WO2014024571A1 - リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2014024571A1
WO2014024571A1 PCT/JP2013/066795 JP2013066795W WO2014024571A1 WO 2014024571 A1 WO2014024571 A1 WO 2014024571A1 JP 2013066795 W JP2013066795 W JP 2013066795W WO 2014024571 A1 WO2014024571 A1 WO 2014024571A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium ion
active material
lithium
secondary battery
Prior art date
Application number
PCT/JP2013/066795
Other languages
English (en)
French (fr)
Inventor
山本 伸司
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014024571A1 publication Critical patent/WO2014024571A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery. More specifically, the lithium ion secondary battery of the present invention is used, for example, as a driving power source or auxiliary power source for a motor of a vehicle such as an electric car, a fuel cell car, and a hybrid electric car.
  • a lithium ion secondary battery As a motor drive secondary battery, a lithium ion secondary battery having high theoretical energy has attracted attention, and is currently being rapidly developed.
  • a lithium ion secondary battery is formed by applying a positive electrode slurry containing a positive electrode active material on the surface of a current collector and a negative electrode slurry containing a negative electrode active material on a surface of a negative electrode current collector. The negative electrode thus formed and the electrolyte positioned between them are housed in a battery case.
  • lithium-nickel-manganese-cobalt composite oxide having a layered structure is considered promising as a positive electrode active material that can meet any of the requirements. ing.
  • the present inventors diligently studied to achieve the above object. As a result, it has been found that the above object can be achieved by the configuration including secondary particles having a specific structure made of a lithium-containing transition metal oxide having a layered structure, and the present invention has been completed.
  • the positive electrode active material for a lithium ion secondary battery of the present invention includes secondary particles composed of a lithium-containing transition metal oxide having a layered structure. And secondary particles have a plurality of voids on the surface and inside.
  • the secondary particles have a median diameter (D50) of 5 ⁇ m or more and 15 ⁇ m or less as the secondary particle diameter.
  • the secondary particles are formed by aggregation of primary particles having a crystallite diameter of 30 nm or more and 200 nm or less as the primary particle diameter.
  • the positive electrode for a lithium ion secondary battery of the present invention comprises the above-mentioned positive electrode active material for a lithium ion secondary battery of the present invention, a conductive support agent, and a binder.
  • the lithium ion secondary battery of the present invention comprises the above-mentioned positive electrode for a lithium ion secondary battery of the present invention.
  • a positive electrode active material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a non-aqueous electrolyte secondary battery can be provided.
  • the positive electrode active material for a lithium ion secondary battery the positive electrode for a lithium ion secondary battery, and the lithium ion secondary battery of the present invention will be described in detail.
  • the positive electrode active material 1 for a lithium ion secondary battery of the present embodiment includes secondary particles 2 made of a lithium-containing transition metal oxide having a layered structure. And in this embodiment, secondary particle 2 has a plurality of voids 6 on the surface and inside.
  • the secondary particle 2 has a median diameter (D50) as a secondary particle diameter of 5 ⁇ m to 15 ⁇ m. Furthermore, in the present embodiment, the secondary particles 2 are formed by aggregating primary particles 4 having a crystallite diameter of 30 nm or more and 200 nm or less as the primary particle diameter.
  • Such a positive electrode active material for a lithium ion secondary battery can realize a high discharge capacity retention rate, and therefore, is suitably used for a lithium ion secondary battery positive electrode or a lithium ion secondary battery. As a result, it can be suitably used as a lithium ion secondary battery for a drive power supply or an auxiliary power supply of a vehicle. In addition to this, it is sufficiently applicable to lithium ion secondary batteries for home use and portable devices.
  • the positive electrode active material for a lithium ion secondary battery contains secondary particles, and the secondary particles have a plurality of voids on the surface and inside thereof, and primary particles are aggregated. Are formed.
  • primary particles aggregate to form secondary particles if multiple voids are not formed on the surface or inside of secondary particles, specifically, if secondary particles are produced by a liquid phase method, it is high. The initial discharge capacity can not be obtained.
  • primary particle diameter refers to a crystallite diameter measured and calculated by powder X-ray diffraction (XRD). That is, in the present invention, “primary particles” means crystallites.
  • crystallite refers to the smallest microcrystalline unit constituting a crystal.
  • secondary particle diameter refers to the median diameter (D50) measured and calculated by a laser diffraction type particle size distribution measuring device.
  • the median diameter (D50) as the secondary particle diameter is less than 5 ⁇ m, a high initial discharge capacity can not be obtained. In addition, even when the median diameter (D50) as the secondary particle diameter is more than 15 ⁇ m, a high initial discharge capacity can not be obtained.
  • the crystallite diameter as the primary particle diameter is less than 30 nm, a high initial discharge capacity can not be obtained. In addition, even when the crystallite diameter as the primary particle diameter is more than 200 nm, a high initial discharge capacity can not be obtained. Furthermore, from the viewpoint of improving the rate characteristics, the crystallite diameter as the primary particle diameter is preferably 40 nm or more and 100 nm or less.
  • the positive electrode active material for a lithium ion secondary battery is made of a lithium-containing transition metal oxide having a layered structure.
  • the lithium-containing transition metal oxide having a layered structure is not applied, high initial discharge capacity, rate characteristics and discharge capacity retention rate can not be obtained.
  • lithium-containing transition metal oxide having a layered structure for example, layered systems (lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 )), layered ternary systems (lithium nickel cobalt manganate (Li Examples include NiCoMn) O 2 ), and those obtained by further adding other metal elements to these.
  • layered systems lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 )
  • layered ternary systems lithium nickel cobalt manganate (Li Examples include NiCoMn) O 2
  • the secondary particles satisfy the relationship represented by the following formula (1) improves the lithium diffusibility from the inside of the particles and further improves the initial discharge capacity. It is preferable from the viewpoint of being possible, and it is more preferable that the possible range of d2 / d1 is 40 or more and 200 or less. However, the present invention is not limited to such a range, and it is needless to say that the range may be deviated as long as the effects of the present embodiment can be effectively exhibited.
  • d1 represents a crystallite diameter as a primary particle diameter of the primary particle
  • d2 represents a median diameter (D50) as a secondary particle diameter of the secondary particle.
  • the secondary particles are contained in the secondary particles at an opening diameter of 0.05 ⁇ m or more and 3 ⁇ m or less at an arbitrary cut surface of the secondary particles. Having a plurality of voids is preferable from the viewpoint of improving the lithium diffusion from the inside of the particles and further improving the initial discharge capacity.
  • the opening diameter is more preferably 0.05 ⁇ m or more and 2 ⁇ m or less.
  • the present invention is not limited to such a range, and it is needless to say that the range may be deviated as long as the effects of the present embodiment can be effectively exhibited.
  • the “opening diameter at an arbitrary cut surface of a secondary particle” refers to observation of an arbitrary cut surface of a secondary particle such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). When observed using a means, it means the largest distance among the distances between any two points on the outline of the opening (concave portion) to be observed.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the secondary particles satisfy the relationship represented by the following formula (2) because the so-called crushing strength is high and the active material is not easily broken, so that the probability of roll transfer is remarkable. It is preferable because it decreases.
  • (A2-A1) / A1 in the formula (2) is preferably 0.5 or more.
  • the present invention is not limited to such a range, and it is needless to say that the range may be deviated as long as the effects of the present embodiment can be effectively exhibited.
  • A1 represents the indentation load [unit: mN] at indentation depth 1 ⁇ m by micro indentation
  • A2 represents the indentation load [unit: mN] at indentation depth 2 ⁇ m by micro indentation. .
  • the BET specific surface area by the nitrogen gas adsorption method is 0.5 m 2 / g or more and 6.0 m 2 / g or less. from the viewpoint that it is more preferably at most 0.8 m 2 / g or more 5.0 m 2 / g.
  • the present invention is not limited to such a range, and it is needless to say that the range may be deviated as long as the effects of the present embodiment can be effectively exhibited.
  • the average pore diameter calculated from the time when the nitrogen saturation adsorption amount of the pore distribution curve by the nitrogen gas adsorption method is 85% is 10 nm or more and 50 nm or less. It is preferable that the pore volume is 0.025 cm 3 / g or less from the viewpoint that rate characteristics and initial charge / discharge efficiency can be further improved. Such an average pore diameter is more preferably 20 nm or more and 50 nm or less, and such a pore volume is more preferably 0.02 cm 3 / g or less.
  • the present invention is not limited to such a range, and it is needless to say that the range may be deviated as long as the effects of the present embodiment can be effectively exhibited.
  • particle growth due to firing of primary particles is suppressed, a preferable particle structure is obtained, lithium diffusibility from the inside of the particles can be improved, and the initial discharge capacity can be further improved.
  • the present invention is not limited to such a range, and it is needless to say that the range may be deviated as long as the effects of the present embodiment can be effectively exhibited.
  • the spinel structure change ratio is 1 when all of the Li 2 MnO 3 having the changing layer structure site and the changing layer structure site are changed to the spinel structure LiMn 2 O 4.
  • the spinel structure change ratio is preferably 0.25 or more and less than 1.0 from the viewpoint of obtaining a high initial discharge capacity exceeding 200 mAh / g.
  • the present invention is not limited to such a range, and it is needless to say that the range may be deviated as long as the effects of the present embodiment can be effectively exhibited.
  • the spinel structure change ratio means that Li 2 MnO 3 having a layered structure in the lithium-containing transition metal oxide having the layered structure is spinel by performing charging or charging / discharging in a predetermined potential range.
  • the spinel structure change rate of 1 is set to 1. Specifically, it is defined by the following formula.
  • the spinel structure change ratio about the battery assembled using the positive electrode which used the lithium containing transition metal oxide which has the said layer structure as a positive electrode active material, it charges from initial state A before charge start to 4.5V
  • the charged state B is set, the plateau region is passed, the overcharged state C is charged to 4.8 V, and the discharged state D is discharged to 2.0 V.
  • the “actual capacity of the plateau area” in the above equation is the plateau area in FIG. 2 (specifically, the area from 4.5 V to 4.8 V (the charged state B to the overcharged state C is the actual capacity V BC of the area BC The actual volume of the plateau region) and the region resulting from the change of the crystal structure).
  • the practical amount V AB of the region AB from the initial state A to the charged state B charged to 4.5 V is the layered structure
  • BC corresponds to the composition ratio (x) of Li 2 MnO 3 which is a spinel structural site and the theoretical capacity (V S )
  • the composition ratio of Li 2 MnO 3 in the oxide can be calculated from the composition formula of the lithium-containing transition metal oxide having a layered structure.
  • the presence or absence of the layered structure site and the spinel structure site in the lithium-containing transition metal oxide having a layered structure can be determined by the existence of a peak unique to the layered structure and the spinel structure by X-ray diffraction analysis (XRD), The ratio can be determined from the measurement and calculation of the capacity as described above.
  • the spinel structure change rate does not reach 1.0, and in the case of less than 0.25, the discharge capacity and capacity retention ratio of lithium-containing transition metal oxides having the conventional layered structure are at most high. Only lithium-containing transition metal oxides having a layered structure that can be realized are obtained.
  • a, b, c and d are 0 ⁇ a ⁇ 1.35, 0 ⁇ b ⁇ 1.35, 0 ⁇ c ⁇
  • the spinel structure change ratio of the lithium-containing transition metal oxide having a layered structure is 0.4 or more and less than 0.9.
  • a, b, c and d are 0 ⁇ a ⁇ 1.3, 0 ⁇ b ⁇ 1.3, 0 ⁇ c ⁇
  • the maximum potential of the positive electrode in a predetermined potential range is 4.3 V or more and 4.8 V or less in terms of a lithium metal counter electrode
  • lithium ion is preferable. It is suitably used for a positive electrode for secondary battery and a lithium ion secondary battery. As a result, it can be used more suitably as a lithium ion secondary battery for driving power supply of vehicles or for auxiliary power supply. In addition to this, it is sufficiently applicable to lithium ion secondary batteries for home use and portable devices.
  • the method for producing the positive electrode active material for a lithium ion secondary battery according to one embodiment of the present invention described above is not particularly limited, but lithium carbonate, a manganese compound, a nickel compound and optionally used
  • a slurry preparation step of grinding a cobalt compound and each metal compound in a liquid medium to obtain a slurry in which these are uniformly dispersed, a spray drying step of spray drying the obtained slurry, and the obtained spray dried body are preferably produced by a production process including a firing step of firing in an oxygen-containing gas atmosphere, and a classification step of classifying the obtained fired powder.
  • the method for producing the positive electrode active material for a lithium ion secondary battery of the present invention is not limited to this method. Each step will be described in detail below.
  • lithium carbonate (Li 2 CO 3 ) is used as the lithium compound among the raw material compounds used to prepare the slurry in producing the positive electrode active material for lithium ion secondary batteries, but the other one kind is used You may use together with the above lithium compound.
  • lithium compounds which do not contain nitrogen atoms, sulfur atoms or halogen atoms are preferable because they do not generate harmful substances such as SOx and NOx at the time of baking treatment, and they are decomposed at the time of baking It is a compound which is easy to form a void in the secondary particle of spray-dried powder, for example, by generating gas, and in consideration of these points, LiOH and LiOH.H 2 O are preferable.
  • nickel compounds such as 4 ⁇ 2H 2 O.
  • Ni (OH) 2 , NiO, NiOOH, NiCO 3 , and a decomposition gas are further generated at the time of firing from the viewpoint of being inexpensively available as an industrial raw material and having high reactivity, and the like.
  • Particularly preferred are Ni (OH) 2 , NiOOH and NiCO 3 from the viewpoint of easy formation of voids in the particles.
  • One of these nickel compounds may be used alone, or two or more thereof may be used in combination.
  • manganese oxides such as Mn 2 O 3 , MnO 2 , Mn 3 O 4 , MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganese acetate, manganese dicarboxylic acid, manganese citrate, manganese fatty acid And manganese salts, oxyhydroxides, and halides such as manganese chloride.
  • MnO 2 , Mn 2 O 3 , Mn 3 O 4 and MnCO 3 are preferable because they do not generate gases such as SOx and NOx at the time of firing treatment and can be obtained inexpensively as industrial raw materials.
  • these manganese compounds may be used alone or in combination of two or more.
  • Co (OH) 2 , CoOOH, CoO, Co 2 O 3 , Co 3 O 4 , and CoCO 3 are preferable in that no harmful substances such as SOx and NOx are generated in the firing step, and industrial use is more preferable.
  • Co (OH) 2 and CoOOH in terms of availability at low cost and high reactivity.
  • Co (OH) 2 , CoOOH, and CoCO 3 are particularly preferable from the viewpoint of easily forming voids in the secondary particles of the spray-dried powder, for example, by generating a decomposition gas at the time of firing.
  • One of these cobalt compounds may be used alone, or two or more thereof may be used in combination.
  • the addition step of the compound used here for the purpose of efficiently forming the voids of the secondary particles can be selected either before or after mixing the raw materials, depending on the properties thereof. It is. In particular, it is preferable to add a compound which is likely to be decomposed due to mechanical shear stress being applied by the mixing step after the mixing step.
  • the method of mixing the raw materials is not particularly limited, and may be wet or dry.
  • a method using an apparatus such as a ball mill, a vibration mill or a bead mill can be mentioned.
  • Wet mixing in which the raw material compounds are mixed in a liquid medium such as water or alcohol is preferable because more uniform mixing is possible and the reactivity of the mixture can be increased in the firing step.
  • the mixing time varies depending on the mixing method, but it is sufficient if the raw materials are uniformly mixed at the particle level, for example, usually about 1 hour to 2 days in a ball mill (wet or dry), residence time in a bead mill (wet continuous method) Is usually about 0.1 hour to 6 hours.
  • the particle size of the secondary particles of the raw material particles after pulverization is an index, and the crystallite diameter as the primary particle diameter is more preferably about 200 nm or less.
  • the means for achieving such a degree of grinding is not particularly limited, but a wet grinding method is preferred. Specifically, Dyno mill etc. can be mentioned.
  • the drying method is not particularly limited, but spray drying is preferable from the viewpoints of uniformity of the formed particulate matter, powder flowability, powder handling performance, and efficient production of dried particles.
  • the spraying method is not particularly limited, and examples thereof include a method using a nozzle type atomizer (two-fluid nozzle, three-fluid nozzle, four-fluid nozzle), a rotating disk type atomizer, and the like.
  • the slurry obtained by wet pulverizing the raw material compound is spray-dried to obtain a powder in which primary particles are aggregated to form secondary particles.
  • a method of confirming the shape for example, scanning electron microscope observation and cross-sectional scanning electron microscope observation can be mentioned.
  • the median diameter (D50) of the powder obtained by spray-drying which is a calcination precursor of secondary particles is 15 micrometers or less.
  • the particle size can be controlled by appropriately selecting the spray type, pressurized gas flow feed rate, slurry feed rate, drying temperature and the like.
  • the obtained powder is calcined to produce a lithium nickel manganese cobalt-based composite oxide powder
  • V slurry viscosity at spray drying
  • S slurry supply amount
  • G gas supply amount
  • the slurry viscosity V (cp) is usually 50 cp or more, preferably 100 cp or more, more preferably 300 cp or more, most preferably 500 cp as a lower limit, and usually 4000 cp or less, preferably 3500 cp or less as an upper limit. Is 3000 cp or less, most preferably 2500 cp or less.
  • the gas-liquid ratio G / S is usually 500 or more, preferably 1000 or more, more preferably 1500 or more, most preferably 1800 or more as the lower limit, and usually 10000 or less, preferably 9000 or less as the upper limit. Preferably it is 8000 or less, most preferably 7500 or less.
  • the slurry supply amount S and the gas supply amount G are appropriately set according to the viscosity of the slurry to be subjected to the spray drying, the specification of the spray drying apparatus used, and the like.
  • spray drying of the slurry is usually 50 ° C. or more, preferably 70 ° C. or more, more preferably 120 ° C. or more, most preferably 140 ° C. or more, and usually 300 ° C. or less, preferably 250 ° C. or less, more preferably 200 It is preferred to carry out at a temperature below ° C, most preferably below 180 ° C. If this temperature is too high, the obtained granulated particles may have many hollow structures, and the packing density of the powder may be reduced. On the other hand, if it is too low, problems such as powder sticking and clogging may occur due to moisture condensation at the powder outlet.
  • the spray-dried powder as a fired precursor is then fired.
  • the “baked precursor” means a precursor of a lithium nickel manganese (cobalt) -based composite oxide before firing obtained by processing a spray-dried powder.
  • the above-mentioned spray-dried powder may be made to contain a compound that generates voids in the secondary particles by generating or sublimating a decomposition gas at the time of the above-described firing, and may be used as a firing precursor.
  • the firing conditions also depend on the composition and the lithium compound raw material used, but as the tendency, if the firing temperature is too high, primary particles grow excessively, sintering between particles proceeds too much, and the specific surface area decreases. Pass. On the other hand, if it is too low, heterophases are mixed, and the crystal strain does not grow and the lattice strain becomes too large. In addition, the specific surface area is too large.
  • the firing temperature is usually 700 ° C. or higher, preferably 900 ° C. or higher, more preferably 920 ° C. or higher, still more preferably 940 ° C. or higher, still more preferably 950 ° C. or higher, most preferably 975 ° C. or higher
  • the temperature is 1200 ° C. or less, preferably 1175 ° C. or less, more preferably 1150 ° C. or less, and most preferably 1125 ° C. or less.
  • a box furnace, a tube furnace, a tunnel furnace, a rotary kiln, etc. can be used for firing.
