位工程で生成され、反応液中に溶解しているベックマン転位触媒の脱離基由来の成分、ベックマン転位触媒の残渣、および副生物等が除去される。
 溶媒リサイクル工程において、溶媒と目的生成物であるアミド化合物を分離する方法としては、蒸留、抽出、晶析、再結晶等の方法が挙げられるが、通常、蒸留が用いられる。ここで、溶媒リサイクル工程によりリサイクルされる溶媒中の不純物の含有量が、前述の許容範囲内に抑制される。
 溶媒リサイクル工程において、蒸留により溶媒の回収と不純物の除去を行う場合、一般的に反応原料であるケトンから生じる前記副生物(例えば、ケトンがシクロドデカノンの場合、1-クロロドデカン、ラウロニトリル、12-クロロドデカンニトリル等)より、溶媒から生じる前記副生物(例えば、溶媒がトルエンの場合、塩化ベンジル、塩化ベンザル、ベンズアルデヒド、ベンジルアルコール、ベンゾニトリル等)の方が溶媒と沸点が近接している為、溶媒起源の副生物の混入を避けることが重要である。溶媒の蒸留回収は一回の蒸留操作で行うこともできるが、複数の蒸留操作を組合せて、副生物を含む留分は前段の蒸留工程に戻して溶媒の回収ロスを防ぐと共に、その一部を排出して副生物の蓄積を防ぐことにより溶媒を精製することは、さらに好ましい。なお、分離除去を容易にするために、前記の転位液の後処理において、酸処理、アルカリ処理、酸化処理、還元処理等によって、副生物を転位反応に影響を与えない物質に転換したり、分離が容易な化合物に転換したりすることも好ましい。例えば、酸処理、アルカリ処理によって、ニトリルをカルボン酸に加水分解することやアルデヒドをアルコールに還元すること等が挙げられる。
<光透過率差の増加を抑制する方法と光透過率差の増加に繋がる不純物>
 本発明の第2の態様においては、光透過率差が好ましくは35%以下、より好ましくは35%未満のアミド化合物と、これを製造する方法を提供する。発明者らは光透過率差の増加に繋がる不純物の特定も行った。
[アミド化合物の光透過率差]
 アミド化合物をポリマー原料として用いる場合、重合を阻害する物質、物性を低下させる物質、劣化、着色の原因となる物質の存在が問題となる。その評価指標としては、光透過率差(differential light transmittance、以下これをLT.diff.と記す)、UV価、PAN価が用いられている。ここで光透過率差とは、アミド化合物の品質に関する規格値の1つであって、0.00909Nの過マンガン酸カリウムのメタノール溶液に試料を添加した場合と無添加の場合の410nmにおける吸光度差のことをいう。
 アミド化合物、特に、ラクタムは、前述の転位液の後処理や蒸留精製を施した後でも、その光透過率差が好ましくは35%以下、より好ましくは35%未満、さらに好ましくは25%以下を示さず、用途によっては満足できない品質の場合がある。ラクタム等のアミド化合物の精製方法として通常実施されている酸処理、アルカリ処理、酸化処理、抽出精製、晶析精製も実施したが、LT.diff.の顕著な減少は認められなかった。
 光透過率差が大きくなってしまう原因としては、転位工程において、後述する転位触媒、特に触媒aまたは触媒b(触媒a及び触媒bの詳細については後で説明する)を用いた場合、これらに関与して生成した不純物、すなわちオキシムや溶媒のハロゲン化物、及び溶媒のリサイクルも含めて逐次的に反応生成したアルデヒド、オレフィン、アルドキシム等が影響しているものと推定された。
 発明者らは、まず、アミド化合物、特にラクタムを蒸留精製後、又は蒸留精製する事無く水素化精製する事で、35%以下のLT.diff.である高純度のラクタム、特にラウロラクタムが得られる事を見出した(実施例B参照)。アミド化合物を水素化精製する方法は後述する。
[二重結合を有する不純物]
 さらに、本発明の発明者らは、蒸留精製して得られたラウロラクタムを、ガスクロマトグラフ・質量分析した結果、二重結合を有する不純物であるドデセノ12ラクタム(数種の異性体が存在)の濃度と光透過率差との間に相関があることを見出した(実施例C参照)。ここで、ベックマン転位反応における二重結合を有する不純物としては、出発原料であるケトンがシクロドデカノンの場合、ドデセノ12ラクタムが挙げられ、ケトンがシクロヘキサノンの場合、ヘキセノ6ラクタムが挙げられる。
 これら二重結合を有する不純物の含有量を抑えることにより、光透過率差(LT.diff.)が好ましくは35%以下のアミド化合物を得ることができる。アミド化合物中におけるこれら不純物の許容範囲は15ppm以下であることが好ましく、10ppm以下であることがより好ましい。不純物濃度が許容範囲を越えて存在する場合は、光透過率差が35%を越えてしまう。
 アミド化合物の製造方法は、前記のようにオキシム化工程と転位工程を有するが、通常、オキシム化工程により出発原料ケトンからオキシムが製造され、転位工程によりオキシムからアミド化合物が製造される(下式参照)。本発明の発明者らは、上記二重結合を有する不純物は、上述のアミド化合物の水素化精製により除去されるだけでなく、アミド化合物の水素化精製、オキシムの晶析精製又は水素化精製、原料であるケトンの水素化精製のうち少なくともひとつの精製処理を行うことによって、許容範囲内に低減することができ、高純度のアミド化合物が得られることを見出した。以下、アミド化合物の水素化精製、ケトンの水素化精製、オキシムの水素化精製、およびオキシムの晶析精製の方法を記載する。
Figure JPOXMLDOC01-appb-C000005
[アミド化合物の水素化精製]
 アミド化合物の水素化精製は、転位工程により生成したアミド化合物を含む反応混合物(転位液)、または転位液中の残存触媒及び/又は触媒残渣を除去するため、例えば後述の参考例B5で示すような、水洗浄および/またはアルカリ洗浄等の後処理を行った転位液を、そのまま水素化してもよい。この場合は、転位溶媒が存在するため、低温での水素化処理が可能である。なお、後処理を行わず、転位液を水素化精製する場合は、転位触媒および/または触媒残渣が残存しているため、転位触媒の種類によっては、水素化触媒を被毒する場合がある。また、水素化されやすい転位溶媒を含む場合は、水素化触媒の種類や水素化処理の条件が制約される場合もある。水洗浄および/またはアルカリ洗浄の後処理後の反応混合物は、後処理を施していない転位液と比較して転位触媒及び/又は触媒残渣の影響は軽減されるが、水素化触媒の種類や水素化処理の条件等が制約される場合もある。
 あるいは、アミド化合物の水素化精製は、転位液からベックマン転位反応で使用した溶媒を除去したもの、または、溶媒を除去した反応混合物をさらに蒸留精製したものを、そのまま(無溶媒状態で)水素化してもよい。蒸留精製後の反応混合物は触媒残渣の影響を受けず、水素化触媒の種類、水素化条件を幅広く選択できるため、水素化処理の対象として好ましい。また、水素還元条件で還元されない溶媒にこれを溶解させて水素化してもよい。溶媒としては、好適には、炭素原子数1~3の脂肪族アルコール類(メタノール、エタノールなど)、脂肪族炭化水素類(ヘキサン、ヘプタン、オクタン、シクロドデカンなど)などが挙げられ、水素化条件によっては、芳香族炭化水素類(ベンゼン、トルエン、キシレンなど)を用いることもできる。
 水素化処理プロセスは、水素化触媒の存在下において行われる。ここで、水素化触媒は、系中に懸濁させる懸濁床、固定床、その他通常用いられる水素化プロセスを採用することができる。また、代表的には、水素化触媒は、バルク触媒又は担持された触媒等が用いられる。
 好適な水素化触媒としては、鉄(Fe)、ニッケル(Ni)、銅(Cu)、コバルト(Co)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、金(Au)及び白金(Pt)からなる群より選ばれる一種又はこれらの組合せの金属に由来するものが挙げられる。
 触媒担体としては、例えば活性炭(C)、アルミナ(Al)、シリカ(SiO)、酸化チタン(TiO)、酸化マグネシウム(MgO)、酸化ジルコニウム(ZrO)或は酸化亜鉛(ZnO)、酸化カルシウム(CaO)、珪藻土、粘土鉱物、酸化ランタン(La)又は酸化セリウム(Ce)のような希土類金属酸化物などを使用してもよい。また、これらの酸化物の混合物又は複合酸化物も使用してもよい。また、マグネシウム、アルミニウム又はホウ素のシリケート又はホスフェートも触媒担体として使用してもよい。
 水素化触媒の形状は、粒状、粉状のいずれを用いてもよく、粒状としては、球状、円柱状、不定形、特殊形状のいずれを用いてもよい。
 具体的には、パラジウム、白金を活性炭に担持させたもの(Pd/C、Pt/C)、Ni/アルミナ(耐硫黄性・Ni/Al等)、Ni/珪藻土等が挙げられるが、ニッケルの活性を制御した所謂安定化ニッケル触媒(精製した珪藻土に担持されたニッケル塩を乾式還元し安定化処理した触媒)は、安価で取扱いが容易であり、特に好ましい触媒である。また、耐硫黄性・Ni/Alなどは前還元などの前処理したものが用いられる。
 水素化は、前記触媒単独で一段で実施してもよいが、多段で実施してもよい。例えば、転位液、水洗浄および/またはアルカリ洗浄した反応混合物を対象とする場合には、硫黄や塩素等の被毒に対する耐性の高い触媒(所謂ガード触媒)を用いた処理槽と、前記一般に用いられる水素化触媒を用いた処理槽とを直列に連結して、水素化処理を行ってもよい。
 担持された触媒の場合、触媒元素の濃度は、金属の重量として、触媒の全重量の0.01~80重量%が好ましく、0.1~50重量%がより好ましい。
 更に、触媒の活性を向上させる添加物、例えばジルコニウム、マンガン、銅、クロム、チタン、モリブデン、タングステン、鉄又は亜鉛なども含有させても良い。
 これらの添加物は、触媒的に活性な金属に対して50重量%以下に相当する量にするのが一般的であり、0.1~10重量%に相当する量が好ましい。
 これらの担持された又は未担持の触媒の製造については、Ullmann’s Encyclopaedia
of Industrial Chemistry、第5版、A5巻、348~350頁などの数多くの文献に記載されている。
 水素化処理は、大気圧又は圧力0.1~10MPa、好ましくは0.1~5MPa、より好ましくは0.1~1MPaで実施される。
 水素化処理の温度は、通常、50℃以上、170℃以下であることが好ましく、70℃以上、160℃以下であると、アミド化合物の重合等を防ぐ事ができ、更に好ましい。また、例えば、アミド化合物がε-カプロラクタムである場合、160℃よりも低いことがより好ましい。また、例えば、アミド化合物がラウロラクタムで、無溶媒で水素化する場合は、ラウロラクタムの融点(152℃)以上であることが好ましい。
[ケトン化合物の水素化精製]
 オキシム化工程において、ケトンを原料として用いる場合、製造されたケトンに二重結合を有する不純物が認められる場合がある。二重結合を有する不純物としては、環状ケトンがシクロヘキサノンの場合はシクロヘキセノン、環状ケトンがシクロドデカノンの場合はシクロドデセノンが挙げられる。
 ケトン化合物の水素化処理は溶媒を使用しても差し支えないが、溶媒の水素化を避けるため、無溶媒で直接水素化することが好ましい。
 水素化触媒としては、アミド化合物の水素化処理で挙げた金属に由来するものを用いることができるが、これらの遷位金属のうち、特に、パラジウム(Pd)、ルテニウム(Ru)、白金(Pt)は、環状ケトンを水素化することなく、二重結合の選択水素化特性に優れており、不純物の除去において好ましい。
 これらの遷位金属は塩として又は錯体としてケトン又はその溶液に溶解させて使用することができるが、担体に担持して使用することもできる。
 触媒担体としては、例えば活性炭(C)又はアルミナ(Al)、シリカ(SiO)、酸化チタン(TiO)、酸化マグネシウム(MgO)、酸化ジルコニウム(ZrO)或は酸化亜鉛(ZnO)、酸化カルシウム(CaO)、酸化バリウム(BaO)、珪藻土、粘土鉱物、酸化ランタン(La)又は酸化セリウム(Ce)のような金属酸化物などが使用される。
 水素化の条件はケトン及び触媒の種類によって異なるが、例えば、ケトンとしてシクロドデカノン、触媒金属としてパラジウム(Pd)及び/又はルテニウム(Ru)及び/又は白金(Pt)を用いた場合、触媒金属/ケトン比は0.001~1重量%が好ましく、0.01~0.5重量%がより好ましく、水素分圧は0.1~20MPaが好ましく、0.2~10MPaがより好ましく、反応温度は75~200℃が好ましく、90~150℃がより好ましく、反応時間(連続流通装置使用の場合は平均滞留時間)は1分~10時間が好ましく、10分~3時間がより好ましい。
 上記、水素化条件の組合せにおいて、水素化が穏和にすぎる場合、不純物が残存し、好ましくない。水素化が過酷すぎる場合、ケトンの水素化によってアルコール等が生成し、収率が低下すると共にアルコール等の副生物除去のため、新たな精製装置が必要になり、好ましくない。
[オキシムの水素化精製]
 オキシムを含む溶液(以下「オキシム油」という)を水素化精製する方法もラクタムの光透過率差低減に有効である。
 オキシム油の水素化精製の触媒、溶媒、条件については、アミド化合物の水素化処理と同様である。なお、溶媒については、オキシム化工程に用いる溶媒又は転位溶媒と同じにすることが、プロセス構成上好ましい。
[オキシムの晶析精製]
 また、オキシムを晶析精製することにより、不純物を除去することもできる。オキシムの晶析精製の際の溶媒としては、オキシムと反応せず、オキシムが適度に溶解するものであれば、特に制約されない。例えば、酢酸、プロピオン酸、トリフルオロ酢酸などの有機酸、;アセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル類;ホルムアミド、アセトアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミドなどのアミド類;ヘキサン、ヘプタン、オクタン、シクロドデカンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素、クロロベンゼン、トリフルオロメチルベンゼンなどのハロゲン化炭化水素;ニトロベンゼン、ニトロメタン、ニトロエタンなどのニトロ化合物;酢酸エチル、酢酸ブチルなどのエステル類;ヘキサフルオロイソプロピルアルコール、トリフルオロエタノール等のフッ素系アルコール、メタノール、エタノール、プロパノール等の低級脂肪族アルコールが挙げられる。
 これらのうち、メタノール、エタノール、プロパノール等の低級脂肪族アルコールは不純物の溶解度が高く、晶析結晶中に不純物が残存し難いため、好ましい溶媒である。
 ただし、低級脂肪族アルコールは転位触媒と反応して、ベックマン転位反応の活性を低下させる場合があるため、転位触媒の選択によっては、晶析結晶を乾燥し、アルコール溶媒を除去しなければならない。
<橋かけ環状構造を有する不純物とその除去方法>
 本発明の第3の態様においては、ラクタムに含まれる橋かけ環状構造をもつ不純物を特定し、これを除去して高純度のラクタムを製造する方法を提供する。
 ラクタムをポリマー原料として用いる場合は、重合を阻害する物質、物性を低下させる物質、劣化、着色の原因となる物質の存在が問題となる。その評価方法としては、前記光透過率差、UV価、PAN価が用いられている。これらの評価指標を悪化させる具体的物質は特定されているわけではないが、原料であるシクロアルカノン中の不純物の分析結果とラクタムの上記評価指標との対応から、二重結合が残存した化合物、アルデヒド基を含有する化合物、カルボニル基を含有する化合物等と考えられている(例えば特開2004-99585号公報)。
 これらが不純物である場合は、化学的に活性な官能基や結合を持っていることから、例えば、上記第2の態様で示したように、水素化処理等を行うことで、所望のラクタムや分離除去可能な不純物に変換され除去される。
 発明者らは、ラクタム製造のためにシクロアルカノンをオキシム化工程の原料に用いたとき、上記水素化精製を行っても残存する不純物があることを見出した(実施例D参照)。
 発明者らは、目的とするラクタムをわずかに溶解する程度の溶解度が低い溶媒を用いて、ガスクロマトグラフィー(GC)により検出される不純物をラクタムから抽出、濃縮し、各不純物のガクロマトグラフィー-マススペクトル(GC-Mass)を丹念に解析した。その結果、目的とするラクタムより分子量が2又は4小さく、かつフラグメントのM/Z値も、目的とするラクタムのものより2又は4小さい不純物を複数個検出した。これらの不純物の大部分は水素化処理を行っても、GC(ガクロマトグラフィー)分析の保持時間、GC-Mass分析の親ピーク及びフラグメンテーションが変化しなかった。このことから、これらが橋かけ環状構造を有する化合物であるジシクロ環構造あるいはトリシクロ環構造のアミド化合物であると推定された。
 橋かけ環状構造を有するアミド化合物であって他に官能基及び/又は二重結合等の反応性に富んだ結合を持たない不純物(以下“橋かけ構造を有する不純物”という)は、上述した光透過率差等による評価方法では検出されず、水素化処理を行っても不純物としてラクタム化合物中に残存する。また、製品ラクタムの溶液を直接ガスクロマトグラフィーで分析しても、当該不純物が微量の場合は、ラクタムとの分離が困難であり、検出することが難しい。
 本発明の第3の態様においては、ラクタム中、これらの橋かけ構造を有する不純物は、50重量ppm以下であることが好ましく、30重量ppm以下であることがさらに好ましい。この不純物濃度が高い場合、ラクタムの重合においてアミド化合物の重合度が上がりにくく、環状の側鎖を有するポリマーが混在することになり、好ましくない。
 発明者らは橋かけ環状構造を有する不純物の生成起源を解明するため、シクロアルカノンとヒドロキシルアミンから製造されたシクロアルカノンオキシム及び、その出発原料であるシクロアルカノンの分析を行った。その結果、原料であるシクロアルカノン中に対応する橋かけ環状構造を有するケトンを検出した。
 原料であるシクロアルカノン中の橋かけ環状構造を有するケトンに関して、ジシクロ環構造のケトンの存在については、米国特許出願公開第2010/0191018号明細書に、環状ジケトンの分子内アルドール縮合に起因して生成することが記載されており、ジシクロ環構造の不純物が蒸留精製による除去が困難な不純物であることが示されている。
 一方、後述の実施例Dに示す通り、ラクタム中の不純物で主たるものはトリシクロ環構造のアミドである。トリシクロ環構造のアミドについてはもとより、その出発物質として想定されるトリシクロ環構造のケトンの存在については知られていないが、その生成経路のひとつとして、シクロドデカノンを例にとれば、ブタジエンの三量化の際にビシクロ[6,4,0]シクロドデカ-4,10-ジエンが副生し、酸化の際に生成したジケトンが分子内アルドール縮合して生じる経路が推定される。
 従って、ラクタム中の橋かけ環状構造を有する不純物の低減には、その原料であるシクロアルカノンを精製し、対応する橋かけ環状構造を有するケトンを除去する必要がある。発明者らは原料であるシクロアルカノンの精製方法を検討し、原料であるシクロアルカノン中の橋かけ環状構造を有する不純物の除去方法を見出し、これがラクタム中の橋かけ環状構造を有する不純物の低減に対応していることを確認した。すなわち、ラクタム中の橋かけ環状構造を有する不純物の低減には、反応に使用するシクロアルカノン中の橋かけ環状構造を持つケトンの量が、500重量ppm以下であることが好ましい。以下、ラクタム中の橋かけ環状構造を有する不純物を除去する方法を記載する。
[シクロアルカノン中の橋かけ環状構造を有するケトンを除去する方法]
 上述のように、ラクタム中の橋かけ環状構造を有する不純物を除去するためには、その生成起源であるシクロアルカノン中の橋かけ環状構造を有するケトンを除去することが有効である。発明者らは、鋭意検討の結果、シクロアルカノン中の不純物である橋かけ環状構造を有するケトンを、対象のシクロアルカノンを適度に溶解するが溶解度は低い溶媒を用いた再結晶によって除去できる事を見出した。適応溶媒は対象のシクロアルカノンを適度に溶解するが溶解度は低いという要件に加えシクロアルカノンと反応しないものであれば、特に制約はなく、鎖式炭化水素、脂環式炭化水素、縮合芳香環水添物芳香族炭化水素、エーテル、エステル等が挙げられる。なお、アミン類等塩基性溶媒はシクロアルカノンとシッフベースを形成するため好ましくない。また、アルコールは、ケトン、アルコールの種類、処理条件によっては、アセタール、ヘミアセタールを形成するため、使用が制限される。一般的にケトン、アルコールともに立体障害が小さい場合、酸性条件下での使用は避けなければならない。ケトン、アルデヒドは再結晶自体に影響は及ぼさないが、溶媒が残存した場合、ヒドロキシルアミンと反応して、目的物と異なるオキシムを生成するため、好ましくない。溶媒の使用量はシクロアルカノンに対して好ましくは5重量%以上から80重量%以下、より好ましくは10重量%以上50重量%以下である。溶媒の使用量が過少の場合、不純物を溶解した溶液が精製されたシクロアルカノンの結晶間の空隙に留まり、不純物が残存するため好ましくない。溶媒使用量が過多の場合、再結晶のワンパス収率が低下し、溶媒の回収、リサイクルに大型の装置が必要になり、エネルギーを浪費するため、好ましくない。
 本発明の再結晶において、シクロアルカノンの溶解時の温度はシクロアルカノンの融点以下が好ましい。シクロアルカノンの融点より高いと、結晶析出時に融着し、不純物を抱き込む場合がある。結晶取得時の温度は溶媒の融点以上であれば任意に選択できるが、氷点下では冷媒の使用が必要になりコスト上昇に繋がるため好ましくない。再結晶溶媒の使用量は溶解温度でシクロアルカノンを溶解する量以上であれば、特に制約はないが、必要最少量用いることが、ワンパス収率の向上の観点から好ましい。
 再結晶の際の圧力は、常圧、加圧、減圧のいずれを採用しても差し支えないが、通常は常圧で行われる。シクロアルカノンの再結晶によって、不純物である橋かけ環状構造を有するケトンの含有率は、再結晶前の1/10~1/50程度に低減される。得られたシクロアルカノンをオキシム化し、ベックマン転位する事により、ベックマン転位反応液中の橋かけ環状構造を持つ不純物が目的生成物であるラクタムに対して300重量ppm以下に制御され、橋かけ環状構造を有する不純物が50重量ppm以下である製品ラクタムが得られる。
 以下、シクロドデカノンを例にとって、橋かけ環状構造を有するケトンの除去方法を説明する。
 再結晶溶媒としては、シクロドデカノンを適度に溶解するが溶解度は低いものが好ましく、例えばn-ヘキサン、n-ヘプタン、n-オクタン、イソオクタン、n-デカン、n-ドデカン等の鎖式炭化水素、シクロヘキサン、シクロペンタン、シクロオクタン等の脂環式炭化水素、テトラリン、デカリン等の縮合芳香環水添物、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ジエチルエーテル等のエーテル、酢酸エチル、酢酸ブチル等のエステル等が挙げられる。なお、メタノール、エタノール等のアルコールについても、シクロドデカノンの精製については使用できる。これらの再結晶溶媒のうち、再結晶のワンパス収率が高いn-ヘキサン、n-ヘプタン、n-オクタン等の炭素原子数6~8の鎖式脂肪族炭化水素、シクロペンタン、シクロヘキサン、シクロオクタン等の炭素原子数5~8の脂環式炭化水素、メタノール、エタノール等の炭素原子数1又は2の脂肪族アルコールが好ましく、溶媒の回収を考慮すれば、n-ヘプタン、n-オクタン、メタノールが更に好ましい。
