WO2011040497A1 - エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤 - Google Patents

エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤 Download PDF

Info

Publication number
WO2011040497A1
WO2011040497A1 PCT/JP2010/067002 JP2010067002W WO2011040497A1 WO 2011040497 A1 WO2011040497 A1 WO 2011040497A1 JP 2010067002 W JP2010067002 W JP 2010067002W WO 2011040497 A1 WO2011040497 A1 WO 2011040497A1
Authority
WO
WIPO (PCT)
Prior art keywords
branched
perfluoroalkyl group
straight
group
reaction
Prior art date
Application number
PCT/JP2010/067002
Other languages
English (en)
French (fr)
Other versions
WO2011040497A9 (ja
Inventor
光夫 車屋
常俊 本田
浩太 大森
Original Assignee
三菱マテリアル株式会社
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009223975A external-priority patent/JP5558067B2/ja
Application filed by 三菱マテリアル株式会社, 三菱マテリアル電子化成株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP10820612A priority Critical patent/EP2484662A4/en
Priority to KR1020127007900A priority patent/KR101431926B1/ko
Priority to CN2010800443550A priority patent/CN102686559A/zh
Priority to US13/498,710 priority patent/US20120184763A1/en
Publication of WO2011040497A1 publication Critical patent/WO2011040497A1/ja
Publication of WO2011040497A9 publication Critical patent/WO2011040497A9/ja
Priority to US14/451,024 priority patent/US20140339096A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/32Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of salts of sulfonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/22Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/28Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/07Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton
    • C07C309/09Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing etherified hydroxy groups bound to the carbon skeleton
    • C07C309/10Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing etherified hydroxy groups bound to the carbon skeleton with the oxygen atom of at least one of the etherified hydroxy groups further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/64Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms
    • C07C309/68Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms of a carbon skeleton substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a perfluorosulfonic acid having an ether structure (perfluoroalkoxyperfluoroalkylsulfonic acid) and a derivative thereof and a method for producing the raw material compound, and further relates to a surfactant containing a fluorinated ether sulfonic acid compound and a derivative thereof.
  • Perfluorosulfonic acid and its derivatives (R F SO 2 X; wherein R F represents a group in which the hydrogen atom of the corresponding hydrocarbon group is substituted with a fluorine atom, X represents —OH, a halogen atom, etc.): It has been used for surfactants, acid generators, ionic liquids, catalysts and the like.
  • perfluorosulfonic acids in particular, those having a perfluorooctanesulfonyl (C 8 F 17 SO 2 —) structure having 8 carbon atoms (PFOS) are chemically stable. Therefore, they are difficult to decompose and accumulate in living organisms. It has become a problem and regulation has begun. In the United States, regulations are also being made for perfluorosulfonic acid having 6 or more carbon atoms. For this reason, there is a need for alternative compounds that maintain performance and have less environmental impact.
  • R F 1 and R F 2 each represent a group in which the hydrogen atom of the corresponding hydrocarbon group is substituted with a fluorine atom.
  • the method using perfluorovinylsulfonyl fluoride (CF 2 ⁇ CFSO 2 F) and perfluorohypofluoride (R F OF) uses a fluorinated raw material with high cost, and the boiling point of the raw material is low. And the like, the straight chain (n-form) / isomer (i-form) cannot be arbitrarily selected, and the basic structure of ethanesulfonyl is practically limited.
  • the present invention solves the above-mentioned conventional problems, and does not cause isomerization or the like, and perfluorosulfonic acid (perfluoroalkoxyperfluoroalkylsulfonic acid) having an ether structure that can produce a compound having a target structure at a low cost. And a derivative thereof and a method for producing the starting compound. Moreover, it aims at providing the surfactant containing the said derivative
  • the inventor does not produce a compound having an R F 2 OR F 1 — structure using a fluorinated raw material, but produces a hydrocarbon compound having a desired carbon skeleton, and then fluorinates the compound.
  • perfluorosulfonic acid perfluoroalkoxyperfluoroalkylsulfonic acid
  • perfluorosulfonic acid perfluoroalkoxyperfluoroalkylsulfonic acid
  • the inventor adds R H 2 OR H 1 SO 2 F to hydrofluoric acid to form a concentrated solution (hydrogen bond complex), and supplies this to a liquid phase reaction system using F 2 gas,
  • R H 2 OR H 1 SO 2 Cl By adding R H 2 OR H 1 SO 2 Cl to hydrofluoric acid and releasing HCl, it is converted to R H 1 OR H 2 SO 2 F, which is converted into a liquid phase reaction system using F 2 gas. It has been found that by supplying it, fluorination can be performed safely and isomerization does not occur, and a compound having the desired structure can be produced at low cost.
  • the present invention does not involve problems such as isomerization of perfluorosulfonic acid having an ether structure (perfluoroalkoxyperfluoroalkylsulfonic acid) and its derivative (R F 2 OR F 1 SO 2 X),
  • a production method for inexpensively producing a compound having a target structure Also provided a method for producing the R H 2 OR H 1 SO 2 F and R H 2 OR H 1 SO 2 Cl , which is a raw material compound.
  • a surfactant containing a derivative (R F 2 OR F 1 SO 2 M) is also provided.
  • the sulfonyl halide is When the R H 2 is a hydrocarbon group having 1 carbon atom, the R H 1 is a hydrocarbon group having 3 carbon atoms (straight and branched), When the R H 2 is a hydrocarbon group having 3 carbon atoms (straight chain), the R H 1 is a hydrocarbon group having 1 carbon atom, a hydrocarbon group having 3 carbon atoms (straight and branched), or a carbon number 4 hydrocarbon groups (straight and branched), When R H 2 is a hydrocarbon group having 4 carbon atoms (straight chain), R H 1 is a hydrocarbon group having 1 carbon atom or a hydrocarbon group having 3 carbon atoms (straight and branched).
  • R F 1 OR F 2 SO 2 X which are supplied together with F 2 gas and perfluorinated in the liquid phase and have an ether structure (wherein R F 1 and R F 2 are the above R H 1 and The fluorine-containing ether sulfonic acid compound according to [1] or [2] above, wherein a group in which a hydrogen atom in R H 2 group is substituted with a fluorine atom, X is —OH, alkoxy or halogen) Manufacturing method.
  • a sulfonyl chloride (R H 2 OR H 1 SO 2 Cl) according to the preceding item [1] or [2] is added to hydrofluoric acid to be converted into a sulfonyl fluoride, and a solution containing a hydrogen bond complex is obtained. This is fed together with F 2 gas into the reaction solvent and perfluorinated in the liquid phase to give perfluorosulfonic acid having an ether structure and its derivative R F 1 OR F 2 SO 2 X (wherein R F 1 and R F 2 Represents a group obtained by substituting a hydrogen atom in the R H 1 and R H 2 groups with a fluorine atom, and X represents —OH, alkoxy or halogen).
  • a method for producing sulfonic acid and its derivative R F 1 OR F 2 SO 2 X [7] The fluorination reaction product (R F 2 OR F 1 SO 2 F) in the reaction solution is converted into a sulfonic acid ester (R F 2 OR F 1 SO 2 OR 3 ) using a base and an alcohol R 3 OH.
  • a method for producing a hydrocarbon sulfonyl fluoride (alkoxyalkylsulfonyl fluoride) having an ether structure having the following configuration which is useful as a raw material compound for the production methods of [1] to [7] above: Is provided.
  • Hydrocarbon sulfonyl fluoride (alkoxyalkylsulfonyl fluoride) having an ether structure comprising a step of converting to H 1 —SO 2 —Cl and further converting to R H 2 —O—R H 1 —SO 2 —F in an aqueous solution containing KF Ride) manufacturing method.
  • R F 1 OR F 2 SO 2 X (where R F 1 and R F 2 are each a perfluoroalkyl group having 1 to 4 carbon atoms, X is —OH, alkoxy or halogen).
  • a compound comprising: When R F 2 is a C 1 perfluoroalkyl group, the R F 1 is a C 3 perfluoroalkyl group (straight and branched); When R F 2 is a C 3 perfluoroalkyl group (straight chain), the R F 1 is a C 1 perfluoroalkyl group, a C 3 perfluoroalkyl group (straight and branched), or a carbon number 4 perfluoroalkyl groups (straight and branched), When R F 2 is a C 4 perfluoroalkyl group (straight chain), the R F 1 is a C 1 perfluoroalkyl group or a C 3 perfluoroalkyl group (straight and branched).
  • R F 1 OR F 2 SO 3 M (wherein R F 1 and R F 2 are each a perfluoroalkyl group having 1 to 4 carbon atoms, M is Li, Na, K or NH 4 )
  • R F 1 and R F 2 are each a perfluoroalkyl group having 1 to 4 carbon atoms, M is Li, Na, K or NH 4
  • R F 2 is a C 1 perfluoroalkyl group
  • the R F 1 is a C 3 perfluoroalkyl group (straight and branched)
  • R F 1 is a C 1 perfluoroalkyl group, a C 3 perfluoroalkyl group (straight and branched), or a carbon number 4 perfluoroalkyl groups (straight and branched)
  • R F 2 is a C 4 perfluoroalkyl group (straight chain)
  • the R F 1 is a C 1 perfluoroalkyl group or a C 3 perfluoro
  • molecular design can be performed with a relatively low cost hydrocarbon compound, and a perfluoro compound can be obtained while maintaining its structure.
  • the yield is also good. For this reason, it is highly useful as a method for synthesizing various novel compounds as substitutes for conventional perfluoroalkylsulfonic acids and derivatives thereof.
  • a surfactant containing a novel compound can be provided.
  • Example 2 is a chemical formula showing the synthesis steps of Example 1 and Example 2. Chemical formulas showing the synthesis steps of Example 3 and Example 4. Chemical formulas showing synthesis steps of Examples 5 to 7.
  • hydrofluoric acid is sulfonyl fluoride R H 2 OR H 1 SO 2 F (wherein R H 1 and R H 2 are each a hydrocarbon group having 1 to 4 carbon atoms. )