  • the firing process is usually divided into three parts, temperature raising, maximum temperature holding and temperature lowering.
  • the second highest temperature holding part is not necessarily one time, and may be filled with two or more steps depending on the purpose, meaning that the aggregation is eliminated to such an extent that secondary particles are not destroyed.
  • the steps of temperature increase, maximum temperature holding, and temperature decrease may be repeated twice or more, with a crushing step or a crushing step meaning that primary particles or further crushing into a fine powder are interposed.
  • the temperature in the furnace is usually raised at a temperature rising rate of 1 ° C./min to 10 ° C./min. If the heating rate is too slow, it takes time to be industrially disadvantageous, but if it is too fast, the furnace temperature may not follow the set temperature depending on the furnace.
  • the temperature rising rate is preferably 1.5 ° C./minute or more, more preferably 2 ° C./minute or more, still more preferably 3 ° C./minute or more, preferably 7 ° C./minute or less, more preferably 5 ° C./minute or less More preferably, it is 4 ° C./min or less.
  • the holding time in the maximum temperature holding step varies depending on the temperature, it is usually 30 minutes or more, preferably 1 hour or more, more preferably 2 hours or more, still more preferably 3 hours or more, in the temperature range described above Is 5 hours or more and 50 hours or less, preferably 25 hours or less, more preferably 20 hours or less, still more preferably 15 hours or less, and most preferably 10 hours or less. If the firing time is too short, it will be difficult to obtain a lithium-nickel-manganese-cobalt composite oxide powder with good crystallinity, and it is not practical that the firing time is too long. If the firing time is too long, it is disadvantageous because the crushing is required or the crushing becomes difficult.
  • the inside of the furnace is cooled at a temperature lowering rate of usually 0.1 ° C./min or more and 10 ° C./min or less. If it is too late, it takes time and is industrially disadvantageous, but if it is too fast, it tends to lack the uniformity of the object or accelerate the deterioration of the container.
  • the temperature lowering rate is preferably 1 ° C./min or more, more preferably 3 ° C./min or more, preferably 7 ° C./min or less, more preferably 5 ° C./min or less.
  • the atmosphere at the time of firing has a suitable oxygen partial pressure region depending on the composition of the lithium transition metal based compound powder to be obtained, various gas atmospheres suitable for satisfying it are used.
  • the gas atmosphere include oxygen, air, nitrogen, argon, hydrogen, carbon dioxide, and a mixed gas thereof.
  • An oxygen-containing gas atmosphere such as air can be used as the lithium-nickel-manganese-cobalt-based composite oxide powder specifically implemented in the present invention.
  • the atmosphere has an oxygen concentration of 1% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more and 100% by volume or less, preferably 50% by volume or less, more preferably 25% by volume or less.
  • a lithium compound, a nickel compound, a manganese compound and a cobalt compound are contained in a liquid medium.
  • a liquid medium When preparing the slurry dispersed in, it is possible to control the target molar ratio by adjusting the mixing ratio of each compound.
  • the fired powder obtained by firing is classified to be crushed, adjusted to a particle size distribution state preferable for electrode preparation, or to remove coarse foreign matter and the like.
  • the classification method is not particularly limited as long as the purpose can be achieved, and examples thereof include sieve classification (vibration sieve, centrifugal sieve), vigor classification and the like.
  • Specific examples of the apparatus include, for example, "Ultrasonic Vibrating Sieve” manufactured by Dalt, "Pausifter” manufactured by Tsukasa Kogyo, "Turbos Cleaner” manufactured by Turbo Kogyo, and “Turboplex” manufactured by Hosokawa Micron However, it is not limited to these.
  • the classified powder obtained by classification is a secondary particle formed by aggregation of primary particles, and the secondary particle has voids on the surface and in the inside, and is made of a lithium-containing transition metal oxide having a layered structure. Become.
  • the maximum potential of the positive electrode in a predetermined potential range is 4.3 V or more and 4.8 V or less in terms of a lithium metal counter electrode
  • FIG. 3 is a cross-sectional view schematically illustrating an example of a lithium ion secondary battery according to an embodiment of the present invention.
  • a lithium ion secondary battery is called a laminate type lithium ion secondary battery.
  • the battery element 20 to which the positive electrode lead 31 and the negative electrode lead 32 are attached is enclosed in an exterior body 40 formed of a laminate film.
  • the positive electrode lead 31 and the negative electrode lead 32 are derived
  • the positive electrode lead and the negative electrode lead may be led out in the same direction from the inside to the outside of the outer package.
  • such a positive electrode lead and a negative electrode lead can be attached to a positive electrode current collector and a negative electrode current collector to be described later by, for example, ultrasonic welding or resistance welding.
  • the positive electrode lead 31 and the negative electrode lead 32 are made of, for example, a metal material such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), an alloy thereof, stainless steel (SUS) or the like.
  • a metal material such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), an alloy thereof, stainless steel (SUS) or the like.
  • the present invention is not limited thereto, and conventionally known materials used as leads for lithium ion secondary batteries can be used.
  • the positive electrode lead and the negative electrode lead may be made of the same material or may be made of different materials. Also, as in the present embodiment, the separately prepared lead may be connected to a positive electrode current collector and a negative electrode current collector, which will be described later, or each positive electrode current collector and each negative electrode current collector, which will be described later, are extended. Thus, the leads may be formed. Although not shown, the positive electrode lead and the negative electrode lead of the portion taken out of the outer package do not affect products (eg, automobile parts, particularly electronic devices etc.) by contacting peripheral devices, wiring etc. and causing electric leakage. Thus, it is preferable to coat with a heat-resistant insulating heat-shrinkable tube or the like.
  • a current collector plate may be used for the purpose of extracting current from the battery.
  • the current collector plate is electrically connected to the current collector and the leads, and is taken out of the laminate film which is the exterior material of the battery.
  • the material which comprises a current collection board is not specifically limited, The well-known high-conductivity material conventionally used as a current collection board for lithium ion secondary batteries can be used.
  • metal materials such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), these alloys, stainless steel (SUS), are preferable, for example, and it is lightweight and corrosion resistance Aluminum (Al), copper (Cu) and the like are more preferable from the viewpoint of high conductivity.
  • the same material may be used for the positive electrode current collector plate and the negative electrode current collector plate, or different materials may be used.
  • the exterior body 40 is preferably formed of a film-like exterior material, for example, from the viewpoint of reduction in size and weight, but is not limited thereto, and the exterior for a lithium ion secondary battery Any of the conventionally known ones used in the body can be used. That is, a metal can case can also be applied.
  • a polymer-metal composite laminate film excellent in thermal conductivity from the viewpoint of being excellent in high output power and cooling performance and being suitably usable for a battery for large-sized devices of electric vehicles and hybrid electric vehicles.
  • an exterior body formed of a laminated film sheath material of a three-layer structure formed by laminating in this order polypropylene as a thermocompression bonding layer, aluminum as a metal layer, and nylon as an external protective layer is preferable. It can be used.
  • the laminate film mentioned above may replace with the laminate film mentioned above, and may comprise an exterior body, for example, a polymer film, such as a laminate film which does not have a metal material, a polypropylene etc., a metal film, etc.
  • a polymer film such as a laminate film which does not have a metal material, a polypropylene etc., a metal film, etc.
  • the general configuration of the outer package can be represented by a laminated structure of an outer protective layer / a metal layer / a thermocompression bonding layer (however, the outer protective layer and the thermocompression bonding layer may be composed of a plurality of layers) ).
  • the metal layer it suffices to function as a moisture-permeable barrier film, and not only aluminum foil but also stainless steel foil, nickel foil, plated iron foil, etc. can be used, but it is thin and lightweight
  • the aluminum foil which is excellent in processability can be used suitably.
  • nylon / aluminum / non-oriented polypropylene polyethylene terephthalate / aluminum / non-oriented polypropylene, polyethylene terephthalate / aluminum / polyethylene Terephthalate / non-oriented polypropylene, polyethylene terephthalate / nylon / aluminum / non-oriented polypropylene, polyethylene terephthalate / nylon / aluminum / nylon / non-oriented polypropylene, polyethylene terephthalate / nylon / aluminum / nylon / non-oriented polypropylene, polyethylene terephthalate / nylon / aluminum / nylon / polyethylene, nylon / polyethylene / aluminum / linear / linear Low density polyethylene, polyethylene terephthalate / polyethylene / aluminum / polyethylene terephthalate Low density polyethylene, and a polyethylene terephthalate / nylon / aluminum / low density polyethylene / cast polypropylene.
  • both of the positive electrode 21 having the positive electrode active material layer 21B formed on both main surfaces of the positive electrode current collector 21A, the electrolyte layer 23, and the negative electrode current collector 22A It has the structure which laminated
  • the negative electrode active material layer 22 ⁇ / b> B formed thereon faces the electrolyte layer 23. In this manner, a plurality of positive electrodes, an electrolyte layer, and a negative electrode are stacked in this order.
  • the adjacent positive electrode active material layer 21B, the electrolyte layer 23, and the negative electrode active material layer 22B constitute one single battery layer 24. Therefore, the lithium ion secondary battery 10 according to the present embodiment has a configuration in which the plurality of unit cell layers 24 are stacked and electrically connected in parallel.
  • Each of the positive electrode and the negative electrode may have each active material layer formed on one main surface of each current collector. In the present embodiment, for example, on the negative electrode current collector 22 a located in the outermost layer of the battery element 20, the negative electrode active material layer 22 B is formed only on one side.
  • an insulating layer (not shown) for insulating between adjacent positive electrode current collectors and negative electrode current collectors may be provided on the outer periphery of the unit cell layer.
  • Such an insulating layer is preferably formed of a material which holds the electrolyte contained in the electrolyte layer or the like and which prevents the electrolyte from leaking on the outer periphery of the unit cell layer.
  • general purpose plastics such as polypropylene (PP), polyethylene (PE), polyurethane (PUR), polyamide resin (PA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polystyrene (PS), etc.
  • thermoplastic olefin rubber can be used.
  • silicone rubber can be used.
  • the positive electrode current collector 21A and the negative electrode current collector 22A are made of a conductive material.
  • the size of the current collector can be determined depending on the use application of the battery. For example, if it is used for a large battery where high energy density is required, a large-area current collector is used.
  • the thickness of the current collector is also not particularly limited. The thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the shape of the current collector is not particularly limited. In the battery element 20 shown in FIG. 3, a mesh shape (expanded grid etc.) or the like can be used besides the current collector foil.
  • a thin film alloy which is an example of the negative electrode active material, is directly formed on the negative electrode current collector 22A by sputtering or the like, it is desirable to use a current collector foil.
  • the material constituting the current collector there is no particular limitation on the material constituting the current collector.
  • a metal, or a resin in which a conductive filler is added to a conductive polymer material or a nonconductive polymer material can be employed.
  • the metal aluminum (Al), nickel (Ni), iron (Fe), stainless steel (SUS), titanium (Ti), copper (Cu) and the like can be mentioned.
  • a clad material of nickel (Ni) and aluminum (Al) a clad material of copper (Cu) and aluminum (Al), or a plated material obtained by combining these metals.
  • the foil by which aluminum (Al) was coated by the metal surface may be sufficient.
  • aluminum (Al), stainless steel (SUS), copper (Cu) and nickel (Ni) are preferable from the viewpoint of electron conductivity, battery operation potential and the like.
  • examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, polyoxadiazole and the like.
  • Such a conductive polymer material has sufficient conductivity even without the addition of a conductive filler, and thus is advantageous in facilitating the manufacturing process or reducing the weight of the current collector.
  • nonconductive polymer material for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) And polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), polystyrene (PS) and the like.
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PI polyimide
  • PAI polyamideimide
  • PA polyamide
  • PTFE polytetrafluor
  • a conductive filler can be added to the above-mentioned conductive polymer material or non-conductive polymer material as needed.
  • the conductive filler is necessarily essential to impart conductivity to the resin.
  • the conductive filler can be used without particular limitation as long as it is a substance having conductivity.
  • metals, conductive carbon, etc. may be mentioned as materials excellent in conductivity, potential resistance or lithium ion blocking properties.
  • nickel (Ni), titanium (Ti), aluminum (Al), copper (Cu), platinum (Pt), iron (Fe), chromium (Cr), tin (Sn), zinc (Zn), indium Preferred examples include those containing at least one metal selected from the group consisting of (In), antimony (Sb) and potassium (K) or an alloy or metal oxide containing these metals.
  • the conductive carbon preferred is one including at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofibers, ketjen black, carbon nanotubes, carbon nanohorns, carbon nanoballoons and fullerenes.
  • the addition amount of the conductive filler is not particularly limited as long as it can impart sufficient conductivity to the current collector, and is generally about 5 to 35% by mass.
  • the present invention is not limited thereto, and conventionally known materials used as current collectors for lithium ion secondary batteries can be used.
  • the positive electrode active material layer 21B contains, as a positive electrode active material, the above-described positive electrode active material for a lithium ion secondary battery according to one embodiment of the present invention, and as necessary, contains a binder and a conductive additive. It may be.
  • the binder is not particularly limited, and includes, for example, the following materials.
  • polyvinylidene fluoride, polyimide, styrene butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable.
  • These suitable binders are excellent in heat resistance, and furthermore, the potential window is very wide and stable to both positive electrode potential and negative electrode potential, and can be used for the positive electrode (and negative electrode) active material layer.
  • it is not limited to these, and known materials conventionally used as a binder for lithium ion secondary batteries can be used.
  • One of these binding agents may be used alone, or two or more thereof may be used in combination.
  • the amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it can bind the positive electrode active material. It is 15% by mass, more preferably 1 to 10% by mass, still more preferably 5% by mass or less, and specifically 1 to 5% by mass.
  • the conductive aid is blended to improve the conductivity of the positive electrode active material layer.
  • a conductive support agent carbon materials, such as carbon black, such as acetylene black, a graphite, and a vapor-phase-grown carbon fiber, can be mentioned, for example.
  • carbon black such as acetylene black, a graphite, and a vapor-phase-grown carbon fiber
  • the positive electrode active material layer contains a conductive additive, an electronic network in the inside of the positive electrode active material layer is effectively formed, which can contribute to the improvement of the output characteristics of the battery.
  • the present invention is not limited to these, and conventionally known materials used as a conductive aid for lithium ion secondary batteries can be used.
  • One of these conductive assistants may be used alone, or two or more thereof may be used in combination.
  • a conductive binder having both the functions of the conductive assistant and the binder may be used instead of the conductive assistant and the binder, or one or both of the conductive assistant and the binder may be used. You may use it together with As the conductive binder, for example, TAB-2 (manufactured by Takasen Co., Ltd.), which is already commercially available, can be used.
  • the amount of the conductive support agent contained in the positive electrode active material layer is not particularly limited as long as it can improve the conductivity between the positive electrode active materials, but preferably 0.5 to the positive electrode active material layer.
  • the content is ⁇ 15% by mass, more preferably 1 to 10% by mass, still more preferably 5% by mass or less, and specifically 1 to 5% by mass.
  • the negative electrode active material layer 12B contains lithium, a lithium alloy, or a negative electrode material capable of inserting and extracting lithium as a negative electrode active material, and contains a binder and a conductive agent as needed. It may be As the binder and the conductive aid, those described above can be used.
  • Examples of negative electrode materials capable of inserting and extracting lithium include graphite (natural graphite, artificial graphite, etc.) which is high crystalline carbon, low crystalline carbon (soft carbon, hard carbon), carbon black (Ketjen) Carbon materials such as black, acetylene black, channel black, lamp black, oil furnace black, thermal black, etc., fullerenes, carbon nanotubes, carbon nanofibers, carbon nanohorns, carbon fibrils (containing 10% by mass or less of silicon nanoparticles) Silicon (Si), germanium (Ge), tin (Sn), lead (Pb), aluminum (Al), indium (In), zinc (Zn), hydrogen (H), calcium (Ca), strontium( r) barium (Ba), ruthenium (Ru), rhodium (Rh), iridium (Ir), palladium (Pd), platinum (Pt), silver (Ag), gold (Au), cadmium (Cd), mercury (C) Hg), gallium (Ga), t
  • Lithium - can be exemplified transition metal composite oxide.
  • the present invention is not limited to these, and conventionally known materials used as negative electrode active materials for lithium ion secondary batteries can be used. One of these negative electrode active materials may be used alone, or two or more thereof may be used in combination.
  • the carbon material is a graphite material whose surface is covered with an amorphous carbon layer and which is not scaly, and the BET specific surface area of the carbon material is 0.8 m 2 / g to 1.5 m. It is preferable that the density is 2 / g or less and the tap density is 0.9 g / cm 3 or more and 1.2 g / cm 3 or less.
  • a carbon material made of a graphite material whose surface is covered with an amorphous carbon layer and which is not scaly is preferred because of its high lithium ion diffusivity to the graphite layer structure.
  • the BET specific surface area of such a carbon material is 0.8 m 2 / g or more and 1.5 m 2 / g or less, because the capacity retention rate can be further improved. Furthermore, when the tap density of such a carbon material is 0.9 g / cm 3 or more and 1.2 g / cm 3 or less, the weight (loading) per unit volume can be improved, and the discharge capacity is improved. be able to.
  • each active material layer active material layer on one side of the current collector
  • the thickness of each active material layer is not particularly limited either, and conventionally known knowledge of batteries can be appropriately referred to.
  • the thickness of each active material layer is usually about 1 to 500 ⁇ m, preferably 2 to 100 ⁇ m, in consideration of the purpose of use of the battery (power emphasis, energy emphasis, etc.) and ion conductivity.
  • the present invention is not limited to such a range, and it is needless to say that the range may be deviated as long as the effects of the present embodiment can be effectively exhibited.
  • the electrolyte layer 13 may be, for example, an electrolytic solution held by a separator, which will be described later, a polymer gel electrolyte, or a solid polymer electrolyte to form a layer structure, and further, a polymer gel electrolyte or a solid polymer electrolyte. What used the lamination structure formed, etc. can be mentioned.
  • the electrolytic solution is preferably, for example, one that is usually used in a lithium ion secondary battery, and specifically, has a form in which a supporting salt (lithium salt) is dissolved in an organic solvent.
  • lithium salt examples include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and six lithium salts.
  • Inorganic acid anionic salts such as lithium fluorotantalate (LiTaF 6 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium decachlorodecaboronic acid (Li 2 B 10 Cl 10 ), lithium trifluoromethane sulfonate (LiCF 3)
  • Organic acids such as SO 3 ), lithium bis (trifluoromethanesulfonyl) imide (Li (CF 3 SO 2 ) 2 N), lithium bis (pentafluoroethanesulfonyl) imide (Li (C 2 F 5 SO 2 ) 2 N) List at least one lithium salt, etc. selected from among anionic salts Can.
  • lithium hexafluorophosphate (LiPF 6 ) is preferable.
  • the organic solvent for example, cyclic carbonates, fluorine-containing cyclic carbonates, chain carbonates, fluorine-containing chain carbonates, aliphatic carboxylic acid esters, fluorine-containing aliphatic carboxylic acid esters, ⁇ -lactone And at least one organic solvent selected from the group consisting of fluorine-containing .gamma.-lactones, cyclic ethers, fluorine-containing cyclic ethers, linear ethers and fluorine-containing linear ethers.
  • cyclic carbonates examples include propylene carbonate (PC), ethylene carbonate (EC) and butylene carbonate (BC).
  • fluorine-containing cyclic carbonates fluoro ethylene carbonate (FEC) can be mentioned, for example.
  • linear carbonates for example, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), dipropyl carbonate (DPC)
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • MPC methyl propyl carbonate
  • EPC ethyl propyl carbonate
  • DPC dipropyl carbonate
  • aliphatic carboxylic acid esters for example, methyl formate, methyl acetate and ethyl propionate can be mentioned.
  • ⁇ -lactones for example, ⁇ -butyrolactone
  • cyclic ethers for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane can be mentioned.
  • chain ethers for example, 1,2-ethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether, 1,2-dimethoxyethane, 1,2-dibutoxyethane can be mentioned.
  • DEE 1,2-ethoxyethane
  • EME ethoxymethoxyethane
  • diethyl ether 1,2-dimethoxyethane
  • 1,2-dibutoxyethane 1,2-dibutoxyethane
  • Other examples include nitriles such as acetonitrile and amides such as dimethylformamide. These can be used singly or in combination of two or more.
  • Electrolyte solutions include organic sulfone compounds such as sultone derivatives and cyclic sulfonic acid esters, organic disulfone compounds such as disultone derivatives and cyclic disulfonic acid esters, vinylene carbonate derivatives, ethylene carbonate derivatives, ester derivatives, dihydric phenol derivatives, ethylene Additives such as glycol derivatives, terphenyl derivatives and phosphate derivatives may be added. These form a film on the surface of a negative electrode active material, gas generation in a battery is reduced, and the capacity retention rate can be further improved.
  • organic sulfone compounds examples include 1,3-propane sulfone (saturated sultone) and 1,3-propene sultone (unsaturated sultone).
  • organic disulfone type compound methylene methane disulfonate can be mentioned, for example.
  • vinylene carbonate derivative vinylene carbonate (VC) can be mentioned, for example.
  • ethylene carbonate derivative fluoro ethylene carbonate (FEC) can be mentioned, for example.
  • ester derivative for example, 4-biphenylyl acetate, 4-biphenylyl benzoate, 4-biphenylyl benzyl carboxylate, 2-biphenylyl propionate can be mentioned.
  • dihydric phenol derivative for example, 1,4-diphenoxybenzene and 1,3-diphenoxybenzene can be mentioned.
  • ethylene glycol derivatives for example, 1,2-diphenoxyethane, 1- (4-biphenylyloxy) -2-phenoxyethane, 1- (2-biphenylyloxy) -phenoxyethane can be mentioned. .
  • terphenyl derivatives include o-terphenyl, m-terphenyl, p-terphenyl, 2-methyl-o-terphenyl and 2,2-dimethyl-o-terphenyl.
  • phosphate derivatives for example, triphenyl phosphate can be mentioned.
  • separator examples include a microporous film made of a polyolefin such as polyethylene (PE) and polypropylene (PP), a porous flat plate, and a non-woven fabric.
  • PE polyethylene
  • PP polypropylene
  • polymer gel electrolyte what contained the polymer and electrolyte solution which comprise polymer gel electrolyte by a conventionally well-known ratio can be mentioned. For example, from the viewpoint of ion conductivity and the like, it is desirable to set the concentration to about several mass% to 98 mass%.
  • the polymer gel electrolyte is one in which a solid polymer electrolyte having ion conductivity is contained in the above-mentioned electrolytic solution usually used in a lithium ion secondary battery.
  • the present invention is not limited to this, and includes one in which a similar electrolytic solution is held in a polymer skeleton having no lithium ion conductivity.
  • polymers having no lithium ion conductivity used for polymer gel electrolytes include polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), etc. It can be used. However, it is not necessarily limited to these. Note that polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), etc. can be made into the above-mentioned polymers having ion conductivity because they fall into a class having little ion conductivity. Here, it is exemplified as a polymer having no lithium ion conductivity which is used for a polymer gel electrolyte.
  • the solid polymer electrolyte has, for example, a structure in which the above lithium salt is dissolved in polyethylene oxide (PEO), polypropylene oxide (PPO) or the like, and examples thereof include those not containing an organic solvent. Therefore, when the electrolyte layer is composed of a solid polymer electrolyte, there is no concern of liquid leakage from the battery, and the reliability of the battery can be improved.
  • the thickness of the electrolyte layer is preferably thin in terms of reducing the internal resistance.
  • the thickness of the electrolyte layer is usually 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the matrix polymer of a polymer gel electrolyte or a solid polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, or the like to a polymerizable polymer for example, polyethylene oxide (PEO) or polypropylene oxide (PPO)
  • a polymerizable polymer for example, polyethylene oxide (PEO) or polypropylene oxide (PPO)
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • a polymerization treatment such as radiation polymerization or electron beam polymerization may be performed.
  • a method of manufacturing a lithium ion secondary battery according to an embodiment of the present invention described above will be described by giving some examples.
  • An example of a method of manufacturing a lithium ion secondary battery will be described.
  • a positive electrode is produced.
  • the above-described positive electrode active material for a lithium ion secondary battery and, if necessary, a conductive support agent, a binder and a viscosity adjusting solvent are mixed to prepare a positive electrode slurry.
  • the positive electrode slurry is applied to a positive electrode current collector, dried, and compression molded to form a positive electrode active material layer.
  • a negative electrode is manufactured.
  • the negative electrode active material and, if necessary, a conductive auxiliary agent, a binder, and a viscosity control solvent are mixed to prepare a negative electrode slurry. Thereafter, the negative electrode slurry is applied to a negative electrode current collector, dried, and compression molded to form a negative electrode active material layer.
  • a positive electrode lead is attached to the positive electrode, and a negative electrode lead is attached to the negative electrode, and then the positive electrode, the separator, and the negative electrode are stacked. Further, the laminated product is sandwiched by a polymer-metal composite laminate sheet, and the outer peripheral edge excluding one side is heat-sealed to form a bag-like outer package.
  • a non-aqueous electrolyte containing a lithium salt such as lithium hexafluorophosphate and an organic solvent such as ethylene carbonate is prepared, and injected into the interior from the opening of the exterior body to melt the opening of the exterior body. Wear and seal. Thereby, a laminate type lithium ion secondary battery is completed.
  • a positive electrode is produced.
  • the lithium-containing transition metal oxide described above is mixed with a conductive auxiliary agent, a binder, and a viscosity adjusting solvent as required to prepare a positive electrode slurry.
  • the positive electrode slurry is applied to a positive electrode current collector, dried, and compression molded to form a positive electrode active material layer.
  • a negative electrode is manufactured.
  • the negative electrode active material and, if necessary, a conductive auxiliary agent, a binder, and a viscosity control solvent are mixed to prepare a negative electrode slurry. Thereafter, the negative electrode slurry is applied to a negative electrode current collector, dried, and compression molded to form a negative electrode active material layer.
  • a positive electrode lead is attached to the positive electrode, and a negative electrode lead is attached to the negative electrode, and then the positive electrode, the separator, and the negative electrode are stacked. Further, the laminated product is sandwiched by a polymer-metal composite laminate sheet, and the outer peripheral edge excluding one side is heat-sealed to form a bag-like outer package.
  • a non-aqueous electrolyte containing a lithium salt such as lithium hexafluorophosphate and an organic solvent such as ethylene carbonate is prepared, and injected into the interior from the opening of the exterior body to melt the opening of the exterior body. Wear and seal. Further, the above-described predetermined charge or charge / discharge is performed, whereby a laminate type lithium ion secondary battery is completed.
  • this slurry (solid content 15.7 mass%, viscosity 1600 cp) was spray-dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd. product: MDP-50 type).
  • air was used as the drying gas
  • the drying gas introduction amount G was 1600 L / min
  • the drying inlet temperature was 200 ° C.
  • About 370 g of the particulate powder obtained by spray drying using a spray dryer is charged in a square bowl made of alumina and fired at 1000 ° C.
  • the primary particle diameter d1 is 95 nm
  • the secondary particle diameter d2 is 5.9 ⁇ m
  • d2 / d1 is 62
  • the aperture opening diameter is 2.0 ⁇ m
  • the crushing strength index is 0.67
  • the BET specific surface area is 1.27 m 2 / g
  • the average pore diameter was 36 nm
  • the pore volume was 0.0011 cm 3 / g
  • the half width of the (001) plane peak was 0.12.
  • composition of slurry for positive electrode Active material: Li 1.5 [Ni 0.25 Co 0.25 Mn 0.75 [Li] 0.25 ] O 3 (100 parts by mass)
  • Conducting auxiliary Flaky graphite (1.0 parts by mass), acetylene black (3.0 parts by mass)
  • Binder Polyvinylidene fluoride (PVDF) (3.0 parts by mass)
  • Solvent N-methyl pyrrolidone (NMP) (65 parts by mass)
  • the positive electrode slurry of the above composition was prepared as follows. First, 3.0 parts by mass of PVDF was dissolved in 30 parts by mass of NMP to prepare an NMP solution. Next, 33.0 parts by mass of an NMP solution is added to a mixed powder of 4.0 parts by mass of a conductive support agent and 100 parts by mass of an active material, and they are kneaded by a planetary mixer (PVM100, manufactured by Asada Iron Works), and then kneaded The slurry was added with 35 parts by mass of NMP to obtain a slurry for positive electrode (solid content concentration: 62% by mass).
  • a planetary mixer PVM100, manufactured by Asada Iron Works
  • the obtained sheet-like positive electrode is compression molded using a roller press, and cut to obtain a positive electrode C1 having a weight of about 10 mg / cm 2 , a thickness of about 50 ⁇ m, and a density of 2.70 g / cm 3 of the positive electrode active material layer on one side. Made.
  • composition of slurry for negative electrode Active material: Natural graphite (100 parts by mass)
  • the negative electrode slurry of the above composition was prepared as follows. First, 5.0 parts by mass of PVDF was dissolved in 50 parts by mass of NMP to prepare an NMP solution. Next, 55.0 parts by mass of NMP solution is added to the mixed powder of 1.0 part by mass of the conductive aid and 100 parts by mass of the active material, and it is kneaded by a planetary mixer (Asada Iron Works, PVM 100), and then kneaded The slurry was added with 47 parts by mass of NMP to obtain a negative electrode slurry (solid content concentration: 52% by mass).
  • the negative electrode slurry thus obtained was applied to one side of the current collector by a die coater while the current collector made of an electrodeposited copper foil having a thickness of 10 ⁇ m traveled at a traveling speed of 1.5 m / min.
  • the current collector coated with the negative electrode slurry is dried in a hot air drying furnace (drying temperature: 100 to 110 ° C., drying time: 2 minutes), and the amount of NMP remaining in the negative electrode active material layer is 0. It was less than 02% by mass.
  • drying temperature 100 to 110 ° C., drying time: 2 minutes
  • the amount of NMP remaining in the negative electrode active material layer is 0. It was less than 02% by mass.
  • the same operation as described above was performed on the back surface of the current collector to form a sheet-like negative electrode having a negative electrode active material layer on both sides of the current collector.
  • the obtained sheet-like negative electrode was compression-molded using a roller press and cut to prepare a negative electrode A1 having a weight of about 11.5 mg / cm 2 and a density of 1.45 g / cm 3 of the negative electrode active material layer on one side.
  • a negative electrode A1 having a weight of about 11.5 mg / cm 2 and a density of 1.45 g / cm 3 of the negative electrode active material layer on one side.
  • production of the crack was not seen.
  • the tab was welded to the current collector portion of the obtained positive electrode C11 (active material layer area: 3.6 cm ⁇ 5.3 cm) and negative electrode A11 (active material layer area: 3.8 cm ⁇ 5.5 cm). From five layers, sandwiching a porous polypropylene separator (S) (4.5 cm long ⁇ 6.0 cm wide, 25 ⁇ m thick, 55 vol% porosity) between negative electrode A11 and positive electrode C11 with these tabs welded A battery element of the laminated type (laminated example, A11- (S) -C11- (S) -A11) was produced.
  • S porous polypropylene separator
  • Aging treatment negative electrode stabilization treatment
  • Aging treatment negative electrode stabilization treatment
  • charging was performed at 25 ° C. for four hours at 0.05 C (approximately 20% of SOC) by a constant current charging method.
  • charging was stopped and kept in that state (about 70% of SOC) for about 5 days (120 hours).
  • the activation treatment (electrochemical pretreatment) of the obtained battery was performed as follows. First, after charging at 25 ° C to a voltage of 4.45V at 0.2C by constant current charge method, discharge cycle at 0.2C to 2.0V twice, 4.55V at 0.2C After being charged to the following, two cycles of discharging to 2.0 V at 0.2 C were performed.
  • Example 2 In the production of a positive electrode active material, lithium carbonate (Li 2 CO 3 ), nickel hydroxide (Ni (OH) 2 ), manganese oxide (Mn 3 O 4 ), lithium (Li): nickel (Ni): manganese (Mn) After measuring and mixing so that it might become a molar ratio of 1.70: 0.45: 0.85, it added the pure water to this, and prepared the slurry. At this time, while stirring the slurry using a circulating medium agitation type wet pulverizer, the solid content in the slurry was pulverized so that the primary particle diameter (crystallite diameter) was 70 nm.
  • this slurry (solid content 15.7 mass%, viscosity 1600 cp) was spray-dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd. product: MDP-50 type).
  • air was used as the drying gas
  • the drying gas introduction amount G was 1600 L / min
  • the drying inlet temperature was 200 ° C.
  • About 370 g of the particulate powder obtained by spray drying using a spray dryer is charged in a square bowl made of alumina and fired at 1000 ° C.
  • the primary particle diameter d1 is 70 nm
  • the secondary particle diameter d2 is 6.2 ⁇ m
  • d2 / d1 is 89
  • the opening diameter of the air gap is 2.5 ⁇ m
  • the crushing strength index is 0.54
  • the BET specific surface area is 2.56 m
  • the average pore diameter was 2 nm / g
  • the pore volume was 0.0026 cm 3 / g
  • the half width of the (001) plane peak was 0.15.
  • this slurry (solid content 15.7 mass%, viscosity 1600 cp) was spray-dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd. product: MDP-50 type).
  • air was used as the drying gas
  • the drying gas introduction amount G was 1600 L / min
  • the drying inlet temperature was 200 ° C.
  • About 370 g of the particulate powder obtained by spray drying using a spray dryer is charged in a square bowl made of alumina and fired at 1000 ° C.
  • the primary particle diameter d1 is 81 nm
  • the secondary particle diameter d2 is 5.9 ⁇ m
  • d2 / d1 is 73
  • the opening diameter of the air gap is 2.0 ⁇ m
  • the crushing strength index is 0.76
  • the BET specific surface area is 1.50 m 2 / g
  • the average pore diameter was 35 nm
  • the pore volume was 0.0010 cm 3 / g
  • the half width of the (001) plane peak was 0.10.
  • Example 4 In the production of a positive electrode active material, lithium carbonate (Li 2 CO 3 ), nickel hydroxide (Ni (OH) 2 ), manganese oxide (Mn 3 O 4 ), lithium (Li): nickel (Ni): manganese (Mn) After measuring and mixing so that it might become a molar ratio of 1.65: 0.525: 0.825, pure water was added to this, and the slurry was prepared. At this time, while stirring the slurry using a circulating medium agitation type wet pulverizer, the solid content in the slurry was pulverized so that the primary particle diameter (crystallite diameter) was 47 nm.
  • this slurry (solid content 15.7 mass%, viscosity 1600 cp) was spray-dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd. product: MDP-50 type).
  • air was used as the drying gas
  • the drying gas introduction amount G was 1600 L / min
  • the drying inlet temperature was 200 ° C.
  • About 370 g of the particulate powder obtained by spray drying using a spray dryer is charged in a square bowl made of alumina and fired at 1000 ° C.
  • the primary particle diameter d1 is 47 nm
  • the secondary particle diameter d2 is 6.2 ⁇ m
  • d2 / d1 is 131
  • the opening diameter of the air gap is 2.5 ⁇ m
  • the crushing strength index is 0.69
  • the BET specific surface area is 3.08 m
  • the average pore diameter was 2 nm
  • the pore volume was 0.0015 cm 3 / g
  • the half width of the (001) plane peak was 0.17.
  • this slurry (solid content 15.7 mass%, viscosity 1600 cp) was spray-dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd. product: MDP-50 type).
  • air was used as the drying gas
  • the drying gas introduction amount G was 1600 L / min
  • the drying inlet temperature was 200 ° C.
  • About 370 g of the particulate powder obtained by spray drying using a spray dryer is charged in a square bowl made of alumina and fired at 1000 ° C.
  • the primary particle diameter d1 is 115 nm
  • the secondary particle diameter d2 is 6.8 ⁇ m
  • d2 / d1 is 59
  • the opening diameter of the air gap is 2.0 ⁇ m
  • the crushing strength index is 0.82
  • the BET specific surface area is 0.89 m 2 / g
  • the average pore diameter was 33 nm
  • the pore volume was 0.0009 cm 3 / g
  • the half value width of the (001) plane peak was 0.07.
  • this slurry (solid content 15.7 mass%, viscosity 1600 cp) was spray-dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd. product: MDP-50 type).
  • air was used as the drying gas
  • the drying gas introduction amount G was 1600 L / min
  • the drying inlet temperature was 200 ° C.
  • About 370 g of the particulate powder obtained by spray drying using a spray dryer is charged in a square bowl made of alumina and fired at 1000 ° C.
  • the primary particle diameter d1 is 73 nm
  • the secondary particle diameter d2 is 5.8 ⁇ m
  • d2 / d1 is 79
  • the opening diameter of the air gap is 2.0 ⁇ m
  • the crushing strength index is 0.75
  • the BET specific surface area is 1.65 m 2 / g
  • the average pore diameter was 35 nm
  • the pore volume was 0.0013 cm 3 / g
  • the half width of the (001) plane peak was 0.11.
  • Example 7 In the production of a positive electrode active material, lithium carbonate (Li 2 CO 3 ), nickel hydroxide (Ni (OH) 2 ), manganese oxide (Mn 3 O 4 ), lithium (Li): nickel (Ni): manganese (Mn) After measuring and mixing so that it might become a molar ratio of 1.70: 0.45: 0.85, it added the pure water to this, and prepared the slurry. At this time, while stirring the slurry using a circulating medium agitation type wet pulverizer, the solid content in the slurry was pulverized so that the primary particle diameter (crystallite diameter) was 42 nm.
  • this slurry (solid content 15.7 mass%, viscosity 1600 cp) was spray-dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd. product: MDP-50 type).
  • air was used as the drying gas
  • the drying gas introduction amount G was 1600 L / min
  • the drying inlet temperature was 200 ° C.
  • About 370 g of the particulate powder obtained by spray drying using a spray dryer is charged in a square bowl made of alumina and fired at 1000 ° C.
  • the primary particle diameter d1 is 42 nm
  • the secondary particle diameter d2 is 5.8 ⁇ m
  • d2 / d1 is 137
  • the opening diameter of the air gap is 2.5 ⁇ m
  • the crushing strength index is 0.67
  • the BET specific surface area is 3.44 m
  • the average pore diameter was 2 nm / g
  • the pore volume was 0.0030 cm 3 / g
  • the half width of the (001) plane peak was 0.19.
  • Example 8 In the production of a positive electrode active material, lithium carbonate (Li 2 CO 3 ), nickel hydroxide (Ni (OH) 2 ), manganese oxide (Mn 3 O 4 ), lithium (Li): nickel (Ni): manganese (Mn) After measuring and mixing so that it might become a molar ratio of 1.70: 0.45: 0.85, it added the pure water to this, and prepared the slurry. At this time, while stirring the slurry using a circulating medium agitation type wet pulverizer, the solid content in the slurry was pulverized so that the primary particle diameter (crystallite diameter) was 38 nm.
  • this slurry (solid content 15.7 mass%, viscosity 1600 cp) was spray-dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd. product: MDP-50 type).