 シクロドデカノンの溶解時の温度はシクロドデカノンの融点である61℃以下が好ましい。シクロドデカノンの融点より高い場合は、結晶析出時に融着し、不純物を抱き込む場合がある。結晶取得時の温度は溶媒の融点以上であれば任意に選択できるが、氷点下では冷媒の使用が必要になりコスト上昇に繋がるため好ましくない。再結晶溶媒の使用量は溶解温度でシクロドデカノンを溶解する量以上であれば、特に制約はないが、必要最少量用いることが、ワンパス収率の向上の観点から好ましい。例えば上記鎖式炭化水素又は脂肪族アルコールを溶媒に用いた場合、溶媒の使用量は、シクロドデカノンと溶媒との合計重量に対して15重量%以下が好ましく、10重量%以下がさらに好ましい。
 再結晶の際の圧力は、通常は常圧で行われる。シクロドデカノンの再結晶によって、不純物である橋かけ環状構造を有するケトンの含有率は、1/10~1/50程度に低減される。得られたシクロドデカノンをヒドロキシルアミンと反応させ、オキシム化し、ベックマン転位により得られたラウロラクタム中の橋かけ構造を有する不純物は50重量ppm以下である。
 上記のように得られたラウロラクタムからは、高純度、高物性のナイロン12が重合度よく得られる。
 上述のように、各態様のアミド化合物またはラクタムの製造方法において、
 第1の態様では、オキシム化工程にリサイクルされる溶媒中のハロゲン化物、アルデヒド化合物、アルコール化合物、ニトリル化合物の含有量を、それぞれ原料であるケトンに対して0.4モル%以下とすること、
 第2の態様ではケトン、オキシムおよびアミド化合物から成る群から選ばれる1種類以上の化合物の水素化精製および/または晶析精製を行うこと、
 第3の態様ではケトンの再結晶を行うこと
を主な特徴とするが、各態様における精製方法を複数組み合わせてもよい。これにより、より高品質なアミド化合物またはラクタムを得ることができる。
 次に、本発明のアミド化合物およびアミド化合物の製造方法、特に、オキシムを製造するオキシム化工程と、ベックマン転位触媒を用いてオキシムをベックマン転位させる転位工程、転位工程後に通常行われているアミド化合物の精製について説明する。以下の説明は、特に言及しない限り、第1~第3の態様に共通して適用される。
<アミド化合物>
 本発明のアミド化合物は、特に限定はされないが、ラクタムであることが好ましく、式(3)で表されるラクタムであることがより好ましい。
Figure JPOXMLDOC01-appb-C000006
 式中、nは3~20であり、好ましくは3~15を示す。通常、糸、ファイバー、フィルムなどに用いられるポリマー又はコポリマーの原料として工業的に用いられるものは、nが5、7、8、9、10、11である。これらのラクタムのうち、可とう性、耐水性、耐溶剤性に優れたポリマーを得ることができるn=11のラクタム、すなわちラウロラクタムは特に有用な化合物である。また、本発明においては、nは7以上の大環状のラクタムが好適に適用される。
 次に、アミド化合物の製造方法の各工程等について説明する。
<オキシム化工程>
 本発明において、オキシム化工程とは、オキシムを製造する工程のことをいう。オキシム化工程により製造されるオキシムは、製造しようとするアミド化合物に応じて適宜選択することができる。製造しようとするアミド化合物がラクタムのとき、これに対応するオキシムは式(1)で表される。
Figure JPOXMLDOC01-appb-C000007
式中、mは3以上の整数を示す。
 式中、mは、3~20、好ましくは3~15である。具体的には、シクロブタノンオキシム、シクロヘキサノンオキシム、シクロへプタノンオキシム、シクロオクタノンオキシム、シクロノナノンオキシム、シクロデカノンオキシム、シクロウンデカノンオキシム、シクロドデカノンオキシム、シクロトリデカノンオキシム、シクロテトラデカノンオキシム、シクロペンタデカノンオキシム、シクロヘキサデカノンオキシム、シクロオクタデカノンオキシム、シクロノナデカノンオキシムなどが挙げられる。これらの中でシクロヘキサノンオキシム、シクロオクタノンオキシム、シクロノナノンオキシム、シクロデカノンオキシム、シクロウンデカノンオキシム、シクロドデカノンオキシムは有用なオキシムであり、シクロオクタノンオキシム、シクロノナノンオキシム、シクロデカノンオキシム、シクロウンデカノンオキシム、シクロドデカノンオキシムはより好ましく、シクロドデカノンオキシムは特に好ましい。
 式(1)において、環には置換基が結合していてもよく、他の環が縮合していてもよい。前記の環に結合していてもよい置換基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基、アラルキル基、芳香族性又は非芳香族性の複素環基などが挙げられる。
 ここで、アルキル基としては、例えば、炭素原子数1~20のアルキル基が挙げられるが、好ましくは炭素原子数1~12のアルキル基であり、さらに好ましくは炭素原子数2~8のアルキル基である。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ペンタデシル基などが挙げられる。
 アルケニル基としては、例えば、炭素原子数2~20のアルケニル基が挙げられるが、好ましくは炭素原子数2~12のアルケニル基であり、さらに好ましくは炭素原子数2~8のアルケニル基である。具体的には、ビニル基、アリル基、1-プロペニル基、1-ブテニル基、1-ペンテニル基、1-オクテニル基などが挙げられる。
 アルキニル基としては、例えば、炭素原子数2~20のアルキニル基が挙げられるが、好ましくは炭素原子数2~12のアルキニル基であり、さらに好ましくは炭素原子数2~8のアルキニル基である。具体的には、エチニル基、1-プロピニル基などが挙げられる。
 シクロアルキル基としては、例えば、炭素原子数3~20のシクロアルキル基が挙げられるが、好ましくは炭素原子数3~15のシクロアルキル基である。具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基などが挙げられる。
 シクロアルケニル基としては、例えば、炭素原子数3~20のシクロアルケニル基が挙げられるが、好ましくは炭素原子数3~15のシクロアルケニル基である。具体的には、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基などが挙げられる。
 アリール基としては、例えば、フェニル基、ナフチル基などが挙げられる。
 アラルキル基としては、例えば、ベンジル基、2-フェニルエチル基、3-フェニルプロピル基などが挙げられる。
 芳香族性又は非芳香族性の複素環基としては、例えば、2-ピリジル基、2-キノリル基、2-フリル基、2-チエニル基、4-ピペリジニル基などが挙げられる。
 オキシムの製造方法としては、
(i)ケトンとヒドロキシルアミン水溶液とを反応させる方法、
(ii)チタノシリケートのような触媒の存在下、ケトンをアンモニア及び過酸化水素と反応させる方法、
(iii)N-ヒドロキシイミド化合物および該N-ヒドロキシイミド化合物のヒドロキシル基に保護基(例えば、アセチル基等のアシル基など)を導入することにより得られる化合物の存在下、メチル基又はメチレン基を有する化合物と、亜硝酸エステル又は亜硝酸塩とを反応させる方法(例えば、特開2009-298706号公報)、
(iv)アルカンを光ニトロソ化する方法
等が挙げられるが、本発明においては(i)の製造方法が最も好適に用いられる。
 上記オキシムの製造方法(i)の場合、ヒドロキシルアミンは不安定なため、安全上の観点から、通常、ケトンの存在下ヒドロキシルアミン塩を反応槽内で複分解させ、遊離したヒドロキシルアミンと、ケトンを反応させる方法が採られる。ここで、ケトンとヒドロキシルアミンを、等モルずつ反応させることが好ましい。
 上記オキシムの製造方法(iii)の場合、N-ヒドロキシイミド化合物は、N-ヒドロキシコハク酸イミド、N-ヒドロキシフタル酸イミド、N,N′-ジヒドロキシピロメリット酸ジイミド、N-ヒドロキシグルタルイミド、N-ヒドロキシ-1,8-ナフタレンジカルボン酸イミド、N,N′-ジヒドロキシ-1,8,4,5-ナフタレンテトラカルボン酸ジイミドなどの脂肪族多価カルボン酸無水物(環状無水物)又は芳香族多価カルボン酸無水物(環状無水物)から誘導される。
[ケトン]
 上記オキシムの製造方法(i)、(ii)において、用いるケトンは特に制限されず、製造目的のアミド化合物に応じて適宜選択することができる。例えば、製造目的のアミド化合物がラクタムのとき、これに対応するオキシムとしては下記式(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 式中、pは、3~20、好ましくは3~15である。pが5、7、8、9、10、11であることがより好ましく、pが11であることが特に好ましい。また、pは7以上であることも好ましい。
 式(4)で表されるケトンとしては、シクロブタノン、シクロペンタノン、シクロヘキサノン、シクロへプタノン、シクロオクタノン、シクロノナノン、シクロデカノン、シクロドデカノン、シクロトリデカノン、シクロテトラデカノン、シクロペンタデカノン、シクロヘキサデカノン、シクロオクタデカノン、シクロノナデカノンなどが挙げられる。これらの中でシクロヘキサノン、シクロオクタノン、シクロノナノン、シクロデカノン、シクロウンデカノン、シクロドデカノンは有用なケトンであり、シクロオクタノン、シクロノナノン、シクロデカノン、シクロウンデカノン、シクロドデカノンはより好ましく、シクロドデカノンは特に好ましい。
 また、式(4)において、環には置換基が結合していてもよく、他の環が縮合していてもよい。この置換基としては、上記式(1)で示されるオキシムの説明において例示した置換基と同様のものが挙げられる。
 原料ケトンは、1種又は2種以上を選択して使用することができる。
[ケトンの製造方法]
 原料であるケトンの製造方法としては、対応する炭化水素を酸化する方法が挙げられる。炭化水素の酸化は飽和炭化水素の酸化であっても、不飽和炭化水素の酸化であってもよい。不飽和炭化水素の酸化の場合、酸化後に炭素・炭素不飽和結合が残存する場合は、水素化して飽和結合に変換しなければならない。炭化水素の酸化に用いる酸化剤としては、酸素(分子状酸素)、空気が一般的に用いられるが、過酸化水素、亜酸化窒素等を用いてもよい。
 例えば、環状ケトンは、対応するシクロアルカンを空気酸化する一般的な方法で得られる。シクロアルカンを空気酸化した場合、環状ケトン(シクロアルカノン)は環状アルコール(シクロアルカノール)との混合物として得られるため、混合物中のシクロアルカノールを脱水素して環状ケトン(シクロアルカノン)に変換する。
 例えば、ケトンとしてシクロドデカノンを製造する場合、シクロドデカトリエンを水素化してシクロドデカンとした後、空気酸化して、シクロドデカノン/シクロドデカノール混合物を製造し、シクロドデカノールを脱水素してシクロドデカノンを製造する方法を採用することができる。
 また、環状ケトンを製造する場合、アルカン製造の原料である不飽和化合物の二重結合を残したまま酸化し、その後水素化する方法により製造することもできる。例えば、シクロドデカトリエンを亜酸化窒素で酸化し、シクロドデカジエノンを製造し、更に残存二重結合の水素化を行い、シクロドデカノンを製造する方法(例えば、特表2007-506695号公報)、シクロドデカトリエンを過酸化水素で酸化して、エポキシシクロドデカジエンを製造した後、二重結合を水素化してエポキシシクロドデカンとし、さらに異性化を行ってシクロドデカノンを製造する方法(例えば、特開2000-256340号公報,特開2000-026441号公報,特開2001-302650号公報,特開2001-226311号公報)等を採用してもよい。また、ベンゼンの二重結合の一部を水素化しシクロヘキセンを製造して水和し、得られたシクロヘキサノールを脱水素してシクロヘキサノンを製造する方法、イソプロピルベンゼンを酸化してフェノールを製造し、これを水素化してシクロヘキサノンを製造する方法が挙げられる。これらの方法により環状ケトンを製造する際、ラクタム中の不純物の原因となる二重結合を有するケトンや橋かけ環状構造を有するケトンが残存したり、生成したりする場合がある。
 ケトンとしてシクロアルカノンを製造する場合、その出発原料となる環状化合物は、ジエン同士の付加反応を利用することによって得ることができる。例えばシクロドデカノンを製造する場合、上記いずれの方法を選択してもその出発原料はシクロドデカトリエンであり、これはブタジエンの三量化によって製造される。具体的には、例えば、チタンハライドとアルキルアルミニウムハロゲニドから調製された触媒(所謂チーグラー触媒)の活性を調整しつつブタジエンの付加反応を行い、反応後、触媒を適宜失活させることによって、シクロドデカトリエンを製造することができる(例えば、独国特許発明第1050333号明細書、特開平6-254398号公報、特開平5-124982号公報、特開平5-070377号公報)。同様に、例えばシクロオクタジエンは、ブタジエンの二量化によって製造することができる。
[ヒドロキシルアミン]
 上記オキシムの製造方法(i)において、用いるヒドロキシルアミンは不安定なため、ヒドロキシルアミン硫酸塩又はヒドロキシルアミン炭酸塩等のヒドロキシルアミンの酸塩の水溶液として製造、販売されている。反応時に、アンモニア水等の塩基を加えて、ヒドロキシルアミンを遊離させて使用する。オキシムの製造工程中においては、予めヒドロキシルアミンを遊離させたヒドロキシルアミン水溶液を供給してもよいが、通常は、オキシム化反応装置中に、ヒドロキシルアミンの酸塩(好ましくは硫酸塩)の水溶液と、塩基(好ましくはアンモニア水)を供給して、反応装置中でヒドロキシルアミンを遊離させる。
[オキシム化工程の溶媒]
 オキシムの製造工程では溶媒が用いられる。この溶媒は、オキシムに対する溶解性が高いことが望ましい。オキシムの種類によって、好適な溶媒は異なるが、オキシムがシクロドデカノンオキシムの場合、下式で定義される溶解度パラメーターδが7.5から13.0、特に8.0から12.5である溶媒が、シクロドデカノンオキシムの溶解性に優れており好ましい。
 ここで、溶解度パラメーターδは、水素結合等、分子間の結合力の強さを示し、大きいほど極性は高い。溶解度パラメーターが近いものは相溶性が高くなる。同パラメーターは、Δ(デルタ)E、標準沸点、密度のデータから計算でき、ΔEについては分子構造から推算できる。
 δ=(ΔE/V)1/2
 (式中、δは溶解度パラメータ、ΔEは蒸発の内部エネルギー変化、Vはモル容積を表す(「改訂5版 化学便覧,基礎編I」 (財)日本化学会編,丸善(株)発行 p770参照)。)
 なお、オキシムの製造工程で用いられる溶媒としては、オキシムに対する溶解性に優れる溶媒であっても、オキシム製造において、原料と反応する溶媒は除外されることが好ましい。例えば、溶媒としてケトン、アルデヒドを用いると、ヒドロキシルアミンと反応し、ケトキシム、アルドキシムを生成する。ニトリルを溶媒として用いると、ヒドロキシルアミンと反応しアミドキシムを生成する。アミドも、溶媒として用いるとヒドロキシルアミンと付加体を生成する。また、溶媒としてアミン用いると、ケトンと反応し、シッフベースを形成する。したがって、これらの溶媒はオキシムの溶解性が良好であっても、溶媒としての使用は除外される。
 また、オキシム化工程と後述する転位工程で使用される溶媒が同一であることは、溶媒交換を行う必要がなく、プロセスが簡素化され、設備費、エネルギーコストが低減されるため、好ましい態様である。この場合、転位工程の溶媒としては、1)アミドに対する溶解性が高いこと、2)アミドと反応しないこと、3)ベックマン転位触媒と反応しないことが好ましい。
 オキシム化工程と転位工程で同一の溶媒を使用する場合、上記1)、2)に関して問題となることは多くない。一般にアミド化合物の溶解度パラメーターは、対応するオキシムとほぼ同程度であり、反応性にも大きな差はないからである。一方、上記3)に関しては、後述の如くベックマン転位に用いられる触媒は電子吸引性脱離基を有するため、求核置換反応を受けやすい溶媒は除外されることが好ましい。具体的には水、アルコール類、アミン類、メルカプタン類、アミド類は溶媒として使用しないことが好ましい。また、反応性の高い転位触媒を使用する場合は、カルボン酸類、カルボン酸エステル類も使用しないことが好ましい。
 また、溶媒は、後述する油/水分離工程において、分離が容易で、水相への溶解ロスが小さいこと、溶媒リサイクル工程において、回収が容易であることが好ましい。
 具体的に、溶媒としては、芳香族炭化水素、縮合多環式炭化水素の水素化化合物および脂環式炭化水素(特に、側鎖を有する脂環式炭化水素)が好ましい。芳香族炭化水素としては、ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン、トリメチルベンゼン、テトラメチルベンゼン、シクロヘキシルベンゼンが好ましく、特に、ベンゼン、トルエンおよびキシレンが好ましい。縮合多環式炭化水素の水素化化合物としては、テトラリン、デカリン、ジヒドロナフタレンが好ましく、特に、テトラリンおよびデカリンが好ましい。また、側鎖を有する脂環式炭化水素としては、イソプロピルシクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサンが好ましく、特に、イソプロピルシクロヘキサンが好ましい。以上例示した溶媒の中で最も好ましいものは、トルエン又はキシレンである。
 オキシム化反応を行う温度は、特に制限はないが、ヒドロキシルアミンは水溶液として用いるため、反応温度が高すぎる場合、例えば100℃以上で反応を行う場合には加圧容器が必要になる。一方、反応温度が低すぎる場合、反応速度が遅くなる。したがって、オキシム化反応は、100℃以下、常圧で行うことが好ましく、さらに、60℃以上であることが好ましく、75℃以上であることがより好ましい。
[オキシム化工程の反応装置]
 オキシム化工程で用いられる反応装置としては回分式反応装置、半回分式反応装置、管型連続反応装置、攪拌槽型連続反応装置等の一般に用いられる反応装置を挙げることができるが、攪拌槽型連続多段反応装置が好ましい。攪拌槽型連続多段反応装置を用いる場合、第1槽にヒドロキシルアミン水溶液をフィードし、最終槽にケトン溶液(ケトンの前記溶媒の溶液)をフィードし、水相は後段の槽に向け、油相は前段の槽に向けて逐次送液して、未反応原料を残すことなく反応させることが望ましい。
[オキシム化工程の反応時間]
 オキシム化工程の反応時間は、ケトン、溶媒、温度等の反応条件、反応器形式によって異なるが、ケトンとしてシクロドデカノン、溶媒としてトルエンを用い、攪拌槽型連続多段反応装置を使用した場合、1時間から20時間、好ましくは5時間から15時間である。反応時間が過少の場合、原料であるヒドロキシルアミン及び/又はシクロドデカノンが残存し、これらをリサイクルする必要が生じるため好ましくない。反応時間が過大な場合、反応槽が長大になり好ましくない。なお、界面活性剤等の添加によって、油水間の物質移動速度を向上させ、反応時間を短縮することも可能である。
<油/水分離工程>
 本発明において、油/水分離工程とは、オキシム化工程後の反応液を、油相と水相に分離し、オキシムが溶解している油相を取得する工程のことをいう。油相と水相の分離方法としては、静置分離、遠心分離、サイクロンを用いた分離等の一般的な分離方法が利用できる。工業的な連続工程では、オキシム化工程の反応装置から反応液が分液装置に送られ、そこで油相と水相が分離されて抜き出される。オキシム化工程の反応装置の形式によっては、その反応装置から油相と水相を抜き出してもよい。
 さらに、油/水分離工程で油相として取得したオキシムを含む溶液から、溶媒の一部と、溶解する水分を除去し、転位工程に送る。このときの溶液の含有水分濃度は、1000ppm以下、好ましくは500ppm、より好ましくは100ppm以下とする。水分の除去は溶媒との共沸蒸留によって行われ、留出した水分を含む溶媒はオキシム化工程にリサイクルされる。
<転位工程>
 上記の通り、油/水分離工程後の脱水したオキシムを含有する溶液は、転位工程に送られる。転位工程では、ベックマン転位触媒を用いたベックマン転位反応により、オキシムからアミド化合物が製造される。オキシムは、1種または2種以上を選択して使用することができる。
[ベックマン転位触媒]
 ベックマン転位触媒としては、少なくとも2個の電子吸引性の脱離基を有する化合物を用いることができる。例えば、下記式(5)で示される構造を少なくとも2個含む化合物が挙げられる。なお、Aに複数のXが結合したものもこれに含む。また、複数のA-Xが存在するとき、それらは同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000009
(式中、Aは、C(炭素原子)、P、N、S、B又はSi原子を示し、Xは電子吸引性の脱離基を示す。AはX以外に、1又は2以上の原子又は基と結合している。)
 Xにおける電子吸引性の脱離基としては、一般的な脱離性の官能基であればよく、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、-OR基(Rは有機基を示す)、カルボキシル基、アミノ基、スルホニルオキシ基等が挙げられる。これらの官能基の中でもハロゲン原子が好ましく、塩素原子がより好ましい。
 ベックマン転位触媒としては、式(5)で示される構造を分子中に少なくとも2個含む化合物(Aに複数のXが結合したものもこれに含む。)であれば特に制限はなく、環状化合物であっても非環状化合物であってもよい。
 本発明における、ベックマン転位触媒の具体例としては、例えば、ホスファゼン化合物(ホスファゼン誘導体)、ポリハロホスフェート類を含むリン酸エステル化合物(リン酸エステル誘導体)、ホスフィン化合物(ホスフィン誘導体)、イミド化合物(イミド誘導体)、スルホニル又はスルフィニル化合物(スルホニル又はスルフィニル誘導体)、シラン化合物(シラン誘導体)、ケイ素原子を環の構成要素として含む環状化合物、リンハロゲン化物、ハロスルフリル類、あるいは、これらの混合物などが挙げられる。
 ホスファゼン化合物としては、例えば、ヘキサクロロホスファゼン、ヘキサフルオロホスファゼン、ヘキサブロモホスファゼン等のハロホスファゼン誘導体などが挙げられる。
 リン酸エステル化合物としては、例えば、ジメチルクロロホスフェート、ジエチルクロロホスフェート、2-クロロ-1,3,2-ジオキサフォスフォラン-2-オキシド、メチルジクロロホスフェート、エチルジクロロホスフェート、ジフェニルクロロホスフェート、1,2-フェニレンホスフォロクロリデート、フェニルジクロロホスフェートが挙げられる。
 ホスフィン化合物としては、例えば、クロロジメチルホスフィン、クロロジエチルホスフィン、クロロジプロピルホスフィン、クロロジフェニルホスフィン、ジクロロエチルホスフィン、ジクロロブチルホスフィン、ジクロロヘキシルホスフィン等のハロホスフィン誘導体が挙げられる。
 イミド化合物としては、例えば、N-ハロスクシンイミド誘導体(N-クロロスクシンイミド、N-ブロモスクシンイミド、N-ヨードスクシンイミド、N-フルオロスクシンイミド等)などのスクシンイミド誘導体;N-ハロフタルイミド誘導体(N-クロロフタルイミド、N-ブロモフタルイミド、N-ヨードフタルイミド、N-フルオロフタルイミド等)などのフタルイミド誘導体;N-ハロマレインイミド誘導体(N-クロロマレインイミド、N-ブロモマレインイミド、N-ヨードマレインイミド、N-フルオロマレインイミド等)などのマレインイミド誘導体;ハロヒダントイン誘導体(1,3-ジクロロ-5,5-ジメチルヒダントイン、1,3-ジブロモ-5,5-ジメチルヒダントイン等)などのヒダントイン誘導体、トリクロロトリアジン(別称:トリクロロシアヌル酸又は塩化シアヌル)、ジクロロシアヌル酸ナトリウム塩等のシアヌル酸ハライド誘導体などのシアヌル酸誘導体などが挙げられる。
