WO2011049185A1 - ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池 - Google Patents

ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池 Download PDF

Info

Publication number
WO2011049185A1
WO2011049185A1 PCT/JP2010/068640 JP2010068640W WO2011049185A1 WO 2011049185 A1 WO2011049185 A1 WO 2011049185A1 JP 2010068640 W JP2010068640 W JP 2010068640W WO 2011049185 A1 WO2011049185 A1 WO 2011049185A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
nickel
particle powder
manganese compound
composite oxide
Prior art date
Application number
PCT/JP2010/068640
Other languages
English (en)
French (fr)
Inventor
小尾野雅史
藤田勝弘
藤野昌市
梶山亮尚
正木竜太
森田大輔
山村貴幸
小平哲也
山崎実
岡崎精二
平本敏章
伊藤亜季乃
小田亙
沖中健二
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to CN2010800465812A priority Critical patent/CN102574700A/zh
Priority to KR1020127009897A priority patent/KR101757490B1/ko
Priority to US13/503,155 priority patent/US8592085B2/en
Priority to EP10825034.1A priority patent/EP2492243B1/en
Priority to CA2778286A priority patent/CA2778286C/en
Publication of WO2011049185A1 publication Critical patent/WO2011049185A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a nickel / cobalt / manganese compound powder having a uniform particle size, a small amount of fine powder, a high crystallinity, and a large primary particle.
  • the nickel / cobalt / manganese compound powder according to the present invention is useful as a precursor of a positive electrode active material used in a non-aqueous electrolyte secondary battery.
  • lithium ion secondary batteries using LiCoO 2 are excellent in that they have a high charge / discharge voltage and charge / discharge capacity.
  • Co is expensive, various positive electrode active materials replacing LiCoO 2 have been studied. ing.
  • a lithium ion secondary battery using LiNiO 2 has attracted attention as a battery having a high charge / discharge capacity.
  • this material is inferior in thermal stability during charging and charge / discharge cycle durability, further improvement in characteristics is required.
  • LiNiO 2 by substituting part of Ni in LiNiO 2 with a different element, it is possible to impart the characteristics of the substituted element. For example, if you replace Co in LiNiO 2, even with a small amount of Co it can be expected to have a high charge-discharge voltage and charge-discharge capacity.
  • LiMn 2 O 4 is a stable system with respect to LiNiO 2 or LiCoO 2 , but the amount that can be substituted is limited because the crystal structure is different.
  • Co, in LiNiO 2 was replaced with Mn, to increase the crystal structure packing property to obtain a LiNiO 2 obtained by substituting a stable Co, Mn on the composition, physical properties and crystalline, nickel cobalt having a controlled particle size distribution -It is necessary to use a manganese-based precursor.
  • the particle size distribution of the positive electrode active material for a non-aqueous electrolyte secondary battery such as LiNiO 2 greatly contributes to the filling property of the positive electrode material, and therefore a positive electrode active material with a more uniform particle size distribution is required.
  • the nickel / cobalt / manganese compound particle powder that is a precursor of LiNiO 2 substituted with a different metal is also required to have a uniform particle size and a small amount of fine powder.
  • Patent Documents 1 to 4 it is known to control the tap density, particle shape, and particle size distribution of nickel / cobalt / manganese compound particles.
  • Patent Document 1 relates to spherical high density cobalt manganese coprecipitated nickel hydroxide having a tapping density of 1.5 g / cc or more.
  • Patent Document 2 discloses a nickel / manganese coprecipitated composite oxide in which transition metal elements are homogeneously dissolved at the atomic level.
  • Patent Document 3 discloses a nickel / cobalt / manganese composite oxyhydroxide synthesized by allowing an oxidizing agent to act on the aggregated particles of nickel / cobalt / manganese coprecipitated composite oxide.
  • Patent Document 4 discloses a nickel / cobalt / manganese composite hydroxide having a controlled particle size distribution.
  • the nickel / cobalt / manganese compound particle powder obtained by the above technique is insufficient to suppress the generation of fine powder, and the nickel / cobalt / manganese compound compound powder having a sharp particle size distribution is still not obtained. Not.
  • an object of the present invention is to obtain a nickel / cobalt / manganese compound powder having a uniform particle size, a small amount of fine powder, a high crystallinity, and a large primary particle.
  • the volume-based average particle size (D50) of the secondary particles is 3.0 to 25.0 ⁇ m, and the average particle size (D50) and the peak in the volume-based particle size distribution of the secondary particles
  • the full width at half maximum (W) is a nickel / cobalt / manganese based compound particle powder satisfying the following relational expression 1 (Invention 1).
  • the present invention provides a reactor equipped with a stirrer and a draft tube and connected with a concentrator, an alkali solution is introduced into the reactor in advance, and the alkali solution contains nickel, cobalt, and manganese.
  • a reaction in which a solution containing a metal salt and an alkali solution are continuously dropped from the upper part of the reaction surface, and a neutralization and precipitation reaction is performed to produce nickel / cobalt / manganese compound particles,
  • the step of introducing the slurry so as to be in the same direction as the swirling flow of the reaction slurry in the reactor is performed.
  • the present invention is the method for producing nickel / cobalt / manganese compound particle powder according to the present invention 3, wherein sodium hydroxide and ammonia are used as the alkaline solution (the present invention 4).
  • the present invention is a lithium composite oxide particle powder containing at least nickel, cobalt and manganese, and the volume-based average particle diameter (D50) of secondary particles of the lithium composite oxide particle powder is 3.
  • the present invention provides a lithium composite oxide particle powder in which the nickel / cobalt / manganese compound particle powder described in the present invention 1 or 2 is mixed with a lithium compound and heat-treated at a temperature range of 800 to 1100 ° C. This is a method (Invention 7).
  • the present invention is a nonaqueous electrolyte secondary battery using the lithium composite oxide particle powder according to the present invention 5 or 6 (invention 8).
  • the nickel / cobalt / manganese compound according to the present invention has a uniform particle size and a small amount of fine powder
  • the lithium composite oxide particle powder produced using the nickel / cobalt / manganese compound compound powder is derived from the positive electrode active material.
  • the thermal stability is good, and the improvement of battery swelling prevention can be expected.
  • the nickel-cobalt-manganese compound according to the present invention is highly crystalline and has relatively large primary particles, so in the lithium composite oxide particle powder produced using the nickel-cobalt-manganese compound particle powder, It is expected that relatively large particles of primary particles can be obtained without devising the firing conditions, the capacity is high, the rate characteristics are excellent, and the room temperature and high temperature cycle characteristics are improved.
  • the lithium composite oxide particle powder according to the present invention has a uniform particle size and a small amount of fine powder, the thermal stability derived from the positive electrode active material is good and an improvement in battery swelling prevention can be expected.
  • the lithium composite oxide particle powder according to the present invention can be expected to have high capacity and excellent rate characteristics, and improve room temperature and high temperature cycle characteristics.
  • FIG. 1 It is the schematic of the apparatus used for manufacture to the nickel * cobalt * manganese type compound particle powder concerning this invention.
  • A is a schematic view from above, and
  • B is a schematic view of a device cross section.
  • 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 1 (magnification 1000 times).
  • 2 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 1 (magnification: 5000 times).
  • 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 1 (magnification: 25000 times).
  • 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 2 (magnification 1000 times).
  • 3 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 2 (magnification 5000 times).
  • 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 2 (magnification: 25000 times).
  • 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 3 (magnification 1000 times).
  • 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 3 (magnification 5000 times).
  • 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 3 (magnification: 25000 times). 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 5 (magnification 1000 times). 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 5 (magnification 5000 times). 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 5 (magnification 20000 times). 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Example 6 (magnification 1000 times).
  • 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Comparative Example 1 (magnification 1000 times).
  • 2 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Comparative Example 1 (5000 times magnification).
  • 3 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Comparative Example 1 (magnification 20000 times).
  • 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Comparative Example 2 (magnification 1000 times).
  • 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Comparative Example 2 (magnification 5000 times). 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Comparative Example 2 (magnification 20000 times). It is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Comparative Example 3 (magnification 1000 times). 4 is an electron micrograph (SEM) of the nickel / cobalt / manganese compound particle powder obtained in Comparative Example 3 (magnification 5000 times).
  • FIG. 3 is a particle size distribution diagram of the nickel / cobalt / manganese compound particles obtained in Examples 1 to 8.
  • 4 is a particle size distribution diagram of nickel / cobalt / manganese compound particles obtained in Comparative Examples 1 to 3.
  • FIG. 3 is an XRD profile of nickel / cobalt / manganese compound powder obtained in Example 1.
  • FIG. 4 is a particle size distribution diagram of lithium composite oxide particle powders obtained in Examples 9 to 13 and Comparative Examples 4 to 6. It is a rate characteristic of the battery using the lithium composite oxide particle powder obtained in Example 9 and Comparative Example 4.
  • FIG. 4 is an XRD profile of lithium composite oxide particle powder obtained in Example 9.
  • FIG. It is an electron micrograph (SEM) of the lithium composite oxide particle powder obtained in Example 9 (magnification 1000 times). It is an electron micrograph (SEM) of the lithium composite oxide particle powder obtained in Example 9 (magnification 5000 times). It is an electron micrograph (SEM) of the lithium composite oxide particle powder obtained in Example 9 (magnification 20000 times).
  • the nickel / cobalt / manganese compound particle powder according to the present invention is a precursor particle of a lithium composite oxide particle powder obtained by mixing a lithium compound in a subsequent step and performing a heat treatment in a temperature range of 800 to 1100 ° C. Yes, typically means nickel-cobalt-manganese composite hydroxide, composite oxyhydroxide or composite oxide.
  • the volume-based average particle diameter (D50) of the secondary particles of the nickel / cobalt / manganese compound powder according to the present invention is 3.0 to 25.0 ⁇ m.
  • the volume-based average particle diameter (D50) of the secondary particles is less than 3.0 ⁇ m, it is difficult to aggregate or even if aggregated, the density is very low.
  • the volume-based average particle diameter (D50) of the secondary particles exceeds 25.0 ⁇ m, when the lithium composite oxide is used, particle peeling from the electrode occurs due to electrode bending or bending due to electrode thickness relationships. This is not preferable because the particles may be exposed.
  • a more preferable average particle diameter (D50) is 4.0 to 23.0 ⁇ m.
  • the volume-based average particle diameter (D50) of secondary particles and the half-value width (W) in the volume-based particle size distribution of secondary particles are expressed by the following relational expression: 1 is satisfied.
  • the volume-based average particle diameter (D50) of the secondary particles and the half-value width (W) in the volume-based particle size distribution of the secondary particles are the above relational expressions.
  • the BET specific surface area value of the nickel / cobalt / manganese compound powder according to the present invention is preferably 0.1 to 20.0 m 2 / g. It is very difficult to obtain nickel-cobalt-manganese compound particle powder having a BET specific surface area value of less than 0.1 m 2 / g by industrial synthesis. When the BET specific surface area value exceeds 20.0 m 2 / g, when the lithium composite oxide is used, the target specific surface area may not be reached, and when the electrode is used, the thermal stability is good. It is difficult to say that a battery with less swelling and excellent room temperature and high temperature cycle characteristics can be obtained.
  • the tap density of the nickel / cobalt / manganese compound powder according to the present invention is preferably 1.0 to 3.0 g / cm 3 .
  • the tap density is less than 1.0 g / cm 3 , when a lithium composite oxide is used, high compression density and electrode density (positive electrode) cannot be obtained.
  • the tap density may exceed 3.0 g / cm 3 , it is actually difficult to manufacture.
  • a more preferable tap density is 1.5 to 3.0 g / cm 3 , and even more preferably 1.8 to 2.8 g / cm 3 .
  • the nickel / cobalt / manganese compound particle powder according to the present invention performs a neutralization and precipitation reaction by simultaneously dropping an alkaline solution and a solution containing a metal salt containing nickel, cobalt and manganese into an alkaline solution.
  • a reaction slurry containing nickel / cobalt / manganese compound particles is obtained, and the reaction slurry is filtered, washed with water, and dried at 150 to 250 ° C.
  • an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia or the like can be used, but sodium hydroxide, sodium carbonate or a mixed solution thereof is preferably used for the neutralization reaction.
  • an aqueous ammonia solution or an ammonium salt is preferably used for the complex reaction.
  • the addition amount of the alkaline solution used for the neutralization reaction may be an equivalent ratio of 1.0 with respect to the neutralized content of all the metal salts contained, but it is preferable to add the alkali excess together for pH adjustment.
  • the addition amount of the aqueous ammonia solution or ammonium salt used for the complex reaction is preferably such that the ammonia concentration in the reaction solution is in the range of 0.01 to 2.00 mol / l.
  • the pH of the reaction solution is preferably controlled in the range of 10.0 to 13.0.
  • the pH of the reaction solution is less than 10.0, it is difficult to agglomerate the primary particles and it becomes difficult to form secondary particles, or fine powder is generated and the number of particles increases, which is not preferable.
  • the pH of the reaction solution exceeds 13.0, the primary particles grow in a plate shape, the secondary particles become sparse, and the packing density decreases, which is not preferable.
  • the pH of the reaction solution is more preferably 11.0 to 12.5.
  • Nickel, cobalt, manganese sulfate, nitrate, acetate, and carbonate can be used as a metal salt containing nickel, cobalt, and manganese (hereinafter sometimes abbreviated as metal salt).
  • metal salt nickel, cobalt, and manganese
  • nickel sulfate, cobalt sulfate, and manganese sulfate are preferably contained, and it is more preferable to use these in combination.
  • the solution containing the metal salt may be added separately during the synthesis reaction, but it is preferable to adjust and add it in advance as a mixed solution.
  • the dropping rate (m value) of the solution containing the metal salt is preferably controlled to 0.005 to 0.300 mol / (l ⁇ h). This unit is the total molar concentration of nickel, cobalt and manganese dropped per reaction volume of 1 L and reaction time of 1 h. A more preferable dropping rate (m value) of the solution containing a metal salt is 0.010 to 0.280 mol / (l ⁇ h). Furthermore, in order to stabilize the salt concentration, sodium sulfate may be previously contained in the reaction mother liquor.
  • the neutralization and precipitation reaction may be replaced with an inert gas in advance before the solution containing the metal salt is dropped.
  • the reaction temperature is preferably 30 ° C. or higher, more preferably 30 to 60 ° C.
  • a small amount of different metals such as Mg, Al, Ti, Zr, Sn may be added, or a method of mixing with nickel, cobalt, manganate in advance, adding simultaneously with nickel, cobalt, manganate Any means of a method and a method of adding to the reaction solution during the reaction may be used.
  • the reaction slurry is filtered, washed with water, and dried at 150 to 250 ° C. If the drying temperature is less than 150 ° C., depending on the exposure environment, the particle powder may undergo a dehydration reaction to release moisture, which may deteriorate the fluidity of the powder and make handling difficult. On the other hand, the drying temperature may exceed 250 ° C, but industrially less than 250 ° C is preferable.
  • the reaction apparatus shown in FIG. 1 is preferably used.
  • a reactor in which a concentrator 5 is connected to a reactor 1 equipped with a stirrer 2 and a draft tube 3 is used.
  • an alkali solution is introduced into the reactor in advance, and a solution containing a metal salt and an alkali solution are continuously dropped into the alkali solution from the upper part of the reaction liquid surface to perform neutralization and precipitation reactions.
  • a part of the reaction slurry to be produced is extracted from the middle stage of the reactor and introduced into the concentrator.
  • the slurry concentrated in the concentrator is introduced again into the reactor, It introduce
  • the raw material dripping, neutralization, precipitation reaction, and the step of concentrating the reaction slurry are performed to grow nickel / cobalt / manganese compound particles to a predetermined particle size, and then the particles are filtered, washed with water, It is preferable to dry at 250 ° C.
  • the reaction slurry is preferably extracted from the middle stage of the reactor.
  • unreacted substances may be extracted, which is not preferable.
  • the upper stage of the reactor is not preferable because raw materials and bubbles may be extracted.
  • the middle stage of the reactor means a portion of 30 to 70%, preferably 40 to 60%, assuming that the bottom surface of the reaction liquid in the reactor is 0% and the upper part of the reaction liquid surface is 100%.
  • the slurry concentrated in the concentrator When the slurry concentrated in the concentrator is reintroduced into the reactor, it is preferably introduced so as to be in the same direction as the swirling flow of the reaction slurry in the reactor, as shown in FIG.
  • the slurry concentrated in the concentrator By introducing and adding the concentrated slurry without disturbing the stirring state of the reaction slurry in the reactor, the generation of fine powder can be suppressed.
  • the circulation flow rate between the reactor and the concentrator is preferably such that the stirring state of the reaction slurry in the reactor is not changed. Concentration is preferably performed at a rate at which the raw material solution to be dropped is filtered without delay.
  • the filtration method may be either continuous or intermittent. Moreover, it is preferable to always replace the upper part of the reactor and the concentrator with an inert gas.
  • the reaction time is not particularly limited because it depends on the target particle size.
  • the upper limit of the reaction concentration is not particularly defined as long as the facility operates stably to such an extent that it does not adhere to the piping and does not block due to properties such as the viscosity of the reaction slurry. Industrially, the upper limit is preferably about 20 mol / l.
  • the average particle diameter of the secondary particles of the lithium composite oxide particles according to the present invention is preferably 3.0 to 25.0 ⁇ m, and the BET specific surface area value is preferably 0.10 to 1.50 m 2 / g.
  • the BET specific surface area value of the lithium composite oxide particle powder according to the present invention is preferably 0.10 to 1.50 m 2 / g. It is very difficult to obtain a lithium composite oxide particle powder having a BET specific surface area value of less than 0.10 m 2 / g by industrial synthesis. When the BET specific surface area value exceeds 1.50 m 2 / g, it is difficult to say that when used as an electrode, a battery having excellent thermal stability and less swelling and excellent room temperature and high temperature cycle characteristics can be obtained. A more preferable BET specific surface area value is 0.10 to 1.30 m 2 / g.
  • the volume-based average particle diameter (D50) of the secondary particles of the lithium composite oxide particle powder according to the present invention is 3.0 to 25.0 ⁇ m.
  • the volume-based average particle diameter (D50) of the secondary particles is less than 3.0 ⁇ m, the density is low.
  • the volume-based average particle diameter (D50) of the secondary particles exceeds 25.0 ⁇ m, due to the electrode thickness, the electrode may be peeled off due to bending or bending of the electrode, and the particles may be exposed. Is not preferable.
  • a more preferable average particle diameter (D50) is 4.0 to 23.0 ⁇ m.
  • the volume-based average particle diameter (D50) of the secondary particles and the half-value width (W) in the volume-based particle size distribution of the secondary particles satisfy the following relational expression 2. Is.
  • the volume-based average particle diameter (D50) of the secondary particles and the half-value width (W) in the volume-based particle size distribution of the secondary particles are expressed by the relational expression (2).
  • the composition ratio of the lithium composite oxide particle powder according to the present invention is substantially the same as the composition ratio of the nickel / cobalt / manganese compound powder, and the molar ratio (mol%) of Ni: Co: Mn is x.
  • it deviates from a comprehensively balanced range including the raw material price, the manufacturing method at the time of lithium composite oxide conversion, physical characteristics, and battery characteristics, and the balance is lost in any aspect. It is not preferable. More preferably, when the molar ratio (mol%) of Ni: Co: Mn is x: y: z, x is 5 to 65 mol%, y is 5 to 55 mol%, and z is 5 to 35 mol%.
  • the Li molar ratio (lithium / (nickel + cobalt + manganese)) to the total metal amount of the lithium composite oxide particles according to the present invention is preferably 0.90 to 1.20, more preferably 0.95. ⁇ 1.15.
  • the lithium composite oxide particle powder according to the present invention is obtained by mixing the nickel / cobalt / manganese compound particle powder of the present invention and a lithium compound according to a conventional method, and performing a heat treatment in a temperature range of 800 to 1100 ° C. be able to.
  • the mixing treatment of the nickel / cobalt / manganese compound oxide particles and the lithium compound according to the present invention may be either dry or wet as long as they can be uniformly mixed.
  • the lithium compound may be either lithium hydroxide or lithium carbonate, but lithium carbonate is preferred.
  • the mixing ratio of lithium is preferably 0.90 to 1.20 with respect to the total number of moles of nickel, cobalt, and manganese in the nickel, cobalt, and manganese compound particles of the present invention.
  • a conductive agent and a binder are added and mixed according to a conventional method.
  • the conductive agent acetylene black, carbon black, graphite and the like are preferable
  • the binder polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
  • the secondary battery manufactured using the positive electrode active material comprising the lithium composite oxide particle powder according to the present invention includes the positive electrode, the negative electrode, and the electrolyte.
  • lithium metal lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite or the like can be used.
  • an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
  • At least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.
  • the lithium composite oxide particle powder is obtained by using a nickel / cobalt / manganese compound precursor having a uniform particle size, a small amount of fine powder, a high crystallinity, and a relatively large primary particle as a precursor.
  • a lithium composite oxide particle powder having a uniform particle size, a small amount of fine powder, a large primary particle, and a small specific surface area.
  • a battery with high capacity and excellent rate characteristics and excellent room temperature and high temperature cycle characteristics can be obtained.
  • reaction concentration depends on the amount of the alkali solution dripped at the same time as the raw material concentration and cannot be so high, so that it is difficult for the particles to be sheared and it is difficult to obtain high-density particles.
  • the production method according to the present invention is a batch type, so the generation of fine powder does not occur, so the particle size can be easily controlled, the particle size is uniform, the fine powder is small, the high crystallinity, and the relatively small primary particles. Large nickel-cobalt-manganese compound precursors can be produced.
  • the reactor and the concentrator are connected, and the reaction slurry is circulated between the reactor and the concentrator.
  • the reaction slurry is introduced from the concentrator into the reactor, the reaction slurry in the reactor is circulated. Since it is introduced so as to be in the same direction as the swirling flow, it can be introduced and added without disturbing the stirring state of the reactor, and a nickel / cobalt / manganese compound powder having a uniform particle size distribution can be obtained.
  • the composition of the nickel / cobalt / manganese based compound particle powder and the lithium composite oxide particle powder was measured using a plasma emission analyzer (SPS 4000 manufactured by Seiko Denshi Kogyo).
  • the particle shapes of the nickel / cobalt / manganese compound powder and the lithium composite oxide powder were observed using a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation].
  • the volume-based average particle diameter (D50) of the secondary particles of the nickel / cobalt / manganese based compound particle powder and the lithium composite oxide particle powder and the half width (W) of the peak in the particle size distribution are the particle size distribution meter Microtrac HRA9320. It was measured using -X100 (manufactured by Nikkiso Co., Ltd.).
  • the specific surface area of the nickel / cobalt / manganese based compound particle powder and the lithium composite oxide particle powder was measured by BET method using Macsorb HM model-1208 (Mounttech).
  • the tap density of the nickel / cobalt / manganese compound particle powder is as follows: 40 g of a powder sample is filled in a 100 ml measuring cylinder, and the powder density is tapped 500 times using a tamp denser (KYT-3000, manufactured by Seishin Enterprise Co., Ltd.). Was measured.
  • the crystallite size of the peak was calculated from the diffraction peak of the evaluation.
  • ⁇ Positive electrode active material> The battery characteristics of the positive electrode active material were evaluated by preparing a positive electrode, a negative electrode, and an electrolytic solution by the following production method to produce a coin-type battery cell.
  • ⁇ Preparation of positive electrode> The positive electrode active material and the conductive agent acetylene black, graphite, and the binder polyvinylidene fluoride were precisely weighed to a weight ratio of 94: 3: 3 and dispersed in N-methyl-2-pyrrolidone. Thorough mixing was performed to prepare a positive electrode mixture slurry. Next, this slurry was applied to an aluminum foil as a current collector with a 150 ⁇ m doctor blade, dried at 120 ° C., and then punched into a disk shape of ⁇ 16 mm to obtain a positive electrode plate.
  • ⁇ Battery evaluation> A charge / discharge test of a secondary battery was performed using the coin-type battery. The room temperature and high temperature cycle test is repeated under the measurement conditions of a cut-off voltage between 3.0V and 4.3V, 1 cycle at 0.1C and 99 cycles at 1C until a total of 201 cycles is reached. Each discharge capacity was confirmed. These measurements were carried out in a constant temperature bath at 25 ° C. (room temperature) and 60 ° C. (high temperature).
  • Example 1 ⁇ Manufacture of nickel / cobalt / manganese compound powder>
  • 4 mol / l aqueous sodium hydroxide solution was added dropwise.
  • 4 mol / l ammonia aqueous solution was dripped so that ammonia concentration might be 0.80 mol / l.
  • a 1.5 mol / l cobalt sulfate, nickel sulfate, and manganese sulfate mixed aqueous solution was continuously supplied to the reactor at an average feed rate of 0.08 mol / (l ⁇ hr).
  • a 4 mol / l aqueous sodium hydroxide solution and a 4 mol / l aqueous ammonia solution were continuously supplied so that the pH was 12 and the ammonia concentration was 0.8 mol / l.
  • a portion of the nickel, cobalt, and manganese compound particle slurry that was rapidly produced was continuously withdrawn from the middle stage of the reactor (50% from the bottom of the reaction solution), and the concentrated slurry concentrated in the 0.4 L concentrator was reacted. It returned to the same direction as the swirling flow of the reaction slurry in the vessel, and was grown to the target average particle size.
  • the nickel / cobalt / manganese compound particle concentration in the reactor at that time was 4 mol / l.
  • nickel / cobalt / manganese compound particles (nickel / cobalt / manganese composite hydroxide particles).
  • the obtained nickel / cobalt / manganese compound particles have a D50 of 11.8 ⁇ m, a volume-based peak half width of 4.4 ⁇ m, a specific surface area BET of 6.9 m 2 / g, and a tap density of 2.25 g / cm 3 , and the crystallite size was 285 cm.
  • the XRD profile of the obtained nickel / cobalt / manganese compound particle powder is shown in FIG. 31, and SEM photographs are shown in FIG. 2 (magnification 1000 times), FIG. 3 (magnification 5000 times), and FIG. 4 (magnification 25000 times).
  • Examples 2-8 Nickel / cobalt / manganese compound powder was obtained in the same manner as in Example 1 except that the composition, reaction temperature, pH, and reaction concentration were variously changed.
  • Table 1 shows the manufacturing conditions at this time, and Table 2 shows the characteristics of the obtained nickel / cobalt / manganese compound powder.
  • Comparative Examples 1 to 3 According to the examples described in JP-T-2009-515799, nickel / cobalt / manganese compound powders having various compositions were prepared. Table 2 shows various characteristics of the nickel / cobalt / manganese compound powder.
  • JP-T-2009-515799 has a continuous reaction, so fine powder is generated and the particle size distribution is wide.
  • FIG. 29 shows the particle size distribution of Examples 1 to 8
  • FIG. 30 shows the particle size distribution of Comparative Examples 1 to 3.
  • Example 1 The XRD profile of Example 1 is shown in FIG.
  • Example 9 ⁇ Manufacture of positive electrode active material>
  • the nickel / cobalt / manganese compound powder obtained in Example 1 and the lithium compound were sufficiently mixed in a predetermined amount so that the molar ratio of lithium / (cobalt + nickel + manganese) was 1.05.
  • the powder was fired at 950 ° C. for 10 hours in the air to obtain a lithium composite oxide particle powder.
  • the composition ratio of the obtained lithium composite oxide particle powder is 48.85: 20.29: 30.86 in terms of a molar ratio (mol%) of Ni: Co: Mn, and Li is based on the total amount of nickel, cobalt, and manganese.
  • the molar ratio (lithium / (nickel + cobalt + manganese)) was 1.05.
  • the average particle size was 11.6 ⁇ m
  • the half-value width of the volume-based peak was 4.4 ⁇ m
  • the BET specific surface area was 0.31 m 2 / g
  • the particles were uniform in particle size.
  • the coin-type battery manufactured using the positive electrode active material has an initial discharge capacity of 165.7 mAh / g, an initial efficiency of 86.0%, and a rate characteristic (1C / 0.1C) of 89.7%.
  • the capacity retention rate at 200 cycles was 87.3% at room temperature and 66.2% at 60 ° C.
  • Comparative Example 4 ⁇ Manufacture of positive electrode active material>
  • the nickel / cobalt / manganese composite particle powder obtained in Comparative Example 1 and the lithium compound were sufficiently mixed in a predetermined amount so that the molar ratio of lithium / total metal was 1.05, and the mixed powder was Baking at 950 ° C. for 10 hours gave lithium composite oxide particle powder.
  • the composition ratio of the obtained lithium composite oxide particle powder was 50.38: 20.77: 28.85 in terms of a molar ratio (mol%) of Ni: Co: Mn, and Li with respect to the total amount of nickel, cobalt, and manganese.
  • the molar ratio (lithium / (nickel + cobalt + manganese)) was 1.05.
  • the average particle diameter was 10.8 ⁇ m
  • the half-value width of the volume-based peak was 6.9 ⁇ m
  • the BET specific surface area value was 0.38 m 2 / g.
  • the coin-type battery manufactured using the positive electrode active material has an initial discharge capacity of 158.2 mAh / g, an initial efficiency of 82.6%, and a rate characteristic (1C / 0.1C) of 84.9%.
  • the capacity retention rate at 200 cycles was 80.0% at room temperature and 60.1% at 60 ° C.
  • Table 3 and Table 4 show the production conditions at this time, the composite characteristics of the obtained lithium composite oxide particle powder, and the battery characteristics.
  • Examples 10 to 16, Comparative Examples 5 and 6 A lithium composite oxide particle powder was obtained in the same manner as in Example 9 except that the kind of nickel / cobalt / manganese compound powder, the molar ratio of lithium / (cobalt + nickel + manganese), and the firing temperature were variously changed. It was.
  • Table 3 shows the production conditions, composite characteristics of the obtained lithium composite oxide particles, and battery characteristics.
  • the lithium composite oxide particle powders obtained in the examples were superior to the lithium composite oxide particle powders obtained in the comparative examples in terms of initial capacity, initial efficiency, and rate characteristics.
  • the lithium composite oxide particle powders of the examples have excellent characteristics. it is obvious.
  • FIG. 32 is a particle size distribution diagram of the lithium composite oxide particles obtained in Example 9 and Comparative Example 4, and the rate characteristics of the battery using the lithium composite oxide particles obtained in Example 9 and Comparative Example 4 are shown in FIG. 33, the room temperature cycle characteristics are shown in FIG. 34, and the cycle characteristics at a high temperature of 60 ° C. are shown in FIG.
  • the lithium composite oxide particle powder obtained in the examples was superior in capacity retention at room temperature and high temperature to the lithium composite oxide particle powder obtained in the comparative example.
  • FIG. 36 shows the XRD profile of the lithium composite oxide particle powder obtained in Example 9.
  • lithium composite oxide particle powder substantially inherited the particle shape of the precursor nickel, cobalt, manganese compound particle powder.
  • the cathode particles for the positive electrode active material have relatively large primary particles and a relatively small specific surface area without devising the firing conditions.
  • the thermal stability is good, the battery swelling prevention is improved, the capacity is high, the rate characteristics are excellent, and the room temperature and high temperature cycle characteristics are good.
  • a water electrolyte secondary battery can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、二次粒子の体積基準の平均粒子径(D50)が3.0~25.0μmであり、前記平均粒子径(D50)と二次粒子の体積基準の粒度分布におけるピークの半価幅(W)とがW≦0.4×D50を満足するニッケル・コバルト・マンガン系化合物粒子粉末に関し、アルカリ溶液中に金属塩を含有する溶液とアルカリ溶液を同時に滴下・中和し、沈殿反応を行って得ることができる。本発明のニッケル・コバルト・マンガン系化合物粒子粉末は、粒度が均一で微粉が少なく、高結晶性で一次粒子が大きいため、非水電解質二次電池に用いられる正極活物質の前駆体として有用である。

Description

ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
 本発明は、粒度が均一で微粉が少なく、高結晶性で一次粒子が大きいニッケル・コバルト・マンガン系化合物粒子粉末に関する。本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末は、非水電解質二次電池に用いられる正極活物質の前駆体として有用である。
 近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。
 従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiCo1-XNi、LiNiO等が一般的に知られている。なかでもLiCoOを用いたリチウムイオン二次電池は高い充放電電圧と充放電容量を有する点で優れているが、Coが高価であることから、LiCoOに代わる様々な正極活物質が研究されている。
 一方、LiNiOを用いたリチウムイオン二次電池は高い充放電容量を有する電池として注目されている。しかし、この材料は、充電時の熱安定性及び充放電サイクル耐久性に劣るため、更なる特性改善が求められている。
 即ち、LiNiOはリチウムを引き抜いた際に、Ni3+がNi4+となりヤーンテラー歪を生じ、リチウムを0.45引き抜いた領域で六方晶から単斜晶へ、さらに引き抜くと単斜晶から六方晶と結晶構造が変化する。そのため、充放電反応を繰り返すことによって、結晶構造が不安定となり、サイクル特性が悪くなる、又酸素放出による電解液との反応などが起こり、電池の熱安定性及び保存特性が悪くなるといった特徴があった。この課題を解決する為に、LiNiOのNiの一部にCo、Al、Mn、Tiなどを添加した材料の研究が行われてきている。
 即ち、LiNiOのNiの一部を異種元素で置換することによって、置換元素が有する特性を付与することが可能となる。例えば、LiNiOにCoを置換した場合、少ないCo量でも、高い充放電電圧と充放電容量を有することが期待できる。一方、LiMnはLiNiO又はLiCoOに対して安定な系ではあるが、結晶構造が異なるため置換できる量には制限がある。
 そこで、Co、Mnで置換したLiNiOにおいて、充填性が高く結晶構造が安定なCo、Mnで置換したLiNiOを得るためには、組成、物性及び結晶性、粒度分布を制御したニッケル・コバルト・マンガン系前駆体を用いる必要がある。
 特に、LiNiOなどの非水電解質二次電池用の正極活物質の粒度分布は、正極材の充填性に大きく寄与するものであるから、より粒度分布が揃った正極活物質が要求されている。そのため、異種金属を置換したLiNiOの前駆体となるニッケル・コバルト・マンガン系化合物粒子粉末についても、粒度が均一で微粉が少ないことが要求されている。
 従来、ニッケル・コバルト・マンガン系化合物粒子粉末について、タップ密度や粒子形状、粒度分布を制御することが知られている(特許文献1~4)。
 特許文献1に記載の技術は、タッピング密度が1.5g/cc以上の球状高密度コバルトマンガン共沈水酸化ニッケルに関するものである。
 また、特許文献2には、遷移金属元素を原子レベルで均質に固溶したニッケル・マンガン共沈複合酸化物が開示されている。
 また、特許文献3には、ニッケル・コバルト・マンガン共沈複合酸化物凝集粒子に酸化剤を作用させて合成したニッケル・コバルト・マンガン複合オキシ水酸化物が開示されている。
 また、特許文献4には、粒度分布を制御したニッケル・コバルト・マンガン複合水酸化物が開示されている。
特開2002-201028号公報 国際公開第02/078105号 国際公開第04/092073号 特開2008-147068号公報
 しかしながら、前記技術によって得られたニッケル・コバルト・マンガン系化合物粒子粉末は、微粉の発生を抑制することが不十分であり、粒度分布のシャープなニッケル・コバルト・マンガン系化合物粒子粉末は未だ得られていない。
 そこで、本発明は、粒度が均一で微粉が少なく、高結晶性で一次粒子が大きいニッケル・コバルト・マンガン系化合物粒子粉末を得ることを目的とする。
 前記技術的課題は、次の通りの本発明によって達成できる。
 即ち、本発明は、二次粒子の体積基準の平均粒子径(D50)が3.0~25.0μmであり、前記平均粒子径(D50)と二次粒子の体積基準の粒度分布におけるピークの半価幅(W)とが下記関係式1を満足するニッケル・コバルト・マンガン系化合物粒子粉末である(本発明1)。
(関係式1)
 W≦0.4×D50
 また、本発明は、本発明1に記載のニッケル・コバルト・マンガン系化合物粒子粉末において、Ni:Co:Mnのモル比(mol%)をx:y:zとした場合、xが5~65mol%、yが5~65mol%、zが5~55mol%である(ただし、x+y+z=100mol%である)ことを特徴とするニッケル・コバルト・マンガン系化合物粒子粉末である(本発明2)。
 また、本発明は、攪拌機とドラフトチューブを具備し、濃縮器を連結した反応装置を用意し、あらかじめアルカリ溶液を反応器内に導入し、該アルカリ溶液中に、ニッケル、コバルト及びマンガンを含有する金属塩を含有する溶液とアルカリ溶液とを反応液面上部から連続的に滴下し、中和、沈殿反応を行ってニッケル・コバルト・マンガン系化合物粒子を生成する反応において、生成する反応スラリーの一部を反応器中段から抜き出し濃縮器に導入し、濃縮器で濃縮されたスラリーを反応器に再度導入する際、反応器中の反応スラリーの旋回流と同方向となるように導入する工程を行って、ニッケル・コバルト・マンガン系化合物粒子を生成させ、得られたニッケル・コバルト・マンガン系化合物粒子を含有する反応スラリーを濾過、水洗し、150~250℃で乾燥することを特徴とする本発明1又は2に記載のニッケル・コバルト・マンガン系化合物粒子粉末の製造方法である(本発明3)。
 また、本発明は、アルカリ溶液としては水酸化ナトリウムとアンモニアを用いることを特徴とする本発明3に記載のニッケル・コバルト・マンガン系化合物粒子粉末の製造方法である(本発明4)。
 また、本発明は、少なくとも、ニッケル、コバルト及びマンガンを含有するリチウム複合酸化物粒子粉末であって、該リチウム複合酸化物粒子粉末の二次粒子の体積基準の平均粒子径(D50)が3.0~25.0μmであり、前記平均粒子径(D50)と二次粒子の体積基準の粒度分布におけるピークの半価幅(W)とが下記関係式2を満足するリチウム複合酸化物粒子粉末である(本発明5)。
(関係式2)
 W≦0.4×D50
 また、本発明は、Ni:Co:Mnのモル比(mol%)をx:y:zとした場合、xが5~65mol%、yが5~65mol%、zが5~55mol%であり(ただし、x+y+z=100mol%である)、ニッケル、コバルト及びマンガンの総量に対するLiのモル比(リチウム/(ニッケル+コバルト+マンガン))が0.90~1.20である本発明5記載のリチウム複合酸化物粒子粉末である(本発明6)。
 また、本発明は、本発明1又は2に記載のニッケル・コバルト・マンガン系化合物粒子粉末とリチウム化合物とを混合し、800~1100℃の温度範囲で熱処理を行うリチウム複合酸化物粒子粉末の製造方法である(本発明7)。
 また、本発明は、本発明5又は6に記載のリチウム複合酸化物粒子粉末を使用した非水電解質二次電池である(本発明8)。
 本発明に係るニッケル・コバルト・マンガン系化合物は、粒度が均一で微粉が少ないので、該ニッケル・コバルト・マンガン系化合物粒子粉末を用いて製造したリチウム複合酸化物粒子粉末では、正極活物質由来の熱安定性が良好で電池膨れ防止の向上が期待できる。
 また、本発明に係るニッケル・コバルト・マンガン系化合物は高結晶性であり一次粒子が比較的大きいので、該ニッケル・コバルト・マンガン系化合物粒子粉末を用いて製造したリチウム複合酸化物粒子粉末では、焼成条件を工夫することなく、一次粒子の比較的大きな粒子が得られ、容量が高くレート特性が優れ、室温、高温サイクル特性が向上することが期待できる。
 本発明に係るリチウム複合酸化物粒子粉末は、粒度が均一で微粉が少ないので、正極活物質由来の熱安定性が良好で電池膨れ防止の向上が期待できる。また、本発明に係るリチウム複合酸化物粒子粉末は、容量が高くレート特性が優れ、室温、高温サイクル特性が向上することが期待できる。
本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末に製造に用いる装置の概略図である。(A)は上部からの概略図であり、(B)は装置断面の概略図である。 実施例1で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 実施例1で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 実施例1で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率25000倍)。 実施例2で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 実施例2で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 実施例2で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率25000倍)。 実施例3で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 実施例3で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 実施例3で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率25000倍)。 実施例5で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 実施例5で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 実施例5で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率20000倍)。 実施例6で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 実施例6で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 実施例6で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率25000倍)。 実施例7で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 実施例7で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 実施例7で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率25000倍)。 比較例1で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 比較例1で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 比較例1で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率20000倍)。 比較例2で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 比較例2で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 比較例2で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率20000倍)。 比較例3で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 比較例3で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 比較例3で得られたニッケル・コバルト・マンガン系化合物粒子粉末の電子顕微鏡写真(SEM)である(倍率20000倍)。 実施例1~8で得られたニッケル・コバルト・マンガン系化合物粒子粉末の粒度分布図である。 比較例1~3で得られたニッケル・コバルト・マンガン系化合物粒子粉末の粒度分布図である。 実施例1で得られたニッケル・コバルト・マンガン系化合物粒子粉末のXRDプロファイルである。 実施例9~13と比較例4~6で得られたリチウム複合酸化物粒子粉末の粒度分布図である。 実施例9と比較例4で得られたリチウム複合酸化物粒子粉末を用いた電池のレート特性である。 実施例9と比較例4で得られたリチウム複合酸化物粒子粉末を用いた電池の室温25℃でのサイクル特性である。 実施例9と比較例4で得られたリチウム複合酸化物粒子粉末を用いた電池の高温60℃でのサイクル特性である。 実施例9で得られたリチウム複合酸化物粒子粉末のXRDプロファイルである。 実施例9で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 実施例9で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 実施例9で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率20000倍)。 実施例13で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 実施例13で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 実施例13で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率20000倍)。 比較例4で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 比較例4で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 比較例4で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率20000倍)。 比較例6で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率1000倍)。 比較例6で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率5000倍)。 比較例6で得られたリチウム複合酸化物粒子粉末の電子顕微鏡写真(SEM)である(倍率20000倍)。
 本発明の構成をより詳しく説明すれば次の通りである。
 先ず、本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末について述べる。本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末は、後工程でリチウム化合物とを混合して800~1100℃の温度範囲で熱処理を行って得られるリチウム複合酸化物粒子粉末の前駆体粒子であり、代表的には、ニッケル・コバルト・マンガン複合水酸化物、複合オキシ水酸化物又は複合酸化物を意味するものである。
 本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末の二次粒子の体積基準の平均粒子径(D50)は3.0~25.0μmである。二次粒子の体積基準の平均粒子径(D50)が3.0μm未満の場合には、凝集させるのが困難であるか、凝集したとしても密度の非常に低いものになる。二次粒子の体積基準の平均粒子径(D50)が25.0μmを超える場合には、リチウム複合酸化物とした場合、電極厚みの関係から、電極の折れ、曲がりなどで、電極から粒子剥がれが生じ、粒子が露出する可能性があり好ましくない。より好ましい平均粒子径(D50)は4.0~23.0μmである。
 本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末は、二次粒子の体積基準の平均粒子径(D50)と二次粒子の体積基準の粒度分布における半価幅(W)とが下記関係式1を満たすものである。
 (関係式1)
 W≦0.4×D50
本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末は、二次粒子の体積基準の平均粒子径(D50)と二次粒子の体積基準の粒度分布における半価幅(W)とが前記関係式(1)を満たすことによって、粒度分布に均斉で微粉が少ないニッケル・コバルト・マンガン系化合物粒子粉末とすることができ、該ニッケル・コバルト・マンガン系化合物粒子粉末を用いて作製したリチウム複合酸化物粒子粉末は粒度分布に優れるものとなる。
 本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末において、Ni:Co:Mnのモル比(mol%)をx:y:zとした場合、xが5~65mol%、yが5~65mol%、zが5~55mol%である(ただし、x+y+z=100mol%である)ことが好ましい。前記組成の範囲以外の場合は、原材料価格、リチウム複合酸化物化時の製造方法、物理特性、電池特性含め総合的にバランスの取れた範囲を逸脱し、何れかの観点でバランスを崩すものであり好ましくない。より好ましい組成比はNi:Co:Mnのモル比(mol%)をx:y:zとした場合、xが5~65mol%、yが5~55mol%、zが5~35mol%である。
 本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末のBET比表面積値は0.1~20.0m/gであることが好ましい。BET比表面積値が0.1m/g未満のニッケル・コバルト・マンガン系化合物粒子粉末は、工業的に合成して得ることは非常に困難である。BET比表面積値が20.0m/gを越える場合には、リチウム複合酸化物とした場合、目標とする比表面積に満たない場合があり、また、電極とした場合、熱安定性が良好で膨れが少なく、室温、高温サイクル特性に優れた電池が得られるとは言い難い。
 本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末のタップ密度は、1.0~3.0g/cmであることが好ましい。タップ密度が1.0g/cm未満の場合には、リチウム複合酸化物とした場合、高い圧縮密度、電極密度(正極)が得られない。タップ密度が3.0g/cmを超える場合でも良いが、現実的には製造するのが困難である。より好ましいタップ密度は1.5~3.0g/cm、更により好ましくは1.8~2.8g/cmである。
 本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末の粉末X線回折(Cu-Kα)による2θ=19.3±0.5°の回折ピークの結晶子サイズが150~350Åであることが好ましい。2θ=19.3±0.5°の回折ピークの結晶子サイズが150Å未満の場合、一次粒子の厚みが小さく、比表面積が大きく、リチウム複合酸化物とした際、一次粒子が結晶成長しにくく、電極とした際には、熱安定性が良好で膨れが少なく、且つ容量が高くレート特性が優れ、室温、高温サイクル特性に優れた電池が得られるとは言い難い。2θ=19.3±0.5°のピークの結晶子サイズが350Åを超えても良いが、現実的に製造するのが困難である。
 次に、本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末の製造法について述べる。
 本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末は、アルカリ溶液中に、ニッケル、コバルト及びマンガンを含有する金属塩を含有する溶液とアルカリ溶液とを同時に滴下し、中和、沈殿反応を行ってニッケル・コバルト・マンガン系化合物粒子を含有する反応スラリーを得、該反応スラリーを濾過、水洗し、150~250℃で乾燥して得ることができる。
 アルカリ溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア等の水溶液を用いることができるが、中和反応用に水酸化ナトリウム、炭酸ナトリウム又はそれらの混合溶液を用いることが好ましい。加えて、錯体反応用にアンモニア水溶液やアンモニウム塩を用いることが好ましい。
 中和反応に用いるアルカリ溶液の添加量は、含有する全金属塩の中和分に対して当量比1.0でよいが、pH調整のためにアルカリ過剰分を合わせて添加することが好ましい。
 錯体反応に用いるアンモニア水溶液やアンモニウム塩の添加量は、反応液中のアンモニア濃度が0.01~2.00mol/lの範囲で添加することが好ましい。
 反応溶液のpHは10.0~13.0の範囲に制御することが好適である。反応溶液のpHが10.0未満の場合は、一次粒子を凝集させることが難しく、二次粒子を形成させることが困難になるか、あるいは、微粉が発生し、粒子個数が増加するため好ましくない。反応溶液のpHが13.0を超える場合は、一次粒子が板状に成長し、二次粒子が疎となり、充填密度が低下するため好ましくない。より好ましい反応溶液のpHは11.0~12.5が好ましい。
 ニッケル、コバルト及びマンガンを含有する金属塩(以下金属塩と略記することもある)としては、ニッケル、コバルト、マンガンの硫酸塩、硝酸塩、酢酸塩、炭酸塩を用いることができる。特に、硫酸ニッケル、硫酸コバルト、硫酸マンガンが含まれていることが好ましく、これらを組合せて使用することが更に好ましい。
 金属塩を含有する溶液は、合成反応の際別々に添加しても良いが、予め混合溶液として調整して添加することが好ましい。
 また、金属塩を含有する溶液の滴下速度(m値)は、0.005~0.300mol/(l・h)に制御することが好ましい。なお、本単位は、反応容積1L、反応時間1h当りに滴下するニッケル、コバルト及びマンガンの総モル濃度である。より好ましい金属塩を含有する溶液の滴下速度(m値)は、0.010~0.280mol/(l・h)である。さらに、塩濃度を安定させるために、硫酸ナトリウムを予め反応母液に含有させておいても良い。
 中和、沈殿反応は、金属塩を含有する溶液を滴下する前に予め不活性ガスで置換しておいてもよい。
 反応温度は30℃以上が好ましく、より好ましくは30~60℃である。
 必要に応じて、Mg、Al、Ti、Zr、Sn等の異種金属を微量添加してもよく、あらかじめニッケル、コバルト、マンガン酸塩と混合する方法、ニッケル、コバルト、マンガン酸塩と同時に添加する方法、反応途中で反応溶液に添加する方法、のいずれの手段を用いても構わない。
 本発明においては、反応スラリーを濾過、水洗し、150~250℃で乾燥する。乾燥温度が150℃未満では、暴露環境によっては粒子粉末が脱水反応を起こし水分を放出し、粉体の流動性が悪化し、ハンドリングが困難になる恐れがある。一方、乾燥温度が250℃を超えても良いが、工業的には250℃未満が好ましい。
 本発明の製造方法においては、好ましくは図1に示す反応装置を用いる。図1(B)に示すとおり、攪拌機2とドラフトチューブ3を具備した反応器1に濃縮器5を連結した反応装置を用いる。本発明においては、あらかじめアルカリ溶液を反応器内に導入し、該アルカリ溶液中に金属塩を含有する溶液とアルカリ溶液とを反応液面上部から連続的に滴下し、中和、沈殿反応を行ってニッケル・コバルト・マンガン系化合物粒子を生成する反応において、生成する反応スラリーの一部を反応器中段から抜き出し濃縮器に導入し、濃縮器で濃縮されたスラリーを反応器に再度導入する際、反応器中の反応スラリーの旋回流と同方向となるように導入する。
 原料の滴下、中和、沈殿反応と反応スラリーを濃縮する工程とを行って、ニッケル・コバルト・マンガン系化合物粒子を所定の粒子径まで成長させた後に、該粒子を濾過、水洗し、150~250℃で乾燥することが好ましい。
 本発明においては、反応スラリーは反応器中段から抜き取ることが好ましい。反応器下段では未反応物を抜き取る可能性があるため好ましくない。また、反応器上段では原料や気泡を抜き取る可能性があるため好ましくない。なお、反応器中段とは、反応器内の反応液底面を0%、反応液面上部を100%とした際に、30~70%の部分、好ましくは40~60%の部分を意味する。
 濃縮器で濃縮されたスラリーを反応器に再度導入する際には、図1(A)に示すとおり、反応器中の反応スラリーの旋回流と同方向となるように導入することが好ましい。濃縮スラリーを反応器中の反応スラリーの攪拌状態を乱さないように導入・添加することで、微粉の発生を抑制することができる。
 反応器と濃縮器との循環流量は、反応器内の反応スラリーの攪拌状態を変化させない程度が好ましい。濃縮は滴下する原料溶液を遅滞なく濾過する速度が好ましい。濾過方法は、連続的、間欠的何れでも構わない。また、反応器と濃縮器との上部は不活性ガスで常時置換しておくことが好ましい。
 反応時間は目的とする粒径に依存するので特に限定されるものではない。また、反応濃度の上限は、反応スラリーの粘度などの性状から、配管内への付着がなく、閉塞しない程度に設備が安定的に稼動する範囲であれば特に規定はない。工業的には上限は20mol/l程度が好ましい。
 次に、本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末を用いて製造したリチウム複合酸化物粒子粉末について述べる。
 本発明に係るリチウム複合酸化物粒子粉末の二次粒子の平均粒子径は3.0~25.0μmが好ましく、BET比表面積値は0.10~1.50m/gが好ましい。
 本発明に係るリチウム複合酸化物粒子粉末のBET比表面積値は0.10~1.50m/gであることが好ましい。BET比表面積値が0.10m/g未満のリチウム複合酸化物粒子粉末は、工業的に合成して得ることは非常に困難である。BET比表面積値が1.50m/gを越える場合には、電極とした場合、熱安定性が良好で膨れが少なく、室温、高温サイクル特性に優れた電池が得られるとは言い難い。より好ましいBET比表面積値は0.10~1.30m/gである。
 本発明に係るリチウム複合酸化物粒子粉末の二次粒子の体積基準の平均粒子径(D50)は3.0~25.0μmである。二次粒子の体積基準の平均粒子径(D50)が3.0μm未満の場合には、密度が低いものになる。二次粒子の体積基準の平均粒子径(D50)が25.0μmを超える場合には、電極厚みの関係から、電極の折れ、曲がりなどで、電極から粒子剥がれが生じ、粒子が露出する可能性があり好ましくない。より好ましい平均粒子径(D50)は4.0~23.0μmである。
 本発明に係るリチウム複合酸化物粒子粉末は、二次粒子の体積基準の平均粒子径(D50)と二次粒子の体積基準の粒度分布における半価幅(W)とが下記関係式2を満たすものである。
 (関係式2)
 W≦0.4×D50
 本発明に係るリチウム複合酸化物粒子粉末は、二次粒子の体積基準の平均粒子径(D50)と二次粒子の体積基準の粒度分布における半価幅(W)とが前記関係式(2)を満たすことによって、粒度分布に均斉で微粉が少ないリチウム複合酸化物粒子粉末となる。
 本発明に係るリチウム複合酸化物粒子粉末の組成比は、前記ニッケル・コバルト・マンガン系化合物粒子粉末の組成比をほぼ維持したものであり、Ni:Co:Mnのモル比(mol%)をx:y:zとした場合、xが5~65mol%、yが5~65mol%、zが5~55mol%である(ただし、x+y+z=100mol%である)ことが好ましい。前記組成の範囲以外の場合は、原材料価格、リチウム複合酸化物化時の製造方法、物理特性、電池特性含め総合的にバランスの取れた範囲を逸脱し、何れかの観点でバランスを崩すものであり好ましくない。より好ましい組成比はNi:Co:Mnのモル比(mol%)をx:y:zとした場合、xが5~65mol%、yが5~55mol%、zが5~35mol%である。
 本発明に係るリチウム複合酸化物粒子粉末の金属総量に対するLiのモル比(リチウム/(ニッケル+コバルト+マンガン))は、0.90~1.20であることが好ましく、より好ましくは0.95~1.15である。
 本発明に係るリチウム複合酸化物粒子粉末は、常法に従って、前記本発明のニッケル・コバルト・マンガン系化合物粒子粉末とリチウム化合物とを混合し、800~1100℃の温度範囲で熱処理を行って得ることができる。
 本発明に係るニッケル・コバルト・マンガン系化合物酸化物粒子とリチウム化合物の混合処理は、均一に混合することができれば乾式、湿式のどちらでもよい。リチウム化合物は水酸化リチウム、炭酸リチウム何れでも良いが、炭酸リチウムが好ましい。
 リチウムの混合比は、本発明のニッケル・コバルト・マンガン系化合物粒子中のニッケル・コバルト・マンガンの総モル数に対して0.90~1.20であることが好ましい。
 次に、本発明に係るリチウム複合酸化物粒子粉末を用いた正極について述べる。
 本発明に係るリチウム複合酸化物粒子粉末を用いて正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。
 本発明に係るリチウム複合酸化物粒子粉末からなる正極活物質を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。
 負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。
 また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。
 さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。
<作用>
 本発明において最も重要な点は、前駆体として粒度が均一で微粉が少なく、高結晶性で一次粒子の比較的大きいニッケル・コバルト・マンガン系化合物前駆体を用いることにより、リチウム複合酸化物粒子粉末とした際に、粒度が均一で、微粉が少なく、一次粒子が大きく、比表面積が小さいリチウム複合酸化物粒子粉末を得ることができ、電極とした際には、熱安定性が良好で膨れが少なく、しかも、容量が高くレート特性が優れ、室温、高温サイクル特性に優れた電池が得られることである。
 連続式(オーバーフロー)では、常時核発生と成長反応が同時に起こるので微粉が存在し、粒度分布が広い。また、常時微粉が発生するので15μmを超えるような大きな粒子を製造することが困難である。更に、反応濃度(固形分)は原料濃度と同時に滴下するアルカリ液量に依存し、それほど高くできないので粒子にシェアがかかりにくく、密度の高い粒子が得られ難い。
 一方、本発明に係る製造方法はバッチ式であるために、微粉の発生が起こらないので、粒子サイズの制御が容易であり、粒度が均一で微粉が少なく、高結晶性で一次粒子の比較的大きいニッケル・コバルト・マンガン系化合物前駆体を製造することが可能である。
 また、本発明においては、反応器と濃縮器とを連結し、反応スラリーは反応器と濃縮器との間を循環させ、濃縮器から反応器に導入するときに、反応器中の反応スラリーの旋回流と同方向となるように導入するので、反応器の攪拌状態を妨げることなく導入・添加でき、粒度分布が均一なニッケル・コバルト・マンガン系化合物粒子粉末を得ることができる。
 次に、本発明を以下の実施例を用いて更に詳述するが、本発明は以下の実施例に限定されない。以下の実施例における評価方法を示す。
 ニッケル・コバルト・マンガン系化合物粒子粉末及びリチウム複合酸化物粒子粉末の組成はプラズマ発光分析装置(セイコー電子工業製 SPS 4000)を用いて測定した。
 ニッケル・コバルト・マンガン系化合物粒子粉末及びリチウム複合酸化物粒子粉末の粒子形状は、エネルギー分散型X線分析装置付き走査電子顕微鏡SEM-EDX[(株)日立ハイテクノロジーズ製]を用いて観察した。
 ニッケル・コバルト・マンガン系化合物粒子粉末及びリチウム複合酸化物粒子粉末の二次粒子の体積基準の平均粒子径(D50)と粒度分布におけるピークの半価幅(W)は、粒度分布計マイクロトラックHRA9320-X100(日機装社製)を用いて測定した。
 ニッケル・コバルト・マンガン系化合物粒子粉末及びリチウム複合酸化物粒子粉末の比表面積はMacsorb HM model-1208(マウンテック社製)を用いて、BET法にて測定した。
 ニッケル・コバルト・マンガン系化合物粒子粉末のタップ密度は、粉末試料40gを、100mlのメスシリンダーに充填し、タンプデンサー(KYT-3000、セイシン企業社製)を用いて、500回タップした後の粉末密度を測定した。
 ニッケル・コバルト・マンガン系化合物粒子粉末及びリチウム複合酸化物粒子粉末の同定は、粉末X線回折(RIGAKU Cu-Kα 40kV 40mA)を用いて評価し、2θ=19.3±0.5°の回折ピークの結晶子サイズは、前記評価の回折ピークから計算した。
<正極活物質>
 正極活物質の電池特性は、下記製造法によって正極、負極及び電解液を調製しコイン型の電池セルを作製して評価した。
<正極の作製>
 正極活物質と導電剤であるアセチレンブラック、グラファイト及び結着剤のポリフッ化ビニリデンを重量比94:3:3となるよう精秤し、N-メチル-2-ピロリドンに分散させ、高速混練装置で十分に混合して正極合剤スラリーを調整した。次にこのスラリーを集電体のアルミニウム箔に150μmのドクターブレードで塗布し、120℃で乾燥してからφ16mmの円板状に打ち抜き正極板とした。
<負極の作製>
 金属リチウム箔をφ16mmの円板状に打ち抜いて負極を作製した。
<電解液の調製>
 炭酸エチレンと炭酸ジメチルとの体積比1:2の混合溶液に電解質として六フッ化リン酸リチウム(LiPF)を1モル/リットル溶解して電解液とした。
<コイン型電池セルの組み立て>
 アルゴン雰囲気のグローブボックス中でSUS316L製のケースを用い、上記正極と負極の間にポリプロピレン製のセパレータを介し、さらに電解液を注入して2032型のコイン電池を作製した。
<電池評価>
 前記コイン型電池を用いて、二次電池の充放電試験を行った。室温、高温サイクル試験は、測定条件としてはカットオフ電圧が3.0Vから4.3Vの間で、0.1Cで1サイクル、1Cで99サイクルの充放電を、合計201サイクルに到達するまで繰り返し、各放電容量を確認した。尚、これらの測定は25℃(室温)および60℃(高温)の恒温槽内にて実施した。
 レート試験は、測定条件としては、カットオフ電圧が3.0Vから4.3Vの間で、充電を0.1C一定とし、0.1C、1C、2C、5Cの放電レートにて測定した。尚、これらの測定は25℃の恒温槽内にて実施した。
 実施例1:
 <ニッケル・コバルト・マンガン系化合物粒子粉末の製造>
 ドラフトチューブ、バッフル、羽根型攪拌機を具備した有効容積10Lの反応器内に、イオン交換水を8L張り、十分な攪拌をしながら、温度を40℃に調整し、pH=12.0となるように4mol/lの水酸化ナトリウム水溶液を滴下した。またアンモニア濃度が0.80mol/lとなるように4mol/lのアンモニア水溶液を滴下した。それぞれ1.5mol/lの硫酸コバルト、硫酸ニッケル、硫酸マンガン混合水溶液を、平均で0.08mol/(l・hr)の供給速度とし、連続的に反応器に供給した。同時にpH=12、アンモニア濃度が0.8mol/lとなるように4mol/lの水酸化ナトリウム水溶液、4mol/lのアンモニア水溶液を連続的に供給した。速やかに生成したニッケル・コバルト・マンガン系化合物粒子スラリーの一部を連続的に反応器中段(反応液底部から50%の部分)から抜き出し、0.4Lの濃縮器で濃縮された濃縮スラリーを反応器中の反応スラリーの旋回流と同方向に戻し、目標平均粒子径まで成長させた。その時の反応器内のニッケル・コバルト・マンガン系化合物粒子濃度は4mol/lであった。
 反応後、取り出した懸濁液を、フィルタープレスを用いて水洗を行った後、150℃で12時間乾燥を行い、ニッケル・コバルト・マンガン系化合物粒子(ニッケル・コバルト・マンガン複合水酸化物粒子)を得た。得られたニッケル・コバルト・マンガン系化合物粒子は、D50が11.8μm、体積基準のピークの半価幅が4.4μm、比表面積BETが6.9m/g、タップ密度が2.25g/cm、結晶子サイズが285Åであった。得られたニッケル・コバルト・マンガン系化合物粒子粉末のXRDプロファイルを図31に、SEM写真を図2(倍率1000倍)、図3(倍率5000倍)、図4(倍率25000倍)に示す。
 実施例2~8:
 組成、反応温度、pH、反応濃度を種々変化させた以外は前記実施例1と同様にしてニッケル・コバルト・マンガン系化合物粒子粉末を得た。
 このときの製造条件を表1に、得られたニッケル・コバルト・マンガン系化合物粒子粉末の諸特性を表2に示す。
 比較例1~3:
 特表2009-515799記載の実施例に従い、種々の組成のニッケル・コバルト・マンガン系化合物粒子粉末を作製した。このときのニッケル・コバルト・マンガン系化合物粒子粉末の諸特性を表2に示す。
 特表2009-515799号公報に記載された製造方法は、連続式の反応であるため微粉が発生し、粒度分布が広いものであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例2~8のSEM写真を図5~図19に示す。
 比較例1~3のSEM写真を図20~図28に示す。
 実施例1~8の粒度分布を図29に、比較例1~3の粒度分布を図30に示す。
 実施例1のXRDプロファイルを図31に示す。
 実施例9:
<正極活物質の製造>
 実施例1で得られたニッケル・コバルト・マンガン系化合物粒子粉末とリチウム化合物とを、リチウム/(コバルト+ニッケル+マンガン)のモル比が1.05となるように所定量を十分混合し、混合粉を大気中で、950℃で10時間焼成してリチウム複合酸化物粒子粉末を得た。
  得られたリチウム複合酸化物粒子粉末の組成比は、Ni:Co:Mnのモル比(mol%)で48.85:20.29:30.86であり、ニッケル、コバルト及びマンガンの総量に対するLiのモル比(リチウム/(ニッケル+コバルト+マンガン))は1.05であった。また、得られたリチウム複合酸化物粒子粉末のX線回折の結果、層状リチウム化合物単相であり不純物相は存在しなかった。また、平均粒子径11.6μm、体積基準のピークの半価幅が4.4μm、BET比表面積値は0.31m/gであり、粒度が均一な粒子であった。
 前記正極活物質を用いて作製したコイン型電池は、初期放電容量が165.7mAh/gであり、初期効率が86.0%であり、レート特性(1C/0.1C)が89.7%、200サイクルでの容量維持率が室温で87.3%、60℃で66.2%であった。
 比較例4:
<正極活物質の製造>
 比較例1で得られたニッケル・コバルト・マンガン複合粒子粉末とリチウム化合物とを、リチウム/総メタルのモル比が1.05となるように所定量を十分混合し、混合粉を大気中で、950℃で10時間焼成してリチウム複合酸化物粒子粉末を得た。
 得られたリチウム複合酸化物粒子粉末の組成比は、Ni:Co:Mnのモル比(mol%)で50.38:20.77:28.85であり、ニッケル、コバルト及びマンガンの総量に対するLiのモル比(リチウム/(ニッケル+コバルト+マンガン))は1.05であった。また、得られたリチウム複合酸化物粒子粉末のX線回折の結果、層状リチウム化合物単相であり不純物相は存在しなかった。また、平均粒子径10.8μm、体積基準のピークの半価幅が6.9μm、BET比表面積値は0.38m/gであった。
 前記正極活物質を用いて作製したコイン型電池は、初期放電容量が158.2mAh/gであり、初期効率が82.6%であり、レート特性(1C/0.1C)が84.9%、200サイクルでの容量維持率が室温で80.0%、60℃で60.1%であった。
 このときの製造条件、得られたリチウム複合酸化物粒子粉末の複合諸特性、及び電池特性を表3及び表4に示す。
実施例10~16、比較例5、6:
 ニッケル・コバルト・マンガン系化合物粒子粉末の種類、リチウム/(コバルト+ニッケル+マンガン)のモル比及び焼成温度を種々変化させた以外は実施例9と同様にして、リチウム複合酸化物粒子粉末を得た。
 このときの製造条件、得られたリチウム複合酸化物粒子粉末の複合諸特性、及び電池特性を表3に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例で得られたリチウム複合酸化物粒子粉末は、比較例で得られたリチウム複合酸化物粒子粉末に対し、初期容量、初期効率及びレート特性の点で優れることが確認された。殊に、ほぼ同じ組成割合を有するリチウム複合酸化物粒子粉末(例えば、実施例9~12と比較例4)を比較すれば、実施例のリチウム複合酸化物粒子粉末が優れた特性を有することが明らかである。
 実施例9と比較例4で得られたリチウム複合酸化物粒子粉末の粒度分布図を図32に、実施例9と比較例4で得られたリチウム複合酸化物粒子粉末を用いた電池のレート特性を図33、室温サイクル特性を図34、高温60℃でのサイクル特性を図35に示す。
 実施例で得られたリチウム複合酸化物粒子粉末は、比較例で得られたリチウム複合酸化物粒子粉末に対し、室温及び高温での容量維持率に優れることが確認された。
 実施例9で得られたリチウム複合酸化物粒子粉末のXRDプロファイルを図36に示す。
 また、実施例9及び13、比較例4及び6で得られたリチウム複合酸化物粒子粉末のSEM写真を、それぞれ、図37~図48に示す。
 得られるリチウム複合酸化物粒子粉末は、前駆体であるニッケル・コバルト・マンガン系化合物粒子粉末の粒子形状をほぼ継承していることが確認された。
 本発明に係るニッケル・コバルト・マンガン系化合物粒子粉末を正極活物質の前駆体として用いることで、焼成条件を工夫することなく、一次粒子が比較的大きく、比表面積が比較的小さい正極活物質用粒子が得られ、得られた正極活物質を二次電池として使用すると、熱安定性が良好で、電池膨れ防止が向上し、容量が高くレート特性が優れ、室温、高温サイクル特性が良好な非水電解質二次電池を得ることができる。
 1:反応槽
 2:攪拌機
 3:ドラフトチューブ
 4:ポンプ
 5:濃縮器
 6:バッフル
 10:原料供給
 11:戻りライン

Claims (8)

  1.  二次粒子の体積基準の平均粒子径(D50)が3.0~25.0μmであり、前記平均粒子径(D50)と二次粒子の体積基準の粒度分布におけるピークの半価幅(W)とが下記関係式1を満足するニッケル・コバルト・マンガン系化合物粒子粉末。
    (関係式1)
     W≦0.4×D50
  2.  Ni:Co:Mnのモル比(mol%)をx:y:zとした場合、xが5~65mol%、yが5~65mol%、zが5~55mol%である(ただし、x+y+z=100mol%である)請求項1記載のニッケル・コバルト・マンガン系化合物粒子粉末。
  3.  攪拌機とドラフトチューブを具備し、濃縮器を連結した反応装置を用意し、あらかじめアルカリ溶液を反応器内に導入し、該アルカリ溶液中に、ニッケル、コバルト及びマンガンを含有する金属塩を含有する溶液とアルカリ溶液とを反応液面上部から連続的に滴下し、中和、沈殿反応を行ってニッケル・コバルト・マンガン系化合物粒子を生成する反応において、生成する反応スラリーの一部を反応器中段から抜き出し濃縮器に導入し、濃縮器で濃縮されたスラリーを反応器に再度導入する際、反応器中の反応スラリーの旋回流と同方向となるように導入する工程を行って、ニッケル・コバルト・マンガン系化合物粒子を生成させ、得られたニッケル・コバルト・マンガン系化合物粒子を含有する反応スラリーを濾過、水洗し、150~250℃で乾燥することを特徴とする請求項1又は2に記載のニッケル・コバルト・マンガン系化合物粒子粉末の製造方法。
  4.  アルカリ溶液として水酸化ナトリウムとアンモニアを用いる請求項3に記載のニッケル・コバルト・マンガン系化合物粒子粉末の製造方法。
  5.  少なくとも、ニッケル、コバルト及びマンガンを含有するリチウム複合酸化物粒子粉末であって、該リチウム複合酸化物粒子粉末の二次粒子の体積基準の平均粒子径(D50)が3.0~25.0μmであり、前記平均粒子径(D50)と二次粒子の体積基準の粒度分布におけるピークの半価幅(W)とが下記関係式2を満足するリチウム複合酸化物粒子粉末。
    (関係式2)
     W≦0.4×D50
  6.  Ni:Co:Mnのモル比(mol%)をx:y:zとした場合、xが5~65mol%、yが5~65mol%、zが5~55mol%であり(ただし、x+y+z=100mol%である)、ニッケル、コバルト及びマンガンの総量に対するLiのモル比(リチウム/(ニッケル+コバルト+マンガン))が0.90~1.20である請求項5記載のリチウム複合酸化物粒子粉末。
  7.  請求項1又は2に記載のニッケル・コバルト・マンガン系化合物粒子粉末とリチウム化合物とを混合し、800~1100℃の温度範囲で熱処理を行うリチウム複合酸化物粒子粉末の製造方法。
  8.  請求項5又は6に記載のリチウム複合酸化物粒子粉末を正極活物質として使用した非水電解質二次電池。
PCT/JP2010/068640 2009-10-22 2010-10-21 ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池 WO2011049185A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800465812A CN102574700A (zh) 2009-10-22 2010-10-21 镍-钴-锰类化合物颗粒粉末及其制造方法、锂复合氧化物颗粒粉末及其制造方法和非水电解质二次电池
KR1020127009897A KR101757490B1 (ko) 2009-10-22 2010-10-21 니켈·코발트·망간계 화합물 입자 분말 및 그의 제조 방법, 리튬 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
US13/503,155 US8592085B2 (en) 2009-10-22 2010-10-21 Nickel-cobalt-maganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery
EP10825034.1A EP2492243B1 (en) 2009-10-22 2010-10-21 Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
CA2778286A CA2778286C (en) 2009-10-22 2010-10-21 Nickel-cobalt-manganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-243923 2009-10-22
JP2009243923 2009-10-22

Publications (1)

Publication Number Publication Date
WO2011049185A1 true WO2011049185A1 (ja) 2011-04-28

Family

ID=43900408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068640 WO2011049185A1 (ja) 2009-10-22 2010-10-21 ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池

Country Status (7)

Country Link
US (1) US8592085B2 (ja)
EP (1) EP2492243B1 (ja)
JP (1) JP5672442B2 (ja)
KR (1) KR101757490B1 (ja)
CN (2) CN106395918A (ja)
CA (1) CA2778286C (ja)
WO (1) WO2011049185A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073826A (ja) * 2011-09-28 2013-04-22 Kri Inc 非水系二次電池用正極活物質及びそれを用いた非水系二次電池
JP2016500048A (ja) * 2013-02-13 2016-01-07 エルジー・ケム・リミテッド 低いタップ密度を有する遷移金属前駆体及び高い粒子強度を有するリチウム遷移金属酸化物
EP2866284A4 (en) * 2012-06-21 2016-03-16 Tsukishima Kikai Co METHOD AND DEVICE FOR MANUFACTURING REACTIVE AGGLOMERATED PARTICLES, PROCESS FOR PRODUCING ACTIVE SUBSTANCE FOR LITHIUM-ION BATTERY, AND LITHIUM-ION BATTERY, AND METHOD FOR MANUFACTURING SAME
JP2017065975A (ja) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 ニッケルマンガン含有複合水酸化物およびその製造方法

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649330B2 (ja) * 2010-04-28 2015-01-07 第一稀元素化学工業株式会社 ニッケル−コバルト−マンガン系複合酸化物及びその製造方法
JP2013151383A (ja) * 2012-01-24 2013-08-08 Tsukishima Kikai Co Ltd 金属の凝集粒子の製造方法、リチウムイオン電池用正極活物質製造方法、リチウムイオン電池の製造方法並びにリチウムイオン電池
JP5799849B2 (ja) * 2012-02-21 2015-10-28 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物及びその製造方法
JP5505565B2 (ja) * 2012-02-23 2014-05-28 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
JP6003157B2 (ja) * 2012-03-30 2016-10-05 戸田工業株式会社 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2013162086A1 (ko) * 2012-04-24 2013-10-31 주식회사 엘지화학 출력 향상을 위한 리튬이차전지 복합 전극용 활물질 및 이를 포함하는 리튬이차전지
WO2014024571A1 (ja) * 2012-08-07 2014-02-13 日産自動車株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
KR102168979B1 (ko) * 2012-10-17 2020-10-22 도다 고교 가부시끼가이샤 Li-Ni 복합 산화물 입자 분말 및 비수전해질 이차 전지
KR101726530B1 (ko) 2013-02-28 2017-04-12 닛산 지도우샤 가부시키가이샤 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
CN105122516B (zh) 2013-02-28 2017-03-29 日产自动车株式会社 正极活性物质、正极材料、正极及非水电解质二次电池
JP6075440B2 (ja) 2013-02-28 2017-02-08 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
US9608261B2 (en) 2013-03-15 2017-03-28 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN110518234A (zh) 2013-03-15 2019-11-29 日产自动车株式会社 正极活性物质、正极材料、正极及非水电解质二次电池
JP6176317B2 (ja) 2013-03-15 2017-08-16 日産自動車株式会社 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
EP2991152B1 (en) 2013-04-26 2018-08-29 Nissan Motor Co., Ltd Nonaqueous-electrolyte secondary battery
EP2991151B1 (en) 2013-04-26 2018-11-07 Nissan Motor Co., Ltd Nonaqueous-electrolyte secondary battery
JP5701343B2 (ja) * 2013-07-10 2015-04-15 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
EP3026734B1 (en) 2013-07-24 2017-07-19 Nissan Motor Co., Ltd Non-aqueous electrolyte secondary battery
KR101903827B1 (ko) * 2013-07-31 2018-11-07 한양대학교 산학협력단 전이금속 복합 산화물의 제조 방법 및 이에 의하여 제조된 전이금속 복합 산화물 및 이를 이용하여 제조된 리튬 복합 산화물
JP6369471B2 (ja) * 2013-10-03 2018-08-08 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
DE102013111356B4 (de) 2013-10-15 2019-04-18 Lemken Gmbh & Co. Kg Säherz für Einzelkornsämaschine
KR20160077082A (ko) * 2013-10-24 2016-07-01 다우 글로벌 테크놀로지스 엘엘씨 개선된 리튬 금속 옥사이드 캐소드 물질 및 이를 제조하는 방법
KR101547972B1 (ko) * 2014-01-09 2015-08-27 주식회사 이엔드디 니켈―코발트―망간 복합 전구체 제조 방법
TWI633062B (zh) 2014-06-12 2018-08-21 烏明克公司 用於可充電電池的鋰過渡金屬氧化物陰極材料之先質
WO2016068263A1 (ja) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 ニッケル含有複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
US20170346128A1 (en) * 2014-12-26 2017-11-30 Nissan Motor Co., Ltd. Electric Device
JP6068530B2 (ja) * 2015-02-16 2017-01-25 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
JP6509581B2 (ja) * 2015-02-20 2019-05-08 住友化学株式会社 遷移金属含有炭酸塩化合物、その製造方法、正極活物質の製造方法、ならびにリチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6768647B2 (ja) 2015-06-02 2020-10-14 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US10270127B2 (en) 2015-07-09 2019-04-23 Nissan Motor Co., Ltd. Nonaqueous electrolyte secondary battery
US11217790B2 (en) 2016-01-06 2022-01-04 Sumitomo Metal Mining Co., Ltd. Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP6691654B2 (ja) 2016-01-27 2020-05-13 月島機械株式会社 粒子の製造装置及び粒子の製造方法
KR101768374B1 (ko) * 2016-04-29 2017-08-14 주식회사 엘지화학 복합 전이금속산화물계 전구체 및 이의 제조방법, 상기 전구체를 이용한 양극활물질
JP6142295B1 (ja) * 2016-06-07 2017-06-07 株式会社田中化学研究所 二次電池用正極活物質
WO2017212594A1 (ja) 2016-06-08 2017-12-14 日産自動車株式会社 非水電解質二次電池
WO2017212597A1 (ja) 2016-06-08 2017-12-14 日産自動車株式会社 非水電解質二次電池
US11569503B2 (en) * 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11302919B2 (en) 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US10581070B2 (en) * 2016-08-02 2020-03-03 Apple Inc. Coated nickel-based cathode materials and methods of preparation
MY174237A (en) 2016-08-10 2020-04-01 Envision Aesc Japan Ltd Non-aqueous electrolyte secondary battery
EP3333129B1 (en) 2016-12-08 2020-10-21 Samsung SDI Co., Ltd. Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery including positive electrode including the same
US11456458B2 (en) 2016-12-08 2022-09-27 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
US11367872B2 (en) 2017-03-03 2022-06-21 Umicore Precursor and method for preparing Ni based cathode material for rechargeable lithium ion batteries
WO2018158078A1 (en) * 2017-03-03 2018-09-07 Umicore PRECURSOR AND METHOD FOR PREPARING Ni BASED CATHODE MATERIAL FOR RECHARGEABLE LITHIUM ION BATTERIES
CN107275634B (zh) * 2017-06-16 2020-05-19 泰山学院 一种无络合剂合成高振实密度、高容量球形富锂锰基正极材料的方法
CN107331859B (zh) * 2017-07-28 2019-12-10 荆门市格林美新材料有限公司 一种单釜快速合成三元锂电池正极材料前驱体的方法
KR102179970B1 (ko) * 2017-12-08 2020-11-17 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체, 이의 제조방법
CN111788157B (zh) * 2018-02-28 2022-07-26 株式会社Lg化学 制备二次电池用正极活性材料的方法和设备
CN108461749B (zh) * 2018-06-04 2024-02-13 浙江东瓯过滤机制造有限公司 一种三元前驱体生产优化控制装置及其优化控制方法
KR102282278B1 (ko) * 2018-09-07 2021-07-28 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체의 제조 방법
US20220009791A1 (en) * 2018-11-30 2022-01-13 Lg Chem, Ltd. Method for Preparing Positive Electrode Active Material Precursor for Lithium Secondary Battery
CN110550668A (zh) * 2019-07-25 2019-12-10 浙江美都海创锂电科技有限公司 一种动力型单晶ncm622型前驱体浓缩机工艺制备方法
KR20220071151A (ko) * 2019-10-01 2022-05-31 바스프 에스이 혼합 탄산염 또는 혼합 (옥시)수산화물의 침전 방법
KR20210096556A (ko) * 2020-01-21 2021-08-05 닝더 엠프렉스 테크놀로지 리미티드 양극 물질과 이를 포함하는 전기화학 장치 및 전자 장치
CN111540898A (zh) * 2020-05-12 2020-08-14 宁波容百新能源科技股份有限公司 一种一次颗粒均一性好的前驱体的制备方法和应用
EP4011834A1 (en) * 2020-12-10 2022-06-15 Basf Se Process for making an electrode active material
KR102653223B1 (ko) * 2021-02-15 2024-04-01 주식회사 엘지화학 양극 활물질용 전구체 및 그 제조 방법
KR102622334B1 (ko) * 2021-02-18 2024-01-09 주식회사 엘지화학 양극 활물질용 전구체 및 그 제조 방법
CN115584400B (zh) * 2022-09-23 2024-01-09 广东邦普循环科技有限公司 一种镍钴锰金属液的投料方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069910A (ja) * 1995-11-24 1998-03-10 Fuji Chem Ind Co Ltd リチウムニッケル複合酸化物、その製造方法および二次電池用正極活物質
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
WO2002078105A1 (fr) 2001-03-22 2002-10-03 Matsushita Electric Industrial Co., Ltd. Materiau actif a electrode positive et accumulateur a electrolyte non-aqueux contenant ce materiau
JP2003051311A (ja) * 2001-05-31 2003-02-21 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物及びリチウム二次電池用正極材料の製造方法、リチウム二次電池用正極、並びにリチウム二次電池
WO2004092073A1 (ja) 2003-04-17 2004-10-28 Seimi Chemical Co. Ltd. リチウム-ニッケル-コバルト-マンガン含有複合酸化物およびリチウム二次電池用正極活物質用原料とそれらの製造方法
JP2008013405A (ja) * 2006-07-06 2008-01-24 Tosoh Corp リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途
WO2008043558A1 (en) * 2006-10-13 2008-04-17 Toda Kogyo Europe Gmbh Pulverulent compounds, a process for the preparation thereof and the use thereof in lithium secondary batteries
JP2008147068A (ja) 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
JP2009515799A (ja) 2005-08-12 2009-04-16 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 無機化合物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045771A (en) 1995-11-24 2000-04-04 Fuji Chemical Industry Co., Ltd. Lithium-nickel complex oxide, a process for preparing the same and a positive electrode active material for a secondary battery
EP0986121B1 (en) * 1997-05-27 2009-11-25 TDK Corporation Electrode for non-aqueous electrolyte battery
WO2001092158A1 (fr) * 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Oxyde composite de metal de transition de lithium
US20020053663A1 (en) 2000-11-06 2002-05-09 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
US7585435B2 (en) 2000-11-06 2009-09-08 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
EP2144314B1 (en) * 2001-04-20 2015-01-28 GS Yuasa International Ltd. Positive active materials and process for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2003292322A (ja) * 2002-04-01 2003-10-15 Kaisui Kagaku Kenkyusho:Kk リチウムイオン2次電池正極活物質の製造方法
JP4183472B2 (ja) * 2002-10-10 2008-11-19 三洋電機株式会社 非水電解質二次電池
CN101093887A (zh) * 2003-05-13 2007-12-26 三菱化学株式会社 层状锂镍系复合氧化物粉末及其制造方法
KR100548988B1 (ko) * 2003-11-26 2006-02-02 학교법인 한양학원 리튬이차전지용 양극활물질 제조방법, 그 방법에 사용되는반응기 및 그 방법으로 제조되는 리튬이차전지용 양극활물질
CN100452488C (zh) * 2005-10-28 2009-01-14 比亚迪股份有限公司 三元复合锂离子电池正极材料的制备方法
JP4909347B2 (ja) * 2006-06-09 2012-04-04 Agcセイミケミカル株式会社 非水電解質二次電池用正極活物質の製造方法。
US8492030B2 (en) * 2006-06-19 2013-07-23 Uchicago Argonne Llc Cathode material for lithium batteries
JP5172835B2 (ja) * 2007-06-21 2013-03-27 Agcセイミケミカル株式会社 リチウム含有複合酸化物粉末及びその製造方法
DE102007039471A1 (de) * 2007-08-21 2009-02-26 H.C. Starck Gmbh Pulverförmige Verbindungen, Verfahren zu deren Herstellung sowie deren Verwendung in Lithium-Sekundärbatterien
JP5225708B2 (ja) * 2008-02-27 2013-07-03 日本化学工業株式会社 リチウム二次電池正極活物質用リチウムニッケルマンガンコバルト複合酸化物、その製造方法及びリチウム二次電池
CN103259011B (zh) * 2008-03-28 2015-06-03 户田工业株式会社 氧化氢氧化钴颗粒粉末及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069910A (ja) * 1995-11-24 1998-03-10 Fuji Chem Ind Co Ltd リチウムニッケル複合酸化物、その製造方法および二次電池用正極活物質
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
WO2002078105A1 (fr) 2001-03-22 2002-10-03 Matsushita Electric Industrial Co., Ltd. Materiau actif a electrode positive et accumulateur a electrolyte non-aqueux contenant ce materiau
JP2003051311A (ja) * 2001-05-31 2003-02-21 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物及びリチウム二次電池用正極材料の製造方法、リチウム二次電池用正極、並びにリチウム二次電池
WO2004092073A1 (ja) 2003-04-17 2004-10-28 Seimi Chemical Co. Ltd. リチウム-ニッケル-コバルト-マンガン含有複合酸化物およびリチウム二次電池用正極活物質用原料とそれらの製造方法
JP2009515799A (ja) 2005-08-12 2009-04-16 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 無機化合物
JP2008013405A (ja) * 2006-07-06 2008-01-24 Tosoh Corp リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途
WO2008043558A1 (en) * 2006-10-13 2008-04-17 Toda Kogyo Europe Gmbh Pulverulent compounds, a process for the preparation thereof and the use thereof in lithium secondary batteries
JP2008147068A (ja) 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073826A (ja) * 2011-09-28 2013-04-22 Kri Inc 非水系二次電池用正極活物質及びそれを用いた非水系二次電池
EP2866284A4 (en) * 2012-06-21 2016-03-16 Tsukishima Kikai Co METHOD AND DEVICE FOR MANUFACTURING REACTIVE AGGLOMERATED PARTICLES, PROCESS FOR PRODUCING ACTIVE SUBSTANCE FOR LITHIUM-ION BATTERY, AND LITHIUM-ION BATTERY, AND METHOD FOR MANUFACTURING SAME
JP2016500048A (ja) * 2013-02-13 2016-01-07 エルジー・ケム・リミテッド 低いタップ密度を有する遷移金属前駆体及び高い粒子強度を有するリチウム遷移金属酸化物
US11577969B2 (en) 2013-02-13 2023-02-14 Lg Energy Solution, Ltd. Transition metal precursor having low tap density and lithium transition metal oxide having high particle strength
JP2017065975A (ja) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 ニッケルマンガン含有複合水酸化物およびその製造方法
WO2017057311A1 (ja) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 ニッケルマンガン含有複合水酸化物およびその製造方法
CN108025925A (zh) * 2015-09-30 2018-05-11 住友金属矿山株式会社 含镍锰的复合氢氧化物及其制造方法

Also Published As

Publication number Publication date
KR101757490B1 (ko) 2017-07-12
CN106395918A (zh) 2017-02-15
JP5672442B2 (ja) 2015-02-18
CN102574700A (zh) 2012-07-11
KR20120098631A (ko) 2012-09-05
JP2011105588A (ja) 2011-06-02
CA2778286A1 (en) 2011-04-28
EP2492243A4 (en) 2015-01-21
CA2778286C (en) 2018-07-24
EP2492243A1 (en) 2012-08-29
US20130045421A1 (en) 2013-02-21
EP2492243B1 (en) 2019-04-24
US8592085B2 (en) 2013-11-26

Similar Documents

Publication Publication Date Title
JP5672442B2 (ja) ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
KR101131479B1 (ko) 리튬-니켈-코발트-망간-불소 함유 복합 산화물 및 그제조방법과 그것을 사용한 리튬 이차 전지
JP4998753B2 (ja) コバルト酸化物粒子粉末及びその製造法、非水電解質二次電池用正極活物質及びその製造法並びに非水電解質二次電池
JP6112118B2 (ja) Li−Ni複合酸化物粒子粉末並びに非水電解質二次電池
JP6107832B2 (ja) Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR100694567B1 (ko) 리튬-니켈-코발트-망간 함유 복합 산화물 및 리튬 이차전지용 양극 활성물질용 원료와 그것들의 제조방법
JP5798681B2 (ja) サイズ依存性の組成を有する正極材料
TWI485920B (zh) 於可充電鋰電池中綜合高安全性和高功率之正極材料
JP4211865B2 (ja) 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
US8287828B2 (en) Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
JP4268392B2 (ja) リチウム二次電池用の正極活物質及びその製造方法
KR101562686B1 (ko) 옥시수산화코발트 입자 분말 및 그의 제조법 및 코발트산리튬 입자 분말, 그의 제조법, 및 그것을 사용한 비수전해질 이차 전지
WO2011065423A1 (ja) 非水電解質二次電池用Li-Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5321802B2 (ja) コバルト酸リチウム粒子粉末及びその製造法、並びに非水電解質二次電池
JP3974420B2 (ja) リチウム二次電池用正極活物質の製造方法
JP2012216547A (ja) マンガンニッケル複合酸化物粒子粉末及びその製造方法、非水電解質二次電池用正極活物質粒子粉末の製造方法及び非水電解質二次電池
JP5206948B2 (ja) オキシ水酸化コバルト粒子粉末及びその製造法
JP3974396B2 (ja) リチウム二次電池用正極活物質の製造方法
JP6458542B2 (ja) 水酸化ニッケル粒子粉末及びその製造方法、正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
KR102533325B1 (ko) 리튬 전이 금속 복합 산화물 및 제조 방법
JP7273260B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
WO2020218592A1 (ja) ニッケル複合水酸化物、ニッケル複合水酸化物の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池
JP4305613B2 (ja) 非水電解質二次電池用正極活物質並びに非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080046581.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127009897

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2778286

Country of ref document: CA

Ref document number: 2010825034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13503155

Country of ref document: US