  • air was used as the drying gas
  • the drying gas introduction amount G was 1600 L / min
  • the drying inlet temperature was 200 ° C.
  • About 370 g of the particulate powder obtained by spray drying using a spray dryer is charged in a square bowl made of alumina and fired at 1000 ° C.
  • the primary particle diameter d1 is 38 nm
  • the secondary particle diameter d2 is 5.8 ⁇ m
  • d2 / d1 is 151
  • the opening diameter of the air gap is 2.5 ⁇ m
  • the crushing strength index is 0.66
  • the BET specific surface area is 3.80 m
  • the average pore diameter was 46 nm
  • the pore volume was 0.0023 cm 3 / g
  • the half width of the (001) plane peak was 0.21.
  • this slurry (solid content 15.7 mass%, viscosity 1600 cp) was spray-dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd. product: MDP-50 type).
  • air was used as the drying gas
  • the drying gas introduction amount G was 1600 L / min
  • the drying inlet temperature was 200 ° C.
  • About 370 g of the particulate powder obtained by spray drying using a spray dryer is charged in a square bowl made of alumina and fired at 1000 ° C.
  • the primary particle diameter d1 is 90 nm
  • the secondary particle diameter d2 is 6.1 ⁇ m
  • d2 / d1 is 68
  • the opening diameter of the air gap is 2.0 ⁇ m
  • the crushing strength index is 0.76
  • the BET specific surface area is 1.56 m
  • the average pore diameter was 2 nm
  • the pore volume was 0.0010 cm 3 / g
  • the half width of the (001) plane peak was 0.09.
  • this slurry (solid content 15.7 mass%, viscosity 1600 cp) was spray-dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd. product: MDP-50 type).
  • air was used as the drying gas
  • the drying gas introduction amount G was 1600 L / min
  • the drying inlet temperature was 200 ° C.
  • About 370 g of the particulate powder obtained by spray drying using a spray dryer is charged in a square bowl made of alumina and fired at 1000 ° C.
  • the primary particle diameter d1 is 210 nm
  • the secondary particle diameter d2 is 6.7 ⁇ m
  • d2 / d1 is 32
  • the opening diameter of the air gap is 2.0 ⁇ m
  • the crushing strength index is 0.88
  • the BET specific surface area is 0.70 m 2 / g
  • the average pore diameter was 25 nm
  • the pore volume was 0.0008 cm 3 / g
  • the half width of the (001) plane peak was 0.06.
  • this slurry (solid content 15.7 mass%, viscosity 1600 cp) was spray-dried using a four-fluid nozzle type spray dryer (Fujisaki Electric Co., Ltd. product: MDP-50 type).
  • air was used as the drying gas
  • the drying gas introduction amount G was 1600 L / min
  • the drying inlet temperature was 200 ° C.
  • About 370 g of the particulate powder obtained by spray drying using a spray dryer is charged in a square bowl made of alumina and fired at 1000 ° C.
  • the primary particle diameter d1 is 27 nm
  • the secondary particle diameter d2 is 5.9 ⁇ m
  • d2 / d1 is 220
  • the opening diameter of the air gap is 2.5 ⁇ m
  • the crushing strength index is 0.22
  • the BET specific surface area is 2.87 m 2 / g
  • the average pore diameter was 48 nm
  • the pore volume was 0.0049 cm 3 / g
  • the half width of the (001) plane peak was 0.30.
  • the battery element of the battery of each of the above examples was set in an evaluation cell attachment jig, and the positive electrode lead and the negative electrode lead were attached to each tab end of the battery element to conduct a test.
  • the capacity retention rate of the battery is a constant current constant voltage charging method in which charging is performed at a 0.2 C rate until the maximum voltage reaches 4.5 V and then held for about 1 hour to 1.5 hours, and discharging is The charge and discharge as a constant current discharge method of discharging at a 0.2 C rate until the minimum voltage of the battery reaches 2.0 V was repeated 300 cycles. All were performed at room temperature. The obtained results are shown in Table 2. The ratio of the discharge capacity at the 300th cycle to the discharge capacity at the first cycle was taken as the capacity retention ratio.
  • the initial discharge capacity is a constant current, constant voltage charging method in which charging is performed at a 0.1 C rate until the maximum voltage reaches 4.5 V, and then held for about 1 hour to 1.5 hours. It carried out by the constant current discharge method discharged at a 0.1 C rate until the lowest voltage was 2.0V. All were performed at room temperature. The obtained results are shown in Table 2.
  • Rate characteristics are constant current and constant voltage charging method in which charging is performed at 0.1 C rate until the maximum voltage is 4.5 V and then held for about 1 hour to 1.5 hours, and discharging is the minimum of the battery After performing the constant current discharge method of discharging at a 0.1C rate until the voltage reaches 2.0V, after charging until the maximum voltage reaches 4.5V at a 2.5C rate, about 1 hour to 1.5 The constant current, constant voltage charging method was maintained for a time, and the discharging was performed by a constant current discharging method of discharging at a 2.5 C rate until the minimum voltage of the battery became 2.0V. All were performed at room temperature. The obtained results are shown in Table 2. The ratio of the initial discharge capacity when charge / discharge was performed at 2.5 C rate to the initial discharge capacity when charge / discharge was performed at 0.1 C rate was taken as a rate characteristic.
  • a laminate type battery is illustrated as a lithium ion secondary battery, but the present invention is not limited to this, and cans such as button type battery, coin type battery, square or cylindrical shape
  • the present invention can also be applied to conventionally known forms and structures such as type batteries.
  • the present invention can be applied not only to the above-described stacked (flat type) battery but also to conventionally known modes and structures such as a wound type (cylindrical) battery.
  • the bipolar type internal series connection
  • the normal type internal parallel connection type
  • the present invention can also be applied to conventionally known forms and structures such as batteries.
  • a bipolar electrode in which a negative electrode active material layer is formed on one surface of a current collector and a positive electrode active material layer is formed on the other surface, and an electrolyte layer Has a stacked structure.
  • a collector, an insulating board, etc. these components are not specifically limited, What is necessary is just to select according to said shape.
  • the electrochemical pretreatment method in the case of using the constant current charging method and using the voltage as the termination condition has been exemplified, but the present invention is not limited to this, and the charging method is fixed.
  • a current constant voltage charging method may be used.
  • the termination condition may use the charge amount or time other than the voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 リチウムイオン二次電池用正極活物質は、層状構造を有するリチウム含有遷移金属酸化物からなる二次粒子を含む。二次粒子は、その表面及び内部に複数の空隙を有する。二次粒子は、二次粒子径としてのメディアン径(D50)が5μm以上15μm以下である。二次粒子は、一次粒子径としての結晶子径が30nm以上200nm以下である一次粒子が凝集して形成されている。

Description

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池に関する。更に詳細には、本発明のリチウムイオン二次電池は、例えば、電気自動車、燃料電池自動車、ハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源に用いられる。
 近年、大気汚染や地球温暖化に対処するため、二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)等の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵となるモータ駆動用二次電池などの開発が盛んに行われている。
 モータ駆動用二次電池としては、高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。リチウムイオン二次電池は、一般に、正極活物質を含む正極用スラリーを集電体の表面に塗布して形成した正極と、負極活物質を含む負極用スラリーを負極集電体の表面に塗布して形成した負極と、これらの間に位置する電解質とが、電池ケースに収納された構成を有する。
 リチウムイオン二次電池の初期放電容量、レート特性、放電容量維持率などの向上のためには、各活物質の選定が極めて重要である。特に、近年における低コスト化要求、高電圧化要求、安全化要求の高まりの中で、いずれの要求にも応え得る正極活物質として層状構造を有するリチウムニッケルマンガンコバルト系複合酸化物が有望視されている。
 また、従来、レート特性を改善するため、限られた組成の範囲内で組成を調整するだけでなく、粒子内部の空孔を増やして細孔容積を増やすことによるBET比表面積の増大や一次粒子径の微細化を図ることが提案されている(特許文献1参照。)。
日本国特開2009-117241号公報
 しかしながら、本発明者の検討においては、粒子内部の空孔を増やしたり、一次粒子径の微細化を図ると、二次粒子の強度が著しく低下してしまい、高い放電容量維持率が得られない問題点があった。
 本発明者は、上記目的を達成するため鋭意検討を重ねた。その結果、層状構造を有するリチウム含有遷移金属酸化物からなる特定の構造を有する二次粒子を含む構成とすることにより、上記目的が達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明のリチウムイオン二次電池用正極活物質は、層状構造を有するリチウム含有遷移金属酸化物からなる二次粒子を含むものである。
 そして、二次粒子は、その表面及び内部に複数の空隙を有する。
 また、二次粒子は、二次粒子径としてのメディアン径(D50)が5μm以上15μm以下である。
 更に、二次粒子は、一次粒子径としての結晶子径が30nm以上200nm以下である一次粒子が凝集して形成されている。
 また、本発明のリチウムイオン二次電池用正極は、上記本発明のリチウムイオン二次電池用正極活物質と、導電助剤と、結着剤とを含むものである。
 更に、本発明のリチウムイオン二次電池は、上記本発明のリチウムイオン二次電池用正極を具備したものである。
 本発明によれば、粒子内部の空孔を増やすことによるBET比表面積の増大や一次粒子径の微細化を図りながら、二次粒子の強度を確保して、高い放電容量維持率を実現し得るリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及び非水電解質二次電池を提供することができる。
本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の一例の走査型電子顕微鏡写真である。 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の一例の断面走査型電子顕微鏡写真である。 スピネル構造変化割合の定義を説明するグラフ図である。 本発明の一実施形態に係るリチウムイオン二次電池の一例の概略を示す断面図である。
 以下、本発明のリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池について詳細に説明する。
 まず、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質について図面を参照しながら詳細に説明する。図1及び図2は、それぞれ本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の一例の走査型電子顕微鏡写真及び断面走査型電子顕微鏡写真である。図1及び図2に示すように、本実施形態のリチウムイオン二次電池用正極活物質1は、層状構造を有するリチウム含有遷移金属酸化物からなる二次粒子2を含むものである。そして、本実施形態において、二次粒子2は、その表面及び内部に複数の空隙6を有する。また、本実施形態において、二次粒子2は、二次粒子径としてのメディアン径(D50)が5μm以上15μm以下である。更に、本実施形態において、二次粒子2は、一次粒子径としての結晶子径が30nm以上200nm以下である一次粒子4が凝集して形成されている。
 このようなリチウムイオン二次電池用正極活物質は、高い放電容量維持率を実現し得るため、リチウムイオン二次電池用正極やリチウムイオン二次電池に好適に用いられる。その結果、車両の駆動電源用や補助電源用のリチウムイオン二次電池として好適に利用できる。このほかにも、家庭用や携帯機器用のリチウムイオン二次電池にも十分に適用可能である。
 本実施形態において、リチウムイオン二次電池用正極活物質は、二次粒子を含むものであり、この二次粒子は、その表面及び内部に複数の空隙を有しており、一次粒子が凝集して形成されているものである。一次粒子が凝集して二次粒子を形成する際に、二次粒子の表面や内部に複数の空隙が形成されない場合、具体的には二次粒子を液相法で作製する場合には、高い初期放電容量を得ることができない。
 なお、本発明において、「一次粒子径」とは、粉末X線回折法(XRD)によって測定、算出される結晶子径をいう。つまり、本発明において「一次粒子」とは、結晶子を意味する。ここで、「結晶子」とは、結晶を構成している最小微結晶単位のことをいう。また、本発明において、「二次粒子径」とは、レーザー回折式粒度分布測定装置によって測定、算出されるメディアン径(D50)をいう。
 二次粒子径としてのメディアン径(D50)が、5μm未満の場合には、高い初期放電容量を得ることができない。また、二次粒子径としてのメディアン径(D50)が、15μm超の場合にも、高い初期放電容量を得ることができない。
 一次粒子径としての結晶子径が、30nm未満の場合にも、高い初期放電容量を得ることができない。また、一次粒子径としての結晶子径が、200nm超の場合にも、高い初期放電容量を得ることができない。更に、レート特性を向上させる観点からは、一次粒子径としての結晶子径が、40nm以上100nm以下であることが好ましい。
 また、本実施形態において、リチウムイオン二次電池用正極活物質は、層状構造を有するリチウム含有遷移金属酸化物からなるものである。層状構造を有するリチウム含有遷移金属酸化物を適用しない場合、高い初期放電容量、レート特性及び放電容量維持率を得ることができない。
 なお、層状構造を有するリチウム含有遷移金属酸化物としては、例えば、層状系(コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO))、層状三元系(ニッケルコバルトマンガン酸リチウム(Li(NiCoMn)O)や、更にこれらに他の金属元素を添加したもの等を挙げることができる。
 また、本実施形態においては、二次粒子が、下記の式(1)で表される関係を満足することが、粒子内部からのリチウム拡散性を向上させ、初期放電容量をより向上させることができるという観点から好ましく、d2/d1の取り得る範囲が40以上200以下であることが更に好ましい。ただし、このような範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよいことは言うまでもない。
       25≦d2/d1≦500・・・(1)
(式(1)中、d1は上記一次粒子の一次粒子径としての結晶子径、d2は上記二次粒子の二次粒子径としてのメディアン径(D50)を示す。)
 更に、本実施形態においては、二次粒子の少なくとも一部、好ましくは全部が、該二次粒子の内部に、該二次粒子の任意の切断面における開口部径が0.05μm以上3μm以下である複数の空隙を有することが、粒子内部からのリチウム拡散性を向上させ、初期放電容量をより向上させることができるという観点から好ましい。なお、上記開口部径はより好ましくは0.05μm以上2μm以下である。ただし、このような範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよいことは言うまでもない。
 なお、本発明において、「二次粒子の任意の切断面における開口部径」とは、二次粒子の任意の切断面を走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察したときに、観察される開口部(凹部)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。
 また、本実施形態においては、二次粒子が、下記の式(2)で表される関係を満足することが、いわゆる圧壊強度が高く、活物質が壊れ難いので、ロール転写する確率が顕著に少なくなるため好ましい。また、式(2)における(A2-A1)/A1は、0.5以上であることが好ましい。ただし、このような範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよいことは言うまでもない。
      (A2-A1)/A1≧0.5・・・(2)
(式(2)中、A1はマイクロインデンテーションによる押し込み深さ1μmのときの押し込み荷重[単位:mN]、A2はマイクロインデンテーションによる押し込み深さ2μmのときの押し込み荷重[単位:mN]を示す。)
 更に、本実施形態においては、窒素ガス吸着法によるBET比表面積が0.5m/g以上6.0m/g以下であることが、レート特性や初期の充放電効率をより向上させることができるという観点から好ましく、0.8m/g以上5.0m/g以下であることがより好ましい。ただし、このような範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよいことは言うまでもない。
 また、本実施形態においては、窒素ガス吸着法による細孔分布曲線の窒素飽和吸着量が85%であるときから算出される平均細孔直径が10nm以上50nm以下であり、窒素ガス吸着法による細孔容量が0.025cm/g以下であることが、レート特性や初期の充放電効率をより向上させることができるという観点から好ましい。このような平均細孔直径は20nm以上50nm以下であることがより好ましく、このような細孔容量は0.02cm/g以下であることがより好ましい。ただし、このような範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよいことは言うまでもない。
 更に、本実施形態においては、X線回折による2θ=18~20°における(001)面のピークの半値幅が0.08以上0.25以下が好ましい。この範囲であると、一次粒子の焼成による粒子成長が抑制され、好適な粒子構造となり、粒子内部からのリチウム拡散性を向上させ、初期放電容量をより向上させることができるという観点から好ましい。ただし、このような範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよいことは言うまでもない。
 更にまた、本実施形態においては、層状構造を有するリチウム含有遷移金属酸化物が、下記の組成式(I)
      Li1.5[NiCoMn[Li]]O・・・(I)
(組成式(I)中、a、b、c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0.1≦d≦0.4、a+b+c+d=1.5、1.1≦a+b+c≦1.4の関係を満足する。)で表され、且つ4.3V以上4.8V以下の範囲で充電又は充放電を行うことによりスピネル構造に変化する層状構造部位と、変化しない層状構造部位とを有し、変化する層状構造部位のLiMnOがスピネル構造のLiMnに全て変化した場合のスピネル構造変化割合を1としたとき、スピネル構造変化割合が0.25以上1.0未満であることが、200mAh/gを超える高い初期放電容量を得られるという観点から好ましい。ただし、このような範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよいことは言うまでもない。
 式(I)において、a、b、c及びdが0<a<1.4、0≦b<1.4、0<c<1.4、0.1≦d≦0.4、a+b+c+d=1.5、1.1≦a+b+c≦1.4の関係を満足しない場合は、層状構造を有するリチウム含有遷移金属酸化物における固溶体としての構造が安定化せずに、200mAh/gを超える高い初期放電容量を得られないことがある。
 ここで、本発明において「スピネル構造変化割合」とは、所定の電位範囲における充電又は充放電を行うことにより、当該層状構造を有するリチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに変化した割合を規定するものであって、当該層状構造を有するリチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに全て変化した場合のスピネル構造変化割合を1としたものである。具体的には、下記式にて定義される。
Figure JPOXMLDOC01-appb-M000001
 「スピネル構造変化割合」の定義について、当該層状構造を有するリチウム含有遷移金属酸化物を正極活物質とした正極を用いて組み立てた電池について、充電開始前の初期状態Aから、4.5Vまで充電された充電状態Bとし、更にプラトー領域を経て、4.8Vまで充電された過充電状態Cとし、更に2.0Vまで放電された放電状態Dとする、図2に示すような場合を例に挙げて説明する。上記式における「プラトー領域の実容量」は、図2におけるプラトー領域(具体的には4.5Vから4.8Vまでの領域(充電状態Bから過充電状態Cまでを領域BCの実容量VBC;プラトー領域の実容量)であり、結晶構造が変化していることに起因する領域である。)の実容量を計測すればよい。
 また、実際には、組成式(I)の層状構造を有するリチウム含有遷移金属酸化物において、初期状態Aから4.5Vまで充電された充電状態Bまでの領域ABの実用量VABは層状構造部位であるLiMOの組成(y)と理論容量(V)に相当し、4.5Vまで充電された充電状態Bから4.8Vまで充電された過充電状態Cの領域BCの実容量VBCはスピネル構造部位であるLiMnOの組成比(x)と理論容量(V)に相当することから、初期状態Aから所定のプラトー領域までに計測した実容量(V)を(V=VAB+VBC)とすると、VAB=y(V)、VBC=x(V)Kであるので、下記式を用いて計算することもできる(Mは、ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)からなる群より選ばれる少なくとも1種を示す。)。
Figure JPOXMLDOC01-appb-M000002
 更に、「酸化物中のLiMnOの組成比」は、層状構造を有するリチウム含有遷移金属酸化物の組成式から算出することができる。なお、層状構造を有するリチウム含有遷移金属酸化物における層状構造部位とスピネル構造部位の有無は、X線回折分析(XRD)よる層状構造及びスピネル構造に特異なピークの存在により判定することができ、その割合は、上述したような容量の計測・計算から判定することができる。
 また、スピネル構造変化割合が1.0となることはなく、0.25未満の場合は、高くても従来の層状構造を有するリチウム含有遷移金属酸化物と同程度の放電容量や容量維持率を実現し得る層状構造を有するリチウム含有遷移金属酸化物が得られるだけである。
 また、層状構造を有するリチウム含有遷移金属酸化物は、組成式(I)において、a、b、c及びdは、0<a<1.35、0≦b<1.35、0<c<1.35、0.15<d≦0.35、a+b+c+d=1.5、1.15≦a+b+c<1.35の関係を満足し、所定の電位範囲における充電又は充放電を行うことにより、当該層状構造を有するリチウム含有遷移金属酸化物のスピネル構造変化割合が0.4以上0.9未満であることがより好適である。更に、層状構造を有するリチウム含有遷移金属酸化物は、組成式(I)において、a、b、c及びdは、0<a<1.3、0≦b<1.3、0<c<1.3、0.15<d≦0.35、a+b+c+d=1.5、1.2≦a+b+c<1.3の関係を満足し、所定の電位範囲における充電又は充放電を行うことにより、当該層状構造を有するリチウム含有遷移金属酸化物のスピネル構造変化割合が0.6以上0.8以下であることが更に好適である。
 上述の層状構造を有するリチウム含有遷移金属酸化物を正極に用いたリチウムイオン二次電池において、所定の電位範囲における正極の最高電位が、リチウム金属対極に換算して4.3V以上4.8V以下である充電又は充放電を行うことにより、所望の層状構造を有するリチウム含有遷移金属酸化物のスピネル構造変化割合とすることができる。
 このような層状構造を有するリチウム含有遷移金属酸化物は、リチウムイオン二次電池の正極活物質として用いた場合、より高い初期放電容量、レート特性及び放電容量維持率を実現し得るため、リチウムイオン二次電池用正極やリチウムイオン二次電池により好適に用いられる。その結果、車両の駆動電源用や補助電源用のリチウムイオン二次電池としてより好適に利用できる。このほかにも、家庭用や携帯機器用のリチウムイオン二次電池にも十分に適用可能である。
 次に、上述した本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法について若干の例を挙げて詳細に説明する。
 上述した本発明の一実施形態に係るリチウムイオン二次電池用正極活物質を製造する方法は、特に限定されるものではないが、炭酸リチウムと、マンガン化合物、ニッケル化合物及び必要に応じて用いられるコバルト化合物の各金属化合物とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥体を酸素含有ガス雰囲気中で焼成する焼成工程と、得られた焼成粉体を分級する分級工程とを含む製造方法により、好適に製造される。
ただし、本発明のリチウムイオン二次電池用正極活物質を製造する方法は、何らこの方法に限定されるものではない。以下、各工程について詳細に説明する。
 スラリー調製工程においては、リチウムイオン二次電池用正極活物質を製造するに当たり、スラリーの調製に用いる原料化合物のうち、リチウム化合物としては炭酸リチウム(LiCO)を用いるが、他の1種以上のリチウム化合物と併用してもよい。併用するリチウム化合物の中で好ましいのは、焼成処理の際にSOx、NOx等の有害物質を発生させない点で、窒素原子や硫黄原子、ハロゲン原子を含有しないリチウム化合物であり、また、焼成時に分解ガスを発生するなどして、噴霧乾燥粉体の二次粒子内に空隙を形成しやすい化合物であり、これらの点を考慮すると、LiOH、LiOH・HOが好ましい。
 また、ニッケル化合物としては、Ni(OH)、NiO、NiOOH、NiCO、2NiCO・3Ni(OH)・4HO、NiC・2HO、Ni(NO・6HO、NiSO、NiSO・6HO、脂肪酸ニッケル、ニッケルハロゲン化物等が挙げられる。この中でも、焼成処理の際にSOx、NOx等の有害物質を発生させない点で、Ni(OH)、NiO、NiOOH、NiCO、2NiCO・3Ni(OH)・4HO、NiC・2HOのようなニッケル化合物が好ましい。また、更に工業原料として安価に入手できる及び反応性が高いという観点からNi(OH)、NiO、NiOOH、NiCO、更に焼成時に分解ガスを発生するなどして、噴霧乾燥粉体の二次粒子内に空隙を形成しやすいという観点から、特に好ましいのはNi(OH)、NiOOH、NiCOである。これらのニッケル化合物は1種を単独で使用しても良く、2種以上を併用しても良い。
 また、マンガン化合物としてはMn、MnO、Mn等のマンガン酸化物、MnCO、Mn(NO、MnSO、酢酸マンガン、ジカルボン酸マンガン、クエン酸マンガン、脂肪酸マンガン等のマンガン塩、オキシ水酸化物、塩化マンガン等のハロゲン化物等が挙げられる。これらのマンガン化合物の中でも、MnO、Mn、Mn、MnCOは、焼成処理の際にSOx、NOx等のガスを発生せず、更に工業原料として安価に入手できるため好ましい。更にこれらのマンガン化合物は1種を単独で使用しても良く、2種以上を併用しても良い。
 また、コバルト化合物としては、Co(OH)、CoOOH、CoO、Co、Co、Co(OCOCH・4HO、CoCl、Co(NO・6HO、Co(SO・7HO、CoCO等が挙げられる。中でも、焼成工程の際にSOx、NOx等の有害物質を発生させない点で、Co(OH)、CoOOH、CoO、Co、Co、CoCOが好ましく、更に好ましくは、工業的に安価に入手できる点及び反応性が高い点からCo(OH)、CoOOHである。加えて焼成時に分解ガスを発生するなどして、噴霧乾燥粉体の二次粒子内に空隙を形成しやすいという観点から、特に好ましいのはCo(OH)、CoOOH、CoCOである。これらのコバルト化合物は1種を単独で使用しても良く、2種以上を併用しても良い。
 また、上記のLi、Ni、Mn、Co原料化合物以外にも他元素置換を行ってアルミニウムやチタンなどの異元素を導入したり、後述する噴霧乾燥にて形成される二次粒子内の空隙を効率よく形成させたりすることを目的とした化合物群を使用することが可能である。なお、ここで使用する、二次粒子の空隙を効率よく形成させることを目的として使用する化合物の添加段階は、その性質に応じて、原料混合前又は混合後の何れかを選択することが可能である。特に、混合工程によって機械的剪断応力が加わるなどして分解しやすい化合物は混合工程後に添加することが好ましい。
 原料の混合方法は特に限定されるものではなく、湿式でも乾式でも良い。例えば、ボールミル、振動ミル、ビーズミル等の装置を使用する方法が挙げられる。原料化合物を水、アルコール等の液体媒体中で混合する湿式混合は、より均一な混合が可能であり、かつ焼成工程において混合物の反応性を高めることができるので好ましい。混合の時間は、混合方法により異なるが、原料が粒子レベルで均一に混合されていればよく、例えばボールミル(湿式又は乾式)では通常1時間から2日間程度、ビーズミル(湿式連続法)では滞留時間が通常0.1時間~6時間程度である。
 なお、原料の混合段階においてはそれと並行して原料の粉砕がなされていることが好ましい。粉砕の程度としては、粉砕後の原料粒子の二次粒子の粒径が指標となるが、一次粒子径としての結晶子径が200nm以下程度であることがより好ましい。
 このような粉砕程度を実現するための手段としては特に限定されるものではないが、湿式粉砕法が好ましい。具体的にはダイノーミル等を挙げることができる。
 湿式混合後は、通常乾燥工程に供される。乾燥方法は特に限定されないが、生成する粒子状物の均一性や粉体流動性、粉体ハンドリング性能、乾燥粒子を効率よく製造できる等の観点から噴霧乾燥が好ましい。その際、噴霧方法は特に限定されないが、例えば、ノズル型アトマイザー(二流体ノズル、三流体ノズル、四流体ノズル)、回転円盤形アトマイザーなどを用いた方法を挙げることができる。
 このように、原料化合物を湿式粉砕して得られたスラリーを噴霧乾燥することにより、一次粒子が凝集して二次粒子を形成してなる粉体を得る。形状の確認方法としては、例えば、走査型電子顕微鏡観察、断面走査型電子顕微鏡観察を挙げることができる。
 二次粒子の焼成前駆体でもある噴霧乾燥により得られる粉体のメジアン径(D50)は15μm以下であることが好ましい。噴霧乾燥法で粒子状物を製造する場合、その粒子径は、噴霧形式、加圧気体流供給速度、スラリー供給速度、乾燥温度等を適宜選定することによって制御することができる。
 例えば、リチウム化合物、ニッケル化合物、マンガン化合物及びコバルト化合物を液体媒体中に分散させたスラリーを噴霧乾燥後、得られた粉体を焼成してリチウムニッケルマンガンコバルト系複合酸化物粉体を製造するに当たり、噴霧乾燥時のスラリー粘度をV(cp)、スラリー供給量をS(L/min)、ガス供給量をG(L/min)とした際、スラリー粘度Vが、50cp≦V≦4000cpであって、かつ、気液比G/Sが、500≦G/S≦10000となる条件で噴霧乾燥を行う。
 スラリー粘度V(cp)が低すぎると一次粒子が凝集して二次粒子を形成してなる活物質を得にくくなるおそれがあり、高過ぎると供給ポンプが故障したり、ノズルが閉塞したりするおそれがある。従って、スラリー粘度V(cp)は、下限値として通常50cp以上、好ましくは100cp以上、更に好ましくは300cp以上、最も好ましくは500cpであり、上限値としては通常4000cp以下、好ましくは3500cp以下、更に好ましくは3000cp以下、最も好ましくは2500cp以下である。
 また、気液比G/Sが上記下限を下回ると二次粒子サイズが粗大化したり、乾燥性が低下しやすくなるなどして、上限を超えると生産性が低下する虞がある。従って、気液比G/Sは、下限値として通常500以上、好ましくは1000以上、更に好ましくは1500以上、最も好ましくは1800以上であり、上限値としては通常10000以下、好ましくは9000以下、更に好ましくは8000以下、最も好ましくは7500以下である。
 スラリー供給量Sやガス供給量Gは、噴霧乾燥に供するスラリーの粘度や用いる噴霧乾燥装置の仕様等によって適宜設定される。
 その他の条件については、用いる装置の種類等に応じて適宜設定されるが、更に次のような条件を選択することが好ましい。
 例えば、スラリーの噴霧乾燥は、通常、50℃以上、好ましくは70℃以上、更に好ましくは120℃以上、最も好ましくは140℃以上で、通常300℃以下、好ましくは250℃以下、更に好ましくは200℃以下、最も好ましくは180℃以下の温度で行うことが好ましい。この温度が高すぎると得られた造粒粒子が中空構造の多いものとなる可能性があり、粉体の充填密度が低下するおそれがある。一方、低すぎると粉体出口部分での水分結露による粉体固着・閉塞等の問題が生じる可能性がある。
 このようにして得られた焼成前駆体としての噴霧乾燥粉体は、次いで焼成処理される。 ここで、「焼成前駆体」とは、噴霧乾燥粉体を処理して得られる焼成前のリチウムニッケルマンガン(コバルト)系複合酸化物の前駆体を意味する。例えば、前述の焼成時に分解ガスを発生又は昇華して、二次粒子内に空隙を形成させる化合物を、上述の噴霧乾燥粉体に含有させて焼成前駆体としてもよい。
 この焼成条件は、組成や使用するリチウム化合物原料にも依存するが、傾向として、焼成温度が高すぎると一次粒子が過度に成長し、粒子間の焼結が進行し過ぎ、比表面積が小さくなり過ぎる。逆に低すぎると異相が混在し、また結晶構造が発達せずに格子歪が大きくなり過ぎる。また比表面積が大きくなりすぎる。焼成温度としては、通常700℃以上であるが、900℃以上が好ましく、より好ましくは920℃以上、さらに好ましくは940℃以上、更に好ましくは950℃以上、最も好ましくは975℃以上であり、通常1200℃以下、好ましくは1175℃以下、更に好ましくは1150℃以下、最も好ましくは1125℃以下である。
 焼成には、例えば、箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用することができる。焼成工程は、通常、昇温・最高温度保持・降温の三部分に分けられる。二番目の最高温度保持部分は必ずしも一回とは限らず、目的に応じて二段階又はそれ以上の段階をふませてもよく、二次粒子を破壊しない程度に凝集を解消することを意味する解砕工程又は、一次粒子若しくは更に微小粉末まで砕くことを意味する粉砕工程を挟んで、昇温・最高温度保持・降温の工程を二回又はそれ以上繰り返しても良い。
 昇温工程は通常1℃/分以上10℃/分以下の昇温速度で炉内を昇温させる。この昇温速度があまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても炉によっては炉内温度が設定温度に追従しなくなる。昇温速度は、好ましくは1.5℃/分以上、より好ましくは2℃/分以上、さらに好ましくは3℃/分以上で、好ましくは7℃/分以下、より好ましくは5℃/分以下、さらに好ましくは4℃/分以下である。
 最高温度保持工程での保持時間は、温度によっても異なるが、通常前述の温度範囲であれば30分以上、好ましくは1時間以上、より好ましくは2時間以上、更に好ましくは3時間以上、最も好ましくは5時間以上で、50時間以下、好ましくは25時間以下、より好ましくは20時間以下、更に好ましくは15時間以下、最も好ましくは10時間以下である。焼成時間が短すぎると結晶性の良いリチウムニッケルマンガンコバルト系複合酸化物粉体が得られ難くなり、長すぎるのは実用的ではない。焼成時間が長すぎると、その後解砕が必要になったり、解砕が困難になったりするので、不利である。
 降温工程では、通常0.1℃/分以上10℃/分以下の降温速度で炉内を降温させる。あまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても目的物の均一性に欠けたり、容器の劣化を早めたりする傾向にある。降温速度は、好ましくは1℃/分以上、より好ましくは3℃/分以上で、好ましくは7℃/分以下、より好ましくは5℃/分以下である。
 焼成時の雰囲気は、得ようとするリチウム遷移金属系化合物粉体の組成によって適切な酸素分圧領域があるため、それを満足するための適切な種々ガス雰囲気が用いられる。ガス雰囲気としては、例えば、酸素、空気、窒素、アルゴン、水素、二酸化炭素、及びそれらの混合ガス等を挙げることができる。本発明において具体的に実施しているリチウムニッケルマンガンコバルト系複合酸化物粉体については、空気等の酸素含有ガス雰囲気を用いることができる。通常は酸素濃度が1体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上で、100体積%以下、好ましくは50体積%以下、より好ましくは25体積%以下の雰囲気とする。
 このような製造方法において、本発明のリチウム二次電池用正極活物質を製造するには、製造条件を一定とした場合には、リチウム化合物、ニッケル化合物、マンガン化合物、コバルト化合物を、液体媒体中に分散させたスラリーを調製する際、各化合物の混合比を調整することで、目的とするモル比を制御することができる。
 焼成により得られた焼成粉体は次いで、解砕したり、電極調製にとって好ましい粒度分布状態に調整したり、粗大異物等を除去したりするために分級を行う。分級法としては、その目的を達成できるものであれば特に限定されるものではないが、例えば、篩分級(振動篩、遠心篩)、気力分級などが挙げられる。具体的な装置としては、例えばダルト社の「超音波式振動篩」、ツカサ工業社の「パウシフター」、ターボ工業社の「ターボスクリーナー」、ホソカワミクロン社の「ターボプレックス」等を挙げることができるが、これらに限定されない。
 分級により得られた分級粉体は、一次粒子が凝集して形成された二次粒子であり、該二次粒子は表面及び内部に空隙を有し、層状構造を有するリチウム含有遷移金属酸化物からなる。
 また、上述のリチウム含有遷移金属酸化物を正極に用いたリチウムイオン二次電池において、所定の電位範囲における正極の最高電位が、リチウム金属対極に換算して4.3V以上4.8V以下である充電又は充放電を行うことにより、当該固溶体リチウム含有遷移金属酸化物において所望のスピネル構造変化割合とすることができる。
 次に、本発明の一実施形態に係るリチウムイオン二次電池用正極及びリチウムイオン二次電池について図面を参照しながら詳細に説明する。なお、以下の実施形態で引用する図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図3は、本発明の一実施形態に係るリチウムイオン二次電池の一例の概略を示す断面図である。なお、このようなリチウムイオン二次電池は、ラミネート型リチウムイオン二次電池と呼ばれる。
 図3に示すように、本実施形態のリチウムイオン二次電池10は、正極リード31及び負極リード32が取り付けられた電池素子20がラミネートフィルムで形成された外装体40の内部に封入された構成を有している。そして、本実施形態においては、正極リード31及び負極リード32が、外装体40の内部から外部に向かって、反対方向に導出されている。なお、図示しないが、正極リード及び負極リードが、外装体の内部から外部に向かって、同一方向に導出されていてもよい。また、このような正極リード及び負極リードは、例えば超音波溶接や抵抗溶接などにより後述する正極集電体及び負極集電体に取り付けることができる。
 正極リード31及び負極リード32は、例えば、アルミニウム(Al)や銅(Cu)、チタン(Ti)、ニッケル(Ni)、これらの合金、ステンレス鋼(SUS)等の金属材料により構成されている。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用のリードとして用いられている従来公知の材料を用いることができる。
 なお、正極リード及び負極リードは、同一材質のものを用いてもよく、異なる材質のものを用いてもよい。また、本実施形態のように、別途準備したリードを後述する正極集電体及び負極集電体に接続してもよいし、後述する各正極集電体及び各負極集電体をそれぞれ延長することによってリードを形成してもよい。図示しないが、外装体から取り出された部分の正極リード及び負極リードは、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
 また、図示しないが、電池外部に電流を取り出す目的で、集電板を用いてもよい。集電板は集電体やリードに電気的に接続され、電池の外装材であるラミネートフィルムの外部に取り出される。集電板を構成する材料は、特に限定されるものではなく、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料を用いることができる。集電板の構成材料としては、例えば、アルミニウム(Al)、銅(Cu)、チタン(Ti)、ニッケル(Ni)、これらの合金、ステンレス鋼(SUS)等の金属材料が好ましく、軽量、耐食性、高導電性の観点からアルミニウム(Al)、銅(Cu)などがより好ましい。なお、正極集電板と負極集電板とでは、同一の材質が用いられてもよいし、異なる材質が用いられてもよい。