  • R H 1 and R H 2 are each a hydrocarbon group having 1 to 4 carbon atoms.
  • F supplying F 2 gas into a stable reaction solvent for the two gases are perfluorinated in a liquid phase thereto to supply the solution.
  • perfluorination a method of directly reacting with F 2 gas without using a solvent and a gas-solid reaction with CoF 3 are considered to be practically possible, but the control of the reaction is difficult and generally low yielding due to decomposition or the like. Perfluorination in the liquid phase is advantageous because of the rate problem.
  • hydrofluoric acid may be anhydrous hydrofluoric acid or may contain up to about 10% by weight of water. Hydrofluoric acid is preferably used in an amount of 0.5 to 10 times mol, particularly preferably 1 to 3 times mol of the raw material.
  • reaction solvent stable to F 2 gas
  • perfluoroalkanes perfluoroethers and perfluoropolyethers, and perfluorotrialkylamines that are available as industrial products or reagents
  • chlorofluorocarbons can be used, the influence on the environment is large and undesirable compared to the above solvents.
  • the amount of the reaction solvent is preferably 0.5 mol / L to 0.01 mol / L, more preferably 0.2 mol / L to 0.05 mol / L with respect to the raw material.
  • a compound capable of undergoing fluorination may be allowed to coexist for the purpose of adjusting the reaction.
  • a compound one having a double bond between carbon and carbon such as benzene and hexafluorobenzene can be used.
  • the amount thereof is preferably 1 to 50 mol% with respect to the raw material, and may be added to the raw material solution, or separately dissolved in a reaction solvent and supplied to the reaction solution. Moreover, you may irradiate with an ultraviolet-ray for the same objective.
  • F 2 gas may be diluted with an inert gas.
  • an inert gas nitrogen gas, helium gas, argon gas, or the like can be used. Among these, nitrogen gas is economically preferable.
  • the F 2 concentration in the gas may be determined so that the reaction proceeds moderately, and may be changed according to the progress of the reaction.
  • the concentration of F 2 gas is preferably 1 to 50% by volume, more preferably 10 to 30% by volume.
  • the reaction temperature is preferably ⁇ 80 ° C. to the boiling point of the solvent or less, and ⁇ 30 to 30 ° C. is more preferable from the viewpoint of control.
  • a sulfonyl chloride R H 2 OR H 1 SO 2 Cl is added to hydrofluoric acid to convert it to R H 1 OR H 2 SO 2 F and a hydrogen bond complex is included.
  • the solution may be perfluorinated.
  • Sulfonyl chloride R H 2 OR H 1 SO 2 Cl is converted to sulfonyl fluoride R H 1 OR H 2 SO 2 F by releasing HCl in the reaction with hydrofluoric acid, and as it is, F 2 Fluorination can be performed safely by supplying the gas to a liquid phase reaction system.
  • a column filled with pellet-shaped NaF may be attached to the exhaust gas line of the reactor and adsorbed, and a condenser may be provided downstream to return the reaction liquid to the reactor. More preferably, the reaction is carried out by adding NaF or KF to the liquid phase fluorination reaction solution and suspending it in advance. The yield can be improved by adding and suspending NaF or the like. NaF or the like can be used in any form of powder, pellets, and crystals.
  • the amount of NaF or the like added is preferably 0.5 to 10 times mol, particularly preferably 1 to 3 times mol, relative to hydrofluoric acid by-produced in the reaction and hydrofluoric acid added to the raw material solution. If the addition amount is small, the progress of the reaction is hindered, and a separate process for removing excess hydrofluoric acid is required. If the amount added is too large, it is not economical and the load on equipment or equipment such as filtration increases.
  • a base an organic base such as an alkali metal carbonate or triethylamine
  • R 3 OH an alcohol
  • R F 2 OR F 1 SO 2 F fluorination reaction product
  • MOH alkali metal
  • R F 2 OR F 1 SO 3 M is obtained.
  • R F 2 OR F 1 SO 3 H by further treatment with a mineral acid (H 2 SO 4 , HCl, etc.).
  • perfluorination may be performed by electrolytic fluorination of sulfonyl fluoride R H 2 OR H 1 SO 2 F in anhydrous hydrofluoric acid.
  • the sulfonyl fluoride as an electrolytic raw material can be easily produced by fluorine substitution by adding potassium fluoride (KF) or the like to the sulfonyl chloride R H 2 OR H 1 SO 2 Cl.
  • the electrolytic fluorination uses sulfonyl fluoride R H 2 OR H 1 SO 2 F as a raw material, which is charged into an electrolytic cell together with hydrofluoric acid, and electrolyzed in a nitrogen gas atmosphere under normal pressure. To do. Thereby, the hydrocarbon groups R H 1 and R H 2 of the sulfonyl fluoride are fluorine-substituted, and a fluorination reaction product (R F 2 OR F 1 SO 2 F) is generated.
  • perfluorosulfonic acid having an ether structure and its derivative R F 1 OR F 2 SO 2 X (wherein R F 1 and R F 2 are the above-mentioned R H 1 and R H 2).
  • R F 1 and R F 2 are the above-mentioned R H 1 and R H 2).
  • 2 represents a group in which a hydrogen atom in 2 groups is substituted with a fluorine atom, and X represents —OH, alkoxy or halogen.
  • R F 1 OR F 2 SO 2 X produced by the production method of the present invention (wherein R F 1 and R F 2 represent a hydrogen atom in the R H 1 and R H 2 groups as a fluorine atom). Represents a substituted group, X represents —OH, alkoxy or halogen, and is hydrolyzed with an aqueous alkaline solution to give a general formula R F 1 OR F 2 SO 3 M (wherein R F 1 and R F 2 are each a perfluoroalkyl group having 1 to 4 carbon atoms, and M is a compound (perfluorosulfonic acid salt) represented by Li, Na, K or NH 4 ).
  • R F 1 OR F 2 SO 2 X when R F 2 is a C 1 perfluoroalkyl group, R F 1 is a C 3 perfluoroalkyl group ( Linear and branched), and when R F 2 is a C 3 perfluoroalkyl group (straight chain), R F 1 is a C 1 perfluoroalkyl group or a C 3 perfluoroalkyl group (straight chain). And branched) or a perfluoroalkyl group having 4 carbon atoms (straight and branched), and when R F 2 is a perfluoroalkyl group having 4 carbon atoms (straight chain), R F 1 is a perfluoro having 1 carbon atom. It is preferably an alkyl group or a C 3 perfluoroalkyl group (straight and branched).
  • LiOH lithium hydroxide
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • NH 3 ammonia
  • R F 1 OR F 2 SO 3 M Represented by the general formula R F 1 OR F 2 SO 3 M (where R F 1 and R F 2 are each a perfluoroalkyl group having 1 to 4 carbon atoms, and M is Li, Na, K or NH 4 ).
  • An aqueous solution of perfluorosulfonate can be used as a surfactant for water.
  • the alkylsulfonic acid derivative having an ether structure which is a raw material compound of the perfluorosulfonic acid derivative having an ether structure according to the present invention described above, can be produced by various methods.
  • the present invention provides the following production method.
  • examples of the chlorinating agent include SOCl 2 .
  • the first production method is as follows. Alkoxides obtained by the reaction of CH 3 OM, C 2 H 5 OM, or linear and branched alcohols having 3 to 4 carbon atoms with metal M, MH, CH 3 OM (M is Na, K or Li) And X 1 -R H 1 -SO 2 -X 2 (X 1 is Cl or Br, R H 1 is a C1-C4 linear alkyl group, X 2 is ONa, OK, Cl, or Br). R 2 —O—R H 1 —SO 2 —X 2 (R 2 —O— is an alkoxy corresponding to the above alkoxide) is synthesized, and a chlorinating agent is allowed to act to produce R H 2 —O—R H 1 —.
  • Hydrocarbon sulfonyl fluoride (alkoxyalkylsulfonyl fluoride) having an ether structure comprising a step of converting to SO 2 —Cl and further converting to R H 2 —O—R H 1 —SO 2 —F in an aqueous solution containing KF How to manufacture.
  • the second production method is as follows. CH 3 OH, C 2 H 5 OH, or a linear and branched alcohol having 3 to 4 carbon atoms is directly reacted with 1,3-propane sultone or 1,4-butane sultone, and R 2 —O—R H 1 —SO 2 —OH (R 2 —O— is alkoxy corresponding to the above alkoxide, R H 1 is linear alkylene derived from the sultone), and then a chlorinating agent is allowed to act to produce R H 2 —O—.
  • Hydrocarbon sulfonyl fluoride having an ether structure including a step of converting to R H 1 —SO 2 —Cl and further converting to R H 2 —O—R H 1 —SO 2 —F in a KF-organic solvent-water system ( A method for producing an alkoxyalkylsulfonyl fluoride).
  • An acid catalyst such as CF 3 SO 3 H may be added during the reaction between the alcohol and sultone.
  • the third production method is as follows. Alkoxides obtained by the reaction of CH 3 OM, C 2 H 5 OM, or linear and branched alcohols having 3 to 4 carbon atoms with metal M, MH, CH 3 OM (M is Na, K or Li) And 1,3-propane sultone or 1,4-butane sultone are directly reacted to form R 2 —O—R H 1 —SO 2 —OM (R 2 —O— is alkoxy corresponding to the above alkoxide, R H 1 is The above-mentioned sultone-derived linear alkylene) is synthesized, and a chlorinating agent is allowed to act to give R H 2 —O—R H 1 —SO 2 —Cl, and further R H 2 —O—R H in an aqueous solution containing KF
  • R H 2 OR H 1 SO 2 X produced by the above method include the following compounds.
  • X is the same as described above, for example, halogen.
  • Halogen includes F or Cl.
  • Example 1-1-1 [Production of CH 3 O (CH 2 ) 3 SO 2 F] [Synthesis Example by First Production Method of Alkylsulfonic Acid Derivative Having Ether Structure (Raw Compound of Perfluorosulfonic Acid Derivative Having Ether Structure According to the Present Invention)] A 200 ml glass four-necked flask equipped with a reflux condenser, a thermometer and a stirrer was charged with 11.25 g (50 mmol) of 3-bromopropanesulfonic acid sodium salt and 50 ml of methanol, and heated in an oil bath to reflux.
  • Example 1-1-2 [Production of CH 3 O (CH 2 ) 3 SO 2 F] [Synthesis example by second production method of alkylsulfonic acid derivative having ether structure (raw compound of perfluorosulfonic acid derivative having ether structure according to the present invention)]
  • 25.6 g (0.8 mol) of methanol and 24.4 g (0.2 mol) of 1,3-propane sultone were charged and reacted for 3 days under reflux.
  • the reaction product was transferred to an eggplant type flask and concentrated with a rotary evaporator to obtain a viscous liquid.
  • DMF N, N-dimethylformamide
  • a bifurcated connecting tube and a reflux condenser were attached, and 95.2 g (0.8 mol) of thionyl chloride was added dropwise at room temperature. The mixture was heated and reacted at reflux for 17 hours. After concentrating the reaction solution under reduced pressure, a solution prepared by dissolving 150 g of chloroform and 17.4 g (0.3 mol) of potassium fluoride in 80 g of water was added and stirred at room temperature for 24 hours. The reaction solution was separated, and the chloroform layer was washed three times with water, dried over anhydrous magnesium sulfate, concentrated with a rotary evaporator, and then distilled under reduced pressure using a packed column to obtain the desired product. The yield was 13.41 g, the GC purity was 98.5%, and the yield was 78%.
  • Example 1-2-1 [Production of CF 3 O (CF 2 ) 3 SO 2 F and CF 3 O (CF 2 ) 3 SO 2 OCH 2 CF 3 ]
  • 0.44 g (22 mmol) of anhydrous hydrofluoric acid was placed and stirred.
  • the raw material compound CH 3 O (CH 2 ) 3 SO 2 F 1.56 g (10 mmol) produced in 1-1 was slowly added dropwise.
  • 0.08 g (1 mmol) of benzene was further added and stirred, and then transferred to a plastic syringe (raw material solution; total amount 1.75 ml).
  • a 180 ml capacity equipped with a 0 ° C and -78 ° C two-stage condenser, a fluororesin-coated stirrer, and an external temperature controller, with a NaF pellet filling pipe and a reaction liquid return pipe installed between the gas inlet / outlet and raw material inlet
  • the reaction vessel was charged with 100 ml of perfluorohexane, and N 2 gas was blown into the solution at 3 L / Hr for 0.5 hour. After that, N 2 gas was blown into the liquid for 0.5 hour instead of 2.77 L / Hr of F 2 N 2 mixed gas (F 2 20% -N 2 80%).
  • the raw material solution was supplied to the reaction vessel while maintaining the flow rate of the F 2 N 2 mixed gas over 8 hours, and then the gas was blown for another 0.5 hours.
  • the temperature of the reaction solution was adjusted to 18-22 ° C.
  • 0.56 g (3 mmol) of hexafluorobenzene was dissolved in perfluorohexane to a total volume of 10 ml, and supplied to the reaction vessel over 2 hours while blowing the flow rate of the F 2 N 2 mixed gas as 1 L / Hr, Gas was blown for another 0.5 hours.
  • the F 2 N 2 mixed gas was changed to N 2 gas, and the reactor was purged by blowing it into the liquid at 3 L / Hr for 1 hour.
  • Example 1-2-2 [Production of CF 3 O (CF 2 ) 3 SO 2 F and CF 3 O (CF 2 ) 3 SO 2 OCH 2 CF 3 ]
  • Example 1-2-1 the condenser was changed to -78 ° C., the reaction liquid return pipe was removed, the reaction vessel was changed to 300 ml capacity, 200 ml of perfluorohexane, 14 g of powdered sodium fluoride (0133 mol) ) And N 2 gas was blown into the liquid at 3 L / Hr for 1 hour. N 2 gas was blown into the liquid for 0.5 hours instead of 3.03 L / Hr of F 2 N 2 composite gas (F 2 30% -N 2 70%). The raw material solution was supplied to the reaction vessel while maintaining the flow rate of the F 2 N 2 mixed gas over 8 hours, and then the gas was blown for another 0.5 hours.
  • the temperature of the reaction solution was adjusted to 14-16 ° C.
  • 0.93 g (5 mmol) of hexafluorobenzene was dissolved in perfluorohexane to a total volume of 10 ml, and the F 2 N 2 composite gas was supplied at a flow rate of 1.13 L / Hr over 2 hours while being blown, and then further 0.5 Gas was blown for hours.
  • the F 2 N 2 composite gas was replaced with N 2 gas, and the reactor was purged by blowing it into the liquid at 3 L / Hr for 1 hour.
  • the temperature of the reaction solution was adjusted to 14-16 ° C. GC-MS analysis of the reaction solution was performed and it was confirmed that CF 3 O (CF 2 ) 3 SO 2 F was generated.
  • Example 2-1 [Production of C 2 H 5 O (CH 2 ) 3 SO 2 F]
  • the title compound containing an ethoxy group was prepared in substantially the same manner as in Example 1-1-2, except that the alcohol was changed from methanol to ethanol. That is, 18.4 g (0.4 mol) of ethanol and 24.4 g (0.2 mol) of 1,3-propane sultone were charged in the same apparatus as in Example 1-1-1, and reacted for 4 days under reflux.
  • the reaction product was transferred to an eggplant type flask and concentrated with a rotary evaporator to obtain a viscous liquid.
  • Example 2-2 [Production of C 2 F 5 O (CF 2 ) 3 SO 2 F and C 2 F 5 O (CF 2 ) 3 SO 2 OCH 2 CF 3 ]
  • the raw material C 2 H 5 O (CH 2 ) 3 SO 2 F was changed to 3.4 g (20 mmol), and the same preparation as in Example 1-2-1 was performed (raw material solution; total amount 3.6 ml).
  • the apparatus configuration was the same as in Example 1-2-2, and powdered sodium fluoride 14.62 g (0.35 mol) and the flow rate of F 2 N 2 composite gas (F 2 30% -N 2 70%) were 3
  • the reaction was conducted in the same manner as in Example 1-2-2 except that the temperature of the reaction solution was 14 to 17 ° C., the temperature of the reaction solution was 12 to 16 ° C. when hexafluorobenzene was introduced, and the yield was 45%.
  • the desired product was obtained. Boiling point 62-63 ° C / 2.80 kPa.
  • Example 3-1 [Production of nC 3 H 7 O (CH 2 ) 3 SO 2 F]
  • the alcohol is 24 g (0.4 mol) of n-propyl alcohol, 100 g of chloroform, 0.6 g of N, N-dimethylformamide (DMF), 47.6 g (0.4 mol) of thionyl chloride, the reaction time is 5 hours, and chloroform
  • the reaction was carried out in the same manner as in Example 1-1-2, except that acetonitrile was 40 ml, water was 40 g, and the reaction time was 3 days. Yield 15. 63 g, GC purity 99. l3%, yield 84%. Boiling point 97-98 ° C / 2.0kPa.
  • Example 3-2 [Production of nC 3 F 7 O (CF 2 ) 3 SO 2 F and nC 3 F 7 O (CF 2 ) 3 SO 2 OCH 2 CF 3 ]
  • the apparatus configuration was the same as in Example 1-2-2, 18 g (0.43 mol) of powdered sodium fluoride, and the flow rate of F 2 N 2 composite gas (F 2 30% -N 2 70%) was 5.13 L.
  • Example 1-2-2 similar to Example 1-2-2 except that the temperature of the reaction liquid was 16-17 ° C. and the temperature of the reaction liquid at the time of introduction of hexafluorobenzene was 15-16 ° C. I got a thing. Boiling point 73-75 ° C./2.80 kPa.
  • Example 4-1 [Production of CH 3 O (CH 2 ) 4 SO 2 F] 33.6 g (1.05 mol) of methanol, 35.6 g (0.26 mol) of 1,4-butane sultone, 5 drops of CF 3 SO 3 H (acid catalyst), refluxing reaction for 10 days.
  • the reaction time was 1 day, and the same reaction operation as in Example 1-1-2 was performed. Yield 32.5 g, GC purity 99.1%, yield 72%.
  • Example 4-2 [Production of CF 3 O (CF 2 ) 4 SO 2 F and CF 3 O (CF 2 ) 4 SO 2 OCH 2 CF 3 ]
  • the raw material CH 3 O (CH 2 ) 4 SO 2 F was changed to 3.4 g (20 mmol) and benzene was changed to 0.93 g (5 mmol) of hexafluorobenzene, and the same preparation as in Example 1-2-1 was performed ( Raw material liquid; total amount 3.9 ml).
  • the apparatus configuration was the same as that of Example 1-2-2, and the flow rate of powdered sodium fluoride 15.7 g (0.37 mol) and F 2 N 2 composite gas (F 2 30% -N 2 70%) was 4 Example 1-2-2 except that 39 L / Hr, the feed time of the raw material liquid was 6 Hr, the temperature of the reaction liquid was 14 to 18 ° C., and the temperature of the reaction liquid when introducing hexafluorobenzene was 14 to 16 ° C. In the same manner, the target product was obtained with a yield of 40%. Boiling point 67-69 ° C./2.80 kPa.
  • Example 5 [Production of C 3 F 7 O (CF 2 ) 3 SO 2 F]
  • the electrolytic cell was made of SUS316L with an effective volume of 480 ml, and the condenser was made of SUS316L and was cooled to ⁇ 21 ° C. with a refrigerant.
  • the electrodes were made of nickel plate having an effective area of 0.75 dm 2 / sheet, and were alternately arranged at intervals of 2 mm.
  • Example 6 [Production of C 4 F 9 O (CF 2 ) 3 SO 2 F]
  • the electrolytic fluorination was performed in the same manner except that the conditions of Example 5 were changed to 6 anodes, 7 cathodes, and 6.75 Ahr energization.
  • the total amount of raw materials charged was 272.71 g
  • the total energization amount was 1134 Ahr
  • the voltage (when stable) was 5.2 to 5.4 V
  • the temperature inside the electrolytic cell was 4 to 6 ° C.
  • the perfluorinated product was extracted in the same manner as in Example 5, and the total amount was 138.9 g.
  • C 4 F 9 O (CF 2 ) 3 SO 2 F was contained as an n / i-isomer mixture in an amount of 81.76%, and the yield was 17.6%.
  • Example 7 [Production of C 3 F 7 O (CF 2 ) 3 SO 3 K and C 4 F 9 O (CF 2 ) 3 SO 3 K]
  • C 3 F 7 O (CF 2 ) 3 SO 2 F was treated in a 20% -KOH aqueous solution at 80 ° C. for 24 hours.
  • the reaction solution was allowed to cool and further cooled with ice water to sufficiently precipitate crystals, and then collected by filtration.
  • recrystallization with water was performed, and the resulting crystals were sufficiently dried and then dissolved in acetone.
  • the solution filtered through a 0.2 ⁇ m filter was concentrated and dried on a rotary evaporator, and dried under reduced pressure at room temperature for 24 hours. did.
  • Example 8 [Measurement of surface tension] C 3 F 7 O (CF 2 ) 3 SO 3 K , and C 4 F 9 O (CF 2 ) 3 SO 3 K and, C 2 F 5 O (CF 2) for comparison 3 SO 3 K, and C 4 F 9
  • the surface tension in ion exchange water of SO 3 K was measured.
  • the surface tension was measured by using a Wilhelmi method automatic surface tension meter CBVP-Z (manufactured by Kyowa Interface Science Co., Ltd.) as the instrument, and the measurement temperature was 23 ° C. Table 1 shows the results.
  • C 3 F 7 O ( CF 2) 3 SO 3 K , and C 4 F 9 O (CF 2 ) 3 SO 3 K is, C 2 F 5 O (CF 2) 3 SO 3 K and It was revealed that the ability to decrease the surface tension was higher than that of C 4 F 9 SO 3 K.
  • molecular design can be performed with a relatively low cost hydrocarbon compound, and a perfluoro compound can be obtained while maintaining its structure.
  • the yield is also good. For this reason, it is highly useful as a method for synthesizing various novel compounds as substitutes for conventional perfluoroalkylsulfonic acids and derivatives thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

 この方法では、フッ化水素酸にR OR SOFを加えて濃厚溶液(水素結合錯体)とし、そのまま、Fガスを用いる液相反応系に供給するか、R OR SOClをフッ化水素酸に加えて、HClを放出させることでR OR SOFに変換し、これをそのまま、Fガスを用いる液相反応系に供給する。これによって、安全にフッ素化を行うことができ、異性化等が起こらず、目的の構造の化合物を廉価に製造することができる。

Description

エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤
 本発明は、エーテル構造を有するペルフルオロスルホン酸(ペルフルオロアルコキシペルフルオロアルキルスルホン酸)及びその誘導体並びにその原料化合物の製造方法に関するものであり、さらに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤に関する。
 本願は、2009年9月29日に出願された日本国特許出願第2009-223975号に対し優先権を主張し、その内容をここに援用する。
 ペルフルオロスルホン酸及びその誘導体(RSOX;式中、Rは対応する炭化水素基の水素原子をフッ素原子で置換した基を表す。Xは-OH、ハロゲン原子などを表す)は、界面活性剤、酸発生剤、イオン液体、触媒等に用いられて来た。ペルフルオロスルホン酸中、特に炭素数8のペルフルオロオクタンスルホニル(C17SO-)構造を持つもの(PFOS)は化学的に安定であるが、それ故に難分解性及び生体への蓄積性が問題となり、規制が開始されている。また、米国では炭素数が6以上のペルフルオロスルホン酸についても同様に規制が図られている。このため、性能を保ちつつ、より環境への影響が少ない代替化合物が求められている。
 代替化合物の候補のひとつとして、上記のR基にエーテル構造を導入してR OR -構造とした化合物が考えられている。ここで、R およびR は、それぞれ対応する炭化水素基の水素原子をフッ素原子で置換した基を表す。これらの化合物の製造方法として、例えば、R OR SOXの製造法として、ペルフルオロビニルスルホニルフルオロライド(CF=CFSOF)とペルフルオロハイポフルオライド(ROF)を用いる方法が知られている(特許文献1:特開平6-128216)。しかし、ペルフルオロビニルスルホニルフルオロライド(CF=CFSOF)とペルフルオロハイポフルオライド(ROF)を用いる方法は、コストが高いフッ素化された原料を用いること、原料の沸点が低いため極低温での操作が必要であること、直鎖(n-体)/異性体(i-体)の選択を任意にできないこと、事実上エタンスルホニルの基本構造のみであること等の問題がある。
 その他の化合物についても、一般に、アルコキシドとハロゲン化アルキル(スルホン酸)からエーテルを合成する方法はWilliamson法として公知である。しかし、Williamson法でペルフルオロ化合物を製造する場合、従来はそれぞれペルフルオロ化された化合物を原料として用いており、特許文献1におけるのと同様の問題があった。
特開平6-128216号公報
 本発明は、従来の上記課題を解決したものであり、異性化等が起こらず、目的の構造の化合物を廉価に製造することが可能なエーテル構造を有するペルフルオロスルホン酸(ペルフルオロアルコキシペルフルオロアルキルスルホン酸)およびその誘導体並びにその原料化合物の製造方法を提供することを目的とする。
 また、上記誘導体を含む界面活性剤を提供することを目的とする。
 本発明者は、フッ素化された原料を用いてR OR -構造を有する化合物を生成するのではなく、所望の炭素骨格を有する炭化水素化合物を生成した後に、この化合物をフッ素化することにより、従来製造できなかったエタンスルホニル構造以外のエーテル構造を有するペルフルオロスルホン酸(ペルフルオロアルコキシペルフルオロアルキルスルホン酸)およびその誘導体を製造し得ることを見出した。
 また、本発明者は、フッ化水素酸にR OR SOFを加えて濃厚溶液(水素結合錯体)とし、これを、Fガスを用いる液相反応系に供給するか、R OR SOClをフッ化水素酸に加えて、HClを放出させることでR OR SOFに変換し、これを、Fガスを用いる液相反応系に供給することによって、安全にフッ素化を行うことができ、かつ異性化等が起こらず、目的の構造の化合物を廉価に製造し得ることを見出した。
 上記知見に基づき、本発明は、エーテル構造を有するペルフルオロスルホン酸(ペルフルオロアルコキシペルフルオロアルキルスルホン酸)、およびその誘導体(R OR SOX)について、異性化等の問題を伴わず、目的の構造の化合物を廉価に製造する製造方法を提供する。また、原料化合物であるR OR SOFおよびR OR SOClを製造する方法についても提供する。さらに、誘導体(R OR SOM)を含む界面活性剤についても提供する。
 本発明によれば、以下の構成を有する化合物の製造方法が提供される。
[1] 一般式R OR SOY(式中、R およびR はそれぞれ炭素数1~4の炭化水素基、Yはフッ素又は塩素)で示されるスルホニルハライドをペルフルオロ化してエーテル構造を有するペルフルオロスルホン酸およびその誘導体R OR SOX(式中、R およびR は上記R およびR 基中の水素原子をフッ素原子で置換した基、Xは-OH、アルコキシまたはハロゲン)を製造することを特徴とする含フッ素エーテルスルホン酸化合物の製造方法。
[2] 前記スルホニルハライドが、
 前記RH が炭素数1の炭化水素基の場合に、上記RH が炭素数3の炭化水素基(直鎖及び分岐状)であり、
前記RH が炭素数3の炭化水素基(直鎖)の場合に、上記RH が炭素数1の炭化水素基、炭素数3の炭化水素基(直鎖及び分岐状)又は炭素数4の炭化水素基(直鎖及び分岐状)であり、
 前記RH が炭素数4の炭化水素基(直鎖)の場合に、上記RH が炭素数1の炭化水素基又は炭素数3の炭化水素基(直鎖及び分岐状)であることを特徴とする前項[1]に記載の含フッ素エーテルスルホン酸化合物の製造方法。
[3] フッ化水素酸に前項[1]又は[2]に記載のスルホニルフルオライド(R OR SOF)を加えて水素結合錯体を含む溶液とし、これを反応溶媒中にFガスと共に供給し、液相中でペルフルオロ化してエーテル構造を有するペルフルオロスルホン酸およびその誘導体R OR SOX(式中、R およびR は上記R およびR 基中の水素原子をフッ素原子で置換した基、Xは-OH、アルコキシまたはハロゲン)を製造することを特徴とする前項[1]又は[2]に記載の含フッ素エーテルスルホン酸化合物の製造方法。
[4] 前項[1]又は[2]に記載のスルホニルクロライド(R OR SOCl)をフッ化水素酸に加えてスルホニルフルオライドに変換すると共に水素結合錯体を含む溶液とし、これを反応溶媒中にFガスと共に供給し、液相中でペルフルオロ化してエーテル構造を有するペルフルオロスルホン酸およびその誘導体R OR SOX(式中、R およびR は上記R およびR 基中の水素原子をフッ素原子で置換した基を表し、Xは-OH、アルコキシまたはハロゲンを表す)を製造することを特徴とする前項[1]又は[2]に記載の含フッ素エーテルスルホン酸化合物の製造方法。
[5] 前記ペルフルオロ化は、前項[1]又は[2]に記載のスルホニルフルオライド(R OR SOF)を無水フッ化水素酸中で電解フッ素化して行うことを特徴とする前項[1]又は[2]に記載の含フッ素エーテルスルホン酸化合物の製造方法。
[6] 液相フッ素化反応液にフッ化水素酸の吸着剤として、予めNaFまたはKFを加えて懸濁させて反応を行う前項[3]または前項[4]に記載するエーテル構造を有するペルフルオロスルホン酸およびその誘導体R OR SOXの製造方法。
[7] 反応液中のフッ素化反応生成物(R OR SOF)を塩基とアルコールROHを用いて、スルホン酸エステル(R OR SOOR)に転換し、蒸留による分離・精製を行う前項[1]~前項[6]の何れかに記載するエーテル構造を有するペルフルオロスルホン酸およびその誘導体R OR SOXの製造方法。
 また、本発明によれば、上記[1]~[7]の製造方法の原料化合物として有用な、以下の構成を有するエーテル構造を有する炭化水素スルホニルフルオライド(アルコキシアルキルスルホニルフルオライド)の製造方法が提供される。
[8] CHOM、COM、または炭素数3~4の直鎖及び分岐状アルコールと金属M、M-H、CHOM(MはNa、KまたはLi)との反応により得られるアルコキシドとX-R -SO-X(XはClまたはBr、R はC1~C4の直鎖アルキル基、XはONa、OK、Cl、またはBr)とを反応させてR-O-R -SO-X(R-O-は上記アルコキシドに相当するアルコキシ)を合成し、塩素化剤を作用させてR -O-R -SO-Clとし、更にKFを含む水溶液中でR -O-R -SO-Fに変換する工程を含むエーテル構造を有する炭化水素スルホニルフルオライド(アルコキシアルキルスルホニルフルオライド)の製造方法。
[9] CHOH、COH、または炭素数3~4の直鎖及び分岐状アルコールと1,3-プロパンスルトンまたは1,4-ブタンスルトンとを直接反応させ、R-O-R -SO-OH(R-O-は上記アルコキシドに相当するアルコキシ、R は上記スルトンに由来する直鎖アルキレン)を合成し、次いで塩素化剤を作用させてR -O-R -SO-Clとし、更にKF-有機溶媒-水の系でR -O-R -SO-Fに変換する工程を含むエーテル構造を持つ炭化水素スルホニルフルオライド(アルコキシアルキルスルホニルフルオライド)の製造方法。
[10] CHOM、COM、または炭素数3~4の直鎖及び分岐状アルコールと金属M、M-H、CHOM(MはNa、KまたはLi)との反応により得られるアルコキシドと1,3-プロパンスルトンまたは1,4-ブタンスルトンとを直接反応させてR-O-R -SO-OM(R-O-は上記アルコキシドに相当するアルコキシ、R は上記スルトンに由来する直鎖アルキレン)を合成し、塩素化剤を作用させてR -O-R -SO-Clとし、更にKF含む水溶液中でR -O-R -SO-Fに変換する工程を含むエーテル構造を有する炭化水素スルホニルフルオライド(アルコキシアルキルスルホニルフルオライド)の製造方法。
[11] 一般式R OR SOX(式中、R およびR は、それぞれ炭素数1~4のペルフルオロアルキル基、Xは-OH、アルコキシまたはハロゲン)で表される化合物であって、
 前記RF が炭素数1のペルフルオロアルキル基の場合に、上記RF が炭素数3のペルフルオロアルキル基(直鎖及び分岐状)であり、
 前記RF が炭素数3のペルフルオロアルキル基(直鎖)の場合に、上記RF が炭素数1のペルフルオロアルキル基、炭素数3のペルフルオロアルキル基(直鎖及び分岐状)又は炭素数4のペルフルオロアルキル基(直鎖及び分岐状)であり、
 前記RF が炭素数4のペルフルオロアルキル基(直鎖)の場合に、上記RF が炭素数1のペルフルオロアルキル基又は炭素数3のペルフルオロアルキル基(直鎖及び分岐状)であることを特徴とする含フッ素エーテルスルホン酸化合物。
[12] 一般式R OR SOM(式中、R およびR は、それぞれ炭素数1~4のペルフルオロアルキル基、MはLi,Na,K又はNH)で表される化合物であって、
 前記RF が炭素数1のペルフルオロアルキル基の場合に、上記RF が炭素数3のペルフルオロアルキル基(直鎖及び分岐状)であり、
 前記RF が炭素数3のペルフルオロアルキル基(直鎖)の場合に、上記RF が炭素数1のペルフルオロアルキル基、炭素数3のペルフルオロアルキル基(直鎖及び分岐状)又は炭素数4のペルフルオロアルキル基(直鎖及び分岐状)であり、
 前記RF が炭素数4のペルフルオロアルキル基(直鎖)の場合に、上記RF が炭素数1のペルフルオロアルキル基又は炭素数3のペルフルオロアルキル基(直鎖及び分岐状)である化合物を含むことを特徴とする界面活性剤。
 本発明によれば、比較的コストの低い炭化水素化合物で分子設計を行うことができ、その構造を保持したままペルフルオロ化合物を得ることができる。また、低コストであるばかりでなく、収率も良好である。このため、従来のペルフルオロアルキルスルホン酸及びその誘導体の代替化合物として多様な新規化合物を合成する方法として有用性が高い。
 また、本発明によれば、新規化合物を含む界面活性剤を提供することができる。
実施例1および実施例2の合成工程を示す化学式。 実施例3および実施例4の合成工程を示す化学式。 実施例5~7の合成工程を示す化学式。
 以下、本発明を具体的に説明する。
[ペルフルオロ化]
(第一の態様)
 本発明の基本的な態様においては、フッ化水素酸にスルホニルフルオライドR OR SOF(式中、R およびR は、それぞれ炭素数1~4の炭化水素基)を加えて水素結合錯体を含む溶液とする。Fガスに対して安定な反応溶媒中にFガスを供給し、これに上記溶液を供給して液相中でペルフルオロ化する。尚、ペルフルオロ化については、溶媒を用いないでFガスと直接反応する方法、CoFによる気固反応も事実上可能と考えられるが、反応の制御が困難であり、一般に分解等による低収率の問題があるので、液相中でのペルフルオロ化が有利である。
 ここで、フッ化水素酸は無水フッ化水素酸でもよいし、10重量%程度までの水を含んでいてもよい。フッ化水素酸は原料に対して0.5~10倍モルが好ましく1~3倍モルが特に好ましい。
 Fガスに対して安定な反応溶媒としては、工業製品又は試薬として入手可能なペルフルオロアルカン類、ペルフルオロエーテル及びペルフルオロポリエーテル類、ペルフルオロトリアルキルアミン類のそれぞれ単独、或いは混合物を用いることができる。クロロフルオロカーボン類の使用も可能であるが、上記溶媒類に比べて環境に対する影響が大きく好ましくない。反応溶媒の量は原料に対して0.5mol/L~0.01mol/Lが好ましく、0.2mol/L~0.05mol/Lがより好ましい。
 また、反応を調整する目的でフッ素化を受け得る化合物を共存させてもよい。このような化合物として、ベンゼン、ヘキサフルオロベンゼン等の炭素-炭素間に二重結合をもつものを用いることができる。その量は原料に対して1~50モル%が好ましく、原料溶液に添加してもよく、別に反応溶媒に溶解して反応液に供給してもよい。また、同様の目的で紫外線を照射しても良い。
 Fガスは不活性ガスで希釈して用いてもよい。このような不活性ガスとしては窒素ガス、ヘリウムガス、アルゴンガスなどを用いることができる。このなかで、窒素ガスが経済的に好ましい。ガス中のF濃度は、反応が適度に進行するように定めればよく、反応の進行に応じて変化させてもよい。Fガスの濃度は1~50容量%が好ましく、10~30容量%がより好ましい。反応温度は-80℃~溶媒の沸点以下が好ましく、-30~30℃が制御の観点からより好ましい。
(第二の態様)
 上記第一の態様に代わる第二の態様として、スルホニルクロライドR OR SOClをフッ化水素酸に加えてR OR SOFに変換すると共に水素結合錯体を含む溶液とし、ペルフルオロ化を行ってもよい。スルホニルクロライドR OR SOClは、フッ化水素酸との反応でHClを放出させることによってスルホニルフルロライドR OR SOFに変換し、また、そのまま、Fガスを用いる液相反応系に供給することによって安全にフッ素化を行うことができる。
 Fガスを用いる液相反応で副生するフッ化水素酸と原料溶液に加えたフッ化水素酸は速やかに除くことが好ましい。反応装置の排ガスラインにペレット状のNaFを充填したカラムを取り付けて吸着させ、その後流にコンデンサー設け反応液を反応器に戻しても良い。また、より好ましくは液相フッ素化反応液に予めNaFまたはKFを加えて懸濁させて反応を行う。NaF等を加えて懸濁させることにより収率を向上させることができる。NaF等は粉末状、ペレット状、結晶状の何れの形態でも用いることができる。NaF等の添加量は、反応で副生するフッ化水素酸と原料溶液に加えたフッ化水素酸に対して0.5~10倍モルが好ましく、1~3倍モルが特に好ましい。添加量が少ないと反応の進行が阻害され、又、別に過剰のフッ化水素酸を除去する工程が必要になる。添加量が多すぎると経済的では無く、濾過等の設備又は装置への負荷が大きくなる。
 このようにして得られた反応液中のフッ素化反応生成物(R OR SOF)は、さらに塩基(アルカリ金属の炭酸塩、又はトリエチルアミン等の有機塩基)とアルコールROHを用いて、スルホン酸エステル(R OR SOOR)に転換してもよい。このようなエステル化合物に転換することにより、蒸留による分離・精製が容易に行い得る。また、ペルフルオロスルホン酸エステル(R OR SOOR)にMOH(M=アルカリ金属)を作用させることによって、R OR SOMとして、または、更に鉱酸(HSO、HCl等)で処理することによって、R OR SOHとして単離してもよい。
 あるいは、反応液中のフッ素化反応生成物 (R OR SOF)の段階において、MOH(M=アルカリ金属)を作用させることによって、R OR SOMとして、または、更に鉱酸(HSO、HCl等)で処理することによって、R OR SOHとして単離してもよい。
(第三の態様)
 上記第一及び第二の態様に代わる第三の態様として、スルホニルフルオライドR OR SOFを無水フッ化水素酸中で電解フッ素化することで、ペルフルオロ化を行ってもよい。ここで、電解原料であるスルホニルフルオライドは、スルホニルクロライドR OR SOClにフッ化カリウム(KF)等を加えることによりフッ素置換して容易に製造することができる。
 電解フッ素化は、具体的には、原料としてスルホニルフルオライドR OR SOFを用い、これをフッ化水素酸と共に電解槽に装入し、常圧下、窒素ガス雰囲気中で電解する。これにより、スルホニルフルオライドの炭化水素基R 及びR がフッ素置換されて、フッ素化反応生成物(R OR SOF)が生成される。
 以上のように、本発明によれば、エーテル構造を有するペルフルオロスルホン酸およびその誘導体R OR SOX(式中、R およびR は、上記R およびR 基中の水素原子をフッ素原子で置換した基を表す。Xは-OH、アルコキシまたはハロゲンを表す)のいずれをも製造することができる。
 本発明の製造方法により製造される化合物の具体例としては、例えば、以下の化合物が挙げられる(化学式中のXは上記と同じ)。ここに挙げた化合物はいずれも新規物質と考えられる。
 CFO(CFSOX、n-CO(CFSOX、CFO(CFSOX、CFOCFSOX、n-COCFSOX、CFCF(CF)OCFSOX、n-COCFSOX、CCF(CF)OCFSOX、(CFCOCFSOX、n-CO(CFSOX、CFCF(CF)O(CFSOX、n-CO(CFSOX、CCF(CF)O(CFSOX、(CFCO(CFSOX、n-CO(CFSOX、CFCF(CF)O(CFSOX。
[界面活性剤]
 本発明の製造方法により生成された上記誘導体R OR SOX(式中、R およびR は、上記R およびR 基中の水素原子をフッ素原子で置換した基を表す。Xは-OH、アルコキシまたはハロゲンを表す)を、アルカリ水溶液で加水分解させることにより、ペルフルオロスルホン酸の誘導体である一般式R OR SOM(式中、R およびR は、それぞれ炭素数1~4のペルフルオロアルキル基、MはLi,Na,K又はNH)で表される化合物(ペルフルオロスルホン酸塩)が生成される。
 ここで、上記誘導体R OR SOXとしては、炭素の基本骨格が、RF が炭素数1のペルフルオロアルキル基の場合に、RF が炭素数3のペルフルオロアルキル基(直鎖及び分岐状)であり、RF が炭素数3のペルフルオロアルキル基(直鎖)の場合に、RF が炭素数1のペルフルオロアルキル基、炭素数3のペルフルオロアルキル基(直鎖及び分岐状)又は炭素数4のペルフルオロアルキル基(直鎖及び分岐状)であり、RF が炭素数4のペルフルオロアルキル基(直鎖)の場合に、RF が炭素数1のペルフルオロアルキル基又は炭素数3のペルフルオロアルキル基(直鎖及び分岐状)であることが好ましい。
 また、上記アルカリ水溶液としては、水酸化リチウム(LiOH)水溶液、水酸化ナトリウム(NaOH)水溶液、水酸化カリウム(KOH)水溶液、アンモニア(NH)水溶液等を用いることができる。
 一般式R OR SOM(式中、R およびR は、それぞれ炭素数1~4のペルフルオロアルキル基、MはLi,Na,K又はNH)で表されるペルフルオロスルホン酸塩の水溶液は、水に対する界面活性剤として用いることができる。
[原料化合物]
 上述した本発明によるエーテル構造を有するペルフルオロスルホン酸誘導体の原料化合物であるエーテル構造を有するアルキルスルホン酸誘導体は、種々の方法で製造され得るが、本発明は以下の製造方法を提供する。なお、以下の製造方法において、塩素化剤は例えばSOCl等が挙げられる。
 第一の製造方法は以下のとおりである。
 CHOM、COM、または炭素数3~4の直鎖及び分岐状アルコールと金属M、M-H、CHOM(MはNa、KまたはLi)との反応により得られるアルコキシドとX-R -SO-X(XはClまたはBr、R はC1~C4の直鎖アルキル基、XはONa、OK、Cl、またはBr)とを反応させてR-O-R -SO-X(R-O-は上記アルコキシドに相当するアルコキシ)を合成し、塩素化剤を作用させてR -O-R -SO-Clとし、更にKFを含む水溶液中でR -O-R -SO-Fに変換する工程を含むエーテル構造を有する炭化水素スルホニルフルオライド(アルコキシアルキルスルホニルフルオライド)を製造する方法。
 第二の製造方法は以下のとおりである。
 CHOH、COH、または炭素数3~4の直鎖及び分岐状アルコールと1,3-プロパンスルトンまたは1,4-ブタンスルトンとを直接反応させ、R-O-R -SO-OH(R-O-は上記アルコキシドに相当するアルコキシ、R は上記スルトンに由来する直鎖アルキレン)を合成し、次いで塩素化剤を作用させてR -O-R -SO-Clとし、更にKF-有機溶媒-水の系でR -O-R -SO-Fに変換する工程を含むエーテル構造を持つ炭化水素スルホニルフルオライド(アルコキシアルキルスルホニルフルオライド)を製造する方法。アルコールとスルトンとの反応時にはCFSOH等の酸触媒を添加してもよい。
 第三の製造方法は以下のとおりである。
 CHOM、COM、または炭素数3~4の直鎖及び分岐状アルコールと金属M、M-H、CHOM(MはNa、KまたはLi)との反応により得られるアルコキシドと1,3-プロパンスルトンまたは1,4-ブタンスルトンとを直接反応させてR-O-R -SO-OM(R-O-は上記アルコキシドに相当するアルコキシ、R は上記スルトンに由来する直鎖アルキレン)を合成し、塩素化剤を作用させてR -O-R -SO-Clとし、更にKF含む水溶液中でR -O-R -SO-Fに変換する工程を含むエーテル構造を有する炭化水素スルホニルフルオライド(アルコキシアルキルスルホニルフルオライド)を製造する方法。
 上記方法により製造されるR OR SOXの具体例としては、例えば、以下の化合物が挙げられる。以下の化学式において、Xは上記と同じであり、例えばハロゲンである。ハロゲンとしては、FまたはClが挙げられる。
 CHOCHSOX、n-COCHSOX、CHCH(CH)O CHSO X、n-COCHSOX、CCH(CH)OCHSOX、(CHCOCHSOX、n-CO(CHSOX、CHCH(CH)O(CHSOX、CCH(CH)O(CHSOX、(CHCO(CHSOX、CHCH(CH)O(CHSOX、CCH(CH)O(CHSOX、(CHCO(CHSOX、n-CO(CHSOX、CHCH(CH)O(CHSOX、CCH(CH)O(CHSOX、(CHCO(CHSOXなど。
 以下、実施例および参考例によって本発明を具体的に示す。なお、本発明はこれらの例に限定されない。以下の例において生成物の同定確認は特に断らない限り、GC-MS(EI  70eV)及びH-NMR(270MHz、TMS基準)/19F-NMR(254MHz、CClF基準)により行った。反応容器はTEFLON(登録商標)PFA製容器を用いた。
 実施例1-1-1[CHO(CHSOFの製造]
[エーテル構造を有するアルキルスルホン酸誘導体(本発明によるエーテル構造を有するペルフルオロスルホン酸誘導体の原料化合物)の第一製造方法による合成例]
 還流冷却器、温度計、攪拌機を備えた200mlガラス製4口フラスコに3-ブロモプロパンスルホン酸ナトリウム塩11.25g(50mmol)及びメタノール50mlを仕込み、オイルバスで加熱し還流状態とした。これに28%ナトリウムメチラート75g(75mmol)を1時間かけて滴下し、還流を保ちながら更に22時間反応させた。反応物を冷却後、液が透明になるまで水を加え、1:1-希塩酸で中和してナス型フラスコに移しロータリーエバポレーターで濃縮、乾固させた。乾固物にクロロホルム60g、触媒としてN,N-ジメチルホルムアミド(DMF)0.3gを加え、二叉連結管及び還流冷却器を取り付け、塩化チオニル23.8g(200mmol)を室温で滴下後、オイルバスで加熱し還流状態で17時間反応させた。反応液を減圧で濃縮した後、クロロホルム50g、フッ化カリウム4.35g(75mmol)を水30gに溶解させた溶液を加え室温で24時間撹拌した。反応液を分液し、クロロホルム層を水で3回洗浄し、無水硫酸マグネシウムで乾燥し、ロータリーエバポレーターで濃縮した後、充填カラムを用いて減圧蒸留し目的物を得た。収量4.81g、GC純度99%、収率61%。沸点87~89℃/2.67kPa。H-NMR(溶媒CDCl、ppm)2.18(m,2H)、3.35(s,3H)、3.51(m,4H)、19F-NMR(溶媒CDCl、ppm)52.73(t,1F)
 実施例1-1-2[CHO(CHSOFの製造]
[エーテル構造を有するアルキルスルホン酸誘導体(本発明によるエーテル構造を有するペルフルオロスルホン酸誘導体の原料化合物)の第二製造方法による合成例]
 実施例1-1-1と同様の装置にメタノール25.6g(0.8mol)、1,3-プロパンスルトン24.4g(0.2mol)を仕込み、還流状態で3日間反応させた。反応物をナス型フラスコに移しロータリーエバポレーターで濃縮して粘稠な液体を得た。これにクロロホルム150g、触媒としてN,N-ジメチルホルムアミド(DMF)1gを加え、二叉連結管および還流冷却器を取り付け、塩化チオニル95.2g(0.8mol)を室温で滴下後、オイルバスで加熱し還流状態で17時間反応させた。反応液を減圧で濃縮した後、クロロホルム150g、フッ化カリウム17.4g(0.3mol)を水80gに溶解させた溶液を加え室温で24時間撹拌した。反応液を分液し、クロロホルム層を水で3回洗浄し、無水硫酸マグネシウムで乾燥し、ロータリーエバポレーターで濃縮した後、充填カラムを用いて減圧蒸留し目的物を得た。収量13.41g、GC純度98.5%、収率78%であった。
 実施例1-2-1[CFO(CFSOF及びCFO(CFSOOCHCFの製造]
[a]CFO(CFSOFの製造
 氷浴中の7ml容量のフッ素樹脂PFA製容器に無水フッ化水素酸0.44g(22mmmol)を入れ、撹拌しながら実施例1-1-1で製造した原料化合物CHO(CHSOF1.56g(10mmol)をゆっくり滴下し加えた。得られた均一の液に更にベンゼン0.08g(1mmol)を加えて撹拌した後、プラスチック製のシリンジに移した(原料溶液;全量1.75ml)。
 一方、ガス出入り口、原料投入口、間にNaFペレット充填管および反応液返送配管を設置した0℃と-78℃の2段のコンデンサー、フッ素樹脂被覆撹拌子、外部温度調節器を備えた180ml容量の反応容器を用い、この反応容器にペルフルオロヘキサン100mlを仕込み、Nガスを3L/Hrで0.5時間液中に吹き込んだ。その後、NガスをF混合ガス(F20%-N80%)2.77L/Hrに代えて0.5時間液中に吹き込んだ。
 このF混合ガス流量を保ったままの反応容器に上記原料溶液を8時間かけて供給し、その後さらに0.5時間ガスを吹き込んだ。反応液の温度は18~22℃に調節した。次に、ヘキサフルオロベンゼン0.56g(3mmol)をペルフルオロヘキサンで全量10mlとして溶解し、上記F混合ガスの流量を1L/Hrとして吹き込みながら2時間かけて上記反応容器に供給し、その後さらに0.5時間ガスを吹き込んだ。次いで、上記F混合ガをNガスに換えて3L/Hrで1時間液中に吹き込み反応器をパージした。反応液の温度は21~22℃に調節した。反応液のGC-MS分析を行いCFO(CFSOFが生成していることを確認した。
 GC-MS質量数(相対強度)69(100)、67(20.5)、119(8.3)、100(4.6)、169(4.1)、50(1.5)、135(1.2)
[b]CFO(CFSOOCHCFの製造
 次いで、室温で、反応容器に炭酸カリウム2.76g(20mmol)を加え撹拌しながらCFCHOHを3g(30mmol)滴下し、その後4時間撹拌して、エステル化を行いCFO(CFSOOCHCFとした。反応液を、セライトを助剤として濾過し、水で洗浄し、無水硫酸マグネシウムで乾燥した。濃縮後、更に残液を減圧蒸留し59~61℃/4.0kPaの留分を分画し、収率39%で目的物を得た。
 H-NMR(溶媒CDCl、ppm)4.72(q,2H)、19F-NMR(溶媒CDCl、ppm)-124.44(s,2F)、-110.52(d,2F)、-85.38(q,2F)、-74.95(t,3F)、-55.52(t,3F)
 実施例1-2-2[CFO(CFSOF及びCFO(CFSOOCHCFの製造]
[a]CFO(CFSOFの製造
 無水フッ化水素酸を0.6g(30mmol)、原料化合物CHO(CHSOF3.12g(20mmol)、ベンゼンを0.16g(2mmol)とし実施例1-2-1と同様の調製を行った(原料液;全量3.2ml)。但し、実施例1-2-1の装置から、コンデンサーを-78℃の一段とし、反応液返送配管を除き、反応容器を300ml容量に変更し、ペルフルオロヘキサン200ml、粉末状フッ化ナトリウム14g(0l33mol)を仕込み、Nガスを3L/Hrで1時間液中に吹き込んだ。NガスをF複合ガス(F30%-N70%)3.03L/Hrに代えて0.5時間液中に吹き込んだ。
 このF混合ガス流量を保ったままの反応容器に上記原料溶液を8時間かけて供給し、その後さらに0.5時間ガスを吹き込んだ。反応液の温度は14~16℃に調節した。次いでヘキサフルオロベンゼン0.93g(5mmol)をペルフルオロヘキサンで全量10mlとして溶解し、上記F複合ガスの流量を1.13L/Hrとして吹き込みながら2時間かけて供給し、その後さらに0.5時間ガスを吹き込んだ。上記F複合ガスをNガスに換え3L/Hrで1時間液中に吹き込み反応器をパージした。反応液の温度は14~16℃に調節した。反応液のGC-MS分析を行いCFO(CFSOFが生成していることを確認した。
[b]CFO(CFSOOCHCFの製造
 次いで、反応液を加圧濾過し酸性フッ化ナトリウム(NaHF)を除いた後、室温で炭酸カリウム6.9g(50mmol)を加え撹拌しながらCFCHOHを4g(40mmol)滴下し、その後4時間撹拌し、エステル化を行った。反応液を、セライトを助剤として濾過し、水で洗浄し、無水硫酸マグネシウムで乾燥した。濃縮後、更に残液を減圧蒸留して、収率49%で目的物を得た。
 実施例2-1[CO(CHSOFの製造]
 アルコールをメタノールからエタノールに代えて、概略、実施例1-1-2と同様の操作を行ってエトキシ基を含む標記化合物の製造を行なった。すなわち、実施例1-1-1と同様の装置にエタノール18.4g(0.4mol)、1,3-プロパンスルトン24.4g(0.2mol)を仕込み、還流状態で4日間反応させた。反応物をナス型フラスコに移しロータリーエバポレーターで濃縮して粘稠な液体を得た。これにクロロホルム100g、触媒としてN,N-ジメチルホルムアミド(DMF)0.6gを加え、二叉連結管及び還流冷却器を取り付け、塩化チオニル47.6g(0.4mol)を室温で滴下後、オイルバスで加熱し還流状態で15.5時間反応させた。反応液を減圧で濃縮した後、クロロホルム100g、フッ化カリウム11.6g(0.2mol)を水50gに溶解させた溶液を加え室温で5日間撹拌した。反応液を分液し、クロロホルム層を水で3回洗浄し、無水硫酸マグネシウムで乾燥し、ロータリーエバポレーターで濃縮した後、充填カラムを用いて減圧蒸留し目的物を得た。収量15.42g、GC純度98.5%、収率89%。沸点92~95℃/2.67kPa。H-NMR(溶媒CDCl、ppm)1.19(t,3H)、2.18(m,2H)、3.52(m,6H)、19F-NMR(溶媒CDCl、ppm)52.75(m,1F)
 実施例2-2[CO(CFSOF及びCO(CFSOOCHCFの製造]
 原料CO(CHSOFを3.4g(20mmol)とし、実施例1-2-1と同様の調製を行った(原料液;全量3.6ml)。実施例1-2-2と同様の装置構成とし、粉末状フッ化ナトリウムを14.62g(0.35mol)、F複合ガス(F30%-N70%)の流量を3.59L/Hr、反応液の温度を14~17℃、ヘキサフルオロベンゼン導入時の反応液の温度を12~16℃として以外は実施例1-2-2と同様に行い、収率45%で目的物を得た。沸点62~63℃/2.80kPa。
O(CFSO
GC-MS 質量数(相対強度)119(100)、69(59.6)、67(54.8)、100(11.9)、31(10.9)、169(9.7)、50(3.2)、147(2.8)
O(CFSOOCHCF
H-NMR(溶媒CDCl、ppm)4.72(q,2H)、
19F-NMR(溶媒CDCl、ppm)-124.47(s,2F)、-110.65(t,2F)、-88.79(t,2F)、-87.29(s,3F)、-83.37(m,2F)、-74.97(q,3F)
 実施例3-1[n-CO(CHSOFの製造]
 アルコールをn-プロピルアルコール24g(0.4mol)、クロロホルム100g、N,N-ジメチルホルムアミド(DMF)を0.6g、塩化チオニルを47.6g(0.4mol)、反応時間を5Hr、また、クロロホルムをアセトニトリル40ml、水を40g、反応時間を3日間とし、実施例1-1-2と同様の反応操作を行った。収量15.l63g、GC純度99.l3%、収率84%。沸点97~98℃/2.0kPa。
H-NMR(溶媒CDCl、ppm)0.92(t,3H)、1.15(m,2H)、2.19(m,2H)、3.39(t,2H)、3.53(m,4H)、
19F-NMR(溶媒CDCl、ppm)52.72(m,1F)
 実施例3-2[n-CO(CFSOF及びn-CO(CFSOOCHCFの製造]
 原料n-CO(CHSOFを3.8g(20mmol)、ベンゼンをヘキサフルオロベンゼン0.93g(5mmol)に変更し、実施例1-2-1と同様の調製を行った(原料液;全量4.2ml)。実施例1-2-2と同様の装置構成とし、粉末状フッ化ナトリウムを18g(0.43mol)、F複合ガス(F30%-N70%)の流量を5.13L/Hr、反応液の温度を16~17℃、ヘキサフルオロベンゼン導入時の反応液の温度を15~16℃とした以外は実施例1-2-2と同様に行い、収率47%で目的物を得た。沸点73~75℃/2.80kPa。
n-CO(CFSOSO
GC-MS 質量数(相対強度)69(100)、67(78.6)、169(71.8)、100(17.5)、50(3.2)、233(0.5)、235(0.4)
n-CO(CFSOOCHCF
H-NMR(溶媒CDCl、ppm)4.71(q,2H)、
19F-NMR(溶媒CDCl、ppm)-130.42(s,2F)、-124.42(d,2F)、-110.69(s,2F)、-84.67(m,2F)、-83.24(m,2F)、-81.992(t,3F)、-75.04(t,3F)
 実施例4-1[CHO(CHSOFの製造]
 メタノールを33.6g(1.05mol)、1,4-ブタンスルトンを35.6g(0.26mol)、CFSOHを5滴(酸触媒)、10日間の還流反応。クロロホルム160g、N,N-ジメチルホルムアミド(DMF)を1g、塩化チオニルを119g(1mol)、反応時間を5Hr、クロロホルムをアセトニトリル228mlとし、フッ化カリウムを30.16g(0.52mol)、水を171g、反応時間を1日間とし、実施例1-1-2と同様の反応操作を行った。収量32.5g、GC純度99.1%、収率72%。沸点104~106℃/2.53kPa。
H-NMR(溶媒CDCl、ppm)1.75(m,2H)、2.04(m,2H)、3.33(s,3H)、3.45(m,4H)、
19F-NMR(溶媒CDCl、ppm)52.45(m,1F)
 実施例4-2[CFO(CFSOF及びCFO(CFSOOCHCFの製造]
 原料CHO(CHSOFを3.4g(20mmol)、ベンゼンをヘキサフルオロベンゼン0.93g(5mmol)に変更し、実施例1-2-1と同様の調製を行った(原料液;全量3.9ml)。実施例1-2-2と同様の装置構成とし、粉末状フッ化ナトリウムを15.7g(0.37mol)、F複合ガス(F30%-N70%)の流量を4.39L/Hr、原料液の供給時間を6Hr、反応液の温度を14~18℃、ヘキサフルオロベンゼン導入時の反応液の温度を14~16℃とした以外は実施例1-2-2と同様に行い、収率40%で目的物を得た。沸点67~69℃/2.80kPa。
CFO(CFSOSOSO
GC-MS 質量数(相対強度)69(100)、67(22.4)、169(7.7)、100(5.7)、119(1.9)、131(1.6)、135(1.4)
CFO(CFSOOCHCF
H-NMR(溶媒CDCl、ppm)4.72(q,2H)、
19F-NMR(溶媒CDCl、ppm)-125.70(m,2F)、-120.99(q,2F)、-110.24(t,2F)、-85.56(q,2F)、-74.99(t,3F)、-55.62(t,3F)
 実施例5[CO(CFSOFの製造]
 電解槽は、SUS316L製の有効容積480mlのものを用い、コンデンサーはSUS316L製を用いて、冷媒によって-21℃に冷却した。電極はニッケル板製の有効面積0.75dm/枚のものを使用し、間隔2mmで交互に配置した。
 無水フッ化水素酸480gにCO(CHSOFを4.8g溶解し、陽極8枚と陰極9枚の電極に9Ahrで通電すると共にCO(CHSOFを、ポンプを用いて連続的に供給して電解フッ素化を行った。原料の総投入量255.47g、総通電量1209Ahr、電圧(安定時)5~5.2V、電解槽内温度4~6℃であった。
 ペルフルオロ化生成物は、電解槽下部に設置したバルブから随時抜き出し、総量207.9gであった。ガスクロマトグラフ(キャピラリーカラム:DB-200)で分析した結果、CO(CFSOFはn/i-体混合物として80.36%含まれ、29.2%の収率であった。
 蒸留を行って蒸留塔の塔頂から109~110℃の留分を集め、ガスクロマトグラフで分析した結果、n-体88.83%、i-体10.06%、計98.89%であった。
 19F-NMR(溶媒CDCl3,ppm)-130.08(s,2F)、-124.10(s,2F)、-108.54(s,2F)、-84.33(m,2F)、-82.82(m,2F)、-81.62(t,3F)、46.32(m,1F)
 実施例6[CO(CFSOFの製造]
 上記実施例5の条件から、陽極6枚と陰極7枚、通電6.75Ahrに変えた他は同様にして電解フッ素化を行った。
 原料の総投入量272.71g、総通電量1134Ahr、電圧(安定時)5.2~5.4V、電解槽内温度4~6℃であった。
 ペルフルオロ化生成物は実施例5と同様に抜き出し、総量138.9gであった。ガスクロマトグラフで分析した結果、CO(CFSOFは、n/i-体混合物として81.76%含まれ、17.6%の収率であった。
 蒸留を行って蒸留塔の塔頂から130~131℃の留分を集め、ガスクロマトグラフで分析した結果、n-体84.89%、i-体12.94%、計97.83%であった。
 19F-NMR(溶媒CDCl3,ppm)-127.11(s,4F)、-126.88(d,2F)、-108.82(s,2F)、-83.58(m,2F)、-82.98(m,2F)、-81.68(t,3F)、46.03(m,1F)
 実施例7[CO(CFSOK及びCO(CFSOKの製造]
 先ず、CO(CFSOFを20%-KOH水溶液中で80℃、24時間処理した。次に、反応液を放冷し更に氷水で冷却して結晶を十分に析出させた後、濾取した。更に、水での再結晶を行い、得られた結晶を十分に乾燥した後アセトンに溶解し、0.2μmのフィルターで濾過した液をロータリーエバポレーターで濃縮・乾固し、室温で24時間減圧乾燥した。
 19F-NMR(溶媒DMSO-d6,ppm)-129.32(s,2F)、-123.77(s,2F)、-114.59(s,2F)、-83.81(s,2F)、-82.44(m,2F)、-81.55(t,3F)。
 熱分析(TG-DTA)結果:397.0℃(分解開始温度)。
 CO(CFSOFの場合も同様に行った。
 19F-NMR(溶媒DMSO-d6,ppm)-126.01(d,4F)、-123.79(s,2F)、-111.61(s,2F)、-82.87(s,2F)、-82.44(m,2F)、-80.47(t,3F)。
 熱分析(TG-DTA)結果:402.9℃(分解開始温度)。
 実施例8[表面張力の測定]
 CO(CFSOK及びCO(CFSOKと、比較対象としてCO(CFSOK及びCSOKのイオン交換水中での表面張力を測定した。
 表面張力の測定は、機器としてウィルヘルミ法自動表面張力計CBVP-Z型(協和界面科学株式会社製)を用い、測定温度を23℃とした。表1に結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、CO(CFSOK及びCO(CFSOKは、CO(CFSOK及びCSOKと比較して、表面張力の低下能が高いことが明らかとなった。
 本発明によれば、比較的コストの低い炭化水素化合物で分子設計を行うことができ、その構造を保持したままペルフルオロ化合物を得ることができる。また、低コストであるばかりでなく、収率も良好である。このため、従来のペルフルオロアルキルスルホン酸及びその誘導体の代替化合物として多様な新規化合物を合成する方法として有用性が高い。

Claims (12)

  1.  一般式R OR SOY(式中、R およびR はそれぞれ炭素数1~4の炭化水素基、Yはフッ素又は塩素)で示されるスルホニルハライドをペルフルオロ化してエーテル構造を有するペルフルオロスルホン酸およびその誘導体R OR SOX(式中、R およびR は上記R およびR 基中の水素原子をフッ素原子で置換した基、Xは-OH、アルコキシまたはハロゲン)を製造することを特徴とする含フッ素エーテルスルホン酸化合物の製造方法。
  2.  前記スルホニルハライドが、
     前記RH が炭素数1の炭化水素基の場合に、上記RH が炭素数3の炭化水素基(直鎖及び分岐状)であり、
     前記RH が炭素数3の炭化水素基(直鎖)の場合に、上記RH が炭素数1の炭化水素基、炭素数3の炭化水素基(直鎖及び分岐状)又は炭素数4の炭化水素基(直鎖及び分岐状)であり、
     前記RH が炭素数4の炭化水素基(直鎖)の場合に、上記RH が炭素数1の炭化水素基又は炭素数3の炭化水素基(直鎖及び分岐状)であることを特徴とする請求項1に記載の含フッ素エーテルスルホン酸化合物の製造方法。
  3.  前記スルホニルハライドはスルホニルフルオライド(R OR SOF)であり、このスルホニルフルオライドをフッ化水素酸に加えて水素結合錯体を含む溶液とし、これを反応溶媒中にFガスと共に供給し、液相中でペルフルオロ化してエーテル構造を有するペルフルオロスルホン酸およびその誘導体R OR SOX(式中、R およびR は上記R およびR 基中の水素原子をフッ素原子で置換した基、Xは-OH、アルコキシまたはハロゲン)を製造することを特徴とする請求項1又は2に記載の含フッ素エーテルスルホン酸化合物の製造方法。
  4.  前記スルホニルハライドはスルホニルクロライド(R OR SOCl)であり、このスルホニルクロライドをフッ化水素酸に加えてスルホニルフルオライドに変換すると共に水素結合錯体を含む溶液とし、これを反応溶媒中にFガスと共に供給し、液相中でペルフルオロ化してエーテル構造を有するペルフルオロスルホン酸およびその誘導体R OR SOX(式中、R およびR は上記R およびR 基中の水素原子をフッ素原子で置換した基を表し、Xは-OH、アルコキシまたはハロゲンを表す)を製造することを特徴とする請求項1又は2に記載の含フッ素エーテルスルホン酸化合物の製造方法。
  5.  前記スルホニルハライドはスルホニルフルオライド(R OR SOF)であり、前記ペルフルオロ化は、前記スルホニルフルオライドを無水フッ化水素酸中で電解フッ素化して行うことを特徴とする請求項1又は2に記載の含フッ素エーテルスルホン酸化合物の製造方法。
  6.  液相フッ素化反応液にフッ化水素酸の吸着剤として、予めNaFまたはKFを加えて懸濁させて反応を行う請求項3または請求項4に記載するエーテル構造を有するペルフルオロスルホン酸およびその誘導体R OR SOXの製造方法。
  7.  反応液中のフッ素化反応生成物(R OR SOF)を塩基とアルコールROHを用いて、スルホン酸エステル(R OR SOOR)に転換し、蒸留による分離・精製を行う請求項1~請求項6の何れかに記載するエーテル構造を有するペルフルオロスルホン酸およびその誘導体R OR SOXの製造方法。
  8.  CHOM、COM、または炭素数3~4の直鎖及び分岐状アルコールと金属M、M-H、CHOM(MはNa、KまたはLi)との反応により得られるアルコキシドとX-R -SO-X(XはClまたはBr、R はC1~C4の直鎖アルキル基、XはONa、OK、Cl、またはBr)とを反応させてR-O-R -SO-X(R-O-は上記アルコキシドに相当するアルコキシ)を合成し、塩素化剤を作用させてR -O-R -SO-Clとし、更にKFを含む水溶液中でR -O-R -SO-Fに変換する工程を含むエーテル構造を有する炭化水素スルホニルフルオライド(アルコキシアルキルスルホニルフルオライド)の製造方法。
  9.  CHOH、COH、または炭素数3~4の直鎖及び分岐状アルコールと1,3-プロパンスルトンまたは1,4-ブタンスルトンとを直接反応させ、R-O-R -SO-OH(R-O-は上記アルコキシドに相当するアルコキシ、R は上記スルトンに由来する直鎖アルキレン)を合成し、次いで塩素化剤を作用させてR -O-R -SO-Clとし、更にKF-有機溶媒-水の系でR -O-R -SO-Fに変換する工程を含むエーテル構造を持つ炭化水素スルホニルフルオライド(アルコキシアルキルスルホニルフルオライド)の製造方法。
  10.  CHOM、COM、または炭素数3~4の直鎖及び分岐状アルコールと金属M、M-H、CHOM(MはNa、KまたはLi)との反応により得られるアルコキシドと1,3-プロパンスルトンまたは1,4-ブタンスルトンとを直接反応させてR-O-R -SO-OM(R-O-は上記アルコキシドに相当するアルコキシ、R は上記スルトンに由来する直鎖アルキレン)を合成し、塩素化剤を作用させてR -O-R -SO-Clとし、更にKF含む水溶液中でR -O-R -SO-Fに変換する工程を含むエーテル構造を有する炭化水素スルホニルフルオライド(アルコキシアルキルスルホニルフルオライド)の製造方法。
  11.  一般式R OR SOX(式中、R およびR は、それぞれ炭素数1~4のペルフルオロアルキル基、Xは-OH、アルコキシまたはハロゲン)で表される化合物であって、
     前記RF が炭素数1のペルフルオロアルキル基の場合に、上記RF が炭素数3のペルフルオロアルキル基(直鎖及び分岐状)であり、
     前記RF が炭素数3のペルフルオロアルキル基(直鎖)の場合に、上記RF が炭素数1のペルフルオロアルキル基、炭素数3のペルフルオロアルキル基(直鎖及び分岐状)又は炭素数4のペルフルオロアルキル基(直鎖及び分岐状)であり、
     前記RF が炭素数4のペルフルオロアルキル基(直鎖)の場合に、上記RF が炭素数1のペルフルオロアルキル基又は炭素数3のペルフルオロアルキル基(直鎖及び分岐状)であることを特徴とする含フッ素エーテルスルホン酸化合物。
  12.  一般式R OR SOM(式中、R およびR は、それぞれ炭素数1~4のペルフルオロアルキル基、MはLi,Na,K又はNH)で表される化合物であって、
     前記RF が炭素数1のペルフルオロアルキル基の場合に、上記RF が炭素数3のペルフルオロアルキル基(直鎖及び分岐状)であり、
     前記RF が炭素数3のペルフルオロアルキル基(直鎖)の場合に、上記RF が炭素数1のペルフルオロアルキル基、炭素数3のペルフルオロアルキル基(直鎖及び分岐状)又は炭素数4のペルフルオロアルキル基(直鎖及び分岐状)であり、
     前記RF が炭素数4のペルフルオロアルキル基(直鎖)の場合に、上記RF が炭素数1のペルフルオロアルキル基又は炭素数3のペルフルオロアルキル基(直鎖及び分岐状)である化合物を含むことを特徴とする界面活性剤。
PCT/JP2010/067002 2008-10-15 2010-09-29 エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤 WO2011040497A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10820612A EP2484662A4 (en) 2009-09-29 2010-09-29 METHOD FOR MANUFACTURING PERFLUOROSULPHONIC ACID HAVING ETHER STRUCTURE AND DERIVATIVE THEREOF, AND SURFACTANT AGENT CONTAINING FLUORINE-CONTAINING ETHER SULFONIC ACID COMPOUND AND DERIVATIVE THEREOF
KR1020127007900A KR101431926B1 (ko) 2009-09-29 2010-09-29 에테르 구조를 갖는 퍼플루오로술폰산 및 그 유도체의 제조 방법, 그리고 함불소에테르술폰산 화합물 및 그 유도체를 함유하는 계면활성제
CN2010800443550A CN102686559A (zh) 2009-09-29 2010-09-29 具有醚结构的全氟磺酸及其衍生物的制备方法以及含有含氟醚磺酸化合物及其衍生物的表面活性剂
US13/498,710 US20120184763A1 (en) 2008-10-15 2010-09-29 Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
US14/451,024 US20140339096A1 (en) 2008-10-15 2014-08-04 Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009223975A JP5558067B2 (ja) 2008-10-15 2009-09-29 エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤
JP2009-223975 2009-09-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/498,710 A-371-Of-International US20120184763A1 (en) 2008-10-15 2010-09-29 Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
US14/451,024 Division US20140339096A1 (en) 2008-10-15 2014-08-04 Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof

Publications (2)

Publication Number Publication Date
WO2011040497A1 true WO2011040497A1 (ja) 2011-04-07
WO2011040497A9 WO2011040497A9 (ja) 2011-09-01

Family

ID=43827075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067002 WO2011040497A1 (ja) 2008-10-15 2010-09-29 エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤

Country Status (4)

Country Link
EP (1) EP2484662A4 (ja)
KR (1) KR101431926B1 (ja)
CN (1) CN102686559A (ja)
WO (1) WO2011040497A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249296A (ja) * 2012-06-04 2013-12-12 Mitsubishi Materials Corp アルカンジスルホニルジフロライドの製造方法
WO2019044476A1 (ja) * 2017-09-01 2019-03-07 三菱マテリアル電子化成株式会社 含フッ素ビススルホニルイミド化合物及び界面活性剤

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108976152B (zh) * 2018-09-10 2020-10-23 江汉大学 一种烷基醚类磺酰氟化合物及其合成方法
CN110041234A (zh) * 2019-04-28 2019-07-23 江汉大学 一种全氟醚类磺酰氟和磺酸盐化合物及其合成方法
CN110642269B (zh) * 2019-09-27 2022-02-08 浙江中硝康鹏化学有限公司 一种碱金属氟化盐和碱金属硫酸盐的联合制备方法
CN110590612B (zh) * 2019-10-31 2023-01-13 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 一种高纯度l-pfos的制备方法及高纯度l-pfos

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821290A (en) * 1971-03-01 1974-06-28 Allied Chem Polyfluoroisoalkoxyalkyl sulfonic acids
JPS57109759A (en) * 1980-11-18 1982-07-08 Bayer Ag Novel perfluoro-sulfonic acid fluoride and manufacture
JPS58215495A (ja) * 1982-05-31 1983-12-14 モンテヂソン・エス・ピイ・エイ ポリテトラフルオルエチレンおよびパ−フルオルポリエ−テルを主体とする潤滑グリ−スの製造法
JPH06128216A (ja) 1990-07-12 1994-05-10 Ausimont Spa ペルフルオロアルコキシスルホン酸化合物の製造法
JP2006510807A (ja) * 2002-12-16 2006-03-30 スリーエム イノベイティブ プロパティズ カンパニー 銅配線および/またはフィルムを研磨および/または洗浄する方法およびそのための組成物
WO2006115018A1 (ja) * 2005-04-18 2006-11-02 Asahi Glass Company, Limited カップリング反応によるフルオロスルホニル基を有する化合物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209346A (ja) * 1989-11-22 1991-09-12 Minnesota Mining & Mfg Co <3M> フッ化脂肪族基置換エステル及びその製造方法
DK123796A (da) * 1996-11-05 1998-05-06 Haldor Topsoe As Fremgangsmåde til fremstilling af carbonhydrid produkt med et højt indhold af middeldistilleret produktfraktionering
CN1167102A (zh) * 1997-04-09 1997-12-10 中国科学院上海有机化学研究所 一种制备hfc-32的方法
CN1323286A (zh) * 1998-09-10 2001-11-21 埃克森化学专利公司 用离子液制备芳香醛的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821290A (en) * 1971-03-01 1974-06-28 Allied Chem Polyfluoroisoalkoxyalkyl sulfonic acids
JPS57109759A (en) * 1980-11-18 1982-07-08 Bayer Ag Novel perfluoro-sulfonic acid fluoride and manufacture
JPS58215495A (ja) * 1982-05-31 1983-12-14 モンテヂソン・エス・ピイ・エイ ポリテトラフルオルエチレンおよびパ−フルオルポリエ−テルを主体とする潤滑グリ−スの製造法
JPH06128216A (ja) 1990-07-12 1994-05-10 Ausimont Spa ペルフルオロアルコキシスルホン酸化合物の製造法
JP2006510807A (ja) * 2002-12-16 2006-03-30 スリーエム イノベイティブ プロパティズ カンパニー 銅配線および/またはフィルムを研磨および/または洗浄する方法およびそのための組成物
WO2006115018A1 (ja) * 2005-04-18 2006-11-02 Asahi Glass Company, Limited カップリング反応によるフルオロスルホニル基を有する化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2484662A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249296A (ja) * 2012-06-04 2013-12-12 Mitsubishi Materials Corp アルカンジスルホニルジフロライドの製造方法
WO2019044476A1 (ja) * 2017-09-01 2019-03-07 三菱マテリアル電子化成株式会社 含フッ素ビススルホニルイミド化合物及び界面活性剤
JPWO2019044476A1 (ja) * 2017-09-01 2020-08-13 三菱マテリアル電子化成株式会社 含フッ素ビススルホニルイミド化合物及び界面活性剤
JP7198207B2 (ja) 2017-09-01 2022-12-28 三菱マテリアル電子化成株式会社 界面活性剤

Also Published As

Publication number Publication date
KR20120046783A (ko) 2012-05-10
WO2011040497A9 (ja) 2011-09-01
EP2484662A1 (en) 2012-08-08
KR101431926B1 (ko) 2014-08-19
EP2484662A4 (en) 2013-02-20
CN102686559A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2011040497A1 (ja) エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤
JP5082520B2 (ja) 含フッ素ジオール化合物の製造方法
WO2009123328A1 (en) Sulfonylimide salt and method for producing the same
CN101842348A (zh) 三氟甲磺酰氟的制造方法
JP4946864B2 (ja) ジスルホニルフロリド化合物の製造方法
JP5790851B2 (ja) フッ化メタンの製造方法
JP2018514577A (ja) ビス(フルオロスルホニル)−イミドの製造方法
JPWO2010147105A1 (ja) 高純度含フッ素エーテルの製造方法
JP5558067B2 (ja) エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤
JP5234109B2 (ja) フルオロプロピレンカーボネートの製造法
JP4961656B2 (ja) ペルフルオロアシルフルオリド類の製造方法
JP2006232704A (ja) 新規なフルオロスルホニル基含有化合物
JP5506914B2 (ja) フルオロアルカンスルフィン酸エステルの製造方法
JP5075614B2 (ja) 含フッ素化合物及びその製造方法
EP1679298A1 (en) Fluorine-containing ether compound
JP2011037784A (ja) ペルフルオロアルキルスルホンアミドの製造方法
JP4231999B2 (ja) ω−ヨウ化含フッ素アルキルビニルエーテルの製造方法
EP1325906B1 (en) Alkyl esters of 2-(2-fluorosulphonyl)-perfluoroethylenoxy-3-halogen-propionic acid
EP3415491B1 (en) Method for producing phenoxyethanol derivative
WO2024106331A1 (ja) 含フッ素スルホニルクロライドの製造方法及び含フッ素スルホニルフルオライドの製造方法
JP6629529B2 (ja) 含フッ素エーテルの製造方法
JP2008208040A (ja) ペルフルオロトリアジン化合物
JP2004067545A (ja) 含フッ素アルキルヒドラジンおよびその中間体
WO2005073182A1 (ja) 含フッ素不飽和スルホニルフロライドの製造方法
JP2004018486A (ja) フッ素化モノマーの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044355.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127007900

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010820612

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13498710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE