JP4946864B2 - ジスルホニルフロリド化合物の製造方法 - Google Patents

ジスルホニルフロリド化合物の製造方法 Download PDF

Info

Publication number
JP4946864B2
JP4946864B2 JP2007511195A JP2007511195A JP4946864B2 JP 4946864 B2 JP4946864 B2 JP 4946864B2 JP 2007511195 A JP2007511195 A JP 2007511195A JP 2007511195 A JP2007511195 A JP 2007511195A JP 4946864 B2 JP4946864 B2 JP 4946864B2
Authority
JP
Japan
Prior art keywords
compound
formula
compound represented
atom
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007511195A
Other languages
English (en)
Other versions
JPWO2006106960A1 (ja
Inventor
真男 岩谷
一也 大春
秀一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007511195A priority Critical patent/JP4946864B2/ja
Publication of JPWO2006106960A1 publication Critical patent/JPWO2006106960A1/ja
Application granted granted Critical
Publication of JP4946864B2 publication Critical patent/JP4946864B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/22Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/42Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/79Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms
    • C07C309/80Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/29Coupling reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)

Description

本発明は、ジスルホニルフロリド化合物の効率的な製造方法に関する。
ジスルホニルフロリド化合物の製造方法としては、以下の方法が提案されている。
(1’)FSO(CHSOFの電解フッ素化反応によって、FSOCFCFCFSOFを得る方法(非特許文献1参照。)。
(2)環状テトラフルオロエチレンポリスルフィドを、塩素および過酸化水素を用いて酸化的に開環してClSO(CFSOClを得て、つぎにフッ化カリウムを用いてフッ素化してFSO(CFSOFを得る方法(非特許文献2参照。)。
(3)I(CFI(ただし、pは3、4、または6を示す。)をスルフィン酸ナトリウムおよび塩素を用いてClSO(CFSOClに変換して、つぎにフッ化カリウムによってフッ素化してFSO(CFSOFを得る方法(非特許文献3参照。)。
(4)エチレンと下式(A)で表される化合物を電解カップリング反応させて、下式(C)で表される化合物(ただし、qは1または2を示す。)を得る方法(非特許文献4参照。)。
FSO2(CF2)2OCFCF(CF3)COOH (A)
FSO2(CF2)2OCFCF(CF3)(CH2CH2)qCF(CF3)O(CF2)2SO2F (C)。
また、電解フッ素化で入手したFSOCFCFCFSOFとアンモニアを反応させて環状ペルフルオロ脂肪族ジスルホンイミドアンモニウム塩を得る方法(特許文献1参照。)が知られている。
特開昭57−146766号公報、実施例3参照 「Journal of Fluorine Chemistry」、1987年、35巻、329−341頁 「Journal of Fluorine Chemistry」、1998年、89巻、107−109頁 「Journal of Fluorine Chemistry」、1993年、63巻、85−100頁 「Journal of Electoroanalitycal Chemistry」、1992年、325巻、167−184頁
しかし、前記のジスルホニルフロリド化合物の製造方法には、それぞれ下記の課題がある。
(1’)の方法は、FSO(CHSOFを製造するために、出発原料のBr(CHBrから3工程の反応が必要であり、煩雑であった。また、(1’)の方法で用いる電解フッ素化反応は、収率が不充分であった。
(2)の方法は、環状テトラフルオロエチレンポリスルフィドの入手が困難であり、かつ、工程が多く、総合収率が低かった。
(3)の方法は、原料が高価であり、かつ工程が多く、総合収率が低かった。
(4)の方法においては、下式(B)で表される化合物が収率30%で副生する。
FSO(CF)OCF(CF)CF(CF)O(CF)SOF (B)
しかし、(4)の方法は、エチレンと式(A)で表される化合物を電解カップリング反応して式(C)で表される化合物を得るのが目的であり、式(B)で表される化合物のみを得る場合は、該化合物を単離精製する必要があった。
また、(4)の方法において開示される化合物は、末端構造が−CF(CF)COOHの化合物のみである。よって、該末端構造以外の、カルボキシル基が結合する末端構造を有し、かつフルオロスルホニル基を有する化合物において、電解カップリング反応が実施できるか否かは、これまで全く不明であった。
本発明は、前記課題を解決する目的でなされたものであり、ジスルホニルフロリド化合物を効率的かつ高収率に製造する方法を提供する。
すなわち、本発明は以下を要旨とするものである。
〈1〉下式(1’)で表される化合物を、Yがフッ素原子である場合は光カップリング反応させて、また、Yが水酸基、−OM、または−O(M1/2である場合は電解カップリング反応させて、下式(2)で表される化合物を得ることを特徴とする下式(2)で表される化合物の製造方法。
FSO−E−CX−COY (1’)
FSO−E−CX−CX−E−SOF (2)
ただし、式中の記号は下記の意味を表す。
E:単結合、エーテル性酸素原子、炭素数1〜20のエーテル性酸素原子を含んでいてもよいアルキレン基、または該アルキレン基の水素原子の1個以上がフッ素原子および/または塩素原子に置換された基。
X:それぞれ独立に、水素原子、塩素原子、またはフッ素原子。
Y:フッ素原子、水酸基、−OM(Mはアルカリ金属原子である。)、または−O(M1/2(Mはアルカリ土類金属原子である。)。
〈2〉上記〈1〉に記載の製造方法によって式(2)で表される化合物を得て、該式(2)で表される化合物とアンモニアとを反応させる下式(3)で表される化合物の製造方法。ただし、式中の記号は前記と同じ意味を示す。
Figure 0004946864
〈3〉上記〈2〉に記載の製造方法によって式(3)で表される化合物を得て、該式(3)で表される化合物をプロトン酸の存在下に加熱する下式(4)で表される化合物の製造方法。ただし、式中の記号は前記と同じ意味を表す。
Figure 0004946864
〈4〉上記〈2〉に記載の製造方法によって得られた式(3)で表される化合物を得て、該式(3)で表される化合物と式Mで表されるn価の金属を含む金属塩とを反応させる下式(5)で表される化合物の製造方法。
Figure 0004946864
ただし、EおよびXは前記と同じ意味を示し、nは1〜4の整数を示し、Mはn価の金属を示し、(M)n+はn価の金属カチオンを表す。
〈5〉上記〈3〉に記載の製造方法によって式(4)で表される化合物を得て、該式(4)で表される化合物と式Mで表されるn価の金属を含む金属塩とを反応させる下式(5)で表される化合物の製造方法。
Figure 0004946864
ただし、EおよびXは前記と同じ意味を表し、nは1〜4の整数を表し、Mはn価の金属を表し、(M)n+はn価の金属カチオンを表す。
〈6〉〈3〉に記載の製造方法によって式(4)で表される化合物を得て、該式(4)で表される化合物とフッ素とを反応させる下式(6)で表される化合物の製造方法。ただし、式中の記号は前記と同じ意味を表す。
Figure 0004946864
〈7〉上記〈4〉または〈5〉に記載の製造方法によって式(5)で表される化合物を得て、該式(5)で表される化合物とフッ素とを反応させる下式(6)で表される化合物の製造方法。ただし、式中の記号は前記と同じ意味を表す。
Figure 0004946864
〈8〉上記〈3〉に記載の製造方法によって式(4)で表される化合物を得て、該式(4)で表される化合物と式Rで表される基を有するアルキル化剤とを反応させる式(7)で表される化合物の製造方法。
Figure 0004946864
ただし、EおよびXは前記と同じ意味を表し、Rはエーテル性酸素原子または窒素原子を含んでいてもよい、炭素数1〜10のアルキル基を表す。
〈9〉上記〈3〉に記載の製造方法によって式(4)で表される化合物を得て、該式(4)で表される化合物と下式(8)で表される化合物とを反応させる下式(9)で表される化合物の製造方法。
[(Z(R)(R)(R)(R)](L)k− (8)
Figure 0004946864
ただし、EおよびXは、前記と同じ意味を表す。Zは、窒素原子またはリン原子を表す。R、R、R、およびRは、それぞれ独立に、エーテル性酸素原子、窒素原子、およびリン原子からなる群から選ばれる1種以上の原子を含んでいてもよい炭素数1〜10の1価炭化水素基、または水素原子を表す。または、R、R、R、およびRから選ばれる2〜4個の基は、それぞれ連結して環構造を形成し、環構造を形成しない残余の基が存在する場合、該残余の基はエーテル性酸素原子、窒素原子、およびリン原子からなる群から選ばれる1種以上の原子を含んでいてもよい炭素数1〜10の1価炭化水素基、または水素原子を、示す。(L)k−は、k価のアニオンを示す。kは、1または2を表す
〈10〉下式(7A)で表される化合物。
Figure 0004946864
本発明によれば、合成が困難であったジスルホニルフロリド化合物を、光カップリング反応、または電解カップリング反応を用いることにより、簡便かつ効率的に製造できる。また、ジスルホニルフロリド化合物から種々の有用な化合物を製造できる。
本明細書において、基の定義は特に記載しない限り前記と同義である。本明細書において、式(1’)で表される化合物を化合物(1)とも記す。Eで表される基を基(E)とも記す。他の式で表される化合物および基も同様に記す。また、特に記載のない限り、圧力はゲージ圧で表す。
本明細書において、Eが単結合であるとは、本発明における化合物において、スルホニルフルオリド基(−SOF)とCXとが、直接結合していることを意味する。
本明細書において、Eがエーテル性酸素原子であるとは、本発明における化合物において、スルホニルフルオリド基とCXとが−O−を介して結合し、FSO−O−CX−になっていることを意味する。エーテル性酸素原子の具体例としては、炭素原子と炭素原子間に存在するC−O−Cのような酸素原子、イオウ原子と炭素原子間に存在するS−O−Cのような酸素原子が挙げられる。
本明細書において、Eが炭素数1〜20のエーテル性酸素原子を含んでいてもよいアルキレン基であるとは、本発明における化合物において、Eが炭素数1〜20のアルキレン基または炭素数1〜20のエーテル性酸素原子を含むアルキレン基であることを意味する。これらの基は、直鎖構造であっても分岐構造であってもよく、直鎖構造が好ましい。分岐構造を有する場合、分岐部分はメチル基が好ましい。これらの基の炭素数は、1〜10が好ましく、特に1〜6が好ましい。
また、Eがエーテル性酸素原子を含む基である場合、Eは、エーテル性酸素原子を、1または2個含むのが好ましい。エーテル性酸素原子は、炭素−炭素原子間に存在しても、FSOと結合する基(E)の末端部分に存在していても、CXと結合する基(E)の末端部分に存在していてもよい。
Eが炭素数1〜20のエーテル性酸素原子を含んでいてもよいアルキレン基の水素原子の1個以上がフッ素原子および/または塩素原子で置換された基であるとは、該アルキレン基の水素原子の1個以上がフッ素原子および/または塩素原子で置換された基であることをいう。該基は、炭素数1〜20のフッ素原子で置換されたアルキレン基、または、炭素数1〜20のフッ素原子および塩素原子で置換されたアルキレン基が好ましく、炭素数1〜20のエーテル性酸素原子を含んでいてもよいアルキレン基中に含まれる水素原子の全てがフッ素原子で置換された基(すなわち、ペルフルオロ化された基。)が特に好ましい。
該基の好ましい態様としては、下記の基が挙げられる。該基の左右の向きは限定されず、いずれの末端が−SO−が結合していてもよく−CX−が結合していてもよい。
−CFCFOCFCF−、
−CFCFCFOCFCFCF−、
−CFCFOCF(CF)CFOCF(CF)−
−CFCFOCF(CF)−
−CFCFO−、
−CFO−、
−CF−、
−CFCF−、
−CFCFCF−、
−CFCFCFCF−。
本発明におけるEは、単結合、エーテル性酸素原子、炭素数1〜20のアルキレン基、または、該アルキレン基の水素原子の1個以上がフッ素原子および塩素原子からなる群から選ばれる原子で置換された基が好ましく、単結合、エーテル性酸素原子、または炭素数1〜20のペルフルオロアルキレン基が特に好ましく、単結合が最も好ましい。
本発明におけるXは、それぞれ独立に、塩素原子またはフッ素原子が好ましく、フッ素原子が特に好ましい。−CX−部分の構造は、−CF−、−CFCl−、または−CHFが好ましく、−CF−が特に好ましい。
本発明におけるYは、水酸基、−OM、または−OMが好ましく、本発明におけるカップリング反応は電解カップリング反応が好ましい。
Yが−OM(Mはアルカリ金属原子を示す。)である場合のMは、反応溶媒に対する化合物(1’)の溶解性が高いことから、NaまたはKが好ましい。Yが−O(M1/2(Mはアルカリ土類金属原子である。)である場合のMは、CaまたはMgが好ましい。
本発明における化合物(1’)の具体例としては、下式で表される化合物が挙げられる。ここで化合物(1’)中のYが−O(M1/2である化合物(1’)とは、下式(1’)で表される化合物である。
FSO−E−CX−COF (1’)、
FSO−E−CX−COOH (1’)、
FSO−E−CX−COOM (1’)、
(FSO−E−CX−COO) (1’)。
化合物(1’)は、下記化合物(1’)が好ましい。ただし、Eは、単結合、エーテル性酸素原子、炭素数1〜20のペルフルオロアルキレン基、または炭素数1〜20のエーテル性酸素原子を含むペルフルオロアルキレン基を示す。
FSO−E−CX−COY (1’)。
化合物(1’)は、Eが単結合である場合は下記化合物(1’)で表され、Eがエーテル性酸素原子である場合は下記化合物(1’)で表され、Eが炭素数1〜10のペルフルオロアルキレン基(以下、E10とも記す。)である場合は下記化合物(1’)で表され、Eが炭素数1〜20のエーテル性酸素原子を含むペルフルオロアルキレン基(以下、E11と記す。)である場合は下記化合物(1’)で表される。
FSO−CX−COY (1’)、
FSO−O−CX−COY (1’)、
FSO−E10−CX−COY (1’)、
FSO−E11−CX−COY (1’)。
10の炭素数は、1〜8が好ましい。E11の炭素数は、1〜8が好ましい。
化合物(1’)〜(1’)の具体例としては、以下の例が挙げられる。
化合物(1’)の例:
FSO−CF−COF、
FSO−CF−COOH、
FSO−CF−COOM
(FSO−CF−COO)
FSO−CFCl−COF、
FSO−CFCl−COOH、
FSO−CFCl−COOM
(FSO−CFCl−COO)
FSO−CHF−COF、
FSO−CHF−COOH、
FSO−CHF−COOM
(FSO−CHF−COO)
化合物(1’)の例:
FSO−O−CFCOF、
FSO−O−CFCOOH、
FSO−O−CFCOOM
(FSO−O−CFCOO)
化合物(1’)の例:
FSO−CFCF−COF、
FSO−CFCF−COOH、
FSO−CFCF−COOM
(FSO−CFCF−COO)
FSO−CFCFOCF(CF)−COOH、
FSO−CFCFOCF(CF)−COOM
(FSO−CFCFOCF(CF)−COO)
FSO−CFCFOCF(CF)CFOCF(CF)−COOH、
FSO−CFCFOCF(CF)CFOCF(CF)−COOM
(FSO−CFCFOCF(CF)CFOCF(CF)−COO)
化合物(1’)の例:
FSO−OCFCF−COF、
FSO−OCFCF−COOH、
FSO−OCFCF−COOM
(FSO−OCFCF−COO)
本発明の製造方法においては、化合物(1’)におけるYがフッ素原子である場合には化合物(1’)を光カップリング反応して化合物(2)を得る。Yが水酸基、−OM、または−O(M1/2である場合には化合物(1’)を電解カップリング反応して化合物(2)を得る。本発明においては、1種の化合物(1’)を用いてもよく、2種以上の化合物(1’)を用いてもよく、1種の化合物(1’)を用いるのが好ましい。
光カップリング反応の手法は、公知の手法を適用できる。光カップリング反応においては光照射によってラジカル(FSO−E−CX・)が発生し、該ラジカルの2分子がカップリング反応して化合物(2)が生成すると考えられる。光照射に用いる光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯等が挙げられる。反応温度は、−50℃〜+100℃が好ましく、反応効率の点から0℃〜+50℃が特に好ましい。光カップリング反応は、無溶媒で行ってもよく、光反応に不活性な溶媒(ペルフルオロカーボン類、ペルフルオロエーテル類等。)の存在下に行ってもよい。反応圧力は、大気圧、減圧、または加圧のいずれであってもよく、大気圧が好ましい。
電解カップリング反応とは、電解脱炭酸によりラジカル(FSO−E−CX・)を生成させ、つぎに該ラジカルの2分子をカップリングさせる反応をいう。電解カップリング反応の手法は、公知の手法を適用できる。
また、電解カップリング反応において、Yが水酸基である化合物(1’)と、Yが−OMまたは−O(M1/2である化合物(1’)とを併用してもよい。併用する場合、反応効率を向上させるために、Yが水酸基である化合物(1’)に対する、Yが−OMまたは−O(M1/2である化合物(1’)の量は、0.01〜1.00倍モルが好ましく、0.01〜0.10倍モルが特に好ましい。
電解カップリング反応に用いられる電解装置の電極は、酸化還元電位が高い電極(例えば白金電極等。)が好ましい。電解カップリング反応の電流密度は、0.01〜1.0A/cmが好ましく、発熱制御および反応効率の観点から、0.02〜0.5A/cmが好ましい。
電解装置の電槽は、ガラス製電槽または樹脂(フッ素樹脂等。)製電槽が好ましい。また、電槽本体を陽極として電解カップリング反応を実施してもよい。反応圧力は、大気圧、減圧、または加圧のいずれであってもよく、大気圧が好ましい。
電解カップリング反応は、無溶媒で行ってもよく、溶媒の存在下で行ってもよく、溶媒の存在下で行うのが好ましい。溶媒としては、メタノール、エタノール等のアルコール類;アセトニトリル等のニトリル類;水等が挙げられる。溶媒は、1種であってもよく、2種以上からなる混合溶媒であってもよい。溶媒は、水とアセトニトリルの混合溶媒が好ましい。
電解カップリング反応は、バッチ式で実施してもよく、化合物(1’)を電解装置に連続的に供給しながら行う連続反応方式で実施してもよく、効率が良い点から後者が好ましい。反応温度は、通常−20℃〜+100℃であり、−20℃〜+60℃が好ましい。また、化合物(1’)におけるEがエーテル性酸素原子を含まない場合、反応温度は−10℃〜+40℃が好ましい。化合物(1’)におけるEがエーテル性酸素原子を含む場合、反応温度は−20℃〜+40℃が好ましい。
本発明の製造方法により得られた化合物(2)を含む反応粗生物は、後処理により精製してもよい。後処理の方法としては、水洗、抽出、クロマトグラフィー、蒸留等による方法が挙げられる。これらの方法から選ばれる2種以上の方法を組み合わせてもよい。
本発明における化合物(2)の好ましい具体例としては、下記化合物(2’)が挙げられる。ただし、式中の記号は前記の意味と同じ意味を示す。
FSO−E−CX−CX−E−SOF (2’)。
化合物(2’)としては、化合物(1’)〜(1’)に対応する下記化合物(2A)〜(2D)が好ましい。ただし、式中の記号は前記と同じ意味を示す。
FSO−CX−CX−SOF (2A)、
FSO−O−CX−CX−O−SOF (2B)、
FSO−E10−CX−CX−E10−SOF (2C)、
FSO−E11−CX−CX−E11−SOF (2D)。
化合物(2A)の具体例:
FSO−CF−CF−SOF、
FSO−CClF−CClF−SOF、
FSO−CHF−CHF−SOF。
化合物(2B)の具体例:
FSO−OCF−CFO−SOF。
化合物(2C)の具体例:
FSO−CFCF−CFCF−SOF。
化合物(2D)の具体例:
FSO−OCFCF−CFCFO−SOF。
本発明の製造方法は、製造工程が短く、操作も簡便であり、収率も高い。また生成物(2)は単一の化合物として得られ、不純物の副生も少ないため、複雑な分離工程を省略できる。特に、化合物(1’)のXがフッ素原子である場合、化合物(1’)のラジカル生成とカップリング反応が、化合物(1’)のCFカルベンの生成反応に優先して進行し、目的とする生成物(2)が収率よく生成することは、予想外の効果であった。
本発明の製造方法によって得られた化合物(2)は、種々の化合物の合成原料として有用である。化合物(2)を他の化合物に誘導する例としては、化合物(2)を加水分解して強酸触媒として有用なスルホン酸化合物を得る例、下記スキーム1に例示される化合物(2)の誘導体を得る例が挙げられる。スキーム1中の化合物の記号は前記と同じ意味を示す。
<スキーム1>
Figure 0004946864
すなわち、化合物(2)とアンモニアを反応させて化合物(2)を化合物(3)に誘導する例,化合物(3)をプロトン酸の存在下で加熱して化合物(3)を化合物(4)に誘導する例,化合物(3)または化合物(4)と式Mで表されるn価の金属を含む金属塩とを反応させて化合物(3)または化合物(4)を化合物(5)に誘導する例,化合物(4)または化合物(5)とフッ素(F)とを反応させて化合物(4)または化合物(5)を化合物(6)に誘導する例,化合物(4)と式Rで表させるアルキル基を有するアルキル化剤とをアルキル化反応させて化合物(4)を化合物(7)に誘導する例,化合物(7)と式Z(R)(R)(R)で表される化合物(化合物(1’))とを反応させて化合物(7)を化合物(1’)に誘導する例,化合物(4)と式[(Z(R)(R)(R)(R)](L)k−で表される化合物(化合物(8))とを反応させて化合物(4)を化合物(9)に誘導する例等の化合物(2)を他の化合物に誘導する例が挙げられる。
また、R、R、およびRから選ばれる2または3個の基が環構造を形成している場合には、環構造部分は芳香族性の環構造からなっていてもよい。
化合物(2)を化合物(3)に誘導する例は、公知の方法にしたがって実施できる。たとえば、無水ジエチルエーテル溶媒の存在下に、化合物(2)とアンモニアを反応させる方法が挙げられる。前記方法における、反応温度は20〜30℃が好ましく、反応圧力は大気圧が好ましい。また、反応温度は−70℃程度、大気圧下にて、液体アンモニアを含むテトラヒドロフラン(THF)溶液に、化合物(2)のTHF溶液を添加して、化合物(2)とアンモニアを反応させる方法も挙げられる。
化合物(3)を化合物(4)に誘導する例は、公知の方法にしたがって実施できる。該方法に用いるプロトン酸は、濃硫酸が好ましい。該反応は、反応温度を50〜200℃にし、かつ反応圧力を50〜40000Paにして実施するのが好ましく、反応温度を60〜120℃にし、かつ反応圧力を150〜4000Paにして実施するのが特に好ましい。該反応は、生成した化合物(4)を連続的に留出させる反応蒸留形式で行うのが好ましい。
化合物(3)または化合物(4)を化合物(5)に誘導する例は、特表2000−506132号公報に記載の方法に従って実施するのが好ましい。式Mで表されるn価の金属は、n価の金属カチオンを形成しうるn価の金属から選択される。nは1が好ましい。前記金属としては、リチウム、ナトリウム、カリウム、アルミニウム、マグネシウム、アンチモン、ハフニウム、ビスマス、希土類、金、銀、および銅塩等が挙げられ、1価の金属(nが1。)であるリチウムが好ましい。
リチウムを含むリチウム金属塩としては、式(Li(Lm−で表される塩が挙げられる。ここで、(Lm−はm価(ただし、mは正の整数を示し、1または2が好ましい。)のアニオンを示し、1〜2価のアニオンが好ましい。m値は、式中のLiの数を示すmの数と一致する。
リチウム塩の具体例としては、LiHCO、LiOR(Rは水素原子、アルキル基またはアリール基を示す。)、LiR(Rは水素原子、アルキル基またはアリール基を示す。)、LiN(iso−C、LiN(Si(CH、LiCOが挙げられ、LiH、LiHCO、LiCO、LiOHが好ましい。またリチウム塩としては、LiOも採用できる。
化合物(4)または化合物(5)を化合物(6)に誘導する例は、公知のフッ素化反応(たとえば、J.Fluorine.Chem.,2001年、112巻、271−275ページ記載の方法等。)にしたがって実施できる。
化合物(4)を化合物(7)に誘導する例におけるアルキル化剤のRは、炭素数1〜10のアルキル基が好ましく、1〜6のアルキル基が特に好ましく、メチル基、エチル基、またはプロピル基が特に好ましい。Rがアルキル基である化合物(7)は、化合物(4)のアルキル化反応により得られる。アルキル化剤は、オルト酢酸トリアルキル、オルトギ酸トリアルキル、ハロゲン化アルキル、またはジアルキル硫酸が好ましい。アルキル化反応は、Chem.Commun.,2003年,2334−2335等に記載の方法に従って実施できる。
化合物(4)は、超強酸触媒として種々の有機反応に利用できる。また化合物(4)は固体として得られるため、反応溶液からの回収も容易である。
化合物(7)を化合物(1’)に誘導する例における化合物(1’)は、下記化合物(1’)または下記化合物(1’)が好ましく、化合物(1’)が特に好ましい。
N(R)(R)(R) (1’)、
P(R)(R)(R) (1’)。
、R、およびRは、それぞれ独立に、水素原子または炭素数1〜10の脂肪族炭化水素基が好ましい。または、RおよびRが連結してアルキレン基を形成し、かつRが水素原子または炭素数1〜10の1価脂肪族炭化水素基であるのが好まし。さらに、化合物(1’)として、窒素原子を有し、かつ芳香族性を有する複素環化合物を用いてもよい。
化合物(1’)の例としては、アンモニア、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、メチルエチルアミン、メチルプロピルアミン、メチルブチルアミン、エチルプロピルアミン、エチルブチルアミン、プロピルブチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、メチルジエチルアミン、ジメチルエチルアミン、トリフェニルアミン、ジメチルプロピルアミン、ジエチルプロピルアミン、トリブチルアミン、ピロリジン、N−プロピルピロリジン、N−エチルピロリジン、N−プロピルピペリジン、イミダゾール、N−エチルイミダゾール、N−ブチルイミダゾール、N−ヘキチルイミダゾール、N−オクチルイミダゾール、N−デシルイミダゾール、N−ドデシルイミダゾール、N−テトラデシルイミダゾール、N−ヘキサデシルイミダゾール、N−オクタデシルイミダゾール、1−エチル−2−メチルイミダゾール、1−ブチル−2−メチルイミダゾール、1−ヘキチル−2−メチルイミダゾール、ピリジン、ピリミジン、ピリダジン、ピロール、N−メチルピロール、N−エチルピロール、N−プロピルピロール、N−ブチルピロール、ピペリジン、N−メチルピペリジン、N−エチルピペリジン、N−プロピルピペリジン、N−ブチルピペリジン、インドール、N−メチルインドール、N−エチルインドール、N−プロピルインドール、N−ブチルインドール、ヘキサメチレンイミン、N−メチルヘキサメチレンイミン、N−エチルヘキサメチレンイミン、N−プロピルヘキサメチレンイミン、N−ブチルヘキサメチレンイミン、オキサゾリン、N−メチルオキサゾリン、N−エチルオキサゾリン、N−プロピルオキサゾリン、N−ブチルオキサゾリン、モルホリン、N−メチルモルホリン、N−エチルモルホリン、N−プロピルモルホリン、N−ブチルモルホリン、ピロリン、N−メチルピロリン、N−エチルピロリン、N−プロピルピロリン、N−ブチルピロリン、ヘキサメチレンテトラミン等が挙げられる。
化合物(1’)の具体例としては、前記化合物(1’)の具体例中の窒素原子をリン原子に代えたホスフィン化合物が挙げられる。
化合物(7)を化合物(1’)に誘導する例は、塩の形成反応として知られる、公知の反応の手法を採用できる。前記塩の形成反応は、溶媒の存在下に加熱する方法が好ましい。
化合物(4)を化合物(9)に誘導する例における化合物(8)は、下記化合物(8A)または化合物(8B)が好ましく、化合物(8A)がより好ましく、下記化合物(8A−1)または化合物(8B−1)が特に好ましい。
[N(R)(R)(R)(R)](L)k− (8A)
[P(R)(R)(R)(R)](L)k− (8B)
[N(R)(R)(R)(R)](L) (8A−1)
[N(R)(R)(R)(R)](L)2− (8A−2)。
化合物(8A−1)の好ましい例としては、R、R、RおよびRがそれぞれ独立に、水素原子または炭素数1〜10の1価脂肪族炭化水素基である例,R、R、RおよびRが、窒素原子を有し、かつ芳香族性を有する複素環カチオンを形成する例,R、R、RおよびRから選ばれる2〜4つの基が連結して脂肪族炭化水素基を形成する例が挙げられる。この場合、連結して脂肪族炭化水素基を形成しない基が存在する場合、該基は、水素原子または炭素数1〜10の1価脂肪族炭化水素基であるのが好ましい。
化合物(8A)、化合物(8A−1)および化合物(8A−2)のカチオン部分の具体例は、化合物(9A)の例示中に記載する。(L)の具体例としてはハロゲンアニオン、OH、炭酸水素アニオン、亜硝酸アニオンが挙げられ、ハロゲンアニオン、OHが好ましい。(L)2−の具体例としては、炭酸アニオン、硫酸アニオン、亜硫酸アニオン、硝酸アニオン、、亜リン酸アニオン、リン酸アニオン等が挙げられ、炭酸アニオンまたは炭酸水素アニオンが好ましい。
化合物(4)を化合物(1’)に誘導する例は、公知の方法にしたがって実施できる。反応は、溶媒の存在下に実施することが好ましい。溶媒としては水または有機溶媒が挙げられる。
本発明の製造方法において、化合物(2)から化合物(3)〜(1’)を製造する方法の好ましい態様としては下記スキーム2が挙げられる。
<スキーム2>
Figure 0004946864
すなわち、化合物(2A)とアンモニアを反応させて化合物(2A)を化合物(3A)に誘導する例,化合物(3A)を濃硫酸の存在下、減圧条件下で加熱して化合物(3A)を化合物(4A)に誘導する例,化合物(3A)または化合物(4A)と水酸化リチウムとを反応させて化合物(3A)または化合物(4A)を化合物(5A)に誘導する例,化合物(4A)または化合物(5A)とフッ素(F)とを反応させて化合物(4A)または化合物(5A)を化合物(6A)に誘導する例,化合物(4A)をオルト酢酸トリメチルとアルキル化反応させて化合物(4A)を化合物(7A)に誘導する例,化合物(7A)と式Z(R)(R)(R)で表される化合物(化合物(1’))とを反応させて化合物(7A)を化合物(1’)に誘導する例,化合物(4A)と式[(Z(R)(R)(R)(R)](L)k−で表される化合物(化合物(8))とを反応させて化合物(4A)を化合物(9A)に誘導する例等の化合物(2A)を他の化合物に誘導する例が挙げられる。
化合物(7A)は新規化合物である。また化合物(9A)のうち下記化合物(9A−1)は新規化合物である。
Figure 0004946864
10、R20、R30およびR40は、それぞれ独立に、炭素数1〜10のアルキル基、水素原子、またはアリール基を表す。または、R20、R30およびR40から選ばれる2〜3つの基は連結してNを含む環構造を形成していてもよく、環構造を形成しない残余の基が存在する場合はアルキル基を表す。R10〜R40は全てがアルキル基である場合が好ましい。
化合物(9A−1)中のカチオン部分(N10203040)の具体例としては、トリエチルメチルアンモニウム、ジエチルメチルプロピルアンモニウム、ジメチルエチルプロピルアンモニウム、N−メチル−N’−エチルイミダゾリウム、N−メチル−N−プロピルピロリジニウム、N−メチル−N−エチルピロリジニウム等が挙げられる。
化合物(9A)は、Eが−CF−である化合物(9)に比べてイオン半径が小さいため、溶液中での移動度が高い。また、化合物(9A)は、塩基に対して安定であるため、有機溶媒に対する溶解度が高い。さらに、化合物(9A)は、カチオン部分がNH である化合物(3A)よりも融点が低く溶媒に溶解した際の粘度が低いため、導電性材料として優れる。
化合物(4A)は、それ自身が超強酸触媒として有用である。化合物(6A)はフッ素化試薬(DesMarteau試薬)として有用である。化合物(1’)は導電性材料、反応溶媒、熱媒体として有用に用いうる化合物である。
また、化合物(7A)等の化合物(7)においては、窒素原子上に非共有電子対を有する含窒素化合物と反応させて、該含窒素化合物の窒素原子にRが置換した置換アンモニウムを製造できる。すなわち、本発明は置換アンモニウムの製造方法を提供する。
窒素原子上に非共有電子対を有する含窒素化合物としては、脂肪族含窒素化合物であっても、芳香族含窒素化合物であってもよく、第一アミン、第二アミン、および第三アミンから選ばれるアミン化合物、イミン化合物等が挙げられる。これらの含窒素化合物に化合物(7)を反応させることにより、アミンにおいては、該アミンの窒素原子に化合物(7)の基Rが結合したカチオンが、イミン化合物においては、イミンの窒素原子に基Rが置換した置換イミンカチオンが生成する。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。実施例中の化合物の番号は、スキーム2に示す化合物の番号に対応する。ガスクロマトグラフィはGC、ガスクロマトグラフ−質量分析法はGC−MS、GCのピーク面積比より求まる純度はGC純度、収率はGC収率、テトラメチルシランはTMS、リットルはLと記す。また、NMRスペクトルデータはみかけの化学シフト範囲として示した。CFClCFCClCFCFはR419と略記する。窒素ガスで20容量%に希釈したフッ素ガスは20%フッ素ガスと記す。メチル基はMe、エチル基はEtと記す。
[例1]FSOCFCFSOF(2A)の合成例(その1)
底部に液抜出しバルブを備え、本体に冷媒流通用ジャケットを備えたガラス製セパラブルフラスコ(内容積1.5L)に、メカニカルスターラー、ジムロートコンデンサー、原料フィード用のプランジャーポンプ、およびガラス製鞘管を設置した。ガラス製鞘管には熱電対を挿入した。電極には20cm×10cmの80メッシュの白金網を使用し、各々をポリエチレンメッシュの袋に入れて短絡防止したものを筒状に重ね合せ、撹拌翼を取り囲むように設置した。ジムロートとジャケットには0℃の冷媒を循環させた。
フラスコに、FSOCFCOOH(205.4g)、水酸化ナトリウム(6.0g)、アセトニトリル(1’)、およびイオン交換水(1’)を仕込み、激しく撹拌しながら、電流値を7.5Aとして通電を開始した。反応の進行とともに生成物が反応器底部に沈降してきたので、15mL程度蓄積するたびに底部液抜出しバルブより生成物を抜出した。通電時間は計5時間であり(電荷量として1.40ファラデーに相当)、通電中の電極間電圧は5〜10Vであった。
回収した生成物は93.3gであった。生成物をGCにより分析したところ、化合物(2A)を93.5%含んでいた。GC収率は57%であり、この値から換算すると、87.2gの化合物(2A)が得られた。電流効率は47%であった。
[例2]化合物(2A)の合成例(その2)
FSOCFCOOH(534.0g)、アセトニトリル(1’)、およびイオン交換水(1’)を仕込み、電流値を13.0Aとし、通電時間を6.7時間とする以外は例1と同様にして反応を行い、318.7gの生成物を回収した。なお、通電中の電極間電圧は5〜7Vであった。
生成物をイオン交換水(1’)で3回洗浄すると、305.5gの液が回収された。該液は、GCにより分析した結果、化合物(2A)を99.3%含んでいた。GC収率は76%であり、電流効率は71%であった。
[例3]FSOCFClCFClSOF(化合物(2B))の合成例
底部に液抜き出しバルブを備え、本体に冷媒流通用ジャケットを備えたガラス製セパラブルフラスコ(内容積50mL)に、メカニカルスターラーおよびガス出口管を設置した。電極としては2cm×2cmの80メッシュの白金網を使用し、各々をポリエチレンメッシュの袋に入れて短絡防止したものを設置した。本体ジャケットには0℃の冷媒を循環させた。
フラスコに、FSOCFClCOOH(5.84g)、水酸化ナトリウム(0.15g)、アセトニトリル(4.5mL)、およびイオン交換水(30mL)を仕込み、激しく撹拌しながら、電流値を0.5Aとして通電を開始した。反応の進行とともに生成物が反応器底部に沈降した。通電時間は1時間36分であり(電荷量として30ミリファラデーに相当)、通電中の極間電圧は4.5〜5Vであった。生成物(3.10g)を回収し、19FNMRにより分析したところ、化合物(2B)の収率は17%であった。
[例4]化合物(3A)の合成例
内部を減圧に保った1Lのオートクレーブを−70℃以下に冷却し、無水THF(1’)を仕込み、続いてアンモニア(1’)を導入した。内温が−70℃以下になったら、例1で得たFOSCFCFSOF(1’)を無水THF(1’)に溶解した溶液を2時間かけてオートクレーブ内に徐々に滴下した。全量滴下後、内温のコントロールをせずに12時間撹拌した。
撹拌終了後、過剰のアンモニアを徐々にパージし、圧力計の示す値が0MPaになったら撹拌を継続しながら窒素を1時間流通させて系内の残留アンモニアを除去した。
その後、オートクレーブを開放して白色スラリー状の内容物を回収した。オートクレーブ壁面に付着した白色結晶は無水THF(250mL)を用いて回収した。これらを混合した後に加圧濾過を行い、濾液を濃縮して結晶を得た。得られた結晶を40℃で減圧乾燥して、化合物(3A)(1’)を得た。収率は98%であった。
[例5]化合物(4A)の合成例
例4で得た化合物(3A)(78g)と濃硫酸(434g)を500mLの3つ口フラスコに仕込み、400〜533Paに減圧し昇温を開始した。内温が82℃となった時点で、化合物(4A)の留出が始まった。内温が97℃に達するまで留出を続けた結果、化合物(4A)(67.5g)を回収した。収率は93%であった。化合物(4A)は25℃で結晶であった。
[例6]化合物(5A)の合成例
例4と同様の方法で得た化合物(3A)(52.0g)をTHF(1’)に溶解した。そこに化合物(3A)に対して1.1倍モル量の水酸化リチウム一水和物を添加し加熱還流を行った。4時間後、反応液を濾過し結晶を回収した。該結晶に、該結晶の1.5倍質量の水を加えて溶解し、該結晶の0.2倍質量の活性炭を加えて3時間加熱還流を行った。還流終了後、濾過を行い、濾液を減圧濃縮して得た結晶をTHFに溶解した。さらに不溶物を濾過し、濾液を再び減圧濃縮して結晶を得た。得られた結晶をn−ヘキサン(200mL)を用いて洗浄し、減圧乾燥を2回繰り返すことによって、化合物(5A)(47.8g)を得た。収率は96%であった。
[例7]化合物(7A)の合成例
例5で得た化合物(4A)(30.0g)をオルト酢酸トリメチル(305g)に氷冷下で溶解し、8時間加熱還流を行った。その後、過剰のオルト酢酸トリメチルを大気圧で留去した後、減圧蒸留を行った。2Pa、内温50℃にて化合物(7A)の留出が始まった。内温が63℃に達するまで留出を続け、無色透明な液体を回収した。得られた液体を−30℃で12時間保管したところ結晶が析出したので、減圧濾過を行った。濾紙上に残った結晶をドライアイスで冷却したHFC225(旭硝子社製、商品名:アサヒクリン225)で洗浄した後に結晶を回収した。この結晶を減圧乾燥して、化合物(7A)(1’)を得た。収率は49%であった。
[例8]化合物(6A)の合成例(その1)
ガス導入口およびガス排出口を設けた30mLのPFA製反応容器に、化合物(4A)(0.46g)をR419(20mL)に溶解した溶液を仕込んだ。反応容器を60℃に加熱し、20%フッ素ガスを6.5mmol/hの速度で1.5時間吹き込んだ。反応液(0.12g)を採取し、1,3−ビス(トリフルオロメチル)ベンゼンを内部標準物質として19FNMR分析を行った。この結果、化合物(6A)が40%(NMRの面積%)生成していることを確認した。
19FNMR(283MHz,CDCl):−13.6(br,N−F),−115.0(s,CFCF)。
[例9]化合物(6A)の合成例(その2)
ガス導入口およびガス排出口を設けた200mLのニッケル製反応容器に、化合物(4A)(3.0g)をR419(1’)に溶解した溶液を仕込んだ。反応容器を60℃に加熱し、この中に20%フッ素ガスを13mmol/hの速度で4.9時間吹き込んだ。反応液を減圧蒸留して、化合物(6A)(1’)を得た。
[例10]化合物(1’)の合成方法
500mlのフラスコに化合物(7A)(35.72g、139mmol)と、N-エチルイミダゾール(1’)、溶媒としてCFClCFCFCl(200ml)を加え、6時間還流させた。冷却後、溶媒と過剰のイミダゾールを留去し、140℃に加熱しながら減圧乾燥させたところ、目的化合物(1’)が48.9g得られた。単離収率99%であった。
Figure 0004946864
[例11]化合物(1’)の合成方法
50mlのフラスコに化合物(7A)(1’)と、トリエチルアミン(30ml)を加え、6時間還流させた。冷却後、過剰のトリエチルアミンを留去し、140℃に加熱しながら減圧乾燥させたところ、目的化合物(1’)が2.50g得られた。単離収率95%であった。
Figure 0004946864
[例12]化合物(9A−10)の合成方法
300mlのフラスコに化合物(4A)(20.0g、82.3mmol)と、塩化トリエチルメチルアンモニウム(1’)、CFClCFCFCl(1’)、アセトニトリル(40ml)とを加え、4時間還流させた。冷却後、溶媒を留去し、140℃に加熱しながら減圧乾燥した。得られた白色結晶をn−ブタノールより再結晶を実施した後真空乾燥して、24.3gの化合物(9A−10)を得た。単離収率は85%であった。
Figure 0004946864
本発明の製造方法は、特別な装置や試薬を必要とせず、簡便にかつ効率よくジスルホニルフロリド化合物を製造できる方法であるため、工業的に有用な製造方法となりうる。また本発明の製造方法によって得られるジスルホニルフロリド化合物は、超強酸触媒、アルキル化剤等として有用な種々の誘導体に導くことが可能である。よって、本発明の製造方法はこれらの誘導体を工業的な規模で得る方法としても有用な方法である。

なお、2005年4月1日に出願された日本特許出願2005−106573号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1. 下式(1’)で表される化合物を、Yがフッ素原子である場合は光カップリング反応させて、また、Yが水酸基、−OM、または−O(M1/2である場合は電解カップリング反応させて、下式(2)で表される化合物を得ることを特徴とする下式(2)で表される化合物の製造方法。
    FSO−E−CX−COY (1’)
    FSO−E−CX−CX−E−SOF (2)
    ただし、式中の記号は下記の意味を表す。
    E:単結合、エーテル性酸素原子、炭素数1〜20のエーテル性酸素原子を含んでいてもよいアルキレン基、または該アルキレン基の水素原子の1個以上がフッ素原子および/または塩素原子に置換された基。
    X:それぞれ独立に、水素原子、塩素原子、またはフッ素原子。
    Y:フッ素原子、水酸基、−OM(Mはアルカリ金属原子である。)、または−O(M1/2(Mはアルカリ土類金属原子である。)。
  2. 請求項1に記載の製造方法によって式(2)で表される化合物を得て、該式(2)で表される化合物とアンモニアとを反応させる下式(3)で表される化合物の製造方法。ただし、式中の記号は前記と同じ意味を示す。
    Figure 0004946864
  3. 請求項2に記載の製造方法によって式(3)で表される化合物を得て、該式(3)で表される化合物を、プロトン酸の存在下に加熱する下式(4)で表される化合物の製造方法。ただし、式中の記号は前記と同じ意味を表す。
    Figure 0004946864
  4. 請求項2に記載の製造方法によって式(3)で表される化合物を得て、該式(3)で表される化合物と式Mで表されるn価の金属を含む金属塩とを反応させる下式(5)で表される化合物の製造方法。
    Figure 0004946864
    ただし、EおよびXは前記と同じ意味を示し、nは1〜4の整数を示し、Mはn価の金属を示し、(M)n+はn価の金属カチオンを表す。
  5. 請求項3に記載の製造方法によって式(4)で表される化合物を得て、該式(4)で表される化合物と式Mで表されるn価の金属を含む金属塩とを反応させる下式(5)で表される化合物の製造方法。
    Figure 0004946864
    ただし、EおよびXは前記と同じ意味を表し、nは1〜4の整数を表し、Mはn価の金属を表し、(M)n+はn価の金属カチオンを表す。
  6. 請求項3に記載の製造方法によって式(4)で表される化合物を得て、該式(4)で表される化合物と、フッ素とを反応させる下式(6)で表される化合物の製造方法。ただし、式中の記号は前記と同じ意味を表す。
    Figure 0004946864
  7. 請求項4または請求項5に記載の製造方法によって式(5)で表される化合物を得て、該式(5)で表される化合物とフッ素とを反応させる下式(6)で表される化合物の製造方法。ただし、式中の記号は前記と同じ意味を表す。
    Figure 0004946864
  8. 請求項3に記載の製造方法によって式(4)で表される化合物を得て、該式(4)で表される化合物と式Rで表される基を有するアルキル化剤とを反応させる下式(7)で表される化合物の製造方法。
    Figure 0004946864
    ただし、EおよびXは前記と同じ意味を表し、Rはエーテル性酸素原子または窒素原子を含んでいてもよい、炭素数1〜10のアルキル基を表す。
  9. 請求項3に記載の製造方法によって式(4)で表される化合物を得て、該式(4)で表される化合物と下式(8)で表される化合物とを反応させる下式(9)で表される化合物の製造方法。
    [(Z(R)(R)(R)(R)](L)k− (8)
    Figure 0004946864
    ただし、EおよびXは、前記と同じ意味を表す。Zは、窒素原子またはリン原子を表す。R、R、R、およびRは、それぞれ独立に、エーテル性酸素原子、窒素原子、およびリン原子からなる群から選ばれる1種以上の原子を含んでいてもよい炭素数1〜10の1価炭化水素基、または水素原子を表す。または、R、R、R、およびRから選ばれる2〜4個の基は、それぞれ連結して環構造を形成し、環構造を形成しない残余の基が存在する場合、該残余の基はエーテル性酸素原子、窒素原子、およびリン原子からなる群から選ばれる1種以上の原子を含んでいてもよい炭素数1〜10の1価炭化水素基、または水素原子を、示す。(L)k−は、k価のアニオンを示す。kは、1または2を表す。
  10. 下式(7A)で表される化合物。
    Figure 0004946864
JP2007511195A 2005-04-01 2006-03-31 ジスルホニルフロリド化合物の製造方法 Expired - Fee Related JP4946864B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007511195A JP4946864B2 (ja) 2005-04-01 2006-03-31 ジスルホニルフロリド化合物の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005106573 2005-04-01
JP2005106573 2005-04-01
PCT/JP2006/306927 WO2006106960A1 (ja) 2005-04-01 2006-03-31 ジスルホニルフロリド化合物の製造方法
JP2007511195A JP4946864B2 (ja) 2005-04-01 2006-03-31 ジスルホニルフロリド化合物の製造方法

Publications (2)

Publication Number Publication Date
JPWO2006106960A1 JPWO2006106960A1 (ja) 2008-09-18
JP4946864B2 true JP4946864B2 (ja) 2012-06-06

Family

ID=37073510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007511195A Expired - Fee Related JP4946864B2 (ja) 2005-04-01 2006-03-31 ジスルホニルフロリド化合物の製造方法

Country Status (6)

Country Link
US (1) US8067585B2 (ja)
EP (1) EP1864970A4 (ja)
JP (1) JP4946864B2 (ja)
KR (1) KR101097072B1 (ja)
CN (1) CN101155777B (ja)
WO (1) WO2006106960A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041076A (ja) * 2007-08-09 2009-02-26 Asahi Glass Co Ltd 含フッ素化合物の製造方法
EP2179995A4 (en) * 2007-08-17 2012-05-09 Asahi Glass Co Ltd METHOD FOR THE PRODUCTION OF PURIFIED AMMONIUM SALT FROM FLUORINATED BIS-SULFONYLIMIDE
WO2010110388A1 (ja) 2009-03-27 2010-09-30 旭硝子株式会社 蓄電デバイス用電解液および蓄電デバイス
JP2011241344A (ja) 2010-05-20 2011-12-01 Toyota Central R&D Labs Inc 高分子電解質及びその製造方法、イミドモノマ、並びに、電池
EP2922127B1 (en) 2012-11-14 2017-11-29 Asahi Glass Company, Limited Method for manufacturing ionic polymer film
JP7363812B2 (ja) * 2018-12-19 2023-10-18 Agc株式会社 ポリマー、ポリマーの製造方法及び膜の製造方法
JPWO2022203074A1 (ja) 2021-03-26 2022-09-29

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146766A (en) * 1981-01-30 1982-09-10 Minnesota Mining & Mfg Manufacture of cyclic fluorocarbon acids, salts and compounds
JPS6226264A (ja) * 1985-07-24 1987-02-04 リサ−チ・コ−ポレイシヨン N−フルオロ−n−ペルフルオロメチルスルホンアミド類
JP2000506132A (ja) * 1996-03-01 2000-05-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 環状パーフルオロアルカンビス(スルホニル)イミドとこのような新規な四員環イミドの製造方法
WO2004041978A1 (en) * 2002-11-04 2004-05-21 Solutia Inc. Functional fluid compositions containing erosion inhibitors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57327A (en) 1980-05-31 1982-01-05 Takada Sumio Supercharger for automobile engine
US4697011A (en) 1985-07-24 1987-09-29 Research Corporation N-fluoro-N-perfluoromethyl sulfonamides
JPH09188648A (ja) * 1996-01-09 1997-07-22 Seimi Chem Co Ltd パーフルオロスクシニルジフルオリドの製造方法
JP2881194B1 (ja) 1998-03-18 1999-04-12 財団法人地球環境産業技術研究機構 含フッ素ジエーテル化合物およびその製造方法
JP2003212809A (ja) 2002-01-15 2003-07-30 Asahi Kasei Corp 新規な含フッ素エーテル化合物およびその製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146766A (en) * 1981-01-30 1982-09-10 Minnesota Mining & Mfg Manufacture of cyclic fluorocarbon acids, salts and compounds
JPS6226264A (ja) * 1985-07-24 1987-02-04 リサ−チ・コ−ポレイシヨン N−フルオロ−n−ペルフルオロメチルスルホンアミド類
JP2000506132A (ja) * 1996-03-01 2000-05-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 環状パーフルオロアルカンビス(スルホニル)イミドとこのような新規な四員環イミドの製造方法
WO2004041978A1 (en) * 2002-11-04 2004-05-21 Solutia Inc. Functional fluid compositions containing erosion inhibitors

Also Published As

Publication number Publication date
EP1864970A1 (en) 2007-12-12
US20080091009A1 (en) 2008-04-17
KR101097072B1 (ko) 2011-12-22
CN101155777A (zh) 2008-04-02
US8067585B2 (en) 2011-11-29
JPWO2006106960A1 (ja) 2008-09-18
EP1864970A4 (en) 2010-03-24
WO2006106960A1 (ja) 2006-10-12
KR20070116241A (ko) 2007-12-07
CN101155777B (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4946864B2 (ja) ジスルホニルフロリド化合物の製造方法
US20050256334A1 (en) Process for the preparation of bis(perfluoroalkyl)phosphinic acids and salts thereof
KR101925482B1 (ko) (플루오로술포닐)퍼플루오로알칸술포닐이미드염의 제조 방법
EP2484662A1 (en) Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
US7408019B2 (en) Fluorinated ether compound
JP4744356B2 (ja) 電解フッ素化方法
US20120184763A1 (en) Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
WO2006115018A1 (ja) カップリング反応によるフルオロスルホニル基を有する化合物の製造方法
Koshechko et al. Electrochemically activated insertion of fluoroalkyl groups into organic and inorganic substrates
JP4993462B2 (ja) フッ素化合物の製造方法
JPWO2004096759A1 (ja) パーフルオロアルカンスルホニルフルオライドの製造方法
JP5158073B2 (ja) ジフルオロメタンビス(スルホニルフルオリド)の製造方法
JP2006335699A (ja) モノマー中間体の製造方法
RU2221765C1 (ru) Способ получения перфторированных органических соединений
JP2008222659A (ja) スルホンアミド化合物の製造方法
EP1325906B1 (en) Alkyl esters of 2-(2-fluorosulphonyl)-perfluoroethylenoxy-3-halogen-propionic acid
JP2016060698A (ja) 1,2−ビス(2,2−ジフルオロエトキシ)エタンおよびその製造方法
EP2554530B2 (en) Method for producing 3-chloro-pentafluoropropene
JP2006124283A (ja) トリフルオロメチル基含有エナミンおよびその誘導体の製造方法
JP2003268582A (ja) ブロモ置換アゼチジノン化合物の製造方法
JP2004018486A (ja) フッ素化モノマーの製造法
JP2007131877A (ja) フルオロスルホニル基を有する化合物の製造方法および新規化合物

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4946864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees