WO2011048739A1 - 環状(メタ)アクリレート化合物及びその製造方法 - Google Patents

環状(メタ)アクリレート化合物及びその製造方法 Download PDF

Info

Publication number
WO2011048739A1
WO2011048739A1 PCT/JP2010/005430 JP2010005430W WO2011048739A1 WO 2011048739 A1 WO2011048739 A1 WO 2011048739A1 JP 2010005430 W JP2010005430 W JP 2010005430W WO 2011048739 A1 WO2011048739 A1 WO 2011048739A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
isosorbide
reaction
acrylic acid
acrylate
Prior art date
Application number
PCT/JP2010/005430
Other languages
English (en)
French (fr)
Inventor
直宏 高村
学 菊田
真希 北沢
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to CN201080045571.7A priority Critical patent/CN102548997B/zh
Priority to KR1020127007337A priority patent/KR101369040B1/ko
Publication of WO2011048739A1 publication Critical patent/WO2011048739A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof

Definitions

  • the present invention relates to a cyclic (meth) acrylate compound and a method for producing the same.
  • (meth) acrylic acid esters are one component of an important copolymerization monomer and are blended for various purposes and applications.
  • polymerization of a single monomer often fails to provide the desired performance, and a plurality of different (meth) acrylic acid esters, oligomers, polymers, and inorganic materials are used to obtain the required physical properties. It mix
  • (meth) acrylates of polyfunctional alcohols typified by dipentaerythritol, pentaerythritol, ditrimethylolpropane, trimethylolpropane, pentaerythritol and the like are blended.
  • polyfunctional (meth) acrylates, in particular (pentaerythritol) (meth) acrylate itself have a very high viscosity, and there is a problem of increasing the viscosity of the composition when blended.
  • polyfunctional (meth) acrylate has a problem that the coated film is curled (warped) in applications such as film coating (Patent Documents 2 to 4).
  • the present invention has been made in view of the above, and has a cyclic structure that has excellent photosensitivity, good air-drying property, low viscosity, and excellent hardness and low curl properties of a cured film (meta).
  • An object of the present invention is to provide an acrylate monomer and a composition thereof, and a method for producing the acrylate monomer from a commercially available raw material by an industrially feasible reaction.
  • the cyclic (meth) acrylate compound represented by the general formula (1) has a cyclic structure, and dipentaerythritol, pentaerythritol, ditrimethylolpropane, It has been found that it has excellent photosensitivity, good air-drying properties, etc. while having low viscosity compared to (meth) acrylates of polyfunctional alcohols typified by trimethylolpropane, pentaerythritol, etc., and its polymerizability It was confirmed that the characteristics of the composition were maintained, and the present invention was completed.
  • the cyclic (meth) acrylate compound of the present invention has a structure represented by the following general formula (1).
  • R 1 represents a hydrogen atom or a (meth) acryloyl group, at least one is a (meth) acryloyl group, A represents an alkylene group having 2 to 4 carbon atoms, and n is 0 to The number of 30 is represented.
  • n in the general formula (1) is preferably 1-30.
  • the method for producing a cyclic (meth) acrylate compound of the present invention is a method for producing a cyclic (meth) acrylate compound having the structure represented by the general formula (1), and is a (meth) acrylic acid halide or (meth) acrylic.
  • the cyclic (meth) acrylate compound of the present invention is a polymerizable resin composition containing a polyfunctional alcohol (meth) acrylate represented by conventional dipentaerythritol, pentaerythritol, ditrimethylolpropane, trimethylolpropane, pentaerythritol and the like. While having photosensitivity, air-drying property, hardness of cured film, etc. comparable to or higher than that of an object, it is possible to lower the viscosity and prevent problems such as curling of the cured film.
  • a polyfunctional alcohol (meth) acrylate represented by conventional dipentaerythritol, pentaerythritol, ditrimethylolpropane, trimethylolpropane, pentaerythritol and the like. While having photosensitivity, air-drying property, hardness of cured film, etc. comparable to or higher than that of an object, it is possible to lower the viscosity and prevent
  • the compound of the present invention is used as a polymerizable monomer, for example, a resist resin composition such as a dry film resist, a colored resist, a black resist and a semiconductor resist, a medical resin composition such as dentistry, and a resin composition for paints and coatings.
  • a resist resin composition such as a dry film resist, a colored resist, a black resist and a semiconductor resist
  • a medical resin composition such as dentistry
  • a resin composition for paints and coatings for paints and coatings.
  • the ink composition is suitably used for a printing ink composition.
  • the cyclic (meth) acrylate compound of the present invention is obtained using plant-derived isosorbide as a main raw material, it is possible to provide a clean material having a low dependence on fossil resources.
  • the compound of the present invention can be produced with high purity and high yield by an industrially simple operation.
  • Example 2 is an NMR chart of isosorbide diacrylate obtained in Example 1.
  • 4 is an NMR chart of isosorbide 15EO adduct diacrylate obtained in Example 7.
  • FIG. 4 is an NMR chart of isosorbide 6EO adduct diacrylate obtained in Example 8.
  • the polymerizable monomer of the present invention has a structure represented by the structure of the general formula (1).
  • R 1 represents a hydrogen atom or a (meth) acryloyl group, at least one is a (meth) acryloyl group, A represents an alkylene group having 2 to 4 carbon atoms, and n is 0 to The number of 30 is represented.
  • n is preferably 1 to 30 in view of improving compatibility with the resin and the solvent, lowering of crystallinity, reactivity during production of (meth) acrylic acid ester, physical properties of the cured product, and the like.
  • cyclic (meth) acrylate compound ⁇ Method for producing cyclic (meth) acrylate compound>
  • a (meth) acrylate reaction using the following isosorbide or isosorbide alkylene oxide adduct (hereinafter referred to as isosorbide or the like) as a raw material is performed.
  • isosorbide or the like isosorbide alkylene oxide adduct
  • Isosorbide can be produced by a known production method. That is, it can be produced by dehydrating sorbitol by the action of various dehydration catalysts, particularly strong acid catalysts. Examples of the catalyst include sulfuric acid, paratoluenesulfonic acid, methanesulfonic acid, hydrochloric acid, phosphoric acid and the like. These dehydration reactions are generally performed efficiently in water and other organic solvents such as toluene and xylene. Several methods are known as methods for purifying anhydrous sugar alcohols.
  • an alkylene oxide adduct of isosorbide can be produced by a known method.
  • (meth) acrylate formation reaction a method of esterifying a hydroxyl group using (meth) acrylic acid halide or (meth) acrylic anhydride, a lower alcohol of (meth) acrylic acid such as MMA (methyl methacrylate), etc.
  • Transesterification reaction using ester dehydration condensation method with (meth) acrylic acid using carbodiimide-based dehydration condensation agent such as DCC (dicyclohexylcarbodiimide), WSCD (water-soluble carbodiimide), or dehydration using acid catalyst
  • DCC dicyclohexylcarbodiimide
  • WSCD water-soluble carbodiimide
  • dehydration using acid catalyst A method of condensation is used.
  • a polymerization inhibitor may be appropriately used so that polymerization does not proceed during production or during product storage.
  • Polymerization inhibitors include hydroquinones such as p-benzoquinone, hydroquinone, hydroquinone monomethyl ether and 2,5-diphenylparabenzoquinone, N-oxy radicals such as tetramethylpiperidinyl-N-oxy radical (TEMPO), t -Substituted catechols such as butyl catechol, amines such as phenothiazine, diphenylamine, phenyl- ⁇ -naphthylamine, cuperone, nitrosobenzene, picric acid, molecular oxygen, sulfur, copper (II) chloride and the like.
  • hydroquinones, phenothiazines and N-oxy radicals are preferred from the viewpoint of versatility and polymerization inhibition.
  • the addition amount of the polymerization inhibitor is about 10 ppm or more, preferably 30 ppm or more, and the upper limit is usually 5000 ppm or less, preferably 1000 ppm or less with respect to the compound represented by the general formula (1) which is the target product. It is. If the amount is too small, there is a risk that polymerization will not sufficiently develop and there is a risk that polymerization will proceed during production or storage of the product, and if it is too large, the curing / polymerization reaction may be hindered. is there. For this reason, the compound of the present invention alone or its polymerizable resin composition may cause a decrease in photosensitivity, poor crosslinking of a cured product, a decrease in physical properties such as mechanical strength, and the like, which is not preferable.
  • a compound that can be used as a (meth) acrylate agent in the case of (meth) acrylate-converting isosorbide or the like by a transesterification method is a lower alcohol ester of (meth) acrylic acid such as MMA.
  • the lower alcohol is preferably a C1-C4 aliphatic alcohol, and the number of alcohol residues is selected from 1 to 3.
  • Particularly preferred are (meth) acrylic acid methyl ester, ethyl ester, n-propyl ester and i-propyl ester.
  • (meth) acrylic acid methyl ester, ethyl ester and the like are preferable because they can be easily operated in terms of removing alcohol by-produced during the reaction.
  • the amount of (meth) acrylic acid ester used is usually 2 mol equivalents or more, preferably 4 mol equivalents or more, and the upper limit is usually 20 mol equivalents or less, preferably 10 with respect to the number of moles of raw material isosorbide. Less than molar equivalent.
  • the solvent to be used is not particularly limited, but an aromatic hydrocarbon solvent such as toluene and xylene, an aliphatic hydrocarbon solvent such as hexane and heptane, diethyl ether, tetrahydrofuran, monoethylene glycol dimethyl ether, diethylene glycol Ether solvents such as dimethyl ether, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone are preferably used.
  • aromatic hydrocarbon solvent such as toluene and xylene
  • an aliphatic hydrocarbon solvent such as hexane and heptane
  • diethyl ether diethyl ether
  • tetrahydrofuran monoethylene glycol dimethyl ether
  • diethylene glycol Ether solvents such as dimethyl ether
  • ketone solvents such as ace
  • aromatic hydrocarbon solvents such as toluene and xylene
  • ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone are preferable in terms of reactivity.
  • aromatic hydrocarbon solvents such as toluene and xylene
  • ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone are preferable in terms of reactivity.
  • These solvents may be used alone, or a plurality of arbitrary solvents may be mixed and used.
  • the lower limit of the concentration of the raw material is usually 1% or more, preferably 10% or more, and the upper limit is not particularly limited, but is usually 80% or less, preferably 50% or less.
  • the transesterification reaction is usually performed in the presence of a catalyst.
  • a catalyst those generally usable in transesterification can be applied, for example, transition metal compounds such as titanium tetraisopropoxysite, alkali metal or alkaline earth metal alcoholates such as sodium methoxide, and the like.
  • Aluminum alkoxides such as aluminum triisopropoxide, alkali metal and alkaline earth metal hydroxides such as lithium hydroxide and sodium hydroxide, tin compounds such as dibutyltin oxide, dioctyltin oxide, and distanoxane compounds. .
  • transition metal compounds such as titanium tetraisopropoxysite, alkali metals such as sodium methoxide and alcoholates of alkaline earth metals, and the like are preferable because of their catalytic activity and availability.
  • the amount of these catalysts used is usually 0.01 mol% or more, preferably 0.1 mol% or more, more preferably 0.5 mol% or more, and the upper limit is the mol number of isosorbide or the like of the raw material. Usually, it is 50 mol% or less, preferably 20 mol% or less, more preferably 10 mol% or less.
  • the amount of the catalyst is too small, the reaction activity tends to be low and the yield of the desired ester compound tends to be low.
  • the amount is too large, the load on the post-treatment step after the transesterification reaction increases, Moreover, it is not preferable also from an economical viewpoint.
  • the reaction is preferably performed in a reactor equipped with a normal stirring device.
  • the (meth) acrylic acid ester used as the reagent and the alcohol azeotropes and the (meth) acrylic acid ester is distilled off from the system, the (meth) acrylic acid ester is added as necessary. You may react by replenishing sequentially.
  • the reaction temperature is preferably heated to obtain a sufficient reaction rate.
  • the lower limit is usually 30 ° C. or higher, preferably 50 ° C. or higher
  • the upper limit is usually 200 ° C. or lower, preferably 150 ° C. or lower.
  • the reaction time is arbitrarily selected, but since alcohol is produced as the reaction proceeds, it is preferable to continue the reaction until a predetermined amount of alcohol is produced.
  • the lower limit is usually 10 minutes or longer, preferably 30 minutes or longer
  • the upper limit is not particularly limited, but is usually 50 hours or shorter, preferably 30 hours or shorter.
  • Isosorbide or the like can be (meth) acrylated using (meth) acrylic acid halide or (meth) acrylic anhydride as a (meth) acrylating reagent.
  • the compounds that can be used as the (meth) acrylic acid halide in that case are (meth) acrylic acid chloride, (meth) acrylic acid bromide, and (meth) acrylic acid iodide.
  • the lower limit of the amount of (meth) acrylic acid halide or (meth) acrylic anhydride used is usually 0.01 mol equivalent or more, preferably 0.05 mol equivalent or more, relative to the number of moles of raw material isosorbide and the like. More preferably, it is 0.1 mol equivalent or more, and the upper limit is usually 20 mol equivalent or less, preferably 10 mol equivalent or less, more preferably 5 mol equivalent or less.
  • the reaction system When the reaction is performed using (meth) acrylic acid halide or (meth) acrylic anhydride, the reaction system is preferably performed in a dehydrated state. When moisture is present in the system, it reacts with (meth) acrylic acid halide or (meth) acrylic anhydride and decomposes.
  • the substrate used in the present invention such as isosorbide, is a compound that is easily miscible with water, but the smaller the amount of water contained in the substrate, the better. Specifically, it is 10 mol% or less, preferably 0.1 mol% or less with respect to isosorbide or the like.
  • the reaction can be carried out in either a solvent system or a solvent-free system, but a solvent system is preferred from the viewpoint of production of by-products and handling in the process.
  • a solvent there is no particular limitation, but aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents such as hexane and heptane, ethers such as diethyl ether, tetrahydrofuran, monoethylene glycol dimethyl ether, and diethylene glycol dimethyl ether Solvents, acetone solvents such as methyl ethyl ketone and methyl isobutyl ketone, nitrile solvents such as acetonitrile and benzonitrile, ester solvents such as ethyl acetate, butyl acetate and gamma butyrolactone, dimethylformamide, dimethylacetamide and N-methylpyrrolidone
  • An amide solvent, a halogen solvent such as
  • the lower limit of the concentration of the raw material is usually 1% or more, preferably 10% or more, and the upper limit is not particularly limited, but is usually 80% or less, preferably 60% or less.
  • the (meth) acrylation reaction with (meth) acrylic acid halide or (meth) acrylic anhydride is usually performed in the presence of a basic substance.
  • Usable basic substances include metal hydroxides such as sodium hydroxide and barium hydroxide, metal carbonates such as sodium carbonate and potassium carbonate, metal phosphates such as monosodium phosphate and potassium phosphate It is possible to use salts, hydrogen phosphates, basic ion exchange resins, organic tertiary amines such as triethylamine and tributylamine, and aromatic amines such as pyridine. Of these, pyridine, triethylamine, and potassium carbonate are preferably used.
  • the lower limit is usually 1 molar equivalent, preferably 2 molar equivalents or more, and the upper limit. Is usually used in an amount of 10 mol equivalent or less, preferably 5 mol equivalent or less.
  • the amount of the basic substance is too small, it is not preferable because the progress of the reaction is slow or stopped, and when it is too large, there is a problem of product coloring, which is not preferable economically.
  • the reaction is preferably carried out in a reactor equipped with a corrosion-resistant stirrer.
  • the lower limit of the reaction temperature is usually ⁇ 50 ° C. or higher, preferably ⁇ 20 ° C. or higher, and the upper limit is usually 80 ° C. or lower, preferably 20 ° C. or lower.
  • the reaction time is arbitrarily selected, but is generally 30 minutes or more, preferably 60 minutes or more, and the upper limit is not particularly limited, but is usually 20 hours or less, preferably 10 hours or less.
  • ⁇ Esterification with condensing agent or acid> When esterifying with (meth) acrylic acid, the reaction proceeds rapidly when a dehydrating condensing agent is allowed to coexist.
  • a condensing agent a condensing agent generally known for esterification can be used without particular limitation.
  • N, N′-dicyclohexylcarbodiimide, 2-chloro-1,3-dimethylimidazolium chloride, propane Phosphonic anhydride, carbonyldiimidazole (CDI), WSCD (water-soluble carbodiimide) and the like are preferably used.
  • an organic basic substance such as pyridine, 4-dimethylaminopyridine or triethylamine may be used in combination.
  • pyridine 4-dimethylaminopyridine or triethylamine
  • N, N′-dicyclohexylcarbodiimide is preferred as the condensing agent
  • pyridine and triethylamine are preferred as the basic substance from the viewpoint of condensation reactivity and availability.
  • the lower limit of the reaction temperature is usually ⁇ 20 ° C., preferably ⁇ 10 ° C.
  • the upper limit is usually 100 ° C., preferably 50 ° C.
  • the amount of the condensing agent used is theoretically sufficient if it is used in an equal amount or more with respect to isosorbide as a substrate, but it may be used in excess. Preferably, it is 1.0 molar equivalent or more, more preferably 2.0 molar equivalent or more.
  • (meth) acrylic acid and isosorbide are reacted in the presence of an acid while distilling off the generated water.
  • Any acid can be used without particular limitation as long as it is an acid used in a normal esterification reaction.
  • inorganic acids such as sulfuric acid and hydrochloric acid
  • organic sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid, and camphorsulfonic acid
  • acid type ion exchange resins such as fluorinated boron and ether complexes
  • Lewis acids such as fluorinated boron and ether complexes
  • lanthanide trif examples thereof include water-soluble Lewis acids such as rate.
  • the lower limit of the amount of acid used is 0.1 mol% or more, preferably 0.5 mol% or more with respect to isosorbide as a substrate.
  • the upper limit is not limited and is 20 mol equivalent or less, preferably 10 mol equivalent or less. If the amount of the acid catalyst is too small, it is not preferable because the progress of the reaction is slow or stopped. On the other hand, if the amount is too large, problems such as coloring of the product, catalyst remaining, or formation of a Michael adduct are not preferable. Side reactions tend to occur.
  • the reaction can be carried out in either a solvent system or a solvent-free system, but a solvent system is preferred from the viewpoint of production of by-products and handling in the process.
  • a solvent the solvent to be used is not particularly limited, but an aromatic hydrocarbon solvent such as toluene and xylene, an aliphatic hydrocarbon solvent such as hexane and heptane, diethyl ether, tetrahydrofuran, monoethylene glycol dimethyl ether, diethylene glycol Ether solvents such as dimethyl ether, halogen solvents such as methylene chloride, chloroform, carbon tetrachloride, and the like are preferably used. These solvents may be used singly or a plurality of arbitrary solvents may be mixed and used.
  • the concentration of isosorbide as a raw material is such that the lower limit is usually 1% or more, preferably 10% or more, and the upper limit is not particularly limited, but is usually 80% or less, preferably 70%. It is as follows.
  • the reaction is usually carried out at or above the boiling point of the solvent used, and the reaction is carried out while distilling off the produced water.
  • the reaction time is arbitrarily selected, but the end point of the reaction can be recognized by measuring the amount of water produced and the acid value in the system.
  • the lower limit of the reaction time is usually 30 minutes or longer, preferably 60 minutes or longer, and the upper limit is not particularly limited, but is usually 20 hours or shorter, preferably 10 hours or shorter.
  • Purification of the compound represented by the general formula (1) produced by the above reaction can be employed without any particular limitation.
  • a distillation method a recrystallization method, an extraction cleaning method, an adsorption treatment method, and the like.
  • the form can be arbitrarily selected from simple distillation, precision distillation, thin film distillation, molecular distillation and the like.
  • an oligomer / polymer component such as urethane acrylate, a polymerization initiator, a solvent and the like are blended.
  • an oligomer / polymer component such as urethane acrylate, a polymerization initiator, a solvent and the like are blended.
  • Curing and polymerization of the polymerizable resin composition can be carried out by a generally known method, and is not particularly limited.
  • a polymerization method in the presence of a radical initiator a photopolymerization method in the presence of a photopolymerization initiator, an anionic polymerization method, or the like can be employed.
  • radical polymerization initiator examples include benzoyl peroxide, methylcyclohexanone peroxide, cumene hydroperoxide, diisopropylbenzene peroxide, di-t-butyl peroxide, t-butyl peroxybenzoate, diisopropyl peroxycarbonate, t- Organic peroxides such as butyl peroxyisopropyl monocarbonate and azo compounds such as 2,2′-azobisisobutyronitrile (AIBN) can be used.
  • benzoyl peroxide methylcyclohexanone peroxide
  • cumene hydroperoxide diisopropylbenzene peroxide
  • di-t-butyl peroxide di-butyl peroxide
  • t-butyl peroxybenzoate diisopropyl peroxycarbonate
  • t- Organic peroxides such as butyl peroxyisopropyl monocarbonate and azo compounds such as 2,2′-azobis
  • photopolymerization initiators among polymerization initiators based on active energy rays for example, aromatic ketones such as benzophenone, aromatic compounds such as anthracene and ⁇ -chloromethylnaphthalene, and sulfur compounds such as diphenyl sulfide and thiocarbamate are used. can do.
  • aromatic ketones such as benzophenone
  • aromatic compounds such as anthracene and ⁇ -chloromethylnaphthalene
  • sulfur compounds such as diphenyl sulfide and thiocarbamate
  • Examples of polymerization initiators using active energy rays such as ultraviolet rays include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, fluorenone, benzaldehyde.
  • the amount of the radical polymerization initiator or the polymerization initiator used by the active energy ray may be selected according to a known polymerization reaction.
  • the polymerization initiator by active energy rays is usually 0.001 to 20 parts by mass, preferably 0.001 to 100 parts by mass of the compound of the present invention represented by the general formula (1) or a polymerizable composition thereof. It is appropriate to use 01 to 5 parts by mass.
  • the radical polymerization initiator is usually 0.0001 to 10 parts by mass, preferably 0.001 to 5 parts per 100 parts by mass of the compound of the present invention represented by the general formula (1) or a polymerizable composition thereof. It is appropriate to use parts by mass.
  • the reaction temperature usually has a lower limit of 0 ° C., preferably 10 ° C., while the upper limit is 200 ° C., preferably 100 ° C.
  • HPLC High performance liquid chromatography
  • Example 2 A pale yellow viscous liquid was obtained by reacting in the same manner except that the acrylic acid of Example 1 was replaced with methacrylic acid.
  • Example 3 (Synthesis of isosorbide diacrylate) A 2 L four-necked flask was charged with 146 g (1 mol) of isosorbide, 181.6 g (2 mol) of acrylic acid chloride, 0.15 g (0.0014 mol) of p-benzoquinone, and 700 g of toluene. The mixture was cooled to 5 ° C. in an ice bath, and 202.2 g (2 mol) of triethylamine was slowly added dropwise using a dropping funnel while confirming the heat of reaction. After completion of the dropwise addition, the mixture was continuously stirred for 5 hours under ice cooling. Then, it returned to room temperature and stirred for further 3 hours, and reaction was complete
  • reaction solution was returned to room temperature, washed with 100 ml of distilled water, 0.025 g of hydroquinone was added, and the solvent was removed under reduced pressure to obtain a pale yellow viscous liquid.
  • Example 4 A pale yellow viscous liquid was obtained by reacting in the same manner except that the acrylic acid chloride in Example 3 was replaced with methacrylic acid chloride.
  • Example 5 (Synthesis of isosorbide diacrylate) In a 2 L four-necked flask, 146 g (1 mol) of isosorbide, 252 g (2 mol) of acrylic anhydride, 0.15 g (0.0014 mol) of p-benzoquinone, and 700 g of toluene were charged. The mixture was cooled to 5 ° C. in an ice bath, and 202.2 g (2 mol) of triethylamine was slowly added dropwise using a dropping funnel while confirming the heat of reaction. After completion of the dropwise addition, the mixture was continuously stirred for 5 hours under ice cooling. Then, it returned to room temperature and stirred for further 3 hours, and reaction was complete
  • Example 6 (Synthesis of isosorbide dimethacrylate) A light yellow viscous liquid was obtained by replacing the acrylic anhydride of Example 5 with methacrylic anhydride and reacting in the same manner.
  • Example 7 Synthesis of isosorbide 15EO adduct diacrylate
  • adduct diacrylate Into the autoclave, 146 parts of isosorbide and 1 part of caustic soda were added to perform nitrogen substitution. Under stirring, the temperature was adjusted to 130 ° C. and dispersed uniformly. 260 parts of ethylene oxide (EO) was continuously introduced at 130 ° C. so that the internal pressure of the autoclave did not exceed 0.3 MPa. The mixture was aged for 2 hours until pressure equilibrium was reached at the same temperature to obtain an isosorbide 6EO adduct. Moreover, the number average molecular weight of the target product was 344, and the average added mole number of EO was 4.5.
  • EO ethylene oxide
  • Example 8 Synthesis of isosorbide 6EO adduct diacrylate
  • adduct diacrylate Into the autoclave, 146 parts of isosorbide and 1 part of caustic soda were added to perform nitrogen substitution. Under stirring, the temperature was adjusted to 130 ° C. and dispersed uniformly. 700 parts of ethylene oxide (EO) was continuously introduced at 130 ° C. so that the internal pressure of the autoclave did not exceed 0.3 MPa. The mixture was aged for 4 hours until pressure equilibrium was reached at the same temperature to obtain an isosorbide 15EO adduct. The number average molecular weight of the target product was 832 and the average number of added moles of EO was 15.6.
  • EO ethylene oxide
  • Example 9 A resin composition was prepared by adding 5 parts of 1-hydroxy-cyclohexyl-phenyl-ketone (trade name Irgacure 184, manufactured by Ciba Specialty Chemicals) to 100 parts of isosorbide diacrylate obtained in Example 1. did.
  • Example 9 the resin composition obtained in Example 9 and Comparative Examples 1 and 2 was applied to a glass substrate with a film thickness of 100 ⁇ m using a bar coater, and a metal halide. What was hardened
  • Viscosity was measured using a cone-plate type rotational viscometer (E-type viscometer manufactured by Toki Sangyo Co., Ltd.) connected to a thermostatic bath and a circulation pump.
  • E-type viscometer manufactured by Toki Sangyo Co., Ltd.
  • ⁇ Refractive index> The film was coated on a glass substrate with a film thickness of 20 ⁇ m with a bar coater, cured under the same conditions as the adhesion, and the refractive index was measured with a prism coupler (model: 2010, manufactured by Metricon).
  • volume shrinkage (%) ⁇ (specific gravity after curing ⁇ specific gravity before curing) / specific gravity after curing ⁇ ⁇ 100
  • the film was coated on a glass substrate with a bar coater to a film thickness of 10 ⁇ m, shielded from light with a step tablet (25 steps, manufactured by Riston), and exposed to a parallel light type exposure machine (SX-UID501H UVQ) manufactured by USHIO under air shut-off.
  • a parallel light type exposure machine SX-UID501H UVQ manufactured by USHIO under air shut-off. The number of steps which are cured at an integrated illuminance of 50 mj and become tack-free is described.
  • ⁇ Pencil hardness> Each resin composition was cured at a cumulative illuminance of 400 mj / cm 2 using glass, PET, ABS, PC, and acrylic resin as a substrate in a belt conveyor type UV curing apparatus equipped with a metal halide lamp, and in accordance with JIS K5600-5-4, The film hardness on these substrates was measured.
  • a PET film was coated on a PET substrate with a film thickness of 20 ⁇ m, a cured film was formed under the same conditions as the adhesion, and a Taber abrasion test was conducted. Haze was measured with a haze meter (Suga Seisakusho HGM type) when rotating a predetermined number of times using a CS-10F wear wheel with a load of 500 g.
  • ⁇ Contamination resistance> The film was applied to a PET substrate with a film thickness of 10 ⁇ m using a spin coater, and a cured film was formed under the same conditions as the adhesion. On the cured film, oily magic, hair dyeing liquid and shoe ink were applied as contaminants, left to stand for 18 hours, and visually observed when wiped off with ethanol cotton, and evaluated according to the following criteria. ⁇ : Not colored, ⁇ : Slightly colored, ⁇ : Darkly colored
  • ⁇ chemical resistance> A film is formed under the same conditions as in the stain resistance test, and a commercially available bleaching agent composed of hypochlorite, sodium hydroxide, surfactant (alkylamine oxide), etc. is dropped on the test film in a petri dish. Allowed to stand for 18 hours. The film was wiped off with a tissue, and the film was visually observed for change, and evaluated according to the following criteria. ⁇ : No abnormality in the cured film, ⁇ : slight gloss change, x: obvious abnormality such as whitening, cracking, floating
  • ⁇ water resistant> A film was formed under the same conditions as in the stain resistance test, tap water was dropped, and the appearance when wiped off after 18 hours was visually observed and evaluated according to the following criteria. ⁇ : No abnormality in the cured film, ⁇ : slight gloss change, x: obvious abnormality such as whitening, cracking, floating
  • a film was formed under the same conditions as in the stain resistance test, a drop of 0.1 mol / L hydrochloric acid aqueous solution was dropped on the test film, and left in a petri dish for 18 hours. The film was wiped off with a tissue, and the film was visually observed to see if it had changed.
  • a film was formed under the same conditions as in the stain resistance test, a drop of a 2% aqueous sodium hydroxide solution was dropped on the test film, and allowed to stand in a petri dish for 18 hours. The film was wiped off with a tissue, and the film was visually observed to see if it had changed.
  • the film was coated on a glass substrate with a film thickness of 20 ⁇ m with a bar coater, cured under the same conditions as the adhesion, and the haze was measured with a haze meter, and the measured value was made transparent.
  • ⁇ Curl properties> The film was applied on a PET film having a thickness of 150 ⁇ m with a bar coater to a thickness of 20 ⁇ m and cured under the same conditions as the adhesion. The heights of the four corners of the film were measured, and the average value was defined as curl.
  • isosorbide diacrylate is a bifunctional monomer and exhibits almost the same physical properties as DPHA, which is a polyfunctional monomer, and has low viscosity and high sensitivity, and also has a low curl property of the cured film. It turns out that it has the outstanding property.
  • Example 3 Preparation of polymerizable resin composition and measurement of physical properties of cured film
  • Example 10 50 parts of isosorbide diacrylate obtained in Example 1 above, 50 parts of New Frontier R-1204 (urethane acrylate resin, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 1-hydroxy-cyclohexyl-phenyl-ketone 5 parts (trade name Irgacure 184, manufactured by Ciba Specialty Chemicals) were mixed to obtain a polymerizable resin composition.
  • New Frontier R-1204 urethane acrylate resin, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • 1-hydroxy-cyclohexyl-phenyl-ketone 5 parts (trade name Irgacure 184, manufactured by Ciba Specialty Chemicals) were mixed to obtain a polymerizable resin composition.
  • Example 11 A similar resin composition was prepared by replacing the urethane acrylate resin of Example 10 with New Frontier R-1302 (urethane acrylate resin, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • Example 10 In Example 10, no monomers were added, 100 parts of New Frontier R-1204 (urethane acrylate resin, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 5 parts of 1-hydroxy-cyclohexyl-phenyl-ketone (trade name Irgacure 184, Ciba Specialty Chemicals) was mixed to obtain a polymerizable resin composition.
  • New Frontier R-1204 urethane acrylate resin, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • 1-hydroxy-cyclohexyl-phenyl-ketone trade name Irgacure 184, Ciba Specialty Chemicals
  • Example 8 In Example 11, no monomers were added, 100 parts of New Frontier R-1302 (urethane acrylate resin, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and 5 parts of 1-hydroxy-cyclohexyl-phenyl-ketone (trade name Irgacure 184, Ciba Specialty Chemicals) was mixed to obtain a polymerizable resin composition.
  • New Frontier R-1302 urethane acrylate resin, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • 1-hydroxy-cyclohexyl-phenyl-ketone trade name Irgacure 184, Ciba Specialty Chemicals
  • the cured film for evaluation was prepared by using the polymerizable resin compositions obtained in Examples 10 and 11 and Comparative Examples 3 to 8 with a film thickness of 100 ⁇ m using a bar coater. It was coated on a glass substrate and cured by a belt conveyor type UV curing device equipped with a metal halide lamp at an integrated illuminance of 200 mj / cm 2 .
  • isosorbide diacrylate significantly improves the curability, curlability, and other physical properties while significantly reducing the viscosity of high-viscosity urethane acrylate as compared with DPHA. Moreover, it turns out that the hardness etc. of a hardened film improve notably compared with HDDA.
  • the cured product obtained by curing the cyclic (meth) acrylate compound of the present invention and the polymerizable resin composition containing the compound has high hardness, low curl properties, and excellent curability. It can be suitably used for coating applications such as hard coat, ink compositions for ink jet printing, or resist compositions such as dry film resists, colored resists, and black resists.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Polyethers (AREA)

Abstract

 優れた光感度、良好な空乾性、高硬度を有し、かつ低粘度である、環状構造を有する(メタ)アクリレートモノマー及びその重合性樹脂組成物を提供する。 次の一般式(1)(一般式(1)において、Rは水素原子又は(メタ)アクリロイル基を表し、少なくとも1つは(メタ)アクリロイル基であり、Aは炭素数2から4のアルキレン基を表し、nは0~30の数を表す。)で示される構造を有する環状(メタ)アクリレート化合物を用いる。

Description

環状(メタ)アクリレート化合物及びその製造方法
 本発明は、環状(メタ)アクリレート化合物及びその製造方法に関する。
 重合性樹脂組成物を製造する場合、(メタ)アクリル酸エステル類は重要な共重合用モノマーの1成分であり、多種多様な目的・用途で配合されている。しかしながら一般的には単独のモノマーの重合では目的とする性能が得られないことが多く、必要な物性を得るために複数の異なる(メタ)アクリル酸エステル類やオリゴマー、ポリマー、更には無機材料を配合し、これを重合させる事で目的とする性能を発現させている(特許文献1)。
 例えば、ハードコート等のコーティング用途やインクジェット印刷用インク組成物においてはジペンタエリスリトール、ペンタエリスリトール、ジトリメチロールプロパン、トリメチロールプロパン、ペンタエリスリトール等に代表される多官能アルコールの(メタ)アクリレートを配合する事により、硬化後の重合性樹脂組成物の力学的強度、化学的安定性を付与する事が可能である。しかしながら多官能(メタ)アクリレート、特にジペンタエリスリトールの(メタ)アクリレートなどはそれ自身が非常に高粘度であり、配合する事により組成物の粘度を上げてしまう問題もある。また、多官能(メタ)アクリレートはフィルムコーティング等の用途においては、コーティングされたフィルムがカール(反り)してしまう問題もある(特許文献2~4)。
 また他の用途、特にドライフィルムレジスト、着色レジスト、黒色レジスト組成物等においては、硬化後の皮膜物性以外に、特に紫外線、電子線等の活性エネルギー線にて硬化を行う際に、低露光量でも硬化を完了する事、すなわち高感度である事が要求される。特に着色レジスト、黒色レジストなどの顔料・染料を高濃度に配合する遮光性の強い組成物においては、低露光量でも硬化しうる材料の利用価値は極めて高いと考えられる(特許文献5,6)。
特開2003-261659号公報 特開2008-081571号公報 特開2009-025808号公報 特開2000-336295号公報 特開2001-089416号公報 特開2008-046330号公報
 本発明は、上記に鑑みてなされたものであり、優れた光感度、良好な空乾性、かつ低粘度を有し、硬化皮膜の硬度、低カール性にも優れる、環状構造を有する(メタ)アクリレートモノマー及びその組成物、さらにこのものを工業的に入手容易な原料から工業的に実施可能な反応で製造する方法を提供することを目的とする。
 本発明者らは上記課題を解決すべく鋭意検討を行った結果、一般式(1)に示される環状(メタ)アクリレート化合物は環状構造を有し、ジペンタエリスリトール、ペンタエリスリトール、ジトリメチロールプロパン、トリメチロールプロパン、ペンタエリスリトール等に代表される多官能アルコールの(メタ)アクリレートと比較して低粘度でありながら、優れた光感度、良好な空乾性等を有することを見出し、また、その重合性組成物においてもその特性を維持することを確認し、本発明を完成するに至った。
 即ち本発明の環状(メタ)アクリレート化合物は、次の一般式(1)で示される構造を有するものとする。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)において、Rは水素原子又は(メタ)アクリロイル基を表し、少なくとも1つは(メタ)アクリロイル基であり、Aは炭素数2から4のアルキレン基を表し、nは0~30の数を表す。
 上記化合物において、一般式(1)におけるnは1~30であることが好ましい。
 本発明の環状(メタ)アクリレート化合物の製造方法は、上記一般式(1)で示される構造を有する環状(メタ)アクリレート化合物の製造方法であって、(メタ)アクリル酸ハライド又は(メタ)アクリル酸無水物を反応させて、イソソルバイド又はイソソルバイドアルキレンオキサイド付加物をアクリレート化する工程、(メタ)アクリル酸エステルとのエステル交換により、イソソルバイド又はイソソルバイドアルキレンオキサイド付加物を(メタ)アクリレート化する工程、又は脱水縮合剤又は酸の存在下で(メタ)アクリル酸無水物を反応させて、イソソルバイド又はイソソルバイドアルキレンオキサイド付加物をアクリレート化する工程のいずれかを含むものとする。
 本発明の環状(メタ)アクリレート化合物は、従来のジペンタエリスリトール、ペンタエリスリトール、ジトリメチロールプロパン、トリメチロールプロパン、ペンタエリスリトール等に代表される多官能アルコールの(メタ)アクリレートを配合した重合性樹脂組成物と同程度又はそれ以上の光感度、空乾性、硬化皮膜の硬度等を有しつつ、より低粘度化し、硬化皮膜のカール等の不具合の生じないものとすることができる。
 従って、本発明の化合物は重合性モノマーとして、例えば、ドライフィルムレジスト、着色レジスト、黒色レジスト、半導体用レジストなどのレジスト樹脂組成物、歯科などの医療用樹脂組成物、塗料・コーティング用樹脂組成物、印刷用インク組成物などに好適に用いられるものとなる。
 また、本発明の環状(メタ)アクリレート化合物は、植物由来のイソソルバイドを主原料として得られるため、化石資源への依存度の低いクリーンな材料を提供することができる。
 また、本発明の製造方法によれば、上記本発明の化合物を工業的に簡便な操作により、高純度で、かつ収率良く製造することが可能である。
実施例1で得られたイソソルバイドジアクリレートのNMRチャートである。 実施例7で得られたイソソルバイド15EO付加物ジアクリレートのNMRチャートである。 実施例8で得られたイソソルバイド6EO付加物ジアクリレートのNMRチャートである。
 以下、本発明を詳細に説明する。
<環状(メタ)アクリレート化合物>
 本発明の重合性モノマーは上記一般式(1)の構造で表される構造を有するものである。一般式(1)中、Rは水素原子又は(メタ)アクリロイル基を表し、少なくとも1つは(メタ)アクリロイル基であり、Aは炭素数2から4のアルキレン基を表し、nは0~30の数を表す。nは、樹脂及び溶剤との相溶性の向上、結晶性の低下、(メタ)アクリル酸エステル製造時の反応性、硬化物の物性等から1~30であることが好ましい。
<環状(メタ)アクリレート化合物の製造方法>
 本発明の環状(メタ)アクリレート化合物の製造方法は、特に限定されないが、以下のようなイソソルバイド又はイソソルバイドアルキレンオキサイド付加物(以下、イソソルバイド等という)を原料とする(メタ)アクリレート化反応を用いることができる。
 イソソルバイドは公知の製造方法で製造することができる。即ち、各種脱水触媒、特に強酸触媒の作用でソルビトールを脱水反応することにより生成することができる。上記触媒の例としては、例えば硫酸、パラトルエンスルホン酸、メタンスルホン酸、塩酸、燐酸などが挙げられる。これらの脱水反応は、一般的に水、その他トルエンやキシレンのような有機溶媒中において効率的に行われる。無水糖アルコールの精製方法としては、いくつかの方法が知られている。
 また、イソソルバイドのアルキレンオキサイド付加物も、公知の方法により製造することができる。
 (メタ)アクリレート化反応としては、(メタ)アクリル酸ハライドや(メタ)アクリル酸無水物を使用して水酸基をエステル化する方法、MMA(メチルメタクリレート)等の(メタ)アクリル酸の低級アルコールのエステルを使用するエステル交換反応、DCC(ジシクロヘキシルカルボジイミド)、WSCD(水溶性カルボジイミド)などのカルボジイミド系脱水縮合剤を使用して(メタ)アクリル酸と脱水縮合させる方法、若しくは酸触媒を使用して脱水縮合させる方法等が用いられる。
 なお、本発明の化合物並びに原料である(メタ)アクリル酸化合物は重合性が高いので、製造時や製品保管中に重合が進行しないよう重合禁止剤を適宜使用してもよい。重合禁止剤としては、p-ベンゾキノン、ハイドロキノン、ハイドロキノンモノメチルエーテル、2,5-ジフェニルパラベンゾキノンなどのハイドロキノン類、テトラメチルピペリジニル-N-オキシラジカル(TEMPO)などのN-オキシラジカル類、t-ブチルカテコールなどの置換カテコール類、フェノチアジン、ジフェニルアミン、フェニル-β-ナフチルアミンなどのアミン類、クペロン、ニトロソベンゼン、ピクリン酸、分子状酸素、硫黄、塩化銅(II)などを挙げることができる。この中でもハイドロキノン類、フェノチアジンおよびN-オキシラジカル類が汎用性かつ重合抑制の点で好ましい。
 重合禁止剤の添加量は、目的物である一般式(1)で示される化合物に対して、下限が、おおよそ10ppm以上、好ましくは30ppm以上であり、上限が、通常5000ppm以下、好ましくは1000ppm以下である。少なすぎる場合は、十分な重合禁止効果が発現せず、製造時や製品保管中に重合が進行する危険性があり、多すぎる場合は、逆に硬化・重合反応を阻害してしまう可能性がある。その為、本発明の化合物単独、またはその重合性樹脂組成物とした際の光感度の低下、硬化物の架橋不良、力学的強度などの物性低下などを引き起こしてしまうおそれがあり、好ましくない。
<エステル交換法>
 エステル交換法によりイソソルバイド等を(メタ)アクリレート化する場合の(メタ)アクリレート化剤として使用できる化合物は、MMAなどの(メタ)アクリル酸の低級アルコールエステルである。低級アルコールとしてはC1~C4の脂肪族のアルコールが好ましく、アルコール残基の数は1から3から選ばれる。特に好ましくは、(メタ)アクリル酸のメチルエステル、エチルエステル、n-プロピルエステル、i-プロピルエステルである。この中でも(メタ)アクリル酸のメチルエステル、エチルエステル等が反応中に副生するアルコールの除去の点で簡単に操作できるため好ましい。
 (メタ)アクリル酸エステルの使用量は原料イソソルバイドのモル数に対して、下限が通常2モル等量以上、好ましくは4モル等量以上であり、上限が通常20モル等量以下、好ましくは10モル等量以下である。
 これら(メタ)アクリル酸エステルの添加の方法には特に制限はなく、反応の仕込み時に全量をイソソルバイドに添加して反応を行うことも、また反応途中に分割して添加していくことも、ともに可能である。反応は、無溶媒で行うことも、溶媒を使用して行うことも共に可能である。溶媒を使用する場合は、特に使用する溶媒に制限はないが、トルエン、キシレンなどの芳香族炭化水素溶媒、ヘキサン、ヘプタンなどの脂肪族炭化水素溶媒、ジエチルエーテル、テトラヒドロフラン、モノエチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒、ジメチルホルムアミドやジメチルアセトアミド、N-メチルピロリドンなどのアミド系溶媒などが好適に用いられる。この中でもトルエン、キシレンなどの芳香族炭化水素溶媒やメチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒が反応性の点で好ましい。これら溶媒は単独で用いてもかまわないし、任意の複数の溶媒を混合して使用してもかまわない。
 溶媒を使用する場合、原料であるイソソルバイド等の濃度は、下限が通常1%以上、好ましくは10%以上であり、上限は特に制限はないが、通常80%以下、好ましくは50%以下である。エステル交換反応は通常触媒の存在下に行う。使用可能な触媒としては、一般にエステル交換反応において使用可能とされているものが適用でき、例えば、チタンテトライソプロポキサイトなどの遷移金属化合物、ナトリウムメトキシドなどのアルカリ金属やアルカリ土類金属のアルコラート、アルミニウムトリイソプロポキサイドなどのアルミニウムのアルコキサイド、水酸化リチウムや水酸化ナトリウムなどのアルカリ金属やアルカリ土類金属の水酸化物、ジブチルスズオキシド、ジオクチルスズオキシド、ジスタノキサン化合物などのスズ化合物などが挙げられる。この中でもチタンテトライソプロポキサイトなどの遷移金属化合物、ナトリウムメトキシドなどのアルカリ金属やアルカリ土類金属のアルコラート等が触媒活性ならびに入手が容易である点で好ましい。
 これら触媒の使用量は、原料のイソソルバイド等のモル数に対して下限が通常0.01モル%以上、好ましくは0.1モル%以上、さらに好ましくは0.5モル%以上であり、上限が通常50モル%以下、好ましくは20モル%以下、さらに好ましくは10モル%以下である。触媒量が少なすぎる場合は、反応活性が低くなり所望のエステル化合物の収率が低くなる傾向があり、他方、多すぎる場合には、エステル交換反応後の後処理工程への負荷が多くなり、また、経済性の観点からも好ましくない。
 反応は、通常の攪拌装置を備えた反応器により行うのが好ましい。また、反応中発生するアルコールを留去しながら平衡を生成系に移行しながら反応を行う方が好ましい。この際、アルコールと試剤として使用する(メタ)アクリル酸エステルが共沸して(メタ)アクリル酸エステルが系内から留去されてしまう場合には、必要に応じて(メタ)アクリル酸エステルを逐次補充して反応を行ってもよい。
 反応温度は、十分な反応速度を得るために加温して実施するのが好ましい。具体的には、下限が通常30℃以上、好ましくは50℃以上、上限が通常200℃以下、好ましくは150℃以下の範囲で実施される。反応温度が高すぎる場合は、原料の(メタ)アクリル酸エステルや目的生成物のエステルの重合反応が起こる傾向があり、低すぎる場合には、エステル交換反応が進行しないか、極めて反応が遅く、長時間の反応が必要になる傾向がある。反応時間に関しては任意に選択されるが、反応の進行と共にアルコールが生成するため、所定量のアルコールが生成するまで反応を継続することが好ましい。一般的な反応時間は、下限が通常10分以上、好ましくは30分以上、上限は特に限定はされないが通常50時間以下、好ましくは30時間以下である。
<(メタ)アクリル酸ハライド法、(メタ)アクリル酸無水物法>
 (メタ)アクリル酸ハライド、もしくは(メタ)アクリル酸無水物を(メタ)アクリル化試薬として使用してイソソルバイド等を(メタ)アクリレート化することができる。その場合の(メタ)アクリル酸ハライドとして使用できる化合物は、(メタ)アクリル酸クロリド、(メタ)アクリル酸ブロミド、(メタ)アクリル酸アイオダイドである。
 (メタ)アクリル酸ハライド、もしくは(メタ)アクリル酸無水物の使用量は、原料イソソルバイド等のモル数に対して、下限が通常0.01モル等量以上、好ましくは0.05モル等量以上、さらに好ましくは0.1モル等量以上であり、上限が通常20モル等量以下、好ましくは10モル等量以下、さらに好ましくは5モル等量以下である。
 これら(メタ)アクリル酸ハライド、もしくは(メタ)アクリル酸無水物の添加の方法であるが、これら(メタ)アクリル化試薬と塩基性物質が反応前に長時間接触することを避ければ、その添加の方法に特に制限はない。例えば、イソソルバイド等と(メタ)アクリル酸ハライド、もしくは(メタ)アクリル酸無水物を同時に反応器に仕込み、塩基性物質を後から添加しても良いし、あるいはあらかじめ反応器に仕込んだ塩基性物質とイソソルバイド等、あるいはその溶液に(メタ)アクリル酸ハライド、もしくは(メタ)アクリル酸無水物を滴下して反応を行ってもよい。
 (メタ)アクリル酸ハライド、もしくは(メタ)アクリル酸無水物を用いて反応を行う場合、反応系を脱水状態で行う事が好ましい。系内に水分が存在すると、(メタ)アクリル酸ハライド、もしくは(メタ)アクリル酸無水物と反応して分解してしまう。本発明において使用される基質、例えばイソソルバイド等は、水と混和しやすい化合物であるが、この基質中に含まれる水の量は少ないほど好ましい。具体的には、イソソルバイド等に対して10モル%以下、好ましくは0.1モル%以下である。
 反応は、溶媒系、無溶媒系のどちらでも行う事ができるが、副生物の生成、工程上のハンドリング面から溶媒系が好ましい。溶媒を使用する場合は、特に制限はしないが、トルエン、キシレンなどの芳香族炭化水素溶媒、ヘキサン、ヘプタンなどの脂肪族炭化水素溶媒、ジエチルエーテル、テトラヒドロフラン、モノエチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒、アセトニトリル、ベンゾニトリルなどのニトリル溶媒、酢酸エチル、酢酸ブチル、ガンマブチロラクトンなどのエステル系溶媒、ジメチルホルムアミドやジメチルアセトアミド、N-メチルピロリドンなどのアミド系溶媒、クロロホルム、ジクロロエタンなどのハロゲン系溶媒などが好適に用いられる。これら溶媒は単独で用いてもかまわないし、任意の複数の溶媒を混合して使用してもかまわない。
 溶媒を使用する場合、原料であるイソソルバイド等の濃度は、下限が通常1%以上、好ましくは10%以上であり、上限は特に制限はないが、通常80%以下、好ましくは60%以下である。(メタ)アクリル酸ハライド、もしくは(メタ)アクリル酸無水物による(メタ)アクリル化反応は通常塩基性物質の存在下に行う。使用可能な塩基性物質としては、水酸化ナトリウム、水酸化バリウム等の金属の水酸化物、炭酸ナトリウム、炭酸カリウム等の金属の炭酸塩、リン酸一ナトリウム、リン酸カリウム等の金属のリン酸塩やリン酸水素塩、塩基性のイオン交換樹脂、トリエチルアミン、トリブチルアミン等の有機3級アミン、ピリジン等の芳香族アミン等の使用が可能である。中でもピリジンや、トリエチルアミン、炭酸カリウムが好適に用いられる。
 これら塩基性物質の使用量であるが、使用される(メタ)アクリル酸ハライド、もしくは(メタ)アクリル酸無水物に対して、下限が通常1モル等量、好ましくは2モル等量以上、上限は通常10モル等量以下、好ましくは5モル等量以下用いられる。塩基性物質の量が少なすぎる場合は、反応の進行が遅かったり停止したりするため好ましくなく、また、多すぎる場合には、製品着色の問題が生じ、さらに経済的にも好ましくない。
 反応は、耐腐食性の攪拌装置を備えた反応器により行うのが好ましい。反応温度は、下限が通常-50℃以上、好ましくは-20℃以上、上限が通常80℃以下、好ましくは20℃以下の範囲である。
 反応時間に関しては、任意に選択されるが、一般的に、30分以上、好ましくは60分以上、上限は特に限定はされないが通常20時間以下、好ましくは10時間以下である。
<縮合剤又は酸によるエステル化>
 (メタ)アクリル酸でエステル化する場合には、脱水縮合剤を共存させると反応が速やかに進行する。縮合剤は一般にエステル化用として知られた縮合剤を特に制限なく使用する事が可能であるが、例えば、N,N’-ジシクロヘキシルカルボジイミド、2-クロロ-1,3-ジメチルイミダゾリウムクロリド、プロパンホスホン酸無水物、カルボニルジイミダゾール(CDI)、WSCD(水溶性カルボジイミド)などが好適に用いられる。また、この際は、ピリジン、4-ジメチルアミノピリジンやトリエチルアミンなどの有機塩基性物質を併用しても良い。この中でも縮合剤はN,N’-ジシクロヘキシルカルボジイミド、塩基性物質はピリジンやトリエチルアミンが縮合反応性および入手容易さの観点から好ましい。
 反応温度は、下限が通常-20℃、好ましくは-10℃、上限は通常100℃、好ましくは50℃である。縮合剤の使用量は、基質であるイソソルバイド等に対して等量以上用いれば理論上十分であるが、過剰に用いても差し支えない。好ましくは、1.0モル等量以上、さらに好ましくは、2.0モル等量以上である。
 縮合剤を使用しない場合、(メタ)アクリル酸とイソソルバイド等を酸の存在下、生成する水を留去しながら反応を行う。使用される酸としては、通常のエステル化反応に用いられる酸であれば特に制限なく使用できる。例えば、硫酸や、塩酸などの無機酸、p-トルエンスルホン酸やメタンスルホン酸、カンファースルホン酸などの有機スルホン酸、酸型イオン交換樹脂、フッ素化ホウ素・エーテル錯体などのルイス酸、ランタナイドトリフレートなどの水溶性のルイス酸などが挙げられる。これらの酸は、単独でも任意の酸を2種以上混合して用いてもよい。
 酸の使用量の下限は、基質であるイソソルバイド等に対して0.1モル%以上、好ましくは0.5モル%以上である。一方、上限は制限がなく、20モル等量以下、好ましくは10モル等量以下である。酸触媒量が少なすぎる場合は、反応の進行が遅かったり停止したりするため好ましくなく、また、多すぎる場合には、製品着色、触媒の残存問題が生じたり、マイケル付加物の生成など好ましくない副反応が起きる傾向にある。
 反応は、溶媒系、無溶媒系のどちらでも行う事ができるが、副生物の生成、工程上のハンドリング面から溶媒系が好ましい。溶媒を使用する場合は、特に使用する溶媒に制限はないが、トルエン、キシレンなどの芳香族炭化水素溶媒、ヘキサン、ヘプタンなどの脂肪族炭化水素溶媒、ジエチルエーテル、テトラヒドロフラン、モノエチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのエーテル系溶媒、塩化メチレン、クロロホルム、四塩化炭素、などのハロゲン系溶媒などが好適に用いられる。これら溶媒は単独で用いてもかまわないし、任意の複数の溶媒を混合して使用してもかまわない。
 溶媒を使用する場合、その量は原料であるイソソルバイド等の濃度が、下限が通常1%以上、好ましくは10%以上であり、上限は特に制限はないが、通常80%以下、好ましくは70%以下である。反応は通常、使用する溶媒の沸点以上で行い、生成する水を留去しながら反応を行う。反応時間に関しては任意に選択されるが、生成する水の量、系内の酸価を測定する事により反応の終点を認知する事ができる。反応時間は、下限が通常30分以上、好ましくは60分以上、上限は特に限定はされないが通常20時間以下、好ましくは10時間以下である。
<精製法>
 上記の反応により製造された一般式(1)で表される化合物の精製は、特に制限なく採用することができる。例えば、蒸留法、再結晶法、抽出洗浄法、吸着処理法などである。蒸留を行う場合は、その形態は、単蒸留、精密蒸留、薄膜蒸留、分子蒸留など任意に選択することができる。
<(メタ)アクリル酸エステルモノマーの保存方法>
 本発明の(メタ)アクリル酸エステルモノマーは、重合性を有しているため、冷暗所に保存することが望ましい。また、重合を防止するために前記した重合禁止剤を前記した量使用して保存することも可能である。
<重合物、重合性樹脂組成物>
 本発明の(メタ)アクリル酸エステルモノマーの応用の一例として、コーティング用樹脂組成物の原料に使用する場合の重合物、ならびにその製造条件等について以下に説明する。
 コーティング用樹脂組成物を製造する場合には、本発明の(メタ)アクリル酸エステルモノマーに加え、ウレタンアクリレート等のオリゴマー・ポリマー成分、重合開始剤、溶剤などを配合して製造する。本発明の(メタ)アクリル酸エステルモノマーの含有量が少ないと、組成物の光感度、粘度、及び重合物の硬度などの物性が充分発揮されないおそれがある。
 重合性樹脂組成物の硬化・重合は、一般に知られた方法で実施することができ、特に制限されない。例えば、ラジカル開始剤の存在下に重合させる方法や、光重合開始剤の存在下に光重合させる方法、アニオン重合させる方法などが採用可能である。
 ラジカル重合開始剤としては、例えば、過酸化ベンゾイル、メチルシクロヘキサノンパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、ジイソプロピルパーオキシカーボネート、t-ブチルパーオキシイソプロピルモノカーボネート等の有機過酸化物、2,2’-アゾビスイソブチロニトリル(AIBN)などのアゾ化合物を使用することができる。
 活性エネルギー線による重合開始剤のうち光重合開始剤としては、例えば、ベンゾフェノン等の芳香族ケトン類、アントラセン、α-クロロメチルナフタレン等の芳香族化合物、ジフェニルスルフィド、チオカーバメイト等のイオウ化合物を使用することができる。紫外線などの活性エネルギー線による重合開始剤としては、例えば、アセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1,4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)等を挙げることができる。必要により、活性エネルギー線による重合開始剤とラジカル重合開始剤を併用しても良い。
 活性エネルギー線による重合開始剤の市販品としては、例えば、チバ・スペシャルティ・ケミカルズ(株)製 商品名:イルガキュア184、369、651、500、819、907、784、2959、CGI1700、CGI1750、CGI1850、CG24-61、ダロキュア1116、1173、BASF社製 商品名:ルシリンTPO、UCB社製 商品名:ユベクリルP36、フラテツリ・ランベルティ社製 商品名:エザキュアーKIP150、KIP65LT、KIP100F、KT37、KT55、KTO46、KIP75/B等を挙げることができる。
 ラジカル重合開始剤や、活性エネルギー線による重合開始剤の使用量は、公知の重合反応に準じて選択すれば良い。例えば、活性エネルギー線による重合開始剤は、一般式(1)で示される本発明化合物、又はその重合性組成物100質量部に対して、通常、0.001~20質量部、好ましくは0.01から5質量部使用するのが適当である。また、ラジカル重合開始剤は、一般式(1)で示される本発明化合物、又はその重合性組成物100質量部に対して、通常、0.0001~10質量部、好ましくは0.001~5質量部使用するのが適当である。反応温度は通常、下限が0℃、好ましくは10℃、一方上限は200℃、好ましくは100℃である。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。ここで、「部」は質量基準である。また、ガスクロマトグラフィー及び液体クロマトグラフィーの分析条件は以下のとおりである。
<ガスクロマトグラフィーによる純度の分析>
 カラム:(株)島津製作所製 C-R9A CHROMATOPAC DB-1 0.25mmφ、15m、0.25μm
 キャリアーガス:ヘリウム
 検出器:FID
 注入口温度:280℃
 カラム槽温度:初期温度150℃(2分保持)→昇温速度10℃/分最終温度→280℃(10分保持)
 注入量:0.5μL
<高速液体クロマトグラフィー(以下HPLCと略す)分析条件>
 カラム:GLサイエンス inertsil ODS-2
 移動相:アセトニトリル:水=7:3
 流量:0.6mL/分
 検出器:UV、RI
 カラム槽温度:40℃
 注入量:50μL(0.5%アセトニトリル溶液)
1.一般式(1)で表される環状(メタ)アクリレート化合物の合成
[実施例1](イソソルバイドジアクリレートの合成)
 1L四ツ口フラスコにイソソルバイド146g(1mol)、アクリル酸144g(2mol)、p-ベンゾキノン0.15g(0.0014mol)、メタンスルホン酸1.5g(0.015mol)、トルエン700gを仕込み、空気導入しながらオイルバス中で120℃に加熱、10時間攪拌した。反応の進行に伴って出てくる水を留去しつつ反応を行った。反応終了後に室温まで冷却し、蒸留水100mlにて水洗を行う事で触媒を除去した。その後、ハイドロキノン0.025gを添加し、減圧下で脱溶剤を行う事で淡黄色粘凋液体を得た。
 このものを1H-NMR、HPLC、GC-マススペクトルで解析したところ、イソソルバイドジアクリレートであることが明らかとなった。(原料イソソルバイド基準の収率87.4%、GC純度(面積比)=95%<、HPLC純度=97%)
<イソソルバイドジアクリレート>(1H-NMR(400MHz),CDCl3,in ppm);6.4(2H),6.2(2H),5.8(2H),4.6(2H),3.9~4.2(6H)
[実施例2]
 実施例1のアクリル酸をメタクリル酸に代えた以外は同様に反応することにより、淡黄色粘凋液体を得た。
 このものを1H-NMR、HPLC、GC-マススペクトルで解析したところ、イソソルバイドジメタクリレートであることが明らかとなった。(原料イソソルバイド基準の収率85.4%、GC純度(面積比)=93%<、HPLC純度=96%)
<イソソルバイドジメタクリレート>(1H-NMR(400MHz),CDCl3,in ppm);6.4(2H),5.8(2H),4.6(2H),3.9~4.2(6H),1.9(6H)
[実施例3](イソソルバイドジアクリレートの合成)
 2L四ツ口フラスコにイソソルバイド146g(1mol)、アクリル酸クロライド181.6g(2mol)、p-ベンゾキノン0.15g(0.0014mol)、トルエン700gを仕込んだ。氷浴中にて5℃まで冷却し、反応熱を確認しながら滴下ろうとを用いてトリエチルアミン202.2g(2mol)をゆっくり滴下した。滴下終了後、続けて氷冷下で5時間攪拌した。その後、室温に戻して更に3時間攪拌を行い、反応を終了した。
 反応終了後、室温に戻し蒸留水100mlにて水洗を行い、ハイドロキノン0.025gを添加し、減圧下で脱溶剤を行う事で淡黄色粘凋液体を得た。
 このものを1H-NMR、HPLC、GC-マススペクトルで解析したところ、イソソルバイドジアクリレートであることが明らかとなった。(原料イソソルバイド基準の収率90.4%、GC純度(面積比)=98%<、HPLC純度=99%)
<イソソルバイドジアクリレート>(1H-NMR(400MHz),CDCl3,in ppm);6.4(2H),6.2(2H),5.8(2H),4.6(2H),3.9~4.2(6H)
[実施例4]
 実施例3のアクリル酸クロライドをメタクリル酸クロライドに代えた以外は同様に反応することにより、淡黄色粘凋液体を得た。
 このものを1H-NMR、HPLC、GC-マススペクトルで解析したところ、イソソルバイドジメタクリレートであることが明らかとなった。(原料イソソルバイド基準の収率88.4%、GC純度(面積比)=97%<、HPLC純度=98%)
<イソソルバイドジメタクリレート>(1H-NMR(400MHz),CDCl3,in ppm);6.4(2H),5.8(2H),4.6(2H),3.9~4.2(6H),1.9(6H)
[実施例5](イソソルバイドジアクリレートの合成)
 2L四ツ口フラスコにイソソルバイド146g(1mol)、アクリル酸無水物252g(2mol)、p-ベンゾキノン0.15g(0.0014mol)、トルエン700gを仕込んだ。氷浴中にて5℃まで冷却し、反応熱を確認しながら滴下ろうとを用いてトリエチルアミン202.2g(2mol)をゆっくり滴下した。滴下終了後、続けて氷冷下で5時間攪拌した。その後、室温に戻して更に3時間攪拌を行い、反応を終了した。
 反応終了後、蒸留水100mlにて水洗を行い、ハイドロキノン0.025gを添加し、減圧下で脱溶剤を行う事で淡黄色粘凋液体を得た。
 このものを1H-NMR、HPLC、GC-マススペクトルで解析したところ、イソソルバイドジアクリレートであることが明らかとなった。(原料イソソルバイド基準の収率89.4%、GC純度(面積比)=97%<、HPLC純度=98%)
<イソソルバイドジアクリレート>(1H-NMR(400MHz),CDCl3,in ppm);6.4(2H),6.2(2H),5.8(2H),4.6(2H),3.9~4.2(6H)
[実施例6](イソソルバイドジメタクリレートの合成)
 実施例5のアクリル酸無水物をメタクリル酸無水物に代えて、同様に反応する事で、淡黄色粘凋液体を得た。
 反応終了後、蒸留水100mlにて水洗を行い、ハイドロキノン0.025gを添加し減圧下で脱溶剤を行う事で淡黄色粘凋液体を得た。
 このものを1H-NMR、HPLC、GC-マススペクトルで解析したところ、イソソルバイドジメタクリレートであることが明らかとなった。(原料イソソルバイド基準の収率88.1%、GC純度(面積比)=96.1%<、HPLC純度=97.5%)
<イソソルバイドジメタクリレート>(1H-NMR(400MHz),CDCl3,in ppm);6.4(2H),5.8(2H),4.6(2H),3.9~4.2(6H),1.9(6H)
[実施例7](イソソルバイド15EO付加物ジアクリレートの合成)
 オートクレーブに、イソソルバイドを146部、苛性ソーダ1部を投入して窒素置換を行った。撹拌下、130℃に温調して均一に分散させた。エチレンオキサイド(EO)260部を130℃でオートクレーブ内圧が0.3MPaを超えないように連続的に導入した。同温度で圧平衡になるまで2時間熟成してイソソルバイド6EO付加物を得た。また、目的物の数平均分子量は344、EOの平均付加モル数は4.5であった。
 1L四ツ口フラスコに前記イソソルバイド15EO付加物806g(1mol)、アクリル酸144g(2mol)、p-ベンゾキノン0.475g(0.0044mol)、メタンスルホン酸4.75g(0.044mol)、トルエン2216gを仕込み、空気導入しながらオイルバス中で120℃に加熱、15時間攪拌した。反応の進行に伴って出てくる水を留去しつつ反応を行った。反応終了後に室温まで冷却し、蒸留水150mlにて水洗を行うことで触媒を除去した。その後、ハイドロキノン0.066gを添加し、減圧下で脱溶剤を行うことで淡黄色粘凋液体を得た。
 このものを1H-NMR、HPLC、GC-マススペクトルで解析したところ、イソソルバイドジアクリレートであることが明らかとなった。(原料イソソルバイド基準の収率82.4%、GC純度(面積比)=94%<、HPLC純度=95%)
<イソソルバイドジアクリレート>(1H-NMR(400MHz),CDCl3, in ppm);6.4(2H),6.2(2H),5.8(2H),4.6(2H),4.3(4H),3.5~4.0(62H)
[実施例8](イソソルバイド6EO付加物ジアクリレートの合成)
 オートクレーブに、イソソルバイドを146部、苛性ソーダ1部を投入して窒素置換を行った。撹拌下、130℃に温調して均一に分散させた。エチレンオキサイド(EO)700部を130℃でオートクレーブ内圧が0.3MPaを超えないように連続的に導入した。同温度で圧平衡になるまで4時間熟成してイソソルバイド15EO付加物を得た。また、目的物の数平均分子量は832、EOの平均付加モル数は15.6であった。
 1L四ツ口フラスコに前記イソソルバイド6EO付加物410g(1mol)、アクリル酸144g(2mol)、p-ベンゾキノン0.283g(0.0026mol)、メタンスルホン酸2.83g(0.026mol)、トルエン1293gを仕込み、空気導入しながらオイルバス中で120℃に加熱、13時間攪拌した。反応の進行に伴って出てくる水を留去しつつ反応を行った。反応終了後に室温まで冷却し、蒸留水120mlにて水洗を行うことで触媒を除去した。その後、ハイドロキノン0.038gを添加し、減圧下で脱溶剤を行うことで淡黄色粘凋液体を得た。
 このものを1H-NMR、HPLC、GC-マススペクトルで解析したところ、イソソルバイドジアクリレートであることが明らかとなった。(原料イソソルバイド基準の収率84.4%、GC純度(面積比)=96%<、HPLC純度=96%)
<イソソルバイドジアクリレート>(1H-NMR(400MHz),CDCl3, in ppm);6.4(2H),6.2(2H),5.8(2H),4.6(2H),4.3(4H),3.5~4.0(26H)
2.イソソルバイドジ(メタ)アクリレート樹脂組成物の物性評価
 上記実施例1により得られたイソソルバイドジアクリレートにつき、多官能モノマーであるKAYARAD DPHA、及び同じ2官能モノマーであるHDDAを比較対象として、以下の通り樹脂組成物及びその硬化皮膜の物性を評価した。試料の調製方法、及び測定・評価方法は以下の通りである。結果を表1に示す。
[実施例9]
 実施例1により得られたイソソルバイドジアクリレート100部に1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名イルガキュア184、チバ・スペシャリティー・ケミカルズ社製)を5部添加した物を樹脂組成物とした。
[比較例1]
 ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートの混合物(商品名KAYARAD DPHA、日本化薬株式会社製)100部に1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名イルガキュア184、チバ・スペシャリティー・ケミカルズ社製)を5部添加した物を樹脂組成物とした
[比較例2]
 1,6-へキサンジオールジアクリレート(商品名ニューフロンティアHDDA、第一工業製薬株式会社製)100部に1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名イルガキュア184、チバ・スペシャリティー・ケミカルズ社製)を5部添加した物を樹脂組成物とした。
 以下で特記する場合を除き、評価用の硬化皮膜としては、実施例9、及び比較例1,2で得られた樹脂組成物をバーコーターにて膜厚100μmにてガラス基板上に塗布、メタルハライドランプを装着したベルトコンベアー式UV硬化装置にて積算照度200mj/cmにて硬化したものを用いた。
〈粘度〉
 恒温槽、循環ポンプと接続されたコーンプレート方式の回転粘度計(東機産業(株)製E型粘度計)を用いて粘度測定を行った。
〈屈折率〉
 ガラス基板上にバーコーターにて膜厚20μmで塗布し密着性と同条件で硬化し、プリズムカプラー(model:2010、Metricon社製)にて屈折率を測定した。
〈体積収縮率〉
 硬化前後の試験サンプルを、JIS K0061-1992に基づき比重を測定し、下記式により体積収縮率を測定した。  
 体積収縮率(%)={(硬化後の比重-硬化前の比重)/硬化後の比重}×100
〈接触角〉
 液滴法により測定した。頂点の高さ、水滴の半径を直読し、θ=2arctan(h/a)より接触角を求めた。
〈硬化性〉
 ガラス基板上にバーコーターにて膜厚10μmに塗布し、ステップタブレット(25段、Riston社製)にて遮光し、空気遮断下でウシオ社製の平行光型露光機(SX-UID501H UVQ)にて積算照度50mjで硬化させ、タックフリーとなる段数を記載した。
〈鉛筆硬度〉
 各樹脂組成物をメタルハライドランプを装着したベルトコンベアー式UV硬化装置にてガラス、PET、ABS、PC、アクリル樹脂を基板として積算照度400mj/cmにて硬化し、JIS K5600-5-4に従い、これらの基板上での皮膜硬度を測定した。
〈密着性〉
 各樹脂組成物をメタルハライドランプを装着したベルトコンベアー式UV硬化装置にてABS、PC、アクリル樹脂を基板として積算照度400mj/cmにて硬化し、JIS-K5400規定の碁盤目試験を行い、残存マス数を密着性とした。
〈耐磨耗性〉
 PET基板にバーコーターにて膜厚20μmで塗布、密着性と同条件で硬化皮膜を形成し、テーバー磨耗試験を行った。500g荷重でCS-10F磨耗輪を使用し所定の回数回転させた時のヘーズをヘーズメーター(スガ製作所 HGM型)にて測定した。
〈耐汚染性〉
 PET基板にスピンコーターにて膜厚10μmで塗布し密着性と同条件で硬化皮膜を形成した。硬化皮膜上に汚染物として油性マジック、毛染め液、靴墨を塗布し、18時間静置、エタノール綿にてふき取りした際の外観を目視で観察し、以下の基準で評価した。  
 ○:着色なし、△:わずかに着色あり、×:着色が濃い
〈耐薬品性〉
 耐汚染性試験と同条件で皮膜を形成し、試験フィルム上に次亜塩素酸塩、水酸化ナトリウム、界面活性剤(アルキルアミンオキシド)等から構成される市販の漂白剤を滴下しシャーレ内で18時間静置した。ティッシュでふき取り、フィルムが変化していないか目視によって観察し、以下の基準で評価した。  
 ○:硬化膜に異常無し、△:わずかに光沢の変化が見られる、×:硬化膜に白化、割れ、浮きなどの明らかな異常が見られる
〈耐水性〉
 耐汚染性試験と同条件で皮膜を形成し、水道水を滴下し、18時間後に拭きとった時の外観を目視し、以下の基準で評価した。  
 ○:硬化膜に異常無し、△:わずかに光沢の変化が見られる、×:硬化膜に白化、割れ、浮きなどの明らかな異常が見られる
〈耐酸性〉
 耐汚染性試験と同条件で皮膜を形成し、試験フィルム上に0.1mol/Lの塩酸水溶液を一滴落とし、シャーレ内で18時間静置した。ティッシュでふき取り、フィルムが変化していないか目視によって観察し、耐水性と同基準で評価した。
〈耐アルカリ性〉
 耐汚染性試験と同条件で皮膜を形成し試験フィルム上に2%水酸化ナトリウム水溶液を一滴落とし、シャーレ内で18時間静置した。ティッシュでふき取り、フィルムが変化していないか目視によって観察し、耐水性と同基準で評価した。
〈透明性〉
 ガラス基板上にバーコーターにて膜厚20μmで塗布し密着性と同条件で硬化しヘーズメーターにてヘーズを測定し、測定値を透明性とした。
〈カール性〉
 厚さ150μmのPETフィルム上にバーコーターにて膜厚20μmで塗布し密着性と同条件で硬化させた。フィルムの四隅の高さを測定し、その平均値をカール性とした。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、イソソルバイドジアクリレートは2官能モノマーでありながら多官能モノマーであるDPHAとほぼ同等の物性を示し、さらに、低粘度、高感度であり、かつ硬化皮膜のカール性も低いという優れた性質を有していることが分かる。
3.重合性樹脂組成物の調製及び硬化皮膜の物性測定 
 実施例1により得られたイソソルバイドジアクリレート、及び比較対象としての多官能モノマーであるDPHA、同じ2官能モノマーのHDDAを、以下の通りウレタンアクリレートと組成物化した樹脂組成物及びその硬化皮膜の物性等を上記実施例9等と同様にして測定又は評価した。
[実施例10]
 上記の実施例1により得られたイソソルバイドジアクリレートを50部、ニューフロンティアR-1204(ウレタンアクリレート樹脂、第一工業製薬株式会社製)を50部、1-ヒドロキシ-シクロヘキシル-フェニル-ケトンを5部(商品名イルガキュア184、チバ・スペシャリティー・ケミカルズ社製)を混合し、重合性樹脂組成物を得た。
[実施例11]
 実施例10のウレタンアクリレート樹脂をニューフロンティアR-1302(ウレタンアクリレート樹脂、第一工業製薬株式会社製)に代えて、同様の樹脂組成物を調製した。
[比較例3]
 実施例10のイソソルバイドジアクリレートに代えて、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートの混合物(商品名KAYARAD DPHA、日本化薬株式会社製)を用いて同様の樹脂組成物を調製した。
[比較例4]
 実施例10のイソソルバイドジアクリレートに代えて、1,6-へキサンジオールジアクリレート(商品名ニューフロンティアHDDA、第一工業製薬株式会社製)を用いて同様の樹脂組成物を調製した。
[比較例5]
 実施例10においてモノマー類を加えず、ニューフロンティアR-1204(ウレタンアクリレート樹脂、第一工業製薬株式会社製)を100部、1-ヒドロキシ-シクロヘキシル-フェニル-ケトンを5部(商品名イルガキュア184、チバ・スペシャリティー・ケミカルズ社製)を混合し、重合性樹脂組成物を得た。
[比較例6]
 実施例11のイソソルバイドジ(メタ)アクリレートに代えて、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートの混合物(商品名KAYARAD DPHA、日本化薬株式会社製)を用いて同様の樹脂組成物を調製した。
[比較例7]
 実施例11のイソソルバイドジ(メタ)アクリレートに代えて、1,6-へキサンジオールジアクリレート(商品名ニューフロンティアHDDA、第一工業製薬株式会社製)を用いて同様の樹脂組成物を調製した。
[比較例8]
 実施例11においてモノマー類を加えず、ニューフロンティアR-1302(ウレタンアクリレート樹脂、第一工業製薬株式会社製)を100部、1-ヒドロキシ-シクロヘキシル-フェニル-ケトンを5部(商品名イルガキュア184、チバ・スペシャリティー・ケミカルズ社製)を混合し、重合性樹脂組成物を得た。
 上記測定・評価方法で特記した場合を除き、評価用の硬化皮膜は、実施例10,11、及び比較例3~8で得られた重合性樹脂組成物をバーコーターにて膜厚100μmにてガラス基板上に塗布、メタルハライドランプを装着したベルトコンベアー式UV硬化装置にて積算照度200mj/cmにて硬化して得た。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、イソソルバイドジアクリレートは、DPHAと比較して、高粘度のウレタンアクリレートを大幅に低粘度化しつつ、硬化性、カール性、その他物性を大幅に向上させることが分かる。また、HDDAと比較して硬化皮膜の硬度等が顕著に向上することが分かる。
 本発明の環状(メタ)アクリレート化合物、及びそれを含有する重合性樹脂組成物を硬化させて得られる硬化物は、硬度が高く、カール性が低く、かつ硬化性に優れているため、例えば、ハードコート等のコーティング用途、インクジェット印刷用インク組成物、またはドライフィルムレジスト、着色レジスト、黒色レジストなどのレジスト組成物に好適に使用する事が出来る。

Claims (3)

  1.  一般式(1)で表されることを特徴とする環状(メタ)アクリレート化合物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)において、Rは水素原子又は(メタ)アクリロイル基を表し、少なくとも1つは(メタ)アクリロイル基であり、Aは炭素数2から4のアルキレン基を表し、nは0~30の数を表す。)
  2.  一般式(1)において、nが1~30であることを特徴とする、請求項1に記載の環状(メタ)アクリレート化合物。
  3.  (メタ)アクリル酸ハライド又は(メタ)アクリル酸無水物を反応させて、イソソルバイド又はイソソルバイドアルキレンオキサイド付加物をアクリレート化する工程、
     (メタ)アクリル酸エステルとのエステル交換により、イソソルバイド又はイソソルバイドアルキレンオキサイド付加物を(メタ)アクリレート化する工程、又は
     脱水縮合剤又は酸の存在下で(メタ)アクリル酸無水物を反応させて、イソソルバイド又はイソソルバイドアルキレンオキサイド付加物をアクリレート化する工程
     のいずれかを含むことを特徴とする、請求項1又は2に記載の環状(メタ)アクリレート化合物の製造方法。
PCT/JP2010/005430 2009-10-19 2010-09-03 環状(メタ)アクリレート化合物及びその製造方法 WO2011048739A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080045571.7A CN102548997B (zh) 2009-10-19 2010-09-03 环状(甲基)丙烯酸酯化合物及其制造方法
KR1020127007337A KR101369040B1 (ko) 2009-10-19 2010-09-03 환상 (메타)아크릴레이트 화합물 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-240372 2009-10-19
JP2009240372A JP5270510B2 (ja) 2009-10-19 2009-10-19 環状(メタ)アクリレート化合物、その製造方法、及び樹脂組成物

Publications (1)

Publication Number Publication Date
WO2011048739A1 true WO2011048739A1 (ja) 2011-04-28

Family

ID=43899984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005430 WO2011048739A1 (ja) 2009-10-19 2010-09-03 環状(メタ)アクリレート化合物及びその製造方法

Country Status (5)

Country Link
JP (1) JP5270510B2 (ja)
KR (1) KR101369040B1 (ja)
CN (1) CN102548997B (ja)
TW (1) TWI483930B (ja)
WO (1) WO2011048739A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136593A1 (en) 2011-04-05 2012-10-11 Cytec Surface Specialties, S.A. Radiation curable compositions
JP2012246351A (ja) * 2011-05-25 2012-12-13 Kansai Paint Co Ltd 塗料組成物及び塗装物品
WO2013066461A2 (en) 2011-08-10 2013-05-10 Palmese Giuseppe R Renewable bio-based (meth) acrylated monomers as vinyl ester cross-linkers
EP2644634A1 (en) 2012-03-30 2013-10-02 Cytec Surface Specialties, S.A. Radiation curable (meth)acrylated compounds
EP2644589A1 (en) 2012-03-30 2013-10-02 Cytec Surface Specialties, S.A. Radiation Curable (Meth)acrylated Compounds
WO2014087112A1 (fr) 2012-12-06 2014-06-12 Roquette Freres Compositions reticulables a base de composes de dianhydrohexitol
WO2014087113A1 (fr) 2012-12-06 2014-06-12 Roquette Freres Composes a base de dianhydrohexitol et compositions reticulables les comprenant
WO2014147340A1 (fr) 2013-03-19 2014-09-25 Roquette Freres Compositions reticulables a base de composes de derives (meth) acryles de dianhydrohexitol
JP2017048281A (ja) * 2015-08-31 2017-03-09 関西ペイント株式会社 パテ組成物及びこれを用いた補修塗装方法
US11208420B2 (en) 2016-11-22 2021-12-28 Drexel University Process to produce blended (meth)acrylate/vinyl ester resin cross-linkers

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272840B1 (ko) * 2011-05-19 2013-06-10 한국생산기술연구원 광경화성 디안히드로헥산헥솔 유도체, 이의 제조방법 및 이를 포함하는 광경화성 조성물
EP2948459A1 (en) * 2013-01-25 2015-12-02 Basf Se New radiation-curable compounds and coating compositions
JP6441173B2 (ja) * 2014-06-20 2018-12-19 三洋化成工業株式会社 トナーバインダー及びトナー
MX2017011020A (es) * 2015-02-26 2017-10-20 Basf Se Proceso para preparar isosorbida etoxilato dimetacrilato.
WO2016135191A1 (de) * 2015-02-26 2016-09-01 Basf Se Verfahren zur herstellung von isosorbiddi(meth)acrylat
KR101855122B1 (ko) * 2016-12-02 2018-06-11 한국생산기술연구원 아이소소바이드 메타크릴레이트를 포함하는 3d 프린팅용 광원 경화형 소재
JP6892319B2 (ja) * 2017-05-19 2021-06-23 クラレノリタケデンタル株式会社 脂環式(メタ)アクリル化合物を含む硬化性組成物
JP7104510B2 (ja) * 2017-11-29 2022-07-21 クラレノリタケデンタル株式会社 脂環式(メタ)アクリル化合物を含む硬化性組成物
KR102162477B1 (ko) * 2018-01-05 2020-10-07 주식회사 삼양사 무수당 알코올 핵 및 알킬렌 옥사이드 연장부를 갖는 화합물 및 이의 제조 방법
KR102169999B1 (ko) * 2018-11-06 2020-10-27 주식회사 제일화성 흡수성 수지용 아크릴계 가교제의 제조방법, 이로 제조된 흡수성 수지용 아크릴계 가교제 및 이를 포함하는 생분해성 고흡수성 수지
KR102658757B1 (ko) * 2021-12-16 2024-04-18 주식회사 그래피 신규한 유기 화합물 및 이를 포함하는 3d 프린터용 광경화형 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB586141A (en) * 1944-05-30 1947-03-07 Walter Norman Haworth Preparation of acrylic and methacrylic resinoid derivatives
DE10204235A1 (de) * 2002-02-02 2003-08-14 Wella Ag Polymerlatex aus mehrfach ungesättigten Kohlenhydratmonomeren, Verfahren zu ihrer Herstellung und ihre Verwendung
JP2003306491A (ja) * 2002-04-18 2003-10-28 Fuji Photo Film Co Ltd 光学活性イソソルビド誘導体及びその製造方法、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2004341061A (ja) * 2003-05-13 2004-12-02 Fuji Photo Film Co Ltd ポジ型レジスト組成物
US20090018300A1 (en) * 2007-07-11 2009-01-15 Archer-Daniels-Midland Company Monomers and polymers from bioderived carbon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040035864A (ko) * 2001-09-24 2004-04-29 코닌클리케 필립스 일렉트로닉스 엔.브이. 이소소르바이드 유도체
JP2005008757A (ja) * 2003-06-19 2005-01-13 Daicel Chem Ind Ltd 重合性単量体、高分子化合物、フォトレジスト用樹脂組成物、及び半導体の製造方法
CN100387640C (zh) * 2005-07-22 2008-05-14 东北大学 热致前胆甾液晶聚合物及其制备方法
JP5420272B2 (ja) * 2008-02-28 2014-02-19 Jsr株式会社 液状硬化性樹脂組成物
JP5020871B2 (ja) * 2008-03-25 2012-09-05 富士フイルム株式会社 平版印刷版の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB586141A (en) * 1944-05-30 1947-03-07 Walter Norman Haworth Preparation of acrylic and methacrylic resinoid derivatives
DE10204235A1 (de) * 2002-02-02 2003-08-14 Wella Ag Polymerlatex aus mehrfach ungesättigten Kohlenhydratmonomeren, Verfahren zu ihrer Herstellung und ihre Verwendung
JP2003306491A (ja) * 2002-04-18 2003-10-28 Fuji Photo Film Co Ltd 光学活性イソソルビド誘導体及びその製造方法、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2004341061A (ja) * 2003-05-13 2004-12-02 Fuji Photo Film Co Ltd ポジ型レジスト組成物
US20090018300A1 (en) * 2007-07-11 2009-01-15 Archer-Daniels-Midland Company Monomers and polymers from bioderived carbon

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CRIVELLO, J.V. ET AL.: "Novel cationically polymerizable propenyl and vinyl ethers derived from renewable sources", JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 32, no. 15, 1994, pages 2919 - 2930 *
YOKOTA, K. ET AL.: "Synthesis of optically active polymeric crown ethers via cyclopolymerization and chiral recognition towards a-amino acids", KENKYU HOKOKU - ASAHI GARASU KOGYO GIJUTSU SHOREIKAI, vol. 53, 1988, pages 91 - 97 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9309438B2 (en) 2011-04-05 2016-04-12 ALLNEX Belgium SA Radiation curable compositions
WO2012136593A1 (en) 2011-04-05 2012-10-11 Cytec Surface Specialties, S.A. Radiation curable compositions
JP2012246351A (ja) * 2011-05-25 2012-12-13 Kansai Paint Co Ltd 塗料組成物及び塗装物品
WO2013066461A2 (en) 2011-08-10 2013-05-10 Palmese Giuseppe R Renewable bio-based (meth) acrylated monomers as vinyl ester cross-linkers
US10053529B2 (en) 2011-08-10 2018-08-21 Drexel University Renewable bio-based (meth)acrylated monomers as vinyl ester cross-linkers
US9856343B2 (en) 2011-08-10 2018-01-02 Drexel University Renewable bio-based (meth)acrylated monomers as vinyl ester cross-linkers
WO2013066461A3 (en) * 2011-08-10 2013-10-03 Drexel University Renewable bio-based (meth) acrylated monomers as vinyl ester cross-linkers
US9644059B2 (en) 2011-08-10 2017-05-09 Drexel University Renewable bio-based (meth)acrylated monomers as vinyl ester cross-linkers
US9540310B2 (en) 2012-03-30 2017-01-10 Allnex Belgium S.A. Radiation curable (meth)acrylated compounds
CN104136488B (zh) * 2012-03-30 2016-07-13 湛新比利时股份有限公司 可辐射固化的(甲基)丙烯酸酯化的化合物
EP2644634A1 (en) 2012-03-30 2013-10-02 Cytec Surface Specialties, S.A. Radiation curable (meth)acrylated compounds
EP2644589A1 (en) 2012-03-30 2013-10-02 Cytec Surface Specialties, S.A. Radiation Curable (Meth)acrylated Compounds
WO2013144033A1 (en) 2012-03-30 2013-10-03 Allnex Belgium, S.A. Radiation curable (meth)acrylated compounds
CN104136488A (zh) * 2012-03-30 2014-11-05 湛新比利时股份有限公司 可辐射固化的(甲基)丙烯酸酯化的化合物
JP2015520122A (ja) * 2012-03-30 2015-07-16 オルネクス ベルギウム ソシエテ アノニム 放射線硬化性(メタ)アクリル化化合物
US9109137B2 (en) 2012-03-30 2015-08-18 ALLNEX Belgium SA Radiation curable (meth) acrylated compounds
WO2013144028A1 (en) 2012-03-30 2013-10-03 Allnex Belgium, S.A. Radiation curable (meth)acrylated compounds
WO2014087113A1 (fr) 2012-12-06 2014-06-12 Roquette Freres Composes a base de dianhydrohexitol et compositions reticulables les comprenant
WO2014087112A1 (fr) 2012-12-06 2014-06-12 Roquette Freres Compositions reticulables a base de composes de dianhydrohexitol
FR2999181A1 (fr) * 2012-12-06 2014-06-13 Roquette Freres Composes a base de dianhydrohexitol et compositions reticubles les comprenant
FR3003574A1 (fr) * 2013-03-19 2014-09-26 Roquette Freres Compositions reticulables a base de composes de derives (meth) acryles de dianhydrohexitol
WO2014147340A1 (fr) 2013-03-19 2014-09-25 Roquette Freres Compositions reticulables a base de composes de derives (meth) acryles de dianhydrohexitol
JP2017048281A (ja) * 2015-08-31 2017-03-09 関西ペイント株式会社 パテ組成物及びこれを用いた補修塗装方法
US11208420B2 (en) 2016-11-22 2021-12-28 Drexel University Process to produce blended (meth)acrylate/vinyl ester resin cross-linkers
US11718629B2 (en) 2016-11-22 2023-08-08 Drexel University Process to produce blended (meth)acrylate/vinyl ester resin cross-linkers

Also Published As

Publication number Publication date
KR101369040B1 (ko) 2014-02-28
CN102548997A (zh) 2012-07-04
KR20120063490A (ko) 2012-06-15
JP2011084535A (ja) 2011-04-28
JP5270510B2 (ja) 2013-08-21
CN102548997B (zh) 2014-11-12
TWI483930B (zh) 2015-05-11
TW201118066A (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP5270510B2 (ja) 環状(メタ)アクリレート化合物、その製造方法、及び樹脂組成物
US10344112B2 (en) Alkylene oxide-modified dipentaerythritol (meth)acrylate and reactive composition containing same
JP5623419B2 (ja) 活性エネルギー線硬化性組成物
CA1210777A (en) Ethylenically unsaturated compounds and process for producing the same
JP2764324B2 (ja) ポリカーボネートアクリレート樹脂またはポリカーボネートメタクリレート樹脂の製造方法
JP6124907B2 (ja) ウレタンアクリレート及びこれを含有する反応性組成物
JP2004059435A (ja) ジオキソラン化合物の製造法
JP2005179511A (ja) ラジカル重合性塗料組成物
JP5240206B2 (ja) (メタ)アクリレート組成物の製造方法
JP3653781B2 (ja) 反応性樹脂の製造方法
JP5925021B2 (ja) 環状エーテル基含有(メタ)アクリレートの製造方法
JP2008291106A (ja) 活性エネルギー線硬化性樹脂組成物、それを硬化して得られる硬化膜および該硬化膜を被膜として有する物品
JPH093145A (ja) 硬化性樹脂組成物
JP2008137938A (ja) チオビスフェノール骨格を有する(メタ)アクリレートの製造方法
JP4242191B2 (ja) (メタ)アクリレート、硬化性組成物および硬化物
JP2015229633A (ja) エポキシ基含有(メタ)アクリルアミド
JP2011201937A (ja) (メタ)アクリル系樹脂、(メタ)アクリル系化合物、(メタ)アクリル系樹脂の製造方法、(メタ)アクリル系化合物の製造方法及び活性エネルギー線硬化型コーティング用樹脂組成物
JP2007197719A (ja) 新規脂環式化合物、当該脂環式化合物の製造法、当該脂環式化合物を含む重合用組成物および当該重合用組成物を重合してなる重合体
JPH0248551A (ja) (メタ)アクリル酸エステル混合物
JPH05105732A (ja) 光硬化性組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045571.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127007337

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10824594

Country of ref document: EP

Kind code of ref document: A1