 外装体40は、例えば、小型化、軽量化の観点から、フィルム状の外装材で形成されたものであることが好ましいが、これに限定されるものではなく、リチウムイオン二次電池用の外装体に用いられている従来公知のものを用いることができる。すなわち、金属缶ケースを適用することもできる。
 なお、高出力化や冷却性能に優れ、電気自動車、ハイブリッド電気自動車の大型機器用電池に好適に利用することができるという観点から、例えば、熱伝導性に優れた高分子-金属複合ラミネートフィルムを挙げることができる。より具体的には、熱圧着層としてのポリプロピレン、金属層としてのアルミニウム、外部保護層としてのナイロンをこの順に積層して成る3層構造のラミネートフィルムの外装材で形成された外装体を好適に用いることができる。
 なお、外装体は、上述したラミネートフィルムに代えて、他の構造、例えば金属材料を有さないラミネートフィルム、ポリプロピレンなどの高分子フィルム又は金属フィルムなどにより構成してもよい。
 ここで、外装体の一般的な構成は、外部保護層/金属層/熱圧着層の積層構造で表すことができる(但し、外部保護層及び熱圧着層は複数層で構成されることがある。)。なお、金属層としては、耐透湿性のバリア膜として機能すれば十分であり、アルミニウム箔のみならず、ステンレス箔、ニッケル箔、メッキを施した鉄箔などを使用することができるが、薄く軽量で加工性に優れるアルミニウム箔を好適に用いることができる。
 外装体として、使用可能な構成を(外部保護層/金属層/熱圧着層)の形式で列挙すると、ナイロン/アルミニウム/無延伸ポリプロピレン、ポリエチレンテレフタレート/アルミニウム/無延伸ポリプロピレン、ポリエチレンテレフタレート/アルミニウム/ポリエチレンテレフタレート/無延伸ポリプロピレン、ポリエチレンテレフタレート/ナイロン/アルミニウム/無延伸ポリプロピレン、ポリエチレンテレフタレート/ナイロン/アルミニウム/ナイロン/無延伸ポリプロピレン、ポリエチレンテレフタレート/ナイロン/アルミニウム/ナイロン/ポリエチレン、ナイロン/ポリエチレン/アルミニウム/直鎖状低密度ポリエチレン、ポリエチレンテレフタレート/ポリエチレン/アルミニウム/ポリエチレンテレフタレート/低密度ポリエチレン、及びポリエチレンテレフタレート/ナイロン/アルミニウム/低密度ポリエチレン/無延伸ポリプロピレンなどがある。
 図3に示すように、電池素子20は、正極集電体21Aの両方の主面上に正極活物質層21Bが形成された正極21と、電解質層23と、負極集電体22Aの両方の主面上に負極活物質層22Bが形成された負極22とを複数積層した構成を有している。このとき、一の正極21の正極集電体21Aの片方の主面上に形成された正極活物質層21Bと該一の正極21に隣接する負極22の負極集電体22Aの片方の主面上に形成された負極活物質層22Bとが電解質層23を介して向き合う。このようにして、正極、電解質層、負極の順に複数積層されている。
 これにより、隣接する正極活物質層21B、電解質層23及び負極活物質層22Bは、1つの単電池層24を構成する。従って、本実施形態のリチウムイオン二次電池10は、単電池層24が複数積層されることにより、電気的に並列接続された構成を有するものとなる。なお、正極及び負極は、各集電体の一方の主面上に各活物質層が形成されているものであってもよい。本実施形態においては、例えば、電池素子20の最外層に位置する負極集電体22aには、片面のみに、負極活物質層22Bが形成されている。
 また、単電池層の外周には、隣接する正極集電体や負極集電体の間を絶縁するための絶縁層(図示せず)が設けられていてもよい。このような絶縁層は、電解質層などに含まれる電解質を保持し、単電池層の外周に、電解質の液漏れを防止する材料により形成されることが好ましい。具体的には、ポリプロピレン(PP)、ポリエチレン(PE)、ポリウレタン(PUR)、ポリアミド系樹脂(PA)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリスチレン(PS)などの汎用プラスチックや熱可塑オレフィンゴムなどを使用することができる。また、シリコーンゴムを使用することもできる。
 正極集電体21A及び負極集電体22Aは、導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定することができる。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。集電体の形状についても特に制限されない。図3に示す電池素子20では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。
 なお、負極活物質の一例である薄膜合金をスパッタ法等により負極集電体22A上に直接形成する場合には、集電箔を用いるのが望ましい。
 集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料又は非導電性高分子材料に導電性フィラーが添加された樹脂を採用することができる。
 具体的には、金属としては、アルミニウム(Al)、ニッケル(Ni)、鉄(Fe)、ステンレス鋼(SUS)、チタン(Ti)、銅(Cu)などが挙げられる。これらのほか、ニッケル(Ni)とアルミニウム(Al)とのクラッド材、銅(Cu)とアルミニウム(Al)とのクラッド材、又はこれらの金属を組み合わせためっき材などを用いることが好ましい。また、金属表面にアルミニウム(Al)が被覆された箔であってもよい。中でも、電子伝導性や電池作動電位等の観点からは、アルミニウム(Al)、ステンレス鋼(SUS)、銅(Cu)、ニッケル(Ni)が好ましい。
 また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、ポリオキサジアゾールなどが挙げられる。このような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化又は集電体の軽量化の点において有利である。
 非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、ポリスチレン(PS)などが挙げられる。このような非導電性高分子材料は、優れた耐電位性又は耐溶媒性を有する。
 上記の導電性高分子材料又は非導電性高分子材料には、必要に応じて導電性フィラーを添加することができる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性又はリチウムイオン遮断性に優れた材料として、金属、導電性カーボンなどが挙げられる。
 金属としては、ニッケル(Ni)、チタン(Ti)、アルミニウム(Al)、銅(Cu)、白金(Pt)、鉄(Fe)、クロム(Cr)、スズ(Sn)、亜鉛(Zn)、インジウム(In)、アンチモン(Sb)及びカリウム(K)からなる群から選ばれる少なくとも1種の金属若しくはこれらの金属を含む合金又は金属酸化物を含むものを好適例として挙げることができる。また、導電性カーボンとしては、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン及びフラーレンからなる群より選ばれる少なくとも1種を含むものを好適例として挙げることができる。導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5~35質量%程度である。
 しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の集電体として用いられている従来公知の材料を用いることができる。
 正極活物質層21Bは、正極活物質として、上述した本発明の一実施形態に係るリチウムイオン二次電池用正極活物質を含んでおり、必要に応じて、結着剤や導電助剤を含んでいてもよい。
 結着剤としては、特に限定されるものではないが、例えば、以下の材料が挙げられる。ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル(PAN)、ポリイミド(PI)、ポリアミド(PA)、セルロース、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル(PVC)、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることがより好ましい。これらの好適なバインダーは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり正極(及び負極)活物質層に使用が可能である。
 しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の結着剤として従来用いられている公知の材料を用いることができる。これらの結着剤は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 正極活物質層に含まれる結着剤量は、正極活物質を結着することができる量であれば特に限定されるものではないが、好ましくは正極活物質層に対して、0.5~15質量%であり、より好ましくは1~10質量%であり、更に好ましくは5質量%以下、具体的には1~5質量%である。
 導電助剤とは、正極活物質層の導電性を向上させるために配合されるものである。導電助剤としては、例えば、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料を挙げることができる。正極活物質層が導電助剤を含むと、正極活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与し得る。
 しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の導電助剤として用いられている従来公知の材料を用いることができる。これらの導電助剤は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 また、上記導電助剤と結着剤の機能を併せ持つ導電性結着剤をこれら導電助剤と結着剤に代えて用いてもよいし、又はこれら導電助剤と結着剤の一方若しくは双方と併用してもよい。導電性結着剤としては、例えば、既に市販のTAB-2(宝泉株式会社製)を用いることができる。
 正極活物質層に含まれる導電助剤量は、正極活物質間の導電性を向上し得る量であれば特に限定されるものではないが、好ましくは正極活物質層に対して、0.5~15質量%であり、より好ましくは1~10質量%であり、更に好ましくは5質量%以下、具体的には1~5質量%である。
 負極活物質層12Bは、負極活物質として、リチウム、リチウム合金、又はリチウムを吸蔵及び放出することが可能な負極材料を含んでおり、必要に応じて、結着剤や導電助剤を含んでいてもよい。なお、結着剤や導電助剤は上記説明したものを用いることができる。
 リチウムを吸蔵及び放出することが可能な負極材料としては、例えば、高結晶性カーボンであるグラファイト(天然グラファイト、人造グラファイト等)、低結晶性カーボン(ソフトカーボン、ハードカーボン)、カーボンブラック(ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等)、フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリルなどの炭素材料(10質量%以下のケイ素ナノ粒子を含むものを含む。);ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、水素(H)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ルテニウム(Ru)、ロジウム(Rh)、イリジウム(Ir)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)、カドミウム(Cd)、水銀(Hg)、ガリウム(Ga)、タリウム(Tl)、炭素(C)、窒素(N)、アンチモン(Sb)、ビスマス(Bi)、酸素(O)、硫黄(S)、セレン(Se)、テルル(Te)、塩素(Cl)等のリチウムと合金化する元素の単体、及びこれらの元素を含む酸化物(一酸化ケイ素(SiO)、SiO(0<x<2)、二酸化スズ(SnO)、SnO(0<x<2)、SnSiOなど)及び炭化物(炭化ケイ素(SiC)など)等;リチウム金属等の金属材料;リチウム-チタン複合酸化物(チタン酸リチウム:LiTi12)等のリチウム-遷移金属複合酸化物を挙げることができる。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の負極活物質として用いられている従来公知の材料を用いることができる。これらの負極活物質は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 また、本実施形態においては、炭素材料が、非晶質炭素層で表面が被覆され、且つ鱗片状ではない黒鉛材料からなり、炭素材料のBET比表面積が0.8m/g以上1.5m/g以下であり且つタップ密度が0.9g/cm以上1.2g/cm以下であることが好適である。非晶質炭素層で表面が被覆され、且つ鱗片状ではない黒鉛材料からなる炭素材料は、黒鉛層状構造へのリチウムイオン拡散性が高く好ましい。また、このような炭素材料のBET比表面積が0.8m/g以上1.5m/g以下であると、更に容量維持率を向上させることができるため、好ましい。更に、このような炭素材料のタップ密度が0.9g/cm以上1.2g/cm以下であると、単位体積当たりの重量(充填量)を向上させることができ、放電容量を向上させることができる。
 また、各活物質層(集電体片面の活物質層)の厚さについても特に限定されるものではなく、電池についての従来公知の知見を適宜参照することができる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1~500μm程度、好ましくは2~100μmである。ただし、このような範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよいことは言うまでもない。
 電解質層13としては、例えば、後述するセパレータに保持させた電解液や高分子ゲル電解質、固体高分子電解質を用いて層構造を形成したもの、更には、高分子ゲル電解質や固体高分子電解質を用いて積層構造を形成したものなどを挙げることができる。
 電解液としては、例えば、通常リチウムイオン二次電池で用いられるものであることが好ましく、具体的には、有機溶媒に支持塩(リチウム塩)が溶解した形態を有する。リチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、六フッ化タンタル酸リチウム(LiTaF)、四塩化アルミニウム酸リチウム(LiAlCl)、リチウムデカクロロデカホウ素酸(Li10Cl10)等の無機酸陰イオン塩、トリフルオロメタンスルホン酸リチウム(LiCFSO)、リチウムビス(トリフルオロメタンスルホニル)イミド(Li(CFSON)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(Li(CSON)等の有機酸陰イオン塩の中から選ばれる、少なくとも1種類のリチウム塩等を挙げることができる。その中でも、六フッ化リン酸リチウム(LiPF)が好ましい。また、有機溶媒としては、例えば、環状カーボネート類、含フッ素環状カーボネート類、鎖状カーボネート類、含フッ素鎖状カーボネート類、脂肪族カルボン酸エステル類、含フッ素脂肪族カルボン酸エステル類、γ-ラクトン類、含フッ素γ-ラクトン類、環状エーテル類、含フッ素環状エーテル類、鎖状エーテル類及び含フッ素鎖状エーテル類からなる群より選ばれる少なくとも1種の有機溶媒を用いることができる。環状カーボネート類としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)を挙げることができる。また、含フッ素環状カーボネート類としては、例えば、フルオロエチレンカーボネート(FEC)を挙げることができる。更に、鎖状カーボネート類としては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)、ジプロピルカーボネート(DPC)を挙げることができる。また、脂肪族カルボン酸エステル類としては、例えば、ギ酸メチル、酢酸メチル、プロピオン酸エチルを挙げることができる。更に、γ-ラクトン類としては、例えば、γ-ブチロラクトンを挙げることができる。また、環状エーテル類としては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサンを挙げることができる。更に、鎖状エーテル類としては、例えば、1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)、ジエチルエーテル、1,2-ジメトキシエタン、1,2-ジブトキシエタンを挙げることができる。その他としては、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類を挙げることができる。これらは、1種を単独で、2種以上を組み合わせて用いることができる。
 電解液には、スルトン誘導体や環状スルホン酸エステルなどの有機スルホン系化合物、ジスルトン誘導体や環状ジスルホン酸エステルなどの有機ジスルホン系化合物、ビニレンカーボネート誘導体、エチレンカーボネート誘導体、エステル誘導体、2価フェノール誘導体、エチレングリコール誘導体、テルフェニル誘導体、ホスフェート誘導体などの添加剤を添加してもよい。これらは負極活物質の表面に被膜を形成し、電池におけるガス発生が低減され、更に容量維持率の向上を図ることができる。
 有機スルホン系化合物としては、例えば、1,3-プロパンスルホン(飽和スルトン)、1,3-プロペンスルトン(不飽和スルトン)を挙げることができる。また、有機ジスルホン系化合物としては、例えば、メタンジスルホン酸メチレンを挙げることができる。更に、ビニレンカーボネート誘導体としては、例えば、ビニレンカーボネート(VC)を挙げることができる。また、エチレンカーボネート誘導体としては、例えば、フルオロエチレンカーボネート(FEC)を挙げることができる。更に、エステル誘導体としては、例えば、4-ビフェニリルアセテート、4-ビフェニリルベンゾエート、4-ビフェニリルベンジルカルボキシレート、2-ビフェニリルプロピオネートを挙げることができる。また、2価フェノール誘導体としては、例えば、1,4-ジフェノキシベンゼン、1,3-ジフェノキシベンゼンを挙げることができる。更に、エチレングリコール誘導体としては、例えば、1,2-ジフェノキシエタン、1-(4-ビフェニリルオキシ)-2-フェノキシエタン、1-(2-ビフェニリルオキシ)-フェノキシエタンを挙げることができる。また、テルフェニル誘導体としては、例えば、o-テルフェニル、m-テルフェニル、p-テレフェニル、2-メチル-o-テルフェニル、2,2-ジメチル-o-テルフェニルを挙げることができる。更に、ホスフェート誘導体としては、例えば、トリフェニルホスフェートを挙げることができる。
 セパレータとしては、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィンからなる微多孔膜や多孔質の平板、更には不織布を挙げることができる。
 高分子ゲル電解質としては、高分子ゲル電解質を構成するポリマーと電解液を従来公知の比率で含有したものを挙げることができる。例えば、イオン伝導度などの観点から、数質量%~98質量%程度とするのが望ましい。
 高分子ゲル電解質は、イオン導伝性を有する固体高分子電解質に、通常リチウムイオン二次電池で用いられる上記電解液を含有させたものである。しかしながら、これに限定されるものではなく、リチウムイオン導伝性を持たない高分子の骨格中に、同様の電解液を保持させたものも含まれる。
 高分子ゲル電解質に用いられるリチウムイオン導伝性を持たない高分子としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)などが使用できる。ただし、これらに限られるわけではない。なお、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)などは、どちらかと言うとイオン伝導性がほとんどない部類に入るものであるため、上記イオン伝導性を有する高分子とすることもできるが、ここでは高分子ゲル電解質に用いられるリチウムイオン導伝性を持たない高分子として例示したものである。
 固体高分子電解質は、例えばポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)などに上記リチウム塩が溶解して成る構成を有し、有機溶媒を含まないものを挙げることができる。したがって、電解質層が固体高分子電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上させることができる。
 電解質層の厚みは、内部抵抗を低減させるという観点からは薄い方が好ましい。電解質層の厚みは、通常1~100μmであり、好ましくは5~50μmである。
 なお、高分子ゲル電解質や固体高分子電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現させることができる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、ポリエチレンオキシド(PEO)やポリプロピレンオキシド(PPO))に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
 次に、上述した本発明の一実施形態に係るリチウムイオン二次電池の製造方法について若干の例を挙げて説明する。
 リチウムイオン二次電池の製造方法の一例を説明する。まず、正極を作製する。例えば粒状の正極活物質を用いる場合には、上述したリチウムイオン二次電池用正極活物質と必要に応じて導電助剤、結着剤及び粘度調整溶剤とを混合し、正極用スラリーを作製する。
 次いで、この正極用スラリーを正極集電体に塗布し、乾燥させ、圧縮成型して正極活物質層を形成する。
 また、負極を作製する。例えば粒状の負極活物質を用いる場合には、負極活物質と必要に応じて導電助剤、バインダー及び粘度調整溶剤とを混合し、負極用スラリーを作製する。この後、この負極用スラリーを負極集電体に塗布し、乾燥させ、圧縮成型して負極活物質層を形成する。
 次いで、正極に正極リードを取り付けるとともに、負極に負極リードを取り付けた後、正極、セパレータ及び負極を積層する。更に、積層したものを高分子-金属複合ラミネートシートで挟み、一辺を除く外周縁部を熱融着して袋状の外装体とする。
 しかる後、六フッ化リン酸リチウムなどのリチウム塩と、炭酸エチレンなどの有機溶媒を含む非水電解質を準備し、外装体の開口部から内部に注入して、外装体の開口部を熱融着し封入する。これにより、ラミネート型のリチウムイオン二次電池が完成する。
 リチウムイオン二次電池の製造方法の他の一例を説明する。まず、正極を作製する。例えば粒状の正極活物質を用いる場合には、上述したリチウム含有遷移金属酸化物と必要に応じて導電助剤、バインダー及び粘度調整溶剤とを混合し、正極用スラリーを作製する。
 次いで、この正極用スラリーを正極集電体に塗布し、乾燥させ、圧縮成型して正極活物質層を形成する。
 また、負極を作製する。例えば粒状の負極活物質を用いる場合には、負極活物質と必要に応じて導電助剤、バインダー及び粘度調整溶剤とを混合し、負極用スラリーを作製する。この後、この負極用スラリーを負極集電体に塗布し、乾燥させ、圧縮成型して負極活物質層を形成する。
 次いで、正極に正極リードを取り付けるとともに、負極に負極リードを取り付けた後、正極、セパレータ及び負極を積層する。更に、積層したものを高分子-金属複合ラミネートシートで挟み、一辺を除く外周縁部を熱融着して袋状の外装体とする。
 しかる後、六フッ化リン酸リチウムなどのリチウム塩と、炭酸エチレンなどの有機溶媒を含む非水電解質を準備し、外装体の開口部から内部に注入して、外装体の開口部を熱融着し封入する。更に上述した所定の充電又は充放電を行う、これにより、ラミネート型のリチウムイオン二次電池が完成する。
 以下、本発明を実施例及び比較例により更に詳細に説明する。
<リチウム含有遷移金属酸化物の組成>
 誘導結合プラズマ発光分光分析装置(ICP-AES)を用いて測定し、算出した。
<リチウム含有遷移金属酸化物の構造>
 X線回折装置(XRD)及び走査型電子顕微鏡(SEM)を用いて確認し、又は測定し、算出した。
<一次粒子径(結晶子径)(=d1)>
 X線回折装置(XRD)を用いて測定し、算出した。
<二次粒子径(D50)(=d2)>
 レーザー回折式粒度分布測定装置を用いて測定し、算出した。
<d2/d1>
 上記算出したd1及びd2から、算出した。
<二次粒子内部の空隙のサイズ>
 走査型電子顕微鏡(SEM)を用いて測定し、算出した。
<圧壊強度指標(=(A2-A1)/A1))>
 マイクロインデンターを用いて測定し、算出した。
<BET比表面積>
 比表面積、細孔分布測定装置を用いて測定した。
<平均細孔直径>
 比表面積、細孔分布測定装置を用いて測定し、算出した。
<細孔容量>
 比表面積、細孔分布測定装置を用いて測定し、算出した。
