WO2011062006A1 - ポリアミドイミド樹脂微粒子の製造方法、ポリアミドイミド樹脂微粒子 - Google Patents

ポリアミドイミド樹脂微粒子の製造方法、ポリアミドイミド樹脂微粒子 Download PDF

Info

Publication number
WO2011062006A1
WO2011062006A1 PCT/JP2010/067514 JP2010067514W WO2011062006A1 WO 2011062006 A1 WO2011062006 A1 WO 2011062006A1 JP 2010067514 W JP2010067514 W JP 2010067514W WO 2011062006 A1 WO2011062006 A1 WO 2011062006A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
pai
polyamideimide resin
pai resin
solvent
Prior art date
Application number
PCT/JP2010/067514
Other languages
English (en)
French (fr)
Inventor
赤阪寛章
大野孝衛
高橋俊也
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US13/508,200 priority Critical patent/US9193836B2/en
Priority to EP10831403.0A priority patent/EP2502952B1/en
Priority to JP2010542456A priority patent/JP5477300B2/ja
Priority to CN201080052363XA priority patent/CN102597070A/zh
Publication of WO2011062006A1 publication Critical patent/WO2011062006A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a method for producing polyamideimide resin fine particles and polyamideimide resin fine particles.
  • Polyamideimide resin is excellent in heat resistance, chemical resistance, wear resistance, etc., and is used in industrial equipment parts, films, electrical / electronic parts, automobile parts, aerospace related members. Moreover, when apply
  • One of the methods is a means for pulverizing polyamideimide. By pulverizing, it is possible to directly spray the member or apply the aqueous dispersion to the member, and then remove the water to perform coating. Polyamideimide resin fine particles are mixed with other resins and composite materials and used for imparting thixotropy and improving impact resistance, or mixed with other resins and used for disc brake shims, etc. ing.
  • Polyimide amide resin fine particles are used in many applications and are expected to be used in various applications. To bring out the properties of polyamide-imide resin by mixing with water or resin, it is uniformly dispersed in water or resin. It is important to let For this purpose, it is desirable that the average primary particle size of the fine particles is 300 nm or less, particularly 200 nm or less, and the particle size is uniform.
  • a method for synthesizing polyamideimide resin fine particles for example, a first solution containing an acid chloride such as trimellitic anhydride chloride and a second solution containing a diamine compound such as 4,4′-diaminodiphenyl ether are used.
  • a method is known in which polyamideimide resin fine particles are obtained by stirring with ultrasonic waves in the presence of a solvent soluble in both the solution and the second solution (Patent Documents 1, 2, and 3).
  • Patent Documents 1, 2, and 3 Patent Documents 1, 2, and 3
  • this method requires a special device such as an ultrasonic generator, and there are various manufacturing problems in industrially producing polyamideimide fine particles.
  • the above-mentioned patent document only describes the production of polyamide fine particles using dicarboxylic acid chloride as the acid chloride as a specific production example, and a specific production example of polyamideimide resin fine particles is disclosed. Not.
  • Patent Document 4 a method for producing polyamideimide resin fine particles by a spray drying method is disclosed (Patent Document 4).
  • polyamideimide resin dissolved in N-methyl-2-pyrrolidinone is spray-dried by mobile minor type spray drying to obtain polyamideimide fine particles having an average particle size of 4.5 ⁇ m.
  • a method for producing polyamideimide resin fine particles having an average particle diameter of 3 ⁇ m from polymerization of 4,4′-diphenylmethane diisocyanate and trimellitic anhydride is disclosed (Patent Documents 5 and 6).
  • these methods cannot produce polyamideimide resin fine particles of 1 ⁇ m or less.
  • Patent Document 7 Also disclosed is a method of adding polyamideimide resin dissolved in 1,3-dimethyl-2-imidazolidinone to an aqueous surfactant solution having a phenyl group to precipitate polyamideimide resin fine particles.
  • polyamideimide resin fine particles of 1 ⁇ m or less can be obtained, but the particle size greatly varies depending on the surfactant concentration, the stirring rotation speed, and the time until the polyamideimide resin solution is dropped into the surfactant aqueous solution. The reproducibility is poor, and polyamideimide resin fine particles of 1 ⁇ m or less are not always obtained.
  • the solvent for dissolving the PAI resin is limited to 1,3-dimethyl-2-imidazolidinone, and high agitation at 1,000 to 4,000 rpm is necessary. There is a problem.
  • an object of the present invention is to provide a method for producing polyamideimide resin fine particles (hereinafter, polyamideimide may be abbreviated as PAI) which can be industrially implemented and can be easily operated.
  • PAI polyamideimide resin fine particles
  • the present inventors have surprisingly used an organic solvent solution having a PAI resin concentration of less than 5% by mass, and this is used as a PAI resin substantially free from a surfactant. It has been found that fine PAI resin fine particles can be stably obtained by adding to a solvent for precipitating the fine particles, and in the case of flash crystallization of an organic solvent solution, the solution is adjusted to a PAI resin concentration of 10 It has been found that fine PAI resin particles can be stably obtained when the content is less than mass%, and the present invention has been achieved.
  • this invention is a manufacturing method of the polyamideimide resin microparticles
  • Step (a1) selected from the following (a1) and (b1)
  • Step (b1) Polyamideimide in which a polyamideimide resin is dissolved in an organic solvent to obtain a polyamideimide resin solution A1 having a polyamideimide resin concentration of less than 5% by mass
  • precipitation step] A2) Polyamideimide resin solution A1 is added to a solvent for precipitating polyamideimide resin particles substantially free of surfactant to precipitate polyamideimide resin particles (b2) Polyamideimide resin solution B1 For precipitating fine particles of polyamideimide resin by flash crystallization
  • PAI resin fine particles having an average primary particle size of 300 nm or less, particularly 200 nm or less, which has been difficult to obtain industrially stably, can be easily and stably produced. Industrially useful materials can be provided.
  • FIG. 2 is a scanning electron micrograph of PAI fine particles produced in Example 1.
  • FIG. 2 is a scanning electron micrograph of PAI fine particles produced in Example 14.
  • FIG. 2 is a scanning electron micrograph of PAI particles produced in Comparative Example 1.
  • the polyamideimide resin used in the present invention is obtained by polymerizing an acid component such as trimellitic anhydride or trimellitic anhydride monochloride and an amine component.
  • an isocyanate method using trimellitic anhydride and diisocyanate as raw materials for example, Japanese Patent Publication No. 50-33120
  • trimellitic anhydride chloride and diamine are polymerized in N, N-dimethylacetamide.
  • Acid chloride method for example, Japanese Patent Publication No. 42-15637
  • a direct polymerization method for example, Japanese Patent Publication No. 49-4077
  • the PAI resin in the present invention can be produced by any method.
  • polyamideimide resin can be appropriately selected from commercially available ones, and specifically, polyamideimide resin TI-5013P manufactured by Toray Industries, Inc., Torlon manufactured by Solvay Co., Ltd., and the like can be used.
  • the PAI resin fine particles in the present invention can be produced through the steps including the following dissolution step and precipitation step.
  • Step (a1) selected from the following (a1) and (b1)
  • Step (b1) Polyamideimide in which a polyamideimide resin is dissolved in an organic solvent to obtain a polyamideimide resin solution A1 having a polyamideimide resin concentration of less than 5% by mass
  • Precipitation step] A2
  • Polyamideimide resin solution A1 is added to a solvent for precipitating polyamideimide resin particles substantially free of surfactant to precipitate polyamideimide resin particles
  • Polyamideimide resin solution B1 In the above, when the dissolution step (a1) is selected, the precipitation step (a2) is performed, and the dissolution step (b1) is selected.
  • (B2) is performed. That is, when the concentration of the PAI resin is less than 5% by mass (a1), fine particles can be obtained by simply adding the PAI resin to the poor solvent (a2), but when the concentration is 5% by mass or more, coarse particles or agglomerates are obtained. . In contrast, in the flash crystallization method (b2), it is possible to produce fine particles with a PAI resin concentration of less than 10% by mass.
  • the dissolution step in the present invention is selected from the above (a1) and (a2).
  • the PAI resin in the dissolving step, is dissolved in an organic solvent.
  • the form of the PAI resin used in the present invention is not particularly limited, and examples thereof include powders, granules, pellets, films, and molded articles. From the viewpoint of shortening the operability and the time required for dissolution, powders, granules and pellets are desirable, and powdered PAI resin is particularly preferable.
  • powder, granules, and pellets of PAI that do not contain inorganic ions Resins are particularly preferred.
  • any organic solvent can be used in this step as long as the PAI resin is soluble.
  • N-alkylpyrrolidones such as N-methyl-2-pyrrolidinone (hereinafter abbreviated as NMP)
  • N-alkylcaprolactams such as N-methyl- ⁇ -caprolactam
  • 1,3-dimethyl-2 -Ureas such as imidazolidinone (hereinafter abbreviated as DMI)
  • chain amides such as N, N-dimethylacetamide (hereinafter abbreviated as DMAc), N, N-dimethylformamide (hereinafter abbreviated as DMF)
  • the solvent include at least one solvent selected from sulfur oxide polar solvents such as a solvent, dimethyl sulfoxide (hereinafter abbreviated as DMSO), dimethyl sulfone, and tetramethylene sulfone.
  • the solvent used is not limited to DMI but also has problems such as reproducibility.
  • PAI If the resin concentration is controlled to be equal to or lower than a predetermined concentration, not only DMI but also the above-mentioned various solvents can be used, and a solvent according to the purpose can be selected.
  • the atmosphere of the tank in the dissolution process may be any of an air atmosphere, an inert gas atmosphere, or a solvent vapor atmosphere, but in order to suppress the decomposition and deterioration of the PAI resin, and to proceed more safely It is preferable to reduce the oxygen gas concentration.
  • the inert gas include nitrogen gas, carbon dioxide gas, helium gas, argon gas, etc.
  • nitrogen gas, argon gas, carbon dioxide gas is preferable, Particularly preferably, nitrogen gas or argon gas is used.
  • (1) a method in which the reaction tank is depressurized or vacuumed to remove air and then the temperature of the reaction tank is increased, and (2) while sucking air in the reaction tank, (3) A method of stopping the suction when the solvent vapor is filled while sucking the air in the reaction tank while the temperature is raised and the solvent vapor is filled, (3) 4) A method of blowing the same kind of vapor as the solvent into the reaction vessel while sucking the air in the reaction vessel, or a combination of these methods, and thereby making the inside of the dissolution vessel a vaporized solvent vapor atmosphere. Can do.
  • the methods (2) to (4) it is desirable to know the amount of solvent in the dissolution tank.
  • the dissolution method is not particularly limited, but PAI resin and solvent are put in a predetermined container and dissolved while stirring. If not dissolved at room temperature, dissolve by heating.
  • a method in which the PAI resin is completely dissolved in a solvent and then added, or is precipitated by flash crystallization, but undissolved PAI resin may be present.
  • the dissolution temperature varies depending on the type of solvent used and the concentration of the PAI resin, but is usually room temperature to 250 ° C., preferably room temperature to 100 ° C.
  • the dissolution time varies depending on the type of solvent, the concentration of the PAI resin, and the dissolution temperature, but is usually 5 minutes to 5 hours, preferably 10 minutes to 4 hours.
  • the PAI resin can be dissolved by the above operation.
  • the PAI resin concentration is set to a PAI resin solution A1 having a concentration of less than 5% by mass (hereinafter sometimes referred to as a solution A1).
  • the viscosity of the PAI resin with respect to the organic solvent increases rapidly as the concentration of the PAI resin increases.
  • the solution viscosity is 11 mPa ⁇ s
  • 10% by mass solution is 54 mPa ⁇ s
  • 15% by mass is 225 mPa ⁇ s
  • 20% by mass is 837 mPa ⁇ s (described later). Measured by viscosity measurement method).
  • the PAI resin solution is added to a solvent for precipitating the fine particles of the PAI resin. Fine particles having a small diameter or a uniform particle diameter cannot be obtained.
  • the amount of PAI resin used is usually 5 parts by mass of PAI resin with respect to a total of 100 parts by mass of the organic solvent and PAI resin. Less than 5 parts by weight, preferably 0.1 parts by weight or more and less than 5 parts by weight, more preferably 0.5 to 4 parts by weight.
  • the PAI resin concentration is set to a PAI resin solution B1 having a concentration of less than 10% by mass (hereinafter, sometimes referred to as a solution B1).
  • the PAI resin fine particles are produced using flash crystallization as in the precipitation step (b2) described later, if the PAI resin concentration is less than 10% by mass, the PAI fine particles can be produced stably.
  • the amount of the PAI resin used in the solution B1 in the step (b1) is less than 10 parts by weight of the PAI resin and the organic solvent in total of 100 parts by weight, preferably 0.1 parts by weight or more to 10 to 10 parts by weight. The amount is less than mass parts, more preferably 0.5 parts by mass to 7 parts by mass.
  • a PAI resin is charged in the solvent and dissolved at room temperature or heated, and then the PAI resin solution is subjected to a precipitation step described later.
  • Step (a2) the PAI resin solution A1 dissolved in the dissolving step (a1) is added to a solvent for precipitating PAI resin fine particles not containing a surfactant to precipitate the PAI resin fine particles.
  • the PAI resin solution A1 dissolved under normal pressure conditions may be pressurized conditions
  • the above addition means simply putting the PAI resin solution A1 into a solvent for precipitating the PAI resin, and it may be continuously injected from the container containing the PAI resin solution into the container containing the solvent for precipitating the PAI resin. And may be dripped.
  • the solvent for precipitating the PAI resin fine particles is not particularly limited, but is preferably a solvent that is uniformly mixed with the organic solvent used in the dissolving step from the viewpoint of being uniformly dispersed in the solvent.
  • uniform mixing means that when two or more solvents are mixed, the interface does not appear even if the mixture is allowed to stand for one day, and is mixed uniformly.
  • NMP, DMF, DMAc, acetone, DMSO, tetrahydrofuran, methanol, ethanol and the like can be mentioned as a solvent in which they are uniformly mixed.
  • the fine PAI resin fine particles are obtained and that the particle diameters are easily uniform, so that the PAI resin is poorly mixed with the solvent used in the dissolution step and contains a poor solvent for the PAI resin.
  • the poor solvent is a solvent which does not dissolve PAI resin at the temperature when adding PAI resin solution, that is, addition Any solvent capable of precipitating the PAI resin dissolved in the dissolving solution can be used as a poor solvent. Therefore, even if it is an organic solvent which can be used for a solution, it can be used as a poor solvent if it is an organic solvent in which the solubility of the PAI resin is lowered by lowering the temperature.
  • NMP NMP
  • alcohols, acetones, water, etc. can be used, and the solvent to be precipitated can be selected according to the purpose.
  • water it is preferable to use water from the viewpoint of easily obtaining fine PAI resin particles having a uniform particle diameter.
  • the solvent for precipitating the PAI resin fine particles may be a single solvent or a mixture of two or more solvents as long as it is uniformly mixed with the organic solvent used in the dissolving step.
  • the amount of the solvent for precipitating the PAI resin fine particles is not particularly limited, but can be exemplified by a range of 0.3 to 100 parts by mass, preferably 0.4 to 50 parts by mass with respect to 1 part by mass of the solvent in the dissolution step. Part, more preferably 0.4 to 10 parts by weight.
  • the solvent for precipitating the PAI resin fine particles is substantially free of surfactant.
  • the surfactant is added, the solvent for precipitating the PAI resin fine particles tends to foam, and the stability of the system is impaired when the solution A is added, so that the reproducibility is deteriorated. Therefore, it is most preferable that the surfactant is not contained at all, but may be mixed as long as the effect of the present invention is not impaired. Specifically, it should be limited to about 3% by mass or less with respect to the mass of the PAI resin, and should be less than 1% by mass as much as possible.
  • the receiving tank When added to the solvent for precipitating the PAI resin fine particles, the receiving tank may or may not be cooled.
  • PAI resin fine particles are precipitated from the PAI resin solution, and a liquid in which the PAI resin fine particles are dispersed or suspended is obtained.
  • the receiving tank When the receiving tank is cooled, it is cooled with a refrigerant or ice water.
  • the cooling temperature of the receiving tank varies depending on the solvent for precipitating the PAI resin fine particles to be placed in the receiving tank, but the temperature at which the solvent for precipitating the PAI resin fine particles does not solidify is 15 to 15 ° C. Specifically, in the case of water, 0 to 40 ° C. is preferable, and 0 to 30 ° C. is more preferable.
  • Step (b2) In the step (b2), the PAI resin solution B1 dissolved in the dissolution step (b1) is flash crystallized to precipitate a solvent.
  • Flash crystallization means heating / pressurization, or the above-mentioned solution under pressure, below the boiling point of the organic solvent used in the dissolution step (may be under cooling) / under pressure under pressure (may be under reduced pressure) ), Or jetted through a nozzle into another container (hereinafter also referred to as a receiving tank) below the pressure being applied (may be under reduced pressure) and transferred, thereby crystallizing fine particles
  • a receiving tank another container below the pressure being applied (may be under reduced pressure) and transferred, thereby crystallizing fine particles
  • the nozzle tip is separated from the solvent and flushed into the solvent via the gas phase even when the tip of the nozzle from which the solution B is ejected is placed in the solvent on the receiving tank side.
  • the former is preferable.
  • fine particles having an average primary particle size of 300 nm or less, particularly 200 nm or less can be obtained by controlling the concentration of the PAI resin to a predetermined concentration or less.
  • the PAI resin is extruded all at once at a high pressure, so that the solution in the dissolving tank diffuses into the solvent in the receiving tank in a shorter time, and spherical or nearly spherical fine particles are generated. Therefore, when obtaining spherical or nearly spherical fine particles, it is more preferable to use flash crystallization that flashes in a solvent.
  • the flash crystallization will be specifically described.
  • the flash crystallization is performed by flash crystallization of a solution of PAI resin from a container held under pressure under heating or pressurization into a receiving tank under atmospheric pressure (or under reduced pressure).
  • a pressure resistant container such as an autoclave
  • the inside of the container is pressurized by a self-made pressure by heating (may be further pressurized with an inert gas such as nitrogen).
  • an inert gas such as nitrogen
  • dissolves at normal temperature PAI resin microparticles
  • the solvent for depositing the PAI resin fine particles used for flash crystallization in the solvent is not particularly limited, and the same solvent as described in the step (a2) can be used.
  • the amount of the solvent for precipitating the PAI resin fine particles is not particularly limited, but can be exemplified by a range of 0.3 to 100 parts by mass, preferably 0.4 to 50 parts by mass with respect to 1 part by mass of the solvent in the dissolution step. Part, more preferably 0.4 to 10 parts by weight.
  • the solvent for precipitating the PAI resin fine particles during flash crystallization may or may not contain a surfactant, but it contains a surfactant because it is necessary to remove excess surfactant. Preferably not.
  • the flash crystallization method is not particularly limited, but is usually a method of flash crystallization in a single stage in a vessel under a pressurized pressure or a pressure of a solution at room temperature to 250 ° C., preferably from room temperature to 100 ° C.
  • a method of performing flash crystallization in multiple stages in a container having a lower pressure than the inside of the tank in which the solution is placed can be employed.
  • the melting step when heated and dissolved in a pressure-resistant vessel such as an autoclave, the inside of the vessel is pressurized by a self-made pressure by heating (even if further pressurized with an inert gas such as nitrogen) Good).
  • the solution in a pressurized state is flushed in an atmospheric pressure receiving tank containing a solvent for precipitating PAI resin fine particles, or is flushed in a receiving tank under reduced pressure.
  • the dissolved solution pressurized to an arbitrary pressure is flushed in an atmospheric pressure receiving tank containing a solvent for precipitating PAI resin fine particles. Or flush into a receiving tank under reduced pressure.
  • the pressure (gauge pressure) of the solution for flash crystallization is preferably 0.2 to 4 MPa. From this environment, it is preferable to perform flash crystallization, preferably flash crystallization in a receiving tank under atmospheric pressure, more preferably under atmospheric pressure.
  • the receiving tank may or may not be cooled.
  • PAI resin fine particles are precipitated from the solution of the PAI resin by flash crystallization, and a liquid in which the PAI resin fine particles are dispersed or suspended is obtained.
  • the receiving tank is cooled, it is cooled with a refrigerant or ice water.
  • the cooling temperature of the receiving tank varies depending on the solvent in which the PAI resin fine particles to be deposited in the receiving tank are precipitated, but the temperature at which the solvent for precipitating the PAI resin fine particles does not solidify to 15 ° C. Specifically, in the case of water, the temperature immediately before the flash crystallization 0 to 40 ° C is preferable, and 0 to 30 ° C is more preferable.
  • the flash crystallization method there is a method in which the outlet of the connecting pipe from the dissolution tank is placed in the atmosphere of the receiving tank or in a solvent for precipitating PAI resin fine particles, and flash crystallization is performed.
  • PAI resin fine particles are preferable because they are obtained.
  • the PAI resin fine particles obtained by the step (b2) can be obtained in the state of a dispersion or suspension (hereinafter, the dispersion or suspension in this state may be referred to as a flash solution). At this time, when coarse particles such as an undissolved portion of the charged PAI resin are included, it can be removed by filtration or the like.
  • the PAI resin fine particles thus obtained are fine particles having an average primary particle size of 300 nm or less, and in a more preferred embodiment, 200 nm or less.
  • the lower limit is about 90 nm.
  • fine particles having a uniform particle size can be obtained, and polyamideimide resin fine particles having a coefficient of variation of usually 70% or less, and in a preferred embodiment 60% or less are obtained.
  • salting out is used.
  • the method is preferable in that the aggregate can be obtained in a short time and that a large aggregate can be obtained.
  • a coagulation method by salting out an aggregate having a large particle size suitable for an industrial solid-liquid separation method can be obtained.
  • the average particle size of the aggregates at this time is preferably 5 to 100 ⁇ m (particle size by the measurement method described later).
  • an inorganic salt such as sodium chloride is added in an amount of 0.01 to 1000 parts by mass, preferably about 0.05 to 500 parts by mass with respect to 1 part by mass of PAI resin fine particles. Aggregates having a large diameter can be obtained.
  • a method such as adding an inorganic salt directly into the dispersion or suspension, or adding a 0.1 to 20% by mass solution of the inorganic salt can be used.
  • Inorganic salts include sodium chloride, magnesium chloride, calcium chloride, lithium chloride, potassium chloride, sodium acetate, magnesium acetate, calcium acetate, sodium oxalate, magnesium oxalate, calcium oxalate, sodium citrate, magnesium citrate, citric acid
  • examples thereof include inorganic salts such as calcium acid.
  • a solvent for dissolving the inorganic salt water is preferable.
  • the inorganic salt can be added in advance or dissolved in a solvent for precipitating the PAI resin fine particles in the receiving tank when flash crystallization is performed.
  • the solvent for precipitating the PAI resin fine particles at this time is preferably water.
  • the amount of the inorganic salt to be added is preferably 0.05 parts by mass or more with respect to 1 part by mass of the PAI resin fine particles and less than or equal to the saturated dissolution amount in the solvent in which the PAI resin fine particles are precipitated.
  • the PAI resin fine particles obtained by addition or flash crystallization as in the present invention can be easily solid-liquid separated by agglomeration by such a method. Further, PAI resin fine particles that are extremely easily redispersed can be obtained even if they are aggregated by such a method.
  • Examples of the solid-liquid separation method include methods such as filtration and centrifugation.
  • a membrane filter filtration or centrifugation
  • a filter cloth filtration, centrifugation
  • the opening of the filter is appropriately determined according to the particle size of the PAI resin fine particles to be obtained.
  • a membrane filter it is usually about 0.1 to 50 ⁇ m.
  • the air permeability is 5 cm 3 / cm. Those of 2 ⁇ sec at 124.5 Pa or less can be used.
  • the PAI fine particles thus obtained can be used as they are, or dispersed in a desired solvent to form a dispersion, or re-dispersed in another medium to form a composite, which can be used for various applications.
  • the average particle size of the PAI resin fine particles is Nikkiso Laser Diffraction / Scattering Particle Size Distribution Measuring Device MT3300EXII. It measured using 0.5 mass% aqueous solution. Specifically, the cumulative curve is obtained by setting the total volume of fine particles obtained by analyzing the scattered light of the laser by the microtrack method to 100%, and the particle diameter (median diameter: d50) at which the cumulative curve becomes 50% is obtained. The average particle size of the fine particles was used.
  • the average primary particle size in the present invention is an arbitrary 100 particles selected from an image (magnification: 30,000 times) obtained with a scanning electron microscope JEOL JMS-6700F manufactured by JEOL. The particle size was measured and the average value was defined as the average primary particle size.
  • the coefficient of variation (CV) of the average primary particle size in the present invention is a value of the particle size distribution obtained by measuring arbitrary 100 particle sizes from an image obtained with a scanning electron microscope JEOL JMS-6700F manufactured by JEOL. Was obtained by the following formulas (1) to (3).
  • Example 1 [Dissolution process] (b1) A 1,000 ml autoclave in the dissolution tank was equipped with a stirrer, a temperature measurement device, and an internal dissolution liquid extraction tube. A connecting pipe that can be opened and closed is attached to the extraction pipe. As a receiving tank for flash crystallization, a 1,000 ml autoclave is placed in a position where the stirrer, condenser, gas vent pipe, and the other end of the connecting pipe from the dissolution tank (flash crystal precipitation port) enter the receiving tank liquid. Installed.
  • PAI resin (TI-5013P, manufactured by Toray Industries, Inc., this powder was used in the following examples) 12 g, NMP (manufactured by Kanto Chemical Co.) 388 g (PAI resin concentration: 3% by mass) was charged into the dissolution tank, and nitrogen was added. The inner temperature was raised to 240 ° C. while stirring, and the mixture was further stirred for 1 hour. The internal pressure (gauge pressure) at this time was 0.15 MPa. Further, the pressure was increased to 0.5 MPa with nitrogen gas.
  • Precipitation step (b2) The receiving tank containing 400 g of water was ice-cooled, and a small amount of nitrogen gas was aerated while stirring. The valve of the internal connection pipe of the dissolution tank was opened, the dissolved solution was transferred to a receiving tank under atmospheric pressure, stirring was stopped after confirming that the liquid temperature was 40 ° C. or lower, and the receiving tank was opened. .
  • the average particle size of the flash solution of the PAI resin fine particles in the receiving tank was 8.7 ⁇ m.
  • the flash solution was added to 400 g of 4% saline, stirred at 1400 rpm for 30 minutes, and then allowed to stand for 5 hours.
  • the salted out suspension was filtered and washed to obtain a PAI resin fine particle wet cake.
  • the average primary particle size was 109 nm and the coefficient of variation was 32%.
  • SEM scanning electron microscope
  • the average primary particle size of the PAI fine particles was 102 nm and the coefficient of variation was 28%, confirming that the PAI fine particles were reproducible.
  • Example 2 (dissolution step: b1, precipitation step: b2) The same operation as in Example 1 was performed except that the dissolution tank temperature of Example 1 was 50 ° C. and the pressure was increased to 0.5 MPa with nitrogen gas.
  • the average particle size of the flash solution was 12.4 ⁇ m.
  • the average primary particle size of the PAI fine particles was 110 nm and the coefficient of variation was 40%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • SEM scanning electron microscope
  • the average primary particle size of the PAI fine particles was 112 nm and the coefficient of variation was 38%, confirming that the PAI fine particles were reproducible.
  • Example 3 (dissolution step: b1, precipitation step: b2) The same operation as in Example 1 was performed except that the dissolution tank temperature of Example 1 was normal temperature (21 ° C.) and the pressure was increased to 0.5 MPa with nitrogen gas.
  • the average particle size of the flash solution was 18.6 ⁇ m.
  • the average primary particle size of the PAI fine particles was 110 nm and the coefficient of variation was 40%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • the average primary particle diameter of the PAI fine particles was 110 nm, and the coefficient of variation was 39%, confirming reproducibility.
  • Example 4 (dissolution step: b1, precipitation step: b2)
  • Example 1 was the same as Example 1 except that the dissolution tank temperature was normal temperature (21 ° C.), pressurized to 0.5 MPa with nitrogen gas, and the ratio of dissolution tank NMP mass to the amount of water received in the tank was 1 / 0.6. Carried out.
  • the average particle size of the flash solution was 20.2 ⁇ m.
  • the average primary particle size of the PAI fine particles was 157 nm and the variation coefficient was 44%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • SEM scanning electron microscope
  • the average primary particle size of the PAI fine particles was 160 nm and the coefficient of variation was 41%, confirming reproducibility.
  • Example 5 (dissolution step: b1, precipitation step: b2)
  • Example 1 was the same as Example 1 except that the dissolution tank temperature was normal temperature (21 ° C.), pressurized to 0.5 MPa with nitrogen gas, and the ratio of dissolution tank NMP mass to the amount of receiving water was set to 1/4. Carried out.
  • the average particle size of the flash solution was 22.4 ⁇ m.
  • the average primary particle size of the PAI fine particles was 155 nm and the variation coefficient was 51%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • SEM scanning electron microscope
  • Example 6 (dissolution step: b1, precipitation step: b2) Except that the dissolution tank temperature of Example 1 was normal temperature (21 ° C.), pressurized with nitrogen gas to 0.5 MPa, the amount of PPS charged to the dissolution tank was 14 g, and NMP 386 g (PAI resin concentration: 3.5 mass%). This was carried out in the same manner as in Example 1.
  • the average particle size of the flash solution was 19.6 ⁇ m.
  • the average primary particle size of the PAI fine particles was 167 nm and the coefficient of variation was 46%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • the average primary particle size of the PAI fine particles was 160 nm, and the coefficient of variation was 47%, confirming reproducibility.
  • Example 7 (dissolution step: b1, precipitation step: b2) Except that the dissolution tank temperature of Example 1 was normal temperature (21 ° C.), pressurized to 0.5 MPa with nitrogen gas, the amount of PPS charged to the dissolution tank was 16 g, and NMP 384 g (PAI resin concentration: 4 mass%). Performed as in Example 1.
  • the average particle size of the flash solution was 19.2 ⁇ m.
  • the average primary particle size of the PAI fine particles was 175 nm and the coefficient of variation was 62%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • SEM scanning electron microscope
  • the average primary particle size of the PAI fine particles was 170 nm, and the coefficient of variation was 60%, confirming reproducibility.
  • Example 8 (dissolution step: b1, precipitation step: b2) Except that the dissolution tank temperature of Example 1 was normal temperature (21 ° C.), pressurized to 0.5 MPa with nitrogen gas, the amount of PPS charged to the dissolution tank was 20 g, and NMP 380 g (PAI resin concentration: 5 mass%). Performed as in Example 1.
  • the average particle size of the flash solution was 24.5 ⁇ m.
  • the average primary particle size of the PAI fine particles was 249 nm and the coefficient of variation was 52%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • SEM scanning electron microscope
  • the average primary particle size of the PAI fine particles was 252 nm and the coefficient of variation was 55%.
  • Example 9 (dissolution step: b1, precipitation step: b2) The same operation as in Example 1 was performed except that the dissolution tank temperature of Example 1 was normal temperature (21 ° C.) and the pressure was increased to 1 MPa with nitrogen gas.
  • the average particle size of the flash solution was 17.2 ⁇ m.
  • the average primary particle size of the PAI resin fine particles was 143 nm and the coefficient of variation was 58%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • the average primary particle size of the PAI fine particles was 140 nm and the coefficient of variation was 55%, confirming that the PAI fine particles were reproducible.
  • Example 10 (dissolution step: b1, precipitation step: b2) The same operation as in Example 1 was performed except that the dissolution tank temperature in Example 1 was normal temperature (21 ° C.) and the pressure was increased to 0.25 MPa with nitrogen gas.
  • the average particle size of the flash solution was 20.2 ⁇ m.
  • the average primary particle size of the PAI resin fine particles was 161 nm and the coefficient of variation was 43%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • SEM scanning electron microscope
  • the average primary particle diameter of the PAI fine particles was 160 nm and the coefficient of variation was 45%, confirming that the PAI fine particles were reproducible.
  • Example 11 (dissolution step: b1, precipitation step: b2) The same procedure as in Example 1 was performed except that the dissolution tank temperature of Example 1 was normal temperature (21 ° C.), pressurized to 0.5 MPa with nitrogen gas, and the solvent of the dissolution tank was DMF.
  • the average particle size of the flash solution was 16.3 ⁇ m.
  • the average primary particle size of the PAI resin fine particles was 91 nm and the coefficient of variation was 46%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • the average primary particle size of the PAI fine particles was 95 nm and the coefficient of variation was 43%, confirming reproducibility.
  • Example 12 (dissolution step: b1, precipitation step: b2) The same operation as in Example 1 was performed except that the dissolution tank temperature of Example 1 was normal temperature (21 ° C.), pressurized to 0.5 MPa with nitrogen gas, and the solvent of the dissolution tank was DMAc.
  • the average particle size of the flash solution was 21.6 ⁇ m.
  • the average primary particle size of the PAI resin fine particles was 130 nm and the coefficient of variation was 39%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • the average primary particle size of the PAI fine particles was 125 nm and the coefficient of variation was 38%, confirming reproducibility.
  • Example 13 (dissolution step: b1, precipitation step: b2) The same procedure as in Example 1 was performed except that the dissolution tank temperature of Example 1 was normal temperature (21 ° C.), pressurized to 0.5 MPa with nitrogen gas, and the solvent of the dissolution tank was DMSO.
  • the average particle size of the flash solution was 23.1 ⁇ m.
  • the average primary particle size of the PAI resin fine particles was 163 nm and the coefficient of variation was 48%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were almost spherical.
  • the average primary particle size of the PAI fine particles was 158 nm and the coefficient of variation was 50%, confirming reproducibility.
  • Example 14 (dissolution step: a1, precipitation step: a2) Dissolve 1.5 g of PAI resin in 48.5 g of NMP (PAI resin concentration: 3% by mass), drop the solution at room temperature (21 ° C.) into 50 g of stirring water with a pipette and suspend the fine PAI resin particles. A liquid was obtained. The average particle size of the suspension was 17.6 ⁇ m. The suspension was added to 50 g of 4% saline, stirred at 1400 rpm for 30 minutes, and then allowed to stand for 3 hours. The salted out suspension was filtered and washed to obtain a PAI resin fine particle wet cake. The average primary particle diameter of the PAI resin fine particles was 140 nm and the coefficient of variation was 36%. When observed with a scanning electron microscope (SEM) at 30,000 times, the particles were observed to have a bowl-like shape in which the particles were partially fused (FIG. 2).
  • SEM scanning electron microscope
  • the average primary particle diameter of the PAI fine particles was 139 nm and the coefficient of variation was 39%, confirming that the PAI fine particles were reproducible.
  • Example 15 (dissolution step: a1, precipitation step: a2) The same operation as in Example 14 was performed except that 1.75 g of PAI resin and 48.25 g of NMP (PAI resin concentration: 3.5% by mass) were used.
  • the average particle size of the suspension was 21.7 ⁇ m.
  • the average primary particle diameter of the PAI resin fine particles was 159 nm and the coefficient of variation was 58%.
  • SEM scanning electron microscope
  • the average primary particle size of the PAI fine particles was 163 nm and the coefficient of variation was 57%, confirming that the PAI fine particles were reproducible.
  • Example 16 (dissolution step: a1, precipitation step: a2) The same operation as in Example 14 was carried out except that 2 g of PAI resin and 48 g of NMP (PAI resin concentration: 4% by mass) were used.
  • the average particle size of the suspension was 20.4 ⁇ m.
  • the average primary particle diameter of the PAI resin fine particles was 183 nm and the coefficient of variation was 48%.
  • SEM scanning electron microscope
  • the same operation as described above was performed to confirm reproducibility.
  • the average primary particle size of the PAI fine particles was 177 nm, and the coefficient of variation was 48%, confirming reproducibility.
  • Comparative Example 1 (dissolution step: a1, precipitation step: a2) The same operation as in Example 14 was carried out except that 2.5 g of PAI resin and 47.5 g of NMP (PAI resin concentration: 5 mass%) were used. Non-spherical coarse particles were formed (FIG. 3).
  • Example 1 was the same as Example 1 except that the dissolution tank temperature was room temperature (21 ° C.), pressurized to 0.5 MPa with nitrogen gas, and the ratio of the dissolution tank NMP mass to the amount of water received was 1 / 0.2. Carried out. It became non-spherical coarse particles.
  • Comparative Example 3 (dissolution step: b1, precipitation step: b2) Except that the dissolution tank temperature of Example 1 was normal temperature (21 ° C.), pressurized to 0.5 MPa with nitrogen gas, the amount of PAI charged to the dissolution tank was 40 g, and NMP 360 g (PAI resin concentration: 10% by mass). Performed as in Example 1. It became a big lump.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 本発明は、工業的に実施でき、かつ簡便な操作で、再現性良くポリアミドイミド(PAI)樹脂微粒子を製造する方法を提供する。また、きわめて微細で、且つ粒度のそろったPAI樹脂微粒子を提供する。下記の溶解工程と析出工程を含むことを特徴とするPAI樹脂微粒子の製造方法である。 [溶解工程]下記(a1)および(b1)から選択される工程 (a1)PAI樹脂を有機溶媒に溶解させ、PAI樹脂濃度が5質量%未満のPAI樹脂溶解液A1とする工程 (b1)PAI樹脂を有機溶媒に溶解させ、PAI樹脂濃度が10質量%未満のPAI樹脂溶解液B1とする工程 [析出工程] (a2)PAI樹脂溶解液A1を界面活性剤を実質的に含まないPAI樹脂の微粒子を析出させる溶媒へ添加してPAI樹脂の微粒子を析出させる工程 (b2)PAI樹脂溶解液B1をフラッシュ晶析してPAI樹脂の微粒子を析出させる工程

Description

ポリアミドイミド樹脂微粒子の製造方法、ポリアミドイミド樹脂微粒子
 本発明はポリアミドイミド樹脂微粒子の製造方法、ポリアミドイミド樹脂微粒子に関する。 
 ポリアミドイミド樹脂は、耐熱性、耐薬品性、耐摩耗性等に優れており、産業機器部品、フィルム、電気・電子部品、自動車部品、航空宇宙関連部材に使用されている。また、ポリアミドイミドを塗布する場合、通常、有機溶剤に溶解し、ワニスとして使用されている。しかし、近年、揮発性有機化合物(VOC)削減の課題が生じ、極力VOCを使用しないことが望まれている。その方法の1つとして、ポリアミドイミドを微粉化する手段がある。微粉化することにより、直接、部材へ噴霧したり、その水分散液を部材に塗布した後、水を除去してコーティングすることが可能となる。また、ポリアミドイミド樹脂微粒子は、他の樹脂や複合材料に混合してチキソトロピー性の付与や耐衝撃性向上のために使用されたり、他の樹脂と混合することによりディスクブレーキ用シム等に用いられている。
 このようにポリイミドアミド樹脂微粒子は多くの用途で使用され、且つ様々な用途展開が期待されるが、水や樹脂と混合してポリアミドイミド樹脂の性質を引き出すには、水や樹脂に均一に分散させることが重要である。そのためには、微粒子の平均1次粒径が300nm以下、特に200nm以下で粒径の揃っていることが望ましい。
 ポリアミドイミド樹脂微粒子の合成方法として、例えば、トリメリット酸無水物クロライド等の酸クロリドを含む第1溶液と、例えば、4,4’-ジアミノジフェニルエーテル等のジアミン化合物を含む第2溶液を、第1溶液と第2溶液のいずれにも可溶な溶媒の存在下、超音波での攪拌によりポリアミドイミド樹脂微粒子を得る方法が知られている(特許文献1、2、3)。しかし、この方法では、超音波発生装置という特殊な装置が必要であり、工業的にポリアミドイミド微粒子を製造するには製造上、種々の課題がある。また、上記特許文献では、具体的な製造例としては、酸クロリドとしてジカルボン酸クロリドを使用したポリアミド微粒子の製造が記載されているのみであり、ポリアミドイミド樹脂微粒子の具体的な製造例は開示されていない。
 一方、噴霧乾燥法によるポリアミドイミド樹脂微粒子の製造方法が開示されている(特許文献4)。この方法では、N-メチル-2-ピロリジノンに溶解したポリアミドイミド樹脂をモービルマイナー型スプレードライで噴霧乾燥して、平均粒径4.5μmのポリアミドイミド微粒子を得ている。また、例えば、4,4’-ジフェニルメタンジイソシナネートとトリメリット酸無水物の重合から平均粒径3μmのポリアミドイミド樹脂微粒子を製造する方法が開示されている(特許文献5,6)。しかし、これらの方法でも1μm以下のポリアミドイミド樹脂微粒子を製造することができない。
 また、フェニル基を有する界面活性剤水溶液へ1,3-ジメチル-2-イミダゾリジノンに溶解させたポリアミドイミド樹脂を加えてポリアミドイミド樹脂微粒子を析出させる方法が開示されている(特許文献7)。この方法では、1μm以下のポリアミドイミド樹脂微粒子が得られるが、界面活性剤濃度、撹拌回転数、ポリアミドイミド樹脂溶解液を界面活性剤水溶液へ滴下するまでの時間によって粒径の変動が大きいため、再現性に乏しく、常に1μm以下のポリアミドイミド樹脂微粒子が得られるとは限らない。また、この方法ではPAI樹脂を溶解させる溶媒が1,3-ジメチル-2-イミダゾリジノンに限定されること、1,000~4,000rpmの高撹拌が必要であることから工業化には、種々の課題がある。
 このような状況から簡易で、且つ大量に粒径の揃った平均1次粒径300nm以下、特に200nm以下のポリアミドイミド樹脂微粒子を再現性良く製造する方法の開発が切望されている。
特許4304434号公報 特開2005-97370号公報 特開2006-257345号公報 特開平4-285660号公報 特開平11-246759号公報 特開2000-17073号公報 特開2009-067880号公報
 従って、本発明は、工業的に実施でき、かつ簡便な操作でポリアミドイミド樹脂微粒子(以下、ポリアミドイミドをPAIと略すことがある。)を製造する方法を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、驚くべきことにPAI樹脂濃度5質量%未満の有機溶媒溶解液を用い、これを、界面活性剤を実質的に含まないPAI樹脂の微粒子を析出させる溶媒へ添加することにより、微細なPAI樹脂微粒子が安定して得られることを見出し、さらには有機溶媒溶解液をフラッシュ晶析する場合には、溶解液をPAI樹脂濃度を10質量%未満とすれば微細なPAI樹脂微粒子が安定的に得られることを見出し、本発明に至った。
 即ち、本発明は、下記の溶解工程と析出工程を含むことを特徴とするポリアミドイミド樹脂微粒子の製造方法である。
[溶解工程]
 下記(a1)および(b1)から選択される工程
(a1)ポリアミドイミド樹脂を有機溶媒に溶解させ、ポリアミドイミド樹脂濃度が5質量%未満のポリアミドイミド樹脂溶解液A1とする工程
(b1)ポリアミドイミド樹脂を有機溶媒に溶解させ、ポリアミドイミド樹脂濃度が10質量%未満のポリアミドイミド樹脂溶解液B1とする工程
[析出工程]
(a2)ポリアミドイミド樹脂溶解液A1を界面活性剤を実質的に含まないポリアミドイミド樹脂の微粒子を析出させる溶媒へ添加してポリアミドイミド樹脂の微粒子を析出させる工程
(b2)ポリアミドイミド樹脂溶解液B1をフラッシュ晶析してポリアミドイミド樹脂の微粒子を析出させる工程
 本発明により、PAI樹脂を溶解させる溶媒として1,3-ジメチル-2-イミダゾリジノン以外の溶媒も用いることができる点で、工業的に製造する際の自由度も広がった。
 また、本発明を用いれば、工業的に安定して入手することが困難であった平均1次粒径300nm以下、特に200nm以下のPAI樹脂微粒子を簡便かつ安定的に製造することができ、広く産業上有用な材料が提供できる。
実施例1で製造したPAI微粒子の走査型電子顕微鏡写真である。 実施例14で製造したPAI微粒子の走査型電子顕微鏡写真である。 比較例1で製造したPAI粒子の走査型電子顕微鏡写真である。
 以下、本発明の実施の形態について詳細に説明する。
 [原料のPAI樹脂]
 本発明で用いるポリアミドイミド樹脂は、無水トリメリット酸、トリメリット酸無水物モノクロリド等の酸成分とアミン成分を重合させて得られるものである。
 PAI樹脂の製造法として、無水トリメリット酸とジイソシアネートを原料とするイソシアナート法(例えば、特公昭50-33120号公報)、無水トリメリット酸クロライドとジアミンをN,N―ジメチルアセトアミド中で重合させる酸クロライド法(例えば、特公昭42-15637号公報)、3価または5価の無機、ないし有機リン化合物の存在下、芳香族トリカルボン酸、その無水物またはそのエステルとジアミンを溶液中で反応させる直接重合法(例えば、特公昭49-4077号公報)が知られているが、本発明におけるPAI樹脂は、いずれの方法によっても製造することができる。
 上記ポリアミドイミド樹脂としては、市販のものから適宜選択して用いることも可能であり、具体的には東レ株式会社製ポリアミドイミド樹脂TI-5013P、ソルベイ社製トーロン等を用いることができる。
 [PAI樹脂微粒子の製造]
 本発明におけるPAI樹脂微粒子は、上記PAI樹脂を下記の溶解工程と析出工程を含む工程を経て製造することができる。
[溶解工程]
 下記(a1)および(b1)から選択される工程
(a1)ポリアミドイミド樹脂を有機溶媒に溶解させ、ポリアミドイミド樹脂濃度が5質量%未満のポリアミドイミド樹脂溶解液A1とする工程
(b1)ポリアミドイミド樹脂を有機溶媒に溶解させ、ポリアミドイミド樹脂濃度が10質量%未満のポリアミドイミド樹脂溶解液B1とする工程
[析出工程]
(a2)ポリアミドイミド樹脂溶解液A1を界面活性剤を実質的に含まないポリアミドイミド樹脂の微粒子を析出させる溶媒へ添加してポリアミドイミド樹脂の微粒子を析出させる工程
(b2)ポリアミドイミド樹脂溶解液B1をフラッシュ晶析してポリアミドイミド樹脂の微粒子を析出させる工程
 すなわち、上記において、(a1)の溶解工程を選択した場合、(a2)の析出工程を行い、(b1)の溶解工程を選択した場合、(b2)の析出工程を行うものである。すなわち、PAI樹脂の濃度が5質量%未満の場合(a1)、PAI樹脂を単に貧溶媒へ添加する(a2)ことにより微粒子が得られるが、5質量%以上では粗大粒子、もしくは塊状物となる。これに対してフラッシュ晶析法(b2)では、PAI樹脂の濃度が10質量%未満で微粒子を作製することが可能である。
 [溶解工程]
 本発明における溶解工程は、上記(a1)および(a2)から選択されるものである。
 まず、ポリアミドイミド樹脂を有機溶媒に溶解させる方法について、以下説明する。
 本発明において、溶解工程では、PAI樹脂を有機溶媒中に溶解させる。本発明で使用するPAI樹脂の形態は特に問わないが、具体的に例示するならば粉体、顆粒、ペレット、フィルム、成形品等があげられる。操作性及び溶解に要する時間を短縮させる観点から、粉末、顆粒、ペレットが望ましく、特に粉末のPAI樹脂が好ましい。ここで、目的とするPAI樹脂微粒子を水溶性塗料等に使用する場合等、共存する無機イオンによる装置の腐食等を防止するために、無機イオンを含有していない粉末、顆粒、ペレット状のPAI樹脂が特に好ましい。
 本工程で使用する有機溶媒は、PAI樹脂が溶解する溶媒であれば何れも使用できる。具体的には、N-メチル-2-ピロリジノン(以下、NMPと略する)等のN-アルキルピロリドン類、N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム類、1,3-ジメチル-2-イミダゾリジノン(以下、DMIと略す)等のウレア類、N、N-ジメチルアセトアミド(以下、DMAcと略す)、N,N-ジメチルホルムアミド(以下、DMFと略する)等の鎖状アミド系溶媒、ジメチルスルホキシド(以下、DMSOと略する)、ジメチルスルホン、テトラメチレンスルホン等のイオウ酸化物系極性溶媒の中から少なくとも一種選ばれる溶媒が挙げられる。
 特開2009-067880号公報に記載されているPAI樹脂微粒子の製造法では、使用溶媒がDMIに限定されるのみならず再現性等の問題もあるが、本発明の製造法によれば、PAI樹脂の濃度を所定濃度以下に制御すればDMIに限らず上記の種々の溶媒が使用でき、目的に応じた溶媒を選択できる。
 溶解工程の槽の雰囲気は、空気雰囲気下、不活性ガス雰囲気下、あるいは溶媒蒸気の雰囲気下のいずれでも良いが、PAI樹脂の分解、劣化を抑制するため、更には安全に作業を進めるために酸素ガス濃度を低くする方が好ましい。ここで、不活性ガスとしては、窒素ガス、二酸化炭素ガス、ヘリウムガス、アルゴンガスなどが挙げられるが、経済性、入手容易性を勘案して、窒素ガス、アルゴンガス、二酸化炭素ガスが好ましく、特に好ましくは窒素ガスあるいはアルゴンガスが用いられる。また、溶媒蒸気の雰囲気下とする方法としては、(1)反応槽を減圧または真空にして空気を除去した後に反応槽を昇温する方法、(2)反応槽内の空気を吸引しつつ、昇温し、溶媒蒸気が充満した状態になったところで吸引を止める方法、(3)反応槽内の空気を吸引しつつ、溶媒蒸気が充満した状態になったところで吸引を止めるなどの方法、(4)反応槽内の空気を吸引しつつ、溶媒と同種の蒸気を反応槽中に吹き込む方法、あるいはこれらを組合せた方法が挙げられ、それにより溶解槽内を気化した溶媒蒸気の雰囲気にすることができる。なお、(2)~(4)の方法を採用する場合は溶解槽内の溶媒の量を把握しておくことが望ましい。
 溶解方法は特に限定しないが、所定の容器にPAI樹脂、溶媒を入れ、撹拌しながら溶解する。常温で溶解しない場合、加熱することにより溶解させる。粒径の揃ったPAI樹脂微粒子を製造するにはPAI樹脂を溶媒に完全溶解させてから添加、もしくはフラッシュ晶析して析出させる方法が好ましいが、未溶解のPAI樹脂が存在してもよい。
 溶解温度は使用する溶媒の種類やPAI樹脂の濃度によって異なるが、通常は常温~250℃、好ましくは常温~100℃である。
 溶解時間は溶媒の種類、PAI樹脂の仕込濃度、溶解温度によって異なるが、通常、5分から5時間であり、好ましくは、10分~4時間の範囲である。
 上記操作により、PAI樹脂を溶解させることができる。
 本発明における(a1)の工程においては、PAI樹脂濃度を5質量%未満のPAI樹脂溶解液A1とする(以下溶解液A1と称する場合がある)。
 すなわち、上記有機溶媒に対するPAI樹脂の粘度は、PAI樹脂の濃度が増加につれて急激に増加する。例えば、NMPの場合、PAI樹脂濃度が5質量%では、溶液粘度が11mPa・s、10質量%溶液では54mPa・s、15質量%では225mPa・s、20質量%では837mPa・sとなる(後述の粘度測定法により測定)。
 溶液の粘度が高いと後述する析出工程(a2)において、PAI樹脂溶解液を、PAI樹脂の微粒子を析出させる溶媒へ添加して、微粒子が析出する際に微粒子同士の融着等が生じ、粒径の小さな微粒子や粒径の揃った微粒子が得られない。
 そのため、PAI樹脂溶解液を界面活性剤の含まないPAI樹脂を析出させる溶媒へ添加する場合のPAI樹脂の使用量は、通常は有機溶媒とPAI樹脂の合計100質量部に対してPAI樹脂5質量部未満とし、好ましくは0.1質量部以上5質量部未満、より好ましくは 0.5~4質量部である。
 一方、(b1)の工程においては、PAI樹脂濃度を10質量%未満のPAI樹脂溶解液B1とする(以下溶解液B1と称する場合がある)。
 すなわち、後述する析出工程(b2)のようにフラッシュ晶析を利用してPAI樹脂微粒子を製造する場合には、PAI樹脂濃度が10質量%未満であれば、安定してPAI微粒子を製造することが可能である。すなわち、(b1)の工程における溶解液B1のPAI樹脂の使用量は、PAI樹脂と有機溶媒の合計100質量部に対しPAI樹脂10質量部未満であり、好ましくは0.1質量部以上~10質量部未満であり、より好ましくは 0.5質量部以上~7質量部以下である。
 上記範囲であれば、工業生産に適用可能である。本発明においては前記溶媒にPAI樹脂を仕込み、常温溶解、もしくは加熱溶解させた後、PAI樹脂溶解液を後述する析出工程に供する。
 [析出工程]
 [工程(a2)]
 工程(a2)では、上記溶解工程(a1)によって溶解させたPAI樹脂溶解液A1を、界面活性剤を含まないPAI樹脂微粒子を析出させる溶媒中に添加してPAI樹脂微粒子を析出させる。工程(a2)では、常圧条件下(加圧条件下でも良い)で溶解させたPAI樹脂溶解液A1を、常圧条件下でPAI樹脂を析出させる溶媒中へ添加する。
 上記添加とは、単にPAI樹脂溶液A1をPAI樹脂を析出させる溶媒へ入れることを言い、PAI樹脂溶液を入れた容器からPAI樹脂を析出させる溶媒を入れた容器に連続的に注入しても良いし、滴下しても良い。
 PAI樹脂微粒子を析出させる溶媒としては、特に制限はないが、溶媒中に均一に分散させる観点からは溶解工程で使用する有機溶媒と均一に混合する溶媒であることが好ましい。ここで均一に混合するとは、2つ以上の溶媒を混合した場合、1日静置しても界面が現れず、均一に混じり合うことをいう。例えば、水に対しては、NMP、DMF、DMAc、アセトン、DMSO、テトラヒドロフラン、メタノール、エタノール等が均一に混じり合う溶媒として挙げることができる。
 さらには、微細なPAI樹脂微粒子が得られる点、粒径が揃いやすい点から、溶解工程で用いた溶媒と均一に混合し、かつPAI樹脂の貧溶媒を含むことが好ましい。なお、PAI樹脂に対する溶解性は、同じ溶媒であっても温度により変化するため、ここでいう貧溶媒は、PAI樹脂溶解液を添加する際の温度において、PAI樹脂を溶解しにくい溶媒、すなわち添加する溶解液中に溶解しているPAI樹脂を析出させ得る溶媒であれば貧溶媒として用いることができる。そのため、溶解液に用い得る有機溶媒であっても、より低温とすることによりPAI樹脂の溶解性が低下する有機溶媒であれば貧溶媒として使用することが可能である。
 例えば、NMPを溶解工程の溶媒に選択した場合には、NMP、アルコール類、アセトン類、水等が使用でき、目的に応じて析出させる溶媒を選択することができる。特に微細かつ粒径の揃ったPAI樹脂微粒子が得られやすい点から水を用いることが好ましい。
 また、PAI樹脂微粒子を析出させる溶媒は溶解工程で使用する有機溶媒と均一に混合するならば、単一の溶媒を用いてもよいし、2種類以上の溶媒を混合して用いてもよいが、特に微細かつ粒径の揃った微粒子が得られやすい点から水を含む混合溶媒を用いるのが好ましい。
 PAI樹脂微粒子を析出させる溶媒の使用量は特に限定しないが、溶解工程の溶媒1質量部に対して0.3~100質量部の範囲を例示することができ、好ましくは0.4~50質量部、更に好ましくは0.4~10質量部である。
 工程(a2)においてPAI樹脂微粒子を析出させる溶媒は、界面活性剤を実質的に含まないものである。界面活性剤を添加するとPAI樹脂微粒子を析出させる溶媒が泡立ち易くなり、溶解液Aを添加する際に系の安定性が損なわれるためか、再現性を悪化させる。そのため、界面活性剤は全く含まないことが最も好ましいが、本発明の効果を損なわない程度であれば、混入していても構わない。具体的には、PAI樹脂の質量に対し、3質量%以下程度にとどめるべきであり、可能な限り1質量%未満にとどめるべきである。
 PAI樹脂微粒子を析出させる溶媒中に添加する場合は、受槽を冷却しても、冷却しなくても良い。この添加によりPAI樹脂の溶解液からPAI樹脂微粒子が析出し、PAI樹脂微粒子が分散もしくは懸濁した液が得られる。受槽を冷却する場合、冷媒、あるいは氷水で冷却する。受槽の冷却温度は、受槽に入れるPAI樹脂微粒子を析出させる溶媒により異なるが、PAI樹脂微粒子を析出させる溶媒が凝固しない温度~15℃、具体的には水の場合、添加直前の温度として0~40℃が好ましく、0~30℃がより好ましい。また、PAI樹脂微粒子を析出させる溶媒は、攪拌することが好ましい。
 [工程(b2)]
 工程(b2)では、上記溶解工程(b1)によって溶解させたPAI樹脂溶解液B1を、フラッシュ晶析して溶媒を析出させる。
 フラッシュ晶析とは、加熱・加圧下、または加圧下にある上記溶解液を、溶解工程で用いた有機溶媒の沸点以下(冷却下でも良い)・加圧されている圧力以下(減圧下でも良い)、または加圧されている圧力以下(減圧下でも良い)の他の容器(以下受槽と称する場合もある)中にノズルを介して噴出させて移液し、それにより微細な微粒子を晶析させる方法を指す。
 フラッシュ晶析する際、溶媒中にフラッシュすることが好ましい。溶媒中にフラッシュ晶析する場合には、溶解液Bが噴出するノズルの先端を受槽側の溶媒中に入れた状態でも、ノズル先端を溶媒からから離し、気相を介して溶媒中にフラッシュしてもよいが、前者が好ましい。
 PAI樹脂溶解液Bのフラッシュ晶析によるPAI樹脂微粒子の製造では、PAI樹脂の濃度を所定濃度以下に制御すれば、平均1次粒径300nm以下、特に200nm以下の微粒子を得ることができる。
 しかも、フラッシュ晶析では、高圧でPAI樹脂を一挙に押し出すので溶解槽の溶液がより短時間で受槽中の溶媒に拡散し、球状または球状に近い微粒子が生成する。従って、球状または球状に近い微粒子を得る場合、溶媒中にフラッシュするフラッシュ晶析を用いることがより好ましい。
 フラッシュ晶析を具体的に説明すると、加熱・加圧下、または加圧下に保持した容器からPAI樹脂の溶解液を大気圧下(減圧下でもよい)の受槽にフラッシュ晶析することにより行うことが好ましい。例えば前記溶解工程において、オートクレーブ等の耐圧容器中で加熱・溶解させると容器内は加熱による自製圧により加圧状態となる(窒素等の不活性ガスでさらに加圧してもよい)。この状態から放圧して大気圧下の受槽に放出させることにより、よりいっそう簡便に行うことができる。また、常温で溶解させた場合、溶解槽を任意の圧力に加圧し、PAI樹脂溶液を析出させる溶媒中にフラッシュ晶析することによりPAI樹脂微粒子を得ることができる。
 溶媒中にフラッシュ晶析する場合に用いるPAI樹脂微粒子を析出させる溶媒としては、特に制限はなく、工程(a2)で説明したのと同様のものを用いることができる。
 PAI樹脂微粒子を析出させる溶媒の使用量は特に限定しないが、溶解工程の溶媒1質量部に対して0.3~100質量部の範囲を例示することができ、好ましくは0.4~50質量部、更に好ましくは0.4~10質量部である。
 なお、フラッシュ晶析する際、PAI樹脂の微粒子を析出させる溶媒は、界面活性剤を含有してもしなくてもよいが、過剰の界面活性剤を取り除く作業が必要となるので界面活性剤を含有しないことが好ましい。
 フラッシュ晶析方法は特に限定しないが、通常は常温~250℃、好ましくは常温~100℃の溶解液を加圧されている圧力以下、あるいは減圧下の容器に1段でフラッシュ晶析する方法、または溶解液を入れた槽内よりも圧力の低い容器に多段でフラッシュ晶析する方法等が採用できる。具体的には、例えば前記溶解工程において、オートクレーブ等の耐圧容器中で加熱・溶解させると、容器内は加熱による自製圧により加圧状態となる(窒素等の不活性ガスでさらに加圧してもよい)。この加圧状態とした溶解液を、PAI樹脂微粒子を析出させる溶媒を入れた大気圧の受槽にフラッシュさせるか、減圧下の受槽にフラッシュさせる。また、オートクレーブ等の耐圧容器中で加熱しないで溶解させた場合、任意の圧力に加圧して加圧状態とした溶解液を、PAI樹脂微粒子を析出させる溶媒を入れた大気圧の受槽にフラッシュさせるか、減圧下の受槽にフラッシュさせる。フラッシュ晶析する溶解液の圧力(ゲージ圧)は0.2~4MPaであることが好ましい。この環境からこれをフラッシュ晶析、好ましくは大気圧下に、より好ましくは大気圧下の受槽にフラッシュ晶析することが好ましい。
 PAI樹脂微粒子溶解液Bをフラッシュ晶析する場合は、受槽を冷却しても冷却しなくても良い。フラッシュ晶析によりPAI樹脂の溶解液からPAI樹脂微粒子が析出し、PAI樹脂微粒子の分散もしくは懸濁した液が得られる。受槽を冷却する場合、冷媒、あるいは氷水で冷却する。受槽の冷却温度は、受槽に入れるPAI樹脂微粒子を析出させる溶媒により異なるが、PAI樹脂微粒子を析出させる溶媒が凝固しない温度~15℃、具体的には水の場合、フラッシュ晶析直前の温度として0~40℃が好ましく、0~30℃がより好ましい。
 フラッシュ晶析方法では、溶解槽からの連結管出口を受槽の大気中、またはPAI樹脂微粒子を析出させる溶媒中に入れ、フラッシュ晶析する方法が挙げられるが、溶媒中に入れる方がより微細なPAI樹脂微粒子が得られるので好ましい。
 上記工程(b2)により得られるPAI樹脂微粒子は、分散液もしくは懸濁液の状態で得ることができる(以下、この状態の分散液もしくは懸濁液をフラッシュ液と称することがある)。なお、この際、仕込んだPAI樹脂の未溶解分等の粗粒を含む場合には、ろ過等により除くことも可能である。
 かくして得られるPAI樹脂微粒子は、平均一次粒径が300nm以下、より好ましい態様においては200nm以下の微粒子である。下限としては90nm程度である。また、粒度の揃った微粒子が得られ、通常変動係数が70%以下、好ましい態様においては60%以下であるポリアミドイミド樹脂微粒子が得られる。
 上記本発明の方法を採用することにより、このように微細で、粒度の揃った微粒子を安定的に製造することができる。
 [ろ過・単離工程]
 PAI樹脂微粒子を単離する方法としては、ろ過、遠心分離、遠心ろ過等の従来公知の固液分離方法で行うことができるが、平均1次粒径300nm以下のような微細なPAI樹脂微粒子を固液分離操作で効率よく単離するためには、凝集によって粒径を増大させた後、ろ過や遠心分離等の固液分離操作を行うことが望ましい。凝集によって粒径を増大させる方法としては、経時的に凝集させる自然凝集法、塩析等の凝集剤を用いた凝集法などを用いることができるが、これらの凝集法のうち、塩析を用いる方法が短時間で凝集体を得ることができること、および大きな凝集体が得られる点から好ましい。塩析による凝集法を用いることにより、工業的な固液分離方法に適した粒径の大きな凝集体を得ることができる。このときの凝集体の平均粒径としては5~100μm(後述の測定方法による粒径)であることが好ましい。
 具体的な塩析の方法では、例えば、塩化ナトリウム等の無機塩をPAI樹脂微粒子1質量部に対して0.01~1000質量部、好ましくは0.05~500質量部程度を加えることにより粒径の大きな凝集体を得ることができる。具体的には、上記分散液もしくは懸濁液中に直接無機塩を添加する、あるいは、上記無機塩の0.1~20質量%の溶液を添加する等の方法が挙げられる。無機塩としては、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、塩化リチウム、塩化カリウム、酢酸ナトリウム、酢酸マグネシウム、酢酸カルシウム、シュウ酸ナトリウム、シュウ酸マグネシウム、シュウ酸カルシウム、クエン酸ナトリウム、クエン酸マグネシウム、クエン酸カルシウム等の無機塩が挙げられる。無機塩を溶解させる溶媒としては、水が好ましい。また、上記無機塩をあらかじめ添加、もしくはフラッシュ晶析する際の受槽中のPAI樹脂微粒子を析出させる溶媒中に溶解しておくこともできる。このときのPAI樹脂微粒子を析出させる溶媒としては、水が好ましい。添加する無機塩の量はPAI樹脂微粒子1質量部に対して0.05質量部以上でかつ、PAI樹脂微粒子を析出させる溶媒への飽和溶解量以下が望ましい。本発明のように添加、もしくはフラッシュ晶析して得られたPAI樹脂微粒子は、このような方法で凝集させることにより固液分離が容易となる。また、このような方法で凝集させても極めて再分散の容易なPAI樹脂微粒子が得られるのである。
 上記固液分離の方法としては、ろ過、遠心分離等の方法が挙げられる。ろ過や遠心分離の際にはメンブレンフィルター(ろ過)やろ布(ろ過、遠心分離)などを使用できる。フィルターの目開きとしては、得ようとするPAI樹脂微粒子の粒度に応じて適宜決定されるが、メンブレンフィルターの場合、通常0.1~50μm程度、ろ布の場合、通気度が5cm/cm・sec at 124.5Pa以下のものが使用できる。
 かくして得られるPAI微粒子はそのままで、もしくは所望の溶媒に分散させて分散液とし、あるいはその他の媒体に再分散させて複合体とし、種々の用途に用いることが可能である。
 [平均粒径の測定]
 PAI樹脂微粒子の平均粒径は日機装製レーザー回折・散乱方式粒度分布測定装置MT3300EXIIを用い、分散媒としてポリオキシエチレンクミルフェニルエーテル(商品名ノナール912A 東邦化学工業製 以後、ノナール912Aと称す)の0.5質量%水溶液を用いて測定した。具体的にはマイクロトラック法によるレーザーの散乱光を解析して得られる微粒子の総体積を100%として累積カーブを求め、その累積カーブが50%となる点の粒径(メジアン径:d50)を微粒子の平均粒径とした。
 [平均一次粒径の測定]
 本発明での平均一次粒径は日本電子製走査型電子顕微鏡JEOL JMS-6700Fで得られた画像(倍率:30,000倍)から任意の100個の粒子を選び、その最大長さを粒径として粒径を測長し、その平均値を平均一次粒径とした。 
[平均一次粒径の変動係数の算出]
本発明における平均一次粒径の変動係数(CV)は、日本電子製走査型電子顕微鏡JEOL JMS-6700Fで得られた画像から任意の100個の粒径を測長して求めた粒度分布の値を用いて下記の式(1)~式(3)により求めた。
Figure JPOXMLDOC01-appb-M000001
 [粘度の測定]
 東機産業製TVB-10M型粘度計、ローターとしてL/Adpを用い、例えば、粘度が10m~20Pa・sの場合は、ローターの回転数を30rpm、粘度が50~100Pa・sの場合は、ローターの回転数を6rpmとした。それ以外の粘度範囲になるでも場合、測定粘度に合わせたローター回転数を選択し、粘度を測定した。
 実施例1
 〔溶解工程〕(b1) 
 溶解槽の1,000mlのオートクレーブに撹拌機、温度測定器、およびインターナルの溶解液抜き出し管を装着した。抜き出し管にはバルブ開閉ができる連結管を装着した。また、フラッシュ晶析の受槽として、1,000mlのオートクレーブに撹拌機、コンデンサー、ガス通気管、および前記溶解槽からの連結管の他端(フラッシュ晶析出口)を受槽液の中に入る位置に装着した。
 溶解槽にPAI樹脂(東レ株式会社製、TI―5013P、以下の実施例には本粉末を用いた)12g、NMP(関東化学社製)388g(PAI樹脂濃度:3質量%)を仕込み、窒素置換して密封し、撹拌しながら内温を240℃まで上昇させた後、さらに1時間撹拌した。このときの内圧(ゲージ圧)は0.15MPaであった。さらに窒素ガスで0.5MPaまで加圧した。
 〔析出工程〕(b2)
 水400gを入れた受槽を氷冷し、撹拌しながら窒素ガスを微量通気しておいた。前記溶解槽のインターナル連結管のバルブを開き、溶解液を大気圧下の受槽に移液し、液温が40℃以下になったのを確認してから撹拌を停止し、受槽を開封した。受槽中のPAI樹脂微粒子のフラッシュ液の平均粒径は8.7μmであった。
 次いで、フラッシュ液を4%食塩水400gへ加え、1400rpmで30分間撹拌した後、5時間静置した。塩析した懸濁液をろ過、洗浄してPAI樹脂微粒子ウエットケークを得た。平均一次粒径は109nm、変動係数32%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった(図1)。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、102nm、変動係数28%となり、再現性のあることを確認した。 
 実施例2(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を50℃とし、窒素ガスで0.5MPaまで加圧した以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、12.4μmであった。また、PAI微粒子の平均1次粒径は、110nm、変動係数40%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、112nm、変動係数38%となり、再現性のあることを確認した。
 実施例3(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)とし、窒素ガスで0.5MPaまで加圧した以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、18.6μmであった。また、PAI微粒子の平均1次粒径は、110nm、変動係数40%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、110nm、変動係数39%となり、再現性のあることを確認した。
 実施例4(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)、窒素ガスで0.5MPaまで加圧、溶解槽NMP質量と受槽水量の比を1/0.6とした以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、20.2μmであった。また、PAI微粒子の平均1次粒径は、157nm、変動係数44%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、160nm、変動係数41%となり、再現性のあることを確認した。 
 実施例5(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)、窒素ガスで0.5MPaまで加圧、溶解槽NMP質量と受槽水量の比を1/0.4とした以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、22.4μmであった。また、PAI微粒子の平均1次粒径は、155nm、変動係数51%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、153nm、変動係数48%となり、再現性のあることを確認した。 
 実施例6(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)、窒素ガスで0.5MPaまで加圧、溶解槽へのPPS仕込み量を14g、NMP386g(PAI樹脂濃度:3.5質量%)とした以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、19.6μmであった。また、PAI微粒子の平均1次粒径は、167nm、変動係数46%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、160nm、変動係数47%となり、再現性のあることを確認した。
 実施例7(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)、窒素ガスで0.5MPaまで加圧、溶解槽へのPPS仕込み量を16g、NMP384g(PAI樹脂濃度:4質量%)とした以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、19.2μmであった。また、PAI微粒子の平均1次粒径は、175nm、変動係数62%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、170nm、変動係数60%となり、再現性のあることを確認した。
 実施例8(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)、窒素ガスで0.5MPaまで加圧、溶解槽へのPPS仕込み量を20g、NMP380g(PAI樹脂濃度:5質量%)とした以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、24.5μmであった。また、PAI微粒子の平均1次粒径は、249nm、変動係数52%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、252nm、変動係数55%となり、再現性のあることを確認した。
 実施例9(溶解工程:b1、析出工程:b2)
実施例1の溶解槽温度を常温(21℃)、窒素ガスで1MPaまで加圧をとした以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、17.2μmであった。また、PAI樹脂微粒子の平均1次粒径は、143nm、変動係数58%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、140nm、変動係数55%となり、再現性のあることを確認した。
 実施例10(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)、窒素ガスで0.25MPaまで加圧をとした以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、20.2μmであった。また、PAI樹脂微粒子の平均1次粒径は、161nm、変動係数43%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、160nm、変動係数45%となり、再現性のあることを確認した。
 実施例11(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)、窒素ガスで0.5MPaまで加圧、溶解槽の溶媒をDMFとした以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、16.3μmであった。また、PAI樹脂微粒子の平均1次粒径は、91nm、変動係数46%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、95nm、変動係数43%となり、再現性のあることを確認した。
 実施例12(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)、窒素ガスで0.5MPaまで加圧、溶解槽の溶媒をDMAcとした以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、21.6μmであった。また、PAI樹脂微粒子の平均1次粒径は、130nm、変動係数39%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、125nm、変動係数38%となり、再現性のあることを確認した。
 実施例13(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)、窒素ガスで0.5MPaまで加圧、溶解槽の溶媒をDMSOとした以外は、実施例1と同様に実施した。フラッシュ液の平均粒径は、23.1μmであった。また、PAI樹脂微粒子の平均1次粒径は、163nm、変動係数48%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子はほぼ球状であった。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、158nm、変動係数50%となり、再現性のあることを確認した。
 実施例14(溶解工程:a1、析出工程:a2)
 PAI樹脂1.5gをNMP48.5g(PAI樹脂濃度:3質量%)に溶かし、その溶解液を常温(21℃)にて、撹拌している水50gへピペットで滴下してPAI樹脂微粒子懸濁液を得た。懸濁液の平均粒径は、17.6μmであった。その懸濁液を4%食塩水50gへ加え、1400rpmで30分間撹拌した後、3時間静置した。塩析した懸濁液をろ過、洗浄してPAI樹脂微粒子ウエットケークを得た。PAI樹脂微粒子の平均1次粒径は、140nm、変動係数36%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子は一部に粒子が融着したような繭型形状のものが観察された(図2)。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、139nm、変動係数39%となり、再現性のあることを確認した。
 実施例15(溶解工程:a1、析出工程:a2)
 PAI樹脂1.75g、NMP48.25g(PAI樹脂濃度:3.5質量%)とした以外は、実施例14と同様に実施した。懸濁液のの平均粒径は、21.7μmであった。PAI樹脂微粒子の平均1次粒径は、159nm、変動係数58%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子の一部に粒子が融着したような繭型形状のものが観察された。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、163nm、変動係数57%となり、再現性のあることを確認した。
 実施例16(溶解工程:a1、析出工程:a2)
 PAI樹脂2g、NMP48g(PAI樹脂濃度:4質量%)とした以外は、実施例14と同様に実施した。懸濁液の平均粒径は、20.4μmであった。PAI樹脂微粒子の平均1次粒径は、183nm、変動係数48%であった。30,000倍の走査型電子顕微鏡(SEM)で観察したところ、粒子の一部に粒子が融着したような繭型形状のものが観察された。
 再現性を確認するために上記と同様の操作を実施した。その結果、PAI微粒子の平均1次粒径は、177nm、変動係数48%となり、再現性のあることを確認した。
 比較例1(溶解工程:a1、析出工程:a2)
 PAI樹脂2.5g、NMP47.5g(PAI樹脂濃度:5質量%)とした以外は、実施例14と同様に実施した。非真球状の粗大粒子となった(図3)。
 実験例2(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)、窒素ガスで0.5MPaまで加圧、溶解槽NMP質量と受槽水量の比を1/0.2とした以外は、実施例1と同様に実施した。非真球状の粗大粒子となった。
 比較例3(溶解工程:b1、析出工程:b2)
 実施例1の溶解槽温度を常温(21℃)、窒素ガスで0.5MPaまで加圧、溶解槽へのPAI仕込み量を40g、NMP360g(PAI樹脂濃度:10質量%)とした以外は、実施例1と同様に実施した。大きな塊状物となった。

Claims (7)

  1. 下記の溶解工程と析出工程を含むことを特徴とするポリアミドイミド樹脂微粒子の製造方法。
    [溶解工程]
     下記(a1)および(b1)から選択される工程
    (a1)ポリアミドイミド樹脂を有機溶媒に溶解させ、ポリアミドイミド樹脂濃度が5質量%未満のポリアミドイミド樹脂溶解液A1とする工程
    (b1)ポリアミドイミド樹脂を有機溶媒に溶解させ、ポリアミドイミド樹脂濃度が10質量%未満のポリアミドイミド樹脂溶解液B1とする工程
    [析出工程]
    (a2)ポリアミドイミド樹脂溶解液A1を、界面活性剤を実質的に含まないポリアミドイミド樹脂の微粒子を析出させる溶媒へ添加してポリアミドイミド樹脂の微粒子を析出させる工程
    (b2)ポリアミドイミド樹脂溶解液B1をフラッシュ晶析してポリアミドイミド樹脂の微粒子を析出させる工程
  2. 前記析出工程(b2)のフラッシュ晶析において、0.2~4MPaの圧力(ゲージ圧)下にある溶解液をフラッシュ晶析する請求項1に記載のポリアミドイミド樹脂微粒子の製造方法。
  3. 前記溶解工程において、用いる有機溶媒が、N-メチル-2-ピロリジノン、ジメチホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンから選ばれる少なくとも一種である請求項1または2に記載のポリアミドイミド樹脂微粒子の製造方法。
  4. 前記析出工程(a2)、(b2)において、ポリアミドイミド樹脂微粒子を析出させる溶媒が水である請求項1から3のいずれかに記載のポリアミドイミド樹脂微粒子の製造方法。
  5. 請求項1から4のいずれかの製造方法によって得られるポリアミドイミド樹脂微粒子であって、平均一次粒径が300nm以下であるポリアミドイミド樹脂微粒子。
  6. 平均一次粒径が200nm以下である請求項5に記載のポリアミドイミド樹脂微粒子。
  7. 平均一次粒径が200nm以下、かつ、変動係数が70%以下であることを特徴とするポリアミドイミド樹脂微粒子。
PCT/JP2010/067514 2009-11-19 2010-10-06 ポリアミドイミド樹脂微粒子の製造方法、ポリアミドイミド樹脂微粒子 WO2011062006A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/508,200 US9193836B2 (en) 2009-11-19 2010-10-06 Process for production of polyamideimide resin microparticles, and polyamideimide resin microparticles
EP10831403.0A EP2502952B1 (en) 2009-11-19 2010-10-06 Process for production of polyamideimide resin microparticles
JP2010542456A JP5477300B2 (ja) 2009-11-19 2010-10-06 ポリアミドイミド樹脂微粒子の製造方法、ポリアミドイミド樹脂微粒子
CN201080052363XA CN102597070A (zh) 2009-11-19 2010-10-06 聚酰胺酰亚胺树脂微粒的制备方法、聚酰胺酰亚胺树脂微粒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-264007 2009-11-19
JP2009264007 2009-11-19

Publications (1)

Publication Number Publication Date
WO2011062006A1 true WO2011062006A1 (ja) 2011-05-26

Family

ID=44059490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067514 WO2011062006A1 (ja) 2009-11-19 2010-10-06 ポリアミドイミド樹脂微粒子の製造方法、ポリアミドイミド樹脂微粒子

Country Status (6)

Country Link
US (1) US9193836B2 (ja)
EP (1) EP2502952B1 (ja)
JP (1) JP5477300B2 (ja)
KR (1) KR101643990B1 (ja)
CN (1) CN102597070A (ja)
WO (1) WO2011062006A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159558A (ja) * 2013-01-25 2014-09-04 Toray Ind Inc ポリアミドイミド樹脂微粒子分散液、およびポリアミドイミド樹脂微粒子分散液の製造方法
JP2015515501A (ja) * 2012-08-02 2015-05-28 東レ・ダウコーニング株式会社 ポリミドイミド樹脂を含む塗料組成物
JP2015531813A (ja) * 2012-09-12 2015-11-05 ヴァルレック オイル アンド ガスフランス 発がん性、突然変異性、または生殖毒性物質を含まない、ポリアミド−イミドの安定な水性分散液を調製するプロセスと、塗膜への応用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA113996C2 (xx) * 2012-09-12 2017-04-10 Композиція для утворення твердого покриття і трубне нарізне з'єднання
CN105518905B (zh) * 2013-09-10 2017-12-22 东丽株式会社 二次电池用隔膜及二次电池
AU2014256431A1 (en) 2013-11-05 2015-05-21 Evonik Fibres Gmbh Process for preparing polymer powder
US10202496B2 (en) * 2013-12-03 2019-02-12 Toray Industries, Inc. Polyvinylidene fluoride resin particles and method for producing same
KR20150143157A (ko) * 2014-06-13 2015-12-23 주식회사 엘지화학 폴리머 입자의 제조방법
US10301506B2 (en) * 2016-06-06 2019-05-28 Cymer-Dayton, Llc Full scale process for preparing polymer powders
JP6512312B2 (ja) * 2016-11-25 2019-05-15 東レ株式会社 ポリブチレンテレフタレート樹脂粒子の製造方法およびポリブチレンテレフタレート樹脂粒子

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659845A (en) * 1979-10-19 1981-05-23 Mitsui Toatsu Chem Inc Novel polycondensate
JPS61234A (ja) * 1984-06-12 1986-01-06 Toray Ind Inc 樹脂粉末の製造方法
JPH04285660A (ja) 1991-03-14 1992-10-09 Hitachi Chem Co Ltd 耐熱樹脂ペーストおよびこれを用いたic
JPH0533120B2 (ja) 1984-12-06 1993-05-18 Hitachi Ltd
JPH11246759A (ja) 1998-03-04 1999-09-14 Hitachi Chem Co Ltd ポリアミドイミド樹脂ペースト及びそれを含む被膜形成材料
JP2000017073A (ja) 1998-06-30 2000-01-18 Hitachi Chem Co Ltd ポリアミドイミド樹脂の製造法、それを含む組成物及びペースト
JP2003252990A (ja) * 2002-03-04 2003-09-10 Japan Science & Technology Corp 粒径および粒度分布が制御されたポリイミド微粒子の製造方法
JP2005082696A (ja) * 2003-09-08 2005-03-31 Sekisui Chem Co Ltd 低イオン樹脂微粒子の製造方法及び低イオン樹脂微粒子
JP2005097370A (ja) 2003-09-22 2005-04-14 Osaka Prefecture 機能性ポリアミド微粒子及びその製造方法
JP2006257345A (ja) 2005-03-18 2006-09-28 Osaka Prefecture 機能性ポリアミド微粒子の製造方法
JP4094077B2 (ja) 1996-08-07 2008-06-04 株式会社日立製作所 リサイクル情報の処理方法および設計支援装置
JP4215637B2 (ja) 2001-07-17 2009-01-28 インターナショナル・ビジネス・マシーンズ・コーポレーション デューティ・サイクル効率のよいsramセル試験
JP2009067880A (ja) 2007-09-13 2009-04-02 Toray Ind Inc ポリアミドイミド微粒子の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661832A (en) 1970-05-20 1972-05-09 Standard Oil Co Polytrimellitamide-imides in phenolic solvents
JPS494077B1 (ja) 1970-12-28 1974-01-30
JPS5033120Y2 (ja) 1971-02-06 1975-09-26
DE2543384A1 (de) * 1975-09-29 1977-04-07 Basf Ag Verfahren zur herstellung von polyamidimid-pulvern
JPS61234Y2 (ja) 1980-12-23 1986-01-07
JP2961923B2 (ja) 1991-04-01 1999-10-12 日本電信電話株式会社 波長変換素子
JPH061234A (ja) * 1992-06-22 1994-01-11 Hitachi Ltd 鉄道車両の車体
JP3762204B2 (ja) 2000-09-07 2006-04-05 三菱電機株式会社 音声符号化・復号化機器の検査方法および検査装置
JP4304434B2 (ja) * 2002-03-27 2009-07-29 大阪府 ポリアミド微粒子及びその製造方法
DE10245545B4 (de) * 2002-09-30 2008-09-18 Gkss-Forschungszentrum Geesthacht Gmbh Verwendung einer Funktionalisierungslösung zur Herstellung von Polyimid-Mikropartikeln
US8404278B2 (en) * 2002-09-30 2013-03-26 Helmholtz-Zentrum Geesthacht Zentrum fur Material und Kusten forschung GmbH Polyimide microparticles
WO2005019933A1 (ja) * 2003-08-26 2005-03-03 Japan Science And Technology Agency 機能性を有するポリイミド微粒子の製造方法および光照射または熱処理による蛍光特性の変化を利用する書き換え可能なメモリー材料

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659845A (en) * 1979-10-19 1981-05-23 Mitsui Toatsu Chem Inc Novel polycondensate
JPS61234A (ja) * 1984-06-12 1986-01-06 Toray Ind Inc 樹脂粉末の製造方法
JPH0533120B2 (ja) 1984-12-06 1993-05-18 Hitachi Ltd
JPH04285660A (ja) 1991-03-14 1992-10-09 Hitachi Chem Co Ltd 耐熱樹脂ペーストおよびこれを用いたic
JP4094077B2 (ja) 1996-08-07 2008-06-04 株式会社日立製作所 リサイクル情報の処理方法および設計支援装置
JPH11246759A (ja) 1998-03-04 1999-09-14 Hitachi Chem Co Ltd ポリアミドイミド樹脂ペースト及びそれを含む被膜形成材料
JP2000017073A (ja) 1998-06-30 2000-01-18 Hitachi Chem Co Ltd ポリアミドイミド樹脂の製造法、それを含む組成物及びペースト
JP4215637B2 (ja) 2001-07-17 2009-01-28 インターナショナル・ビジネス・マシーンズ・コーポレーション デューティ・サイクル効率のよいsramセル試験
JP2003252990A (ja) * 2002-03-04 2003-09-10 Japan Science & Technology Corp 粒径および粒度分布が制御されたポリイミド微粒子の製造方法
JP2005082696A (ja) * 2003-09-08 2005-03-31 Sekisui Chem Co Ltd 低イオン樹脂微粒子の製造方法及び低イオン樹脂微粒子
JP2005097370A (ja) 2003-09-22 2005-04-14 Osaka Prefecture 機能性ポリアミド微粒子及びその製造方法
JP2006257345A (ja) 2005-03-18 2006-09-28 Osaka Prefecture 機能性ポリアミド微粒子の製造方法
JP2009067880A (ja) 2007-09-13 2009-04-02 Toray Ind Inc ポリアミドイミド微粒子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515501A (ja) * 2012-08-02 2015-05-28 東レ・ダウコーニング株式会社 ポリミドイミド樹脂を含む塗料組成物
JP2015531813A (ja) * 2012-09-12 2015-11-05 ヴァルレック オイル アンド ガスフランス 発がん性、突然変異性、または生殖毒性物質を含まない、ポリアミド−イミドの安定な水性分散液を調製するプロセスと、塗膜への応用
JP2014159558A (ja) * 2013-01-25 2014-09-04 Toray Ind Inc ポリアミドイミド樹脂微粒子分散液、およびポリアミドイミド樹脂微粒子分散液の製造方法

Also Published As

Publication number Publication date
CN102597070A (zh) 2012-07-18
US20120237771A1 (en) 2012-09-20
EP2502952A4 (en) 2014-07-02
JPWO2011062006A1 (ja) 2013-04-04
EP2502952B1 (en) 2018-06-13
US9193836B2 (en) 2015-11-24
KR20120117738A (ko) 2012-10-24
EP2502952A1 (en) 2012-09-26
KR101643990B1 (ko) 2016-07-29
JP5477300B2 (ja) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5477300B2 (ja) ポリアミドイミド樹脂微粒子の製造方法、ポリアミドイミド樹脂微粒子
US8563681B2 (en) Process for producing fine polyphenylene sulfide resin particles, fine polyphenylene sulfide resin particles, and dispersion thereof
TWI637011B (zh) 聚偏二氟乙烯樹脂粒子、及其製造方法
JP6090639B2 (ja) ポリアリーレンスルフィド分散体及び粉体粒子、並びにそれらの製造方法
JP5821213B2 (ja) ポリフェニレンサルファイド樹脂微粒子分散液の製造方法
JP5369645B2 (ja) ポリフェニレンサルファイド微粒子、その分散液、およびそれらの製造方法
JP5347647B2 (ja) ポリフェニレンサルファイド樹脂微粒子の製造方法、ポリフェニレンサルファイド樹脂微粒子、およびその分散液
JP5589373B2 (ja) ポリフェニレンサルファイド樹脂微粒子分散液、およびその製造方法
JP2014005409A (ja) ポリフェニレンサルファイド樹脂微粒子分散液の凝集方法
JP2017197665A (ja) ポリエーテルスルホン樹脂粒子の製造方法およびポリエーテルスルホン樹脂粒子
JP2014024957A (ja) ポリフェニレンサルファイド樹脂微粒子分散液の製造方法
JP5481797B2 (ja) ポリフェニレンサルファイド微粒子の製造方法
JP6187273B2 (ja) ポリアミドイミド樹脂微粒子分散液、およびポリアミドイミド樹脂微粒子分散液の製造方法
JP6512312B2 (ja) ポリブチレンテレフタレート樹脂粒子の製造方法およびポリブチレンテレフタレート樹脂粒子
JP2009242499A (ja) ポリフェニレンサルファイド微粒子分散液の製造方法
JP6274548B2 (ja) ポリアリーレンスルフィド分散体及び微粒子、並びにそれらの製造方法
JP2015137324A (ja) 加熱濃縮によるポリフェニレンサルファイド樹脂微粒子の回収方法
JP2010006995A (ja) ポリフェニレンサルファイド微粒子水分散液の製造方法
WO2015111546A1 (ja) ポリフェニレンスルフィド樹脂微粒子、その製造方法および分散液

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052363.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010542456

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127011988

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13508200

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010831403

Country of ref document: EP