 スルホニル又はスルフィニル化合物としては、例えば、メタンスルホニルクロリド、エタンスルホニルクロリド、プロパンスルホニルクロリド、トリクロロメタンスルホニルクロリド、トリフルオロメタンスルホニルクロリド、ベンゼンスルホニルクロリド、トルエンスルホニルクロリド、ニトロベンゼンスルホニルクロリド、クロロベンゼンスルホニルクロリド、フルオロベンゼンスルホニルクロリド、ナフタレンスルホニルクロリド等のスルホニルハライド誘導体;サルファニルクロリド;塩化チオニルなどが挙げられる。
 シラン化合物としては、例えば、クロロトリフェニルシラン、ジクロジフェニルシラン、フェニルトリクロロシラン等のハロシラン誘導体などが挙げられる。
 ケイ素原子を環の構成要素として含む環状化合物としては、例えば、ハロゲン化窒化珪素などが挙げられる。
 リンハロゲン化物としては、三塩化リン、五塩化リン等が挙げられる。
 ハロスルフリル類としては、塩化スルフリル等が挙げられる。
 また、本発明のベックマン転位触媒として、下記触媒aまたは触媒bを挙げることができ、特に、本発明の第2の態様においては、これらを用いることが好ましい。
 触媒aは、下記式(2)で示され、上記式(5)で表されるベックマン転位触媒に包含される。
Figure JPOXMLDOC01-appb-C000010
(式中、ZはP、N、S、B又はSi原子を示し、Xはハロゲン原子を示す。ZはX以外に、1又は2以上の原子又は基と結合している。)
式(5)で示されるAが炭素原子である化合物では、以下に示す触媒bが特に好適である。
 触媒bは、以下の条件(b1)~(b3)すべてを満足する芳香環含有化合物である。
(b1)芳香環を構成する原子として、脱離基としてハロゲン原子を有する炭素原子を少なくとも1つ含む。
(b2)芳香環を構成する原子として、ヘテロ原子又は電子吸引基を有する炭素原子のいずれかの原子の一方又は両方を少なくとも3つ含む。
(b3)前記ヘテロ原子又は電子吸引基を有する炭素原子のうちの2つが、前記脱離基であるハロゲン原子を有する炭素原子のオルトあるいはパラ位に位置する。
 ここで、「ヘテロ原子又は電子吸引基を有する炭素原子のいずれかの原子の一方又は両方を少なくとも3つ含み」とは、芳香環を構成する原子として、ヘテロ原子又は電子吸引基を有する炭素原子を、それぞれ単独又は混在して、少なくとも3個以上有するものであればよいことを意味する。
 芳香環含有化合物の芳香環は、ベンゼン環等の芳香族炭化水素環及び芳香族複素環を意味する。ここで、芳香族炭化水素環含有化合物としては、ベンゼン環等の単環式炭化水素環、及び、多環式炭化水素環としての、ナフタレン環、アントラセン環、フルオレン環、フェナントレン環、アズレン環、ピレン環等の縮合環以外にも、ビフェニル環、テルフェニル環、トリフェニル環等も含まれる。芳香族複素環としては、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、トリアゾール環、テトラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、フラザン等の5員環や、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環等の6員環が例示され、特に、含窒素芳香環が好ましい。該芳香環を含む芳香環含有化合物としては、該芳香環からなる単環式芳香環含有化合物以外にも、インドール環、ベンゾイミダゾール環、ベンゾトリアゾール環、キノリン環、ビピリジル環、フェナントロリン環等の縮合複素環化合物も含まれる。これらのうちベンゼン環、ピリジン環、トリアジン環を好適に例示することができる。また、これら芳香環を構成する原子は上記(b1)~(b3)の条件をすべて満足するものであればよい。
 上記(b1)~(b3)の条件における脱離基であるハロゲン原子としてはフッ素、塩素、臭素、ヨウ素原子が挙げられる、中でも塩素原子が好ましい。
 上記(b1)~(b3)の条件における電子吸引基としては、公知の電子吸引基であれば特に制限されないが、シアノ基、トリフルオロメチル基、トリクロロメチル基、ニトロ基、ハロゲン原子、カルボニル基、スルホニル基等などを例示することができ、中でもシアノ基、ニトロ基が好ましい。
 上記(b1)~(b3)の条件におけるヘテロ原子としては、窒素、酸素、硫黄、ケイ素等を具体的に例示でき、これらのうち特に窒素が好ましい。
 上記(b1)~(b3)の条件をすべて満足する芳香環含有化合物として、4-クロロ-3,5-ジニトロベンゾニトリル、4-フルオロ-3,5-ジニトロベンゾニトリル、4-ブロモ-3,5-ジニトロベンゾニトリル、4-クロロ-1,3,5-トリニトロベンゼン、ピクリルクロリド、ピクリルブロミド、ピクリルフルオリド等のベンゼン環式化合物を挙げることができるが、中でも4-クロロ-3,5-ジニトロベンゾニトリル、ピクリルクロライドを好適に例示することができる。さらに、複素環式化合物としては、2-クロロ-3,5-ジニトロピリジン、2-ブロモ-3,5-ジニトロピリジン、2-フルオロ-3,5-ジニトロピリジン、トリクロロトリアジン(別称:塩化イソシアヌル酸、塩化シアヌル、トリクロロトリアゾール、トリクロロイソシアヌル酸)、トリブロモトリアジン、トリフルオロトリアジン等を挙げることができ、中でも、2-クロロ-3,5-ジニトロピリジン、トリクロロトリアジンを好適に例示することができる。
 これらの中で、本発明のベックマン転位触媒としては、少なくとも2個の式(5)の構造の間に共役π電子を有する化合物、あるいはAに複数のXが結合した化合物が好適であり、トリクロロトリアジン、塩化チオニル、三塩化リン、五塩化リンをより好適に使用することができる。
[ベックマン転位触媒の前調製]
 ここで、ベックマン転位触媒の前調製について詳しく説明する。
 転位工程においては、前記のベックマン転位触媒とオキシム全部とを混合し、転位工程の温度で転位反応を行うこともできるが、転位触媒の前調製を行ってから転位反応を行うことがより好ましい場合もある。ここで、触媒の前調製とは、オキシムの少なくとも一部とベックマン転位触媒とを混合し、転位工程の温度より低い温度で反応させることをいう。
 上記触媒aまたは触媒b、特に、触媒aを使用する場合は、該触媒と、少なくとも一部のオキシムとを混合して反応させる前調製工程と、前調製工程の温度より高い温度において、オキシムの転位反応を行う転位反応工程とを有する方法によってラクタムを製造する事が好ましい。
 この前調製工程により触媒活性種が生成する。例えば、触媒aとして塩化チオニルを用い、オキシムとしてシクロドデカノンオキシムを用いる場合、触媒活性種として下式(6)で示されるシクロドデカノンO-アザシクロトリデセン-2-イルオキシム塩酸塩(なお、本化合物は下式(6)で示される化合物、下式(6)で示される化合物以外の立体異性体、または、これらの組合せの混合物を表す。)が生成する事が発明者らによって確認されている。
Figure JPOXMLDOC01-appb-C000011
[オキシムと触媒aとの前調製工程]
 オキシムと触媒aとを、オキシムのベックマン転位反応の反応温度より低温で調合する(以下、「前調製」と称する。)。前調製工程の目的はベックマン転位反応の触媒作用を示す(以下、「触媒活性種」と称する)を生成させることである。ここで、オキシムの一部を用いて前調製を行う場合、前調製工程におけるオキシムと転位反応工程におけるオキシムは同一である必要はないが、同一であることが好ましい。
[前調製工程における調合比]
 オキシムの一部を用いて前調製を行う場合、オキシムと触媒aの調合比((オキシム/触媒a)モル比)はオキシムと触媒aの選択によって異なるが、例えばオキシムとしてシクロドデカノンオキシム、触媒aとして塩化チオニルを選択した場合、好ましくは0.5以上10.0以下、より好ましくは1.0以上5.0以下、さらに好ましくは1より大きく5.0以下、特に好ましくは1.5以上3.0以下である。
 なお、触媒aの量は前調製工程および転位工程に投入する全オキシム量に対し、好ましくは0.01モル%から20モル%、より好ましくは0.1モル%から5モル%となるように混合する。
 オキシムが過少の場合、触媒aとして用いた塩化チオニルの大部分は触媒活性種を形成せず、前調製を行う効果が現れない。
 オキシムが過多の場合、前調製装置が長大になり好ましくない。例えば、オキシムとしてシクロドデカノンオキシム、触媒aとして塩化チオニルを用いた場合、シクロドデカノンオキシムは触媒活性種に比べ高融点で、後述する溶媒への後述する温度での溶解性が低いため、前調製工程での固体析出や閉塞を防止するため、大量の溶媒が必要となり、前調製装置が長大になり好ましくない。さらに、溶媒の回収、リサイクルに要するエネルギーコストが増大し、好ましくない。このような不活性化を避けるためにもオキシムの過多は避けなければならない。
[前調製工程の温度]
 前調製の温度は特に制限されないが、後述するベックマン転位反応の温度以下、好ましくは50℃以下、さらに好ましくは30℃以下、最も好ましくは室温以下で行うことが好ましい。前調製の温度が高すぎる場合、触媒活性種の大部分がラクタムに変化すると共に、例えば、塩化チオニルを用いた場合、塩化水素が、脱離し、触媒活性が低下するため好ましくない。調製温度の下限は、反応系が凝固しない温度であれば、特に制約はないが、10℃以下、さらに0℃以下では、冷却装置が必要となり、経済的ではない。
[前調製工程の溶媒]
 本発明の前調製工程において溶媒を使用してもよい。各態様において好適な溶媒は下記のとおりである。
 転位触媒と少なくとも一部のオキシムを用いて前調製する場合、使用する溶媒は、転位触媒及びオキシムと反応しなければ特に制約はない。触媒aを使用する場合、使用可能な溶媒としては、例えば、酢酸、プロピオン酸、トリフルオロ酢酸などの有機酸、;アセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル類;ホルムアミド、アセトアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミドなどのアミド類;ヘキサン、ヘプタン、オクタン、シクロドデカンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素、クロロベンゼン、トリフルオロメチルベンゼンなどのハロゲン化炭化水素;ニトロベンゼン、ニトロメタン、ニトロエタンなどのニトロ化合物;酢酸エチル、酢酸ブチルなどのエステル類;ヘキサフルオロイソプロピルアルコール、トリフルオロエタノール等のフッ素系アルコール;或いは、これらの混合溶媒などが挙げられる。
 なお、触媒aを用いる場合、水、アルコール類、アミン類、メルカプタン類、アミド類以外の溶媒が使用できる。
 触媒aとして塩化チオニルを用いる場合、前調製に使用する溶媒は、塩化チオニル及びオキシムと反応しなければ特に制約はない。使用可能な溶媒としては、例えば、アセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル類;ヘキサン、ヘプタン、オクタン、シクロドデカンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素、クロロベンゼン、トリフルオロメチルベンゼンなどのハロゲン化炭化水素;ニトロベンゼン、ニトロメタン、ニトロエタンなどのニトロ化合物;或いは、これらの混合溶媒などが挙げられる。これらのうち、脂肪族炭化水素や芳香族炭化水素の使用は前調製工程でのベックマン転位反応の速度のコントロールが容易であり、特に好適な溶媒である。
 なお、アミン類等の有機塩基、水、アルコール類、メルカプタン類等の活性なヒドロキシル基やそれに類する官能基を有するもの、カルボン酸やカルボン酸エステル等の塩化チオニルが塩素化剤として作用するものは使用できない。
 前調製工程における溶媒の使用量は特に制限はなく、温度や反応槽等の大きさにもよるが、オキシムとしてシクロドデカノンオキシム、溶媒としてトルエンを用いた場合、オキシムの重量濃度が、1%以上60%以下が好ましく、3%以上30%以下が特に好ましい。溶媒の量が少なすぎると、オキシムが十分に溶解できず、溶媒の量が多すぎると、回収に手間がかかり経済的でないため好ましくない。
[前調製工程の時間]
 転位触媒と少なくとも一部のオキシムを用いて前調製する場合、前調製に要する時間は、触媒aの種類、オキシム/触媒aの調合比、調製温度、溶媒の使用量などによって異なり特に限定されるものではないが、1分以上24時間以下が好ましく、1分以上10時間以下が更に好ましい。
 前調製に要する時間の下限は、転位触媒の均一混合に必要な時間等で決まるが、前調製に要する時間が短すぎると、転位触媒を直接転位反応槽に投入した場合とベックマン転位反応により生成するラクタムの収率等の結果は変わらないため、好ましくない。調製時間が長すぎると、触媒活性種の一部が徐々に不活性な化合物に変化するため、転位速度が低下し、好ましくない。
 例えば、触媒aとして塩化チオニル、オキシムとしてシクロドデカノンオキシム、調合比1、溶媒としてトルエン、調製温度を25℃、前調製時のシクロドデカノンオキシムの濃度3重量%とした場合、1分以上10時間以下が好適であり、さらに好ましくは1分以上3時間以下であるが、調合比が1より大きいときは、調製時間がさらに長くてもよい。
 なお、工業的には、前調製に要する時間の上限は、反応槽の大きさで決まるが、3時間以上の滞留時間を設けると装置が長大になるため、3時間未満であることが好ましい場合がある。
[前調製に使用される装置]
 本発明において、前調製は回分式、半回分式、連続式等の一般に用いられる混合槽のいずれを用いても差し支えない。また、所定の滞留時間を確保できれば、配管内で混合しても差し支えない。混合方式も攪拌翼による混合のほか、スタティックミキサー等を使用するライン内での混合でも差し支えない。
[ベックマン転位反応]
 次にベックマン転位反応について説明する。
 ベックマン転位反応においては、前調製工程で一部のオキシムを用いているときは、残りのオキシムを加えて転位反応を行う。ベックマン転位反応で用いられるベックマン転位触媒の量は、前調製後の反応物を全て用いるとして、触媒aが、前調製工程および転位反応工程に投入する全オキシム量に対し、好ましくは0.01モル%から20モル%、さらに好ましくは、0.1モル%から5モル%となるように混合する。ベックマン転位触媒の量が過少の場合には、ベックマン転位反応が停止するため好ましくない。一方、ベックマン転位触媒の量が過多の場合には、触媒コストが上がり、触媒の後処理またはリサイクルのためのコストが増大し工業的見地から好ましくない。
 なお、触媒bを用いる場合は、ベックマン転位の反応条件によっては前調製を特に必要としない場合もある。触媒bの使用量は、オキシム1モルに対して、好ましくは0.0001~1モル、より好ましくは0.0005~0.5モル、さらに好ましくは0.001~0.2モルである。
[助触媒]
 本発明において、ルイス酸やブレンステッド酸を助触媒として添加することによって、転位反応速度を向上させることができる。特にルイス酸はオキシム、特にはシクロドデカノンオキシムの加水分解を加速することなく、転位反応速度を向上させることができるので好ましい。
 ルイス酸としては、亜鉛、コバルト、アンチモン、スズ及びビスマスからなる群より選ばれる1又は2以上の金属のハロゲン化物であり、具体的には、フッ化亜鉛、塩化亜鉛、臭化亜鉛、フッ化コバルト、塩化コバルト、臭化コバルト、五フッ化アンチモン、五塩化アンチモン、五臭化アンチモン、四フッ化スズ、四塩化スズ、四臭化スズ、三フッ化ビスマス、三塩化ビスマス、三臭化ビスマス等が挙げられる。塩化亜鉛、塩化コバルト、五塩化アンチモン、四塩化スズ、三塩化ビスマスが好適であり、塩化亜鉛は安価で、反応速度の向上効果が顕著であり、特に好ましい。
 ブレンステッド酸としては、硫酸、塩酸、硝酸等の無機酸、p-トルエンスルホン酸、メタンスルホン酸等のスルホン酸などの有機酸が挙げられる。
 助触媒を使用する場合、その添加量はベックマン転位触媒に対し、0.01倍モル量から10倍モル量が好ましく、0.1倍モル量から5倍モル量がより好ましい。助触媒の添加量が過少な場合、それによるベックマン転位反応の反応速度の向上の効果は乏しく、一方、必要以上に添加しても、さらに反応速度が向上することはない。
[ベックマン転位反応に使用する溶媒]
 転位反応に使用する溶媒(以下、転位溶媒と称する)として、前調製で用いた溶媒と同一の溶媒を用いることは製造プロセスが簡略化され好ましい態様であるが、異なる溶媒を用いても差し支えない。なお、異なる溶媒を用いる場合は、例えば、前調製液に転位溶媒を加え、前調製溶媒を留去することによって、転位溶媒へ溶媒交換を行う事ができる。また、前調製溶媒と転位溶媒を混合したまま、ベックマン転位反応を行ってもよい。
[ベックマン転位反応の条件等]
 ベックマン転位反応の温度は、好ましくは60℃から160℃、より好ましくは80から130℃である。反応温度が低すぎる場合、反応速度が遅くなり、反応が停止する事になるため好ましくない。一方、反応温度が高すぎると、ベックマン転位反応の発熱が激しくなり温度が急上昇し、反応が制御できなくなるため好ましくない。また、反応温度が高すぎる場合、縮合反応等の副反応ため転位収率が低下するとともに、着色等で製品品質が低下する。
 なお、反応条件は反応の制御が容易で、反応器の容積が過大にならないように制御される。
 ベックマン転位反応は減圧、常圧、加圧のいずれで行っても差し支えない。積極的に加圧下で反応を行う必要はないが、密閉して反応を行うことによって、転位触媒から生成する成分(例えば脱離する脱離基Xがハロゲン原子である場合は、ハロゲン化水素)の反応系外への飛散を防ぐことができる。このようなクローズドプロセスの採用は転位触媒から生成するハロゲン化水素などの成分の吸着・除害設備を別途設ける必要がない。また、ハロゲン化水素が生成する場合、それ自身が酸であり、助触媒として転位反応を促進するため、好ましい。
 なお、本発明の第1の態様、第2の態様においては、ベックマン転位反応は上で示した方法を用いることがより好ましい。本発明の第3の態様においては、上に示した方法のほか、一般的な硫酸、発煙硫酸等の強酸を加える転位方法や固体酸にオキシムを含む気体を通過させ転位を行う方法(気相転位法。特開2000-229939号公報等)を用いてもよい。
[ベックマン転位反応で使用される装置]
 ベックマン転位反応で使用される装置としては、回分式反応装置、管型連続反応装置、攪拌槽型連続反応装置等の一般に用いられる反応装置を使用することができるが、反応温度の制御が容易で運転操作も簡単である槽型連続多段反応装置が好適である。
[ベックマン転位液の後処理]
 ベックマン転位反応により生成された反応液(転位液)は、反応液中に溶解したベックマン転位触媒の脱離基由来の成分及びベックマン転位触媒の残渣の除去が行われることが好ましい。これら物質の除去方法としては、ろ過、濃縮、蒸留、抽出、晶析、再結晶、吸着、カラムクロマトグラフィーなどの分離手段やこれらの組合せの方法を採用できる。特に、転位液を、水洗浄(水を加えて水溶液として除去する方法)および/またはアルカリ洗浄(ナトリウム、カリウムなどのアルカリ金属の水酸化物の水溶液により、酸性の触媒成分等を除去する洗浄)により触媒成分等を除去する方法が、簡便であり好ましい。
[溶媒の留去]
 ベックマン転位液は、上記後処理を施した後、溶媒が留去される。その際、分離された溶媒は、上述したように溶媒リサイクル工程により、オキシム化工程にリサイクルされてもよい。
[アミド化合物の蒸留精製]
 分離されたアミド化合物、特にラクタムをさらに精製するために、蒸留精製、晶析・再結晶、溶融晶析等一般的な精製方法を用いることができる。典型的には、蒸留操作(留出液として抜き出すこと、缶出液として抜き出すこと、および精留等を含む)が好ましく、より好ましくは蒸留操作を多段で組合せて行う。
 なお、上記のアミド化合物、特にラクタムの製造方法においては、原料である脂肪族又は芳香族炭化水素類などを酸化し、中間原料であるケトンを製造する工程、ケトンからオキシムを製造する工程、該オキシムからアミド化合物を製造する工程とを段階を追って説明したが、所望により各工程を連結し、効率よくラクタム化合物製造プロセスを選択しても差し支えない。
 上記方法により、例えば、シクロアルカノンオキシムからは員数の1つ多いラクタムを効率よく製造できる(例えば、シクロヘキサノンオキシムからはε-カプロラクタム、シクロオクタノンオキシムからは8-オクタンラクタム、シクロドデカノンオキシムからは12-ラウロラクタム)。
 次に実施例を挙げて本発明を具体的に説明する。なお、本実施例は本発明の実施態様の一例を示すものであり、本発明は本実施例に限定されるものではない。
<実施例A>
 以下、参考例A1、A2においては、シクロドデカノンオキシムのベックマン転位反応により得られたラウロラクタム溶液(転位液)中の不純物の分析を行った。さらに、実施例A1~A23および比較例A1~A7では、不純物がシクロドデカノンオキシムの転化率に及ぼす影響について検討した。
[参考例A1(塩化チオニル触媒を用いて製造したラウロラクタム転位液中不純物の分析)]
 内部が4室に分割され、各室毎に攪拌翼が設けられた液相部容積30Lの枕型オキシム化第1反応器に、ヒドロキシルアミン硫酸塩(和光純薬工業社製)の15重量%水溶液を1.5kg/h及びオキシム化第2反応器から送液される油相をフィードした。反応温度を95℃に設定し、各室に25重量%アンモニア水を32g/hでフィードしオキシム化反応を行い、シクロドデカノンオキシムとトルエンからなる油相を得た。
 水相はオキシム化第2反応器へフィードした。オキシム化第2反応器は15Lで内部が4室に分割された枕型反応器で、前記オキシム化反応液の水相と25重量%のシクロドデカノンのトルエン溶液2kg/h(第1反応器へのヒドロキシルアミン硫酸塩と等モル量)を同反応器にフィードし、反応温度を95℃に設定し、各室に25重量%アンモニア水を16g/hでフィードしオキシム化反応を行った。得られた反応液は分液し、油相はオキシム化第1反応器にフィードした。
 オキシム化第1反応器で取得した油相10kgを20Lのエバポレータに入れ、トルエンを留去し、5.26kgのシクロドデカノンオキシムのトルエン溶液を得た。シクロドデカノンオキシム含有量をガスクロマトグラフィーで定量した結果、シクロドデカノンオキシム含有率50重量%であった(以下、50重量%シクロドデカノンオキシム溶液という)。得られた50重量%シクロドデカノンオキシム溶液5.26kgに塩化亜鉛18.2gを加え、90℃に加熱して溶解した(以下、50重量%シクロドデカノンオキシム/塩化亜鉛溶液という)。これとは別に50重量%シクロドデカノンオキシム溶液をトルエンで希釈して20重量%シクロドデカノンオキシム/トルエン溶液を調製した(以下、20重量%シクロドデカノンオキシム溶液という)。
 オーバーフロー抜き出し口の付いた35mlの二口平底フラスコに10重量%の塩化チオニル(ベックマン転位触媒)のトルエン溶液を27.15g/h、50℃に加温した20重量%シクロドデカノンオキシム溶液を56.3g/hでフィードし、スターラー攪拌子で攪拌してベックマン転位触媒の前調製を行い、ベックマン転位反応の反応槽に流下させた。一方、ベックマン転位反応の反応槽には50重量%シクロドデカノンオキシム/塩化亜鉛溶液を580g/hでフィードした。転位反応槽は160mlのCSTR(Continuous Stirred Tank Flow Reactor:連続攪拌槽型流通反応器)2槽から構成され、液温が105℃となるようジャケットの熱媒温度を調整した。反応は10時間連続して行った。
 得られた転位反応液1kgに水100gを加え、85℃で10分間攪拌洗浄を行い、静置分液し、油相を取得し、さらに4重量%の水酸化ナトリウム水溶液100gで同様に洗浄して触媒及びその残渣を除去して、ラウロラクタムのトルエン溶液を得た。
 ラウロラクタムのトルエン溶液中をガスクロマトグラフィーで分析した結果、同溶液中にはベンズアルデヒド3ppm、ベンジルクロライド6ppm、ベンジルアルコール1ppm ベンゾニトリル9ppm、シクロドデセン19ppm、ベンズアルドキシム2ppm、1-クロロドデカン46ppm、ラウロニトリル15ppm、シクロドデカノン677ppm、シクロドデカノンオキシム293ppm、12-クロロドデカンニトリル197ppm、ドデカンジニトリル70ppmが検出され、ラウロラクタムの純度は99.35%であった。なお、副生物のラウロラクタムに対する生成比はベンズアルデヒド0.0012モル%、ベンジルクロライド0.0021モル%、ベンジルアルコール0.0004モル%、ベンゾニトリル0.0038モル%、シクロドデセン0.005モル%、ベンズアルドキシム0.0007モル%、1-クロロドデカン0.0098モル%、ラウロニトリル0.0036モル%、シクロドデカノン0.1618モル%、シクロドデカノンオキシム0.0647モル%、12-クロロドデカンニトリル0.0398モル%、ドデカンジニトリル0.0159モル%であった。
 なお、前調製に用いた塩化チオニルのトルエン溶液をガスクロマトグラフィー分析した結果、27ppmのベンズアルデヒドと79ppmのベンジルクロライドが検出されたことから、前調製工程ではトルエンがすでに塩素化され、アルデヒドを生成していることがわかった。なお、同副生物は製造されるラウロラクタムに対し、0.0005モル%、0.011モル%に相当する。
 [参考例A2(トリクロロトリアジン触媒を用いて製造したラウロラクタム転位液中不純物の分析)]
 転位反応槽に流下させる触媒を3重量%トリクロロトリアジン/トルエン溶液とし、流下速度を90.5g/hとし、転位反応温度を95℃とした以外は参考例A1と同様にして、ラウロラクタムのトルエン溶液を取得した。ラウロラクタムのトルエン溶液中をガスクロマトグラフィーで分析した結果、同溶液中にはベンズアルデヒド3ppm、ベンジルクロライド4ppm、ベンジルアルコール2ppm、ベンゾニトリル7ppm、ベンズアルドキシム4ppm、1-クロロドデカノン8ppm、ラウロニトリル22ppm、シクロドデカノン5000ppm、シクロドデカノンオキシム2000ppm、12-クロロドデカンニトリル480ppm、ドデカンジニトリル25ppmが検出され、ラウロラクタムの純度は98.80%であった。なお、副生物のラウロラクタムに対する生成比はベンズアルデヒド0.0013モル%、ベンジルクロライド0.0015モル%、ベンジルアルコール0.0009モル%、ベンゾニトリル0.0031モル%、ベンズアルドキシム0.0015モル%、1-クロロドデカノン0.0017モル%、ラウロニトリル0.0056モル%、シクロドデカノン1.262モル%、シクロドデカノンオキシム0.4661モル%、12-クロロドデカンニトリル0.1023モル%、ドデカンジニトリル0.0060モル%であった。
[実施例A1~A9、比較例A1~A3(塩化チオニル触媒を用いて転位反応を行った場合の副生物の影響評価)]
 10重量%の塩化チオニル/トルエン溶液0.118g(0.099mmol)をジャケット付き平底フラスコに入れ、10℃に冷却し回転子で攪拌した。これに参考例A1で調製した20重量%シクロドデカノンオキシム/トルエン溶液0.244g(0.245mmol)を50℃に加熱して加え、10分間前調整を行った(前調製液:シクロドデカノンオキシム/塩化チオニル比2.5(mol/mol))。これとは別に参考例A1で調製した50重量%シクロドデカノンオキシム/塩化亜鉛溶液6.0g(シクロドデカノンオキシム14.147mmol、塩化亜鉛0.151mmol)に参考例A1のラウロラクタム/トルエン溶液中で検出された各副生物をシクロドデカノンオキシムに対して、それぞれ1モル%となるように添加し、転位反応原料液を調製した。転位反応原料液を105℃に加温攪拌し、均一な溶液とした後、前記前調製液を投入し(塩化チオニル/シクロドデカノンオキシム:0.7モル%、塩化亜鉛/シクロドデカノンオキシム0.96モル%)同温度で20分間反応させた。なお、アミドキシムについては、参考例A1のラウロラクタム/トルエン溶液中には検出されていないが、ニトリル化合物とヒドロキシルアミンから容易に生成すること、容易に加水分解を受けるため検出が難しいことから、一連の製造工程中で生成するものと見做し、副生物として加えた。
 評価結果を表1に示した。その結果、アミドキシム、アルドキシム、ベンジルアルコールが転位反応に悪影響を与え、他の副生物は直接的には影響を及ぼさないことが判明した。
Figure JPOXMLDOC01-appb-T000012
[実施例A10~A13、比較例A4(アミドキシム添加量の影響)]
 ベンズアミドキシムの添加量を表2に示す通りに変えた以外は比較例A3と同様に反応を行った(実施例A10~A12及び比較例A4)。なお、実施例A13は添加したベンズアミドキシムのモル量相当量、前調製液量を増量した。実験結果を表2に示した。
Figure JPOXMLDOC01-appb-T000013
[実施例A14~A22、比較例A5~A7(トリクロロトリアジン触媒を用いて転位反応を行った場合の副生物の影響評価)]
 転位触媒をトリクロロトリアジンに変え、前調製液を3重量%トリクロロトリアジン0.936gに変えた以外、実施例A1~A9、比較例A1~A3と同様に反応評価を行った。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000014
[実施例A23(ベックマン転位反応後の溶媒をリサイクルして、オキシム化、ベックマン転位反応を行った場合の不純物の分析)]
 参考例A1の方法で、ラウロラクタムのトルエン溶液6kgを取得した。同溶液を20Lのエバポレータに入れ90℃でトルエンを回収した。残存粗ラウロラクタム中のトルエンは0.2重量%であった。得られた回収トルエンは30cmのビグリュー管を用いて単蒸留し、3030gの留出液と150gの缶液を得た。留出液をGC分析した結果、ベンズアルデヒド6ppm、ベンゾニトリル18ppm、ベンジルクロライド12ppm、ベンジルアルコール2ppm、ベンズアルドキシム1ppm、シクロドデカノン20ppmが検出された。これは、オキシム化反応でフィードするシクロドデカノンに対しベンズアルデヒド0.0013モル%、ベンゾニトリル0.0041モル%、ベンジルクロライド0.0022モル%、ベンジルアルコール0.0004モル%、ベンズアルドキシム0.0002モル%、シクロドデカノン0.0026モル%に相当する。参考例A1のトルエンの替わりに前記留出液を用い、参考例A1と同条件でオキシム化、油/水分離、転位、洗浄を行い、ラウロラクタムのトルエン溶液を得た。このラウロラクタムのトルエン溶液に前記単蒸留缶液を加え、エバポレータでトルエン回収を行った後、単蒸留して留出液を取得した。これらの操作を5回繰返し、5回目の留出液を分析した結果、ベンズアルデヒド20ppm、ベンゾニトリル27ppm、ベンジルクロライド12ppm、ベンジルアルコール2ppm、ベンズアルドキシム1ppm、シクロドデカノン40ppmであった。これは、オキシム化反応でフィードするシクロドデカノンに対し、ベンズアルデヒド0.0044モル%、ベンゾニトリル0.0027モル%、ベンジルクロライド0.0050モル%、ベンジルアルコール0.0004モル%、ベンズアルドキシム0.0002モル%、シクロドデカノン0.0052モル%に相当する。5回目の留出液を用いてオキシム化・転位反応を行い、得られたラウロラクタムのトルエン溶液中の副生物についてGC分析を行った結果、ベンズアルデヒド11ppm、ベンジルクロライド6ppm、ベンジルアルコール1ppm ベンゾニトリル15ppm、シクロドデセン66ppm、ベンズアルドキシム2ppm、1-クロロドデカン139ppm、ラウロニトリル46ppm、シクロドデカノン826ppm、シクロドデカノンオキシム270ppm、12-クロロドデカンニトリル231ppm、ドデカンジニトリル66ppmであった。これをラウロラクタムに対する生成比で表すとベンズアルデヒド0.0045モル%、ベンジルクロライド0.0021モル%、ベンジルアルコール0.0004モル%、ベンゾニトリル0.0063モル%、シクロドデセン0.0173モル%、ベンズアルドキシム0.0007モル%、1-クロロドデカン0.0297モル%、ラウロニトリル0.0111モル%、シクロドデカノン0.1974モル%、シクロドデカノンオキシム0.0569モル%、12-クロロドデカンニトリル0.0466モル%、ドデカンジニトリル0.0150モル%であり、触媒活性の低下や顕著な副生物の蓄積は認められなかった。
<実施例B>
 以下、参考例B1、B2ではシクロドデカノンオキシムを製造および乾燥した。参考例B3~B6では、シクロドデカノンオキシムを、触媒の存在下ベックマン転位することによりラウロラクタムを製造し、後処理、蒸留等を行い、各段階においてラウロラクタムの光透過率差(LT.diff)を測定した。実施例B1~B8では、参考例で製造したラウロラクタムを水素化処理することにより精製し、光透過率差(LT.diff)を測定した。
 <光透過率差(LT.diff)の測定>
 以下、ラウロラクタムの光透過率差(LT.diff)は、下記測定方法により測定された。
 供試ラウロラクタムサンプルの2wt/v%メタノール溶液100mlに、温度20℃において、0.01N過マンガン酸カリ溶液10mlを加え、その200秒後にこの反応混合液を50mmセルに移し、240秒後の透過率%(T2、波長410nm)を読み取った。なお、対照液としてメタノールを使用した。
 次に、メタノール100mlに20℃で0.01N過マンガン酸カリ溶液10mlを加え、その200秒後にこの混合液を5mmセルに移し、240秒後にその透過率%(T1、波長410nm)を読み取った。対照液としてメタノールを用いた。
 供試ラウロラクタムの光透過率差(LT.diff)を下記式により算出した。
 光透過率差(%)=T1-T2
[参考例B1:シクロドデカノンオキシムの製造]
 硫酸ヒドロキシルアミン14.8重量%、硫酸9.5重量%、硫酸アンモニウム27.1重量%の組成の水溶液に25重量%アンモニア水溶液(和光純薬工業社製)を加え、pH4に調整(中和アミン)した。この中和アミン水溶液に、42.4重量%硫酸アンモニウム水溶液を硫酸ヒドロキシルアミン濃度7.69重量%になるように加えた。この調製した硫酸ヒドロキシルアミン溶液25383.3gを攪拌翼が設けられた液相部容積40Lの枕型オキシム反応器に加え、温度を85℃にし、さらにシクロドデカノン7241g、トルエン3113.7gを加えた。温度85℃でpH5.8になるように、25重量%アンモニア水溶液を加え続けて反応させた。水層中のヒドロキシルアミン濃度が1000ppm以下の時点で、攪拌ならびにアンモニア水溶液のフィードを止め、静置し、水層を抜き出した。残った油層にトルエン4127.3g、中和アミン25022.6gを加え、温度85℃でpH5.8になるように、25重量%アンモニア水溶液フィードを開始した。シクロドデカノン濃度が1000ppm以下になった時点で攪拌を停止し、静置後、水層を抜き出し、反応を停止させた。得られた油層(シクロドデカノンオキシム-トルエン溶液)をカールフィッシャー型水分測定器(平沼AQ-2100型微量水分測定装置)により分析した結果、水分濃度は2000ppmであった。
[参考例B2:シクロドデカノンオキシムの乾燥]
 参考例B1で得たシクロドデカノンオキシムのトルエン溶液4kgに、800gのトルエンを加えた。これを、10Lのエバポレータに入れ、280torr、温度110℃でトルエンを留去し、シクロドデカノンオキシムの濃度が50重量%になるまで濃縮した。得られた50重量%シクロドデカノンオキシムのトルエン溶液について、カールフィッシャー型水分測定器を用いドライボックス内で水分測定を行った結果、350ppmの水分を含有していた。
[参考例B3:ラウロラクタムの製造(塩化チオニル触媒)]
 参考例B2で得られた50重量%シクロドデカノンオキシム-トルエン溶液に、塩化亜鉛を、シクロドデカノンオキシムに対して1.0mol%の比になるように温度100℃で溶かした(これを原料と称する。)。これを、攪拌機が設けられた500mlジャケット付きセパラブルフラスコ2つからなる多段反応装置に供給した。
 これとは別に、10重量%塩化チオニル-トルエン溶液と、参考例B2で得られた50重量%シクロドデカノンオキシム溶液を濃度20重量%に希釈したシクロドデカノンオキシム-トルエン溶液とをライン混合した。その後、これを水冷ジャケット付触媒前調製槽にフィードし、触媒活性種を調製し、第1槽に供給した。なお、塩化チオニルとシクロドデカノンオキシムのフィード量は原料のシクロドデカノンオキシムに対して、1.5mol%、3.75mol%、触媒前調製槽での滞留時間は30分であった。また、転位反応槽の温度は105℃、1、2槽の合計滞留時間は25分とした。
 また、反応装置の第2槽から得られた反応液について、ガスクロマトグラフィーにより分析を行った結果、シクロドデカノンオキシムの転化率は100%、ラウロラクタム収率は99.7%であった。得られた反応液を濃縮し、ラウロラクタムの光透過率差(LT.diff)を測定したところ、66.8%であった。
[参考例B4:ラウロラクタムの製造(塩化シアヌル触媒)]
 シクロドデカノンオキシム(東京化成)20g、塩化亜鉛0.13g、トルエン80gを、還流管を装着した500mlの3ツ口フラスコにいれ、温度90℃に設定した。塩化シアヌル0.28gをトルエン30gに溶かした溶液を、滴下漏斗を用いて3ツ口フラスコに滴下した。滴下終了から2時間後、反応液を1Lジャケット付きセパラブルフラスコに移し、超純水50gを加え温度80℃で15分攪拌した。その後、15分静置し水層を抜き出した。次に、濃度1重量%のNaOH水溶液50gを加え15分攪拌した後、15分静置し水層を抜き出した。この操作をさらに二回行った後、超純水50gを加えて15分攪拌した。その後、15分静置し、水層を抜き出し、得られた反応液を濃縮し、ラウロラクタムの光透過率差(LT.diff)を測定したところ、69.5%であった。
[参考例B5:転位反応液の後処理]
 参考例B3で得られた反応液700gを、1Lジャケット付きセパラブルフラスコに入れ、ジャケット温度を80℃にした。反応液の10重量%の超純水を加え、15分攪拌した。その後、15分静置し、水層を抜き出した。この操作を2回行った後、1重量%の水酸化ナトリウム水溶液を、反応液の10重量%加え、15分攪拌した。その後、15分静置し、水層を抜き出した。反応液の10重量%の超純水を加え、15分攪拌後した。その後、15分静置し水層を抜き出した。洗浄後の反応液をロータリーエバポレータで濃縮した。得られた粗ラクタムの光透過率差(LT.diff)を測定したところ、66.8%であり、光透過率差(LT.diff)の低下は認められなかった。
[参考例B6:ラウロラクタムの精留]
 参考例B5で得られたラウロラクタムを蒸留(ボトム温度190℃、真空度3~4torr、還流比1:1、スルーザパッキン7段)した。得られたラウロラクタムの光透過率差(LT.diff)を測定したところ、45%であった。
[実施例B1]
 参考例B3で得られたラウロラクタムを蒸留(ボトム温度190℃、真空度3~4torr、還流比1:1、スルーザパッキン7段)し、蒸留により得られたラウロラクタム(光透過率差(LT.diff)=44.7%)を3g、メタノール60g、2重量%Pd/C(粒状)0.6gを300ml二口ナスフラスコに加えた。系内を水素ガスで置換し、水素雰囲気下、密閉系にて室温で6.5時間反応させた。反応終了後、温度90℃でメンブレンフィルターを用いてろ過した。得られたろ液を濃縮した(回収率91%)。これにより得られたラウロラクタムの光透過率差(LT.diff)を測定した結果、9%であった。
[実施例B2]
 参考例B3で得られたラウロラクタム(光透過率差(LT.diff)=66.8%)を3g、トルエン200g、5重量%Pt/C(粉状)1.2gを300ml二口ナスフラスコに加えた。系内を水素ガスで置換し、水素雰囲気下、密閉系にて、室温で24時間反応させた。反応終了後、温度90℃でメンブレンフィルターを用いてろ過した。得られたろ液を濃縮後(回収率91%)した。これにより得られたラウロラクタムの光透過率差(LT.diff)を測定した結果、20%であった。
[実施例B3]
 実施例B1の蒸留ラウロラクタム(光透過率差(LT.diff)=44.7%)を4g、トルエン6g、5重量%Pd/C(粉状)1gを100mLオートクレーブに加えた。系内を水素ガスで置換し、圧力0.2MPa、温度90℃にて1時間反応させた。反応終了後、温度90℃でメンブレンフィルターを用いてろ過した。得られたろ液を濃縮した(回収率90%)。これにより得られたラウロラクタムの光透過率差(LT.diff)を測定した結果、25.7%であった。
[実施例B4]
 実施例B1の蒸留ラウロラクタム(光透過率差(LT.diff)=44.7%)を4g、トルエン6g、5重量%Pd/C(粉状)0.1gを100mLオートクレーブに加えた。系内を水素ガスで置換し、圧力0.2MPa、温度90℃にて1時間反応させた。反応終了後、温度90℃でメンブレンフィルターを用いてろ過した。得られたろ液を濃縮した(回収率90%)。これにより得られたラウロラクタムの光透過率差(LT.diff)を測定した結果、18.4%であった。
[実施例B5]
 実施例B1の蒸留ラウロラクタム(光透過率差(LT.diff)=44.7%)を4g、トルエン6g、36.6重量% Ni/Al(粉状、前還元処理を行ったもの。130℃ 0.5Mpa・1h トルエン3g)0.1gを100mLオートクレーブに加え、系内を水素ガスで置換し、圧力0.5MPa、温度90℃にて1時間反応させた。反応終了後、温度90℃でメンブレンフィルターを用いてろ過した。得られたろ液を濃縮した(回収率90%)。これにより得られたラウロラクタムの光透過率差(LT.diff)を測定した結果、22.9%であった。
[実施例B6]
 実施例B1の蒸留ラウロラクタム(光透過率差(LT.diff)=44.7%)を4g、トルエン6g、耐硫黄性・Ni/Al(粉状、前還元処理を行ったもの。130℃ 0.5Mpa・1h トルエン3g)0.1gを100mLオートクレーブに加えた。系内を水素ガスで置換し、圧力0.5MPa、温度90℃にて1時間反応させた。反応終了後、温度90℃でメンブレンフィルターを用いてろ過し得られたろ液を濃縮した(回収率90%)。これにより得られたラウロラクタムの光透過率差(LT.diff)を測定した結果、12.6%であった。
[実施例B7]
 参考例B4で得られた洗浄後の反応液130g、5重量%Pt/C(粉状)13gを300mlオートクレーブに加え系内を水素ガスで置換し、圧力0.5Mpa、温度90℃にて2時間反応させた。反応終了後、温度90℃で5Cのろ紙を用いてろ過し得られたろ液を濃縮した(回収率90%)。これにより得られたラウロラクタムの光透過率差(Lt.diff)を測定したところ34.5%であった。
[実施例B8]
 参考例B6で得られたラウロラクタムを130g、5重量%Pt/C(粉状)15gを300mlオートクレーブに加え系内を水素ガスで置換し、圧力0.5Mpa、温度165℃にて2時間反応させた。反応終了後、トルエン600gで希釈し温度90℃で5Cのろ紙を用いてろ過した。得られたろ液をロータリーエバポレータで濃縮した(回収率90%)。これにより得られたラウロラクタムの光透過率差(Lt.diff)を測定したところ7.9%であった。
<実施例C>
 以下、実施例C1~C7では、まずシクロドデカノンを用いてシクロドデカノンオキシムを製造し、これを触媒の存在下ベックマン転位することによりラウロラクタムを製造する工程の中で、水素化処理または晶析精製を行った。そして、これにより得られたラウロラクタムの光透過率差(LT.diff)の測定、ガスクロマトグラフィー質量分析を行った。なお、以下の実施例C1~C7、参考例C1~C6において、光透過率差(LT.diff)の測定方法は上記実施例Bと同様に行った。
<ガスクロマトグラフィー分析>
 実施例C1~C7、および参考例C1におけるガスクロマトグラフィーの測定条件は以下の通りである。
分析カラム:GLサイエンス社製TC-1キャピラリーカラム、カラム長30m、内径0.53mm、膜厚1.5μm)、カラム温度:70から300℃、昇温速度5℃/分)
 以下の実施例C1~C7および参考例C1~C6においては、下記[工程C1]~[工程C5]により得られた化合物を用いた。
[工程C1:シクロドデカノンの調製]
 シクロドデカノン/シクロドデカノール混合物(インビスタ社製)を脱水素反応に供して得られたシクロドデカノンを原料として用いた。このシクロドデカノンの光透過率差(LT.diff)は48%であった。また、ガスクロマトグラフィーによる分析の結果、保持時間23分に230重量ppmの不純物が検出され、ガスクロマトグラフ質量分析装置(日本電子社製JMS-GC mate II)にて分析を行った結果、分子量は180であり、フラグメントイオンの解析の結果から、シクロドデセノンであった。
[工程C2:シクロドデカノンオキシムの製造]
 工程C1により調製したシクロドデカノン7241gを用いて、参考例B1と同様にしてシクロドデカノンオキシムを製造した。
[工程C3:シクロドデカノンオキシムの乾燥]
 工程C2により調製したシクロドデカノンオキシムのトルエン溶液を、参考例B2と同様の方法により、水分が350ppmになるまで乾燥した。得られたシクロドデカノンオキシムのトルエン溶液の一部を採取し、トルエンで希釈して、前記条件にてガスクロマトグラフィー分析を行った結果、保持時間27.1分、28.1分、28.3分にそれぞれ51重量ppm、50重量ppm、51重量ppmの不純物が検出され、ガスクロマトグラフィー質量分析の結果、これら3種類の不純物の分子量はいずれも195であり、フラグメントイオンの解析の結果から、シクロドデセノンオキシムの異性体混合物であった。
[工程C4:ラウロラクタムの製造(塩化チオニル触媒)]
 工程C3により調製した50重量%シクロドデカノンオキシムのトルエン溶液に、塩化亜鉛を、シクロドデカノンオキシムに対して1.0mol%の比になるように溶かし、攪拌機が設けられた500mlジャケット付きセパラブルフラスコ2つからなる多段反応装置(転位反応第1槽、転位反応第2槽という)に供給した。これとは別に10重量%塩化チオニル-トルエン溶液と前記の50重量%シクロドデカノンオキシム溶液を、濃度15重量%となるようにトルエンで希釈したシクロドデカノンオキシム-トルエン溶液を混合して触媒活性種を調製し(当該混合槽を前調製槽という)、転位反応第1槽に供給した。なお、前調製槽は発熱による温度上昇を防ぐため水冷ジャケットを備え、温度が35℃を超えないように制御した。前調製槽にフィードされる塩化チオニルとシクロドデカノンオキシムのフィード量は前調製槽及び転位反応第1槽にフィードされるシクロドデカノンオキシムの合計量に対して、それぞれ1.5mol%、3.75mol%であり、前調製槽の滞留時間は20分であった。また、転位反応槽の温度は105℃に設定し、転位反応槽の滞留時間は、転位反応第1槽、転位反応第2槽合計で25分とした。
 転位反応槽の反応液をガスクロマトグラフィーにより分析を行った結果、シクロドデカノンオキシムの転化率は100%、ラウロラクタム収率は99.7%であった。得られたラウロラクタムの光透過率差(LT.diff)は65.3%であった。
[工程C5:転位液の後処理、蒸留精製]
 工程C4により得られたラウロラクタム/トルエン溶液500gに、水50gを加え、85℃で10分間攪拌後静置分液して、軽液相を取得した。この操作をさらに2回繰返し、得られた軽液相に1mol/Lの水酸化ナトリウム水溶液64gを加え85℃で10分間攪拌後静置し、軽液相を分取した(後処理液と称する)。得られた軽液相からトルエンを留去後さらに蒸留(ボトム温度190℃、真空度3~4torr、還流比1、スルーザパッキン7段)を行ってラウロラクタムを取得した。
[参考例C1]
 上記工程C1~工程C5により得られたラウロラクタムについてガスクロマトグラフィー分析(前記条件)を行った結果、27.5分、29.2分、32.6分に不純物が検出され、それぞれの濃度は4重量ppm、8重量ppm、21重量ppmであった。ガスクロマトグラフィー質量分析の結果、いずれも分子量は195であり、フラグメントイオンの解析の結果、ドデセノ12ラクタムの異性体混合物であった。また、得られたラウロラクタムの光透過率差(LT.diff)は44.7%であった。
[参考例C2]
 ラウロラクタムの製造を、工程C4に示す方法から以下の工程C4´に示す方法に変えた以外、参考例C1と同様にしてラウロラクタムを製造した。
[工程C4´:ラウロラクタムの製造(塩化シアヌル触媒)]
 前記工程C4で示した多段反応装置に、前記工程C3の通り得られた50重量%シクロドデカノンオキシム-トルエン溶液に塩化亜鉛を、シクロドデカノンオキシムに対して1.0mol%の比になるように溶かして得た溶液を2槽での滞留時間の合計が25分になるように供給した。一方、塩化シアヌル-トルエン溶液をシクロドデカノンオキシムに対して塩化シアヌルが1.5mol%なるように第1槽に供給した。第2槽の反応液をガスクロマトグラフィーにより分析を行った結果、シクロドデカノンオキシムの転化率は100%、ラウロラクタム収率は99.7%であった。また、得られたラウロラクタムの光透過率差(LT.diff)は66.8%であった。
 得られたラウロラクタムを工程C5に示す方法で精製した。得られた精製ラウロラクタムのガスクロマトグラフィー分析(前記条件)を行った結果、参考例C1に示した不純物(ドデセノ12ラクタムの異性体混合物)が検出され、それぞれの濃度は5重量ppm、9重量ppm、20重量ppmであった。また、得られたラウロラクタムの光透過率差(LT.diff)は47.0%であった。
[実施例C1(シクロドデカノンの水素化精製)]
 前記工程C1で得られたシクロドデカノン10kgに白金を5重量%担持するPt/C触媒(エヌイーケムキャット社製)10gを加え、溶融均一化したスラリーを攪拌翼を供えた液容積1Lの加圧流通反応器に毎時1Lの速度(平均滞留時間1時間)で導入するとともに、水素を流通し、100℃、1.1MPaの条件下で水素化処理を行った。加圧流通反応器から排出された処理液の加圧連続濾過を行い、Pt/C触媒を濾別した後、シクロドデカノンを取得した。得られたシクロドデカノンをガスクロマトグラフィーで分析(前記条件)した結果、0.15重量%のシクロドデカノールの生成を確認したが、前記工程C1で見られた不純物ピークは検出されず、光透過率差(LT.diff)は6.5%であった。このシクロドデカノンを用いた以外参考例C1と同様にしてラウロラクタムを製造した。得られた精製ラウロラクタム中には参考例C1で見られたドデセノ12ラクタムは検出されず、光透過率差(LT.diff)は10.1%であった。
[実施例C2(シクロドデカノンの水素化精製)]
 ラウロラクタムの製造方法の一部を、参考例C2と同様、工程C4´の方法に変えた以外は実施例C1と同様にラウロラクタムを製造した。該ラウロラクタム中には参考例C1および参考例C2で見られたドデセノ12ラクタムは検出されず、光透過率差(LT.diff)は12.1%だった。
[実施例C3(シクロドデカノンオキシムの水素化精製)]
 工程C2と同様にしてシクロドデカノンオキシムのトルエン溶液を得た。実施例C1に示した装置を用い、5%Pt/C添加量を1重量%、水素圧0.2MPa、平均滞留時間を60分として、シクロドデカノンオキシムの水添処理を行った。工程C3に従い乾燥処理を行った後、工程C4、C5と同様にして精製ラウロラクタムを製造した。シクロドデカノンオキシムの乾燥処理後のガスクロマトグラフ分析の結果、工程C3で見られた不純物は検出されず、精製ラウロラクタム中のドデセノ12ラクタムも検出されなかった。また、精製ラウロラクタムの光透過率差(LT.diff)は15.0%であった。
[実施例C4(シクロドデカノンオキシムの晶析精製)]
 工程C2の溶媒をメタノールに変え、反応温度を65℃とした以外は参考例C1と同様にして、シクロドデカノンオキシムを製造した。反応終了後水相を分離し、反応液(シクロドデカノンオキシム/メタノールスラリー)を室温まで冷却し、シクドデカノンオキシム結晶を濾別した。シクロドデカノンオキシムを含むメタノール母液から常圧でメタノールを留去し、約10倍に濃縮後、室温に冷却し析出したシクロドデカノンオキシムの結晶を濾別した。得られたシクロドデカノンオキシムの結晶は前記反応液の冷却の際に析出した結晶とあわせ、500mlの水、メタノールでリンスし減圧乾燥機に入れ70℃にて乾燥した。乾燥したシクロドデカノンオキシムをトルエンに溶かして50重量%のシクロドデカノンオキシム/トルエン溶液を調製し、工程C4、C5と同様にして精製ラウロラクタムを製造した。精製ラウロラクタム中のドデセノ12ラクタムの異性体の濃度はそれぞれ、1重量ppm、3重量ppm、10重量ppmで光透過率差(LT.diff)は21.0%であった。
[実施例C5(後処理液の水素化精製)]
 工程C5の蒸留精製を行わなかった以外は参考例C1と同様にして、後処理液を調製し、これを自動試料燃焼装置(三菱化学社製AQF-100型)にて燃焼させ、発生ガスを水酸化ナトリウム水溶液に吸収させイオンクロマトグラフィー(三菱化学社製DIONEX-ICS1000システム)で分析した結果、塩素が180.4重量ppm、イオウが56.2重量ppm含まれていた。後処理液200gに安定化ニッケル触媒(日揮触媒化成社製F33B:Ni(56重量%)をシリカ-アルミナ担体に担持したもの)を10g加え、水素圧0.5MPa、130℃で1.5時間処理した。その結果、光透過率差(LT.diff)は29.7%であり、塩素が75.5ppm、イオウが5.3ppm含まれていた。
 触媒を濾別後、さらに別の安定化ニッケル触媒(日揮触媒化成社製N102F:Ni(62重量%)をシリカ-Mg担体に担持したもの)を10g加えて水素圧0.5MPa、130℃で1.5時間処理した。得られた処理液中の塩素濃度は3.0重量ppm、イオウ濃度は4.4ppm、ドデセノ12ラクタムは検出されず、光透過率差(LT.diff)は6.9%であった。
[実施例C6(ラウロラクタムの水素化精製)]
 参考例C1と同様にして、ラウロラクタムを製造し、得られたラウロラクタム120gに安定化ニッケル触媒(日揮触媒化成社製N113F:Ni(52重量%)担体:珪藻土)1.2gを加え、水素圧0.5MPa、165℃で2時間処理した。得られたラウロラクタムからは塩素、イオウともイオンクロマトグラフィー分析からは検出されず、ドデセノ12ラクタムも検出されなかった。光透過率差(LT.diff)は4.3%であった。
[実施例C7(ラウロラクタムの水素化精製)]
 ラウロラクタムの製造方法を参考例C2と同様に行った以外は実施例C6と同様にしてラウロラクタムの水素化精製を行った。得られたラウロラクタムからは塩素、イオウともイオンクロマトグラフィー分析からは検出されず、ドデセノ12ラクタムも検出されなかった。光透過率差(LT.diff)は5.1%であった。
[参考例C3]
 工程C5の蒸留条件の還流比を5に上げた以外は参考例C1と同様にして精製ラウロラクタムを製造した。得られた精製ラウロラクタムの光透過率差(LT.diff)は44.0%であった。同条件で蒸留をくりかえしたところ、得られた精製ラウロラクタムにおいても光透過率差(LT.diff)は35.0%だった。
[参考例C4]
 工程C4で得られたラウロラクタム/トルエン溶液500gに活性炭50gを加え、85℃で1時間攪拌後、同温度にて活性炭をろ過した。得られた溶液を室温まで冷却し、析出結晶を濾別し、室温にてトルエン100gで洗浄後乾燥して、乾燥結晶を得た。該結晶の光透過率差(LT.diff)は38.5%であった。
[参考例C5]
 工程C5の蒸留精製において、粗ラウロラクタムに対して2000重量ppmの炭酸ナトリウム粉末を加えて蒸留した以外は参考例C1と同様にラウロラクタムを製造した。得られた精製ラウロラクタムの光透過率差(LT.diff)は38.0%であった。
[参考例C6]
 工程C4の後処理の第1回目の水洗の際にラウロラクタムに対して1モル%の次亜塩素酸ナトリウムを加え処理を行った以外は参考例C1と同様にしてラウロラクタムを製造した。得られた精製ラウロラクタムの光透過率差(LT.diff)は43.0%であった。
[参考例C7]
 工程C4の後処理の第1回目の水洗の際にラウロラクタムに対して5重量%のイオン交換樹脂(オルガノ社:アンバーリスト15DRY)を加え処理を行った以外は参考例C1と同様にしてラウロラクタムを製造した。得られたラウロラクタムの光透過率差(LT.diff)は44.0%であった。
<実施例D>
 以下、実施例D1~D4においては、再結晶による精製を行ったシクロドデカノンを用いてシクロドデカノンオキシムを製造し、ラウロラクタム溶液中等の不純物の分析を行った。
[実施例D1]
 [シクロドデカノンの製造]
 特表2007-506695号公報に従い、シクロドデカノンを製造した。すなわち、まずブタジエンを四塩化チタン、エチルアルミニウムセスキクロライドを触媒に用いて三量化し、シクロドデカトリエンを製造した。次にシクロドデカトリエンを亜酸化窒素で酸化し、シクロドデカジエノンを製造し、残った炭素-炭素二重結合を、パラジウム触媒を用いて水添して粗シクロドデカノンを製造した。得られた粗シクロドデカノンを蒸留精製して原料であるシクロドデカノンを取得した。
 [シクロドデカノン中の不純物の分析]
 得られたシクロドデカノンを、ガスクロマトグラフィー(カラム:GLサイエンス社製CP-SIL19CB、50mキャピラリーカラム  カラム温度:70℃から300℃へ毎分5℃で昇温)による分析を行った結果、保持持間24.68分、24.73分、24.87分、25.12分に不純物が検出され、その重量濃度は165重量ppm、107重量ppm、147重量ppm、145重量ppmであった。また、ガスクロマトグラフィー-マススペクトル(日本電子社製JMS GC mateII)分析の結果、分子量はいずれも178であった。シクロドデカノン10gに5重量%の白金を含有する白金/カーボン(エヌイーケムキャット社製)を0.5g加え、水素圧1MPa、110℃、1時間水素化処理を行いガスクロマトグラフィー分析を行った結果、保持持間24.68分、24.73分、24.87分の不純物の濃度は変化しなかったが、25.12分の不純物は消失した。従って、保持持間24.68分、24.73分、24.87分の不純物はトリシクロ環構造のドデカノン、25.12分の不純物はジシクロ環構造のドデセノン又はシクロドデカジエノンと推定された。
 [シクロドデカノンの再結晶による精製]
 シクロドデカノン100重量部に対し、n-ヘプタン8重量部を加え、60℃に加熱して溶解後、25℃まで冷却しシクロドデカノンの結晶を濾別した。n-ヘプタン3重量部で結晶を洗浄後、乾燥して精製シクロドデカノン結晶を得た。晶析のワンパス収率は76.6%であり、ガスクロマトグラフィーで分析した結果、保持持間24.68分、24.73分、24.87分の不純物はそれぞれ4重量ppm、4重量ppm、6重量ppmに減少し、25.12分の不純物は検出されなかった。
 [ラウロラクタムの製造]
 特開平5-4964号公報に記載の方法に従い、ラウロラクタムを製造した。まず、別途準備したシクロヘキサノンをオキシム化第1槽にフィードし、ヒドロキシルアミン硫酸塩と硫酸アンモニウム水溶液からなるオキシム化第2槽重液と攪拌混合し、pHを調整しながらアンモニア水を滴下して、シクロヘキサノンオキシムを製造した。得られたシクロヘキサノンオキシム融液はオキシム化第2槽へフィードした。オキシム化第2槽へは、上記方法で製造されたシクロドデカノン及びヒドロキシルアミン硫酸塩水溶液をフィードし、オキシム化第1槽と同様に攪拌下にアンモニア水を滴下して、シクロドデカノンオキシムを製造した。オキシム化第2槽にフィードするヒドロキシルアミン硫酸塩水溶液フィード量はシクロヘキサノンとシクロドデカノンの合計と等モル量とした。オキシム化第2槽から排出する軽液相はシクロヘキサノンオキシムとシクロドデカノンオキシムからなる融液であり転位工程に送られた。転位工程では濃硫酸と発煙硫酸によりシクロヘキサノンオキシムとシクロドデカノンオキシムの転位反応を行った。転位終了後、転位液にアンモニア水を加え、硫酸を中和して、カプロラクタム、ラウロラクタムを遊離させ、トルエンを加えて抽出した。得られたカプロラクタム、ラウロラクタムのトルエン溶液に水を加え、カプロラクタムを水相に抽出して両者を分離した。得られたカプロラクタム水溶液、ラウロラクタムのトルエン溶液はそれぞれ溶媒を留去して粗ラクタムとして取得し、更に蒸留精製を行って、製品ラクタムを得た。
 なお、ラウロラクタムの蒸留精製は3塔からなる連続蒸留で行い、第1塔は低沸点除去塔で、塔頂より低沸点物を留出させ、缶液は第2塔にフィードした。第2塔では塔頂より製品ラウロラクタムを留出させ、高沸点不純物を含む缶液は第3塔にフィードした。第3塔の塔頂留出液は第2塔にリサイクルし、塔底より、高沸点不純物を含むラウロラクタムを排出した。塔底からの排出量は製品ラウロラクタムの取得量に対して0.01重量%であった。
 [ラウロラクタム中の不純物の分析]
 前記粗ラウロラクタム又は製品ラウロラクタム100gにメタノール100gを加え、65℃に加熱溶解した。ラウロラクタムのメタノール溶液を20℃まで冷却し、析出したラウロラクタムを濾別した。濾液は蒸発乾固した。得られた固体を65℃に加熱し、少量のメタノールを添加して65℃に加熱溶解後20℃まで冷却し、析出したラウロラクタムを濾別した。得られた濾液は5.0gにメスアップした。濾液をガスクロマトグラフィー(カラム:GLサイエンス社製TC-1、30mキャピラリーカラム。温度:70℃から300℃へ毎分5℃で昇温)で分析した結果、保持時間、31.3分、31.7分に不純物が検出され、その含有量は粗ラウロラクタム中では3.1重量ppm、6.0重量ppm、蒸留精製した製品ラウロラクタム中では0.5重量ppm、0.9重量ppmであった。また、ガスクロマトグラフィー-マススペクトル(日本電子社製JMS GC mateII)による分析の結果、これら不純物の分子量は193であった。さらに、濾液3gに5重量%の白金を含有する白金/カーボン(エヌイーケムキャット社製)を0.15g加え、水素圧1MPa、110℃、1時間で水素化処理を行い、次いでガスクロマトグラフィー分析を行った結果、いずれの不純物も濃度変化はなかった。従って、これらの不純物はトリシクロ環構造のドデカノラクタムと推定された。
[参考例D1]
 シクロドデカノンの精製を行わなかったこと、及びラウロラクタムの蒸留精製の際の塔底からの排出量を製品ラウロラクタムの取得量に対して0.12重量%としたこと以外は実施例D1と同様にして製品ラウロラクタムを取得した。粗ラウロラクタム中には保持時間30.9分、31.3分、31.6分、31.7分、32.0分、32.5分、32.7分不純物が検出され、粗ラウロラクタムに対し35重量ppm、96重量ppm、35重量ppm、163重量ppm、15重量ppm、32重量ppmであった。これらの不純物は製品ラウロラクタム中にも検出され、それぞれ7重量ppm、16重量ppm、7重量ppm、32重量ppm、2重量ppm、4重量ppmであった。また、ガスクロマトグラフィーマススペクトル分析では不純物の分子量は全て193であった。一方、製品ラウロラクタムの水添処理を行った結果、保持時間30.9分、31.3分、31.6分、31.7分、32.0分、32.5分の不純物濃度は処理後も変化しなかったが、32.7分の不純物は消失し、32.1分、32.6分に新たな不純物が検出され、それぞれ、製品ラウロラクタムに対し1重量ppm、3重量ppmであった。また、新たな不純物の分子量は195であった。以上の結果から、30.9分、31.3分、31.6分、31.7分、32.0分、32.5分の不純物はトリシクロ環構造のドデカノラクタム、32.7分の不純物はジシクロ環構造のドデセノラクタムと推定された。
[実施例D2]
 シクロドデカノンの再結晶溶媒をメタノールに変えた以外は実施例D1と同様にしてラウロラクタムを取得した。シクロドデカノンの晶析精製の際のワンパス収率は87.6%、保持持間24.68分、24.73分、の不純物はそれぞれ4重量ppm、6重量ppmであり、24.87分、25.12分の不純物は検出されなかった。また、製品ラウロラクタム中の31.3分の不純物は0.5重量ppmで31.7分の不純物は検出されなかった。
[実施例D3]
 シクロドデカノンの再結晶溶媒をトルエンに変えた以外は実施例D1と同様にしてラウロラクタムを取得した。シクロドデカノンの再結晶精製の際のワンパス収率は35.8%、保持持間24.68分、24.87分の不純物はそれぞれ4重量ppm、9重量ppmであり、24.73分、25.12分の不純物は検出されなかった。また、製品ラウロラクタム中の31.3分、31.7分の不純物はそれぞれ0.5重量ppm、1.1重量ppmであった。
[実施例D4]
 シクロドデカノンオキシムの製造及びその転位反応工程を以下に示す方法に変えた以外は実施例D1と同様にして、ラウロラクタムを製造した。
 内部が4室に分割され、各室毎に攪拌翼が設けられた液相部容積30Lの枕型オキシム化第1反応器に、ヒドロキシルアミン硫酸塩(和光純薬工業社製)の15重量%水溶液を1.5kg/h及びオキシム化第2反応器から送液される油相をフィードした。反応温度を95℃に設定し、各室に25重量%アンモニア水を32g/hでフィードしオキシム化反応を行い、シクロドデカノンオキシムとトルエンからなる油相を得た。
 水相はオキシム化第2反応器へフィードした。オキシム化第2反応器は15Lで内部が4室に分割された枕型反応器で、前記オキシム化反応液の水相と実施例D1で取得した精製シクロドデカノンをトルエンに溶解して調製した25重量%シクロドデカノン溶液2kg/h(第1反応器へのヒドロキシルアミン硫酸塩と等モル量)を同反応器にフィードし、反応温度を95℃に設定し、各室に25重量%アンモニア水を16g/hでフィードしオキシム化反応を行った。得られた反応液は分液し、油相はオキシム化第1反応器にフィードした。
 オキシム化第1反応器で取得した油相10kgを20Lのエバポレータに入れ、トルエンを留去し、5.26kgのシクロドデカノンオキシムのトルエン溶液を得た。シクロドデカノンオキシム含有量をガスクロマトグラフィーで定量した結果、シクロドデカノンオキシムの含有率は50重量%であった。
 ジャケット付ガラス製の混合部(内容積2.5ml)に10重量%の塩化チオニル(転位触媒)のトルエン溶液を27.7g/h、前記50重量%シクロドデカノンのトルエン溶液をトルエンで希釈して調整した20重量%のシクロドデカノンオキシム/トルエン溶液を57.5g/hでフィードし、ジャケット冷媒にて混合部内部温度を25℃に制御しながら攪拌子で混合した。シクロドデカノンオキシムの塩化チオニルに対するモル比率は2.5である。混合液は導管を通して、内容積48mlのジャケット付ガラス製の前調製槽にフィードした。なお、混合部から前調製槽までの滞留時間は1.5分、前調製槽での滞留時間は29分であった。脱ガス槽内部温度はジャケット冷媒にて35℃に制御し、攪拌子で攪拌しながら窒素(40mL/min)で脱気し、前調製を行い、オーバーフロー液を転位反応槽に流下させた。
 一方、転位反応槽には50重量%シクロドデカノンオキシム/トルエン溶液に塩化亜鉛をシクロドデカノンオキシムに対して1mol%加えた液を613g/hでフィードした。転位反応槽は内容積163mlのCSTR(Continuous Stirred Tank Flow Reactor:連続攪拌槽型流通反応器)2槽から構成され、液温が105℃となるようジャケットの熱媒温度を調整した。反応時間(CSTR1,2槽の平均滞留時間の合計)は0.4時間であり、同条件で9.5時間継続して連続反応を行った。その結果、前調製で添加した塩化チオニルに対する脱ガス槽から転位反応槽へ導入される前調製液中の触媒活性種(式(6)で示されるシクロドデカノンO-アザシクロトリデセン-2-イルオキシム塩酸塩(なお、本化合物は式(6)で示される化合物、又は、式(6)で示される化合物以外の立体異性体、あるいは、式(6)で示される化合物を含む立体異性体の組合せの混合物を表す。))のモル生成割合は96.2%であった。また、この前調製液を用いた転位反応のシクロドデカノンオキシムの転化率は99.97%、ラウロラクタムの収率は99.8%であった。
 得られた転位反応液は水洗後、4重量%水酸化ナトリウム水溶液で洗浄して、触媒残渣等を除去し、トルエンを留去して粗ラウロラクタムを取得した。更に実施例D1と同様、蒸留精製を行い、製品ラウロラクタムを取得した。粗ラウロラクタム中及び蒸留精製を行った製品ラウロラクタム中の31.3分、31.7分の不純物はそれぞれ3.5重量ppm、5.5重量ppm、及び0.6重量ppm、0.8重量ppmであった。
[実施例D5]
 特開2000-256340号公報、特開2000-026441号公報、特開2001-302650号公報、特開2001-226311号公報に従って、粗シクロドデカノンを製造した。すなわち1,5,9-シクロドデカトリエンに過酸化水素水を混合し、触媒としてリンタングステン酸、トリオクチルメチルアンモニウムクロライドを加えて酸化し、1,2-エポキシ-5,9-シクロドデカジエンを製造した。未反応の1,5,9-シクロドデカトリンを蒸留回収後、1,2-エポキシ-5,9-シクロドデカジエンを蒸留精製した。得られた1,2-エポキシ-5,9-シクロドデカジエンを白金/カーボンを触媒にて水添処理を行い、二重結合を水素化した。得られたエポキシシクロドデカンに触媒としてヨウ化リチウムを加え、230℃に加熱して異性化し、シクロドデカノンを得た。シクロドデカノンの精製、ラウロラクタムの製造は実施例D1と同様に行い不純物を分析した。精製後のシクロドデカノン中の24.68分、24.73分、24.87分の不純物はそれぞれ2.4重量ppm、2.1重量ppm、4.1重量ppmで、25.12分の不純物は検出されなかった。粗ラウロラクタム及び製品ラウロラクタム中の31.3分、31.7分の不純物はそれぞれ2.1重量ppm、4.0重量ppm、及び0.3重量ppm、0.6重量ppmであった。

Claims (22)

  1.  ケトンとヒドロキシルアミンとを、有機溶媒の存在下で反応させ、オキシムを生成する工程(以下、オキシム化工程という)と、
     ベックマン転位触媒を用いて、オキシムをベックマン転位させることによりアミド化合物を製造する工程(以下、転位工程という)と、
     製造されたアミド化合物と溶媒とを分離し、分離した溶媒をオキシム化工程にリサイクルする工程(以下、溶媒リサイクル工程という)と、
    を含むアミド化合物の製造方法であって、
     前記溶媒リサイクル工程により分離され、オキシム化工程にリサイクルされる溶媒中のハロゲン化物、アルデヒド化合物、アルコール化合物、ニトリル化合物の含有量を、それぞれ原料であるケトンに対して0.4モル%以下とすることを特徴とする、アミド化合物の製造方法。
  2.  前記オキシム化工程の反応液中のアルドキシム化合物、アミドキシム化合物の含有量を、オキシムに対して0.4モル%以下とすることを特徴とする請求項1記載のアミド化合物の製造方法。
  3.  前記ベックマン転位触媒がハロゲン原子を含むことを特徴とする請求項1記載のアミド化合物の製造方法。
  4.  前記有機溶媒が芳香族炭化水素であることを特徴とする請求項1記載のアミド化合物の製造方法。
  5.  前記ケトンがシクロドデカノンであることを特徴とする請求項1記載のアミド化合物の製造方法。
  6.  二重結合を有する不純物が15重量ppm以下であることを特徴とするラクタム。
  7.  環状ケトンとヒドロキシルアミンとの反応により、下式(1)で表されるオキシムを製造する工程と、
    Figure JPOXMLDOC01-appb-C000001
    (式中、mは3以上の整数を示す)

     ベックマン転位触媒を用いて、前記オキシムをベックマン転位させることによりラクタムを製造する工程と
    を有するラクタムの製造方法であって、
     前記転位触媒が、
    Figure JPOXMLDOC01-appb-C000002
    (式中、ZはP、N、S、B又はSi原子を示し、Xはハロゲン原子を示す。ZはX以外に、1又は2以上の原子又は基と結合している。)、または、
     下記条件(i)~(iii)すべてを満足する芳香環含有化合物であり、
     かつ、環状ケトン、オキシム、およびラクタムから成る群から選ばれる1種類以上の化合物の水素化精製および/または晶析精製を行うことを特徴とする、請求項6記載のラクタムの製造方法。

      (i)芳香環を構成する原子として、脱離基としてハロゲン原子を有する炭素原子を少なくとも1つ含む。
      (ii)芳香環を構成する原子として、ヘテロ原子又は電子吸引基を有する炭素原子のいずれかの原子の一方又は両方を少なくとも3つ含む。
      (iii)前記のヘテロ原子又は電子吸引基を有する炭素原子のうちの2つが、前記脱離基であるハロゲン原子を有する炭素原子のオルトあるいはパラ位に位置する。
  8.  前記環状ケトンの水素化精製を行うことを特徴とする、請求項7に記載の製造方法。
  9.  前記オキシムの晶析精製を行うことを特徴とする、請求項7または8に記載の製造方法。
  10.  前記オキシムの水素化精製を行うことを特徴とする、請求項7~9のいずれか1項に記載の製造方法。
  11.  前記オキシムのベックマン転位により得られたラクタムの水素化精製を行うことを特徴とする、請求項7~10のいずれか1項に記載の製造方法。
  12.  前記ラクタムがラウロラクタムであることを特徴とする、請求項7~11のいずれか1項に記載の製造方法。
  13.  橋かけ環状構造を持つ不純物が50重量ppm以下であることを特徴とするラクタム。
  14.  前記橋かけ環状構造を持つ不純物が、ジシクロ環及び/又はトリシクロ環構造のラクタムであることを特徴とする、請求項13に記載のラクタム。
  15.  シクロアルカノンオキシムのベックマン転位によるラクタムの製造方法であって、ベックマン転位反応液中の橋かけ環状構造を持つ不純物が、目的生成物であるラクタムに対して300重量ppm以下であることを特徴とするラクタムの製造方法。
  16.  前記橋かけ環状構造を持つ不純物が、ジシクロ環及び/又はトリシクロ環構造のアミド化合物であることを特徴とする請求項15に記載の製造方法。
  17.  前記シクロアルカノンオキシムが、シクロアルカノンとヒドロキシルアミンとを反応させて製造したものである請求項15または16に記載の製造方法。
  18.  前記シクロアルカノンがブタジエンの付加反応生成物より製造したものである請求項17記載の製造方法。
  19.  前記シクロアルカノンに含まれる橋かけ環状構造を持つケトンが500重量ppm以下であることを特徴とする請求項17または18に記載の製造方法。
  20.  前記橋かけ環状構造を持つケトンがジシクロ環構造を有するケトン及び/又はトリシクロ環構造を有するケトンである、請求項19に記載の製造方法。
  21.  前記シクロアルカノンが炭素原子数8~20のシクロアルカノンであって、再結晶により精製されたものであることを特徴とする、請求項17~20のいずれか1項記載の製造方法。
  22.  前記ラクタムがラウロラクタムであることを特徴とする、請求項15~21のいずれか1項に記載の製造方法。
PCT/JP2011/056098 2010-03-15 2011-03-15 アミド化合物の製造方法 WO2011115132A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/635,092 US8816069B2 (en) 2010-03-15 2011-03-15 Method for producing amide compound
JP2012505705A JP5708637B2 (ja) 2010-03-15 2011-03-15 アミド化合物の製造方法
CN201180024285.7A CN102892752B (zh) 2010-03-15 2011-03-15 制备酰胺化合物的方法
EP11756317.1A EP2548862B1 (en) 2010-03-15 2011-03-15 Method for producing amide compound
ES11756317.1T ES2590347T3 (es) 2010-03-15 2011-03-15 Método para producir un compuesto de amida
US14/141,867 US9242931B2 (en) 2010-03-15 2013-12-27 Method for producing amide compound
US14/141,916 US8962826B2 (en) 2010-03-15 2013-12-27 Method for producing amide compound

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010057123 2010-03-15
JP2010-057123 2010-03-15
JP2010-080851 2010-03-31
JP2010080851 2010-03-31
JP2010-172322 2010-07-30
JP2010172322 2010-07-30
JP2010-252108 2010-11-10
JP2010252108 2010-11-10

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/635,092 A-371-Of-International US8816069B2 (en) 2010-03-15 2011-03-15 Method for producing amide compound
US14/141,916 Division US8962826B2 (en) 2010-03-15 2013-12-27 Method for producing amide compound
US14/141,867 Division US9242931B2 (en) 2010-03-15 2013-12-27 Method for producing amide compound

Publications (1)

Publication Number Publication Date
WO2011115132A1 true WO2011115132A1 (ja) 2011-09-22

Family

ID=44649216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056098 WO2011115132A1 (ja) 2010-03-15 2011-03-15 アミド化合物の製造方法

Country Status (6)

Country Link
US (3) US8816069B2 (ja)
EP (3) EP2738162B1 (ja)
JP (3) JP5708637B2 (ja)
CN (4) CN103864657A (ja)
ES (3) ES2590347T3 (ja)
WO (1) WO2011115132A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863385A (zh) * 2012-10-09 2013-01-09 清华大学 一种由环己酮直接合成己内酰胺的方法
JP2019104915A (ja) * 2017-12-13 2019-06-27 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH ラウロラクタムを含むモノマーからポリマーを製造する方法
JP2023504265A (ja) * 2019-12-06 2023-02-02 ハンワ ソリューションズ コーポレイション ラウロラクタムの製造方法、その合成装置、これにより製造されたラウロラクタム組成物、これを用いたポリラウロラクタムの製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2738162B1 (en) * 2010-03-15 2018-01-03 Ube Industries, Ltd. Method for producing amide compound
PL2763984T3 (pl) 2011-10-03 2016-10-31 1-pirazolilo-3-(4-((2-anilinopirymidyno-4-ilo)oksy)naftaleno-1-ilo)moczniki jako inhibitory kinazy p38 MAP
EP2578582A1 (en) 2011-10-03 2013-04-10 Respivert Limited 1-Pyrazolyl-3-(4-((2-anilinopyrimidin-4-yl)oxy)napththalen-1-yl)ureas as p38 MAP kinase inhibitors
GB201214750D0 (en) 2012-08-17 2012-10-03 Respivert Ltd Compounds
GB201215357D0 (en) 2012-08-29 2012-10-10 Respivert Ltd Compounds
WO2014033449A1 (en) 2012-08-29 2014-03-06 Respivert Limited Kinase inhibitors
WO2014033446A1 (en) 2012-08-29 2014-03-06 Respivert Limited Kinase inhibitors
US20150225373A1 (en) 2012-08-29 2015-08-13 Respivert Limited Kinase inhibitors
WO2014076484A1 (en) 2012-11-16 2014-05-22 Respivert Limited Kinase inhibitors
CA2907663A1 (en) 2013-04-02 2014-10-09 Respivert Limited Urea derivatives useful as kinase inhibitors
MX371353B (es) 2014-02-14 2020-01-27 Respivert Ltd Compuestos heterociclicos aromaticos como compuestos antiinflamatorios.
CN104086474B (zh) * 2014-07-18 2016-03-30 河北工业大学 一种由环己酮和离子液体型羟胺盐一步合成己内酰胺的方法
CN104961682B (zh) * 2015-07-08 2018-03-09 南京工业大学 一种利用微反应装置由路易斯酸催化制备己内酰胺的方法
KR102500501B1 (ko) * 2017-12-28 2023-02-16 한화솔루션 주식회사 라우로락탐의 제조 방법 및 이의 합성 장치
KR102551766B1 (ko) * 2017-12-28 2023-07-06 한화솔루션 주식회사 라우로락탐의 정제 방법 및 이의 정제 장치
CN108530319A (zh) * 2018-05-17 2018-09-14 辽宁凯莱英医药化学有限公司 肟类化合物及腈类化合物连续合成的方法
KR102499747B1 (ko) * 2018-12-19 2023-02-15 한화솔루션 주식회사 신규한 라우로락탐 제조 방법 및 합성 장치
CN113354566B (zh) * 2020-03-05 2022-11-08 万华化学集团股份有限公司 一种十二内酰胺的制备方法
KR102609701B1 (ko) * 2020-12-11 2023-12-06 한화솔루션 주식회사 라우로락탐의 제조방법, 이의 합성장치, 이에 의해 제조된 라우로락탐 조성물, 이를 이용한 폴리라우로락탐의 제조방법
CN113372207B (zh) * 2021-04-23 2022-05-06 无锡济煜山禾药业股份有限公司 一种麝香酮中间体2-环十五烯酮的合成方法
CN115260073A (zh) * 2022-08-31 2022-11-01 中国天辰工程有限公司 一种无硫酸铵副产重排工艺制备月桂精内酰胺的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310706A (ja) * 1992-04-17 1993-11-22 Sumitomo Chem Co Ltd カプロラクタムの精製方法
JPH0753510A (ja) * 1993-07-19 1995-02-28 Dsm Nv ε−カプロラクタムの精製法
JP2002012585A (ja) * 2000-06-28 2002-01-15 Sumitomo Chem Co Ltd ε―カプロラクタムの精製方法
JP2004099585A (ja) * 2002-01-16 2004-04-02 Ube Ind Ltd シクロドデカノンからラウロラクタムを製造する方法
JP2007506695A (ja) * 2003-09-25 2007-03-22 ビーエーエスエフ アクチェンゲゼルシャフト ケトンの製造方法
WO2008096873A1 (ja) * 2007-02-09 2008-08-14 National University Corporation Nagoya University ラウロラクタムの製造方法
WO2009069522A1 (ja) * 2007-11-29 2009-06-04 Ube Industries, Ltd. ラウロラクタムの製造方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE75083C (de) CH. HAGENMÜLLER in Erfurt, Karthäuserstr. 31 Dampf-Wachsschmelzapparat mit Prefsvorrichtung
DE1004616B (de) 1954-11-04 1957-03-21 Stamicarbon Verfahren zum Reinigen von Caprolactam
DE1050333B (de) 1956-02-23 1959-02-12 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Cyclododecatrienen-(1,5,9) neben anderen ringfoermigenKohlenwasserstoffen
DE1081884B (de) * 1959-02-13 1960-05-19 Basf Ag Verfahren zur Herstellung von Cyclododecanonoxim
DE1253716B (de) 1961-09-28 1967-11-09 Basf Ag Verfahren zur Reinigung von Lactamen
FR1371942A (fr) 1963-07-30 1964-09-11 Organico Perfectionnement au procédé de préparation des cycloalcanone-oximes et des lactames en milieu acide concentré
FR2110716A5 (ja) * 1970-10-28 1972-06-02 Aquitaine Total Organico
FR2283128A1 (fr) 1974-08-01 1976-03-26 Ato Chimie Procede de preparation des lactames a partir d'oximes correspondantes
JPS5212198A (en) 1975-07-16 1977-01-29 Nippon Chemiphar Co Ltd Preparation of dioxin derivatives of tetrahydroprotoberberine
JPH054964A (ja) 1990-11-21 1993-01-14 Ube Ind Ltd カプロラクタムとラウロラクタムの製造方法
JPH0825920B2 (ja) 1991-09-13 1996-03-13 宇部興産株式会社 シクロドデカトリエン−1,5,9製造触媒の失活方法
JP2617843B2 (ja) 1991-10-29 1997-06-04 宇部興産株式会社 シクロドデカトリエンの製法
JP2833677B2 (ja) 1991-12-26 1998-12-09 宇部興産株式会社 シクロドデカトリエン−1,5,9製造触媒の失活方法
TW215084B (en) 1992-04-17 1993-10-21 Sumitomo Chemical Co Process for producing a high purity caprolactam
DE19500041A1 (de) 1995-01-03 1996-07-04 Basf Ag Verfahren zur kontinuierlichen Reinigung von aus 6-Aminocapronitril hergestelltem Roh-Caprolactam
US6252058B1 (en) 1997-11-05 2001-06-26 Timothy C. Thompson Sequences for targeting metastatic cells
JP4178351B2 (ja) 1998-04-14 2008-11-12 宇部興産株式会社 1,2−エポキシ−5,9−シクロドデカジエンを製造する方法
DE69928903T2 (de) * 1998-12-28 2006-08-17 Sumitomo Chemical Co., Ltd. Verfahren zur Herstellung von E-Caprolaktam
JP2000229939A (ja) 1999-02-09 2000-08-22 Sumitomo Chem Co Ltd ε−カプロラクタムの製造方法
JP4147363B2 (ja) 1999-03-12 2008-09-10 宇部興産株式会社 1,2−エポキシ−5,9−シクロドデカジエンを製造する方法
JP4118011B2 (ja) 2000-02-15 2008-07-16 宇部興産株式会社 エポキシシクロドデカンの製造法
JP4052778B2 (ja) 2000-02-18 2008-02-27 宇部興産株式会社 シクロドデカノン化合物の製造方法
JP2003252821A (ja) * 2002-02-28 2003-09-10 Ube Ind Ltd シクロドデカノンを製造する方法
JP4218277B2 (ja) 2002-07-31 2009-02-04 三菱化学株式会社 アミド化合物の製造方法
KR101098606B1 (ko) 2003-07-25 2011-12-23 디에스엠 아이피 어셋츠 비.브이. 카프로락탐의 정제 방법
JP4029159B2 (ja) 2005-01-14 2008-01-09 国立大学法人名古屋大学 オキシム化合物のベックマン転位反応用触媒、及びそれを用いたアミド化合物の製造方法
JP4577025B2 (ja) * 2005-01-27 2010-11-10 住友化学株式会社 シクロアルカノンオキシムの製造方法
DE102006058190A1 (de) 2006-04-28 2007-10-31 Degussa Gmbh Verfahren zur Herstellung von Amiden aus Ketoximen
ATE510812T1 (de) * 2006-06-29 2011-06-15 Basf Se Verfahren zur reinigung von cyclischen ketonen
ES2346098T3 (es) * 2006-06-29 2010-10-08 Basf Se Procedimiento para la obtencion de cetonas ciclicas.
JP2008156277A (ja) 2006-12-22 2008-07-10 Daicel Chem Ind Ltd ラクタム化合物の製造方法
JP2008162935A (ja) 2006-12-28 2008-07-17 Daicel Chem Ind Ltd アミド又はラクタムの製造法
JP2009298706A (ja) 2008-06-11 2009-12-24 Daicel Chem Ind Ltd アミド又はラクタムの製造法
JP2010047499A (ja) * 2008-08-20 2010-03-04 Univ Of Tokyo ε−カプロラクタムの製造方法及びペンタシル型ゼオライトの製造方法
ES2698849T3 (es) * 2009-01-28 2019-02-06 Basf Se Procedimiento para la preparación de ciclododecanona pura
JP5447502B2 (ja) * 2009-03-04 2014-03-19 宇部興産株式会社 アミド化合物の製造方法
DE102009046910A1 (de) 2009-11-20 2011-05-26 Evonik Degussa Gmbh Verfahren zur Aufarbeitung eines Laurinlactam enthaltenen Stoffstroms für die Rückgewinnung aller enthaltene Wertstoffkomponenten durch Kombination von Kristallisation mit nachgeschalteter Destillation
EP2738162B1 (en) * 2010-03-15 2018-01-03 Ube Industries, Ltd. Method for producing amide compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310706A (ja) * 1992-04-17 1993-11-22 Sumitomo Chem Co Ltd カプロラクタムの精製方法
JPH0753510A (ja) * 1993-07-19 1995-02-28 Dsm Nv ε−カプロラクタムの精製法
JP2002012585A (ja) * 2000-06-28 2002-01-15 Sumitomo Chem Co Ltd ε―カプロラクタムの精製方法
JP2004099585A (ja) * 2002-01-16 2004-04-02 Ube Ind Ltd シクロドデカノンからラウロラクタムを製造する方法
JP2007506695A (ja) * 2003-09-25 2007-03-22 ビーエーエスエフ アクチェンゲゼルシャフト ケトンの製造方法
WO2008096873A1 (ja) * 2007-02-09 2008-08-14 National University Corporation Nagoya University ラウロラクタムの製造方法
WO2009069522A1 (ja) * 2007-11-29 2009-06-04 Ube Industries, Ltd. ラウロラクタムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2548862A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863385A (zh) * 2012-10-09 2013-01-09 清华大学 一种由环己酮直接合成己内酰胺的方法
JP2019104915A (ja) * 2017-12-13 2019-06-27 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH ラウロラクタムを含むモノマーからポリマーを製造する方法
JP2023504265A (ja) * 2019-12-06 2023-02-02 ハンワ ソリューションズ コーポレイション ラウロラクタムの製造方法、その合成装置、これにより製造されたラウロラクタム組成物、これを用いたポリラウロラクタムの製造方法

Also Published As

Publication number Publication date
EP2738162B1 (en) 2018-01-03
JPWO2011115132A1 (ja) 2013-06-27
JP5979255B2 (ja) 2016-08-24
EP2738161A1 (en) 2014-06-04
US20130005960A1 (en) 2013-01-03
CN105315213A (zh) 2016-02-10
ES2664098T3 (es) 2018-04-18
US20140114062A1 (en) 2014-04-24
CN105315213B (zh) 2018-04-20
US8816069B2 (en) 2014-08-26
JP2015120707A (ja) 2015-07-02
ES2676918T3 (es) 2018-07-26
CN103864657A (zh) 2014-06-18
EP2738162A2 (en) 2014-06-04
CN103804295B (zh) 2016-11-23
EP2548862B1 (en) 2016-06-08
JP5708637B2 (ja) 2015-04-30
US9242931B2 (en) 2016-01-26
JP5979256B2 (ja) 2016-08-24
EP2738162A3 (en) 2014-09-03
CN103804295A (zh) 2014-05-21
JP2015129130A (ja) 2015-07-16
CN102892752A (zh) 2013-01-23
EP2738161B1 (en) 2018-04-11
ES2590347T3 (es) 2016-11-21
US8962826B2 (en) 2015-02-24
US20140114061A1 (en) 2014-04-24
EP2548862A1 (en) 2013-01-23
CN102892752B (zh) 2015-03-25
EP2548862A4 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5979256B2 (ja) アミド化合物の製造方法
JP4285980B2 (ja) オキシムの製造方法
US8338589B2 (en) Process for producing laurolactam
JP6566546B2 (ja) アミド化合物の製造方法
US7045622B2 (en) Process for producing lactam
JP5574327B2 (ja) アミド化合物の製造方法
JP5640985B2 (ja) 新規化合物およびそれを用いたアミド化合物の製造方法
JP5593095B2 (ja) アミド化合物の製造方法
EP0826665A1 (en) Recovery of epsilon-caprolactam from aqueous mixtures
EP1274681A1 (en) Process for producing amide compound
JP2003104969A (ja) アミド化合物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024285.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505705

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13635092

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1201004676

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011756317

Country of ref document: EP