<(001)面のピークの半値幅>
 X線回折装置(XRD)を用いて測定し、算出した。
<スピネル構造変化割合(K)>
 所定の電池を組み立て、容量を測定し、算出した。
(実施例1)
(正極活物質の製造)
 試料の合成は、噴霧乾燥法を用い、以下のように行った。まず、炭酸リチウム(LiCO)、水酸化ニッケル(Ni(OH))、オキシ水酸化コバルト(CoOOH)、酸化マンガン(Mn)を、リチウム(Li):ニッケル(Ni):コバルト(Co):マンガン(Mn)=1.75:0.25:0.25:0.75のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このとき、循環式媒体攪拌型湿式粉砕機を用いてスラリーを撹拌しながら、スラリー中の固形分を、一次粒子径(結晶子径)が95nmとなるように粉砕した。
 次に、このスラリー(固形分含有量15.7質量%、粘度1600cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP-50型)を用いて噴霧乾燥した。このとき、乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min、降温速度:約3.3℃/min)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウム含有遷移金属酸化物(粉体)を得た。
 得られたリチウム含有遷移金属酸化物は、組成式がLi1.5[Ni0.25Co0.25Mn0.75[Li]0.25]O(a+b+c+d=1.5、d=0.25、a+b+c=1.25)であり、一次粒子が凝集して二次粒子を形成しており、二次粒子の表面及び内部に複数の空隙を有するものであった。
 また、一次粒子径d1は95nm、二次粒子径d2は5.9μm、d2/d1は62、空隙の開口部径は2.0μm、圧壊強度指標は0.67、BET比表面積は1.27m/g、平均細孔直径は36nm、細孔容量は0.0011cm/g、(001)面のピークの半値幅は0.12であった。
(正極用スラリーの組成)
活物質:Li1.5[Ni0.25Co0.25Mn0.75[Li]0.25]O(100質量部)
導電助剤:燐片状黒鉛(1.0質量部)、アセチレンブラック(3.0質量部)
結着剤:ポリフッ化ビニリデン(PVDF)(3.0質量部)
溶剤:N-メチルピロリドン(NMP)(65質量部)
(正極用スラリーの製造)
 上記組成の正極用スラリーを次のように調製した。まず、PVDF3.0質量部をNMP30質量部に溶解してNMP溶液を作製した。次に、導電助剤4.0質量部と活物質100質量部の混合粉に、NMP溶液33.0質量部を加え、プラネタリーミキサー(浅田鉄工製、PVM100)にて混練し、その後、混練物にNMP35質量部を加えて、正極用スラリー(固形分濃度62質量%)を得た。
(正極用スラリーの塗布・乾燥)
 20μm厚のアルミニウム箔からなる集電体を走行速度1m/minで走行させながら、集電体の片面に、得られた正極用スラリーをダイコーターにより塗布した。次いで、この正極用スラリーを塗布した集電体を、熱風乾燥炉にて乾燥(乾燥温度:100~110℃、乾燥時間:3分間)させて、正極活物質層に残留するNMP量を0.02質量%以下とした。更に、集電体の裏面にも上記同様の操作を行い、集電体の両面に正極活物質層を有するシート状正極を形成した。
(正極のプレス)
 得られたシート状正極をローラープレスを用いて圧縮成形し、切断して、片面の正極活物質層の重量約10mg/cm、厚さ約50μm、密度2.70g/cmの正極C1を作製した。
(正極の乾燥)
 次に、この正極C1を用い、真空乾燥炉にて乾燥処理を行った。乾燥炉内部に正極C1を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し、乾燥炉内の空気を除去した。次いで、窒素ガスを流通(100cm/min)しながら、10℃/minで120℃まで昇温し、120℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして正極C11を得た。
(負極用スラリーの組成)
活物質:天然グラファイト(100質量部)
導電助剤:アセチレンブラック(1.0質量部)
結着剤:ポリフッ化ビニリデン(PVDF)(5.0質量部)
溶剤:N-メチルピロリドン(NMP)(97重量部)
(負極用スラリーの製造)
 上記組成の負極用スラリーを次のように調製した。まず、PVDF5.0質量部をNMP50質量部に溶解してNMP溶液を作製した。次に、導電助剤1.0質量部と活物質100質量部の混合粉に、NMP溶液55.0質量部を加え、プラネタリーミキサー(浅田鉄工製、PVM100)にて混練し、その後、混練物にNMP47質量部を加えて、負極用スラリー(固形分濃度52質量%)得た。
(負極用スラリーの塗布・乾燥)
 10μm厚の電解銅箔からなる集電体を走行速度1.5m/minで走行させながら、集電体の片面に、得られた負極用スラリーをダイコーターにより塗布した。次いで、この負極用スラリーを塗布した集電体を、熱風乾燥炉にて乾燥(乾燥温度:100~110℃、乾燥時間:2分間)させて、負極活物質層に残留するNMP量を0.02質量%以下とした。更に、集電体の裏面にも上記同様の操作を行い、集電体の両面に負極活物質層を有するシート状負極を形成した。
(負極のプレス)
 得られたシート状負極をローラープレスを用いて圧縮成形し、切断して、片面の負極活物質層の重量約11.5mg/cm、密度1.45g/cmの負極A1を作製した。
 なお、負極A1の表面を観察したところ、クラックの発生は見られなかった。また、正極と負極の対向充電容量比はA/C=1.25であった。
(負極の乾燥)
 次に、この負極A1を用い、真空乾燥炉にて乾燥処理を行った。乾燥炉内部に負極A1を設置した後、室温(25℃)にて減圧(100mmHg(1.33×10Pa))し、乾燥炉内の空気を除去した。次いで、窒素ガスを流通(100cm/min)しながら、10℃/minで135℃まで昇温し、135℃で再度減圧して炉内の窒素を排気したまま12時間保持した後、室温まで降温した。こうして負極A11を得た。
(電池の作製)
 得られた正極C11(活物質層面積 縦3.6cm×横5.3cm)と負極A11(活物質層面積 縦3.8cm×横5.5cm)の集電体部分にタブを溶接した。これらタブを溶接した負極A11と正極C11との間に多孔質ポリプロピレン製セパレータ(S)(縦4.5cm×横6.0cm、厚さ25μm、空孔率55体積%)を挟んで5層からなる積層型(積層例、A11-(S)-C11-(S)-A11)の電池素子を作製した。次いで、アルミニウムラミネートフィルム(縦5.0cm×横6.5cm)で両側を挟み込み、3辺を熱圧着封止して上記電池素子を収納した。この電池素子に、エチレンカーボネート(EC)30体積%とジエチルカーボネート(DEC)70体積%の混合溶媒に、1.0mol/Lの)六フッ化リン酸リチウム(LiPF)を溶解した後、添加剤として、ビニレンカーボネート(VC)1.0質量%、1,3-プロパンスルトン1.0質量%、ジフルオロリン酸リチウム(LiPO)1.0質量%を溶解し、電解液を得た。この電解液を0.6cm/セル注入した後、残りの1辺を熱圧着封止し、ラミネート型のリチウムイオン二次電池を得た。
(エージング処理)
 得られた電池のエージング処理(負極安定化処理)を、次のように行った。まず、25℃にて、定電流充電法で0.05C、4時間の充電(SOC約20%)を行った。次いで、45℃にて、0.1Cレートで4.35Vまで充電した後、充電を止め、その状態(SOC約70%)で約5日間(120時間)保持した。
(活性化処理)
 得られた電池の活性化処理(電気化学前処理)を、次のように行った。まず、25℃にて、定電流充電法で0.2Cで電圧が4.45Vとなるまで充電した後、2.0Vまで0.2Cで放電するサイクルを2回、0.2Cで4.55Vとなるまで充電した後、0.2Cで2.0Vまで放電するサイクルを2回を行った。
(実施例2)
 正極活物質の製造において、炭酸リチウム(LiCO)、水酸化ニッケル(Ni(OH))、酸化マンガン(Mn)を、リチウム(Li):ニッケル(Ni):マンガン(Mn)=1.70:0.45:0.85のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このとき、循環式媒体攪拌型湿式粉砕機を用いてスラリーを撹拌しながら、スラリー中の固形分を、一次粒子径(結晶子径)が70nmとなるように粉砕した。
 次に、このスラリー(固形分含有量15.7質量%、粘度1600cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP-50型)を用いて噴霧乾燥した。このとき、乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min、降温速度:約3.3℃/min)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウム含有遷移金属酸化物(粉体)を得た。
 得られたリチウム含有遷移金属酸化物は、組成式がLi1.5[Ni0.45Mn0.85[Li]0.20]O(a+b+c+d=1.5、d=0.20、a+b+c=1.3)であり、一次粒子が凝集して二次粒子を形成しており、二次粒子の表面及び内部に複数の空隙を有するものであった。
 また、一次粒子径d1は70nm、二次粒子径d2は6.2μm、d2/d1は89、空隙の開口部径は2.5μm、圧壊強度指標は0.54、BET比表面積は2.56m/g、平均細孔直径は40nm、細孔容量は0.0026cm/g、(001)面のピークの半値幅は0.15であった。
 得られたリチウム含有遷移金属酸化物を、実施例1で得られたリチウム含有遷移金属酸化物に替えて用いたこと以外は、実施例1と同様の操作を繰り返して、正極を得た。更に得られた正極と負極の対向充電容量比がA/C=1.25となるように、負極スラリーの塗布量を調整したこと以外は、実施例1と同様の操作を繰り返して、リチウムイオン二次電池を得た。更に、得られた電池に対して、実施例1と同様のエージング処理及び活性化処理を行った。
(実施例3)
 正極活物質の製造において、炭酸リチウム(LiCO)、水酸化ニッケル(Ni(OH))、オキシ水酸化コバルト(CoOOH)、酸化マンガン(Mn)を、リチウム(Li):ニッケル(Ni):コバルト(Co):マンガン(Mn)=1.70:0.30:0.30:0.70のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このとき、循環式媒体攪拌型湿式粉砕機を用いてスラリーを撹拌しながら、スラリー中の固形分を、一次粒子径(結晶子径)が81nmとなるように粉砕した。
 次に、このスラリー(固形分含有量15.7質量%、粘度1600cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP-50型)を用いて噴霧乾燥した。このとき、乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min、降温速度:約3.3℃/min)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウム含有遷移金属酸化物(粉体)を得た。
 得られたリチウム含有遷移金属酸化物は、組成式がLi1.5[Ni0.30Co0.30Mn0.70[Li]0.20]O(a+b+c+d=1.5、d=0.20、a+b+c=1.30)であり、一次粒子が凝集して二次粒子を形成しており、二次粒子の表面及び内部に複数の空隙を有するものであった。
 また、一次粒子径d1は81nm、二次粒子径d2は5.9μm、d2/d1は73、空隙の開口部径は2.0μm、圧壊強度指標は0.76、BET比表面積は1.50m/g、平均細孔直径は35nm、細孔容量は0.0010cm/g、(001)面のピークの半値幅は0.10であった。
 得られたリチウム含有遷移金属酸化物を、実施例1で得られたリチウム含有遷移金属酸化物に替えて用いたこと以外は、実施例1と同様の操作を繰り返して、正極を得た。更に得られた正極と負極の対向充電容量比がA/C=1.25となるように、負極スラリーの塗布量を調整したこと以外は、実施例1と同様の操作を繰り返して、リチウムイオン二次電池を得た。更に、得られた電池に対して、実施例1と同様のエージング処理及び活性化処理を行った。
(実施例4)
 正極活物質の製造において、炭酸リチウム(LiCO)、水酸化ニッケル(Ni(OH))、酸化マンガン(Mn)を、リチウム(Li):ニッケル(Ni):マンガン(Mn)=1.65:0.525:0.825のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このとき、循環式媒体攪拌型湿式粉砕機を用いてスラリーを撹拌しながら、スラリー中の固形分を、一次粒子径(結晶子径)が47nmとなるように粉砕した。
 次に、このスラリー(固形分含有量15.7質量%、粘度1600cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP-50型)を用いて噴霧乾燥した。このとき、乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min、降温速度:約3.3℃/min)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウム含有遷移金属酸化物(粉体)を得た。
 得られたリチウム含有遷移金属酸化物は、組成式がLi1.5[Ni0.525Mn0.825[Li]0.15]O(a+b+c+d=1.5、d=0.15、a+b+c=1.35)であり、一次粒子が凝集して二次粒子を形成しており、二次粒子の表面及び内部に複数の空隙を有するものであった。
 また、一次粒子径d1は47nm、二次粒子径d2は6.2μm、d2/d1は131、空隙の開口部径は2.5μm、圧壊強度指標は0.69、BET比表面積は3.08m/g、平均細孔直径は42nm、細孔容量は0.0015cm/g、(001)面のピークの半値幅は0.17であった。
 得られたリチウム含有遷移金属酸化物を、実施例1で得られたリチウム含有遷移金属酸化物に替えて用いたこと以外は、実施例1と同様の操作を繰り返して、正極を得た。更に得られた正極と負極の対向充電容量比がA/C=1.25となるように、負極スラリーの塗布量を調整したこと以外は、実施例1と同様の操作を繰り返して、リチウムイオン二次電池を得た。更に、得られた電池に対して、実施例1と同様のエージング処理及び活性化処理を行った。
(実施例5)
 正極活物質の製造において、炭酸リチウム(LiCO)、水酸化ニッケル(Ni(OH))、オキシ水酸化コバルト(CoOOH)、酸化マンガン(Mn)を、リチウム(Li):ニッケル(Ni):コバルト(Co):マンガン(Mn)=1.80:0.20:0.20:0.80のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このとき、循環式媒体攪拌型湿式粉砕機を用いてスラリーを撹拌しながら、スラリー中の固形分を、一次粒子径(結晶子径)が115nmとなるように粉砕した。
 次に、このスラリー(固形分含有量15.7質量%、粘度1600cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP-50型)を用いて噴霧乾燥した。このとき、乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min、降温速度:約3.3℃/min)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウム含有遷移金属酸化物(粉体)を得た。
 得られたリチウム含有遷移金属酸化物は、組成式がLi1.5[Ni0.20Co0.20Mn0.80[Li]0.30]O(a+b+c+d=1.5、d=0.30、a+b+c=1.20)であり、一次粒子が凝集して二次粒子を形成しており、二次粒子の表面及び内部に複数の空隙を有するものであった。
 また、一次粒子径d1は115nm、二次粒子径d2は6.8μm、d2/d1は59、空隙の開口部径は2.0μm、圧壊強度指標は0.82、BET比表面積は0.89m/g、平均細孔直径は33nm、細孔容量は0.0009cm/g、(001)面のピークの半値幅は0.07であった。
 得られたリチウム含有遷移金属酸化物を、実施例1で得られたリチウム含有遷移金属酸化物に替えて用いたこと以外は、実施例1と同様の操作を繰り返して、正極を得た。更に得られた正極と負極の対向充電容量比がA/C=1.25となるように、負極スラリーの塗布量を調整したこと以外は、実施例1と同様の操作を繰り返して、リチウムイオン二次電池を得た。更に、得られた電池に対して、実施例1と同様のエージング処理及び活性化処理を行った。
(実施例6)
 正極活物質の製造において、炭酸リチウム(LiCO)、水酸化ニッケル(Ni(OH))、オキシ水酸化コバルト(CoOOH)、酸化マンガン(Mn)を、リチウム(Li):ニッケル(Ni):コバルト(Co):マンガン(Mn)=1.75:0.25:0.25:0.75のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このとき、循環式媒体攪拌型湿式粉砕機を用いてスラリーを撹拌しながら、スラリー中の固形分を、一次粒子径(結晶子径)が73nmとなるように粉砕した。
 次に、このスラリー(固形分含有量15.7質量%、粘度1600cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP-50型)を用いて噴霧乾燥した。このとき、乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min、降温速度:約3.3℃/min)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウム含有遷移金属酸化物(粉体)を得た。
 得られたリチウム含有遷移金属酸化物は、組成式がLi1.5[Ni0.25Co0.25Mn0.76[Li]0.25]O(a+b+c+d=1.5、d=0.25、a+b+c=1.25)であり、一次粒子が凝集して二次粒子を形成しており、二次粒子の表面及び内部に複数の空隙を有するものであった。
 また、一次粒子径d1は73nm、二次粒子径d2は5.8μm、d2/d1は79、空隙の開口部径は2.0μm、圧壊強度指標は0.75、BET比表面積は1.65m/g、平均細孔直径は35nm、細孔容量は0.0013cm/g、(001)面のピークの半値幅は0.11であった。
 得られたリチウム含有遷移金属酸化物を、実施例1で得られたリチウム含有遷移金属酸化物に替えて用いたこと以外は、実施例1と同様の操作を繰り返して、正極を得た。更に得られた正極と負極の対向充電容量比がA/C=1.25となるように、負極スラリーの塗布量を調整したこと以外は、実施例1と同様の操作を繰り返して、リチウムイオン二次電池を得た。更に、得られた電池に対して、実施例1と同様のエージング処理及び活性化処理を行った。
(実施例7)
 正極活物質の製造において、炭酸リチウム(LiCO)、水酸化ニッケル(Ni(OH))、酸化マンガン(Mn)を、リチウム(Li):ニッケル(Ni):マンガン(Mn)=1.70:0.45:0.85のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このとき、循環式媒体攪拌型湿式粉砕機を用いてスラリーを撹拌しながら、スラリー中の固形分を、一次粒子径(結晶子径)が42nmとなるように粉砕した。
 次に、このスラリー(固形分含有量15.7質量%、粘度1600cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP-50型)を用いて噴霧乾燥した。このとき、乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min、降温速度:約3.3℃/min)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウム含有遷移金属酸化物(粉体)を得た。
 得られたリチウム含有遷移金属酸化物は、組成式がLi1.5[Ni0.45Mn0.85[Li]0.20]O(a+b+c+d=1.5、d=0.20、a+b+c=1.30)であり、一次粒子が凝集して二次粒子を形成しており、二次粒子の表面及び内部に複数の空隙を有するものであった。
 また、一次粒子径d1は42nm、二次粒子径d2は5.8μm、d2/d1は137、空隙の開口部径は2.5μm、圧壊強度指標は0.67、BET比表面積は3.44m/g、平均細孔直径は44nm、細孔容量は0.0030cm/g、(001)面のピークの半値幅は0.19であった。
 得られたリチウム含有遷移金属酸化物を、実施例1で得られたリチウム含有遷移金属酸化物に替えて用いたこと以外は、実施例1と同様の操作を繰り返して、正極を得た。更に得られた正極と負極の対向充電容量比がA/C=1.25となるように、負極スラリーの塗布量を調整したこと以外は、実施例1と同様の操作を繰り返して、リチウムイオン二次電池を得た。更に、得られた電池に対して、実施例1と同様のエージング処理及び活性化処理を行った。
(実施例8)
 正極活物質の製造において、炭酸リチウム(LiCO)、水酸化ニッケル(Ni(OH))、酸化マンガン(Mn)を、リチウム(Li):ニッケル(Ni):マンガン(Mn)=1.70:0.45:0.85のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このとき、循環式媒体攪拌型湿式粉砕機を用いてスラリーを撹拌しながら、スラリー中の固形分を、一次粒子径(結晶子径)が38nmとなるように粉砕した。
 次に、このスラリー(固形分含有量15.7質量%、粘度1600cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP-50型)を用いて噴霧乾燥した。このとき、乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min、降温速度:約3.3℃/min)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウム含有遷移金属酸化物(粉体)を得た。
 得られたリチウム含有遷移金属酸化物は、組成式がLi1.5[Ni0.45Mn0.85[Li]0.20]O(a+b+c+d=1.5、d=0.20、a+b+c=1.30)であり、一次粒子が凝集して二次粒子を形成しており、二次粒子の表面及び内部に複数の空隙を有するものであった。
 また、一次粒子径d1は38nm、二次粒子径d2は5.8μm、d2/d1は151、空隙の開口部径は2.5μm、圧壊強度指標は0.66、BET比表面積は3.80m/g、平均細孔直径は46nm、細孔容量は0.0023cm/g、(001)面のピークの半値幅は0.21であった。
 得られたリチウム含有遷移金属酸化物を、実施例1で得られたリチウム含有遷移金属酸化物に替えて用いたこと以外は、実施例1と同様の操作を繰り返して、正極を得た。更に得られた正極と負極の対向充電容量比がA/C=1.25となるように、負極スラリーの塗布量を調整したこと以外は、実施例1と同様の操作を繰り返して、リチウムイオン二次電池を得た。更に、得られた電池に対して、実施例1と同様のエージング処理及び活性化処理を行った。
(実施例9)
 正極活物質の製造において、炭酸リチウム(LiCO)、水酸化ニッケル(Ni(OH))、オキシ水酸化コバルト(CoOOH)、酸化マンガン(Mn)を、リチウム(Li):ニッケル(Ni):コバルト(Co):マンガン(Mn)=1.75:0.25:0.25:0.75のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このとき、循環式媒体攪拌型湿式粉砕機を用いてスラリーを撹拌しながら、スラリー中の固形分を、一次粒子径(結晶子径)が90nmとなるように粉砕した。
 次に、このスラリー(固形分含有量15.7質量%、粘度1600cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP-50型)を用いて噴霧乾燥した。このとき、乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min、降温速度:約3.3℃/min)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウム含有遷移金属酸化物(粉体)を得た。
 得られたリチウム含有遷移金属酸化物は、組成式がLi1.5[Ni0.25Co0.25Mn0.76[Li]0.25]O(a+b+c+d=1.50、d=0.25、a+b+c=1.25)であり、一次粒子が凝集して二次粒子を形成しており、二次粒子の表面及び内部に複数の空隙を有するものであった。
 また、一次粒子径d1は90nm、二次粒子径d2は6.1μm、d2/d1は68、空隙の開口部径は2.0μm、圧壊強度指標は0.76、BET比表面積は1.56m/g、平均細孔直径は29nm、細孔容量は0.0010cm/g、(001)面のピークの半値幅は0.09であった。
 得られたリチウム含有遷移金属酸化物を、実施例1で得られたリチウム含有遷移金属酸化物に替えて用いたこと以外は、実施例1と同様の操作を繰り返して、正極を得た。更に得られた正極と負極の対向充電容量比がA/C=1.25となるように、負極スラリーの塗布量を調整したこと以外は、実施例1と同様の操作を繰り返して、リチウムイオン二次電池を得た。更に、得られた電池に対して、実施例1と同様のエージング処理及び活性化処理を行った。
(比較例1)
 正極活物質の製造において、炭酸リチウム(LiCO)、水酸化ニッケル(Ni(OH))、オキシ水酸化コバルト(CoOOH)、酸化マンガン(Mn)を、リチウム(Li):ニッケル(Ni):コバルト(Co):マンガン(Mn)=1.80:0.20:0.20:0.80のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このとき、循環式媒体攪拌型湿式粉砕機を用いてスラリーを撹拌しながら、スラリー中の固形分を、一次粒子径(結晶子径)が210nmとなるように粉砕した。
 次に、このスラリー(固形分含有量15.7質量%、粘度1600cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP-50型)を用いて噴霧乾燥した。このとき、乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min、降温速度:約3.3℃/min)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウム含有遷移金属酸化物(粉体)を得た。
 得られたリチウム含有遷移金属酸化物は、組成式がLi1.5[Ni0.20Co0.20Mn0.80[Li]0.30]O(a+b+c+d=1.5、d=0.30、a+b+c=1.20)であり、一次粒子が凝集して二次粒子を形成しており、二次粒子の表面及び内部に複数の空隙を有するものであった。
 また、一次粒子径d1は210nm、二次粒子径d2は6.7μm、d2/d1は32、空隙の開口部径は2.0μm、圧壊強度指標は0.88、BET比表面積は0.70m/g、平均細孔直径は25nm、細孔容量は0.0008cm/g、(001)面のピークの半値幅は0.06であった。
 得られたリチウム含有遷移金属酸化物を、実施例1で得られたリチウム含有遷移金属酸化物に替えて用いたこと以外は、実施例1と同様の操作を繰り返して、正極を得た。更に得られた正極と負極の対向充電容量比がA/C=1.25となるように、負極スラリーの塗布量を調整したこと以外は、実施例1と同様の操作を繰り返して、リチウムイオン二次電池を得た。更に、得られた電池に対して、実施例1と同様のエージング処理及び活性化処理を行った。
(比較例2)
 正極活物質の製造において、炭酸リチウム(LiCO)、水酸化ニッケル(Ni(OH))、酸化マンガン(Mn)を、リチウム(Li):ニッケル(Ni):マンガン(Mn)=1.70:0.45:0.85のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このとき、循環式媒体攪拌型湿式粉砕機を用いてスラリーを撹拌しながら、スラリー中の固形分を、一次粒子径(結晶子径)が27nmとなるように粉砕した。
 次に、このスラリー(固形分含有量15.7質量%、粘度1600cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP-50型)を用いて噴霧乾燥した。このとき、乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min、降温速度:約3.3℃/min)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウム含有遷移金属酸化物(粉体)を得た。
 得られたリチウム含有遷移金属酸化物は、組成式がLi1.5[Ni0.45Mn0.85[Li]0.20]O(a+b+c+d=1.50、d=0.20、a+b+c=1.30)であり、一次粒子が凝集して二次粒子を形成しており、二次粒子の表面及び内部に複数の空隙を有するものであった。
 また、一次粒子径d1は27nm、二次粒子径d2は5.9μm、d2/d1は220、空隙の開口部径は2.5μm、圧壊強度指標は0.22、BET比表面積は2.87m/g、平均細孔直径は48nm、細孔容量は0.0049cm/g、(001)面のピークの半値幅は0.30であった。
 得られたリチウム含有遷移金属酸化物を、実施例1で得られたリチウム含有遷移金属酸化物に替えて用いたこと以外は、実施例1と同様の操作を繰り返して、正極を得た。更に得られた正極と負極の対向充電容量比がA/C=1.25となるように、負極スラリーの塗布量を調整したこと以外は、実施例1と同様の操作を繰り返して、リチウムイオン二次電池を得た。更に、得られた電池に対して、実施例1と同様のエージング処理及び活性化処理を行った。
 上記各例の電池の仕様の一部を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 上記各例の電池の電池素子を評価セル取り付け冶具にセットし、正極リードと負極リードを電池素子の各タブ端部に取り付け、試験を行った。
[性能評価]
(容量維持率)
 電池の容量維持率は、充電は、0.2Cレートにて最高電圧が4.5Vとなるまで充電した後、約1時間~1.5時間保持する定電流定電圧充電法とし、放電は、電池の最低電圧が2.0Vとなるまで0.2Cレートで放電する定電流放電法とする充放電を300サイクルを繰り返した。いずれも、室温下で行った。得られた結果を表2に示す。なお、1サイクル目の放電容量に対する300サイクル目の放電容量の割合を容量維持率とした。
(初期放電容量)
 初期放電容量は、充電は、0.1Cレートにて最高電圧が4.5Vとなるまで充電した後、約1時間~1.5時間保持する定電流定電圧充電法とし、放電は、電池の最低電圧が2.0Vとなるまで0.1Cレートで放電する定電流放電法で行った。いずれも、室温下で行った。得られた結果を表2に示す。
(レート特性)
 レート特性は、充電は、0.1Cレートにて最高電圧が4.5Vとなるまで充電した後、約1時間~1.5時間保持する定電流定電圧充電法とし、放電は、電池の最低電圧が2.0Vとなるまで0.1Cレートで放電する定電流放電法で行った後、2.5Cレートにて最高電圧が4.5Vとなるまで充電した後、約1時間~1.5時間保持する定電流定電圧充電法とし、放電は、電池の最低電圧が2.0Vとなるまで2.5Cレートで放電する定電流放電法で行った。いずれも、室温下で行った。得られた結果を表2に示す。なお、0.1Cレートで充放電を行ったときの初期放電容量に対する2.5Cレートで充放電を行ったときの初期放電容量の比をレート特性とした。
Figure JPOXMLDOC01-appb-T000004
 表1及び表2より、本発明の範囲に属する実施例1~9は、本発明外の比較例1及び2と比較して、高い放電容量維持率を実現できることが分かる。
 以上、本発明を若干の実施形態及び実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。
 すなわち、上記実施形態及び実施例においては、リチウムイオン二次電池として、ラミネート型電池を例示したが、これに限定されるものではなく、ボタン型電池、コイン型電池、角形や円筒形などの缶型電池など従来公知の形態・構造についても適用することができる。
 また、例えば、本発明は、上述した積層型(扁平型)電池だけでなく、巻回型(円筒型)電池など従来公知の形態・構造についても適用することができる。
 更に、例えば、本発明は、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、上述した通常型(内部並列接続タイプ)電池だけでなく、双極型(内部直列接続タイプ)電池など従来公知の形態・構造についても適用することができる。なお、双極型電池における電池素子は、一般的に、集電体の一方の表面に負極活物質層が形成され、他方の表面に正極活物質層が形成された双極型電極と、電解質層とを複数積層した構成を有している。また構成部品は、集電体や絶縁板等があるが、これらは特に限定されるものではなく、上記の形状に応じて選定すればよい。
 更にまた、上記実施形態及び実施例においては、定電流充電法を用い、電圧を終止条件とした場合の電気化学前処理方法を例示したが、これに限定されるものではなく、充電方式は定電流定電圧充電法を用いても構わない。また、終止条件は電圧以外にも電荷量や時間を用いても構わない。
 1  リチウムイオン二次電池用正極活物質
 2  二次粒子
 4  一次粒子
 6  空隙
10  リチウムイオン二次電池
20  電池素子
21  正極
21A 正極集電体
21B 正極活物質層
22  負極
22A 負極集電体
22B 負極活物質層
23  電解質層
24  単電池層
31  正極リード
32  負極リード
40  外装体

Claims (10)

  1.  層状構造を有するリチウム含有遷移金属酸化物からなる二次粒子を含むリチウムイオン二次電池用正極活物質であって、
     上記二次粒子は、該二次粒子の表面及び内部に複数の空隙を有し、
     上記二次粒子は、二次粒子径としてのメディアン径(D50)が5μm以上15μm以下であり、
     上記二次粒子は、一次粒子径としての結晶子径が30nm以上200nm以下である一次粒子が凝集して形成されている
    ことを特徴とするリチウムイオン二次電池用正極活物質。
  2.  上記二次粒子が、下記の式(1)で表される関係を満足することを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。
          25≦d2/d1≦500・・・(1)
    (式(1)中、d1は上記一次粒子の一次粒子径としての結晶子径、d2は上記二次粒子の二次粒子径としてのメディアン径(D50)を示す。)
  3.  上記二次粒子の全部又は一部が、該二次粒子の内部に、該二次粒子の任意の切断面における開口部径が0.05μm以上3μm以下である複数の空隙を有することを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極活物質。
  4.  上記二次粒子が、下記の式(2)で表される関係を満足することを特徴とする請求項1~3のいずれか1つの項に記載のリチウムイオン二次電池用正極活物質。
          (A2-A1)/A1≧0.5・・・(2)
    (式(2)中、A1はマイクロインデンテーションによる押し込み深さ1μmのときの押し込み荷重[単位:mN]、A2はマイクロインデンテーションによる押し込み深さ2μmのときの押し込み荷重[単位:mN]を示す。)
  5.  窒素ガス吸着法によるBET比表面積が0.5m/g以上6.0m/g以下であることを特徴とする請求項1~4のいずれか1つの項に記載のリチウムイオン二次電池用正極活物質。
  6.  窒素ガス吸着法による細孔分布曲線の窒素飽和吸着量が85%であるときから算出される平均細孔直径が10nm以上50nm以下であり、
     窒素ガス吸着法による細孔容量が0.025cm/g以下である
    ことを特徴とする請求項1~5のいずれか1つの項に記載のリチウムイオン二次電池用正極活物質。
  7.  X線回折による2θ=18~20°における(001)面のピークの半値幅が0.08以上0.25以下であることを特徴とする請求項1~6のいずれか1つの項に記載のリチウムイオン二次電池用正極活物質。
  8.  上記層状構造を有するリチウム含有遷移金属酸化物の全部又は一部が、下記の組成式(I)
          Li1.5[NiCoMn[Li]]O・・・(I)
    (組成式(I)中、a、b、c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0.1≦d≦0.4、a+b+c+d=1.5、1.1≦a+b+c≦1.4の関係を満足する。)で表され、且つ
     4.3V以上4.8V以下の範囲で充電又は充放電を行うことによりスピネル構造に変化する層状構造部位と、変化しない層状構造部位とを有し、
     上記変化する層状構造部位のLiMnOがスピネル構造のLiMnに全て変化した場合のスピネル構造変化割合を1としたとき、スピネル構造変化割合が0.25以上1.0未満である
    ことを特徴とする請求項1~7のいずれか1つの項に記載のリチウムイオン二次電池用正極活物質。
  9.  請求項1~8のいずれか1つの項に記載のリチウムイオン二次電池用正極活物質と、導電助剤と、結着剤とを含有する正極活物質層を備えたリチウムイオン二次電池用正極であって、
     上記正極活物質層における導電助剤の含有量が5質量%以下であり、
     上記正極活物質層における結着剤の含有量が5質量%以下であり、
     上記導電助剤が炭素材料を含む
    ことを特徴とするリチウムイオン二次電池用正極。
  10.  請求項9に記載のリチウムイオン二次電池用正極を具備することを特徴とするリチウムイオン二次電池。
PCT/JP2013/066795 2012-08-07 2013-06-19 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池 WO2014024571A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-175041 2012-08-07
JP2012175041 2012-08-07

Publications (1)

Publication Number Publication Date
WO2014024571A1 true WO2014024571A1 (ja) 2014-02-13

Family

ID=50067812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066795 WO2014024571A1 (ja) 2012-08-07 2013-06-19 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2014024571A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053174A (ja) * 2012-09-07 2014-03-20 Toyota Motor Corp リチウムイオン二次電池の製造方法
EP2811559A4 (en) * 2012-02-01 2015-02-25 Nissan Motor TRANSITION METAL OXIDE WITH A SOLID LITHIUM SOLUTION, CATHODE FOR A NON-WATER ELECTROLYTE SECONDARY BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US9306211B2 (en) 2012-03-07 2016-04-05 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electrical device, and electrical device
US9391326B2 (en) 2012-03-07 2016-07-12 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electric device, and electric device
US9461299B2 (en) 2012-02-01 2016-10-04 Nissan Motor Co., Ltd. Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
JP2018120829A (ja) * 2017-01-27 2018-08-02 株式会社Gsユアサ 蓄電素子
CN110366793A (zh) * 2017-03-23 2019-10-22 株式会社东芝 非水电解质电池、电池包及电池系统
CN110574211A (zh) * 2017-04-26 2019-12-13 远景Aesc能源元器件有限公司 锂离子二次电池、锂离子二次电池的制造方法和用于锂离子二次电池的电解液
WO2022050158A1 (ja) * 2020-09-04 2022-03-10 三洋電機株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
EP3923375A4 (en) * 2019-02-07 2022-03-30 NISSAN MOTOR Co., Ltd. BATTERY ELECTRODE MANUFACTURING METHOD
JP7405929B1 (ja) 2022-10-03 2023-12-26 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103086A (ja) * 2008-09-26 2010-05-06 Nissan Motor Co Ltd リチウムイオン電池用正極
JP2011105588A (ja) * 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
WO2011122448A1 (ja) * 2010-03-29 2011-10-06 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質の前駆体、ならびに該正極活物質を用いた非水系電解質二次電池
JP2012022896A (ja) * 2010-07-14 2012-02-02 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、ならびにこの正極活物質を用いた非水系電解質二次電池
JP2012043637A (ja) * 2010-08-19 2012-03-01 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
WO2013005737A1 (ja) * 2011-07-04 2013-01-10 日産自動車株式会社 電気デバイス用正極活物質、電気デバイス用正極及び電気デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103086A (ja) * 2008-09-26 2010-05-06 Nissan Motor Co Ltd リチウムイオン電池用正極
JP2011105588A (ja) * 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
WO2011122448A1 (ja) * 2010-03-29 2011-10-06 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質の前駆体、ならびに該正極活物質を用いた非水系電解質二次電池
JP2012022896A (ja) * 2010-07-14 2012-02-02 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、ならびにこの正極活物質を用いた非水系電解質二次電池
JP2012043637A (ja) * 2010-08-19 2012-03-01 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
WO2013005737A1 (ja) * 2011-07-04 2013-01-10 日産自動車株式会社 電気デバイス用正極活物質、電気デバイス用正極及び電気デバイス

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2811559A4 (en) * 2012-02-01 2015-02-25 Nissan Motor TRANSITION METAL OXIDE WITH A SOLID LITHIUM SOLUTION, CATHODE FOR A NON-WATER ELECTROLYTE SECONDARY BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US9461299B2 (en) 2012-02-01 2016-10-04 Nissan Motor Co., Ltd. Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
US9391326B2 (en) 2012-03-07 2016-07-12 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electric device, and electric device
US9306211B2 (en) 2012-03-07 2016-04-05 Nissan Motor Co., Ltd. Positive electrode active material, positive electrode for electrical device, and electrical device
US9947968B2 (en) 2012-09-07 2018-04-17 Toyota Jidosha Kabushiki Kaisha Method of producing lithium ion secondary battery, and lithium ion secondary battery
US9196921B2 (en) 2012-09-07 2015-11-24 Toyota Jidosha Kabushiki Kaisha Method of producing lithium ion secondary battery, and lithium ion secondary battery
JP2014053174A (ja) * 2012-09-07 2014-03-20 Toyota Motor Corp リチウムイオン二次電池の製造方法
JP2018120829A (ja) * 2017-01-27 2018-08-02 株式会社Gsユアサ 蓄電素子
CN110366793A (zh) * 2017-03-23 2019-10-22 株式会社东芝 非水电解质电池、电池包及电池系统
CN110366793B (zh) * 2017-03-23 2022-08-02 株式会社东芝 非水电解质电池、电池包及电池系统
CN110574211A (zh) * 2017-04-26 2019-12-13 远景Aesc能源元器件有限公司 锂离子二次电池、锂离子二次电池的制造方法和用于锂离子二次电池的电解液
EP3923375A4 (en) * 2019-02-07 2022-03-30 NISSAN MOTOR Co., Ltd. BATTERY ELECTRODE MANUFACTURING METHOD
WO2022050158A1 (ja) * 2020-09-04 2022-03-10 三洋電機株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7405929B1 (ja) 2022-10-03 2023-12-26 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2024075551A1 (ja) * 2022-10-03 2024-04-11 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Similar Documents

Publication Publication Date Title
US9496065B2 (en) Positive electrode active material for electric device, positive electrode for electric device, and electric device
JP6035689B2 (ja) 非水系有機電解液二次電池の製造方法
JP6465538B2 (ja) 固溶体リチウム含有遷移金属酸化物の製造方法、非水電解質二次電池用正極の製造方法及び非水電解質二次電池の製造方法
WO2014024571A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
RU2540072C1 (ru) Активный материал положительного электрода для литий-ионной вторичной батареи
KR101724812B1 (ko) 정극 활물질, 전기 디바이스용 정극 및 전기 디바이스
KR101665217B1 (ko) 정극 활물질, 전기 디바이스용 정극 및 전기 디바이스
US9646734B2 (en) Positive electrode active material, positive electrode for electrical device, and electrical device
JP6052703B2 (ja) 正極活物質、電気デバイス用正極及び電気デバイス
JP6052702B2 (ja) 正極活物質、電気デバイス用正極及び電気デバイス
WO2015016272A1 (ja) 固溶体リチウム含有遷移金属酸化物、及び該固溶体リチウム含有遷移金属酸化物を正極に用いた非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP