WO2011036760A1 - 二次電池システム - Google Patents

二次電池システム Download PDF

Info

Publication number
WO2011036760A1
WO2011036760A1 PCT/JP2009/066617 JP2009066617W WO2011036760A1 WO 2011036760 A1 WO2011036760 A1 WO 2011036760A1 JP 2009066617 W JP2009066617 W JP 2009066617W WO 2011036760 A1 WO2011036760 A1 WO 2011036760A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
peak
value
battery
difference value
Prior art date
Application number
PCT/JP2009/066617
Other languages
English (en)
French (fr)
Inventor
上木 智善
玉根 靖之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/066617 priority Critical patent/WO2011036760A1/ja
Priority to JP2010544105A priority patent/JP5287872B2/ja
Priority to US13/145,118 priority patent/US8653793B2/en
Priority to CN2009801585607A priority patent/CN102369627B/zh
Publication of WO2011036760A1 publication Critical patent/WO2011036760A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery system.
  • Patent Documents 1 to 4 the state of charge (charged amount or SOC) of the secondary battery is detected based on the battery voltage of the secondary battery.
  • SOC State Of ⁇ ⁇ ⁇ Charge
  • lithium ion secondary batteries have been proposed in which the amount of change in battery voltage accompanying changes in the amount of stored electricity is small and stable output characteristics can be obtained.
  • a lithium ion secondary battery provided with the positive electrode active material which consists of lithium manganate which has a spinel type crystal structure is mentioned.
  • This lithium ion secondary battery has a small amount of change in battery voltage accompanying a change in charged amount over a capacity range of 50% or more of the whole battery capacity (specifically, a capacity range corresponding to 15% to 80% SOC). .
  • a capacity range corresponding to 15% to 80% SOC specifically, there is a possibility that the state of the secondary battery cannot be detected appropriately.
  • the present invention has been made in view of the present situation, and an object thereof is to provide a secondary battery system capable of accurately detecting the state of the secondary battery system.
  • One embodiment of the present invention is a secondary battery system including a secondary battery, and the secondary battery includes a positive electrode active material formed of lithium manganate having a spinel-type crystal structure and a phase change due to charge and discharge.
  • the secondary battery system includes a change amount dQ of the storage amount Q of the secondary battery with respect to a change amount dV of the battery voltage V of the secondary battery during charging and discharging of the secondary battery.
  • the secondary battery system detects the state of the secondary battery system.
  • the above-described secondary battery system includes a secondary battery including a positive electrode active material made of lithium manganate having a spinel crystal structure and a negative electrode active material that undergoes phase change by charging and discharging.
  • the amount of change in battery voltage accompanying a change in SOC is small over a range of SOC 15% to 80%.
  • the battery voltage value changes only from about 3.8 V to about 4.0 V in a wide range from SOC 15% to SOC 80%. Therefore, a high battery voltage value of around 3.9 V can be stably maintained over the SOC range of 15% to 80%. For this reason, a high output can be stably obtained by using this secondary battery within the range of SOC 15% to 80%.
  • the state of the secondary battery system is detected based on the peak appearing on the V-dQ / dV curve representing the relationship between the value of the battery voltage V and the value of dQ / dV.
  • V-dQ / dV curve representing the relationship between the value of the battery voltage V and the value of dQ / dV.
  • the “negative electrode active material accompanied by phase change by charge / discharge” refers to a negative electrode active material whose crystal structure changes during charge / discharge, and can be exemplified by a carbon material.
  • the carbon material include natural graphite (such as graphite), artificial graphite (such as mesocarbon microbeads), and non-graphitizable carbon material.
  • examples of the state of the secondary battery system that can be detected include the state of the secondary battery and the abnormality of the secondary battery system.
  • Examples of the state of the secondary battery include a state of charge (SOC), a decrease in battery capacity (full charge capacity), and an increase in internal resistance.
  • SOC state of charge
  • full charge capacity full charge capacity
  • secondary battery system abnormalities include internal micro short-circuits of secondary batteries, poor connection of secondary batteries (connection failure of connection terminals of cables connected to external terminals of secondary batteries, and two secondary batteries. For example, a connection failure of a connecting member for connecting the terminals of the other.
  • the secondary battery system is configured such that the secondary battery is on the V-dQ / dV curve based on the value of the battery voltage V and the value of the dQ / dV. Whether the secondary battery has reached a state corresponding to the first peak that appears, and the battery voltage V that is the second peak that appears on the V-dQ / dV curve and is higher than the battery voltage V of the first peak. And a battery voltage value V1 when it is determined by the determination means that the secondary battery has reached a state corresponding to the first peak. And a secondary battery system that detects a state of the secondary battery system based on an actual voltage difference value that is a difference value between the battery voltage value V2 and the battery voltage value V2 when the state corresponding to the second peak is determined. Then There.
  • the determination means determines whether the determination means has reached a state corresponding to the first peak appearing on the V-dQ / dV curve based on the value of the battery voltage V and the value of dQ / dV. Judge whether. Specifically, for example, the determination means is configured such that the value of the battery voltage V actually measured for the secondary battery and the value of dQ / dV calculated by the dQ / dV calculation means at this time are V ⁇ dQ / dV It is determined whether or not the value indicates the first peak on the curve.
  • the determining means determines whether the secondary battery has reached a state corresponding to the second peak appearing on the V-dQ / dV curve based on the value of the battery voltage V and the value of dQ / dV.
  • the determination means is configured such that the value of the battery voltage V actually measured for the secondary battery and the value of dQ / dV calculated by the dQ / dV calculation means at this time are V ⁇ dQ / dV It is determined whether or not the value indicates the second peak on the curve.
  • the determination unit has reached the state corresponding to the battery voltage value V1 and the second peak when it is determined that the secondary battery has reached the state corresponding to the first peak.
  • the state of the secondary battery system (for example, increase in internal resistance of the secondary battery or poor connection of the secondary battery) can be detected with high accuracy.
  • the present inventor determines that the battery voltage value V1 applied to the first peak and the battery voltage value V2 applied to the second peak of the V-dV / dQ curve as the internal resistance of the secondary battery increases.
  • the actually measured voltage difference value ⁇ VS is the reference voltage difference value ⁇ VK (for example, the battery voltage value V1 relating to the first peak and the second peak previously obtained for the secondary battery in the initial state). If it is larger than the difference value (battery voltage value V2), it can be determined that the internal resistance of the secondary battery is increasing.
  • the battery voltage value V1 applied to the first peak and the battery voltage value V2 applied to the second peak of the V-dV / dQ curve are compared with the case where there is no connection failure.
  • the actually measured voltage difference value ⁇ VS when the connection failure of the secondary battery occurs is larger than when the internal resistance of the secondary battery increases. Further, in the secondary battery having an increased internal resistance, the decrease rate of the actually measured voltage difference value ⁇ VS will not exceed 1.8 times the reference voltage difference value ⁇ VK, no matter how large the internal resistance increases.
  • a connection failure of the secondary battery based on the measured voltage difference value ⁇ VS. Specifically, for example, when the measured voltage difference value ⁇ VS exceeds a predetermined threshold (for example, 1.8 times the reference voltage difference value ⁇ VK), it is determined that a connection failure of the secondary battery has occurred. can do.
  • a predetermined threshold for example, 1.8 times the reference voltage difference value ⁇ VK
  • the secondary battery system includes resistance increase detection means for detecting an increase in internal resistance of the secondary battery, and the resistance increase detection means A reference voltage difference value, which is a difference value between the battery voltage value V1 applied to the first peak and the battery voltage value V2 applied to the second peak, stored in the system, and the secondary battery in an initial state When the measured voltage difference value is larger than the reference voltage difference value, it is determined that the internal resistance of the secondary battery is increased.
  • the secondary battery system is good.
  • the resistance rise detection means applies the reference voltage difference value ⁇ VK stored in the secondary battery system in advance (the first peak obtained in advance in the secondary battery in the initial state).
  • the measured voltage difference value ⁇ VS is larger than the reference voltage difference value ⁇ VK
  • the difference between the battery voltage value V1 and the battery voltage value V2 applied to the second peak is compared with the measured voltage difference value ⁇ VS. It is determined that the internal resistance of the secondary battery has increased.
  • the increase in internal resistance of the secondary battery can be detected appropriately according to the resistance increase detection means described above.
  • any one of the secondary battery systems described above wherein the secondary battery system includes a connection failure detection unit that detects a connection failure of the secondary battery, and the connection failure detection unit includes the secondary battery in advance.
  • a reference voltage difference value which is a difference value between the battery voltage value V1 applied to the first peak and the battery voltage value V2 applied to the second peak, stored in the system, and the secondary battery in an initial state If the measured voltage difference value is greater than the reference voltage difference value and greater than a predetermined threshold value, the secondary battery is connected.
  • a secondary battery system that determines that a defect has occurred is preferable.
  • the connection failure detection means applies the reference voltage difference value ⁇ VK stored in the secondary battery system in advance (the first peak obtained in advance in the secondary battery in the initial state). Battery voltage value V1 and battery voltage value V2 applied to the second peak) and measured voltage difference value ⁇ VS are compared, and measured voltage difference value ⁇ VS is larger than reference voltage difference value ⁇ VK and predetermined If the threshold value (for example, 1.8 times the reference voltage difference value ⁇ VK) is exceeded, it is determined that a connection failure of the secondary battery has occurred. Thereby, the connection failure of a secondary battery can be detected appropriately. When a connection failure of the secondary battery is detected, a signal indicating a connection failure may be output to prompt confirmation of the connection.
  • the threshold value for example, 1.8 times the reference voltage difference value ⁇ VK
  • any one of the above secondary battery systems wherein the secondary battery system is configured such that the secondary battery is based on the V-dQ / dV curve based on the value of the battery voltage V and the value of the dQ / dV. Whether the secondary battery has reached a state corresponding to the first peak appearing above, and the battery voltage value V is a second peak appearing on the V-dQ / dV curve and higher than the first peak. And determining means for determining whether or not the state corresponding to the second peak has been reached, and when the secondary battery is determined to have reached the state corresponding to the first peak by the determining means.
  • Secondary battery system to detect It may be a no.
  • the determination means determines whether the determination means has reached a state corresponding to the first peak appearing on the V-dQ / dV curve based on the value of the battery voltage V and the value of dQ / dV. Judge whether. Specifically, for example, the determination means is configured such that the value of the battery voltage V actually measured for the secondary battery and the value of dQ / dV calculated by the dQ / dV calculation means at this time are V ⁇ dQ / dV It is determined whether or not the value indicates the first peak on the curve.
  • the determining means determines whether the secondary battery has reached a state corresponding to the second peak appearing on the V-dQ / dV curve based on the value of the battery voltage V and the value of dQ / dV.
  • the determination means is configured such that the value of the battery voltage V actually measured for the secondary battery and the value of dQ / dV calculated by the dQ / dV calculation means at this time are V ⁇ dQ / dV It is determined whether or not the value indicates the second peak on the curve.
  • the determination unit determines that the secondary battery has reached the state corresponding to the first peak
  • the secondary battery has a storage amount Q1 and a state corresponding to the second peak.
  • the state of the secondary battery system (for example, capacity reduction of the secondary battery or internal minute short circuit of the secondary battery) can be accurately detected.
  • the inventor of the present application is in a state corresponding to the storage amount Q1 and the second peak when the secondary battery reaches a state corresponding to the first peak as the battery capacity of the secondary battery decreases.
  • the measured storage amount difference value ⁇ QS is based on the reference storage amount difference value ⁇ QK (for example, the difference value between the storage amount Q1 and the storage amount Q2 acquired in advance for the secondary battery in the initial state). Is smaller, it can be determined that the capacity of the secondary battery is reduced.
  • the secondary battery in which the internal micro short circuit has occurred is compared with the secondary battery in which the internal micro short circuit has not occurred, and the storage amount Q1 and the second peak when the secondary battery reaches a state corresponding to the first peak.
  • the measured voltage difference value ⁇ VS of the secondary battery in which the internal micro short circuit has occurred becomes larger than the measured voltage difference value ⁇ VS of the secondary battery whose battery capacity has decreased.
  • the decrease rate of the actually measured storage amount difference value ⁇ QS does not fall below 75% of the reference storage amount difference value ⁇ QK, no matter how much the capacity decreases.
  • the secondary battery system includes a capacity decrease detection unit that detects a decrease in the battery capacity of the secondary battery, and the capacity decrease detection unit includes the secondary battery in advance.
  • the storage amount Q1 of the secondary battery related to the first peak stored in the system (the storage amount Q1 of the secondary battery when the secondary battery reaches the state corresponding to the first peak) and the first It is a reference storage amount difference value that is a difference value from the storage amount Q2 of the secondary battery for two peaks (the storage amount Q2 of the secondary battery when the secondary battery reaches a state corresponding to the second peak).
  • comparing the reference storage amount difference value for the secondary battery in the initial state with the measured storage amount difference value, and the measured storage amount difference value is smaller than the reference storage amount difference value Judge that the battery capacity of the secondary battery is low It may be a secondary battery system.
  • the capacity decrease detection means has a reference storage amount difference value ⁇ QK stored in the secondary battery system in advance (the storage amount Q1 previously acquired in the secondary battery in the initial state).
  • the measured storage amount difference value ⁇ QS is smaller than the reference storage amount difference value ⁇ QK by comparing the measured storage amount difference value ⁇ QS with the measured storage amount difference value ⁇ QS, the battery capacity of the secondary battery decreases.
  • the secondary battery system includes a micro short-circuit detecting unit that detects an internal micro short-circuit of the secondary battery, and the micro short-circuit detecting unit is preliminarily provided with the secondary battery system.
  • the storage amount Q1 of the secondary battery related to the first peak stored in the battery system (the storage amount Q1 of the secondary battery when the secondary battery reaches a state corresponding to the first peak) and the A reference storage amount difference value that is a difference value from the storage amount Q2 of the secondary battery related to the second peak (the storage amount Q2 of the secondary battery when the secondary battery reaches a state corresponding to the second peak).
  • the reference voltage difference value applied to the secondary battery in the initial state is compared with the measured charge quantity difference value so that the measured voltage difference value is smaller than the reference voltage difference value and a predetermined threshold value. If it is smaller than May be a secondary battery system determines that part micro short circuit has occurred.
  • the micro short-circuit detection means has a reference storage amount difference value ⁇ QK (stored in advance in the secondary battery in the initial state and the storage amount Q1 previously stored in the secondary battery system). (Difference value with storage amount Q2) and measured storage amount difference value ⁇ QS, and when measured storage amount difference value ⁇ QS is smaller than reference storage amount difference value ⁇ QK and smaller than a predetermined threshold value, It is determined that an internal micro short circuit has occurred in the battery. Thereby, the internal minute short circuit of a secondary battery can be detected appropriately. In addition, when the internal micro short circuit of a secondary battery is detected, it is good to output the signal to the effect that the secondary battery is abnormal, and to promote replacement of the secondary battery.
  • the secondary battery system includes control means for controlling charging / discharging of the secondary battery, and the control means includes the battery voltage V of the secondary battery.
  • the control means includes the battery voltage V of the secondary battery.
  • the first peak and the second peak appearing on the V-dQ / dV curve so as not to exceed the battery voltage value V2 at the second peak applied to the battery voltage V higher than the first peak.
  • a secondary battery system that controls charging and discharging of the secondary battery is preferable.
  • the secondary battery according to the above secondary battery system has a positive electrode active material made of lithium manganate having a spinel crystal structure.
  • Mn 2+ eluted from the positive electrode has a problem that the surface of the negative electrode is covered and Li intercalated in the negative electrode is extracted to deteriorate the battery performance.
  • the inventor of the present application has found that the elution of Mn 2+ is caused by the change in the crystal structure accompanying the valence change of Mn (Mn 3+ ⁇ Mn 4+ ) in the positive electrode active material accompanying charge / discharge. It was. Furthermore, it has been found that the second peak appearing on the V-dQ / dV curve is caused by a change in the crystal structure of the positive electrode active material. From these, the battery voltage value V of the secondary battery reaches the battery voltage value V2 at the second peak appearing on the V-dQ / dV curve, and when it exceeds this, Mn 2+ is eluted from the positive electrode, and the battery performance Considered to deteriorate.
  • the secondary battery is controlled by the control means so that the battery voltage value V of the secondary battery does not exceed the battery voltage value V2 at the second peak appearing on the V-dQ / dV curve. Controls charging and discharging of Thereby, since it can suppress that Mn ⁇ 2+> elutes from a positive electrode, deterioration of the battery performance resulting from elution of Mn ⁇ 2+> can be suppressed.
  • the secondary battery system is configured such that the secondary battery is on the V-dQ / dV curve based on the value of the battery voltage V and the value of the dQ / dV.
  • the determination means determines whether the determination means has reached a state corresponding to the second peak appearing on the V-dQ / dV curve based on the value of the battery voltage V and the value of dQ / dV. Judge whether. Specifically, for example, the determination means is configured such that the value of the battery voltage V actually measured for the secondary battery and the value of dQ / dV calculated by the dQ / dV calculation means at this time are V ⁇ dQ / dV It is determined whether or not the value indicates the second peak on the curve.
  • the control means stops charging the secondary battery. Then, excessive discharge control is performed for the secondary battery. Specifically, the amount of discharged electricity is made larger than the amount of charged electricity to charge / discharge the secondary battery. Thereby, the battery voltage value of the secondary battery can be made smaller than the battery voltage value V2 at the second peak on the V-dQ / dV curve. Therefore, it can suppress that Mn ⁇ 2+> elutes from a positive electrode.
  • FIG. 1 is a schematic diagram of a hybrid vehicle according to Examples 1 to 3.
  • FIG. 1 is a schematic diagram of a secondary battery system according to Example 1.
  • FIG. 1 is a cross-sectional view of secondary batteries according to Examples 1 to 3.
  • FIG. It is sectional drawing of the electrode body concerning the secondary battery. It is a partial expanded sectional view of the electrode body, and is equivalent to the B section enlarged view of FIG. It is a figure which shows the relationship between SOC concerning a secondary battery, and battery voltage.
  • 3 is a flowchart showing a flow of charge / discharge control and state detection of the secondary battery according to Example 1; 3 is a flowchart showing a flow of charge / discharge control and state detection of the secondary battery according to Example 1; It is a figure which shows the VdQ / dV curve of the secondary battery concerning an initial state. It is a figure which shows the VdQ / dV curve of the secondary battery which internal resistance raised.
  • 6 is a schematic diagram of a secondary battery system according to Example 2.
  • FIG. It is a figure explaining the connection of the positive electrode terminal of a secondary battery, and a cable.
  • FIG. 7 is a main routine for detecting a state of a secondary battery according to Example 2.
  • FIG. 7 is a subroutine for secondary battery state detection according to a second embodiment.
  • 6 is a schematic diagram of a secondary battery system according to Example 3.
  • 9 is a main routine for detecting a state of a secondary battery according to Example 3.
  • 10 is a subroutine for secondary battery state detection according to a third embodiment.
  • the hybrid vehicle 1 includes a vehicle body 2, an engine 3, a front motor 4, a rear motor 5, a cable 7, and a secondary battery system 6, and is used in combination with the engine 3, the front motor 4, and the rear motor 5. It is a hybrid car that drives. Specifically, the hybrid vehicle 1 is configured such that the secondary battery system 6 can be driven using the engine 3, the front motor 4, and the rear motor 5 by known means using the secondary battery system 6 as a driving power source for the front motor 4 and the rear motor 5. Has been.
  • the secondary battery system 6 is attached to the vehicle body 2 of the hybrid vehicle 1, and is connected to the front motor 4 and the rear motor 5 by the cable 7.
  • the secondary battery system 6 includes a battery pack 10 in which a plurality of secondary batteries 100 (unit cells) are electrically connected in series with each other, a voltage detection unit 40, a current detection unit 50, and the like.
  • the battery controller 30 is provided.
  • the battery controller 30 includes a ROM 31, a CPU 32, a RAM 33, and the like.
  • the current detection means 50 detects the current value I flowing through the secondary battery 100 constituting the assembled battery 10. Moreover, the voltage detection means 40 detects the battery voltage V (inter-terminal voltage) for each secondary battery 100 constituting the assembled battery 10.
  • the battery controller 30 controls charging / discharging of the secondary battery 100 constituting the assembled battery 10. Specifically, for example, during operation of the hybrid vehicle 1, the exchange of electricity between the assembled battery 10 (secondary battery 100), the front motor 4, and the rear motor 5 is controlled. Specifically, for example, when the accelerator of the hybrid vehicle 1 is stepped on, the battery controller 30 discharges the assembled battery 10 (secondary battery 100) and passes this electric power to the front motor 4 and the rear motor through an inverter (not shown). 5 is supplied. On the other hand, when the brake of the hybrid vehicle 1 is depressed, the battery controller 30 supplies the electric power generated by the regenerative brake to the assembled battery 10 (secondary battery 100), and each secondary battery constituting the assembled battery 10 is supplied. Charge 100.
  • the secondary battery 100 is a rectangular sealed lithium ion secondary battery including a rectangular parallelepiped battery case 110, a positive electrode terminal 120, and a negative electrode terminal 130.
  • the battery case 110 is made of metal, and includes a rectangular housing portion 111 that forms a rectangular parallelepiped housing space, and a metal lid portion 112.
  • An electrode body 150, a positive current collecting member 122, a negative current collecting member 132, and the like are accommodated in the battery case 110 (rectangular accommodation portion 111).
  • the electrode body 150 is an oblong cross section, and is a flat wound body formed by winding a sheet-like positive electrode plate 155, a negative electrode plate 156, and a separator 157.
  • the electrode body 150 is located at one end (right end in FIG. 3) in the axial direction (left and right in FIG. 3), and a positive winding part 155b in which only a part of the positive electrode plate 155 overlaps in a spiral shape, It is located at the other end (left end in FIG. 3) and has a negative electrode winding part 156b in which only a part of the negative electrode plate 156 overlaps in a spiral shape.
  • the positive electrode plate 155 is coated with a positive electrode mixture 152 including a positive electrode active material 153 at a portion other than the positive electrode winding portion 155b (see FIG. 5).
  • a negative electrode mixture 159 including a negative electrode active material 154 is applied to the negative electrode plate 156 at portions other than the negative electrode winding portion 156b (see FIG. 5).
  • the positive electrode winding part 155 b is electrically connected to the positive electrode terminal 120 through the positive electrode current collecting member 122.
  • the negative electrode winding part 156 b is electrically connected to the negative electrode terminal 130 through the negative electrode current collecting member 132.
  • Example 1 lithium manganate having a spinel crystal structure is used as the positive electrode active material 153. Further, a carbon material (specifically, graphite) is used as the negative electrode active material 154.
  • the negative electrode active material 154 is an active material that undergoes a phase change due to charge / discharge.
  • FIG. 6 shows the relationship between SOC (State Of Charge) applied to the secondary battery 100 in the initial state and the battery voltage value (V).
  • SOC State Of Charge
  • V battery voltage value
  • FIG. 9 shows a V-dQ / dV curve K representing the relationship between the battery voltage V applied to the secondary battery 100 in the initial state and dQ / dV.
  • This V-dQ / dV curve K represents the relationship between the value of dQ / dV obtained by differentiating the charged amount Q with respect to the battery voltage V for the function shown in FIG. 6 and the value of the battery voltage V corresponding thereto.
  • FIG. 9 shows the relationship between the dQ / dV value and the battery voltage V, which is a ratio of the change amount dQ of the stored charge amount Q to the amount dQ.
  • first peak A and second peak B two distinct peaks (first peak A and second peak B) appear in the V-dQ / dV curve K.
  • first peak A appears when the value of the battery voltage V reaches about 3.8V.
  • the SOC of the secondary battery 100 reaches about 25% (see FIG. 6).
  • the second peak B appears when the value of the battery voltage V reaches about 4.0V. Note that when the value of the battery voltage V reaches about 4.0 V, the SOC of the secondary battery 100 reaches about 75% (see FIG. 6).
  • the secondary battery 100 has a small change amount of the battery voltage V due to the change of the SOC (amount of charge Q) over the range of SOC 15% to 80%.
  • the SOC range where the fluctuation of the battery voltage V is small it is difficult to appropriately detect the state of the secondary battery system (secondary battery 100) based on the battery voltage V.
  • the V-dQ / dV curve K has two distinct peaks (the first peak A and the second peak). Peak B) appears. As described above, the first peak A appears at SOC 25%, and the second peak B appears at SOC 75%.
  • the state of the secondary battery 100 is detected based on clear peaks (first peak A and second peak B). For this reason, the state of the secondary battery system 6 (secondary battery 100) (specifically, the SOC of the secondary battery 100, the internal resistance increase of the secondary battery 100, the connection failure of the secondary battery 100) is accurately determined. Can be detected.
  • the battery controller 30 of the secondary battery system 6 integrates the current value I detected by the current detection means 50 every predetermined time T, calculates the charge electricity amount or discharge electricity amount of the secondary battery 100, and calculates The charged amount Q of the secondary battery 100 is estimated from the charged charge amount or the discharged charge amount. Furthermore, the SOC (%) of the secondary battery 100 is estimated based on the estimated storage amount Q and the battery capacity of the secondary battery 100. Furthermore, the battery controller 30 acquires the battery voltage V of each secondary battery 100 detected by the voltage detection means 40 every predetermined time T in synchronization with the current integration.
  • the battery controller 30 is the ratio of the amount of change dQ of the storage amount Q of the secondary battery 100 to the amount of change dV of the battery voltage V of the secondary battery 100 when the assembled battery 10 (secondary battery 100) is charged and discharged.
  • the value of dQ / dV is calculated.
  • the battery voltage V and the storage amount Q are acquired every predetermined time T, while the change amount dV and the storage amount Q of the battery voltage V every predetermined time T are acquired.
  • the change amount dQ is calculated, and based on these, the value of dQ / dV for each predetermined time T is calculated.
  • the battery controller 30 draws a V-dQ / dV curve in real time based on the battery voltage V detected every predetermined time T and the value of dQ / dV calculated every predetermined time T, and this Q ⁇
  • the secondary battery 100 has a first peak on the V-dQ / dV curve. It is determined whether the state corresponding to A or the second peak B has been reached.
  • the value of the battery voltage V detected every predetermined time T and the value of dQ / dV calculated every predetermined time T are the first peak A or the second value on the V-dQ / dV curve. It is determined whether or not a value indicating peak B has been reached.
  • FIG. 7 is a flowchart showing charge / discharge control and state detection after the discharge of the secondary battery 100 is started.
  • FIG. 8 is a flowchart showing charge / discharge control and state detection after charging of the secondary battery 100 is started.
  • the battery controller 30 integrates the current value I detected by the current detection means 50, and calculates the amount of electricity charged in each secondary battery 100.
  • the process proceeds to step S3, and the battery controller 30 estimates the amount of electricity (storage amount Q) stored in each secondary battery 100 based on the calculated amount of charged electricity.
  • the storage amount Q for each predetermined time T is estimated based on the current value I detected every predetermined time T (for example, 1 second).
  • a value of dQ / dV which is a ratio of the change amount dQ of the storage amount Q to the change amount dV of the battery voltage V, is calculated.
  • the charged amount Q of the secondary battery 100 is differentiated by the battery voltage value V corresponding thereto, and the value of dQ / dV is calculated.
  • the change amount dV and the storage amount Q of the battery voltage V every predetermined time T The change amount dQ is calculated, and based on these, the value of dQ / dV for each predetermined time T is calculated.
  • step S5 it is determined whether or not the secondary battery 100 has reached a state corresponding to the first peak A on the V-dQ / dV curve. If it is determined that the state corresponding to the first peak A has not been reached (No), the processes of steps S1 to S5 are repeated at predetermined intervals during the discharge of the secondary battery 100.
  • step S5 determines that the secondary battery 100 has reached the state corresponding to the first peak A (Yes)
  • the process proceeds to step S6, and the battery controller 30 stops the discharge of the secondary battery 100.
  • step S7 the battery controller 30 determines that the secondary battery 100 has reached SOC 25%. Since the first peak A is a clear peak, the battery controller 30 can accurately determine whether or not the secondary battery 100 has reached the state corresponding to the first peak A. For this reason, in the present Example 1, it can detect accurately that the secondary battery 100 reached SOC25%.
  • step S8 the battery controller 30 starts overcharge control for the assembled battery 10 (secondary battery 100). Specifically, the amount of charge electricity is made larger than the amount of discharge electricity, and the secondary battery 100 is charged and discharged. Thereby, the SOC can be gradually increased without reducing the SOC of the secondary battery 100 to less than 25%.
  • step S9 it is determined whether or not the SOC of the secondary battery 100 has reached 50%. Note that the SOC of the secondary battery 100 is estimated by the battery controller 30 every predetermined time as described above.
  • step S9 When the battery controller 30 determines in step S9 that the SOC has not reached 50% (No), the battery controller 30 continues to control overcharging. On the other hand, if it is determined in step S9 that the SOC has reached 50% (Yes), the process proceeds to step SA, the overcharge control is terminated, and the normal charge / discharge control is resumed.
  • the battery controller 30 When the battery controller 30 starts charging the assembled battery 10 (secondary battery 100), as shown in FIG. 8, the battery voltage of each secondary battery 100 detected by the voltage detection means 40 in step T1. While acquiring the value V, the current value I which flows through the secondary battery 100 detected by the current detection means 50 is acquired. In the first embodiment, the battery controller 30 acquires the battery voltage value V and the current value I every predetermined time T (for example, 1 second).
  • the battery controller 30 integrates the current value I detected by the current detection means 50 to calculate the amount of electricity charged in each secondary battery 100.
  • the process proceeds to step T3, and the battery controller 30 estimates the amount of electricity (charged amount Q) stored in each secondary battery 100 based on the calculated amount of charged electricity.
  • the storage amount Q for each predetermined time T is estimated based on the current value I detected every predetermined time T (for example, 1 second).
  • step T4 a value of dQ / dV, which is a ratio of the change amount dQ of the storage amount Q to the change amount dV of the battery voltage V, is calculated.
  • the charged amount Q of the secondary battery 100 is differentiated by the battery voltage value V corresponding thereto, and the value of dQ / dV is calculated.
  • the change amount dV and the storage amount Q of the battery voltage V every predetermined time T The change amount dQ is calculated, and based on these, the value of dQ / dV for each predetermined time T is calculated.
  • step T5 it is determined whether or not the secondary battery 100 has reached a state corresponding to the second peak B on the V-dQ / dV curve. If it is determined that the state corresponding to the second peak B has not been reached (No), the processes of steps T1 to T5 are repeated at predetermined time intervals while the secondary battery 100 is being charged.
  • step T5 if it is determined in step T5 that the secondary battery 100 has reached the state corresponding to the second peak B (Yes), the process proceeds to step T6, and the battery controller 30 stops charging the secondary battery 100. .
  • step T7 the battery controller 30 determines that the secondary battery 100 has reached 75% SOC. Since the second peak B is a clear peak, the battery controller 30 can accurately determine whether or not the secondary battery 100 has reached the state corresponding to the second peak B. For this reason, in the present Example 1, it can detect accurately that the secondary battery 100 reached SOC75%.
  • step T8 the battery controller 30 starts excessive discharge control for the assembled battery 10 (secondary battery 100). Specifically, the amount of discharged electricity is made larger than the amount of charged electricity so that the secondary battery 100 is charged and discharged. Thereby, the SOC can be gradually reduced without increasing the SOC of the secondary battery 100 to more than 75%.
  • step T9 the process proceeds to step T9, and it is determined whether or not the SOC of the secondary battery 100 has reached 50%. Note that the SOC of the secondary battery 100 is estimated by the battery controller 30 every predetermined time as described above.
  • step T9 determines in step T9 that the SOC has not reached 50% (No)
  • the battery controller 30 continues to control excessive discharge.
  • step T9 determines in step T9 that the SOC has reached 50% (Yes)
  • the process proceeds to step TA, the excessive discharge control is terminated, and the normal charge / discharge control is resumed.
  • the battery controller 30 is configured so that the SOC of the secondary battery 100 constituting the assembled battery 10 does not fall below 25% and the SOC does not exceed 75%.
  • the SOC of the secondary battery 100 is controlled.
  • the control center is set to SOC 50%, and charging / discharging control of the secondary battery 100 is performed within the range of SOC 25% to 75%.
  • the amount of change in the battery voltage accompanying the change in the SOC is small in the range of SOC 25% to 75%.
  • the battery voltage value changes only from about 3.8 V to about 4.0 V in a wide range from SOC 25% to SOC 75%. Therefore, it can be stably maintained at a high battery voltage value near 3.9 V over a range of SOC 25% to 75%. For this reason, in the hybrid vehicle 1 of the first embodiment, a high output can be stably obtained from the secondary battery 100, and therefore, good running performance can be exhibited.
  • the secondary battery 100 has the positive electrode active material 153 made of lithium manganate having a spinel crystal structure as described above.
  • the positive electrode active material 153 made of lithium manganate having a spinel crystal structure as described above.
  • Mn 2+ eluted from the positive electrode covers the surface of the negative electrode and extracts Li intercalated in the negative electrode.
  • the battery performance is deteriorated.
  • the inventor of the present application has found that the elution of Mn 2+ is caused by the change in the crystal structure accompanying the valence change of Mn (Mn 3+ ⁇ Mn 4+ ) in the positive electrode active material accompanying charge / discharge. It was. Furthermore, it has been found that the second peak B appearing on the V-dQ / dV curve is caused by a change in the crystal structure of the positive electrode active material (lithium manganate having a spinel crystal structure).
  • the battery voltage V of the secondary battery 100 reaches the battery voltage value V2 at the second peak B appearing on the V-dQ / dV curve, and when exceeding this, Mn 2+ is eluted from the positive electrode, We thought that performance deteriorated.
  • the battery controller 30 causes the battery voltage V of the secondary battery 100 not to exceed the battery voltage value V2 at the second peak B that appears on the V-dQ / dV curve. Thus, charging / discharging of the secondary battery was controlled.
  • the battery controller 30 determines whether or not the secondary battery 100 has reached a state corresponding to the second peak B (see step T5). When it is determined that the secondary battery 100 has reached the state corresponding to the second peak B (Yes), the charging of the secondary battery 100 is stopped (see step T6). Thereafter, excessive discharge control is started for the assembled battery 10 (secondary battery 100) (see step T8). Thereby, the battery voltage V of the secondary battery 100 can be gradually decreased from the battery voltage value V2 without increasing the battery voltage value V2 at the second peak B. Thereby, since it can suppress that Mn ⁇ 2+> elutes from a positive electrode, deterioration of the battery performance resulting from elution of Mn ⁇ 2+> can be suppressed.
  • the battery controller 30 corresponds to dQ / dV calculation means, control means, and determination means.
  • lithium manganate having a spinel crystal structure (positive electrode active material 153), acetylene black (conductive aid), and polyvinylidene fluoride (binder resin) are mixed at a ratio of 87: 10: 3 (weight ratio).
  • this positive electrode slurry was applied to the surface of the aluminum foil 151, dried, and then pressed. Thereby, the positive electrode plate 155 in which the positive electrode mixture 152 was coated on the surface of the aluminum foil 151 was obtained (see FIG. 5).
  • a positive electrode plate 155, a negative electrode plate 156, and a separator 157 were laminated and wound to form an electrode body 150 having an oval cross section (see FIGS. 4 and 5).
  • the positive electrode plate 155, the negative electrode plate 156, and the separator 157 are stacked, an uncoated portion of the positive electrode plate 155 that is not coated with the positive electrode mixture 152 protrudes from one end portion of the electrode body 150.
  • the positive electrode plate 155 is arranged.
  • the negative electrode plate 156 is arranged so that an uncoated portion of the negative electrode plate 156 not coated with the negative electrode mixture 159 protrudes from the opposite side of the positive electrode plate 155 from the uncoated portion.
  • the electrode body 150 (refer FIG. 3) which has the positive electrode winding part 155b and the negative electrode winding part 156b is formed.
  • a porous film made of polyethylene is used as the separator 157.
  • the positive electrode winding part 155 b of the electrode body 150 and the positive electrode terminal 120 are connected through the positive electrode current collecting member 122. Further, the negative electrode winding portion 156 b of the electrode body 150 and the negative electrode terminal 130 are connected through the negative electrode current collecting member 132. Then, this was accommodated in the square accommodating part 111, the square accommodating part 111 and the cover part 112 were welded, and the battery case 110 was sealed. Next, the electrolyte solution is injected through a liquid injection port (not shown) provided in the lid portion 112, and then the liquid injection port is sealed, whereby the secondary battery 100 of Example 1 is completed.
  • a liquid injection port not shown
  • Example 1 lithium hexafluorophosphate (LiPF 6 ) was added as an electrolytic solution to a solution obtained by mixing EC (ethylene carbonate) and DEC (diethyl carbonate) at a ratio of 4: 6 (volume ratio). What was melt
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example 2 In Example 2, first, a cycle deterioration test was performed on the secondary battery 100. First, four thermostats with different temperatures in the bath from 0 ° C., 25 ° C., 45 ° C., and 60 ° C. were prepared. Next, one secondary battery 100 was placed in each thermostat, and each secondary battery 100 was subjected to cycle charge / discharge. Specifically, the charge upper limit voltage value was 4.2 V, the discharge lower limit voltage value was 3.0 V, and 500 cycles of charge / discharge were performed at a current value of 2C. In this way, cycle charge / discharge was performed under four different environmental temperatures to promote the deterioration of the secondary battery 100.
  • each secondary battery 100 was discharged at a current value of 1/3 C until the battery voltage reached 3.0V. Then, it charged with the electric current value of 1 / 5C, and set it as SOC50%. In this state, the internal resistance of each secondary battery 100 was measured by the AC impedance method. Specifically, 1252A manufactured by Sortlan was used as an FRA (frequency response analyzer), and SI1287 manufactured by Sortlan was used as a control unit, and the frequency was changed from 1 MHz to 1 Hz while applying a potential amplitude of 5 mV.
  • FRA frequency response analyzer
  • the value measured when the frequency was 1 kHz was taken as the internal resistance value (m ⁇ ) of the secondary battery 100.
  • m ⁇ the internal resistance value of the secondary battery 100.
  • a V-dQ / dV curve representing the relationship between the value of the battery voltage V and the value of dQ / dV was obtained for each secondary battery 100 subjected to the cycle deterioration test described above. Specifically, with respect to each secondary battery 100, during a predetermined time T (for example, 1 second) from the SOC 0% (battery voltage 3.0V) to the SOC 100% (battery voltage 4.2V), the storage amount Q and the battery A voltage V was obtained.
  • T for example, 1 second
  • a value of dQ / dV that is a ratio of the change amount dQ of the storage amount Q to the change amount dV of the battery voltage V every predetermined time is calculated, and the value of this dQ / dV And the battery voltage V was expressed as a V-dQ / dV curve.
  • V-dQ / dV curve applied to the secondary battery 100 placed in a constant temperature bath at 60 ° C. and subjected to a cycle deterioration test is shown in FIG.
  • the cable 127 that connects the battery controller 130 and the like to the positive electrode terminal 120 of the secondary battery 100 is connected as follows. As shown in FIG. 12, a nut 126 is screwed into the screw portion 125b of the bolt 125 in a state where the screw portion 125b of the bolt 125 is inserted into the through hole 120c of the positive terminal 120 and the through hole 127c of the connection terminal 127b. Then, the positive terminal 120 and the connection terminal 127b are fastened. Accordingly, the positive electrode terminal 120 and the connection terminal 127b can be brought into close contact with each other and can be appropriately connected. Therefore, here, the nut 126 is loosened so that the positive electrode terminal 120 and the connection terminal 127b are not in close contact with each other, thereby establishing a connection failure state.
  • V-dQ / dV curve (see FIG. 9) of the secondary battery 100 in the initial state
  • V-dQ / dV curve (see FIG. 10) of the secondary battery 100 whose internal resistance has been increased by the cycle deterioration test. Compare Two distinct peaks (first peak A and second peak B) appear in the two V-dQ / dV curves.
  • the difference value ⁇ V between the battery voltage value V1 at the first peak A and the battery voltage value V2 at the second peak B increases as the internal resistance of the secondary battery 100 increases.
  • the difference value ⁇ V is extremely large in the poorly connected secondary battery 100 (about 1.9 times that of the secondary battery 100 in the initial state).
  • the hybrid vehicle 201 of the second embodiment is different from the hybrid vehicle 1 of the first embodiment only in the secondary battery system (see FIG. 1).
  • the secondary battery system of the second embodiment is different from the secondary battery system 6 of the first embodiment only in the battery controller, and the others are the same. Therefore, here, the description will focus on the points different from the first embodiment, and the description of the same points will be omitted or simplified.
  • the secondary battery system 26 of the second embodiment includes an assembled battery 10, a voltage detection unit 40, a current detection unit 50, and a battery controller 130.
  • the battery controller 130 includes a ROM 131, a CPU 132, a RAM 133, and the like.
  • the battery controller 130 draws a V-dQ / dV curve in real time based on the value of dQ / dV calculated every predetermined time T, and this Q-dQ / dV curve and the V stored in the ROM 31. Whether the secondary battery 100 has reached a state corresponding to the first peak A or the second peak B on the V-dQ / dV curve by comparison (pattern matching) with the dQ / dV curve K (see FIG. 9) Judging.
  • the value of the battery voltage V detected every predetermined time T and the value of dQ / dV calculated every predetermined time T are the first peak A or the second value on the V-dQ / dV curve. It is determined whether or not a value indicating peak B has been reached.
  • the battery controller 130 determines that the secondary battery 100 has reached the state corresponding to the first peak A
  • the battery voltage value V1 battery of the secondary battery 100 detected by the voltage detection unit 40 at that time is determined.
  • the battery voltage value V1) of the secondary battery 100 detected by the voltage detection means 40 at the time when it is estimated by the controller 130 that the secondary battery 100 has reached the state corresponding to the first peak A is stored.
  • the battery voltage value V2 of the secondary battery 100 detected by the voltage detection means 40 at that time (according to the determination of the battery controller 130).
  • the battery controller 130 compares the reference voltage difference value ⁇ VK with the actually measured voltage difference value ⁇ VS. When the measured voltage difference value ⁇ VS is larger than the reference voltage difference value ⁇ VK, it is determined that the internal resistance of the secondary battery 100 has increased. In particular, when the measured voltage difference value ⁇ VS is larger than 1.8 times the reference voltage difference value ⁇ VK, it is determined that a connection failure of the secondary battery 100 has occurred. In this case, the battery controller 130 outputs a signal indicating that the connection failure of the secondary battery 100 has occurred and prompts the confirmation of the connection of the secondary battery 100.
  • the SOC of the secondary battery 100 constituting the assembled battery 10 does not fall below 25% by the battery controller 130 as in the secondary battery system 6 of the first embodiment.
  • the SOC of the secondary battery 100 is controlled so that the SOC does not exceed 75% (see FIGS. 7 and 8). In this way, charge / discharge of the secondary battery 100 is controlled within the range of SOC 25% to 75% with the control center as SOC 50%.
  • step U1 when the battery controller 130 starts charge / discharge control of the assembled battery 10 (secondary battery 100), as shown in FIG. 14, in step U1, each of the secondary batteries 100 detected by the voltage detecting means 40 is displayed.
  • the battery voltage value V is acquired, and the current value I flowing through the secondary battery 100 detected by the current detection unit 50 is acquired.
  • the battery controller 130 acquires the battery voltage value V and the current value I every predetermined time T (for example, 1 second).
  • the battery controller 130 integrates the current value I detected by the current detection means 50, and calculates the charge electricity amount of each secondary battery 100.
  • the process proceeds to step U3, and the battery controller 130 estimates the amount of electricity (charged amount Q) stored in each secondary battery 100 based on the calculated amount of charged electricity.
  • the storage amount Q for each predetermined time T is estimated based on the current value I detected every predetermined time T (for example, 1 second).
  • a value of dQ / dV which is a ratio of the amount of change dQ of the storage amount Q to the amount of change dV of the battery voltage V.
  • the charged amount Q of the secondary battery 100 is differentiated by the battery voltage value V corresponding thereto, and the value of dQ / dV is calculated.
  • the change amount dV and the storage amount Q of the battery voltage V every predetermined time T The change amount dQ is calculated, and based on these, the value of dQ / dV for each predetermined time T is calculated.
  • step U51 it is determined whether or not each secondary battery 100 has reached a state corresponding to the first peak A on the V-dQ / dV curve.
  • the battery controller 130 draws a V-dQ / dV curve in real time based on the value of dQ / dV calculated every predetermined time T, and the V-dQ / dV curve is stored in the ROM 131.
  • Whether or not the secondary battery 100 has reached the state corresponding to the first peak A on the V-dQ / dV curve is determined by comparison (pattern matching) with the V-dQ / dV curve K (see FIG. 9). To do.
  • step U52 each state detected by the voltage detecting means 40 when the state corresponding to the first peak A is reached.
  • the battery voltage value V1 of the secondary battery 100 is stored. After determining that the secondary battery 100 has reached the state corresponding to the first peak A (Yes), the battery controller 130 performs overcharge control until the secondary battery 100 reaches 50% SOC ( (See FIG. 7).
  • step U53 it is determined whether or not each secondary battery 100 has reached a state corresponding to the second peak B on the V-dQ / dV curve.
  • the battery controller 130 draws a V-dQ / dV curve in real time based on the value of dQ / dV calculated every predetermined time T, and the V-dQ / dV curve is stored in the ROM 131. Whether or not the secondary battery 100 has reached the state corresponding to the second peak B on the V-dQ / dV curve is determined by comparison (pattern matching) with the V-dQ / dV curve K.
  • step U54 each state detected by the voltage detection means 40 when the state corresponding to the second peak B is reached.
  • the battery voltage value V2 of the secondary battery 100 is stored. After determining that the secondary battery 100 has reached the state corresponding to the second peak B (Yes), the battery controller 130 performs excessive discharge control until the secondary battery 100 reaches 50% SOC ( (See FIG. 8).
  • step U56 the process proceeds to step U56, in which the calculated actual voltage difference value ⁇ VS is compared with the reference voltage difference value ⁇ VK stored in the ROM 131. Specifically, the value of ⁇ VS / ⁇ VK is calculated by dividing the actually measured voltage difference value ⁇ VS by the reference voltage difference value ⁇ VK.
  • step U57 it is determined whether or not ⁇ VS / ⁇ VK> 1 is satisfied. That is, it is determined whether or not the actually measured voltage difference value ⁇ VS is larger than the reference voltage difference value ⁇ VK.
  • the process returns to the main routine shown in FIG. 14 and ends the series of processes.
  • step U58 determines whether ⁇ VS / ⁇ VK> 1.8 is satisfied. That is, it is determined whether or not the actually measured voltage difference value ⁇ VS is larger than 1.8 times the reference difference value ⁇ VK.
  • Step U58 when it is determined that ⁇ VS / ⁇ VK> 1.8 is not satisfied (No), the process proceeds to Step U59, and it is determined that the internal resistance of the secondary battery 100 is increased. On the other hand, if it is determined that ⁇ VS / ⁇ VK> 1.8 is satisfied (Yes), the process proceeds to step U5A, where it is determined that a connection failure of the secondary battery 100 has occurred. In this case, the process proceeds to step U5B, and a signal indicating that a connection failure of the secondary battery 100 has occurred is output to prompt confirmation of the connection of the secondary battery 100.
  • the state of the secondary battery system 26 (specifically, based on the clear peaks (first peak A and second peak B) appearing on the VdQ / dV curve. Detects an increase in internal resistance and connection failure of the secondary battery 100.
  • the secondary battery 100 is used in a range where the change amount of the battery voltage accompanying the change in the SOC (storage amount) is small (specifically, in the range of SOC 25% to 75%). Nevertheless, it is possible to accurately detect an increase in internal resistance and poor connection of the secondary battery 100.
  • the battery controller 130 corresponds to a dQ / dV calculation unit, a control unit, a determination unit, a resistance increase detection unit, and a connection failure detection unit.
  • Example 3 The battery capacity (full charge capacity) of the four secondary batteries 100 subjected to the cycle deterioration test in Example 2 was measured as follows. First, each secondary battery 100 was charged with a current value of 1/5 C until the battery voltage reached 4.2 V (SOC 100%). Thereafter, charging was performed at a constant voltage of 4.2 V, and the charging was terminated when the current value was reduced to 1/10 of the initial value. Thereafter, each secondary battery 100 was discharged at a current value of 1/5 C until the battery voltage reached 3.0 V (SOC 0%). The discharge capacity at this time was measured as the battery capacity (full charge capacity) of each secondary battery 100.
  • the secondary battery 100 whose battery voltage has reached 3.0 V (SOC 0%) is charged at a current value of 1/5 C, and during this charging period, a V-dQ / dV curve is drawn in real time.
  • the V-dQ / dV curve drawn on this monitor is visually observed, and charging is stopped when it is determined that the first peak A has been reached (the secondary battery 100 has reached the state corresponding to the first peak A). did.
  • the secondary battery 100 was discharged at a constant current of 1/5 C until the battery voltage reached 3.0 V (SOC 0%). The discharge capacity at this time was acquired as the charged amount Q1 when the secondary battery 100 reached the state corresponding to the first peak A.
  • the secondary battery 100 whose battery voltage has reached 3.0 V (SOC 0%) is charged at a current value of 1/5 C, and during this charging period, a V-dQ / dV curve is drawn in real time.
  • the V-dQ / dV curve drawn on this monitor is visually observed, and charging is stopped when it is determined that the second peak B has been reached (the secondary battery 100 has reached a state corresponding to the second peak B). did.
  • the secondary battery 100 was discharged at a constant current of 1/5 C until the battery voltage reached 3.0 V (SOC 0%).
  • the discharge capacity at this time was acquired as the charged amount Q2 when the secondary battery 100 reached the state corresponding to the second peak B.
  • the battery capacity, the storage amount Q1, the storage amount Q2, and the difference value ⁇ Q (this is set as the reference storage amount difference value ⁇ QK) as described above. ).
  • the secondary battery 100 in which a micro short-circuit has occurred was prepared, and the battery capacity, the charged amount Q1, the charged amount Q2, and the difference value ⁇ Q were obtained as described above.
  • FIG. 17 This result is shown in FIG. 17 as a graph showing the relationship between the battery capacity (mAh) and ⁇ Q.
  • the secondary battery 100 in the initial state is marked with ⁇
  • the secondary batteries 100 with reduced capacity four secondary batteries 100 subjected to the cycle deterioration test
  • the secondary battery in which an internal micro short-circuit has occurred. 100 is represented by ⁇ .
  • the four secondary batteries 100 that were subjected to the cycle deterioration test all had a lower battery capacity than the secondary battery 100 in the initial state (secondary battery 100 that was not subjected to the cycle deterioration test). .
  • the difference value ⁇ Q is greatly reduced (about 74% of the secondary battery 100 in the initial state) compared to the secondary battery 100 in the initial state.
  • the hybrid vehicle 301 of the third embodiment is different from the hybrid vehicle 1 of the first embodiment only in the secondary battery system (see FIG. 1).
  • the secondary battery system of the third embodiment is different from the secondary battery system 6 of the first embodiment only in the battery controller, and the other is the same. Therefore, here, the description will focus on the points different from the first embodiment, and the description of the same points will be omitted or simplified.
  • the secondary battery system 36 of the third embodiment includes the assembled battery 10, the voltage detection means 40, the current detection means 50, and the battery controller 230.
  • the battery controller 230 includes a ROM 231, a CPU 232, a RAM 233, and the like.
  • the battery controller 230 estimates the storage amount Q of each secondary battery 100 every predetermined time T, similarly to the battery controller 30 of the first embodiment. Further, the battery controller 230 acquires the battery voltage V of each secondary battery 100 detected by the voltage detection means 40 at every predetermined time T. Further, the battery controller 230 calculates a value of dQ / dV every predetermined time T.
  • the ROM 231 of the battery controller 230 stores V ⁇ dQ / representing the relationship between the battery voltage V and dQ / dV obtained in advance for the secondary battery 100 in the initial state, as in the battery controller 30 of the first embodiment.
  • the dV curve K (see FIG. 9) is stored.
  • the battery controller 230 draws a V-dQ / dV curve in real time based on the value of dQ / dV calculated every predetermined time T, and the V-dQ / dV curve and the V stored in the ROM 231 are drawn. Whether the secondary battery 100 has reached a state corresponding to the first peak A or the second peak B on the V-dQ / dV curve by comparison (pattern matching) with the dQ / dV curve K (see FIG. 9) Judging. In other words, the value of the battery voltage V detected every predetermined time T and the value of dQ / dV calculated every predetermined time T are the first peak A or the second value on the V-dQ / dV curve. It is determined whether or not a value indicating peak B has been reached.
  • the battery controller 230 compares the measured storage amount difference value ⁇ QS with the reference storage amount difference value ⁇ QK. When the measured storage amount difference value ⁇ QS is smaller than the reference storage amount difference value ⁇ QK, it is determined that the battery capacity of the secondary battery 100 has decreased. In particular, when the measured storage amount difference value ⁇ QS is less than 75% of the reference storage amount difference value ⁇ QK, it is determined that an internal micro short circuit has occurred in the secondary battery 100. In this case, the battery controller 230 outputs a signal indicating that the secondary battery 100 is abnormal and prompts replacement of the secondary battery 100.
  • the SOC of the secondary battery 100 constituting the assembled battery 10 does not fall below 25% by the battery controller 230 as in the secondary battery system 6 of the first embodiment.
  • the SOC of the secondary battery 100 is controlled so that the SOC does not exceed 75% (see FIGS. 7 and 8). In this way, charge / discharge of the secondary battery 100 is controlled within the range of SOC 25% to 75% with the control center as SOC 50%.
  • step W1 when the battery controller 230 starts charge / discharge control of the assembled battery 10 (secondary battery 100), as shown in FIG. 18, in step W1, each of the secondary batteries 100 detected by the voltage detection means 40 is displayed.
  • the battery voltage value V is acquired, and the current value I flowing through the secondary battery 100 detected by the current detection unit 50 is acquired.
  • the battery controller 230 acquires the battery voltage value V and the current value I every predetermined time T (for example, 1 second).
  • step W2 the battery controller 230 integrates the current value I detected by the current detection means 50, and calculates the charge electricity amount of each secondary battery 100.
  • step W3 the battery controller 230 estimates the amount of electricity (charged amount Q) stored in each secondary battery 100 based on the calculated amount of charged electricity.
  • the storage amount Q for each predetermined time T is estimated based on the current value I detected every predetermined time T (for example, 1 second).
  • step W4 a value of dQ / dV, which is a ratio of the change amount dQ of the storage amount Q to the change amount dV of the battery voltage V, is calculated.
  • the charged amount Q of the secondary battery 100 is differentiated by the battery voltage value V corresponding thereto, and the value of dQ / dV is calculated.
  • the change amount dV and the storage amount Q of the battery voltage V every predetermined time T The change amount dQ is calculated, and based on these, the value of dQ / dV for each predetermined time T is calculated.
  • step W51 it is determined whether or not each secondary battery 100 has reached a state corresponding to the first peak A on the V-dQ / dV curve.
  • the battery controller 230 draws a V-dQ / dV curve in real time based on the value of dQ / dV calculated every predetermined time T, and this V-dQ / dV curve is stored in the ROM 231.
  • Whether or not the secondary battery 100 has reached the state corresponding to the first peak A on the V-dQ / dV curve is determined by comparison (pattern matching) with the V-dQ / dV curve K (see FIG. 9). To do.
  • the process returns to the main routine shown in FIG. 18, and the processes of steps W1 to W4 are performed again.
  • the process proceeds to step W52, and the state of each secondary battery 100 estimated when the state corresponding to the first peak A is reached. The amount of stored electricity Q1 is stored.
  • the battery controller 230 performs overcharge control until the secondary battery 100 reaches 50% SOC ( (See FIG. 7).
  • step W53 it is determined whether or not each secondary battery 100 has reached a state corresponding to the second peak B on the V-dQ / dV curve.
  • the battery controller 230 draws a V-dQ / dV curve in real time based on the value of dQ / dV calculated every predetermined time T, and this V-dQ / dV curve is stored in the ROM 231. Whether or not the secondary battery 100 has reached the state corresponding to the second peak B on the V-dQ / dV curve is determined by comparison (pattern matching) with the V-dQ / dV curve K.
  • step W54 the state of each secondary battery 100 estimated when the state corresponding to the second peak B is reached.
  • the amount of stored electricity Q2 is stored.
  • step W57 it is determined whether ⁇ QS / ⁇ QK ⁇ 1 is satisfied. That is, it is determined whether or not the actually measured storage amount difference value ⁇ QS is smaller than the reference storage amount difference value ⁇ QK. If it is determined that ⁇ QS / ⁇ QK ⁇ 1 is not satisfied (No), the process returns to the main routine shown in FIG. 18, and the series of processes is terminated. On the other hand, if it is determined that ⁇ QS / ⁇ QK ⁇ 1 is satisfied (Yes), the process proceeds to step W58, and it is determined whether ⁇ QS / ⁇ QK> 0.75 is satisfied. That is, it is determined whether or not the actually measured power storage amount difference value ⁇ QS is greater than 75% of the reference power storage amount difference value ⁇ QK.
  • Step W58 when it is determined that ⁇ QS / ⁇ QK> 0.75 is satisfied (Yes), the process proceeds to Step W59, and it is determined that the battery capacity of the secondary battery 100 is reduced. On the other hand, if it is determined that ⁇ QS / ⁇ QK> 0.75 is not satisfied (No), the process proceeds to step W5A, and it is determined that an internal micro short circuit has occurred in the secondary battery 100. In this case, the process proceeds to step W5B, and a signal indicating that the secondary battery 100 is abnormal is output to prompt replacement of the secondary battery 100.
  • the state of the secondary battery system 36 (specifically, based on the clear peaks (first peak A and second peak B) appearing on the VdQ / dV curve. Detects a decrease in battery capacity of the secondary battery 100 and an internal micro short circuit). For this reason, in the third embodiment, the secondary battery 100 is used in a range where the change amount of the battery voltage accompanying the change in the SOC (storage amount) is small (specifically, in the range of SOC 25% to 75%). Nevertheless, it is possible to accurately detect the battery capacity reduction and the internal micro short circuit of the secondary battery 100.
  • the battery controller 230 corresponds to a dQ / dV calculation unit, a control unit, a determination unit, a capacity decrease detection unit, and a minute short circuit detection unit.
  • Example 2 a secondary battery system that detects an increase in internal resistance of the secondary battery and a connection failure of the secondary battery is illustrated (see FIGS. 14 and 15). Moreover, in Example 3, the secondary battery system which detects the battery capacity fall of a secondary battery and an internal micro short circuit was illustrated (refer FIG.18 and FIG.19). However, it is preferable to use a secondary battery system that performs state detection that combines state detection in Example 2 and state detection in Example 3. That is, in addition to the detection of the increase in the internal resistance of the secondary battery and the connection failure of the secondary battery (the processing of Step U51 to Step U5B shown in FIG. 15), the detection of the battery capacity decrease and the internal micro short circuit of the secondary battery is also detected ( It is preferable to use a secondary battery system that performs steps W51 to W5B shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 二次電池システム6は、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質153と、充放電により相変化を伴う負極活物質154とを含む二次電池100を有している。二次電池システム6は、二次電池100の充放電時に、二次電池の電池電圧Vの変化量dVに対する二次電池100の蓄電量Qの変化量dQの割合であるdQ/dVの値を算出するdQ/dV算出手段(電池コントローラ30)を備え、電池電圧Vの値とdQ/dVの値との関係を表すV-dQ/dV曲線上に現れるピークに基づいて、二次電池システム6の状態を検知する。

Description

二次電池システム
 本発明は、二次電池システムに関する。
 二次電池の状態を検知する二次電池システムとして、様々なものが提案されている。例えば、特許文献1~4では、二次電池の電池電圧に基づいて、二次電池の充電状態(蓄電量またはSOC)を検知する。このうち、特許文献4では、さらに、電池電圧に基づいて算出したSOC(State Of Charge)と、温度検出手段により検出された電池温度とに基づいて、二次電池の劣化状態も検知する。
特開2007-292778号公報 特開平11-346444号公報 特開平7-294611号公報 特開2001-33532号公報
 しかしながら、特許文献1~4で提案されている手法では、蓄電量の変化に伴う電池電圧の変化量が小さい場合には、適切に、二次電池の充電状態(蓄電量またはSOC)を検知することができない虞がある。さらに、このような場合、特許文献4で提案されている手法では、二次電池の劣化状態も、適切に検知することができない虞がある。
 また、近年、蓄電量の変化に伴う電池電圧の変化量が小さく、安定した出力特性を得ることができるリチウムイオン二次電池が提案されている。例えば、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質を備えるリチウムイオン二次電池が挙げられる。このリチウムイオン二次電池は、電池容量全体の50%以上の容量範囲(具体的には、SOC15%~80%に相当する容量範囲)にわたって、蓄電量の変化に伴う電池電圧の変化量が小さい。このような二次電池については、特に、二次電池の状態を適切に検知することができない虞があった。
 本発明は、かかる現状に鑑みてなされたものであって、二次電池システムの状態を精度良く検知することができる二次電池システムを提供することを目的とする。
 本発明の一態様は、二次電池を備える二次電池システムであって、上記二次電池は、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質と、充放電により相変化を伴う負極活物質と、を含み、上記二次電池システムは、上記二次電池の充放電時に、上記二次電池の電池電圧Vの変化量dVに対する上記二次電池の蓄電量Qの変化量dQの割合であるdQ/dVの値を算出するdQ/dV算出手段を備え、上記電池電圧Vの値と上記dQ/dVの値との関係を表すV-dQ/dV曲線上に現れるピークに基づいて、上記二次電池システムの状態を検知する二次電池システムである。
 上述の二次電池システムは、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質と充放電により相変化を伴う負極活物質とを含む二次電池を備えている。この二次電池では、SOC15%~80%の範囲にわたって、SOC(蓄電量)の変化に伴う電池電圧の変化量が小さくなる。詳細には、SOC15%からSOC80%に至る広範囲において、電池電圧値が約3.8Vから約4.0Vまでにしか変化しない。従って、SOC15%~80%の範囲にわたって、3.9V付近の高い電池電圧値を安定して維持することができる。このため、この二次電池を、SOC15%~80%の範囲内で使用することで、高い出力を安定して得ることができる。
 ところで、電池電圧の変動が小さいSOC範囲内で二次電池を使用する場合、二次電池の電池電圧値から二次電池システムの状態を適切に検知することは難しい。
 しかしながら、上述の二次電池システムでは、電池電圧Vの値とdQ/dVの値との関係を表すV-dQ/dV曲線上に現れるピークに基づいて、二次電池システムの状態を検知する。上述の二次電池システムにかかる二次電池では、SOC15%~80%の範囲内(詳細には、SOC25%付近とSOC70%付近の2箇所)において、V-dQ/dV曲線上に、明確なピーク(第1ピークと第2ピーク)が現れる。このため、上述の二次電池システムでは、SOC15%~80%の範囲内で当該二次電池を使用する場合でも、この明確なピークに基づいて、精度良く、二次電池システムの状態を検知することができる。
 なお、「充放電により相変化を伴う負極活物質」とは、充放電の途中で結晶構造が変化する負極活物質をいい、炭素材料を例示できる。炭素材料としては、天然黒鉛(グラファイトなど)、人造黒鉛(メソカーボンマイクロビーズなど)、難黒鉛化炭素材料などを例示できる。
 また、検知可能な二次電池システムの状態としては、例えば、二次電池の状態や、二次電池システムの異常などが挙げられる。二次電池の状態としては、例えば、充電状態(SOC)や、電池容量(満充電容量)の低下や、内部抵抗の上昇などが挙げられる。また、二次電池システムの異常としては、二次電池の内部微小短絡や、二次電池の接続不良(二次電池の外部端子に接続するケーブルの接続端子の接続不良や、2つの二次電池の端子間を接続する接続部材の接続不良等)などを例示できる。
 さらに、上記の二次電池システムであって、前記二次電池システムは、前記電池電圧Vの値と前記dQ/dVの値に基づいて、前記二次電池が前記V-dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうか、及び、上記二次電池が上記V-dQ/dV曲線上に現れる第2ピークであって上記第1ピークの電池電圧Vよりも高い電池電圧Vにかかる第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、上記判断手段により上記二次電池が上記第1ピークに対応する状態に至ったと判断されたときの電池電圧値V1と上記第2ピークに対応する状態に至ったと判断されたときの電池電圧値V2との差分値である実測電圧差分値に基づいて、上記二次電池システムの状態を検知する二次電池システムとすると良い。
 上述の二次電池システムでは、判断手段が、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV-dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V-dQ/dV曲線上の第1ピークを示す値になったかどうかを判断する。さらに、判断手段は、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV-dQ/dV曲線上に現れる第2ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V-dQ/dV曲線上の第2ピークを示す値になったかどうかを判断する。
 さらに、上述の二次電池システムでは、判断手段により二次電池が第1ピークに対応する状態に至ったと判断されたときの電池電圧値V1と第2ピークに対応する状態に至ったと判断されたときの電池電圧値V2との差分値(=V2-V1)である実測電圧差分値に基づいて、二次電池システムの状態を検知する。これにより、二次電池システムの状態(例えば、二次電池の内部抵抗の上昇や二次電池の接続不良)を精度良く検知することができる。
 具体的には、本願発明者は、二次電池の内部抵抗が上昇するにしたがって、V-dV/dQ曲線の第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値(実測電圧差分値ΔVS=V2-V1)が大きくなってゆく特性を見いだした。この特性を利用して、実測電圧差分値ΔVSに基づいて、二次電池の内部抵抗の上昇を検知することができる。具体的には、例えば、実測電圧差分値ΔVSが基準電圧差分値ΔVK(例えば、初期状態の二次電池について予め取得しておいた、第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値)よりも大きい場合には、二次電池の内部抵抗が上昇していると判断することができる。
 また、二次電池の接続不良が生じている場合は、接続不良のない場合に比べて、V-dV/dQ曲線の第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値(実測電圧差分値ΔVS=V2-V1)が、極端に大きくなる(例えば、初期状態の二次電池にかかる基準電圧差分値ΔVKの約1.9倍になる)。しかも、二次電池の接続不良が生じたときの実測電圧差分値ΔVSは、二次電池の内部抵抗が上昇した場合よりも大きくなる。また、内部抵抗が上昇した二次電池では、実測電圧差分値ΔVSの低下率は、いかに大きく内部抵抗が上昇したとしても、上記基準電圧差分値ΔVKの1.8倍を上回ることはないと考えられる。この特徴を利用して、実測電圧差分値ΔVSに基づいて、二次電池の接続不良を検知することができる。具体的には、例えば、実測電圧差分値ΔVSが所定の閾値(例えば、基準電圧差分値ΔVKの1.8倍)を上回った場合には、二次電池の接続不良が発生していると判断することができる。
 さらに、上記の二次電池システムであって、前記二次電池システムは、前記二次電池の内部抵抗の上昇を検知する抵抗上昇検知手段を備え、上記抵抗上昇検知手段は、予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる電池電圧値V1と前記第2ピークにかかる電池電圧値V2との差分値である基準電圧差分値であって、初期状態の上記二次電池にかかる基準電圧差分値と、前記実測電圧差分値とを対比して、上記実測電圧差分値が上記基準電圧差分値よりも大きい場合に、上記二次電池の内部抵抗が上昇していると判断する二次電池システムとすると良い。
 上述の二次電池システムでは、抵抗上昇検知手段が、予め二次電池システムに記憶させておいた基準電圧差分値ΔVK(初期状態の二次電池において予め取得しておいた、第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値)と、実測電圧差分値ΔVSとを対比して、実測電圧差分値ΔVSが基準電圧差分値ΔVKよりも大きい場合に、二次電池の内部抵抗が上昇していると判断する。前述のように、二次電池の内部抵抗が上昇するにしたがって、第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値(実測電圧差分値ΔVS=V2-V1)が大きくなってゆくので、上述の抵抗上昇検知手段によれば、二次電池の内部抵抗上昇を適切に検知することができる。
 さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記二次電池の接続不良を検知する接続不良検知手段を備え、上記接続不良検知手段は、予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる電池電圧値V1と前記第2ピークにかかる電池電圧値V2との差分値である基準電圧差分値であって、初期状態の上記二次電池にかかる基準電圧差分値と、前記実測電圧差分値とを対比して、上記実測電圧差分値が、上記基準電圧差分値よりも大きく且つ所定の閾値よりも大きい場合に、上記二次電池の接続不良が生じていると判断する二次電池システムとすると良い。
 上述の二次電池システムでは、接続不良検知手段が、予め二次電池システムに記憶させておいた基準電圧差分値ΔVK(初期状態の二次電池において予め取得しておいた、第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値)と、実測電圧差分値ΔVSとを対比して、実測電圧差分値ΔVSが、基準電圧差分値ΔVKよりも大きく且つ所定の閾値(例えば、基準電圧差分値ΔVKの1.8倍)を上回った場合には、二次電池の接続不良が発生していると判断する。これにより、二次電池の接続不良を適切に検知することができる。なお、二次電池の接続不良を検知した場合は、接続不良である旨の信号を出力して、接続の確認を促すようにすると良い。
 さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記電池電圧Vの値と前記dQ/dVの値に基づいて、前記二次電池が前記V-dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうか、及び、上記二次電池が上記V-dQ/dV曲線上に現れる第2ピークであって上記第1ピークよりも高い電池電圧値Vにかかる第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、上記判断手段により上記二次電池が上記第1ピークに対応する状態に至ったと判断されたときの上記二次電池の蓄電量Q1と上記第2ピークに対応する状態に至ったと判断されたときの上記二次電池の蓄電量Q2との差分値である実測蓄電量差分値に基づいて、上記二次電池の状態を検知する二次電池システムとすると良い。
 上述の二次電池システムでは、判断手段が、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV-dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V-dQ/dV曲線上の第1ピークを示す値になったかどうかを判断する。さらに、判断手段は、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV-dQ/dV曲線上に現れる第2ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V-dQ/dV曲線上の第2ピークを示す値になったかどうかを判断する。
 さらに、上述の二次電池システムでは、判断手段により二次電池が第1ピークに対応する状態に至ったと判断されたときの二次電池の蓄電量Q1と第2ピークに対応する状態に至ったと判断されたときの二次電池の蓄電量Q2との差分値(=Q2-Q1)である実測蓄電量差分値に基づいて、二次電池システムの状態を検知する。これにより、二次電池システムの状態(例えば、二次電池の容量低下や二次電池の内部微小短絡)を精度良く検知することができる。
 具体的には、本願発明者は、二次電池の電池容量が低下するにしたがって、二次電池が第1ピークに対応する状態に至ったときの蓄電量Q1と第2ピークに対応する状態に至ったときの蓄電量Q2との差分値(実測蓄電量差分値ΔQS=Q2-Q1)が小さくなってゆく特性を見いだした。この特性を利用して、実測蓄電量差分値ΔQSに基づいて、二次電池の容量低下を検知することができる。具体的には、例えば、実測蓄電量差分値ΔQSが基準蓄電量差分値ΔQK(例えば、初期状態の二次電池について予め取得しておいた、蓄電量Q1と蓄電量Q2との差分値)よりも小さい場合には、二次電池が容量低下していると判断することができる。
 また、内部微小短絡が生じた二次電池は、内部微小短絡が生じていない二次電池に比べて、二次電池が第1ピークに対応する状態に至ったときの蓄電量Q1と第2ピークに対応する状態に至ったときの蓄電量Q2との差分値(実測蓄電量差分値ΔQS=Q2-Q1)が、大きく低下する(例えば、初期状態の二次電池にかかる基準蓄電量差分値ΔQKの約74%になる)。しかも、内部微小短絡が生じた二次電池の実測電圧差分値ΔVSは、電池容量が低下した二次電池の実測電圧差分値ΔVSよりも大きくなる。また、容量低下した二次電池では、実測蓄電量差分値ΔQSの低下率は、いかに大きく容量低下したとしても、上記基準蓄電量差分値ΔQKの75%を下回ることはないと考えられる。この特徴を利用して、実測蓄電量差分値ΔQSに基づいて、二次電池の内部微小短絡を検知することができる。具体的には、例えば、実測蓄電量差分値ΔQSが所定の閾値(例えば、基準蓄電量差分値ΔQKの75%)を下回った場合には、二次電池の内部微小短絡が発生していると判断することができる。
 さらに、上記の二次電池システムであって、前記二次電池システムは、前記二次電池の電池容量の低下を検知する容量低下検知手段を備え、上記容量低下検知手段は、予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる上記二次電池の蓄電量Q1(二次電池が第1ピークに対応する状態に至ったときの二次電池の蓄電量Q1)と前記第2ピークにかかる上記二次電池の蓄電量Q2(二次電池が第2ピークに対応する状態に至ったときの二次電池の蓄電量Q2)との差分値である基準蓄電量差分値であって、初期状態の上記二次電池にかかる基準蓄電量差分値と、前記実測蓄電量差分値とを対比して、上記実測蓄電量差分値が上記基準蓄電量差分値よりも小さい場合に、上記二次電池の電池容量が低下していると判断する二次電池システムとすると良い。
 上述の二次電池システムでは、容量低下検知手段が、予め二次電池システムに記憶させておいた基準蓄電量差分値ΔQK(初期状態の二次電池において予め取得しておいた、蓄電量Q1と蓄電量Q2との差分値)と、実測蓄電量差分値ΔQSとを対比して、実測蓄電量差分値ΔQSが基準蓄電量差分値ΔQKよりも小さい場合に、二次電池の電池容量が低下していると判断する。前述のように、二次電池の電池容量が低下するにしたがって、蓄電量Q1と蓄電量Q2との差分値(実測蓄電量差分値ΔQS=Q2-Q1)が小さくなってゆくので、上述の容量低下検知手段によれば、二次電池の容量低下を適切に検知することができる。
 さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記二次電池の内部微小短絡を検知する微小短絡検知手段を含み、上記微小短絡検知手段は、予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる上記二次電池の蓄電量Q1(二次電池が第1ピークに対応する状態に至ったときの二次電池の蓄電量Q1)と前記第2ピークにかかる上記二次電池の蓄電量Q2(二次電池が第2ピークに対応する状態に至ったときの二次電池の蓄電量Q2)との差分値である基準蓄電量差分値であって、初期状態の上記二次電池にかかる基準蓄電量差分値と、前記実測蓄電量差分値とを対比して、上記実測電圧差分値が、上記基準電圧差分値よりも小さく且つ所定の閾値よりも小さい場合に、上記二次電池に内部微小短絡が生じていると判断する二次電池システムとすると良い。
 上述の二次電池システムでは、微小短絡検知手段が、予め二次電池システムに記憶させておいた基準蓄電量差分値ΔQK(初期状態の二次電池において予め取得しておいた、蓄電量Q1と蓄電量Q2との差分値)と、実測蓄電量差分値ΔQSとを対比して、実測蓄電量差分値ΔQSが基準蓄電量差分値ΔQKよりも小さく且つ所定の閾値よりも小さい場合に、二次電池に内部微小短絡が生じていると判断する。これにより、二次電池の内部微小短絡を適切に検知することができる。なお、二次電池の内部微小短絡を検知した場合は、二次電池が異常である旨の信号を出力して、二次電池の交換を促すようにすると良い。
 さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記二次電池の充放電を制御する制御手段を備え、上記制御手段は、前記二次電池の前記電池電圧Vの値が、前記V-dQ/dV曲線上に現れる第1ピーク及び第2ピークのうち上記第1ピークよりも高い電池電圧Vにかかる上記第2ピークにおける電池電圧値V2を上回らないように、上記二次電池の充放電を制御する二次電池システムとすると良い。
 上述の二次電池システムにかかる二次電池は、前述のように、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質を有している。このような二次電池では、正極から溶出したMn2+が、負極の表面を被覆し、負極にインターカレートしているLiを引き抜いて、電池性能を劣化させてしまう課題があった。
 これに対し、本願発明者は、Mn2+の溶出が、充放電に伴う正極活物質中のMnの価数変化(Mn3+→Mn4+ )に伴う結晶構造変化に起因するものであることを見出した。さらに、V-dQ/dV曲線上に現れる第2ピークは、正極活物質の結晶構造変化に起因していることを見出した。これらのことから、二次電池の電池電圧値Vが、V-dQ/dV曲線上に現れる第2ピークにおける電池電圧値V2に達し、これを上回ると、正極からMn2+が溶出し、電池性能が劣化すると考えた。
 そこで、上述の二次電池システムでは、制御手段により、二次電池の電池電圧値Vが、V-dQ/dV曲線上に現れる第2ピークにおける電池電圧値V2を上回らないように、二次電池の充放電を制御する。これにより、正極からMn2+が溶出するのを抑制できるので、Mn2+の溶出に起因する電池性能の劣化を抑制することができる。
 さらに、上記の二次電池システムであって、前記二次電池システムは、前記電池電圧Vの値と前記dQ/dVの値に基づいて、上記二次電池が、前記V-dQ/dV曲線上の前記第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、前記制御手段は、上記二次電池の充電時に、上記判断手段によって上記二次電池が上記第2ピークに対応する状態に至ったと判断されると、上記二次電池の充電を停止させて、上記二次電池について放電過多の制御を行う二次電池システムとすると良い。
 上述の二次電池システムでは、判断手段が、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV-dQ/dV曲線上に現れる第2ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V-dQ/dV曲線上の第2ピークを示す値になったかどうかを判断する。
 さらに、上述の二次電池システムでは、二次電池の充電時に、判断手段によって二次電池が第2ピークに対応する状態に至ったと判断されると、制御手段が、二次電池の充電を停止させて、二次電池について放電過多の制御を行う。具体的には、充電電気量に比べて放電電気量を大きくして、二次電池の充放電を行うようにする。これにより、二次電池の電池電圧値を、V-dQ/dV曲線上の第2ピークにおける電池電圧値V2よりも小さくすることができる。従って、正極からMn2+が溶出するのを抑制することができる。
実施例1~3にかかるハイブリッド自動車の概略図である。 実施例1にかかる二次電池システムの概略図である。 実施例1~3にかかる二次電池の断面図である。 同二次電池にかかる電極体の断面図である。 同電極体の部分拡大断面図であり、図4のB部拡大図に相当する。 二次電池にかかるSOCと電池電圧との関係を示す図である。 実施例1にかかる二次電池の充放電制御及び状態検知の流れを示すフローチャートである。 実施例1にかかる二次電池の充放電制御及び状態検知の流れを示すフローチャートである。 初期状態にかかる二次電池のV-dQ/dV曲線を示す図である。 内部抵抗が上昇した二次電池のV-dQ/dV曲線を示す図である。 実施例2にかかる二次電池システムの概略図である。 二次電池の正極端子とケーブルとの接続を説明する図である。 二次電池の内部抵抗(mΩ)とΔV(=V2-V1)との関係を示すグラフである。 実施例2にかかる二次電池の状態検知のメインルーチンである。 実施例2にかかる二次電池の状態検知のサブルーチンである。 実施例3にかかる二次電池システムの概略図である。 二次電池の電池容量とΔQ(=Q2-Q1)との関係を示すグラフである。 実施例3にかかる二次電池の状態検知のメインルーチンである。 実施例3にかかる二次電池の状態検知のサブルーチンである。
(実施例1)
 次に、本発明の実施例1について、図面を参照しつつ説明する。
 ハイブリッド自動車1は、図1に示すように、車体2、エンジン3、フロントモータ4、リヤモータ5、ケーブル7及び二次電池システム6を有し、エンジン3、フロントモータ4及びリヤモータ5との併用で駆動するハイブリッド自動車である。具体的には、このハイブリッド自動車1は、二次電池システム6をフロントモータ4及びリヤモータ5の駆動用電源として、公知の手段によりエンジン3、フロントモータ4及びリヤモータ5を用いて走行できるように構成されている。
 このうち、本実施例1にかかる二次電池システム6は、ハイブリッド自動車1の車体2に取り付けられており、ケーブル7によりフロントモータ4及びリヤモータ5と接続されている。この二次電池システム6は、図2に示すように、複数の二次電池100(単電池)を互いに電気的に直列に接続した組電池10と、電圧検知手段40と、電流検知手段50と、電池コントローラ30とを備えている。電池コントローラ30は、ROM31、CPU32、RAM33等を有している。
 電流検知手段50は、組電池10を構成する二次電池100を流れる電流値Iを検知する。また、電圧検知手段40は、組電池10を構成する各々の二次電池100について、電池電圧V(端子間電圧)を検知する。
 電池コントローラ30は、組電池10を構成する二次電池100の充放電を制御する。具体的には、例えば、ハイブリッド自動車1の運転中は、組電池10(二次電池100)とフロントモータ4及びリヤモータ5との間における電気のやりとりを制御する。詳細には、電池コントローラ30は、例えば、ハイブリッド自動車1のアクセルが踏み込まれると、組電池10(二次電池100)を放電させて、インバータ(図示なし)を通じて、この電力をフロントモータ4及びリヤモータ5に供給する。一方、ハイブリッド自動車1のブレーキが踏み込まれると、電池コントローラ30は、回生ブレーキにより発生した電力を、組電池10(二次電池100)に供給して、組電池10を構成する各々の二次電池100を充電する。
 二次電池100は、図3に示すように、直方体形状の電池ケース110と、正極端子120と、負極端子130とを備える、角形密閉式のリチウムイオン二次電池である。このうち、電池ケース110は、金属からなり、直方体形状の収容空間をなす角形収容部111と、金属製の蓋部112とを有している。電池ケース110(角形収容部111)の内部には、電極体150、正極集電部材122、負極集電部材132などが収容されている。
 電極体150は、図4及び図5に示すように、断面長円状をなし、シート状の正極板155、負極板156、及びセパレータ157を捲回してなる扁平型の捲回体である。この電極体150は、その軸線方向(図3において左右方向)の一方端部(図3において右端部)に位置し、正極板155の一部のみが渦巻状に重なる正極捲回部155bと、他方端部(図3において左端部)に位置し、負極板156の一部のみが渦巻状に重なる負極捲回部156bとを有している。正極板155には、正極捲回部155bを除く部位に、正極活物質153を含む正極合材152が塗工されている(図5参照)。同様に、負極板156には、負極捲回部156bを除く部位に、負極活物質154を含む負極合材159が塗工されている(図5参照)。正極捲回部155bは、正極集電部材122を通じて、正極端子120に電気的に接続されている。負極捲回部156bは、負極集電部材132を通じて、負極端子130に電気的に接続されている。
 本実施例1では、正極活物質153として、スピネル型の結晶構造を有するマンガン酸リチウムを用いている。また、負極活物質154として、炭素材料(詳細には、グラファイト)を用いている。この負極活物質154は、充放電により相変化を伴う活物質である。
 ここで、図6に、初期状態の二次電池100にかかるSOC(State Of Charge)と電池電圧値(V)との関係を示す。図6からわかるように、二次電池100は、SOC15%~80%の範囲にわたって、SOC(蓄電量)の変化に伴う電池電圧の変化量が小さくなる。詳細には、SOC15%からSOC80%に至る広範囲において、電池電圧値が約3.8Vから約4.0Vまでにしか変化しない。従って、SOC15%~80%の範囲にわたって、3.9V付近の高い電池電圧値で安定して維持することができる。このため、この二次電池100を、SOC15%~80%の範囲内で使用することで、高い出力を安定して得ることができる。
 さらに、図9に、初期状態の二次電池100にかかる電池電圧VとdQ/dVとの関係を表すV-dQ/dV曲線Kを示している。このV-dQ/dV曲線Kは、図6に示す関数について蓄電量Qを電池電圧Vで微分して得たdQ/dVの値と、これに対応する電池電圧Vの値との関係を表す曲線に相当する。具体的には、図6の曲線を作成する際に、所定時間T(例えば1秒)毎に取得した蓄電量Qと電池電圧Vとに基づいて、所定時間毎の電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出し、このdQ/dVの値と電池電圧Vとの関係を図9に示している。
 図9に示すように、V-dQ/dV曲線Kには、明確なピークが2つ(第1ピークAと第2ピークB)が現れる。具体的には、電池電圧Vの値が約3.8Vに達したとき、第1ピークAが現れる。なお、電池電圧Vの値が約3.8Vに達したとき、二次電池100のSOCは約25%に達する(図6参照)。また、電池電圧Vの値が約4.0Vに達したとき、第2ピークBが現れる。なお、電池電圧Vの値が約4.0Vに達したとき、二次電池100のSOCは約75%に達する(図6参照)。
 ところで、前述のように、二次電池100は、SOC15%~80%の範囲にわたって、SOC(蓄電量Q)の変化に伴う電池電圧Vの変化量が小さい。このように電池電圧Vの変動が小さいSOC範囲では、電池電圧Vに基づいて、二次電池システム(二次電池100)の状態を適切に検知することが難しい。
 しかしながら、電池電圧Vの変動が小さいSOC範囲(SOC15%~80%の範囲、図6参照)において、V-dQ/dV曲線Kには、明確なピークが2つ(第1ピークAと第2ピークB)現れる。前述のように、SOC25%において第1ピークAが現れ、SOC75%において第2ピークBが現れる。本実施例1の二次電池システム6では、後述するように、明確なピーク(第1ピークAと第2ピークB)に基づいて、二次電池100の状態を検知する。このため、二次電池システム6(二次電池100)の状態(具体的には、二次電池100のSOC、二次電池100の内部抵抗上昇、二次電池100の接続不良)を、精度良く検知することができる。
 次に、二次電池システム6にかかる二次電池100の充放電制御及び状態検知について、詳細に説明する。
 二次電池システム6の電池コントローラ30は、所定時間T毎に、電流検知手段50で検知された電流値Iを積算して、二次電池100の充電電気量または放電電気量を算出し、算出された充電電気量または放電電気量から二次電池100の蓄電量Qを推定する。さらに、推定された蓄電量Qと二次電池100の電池容量に基づいて、二次電池100のSOC(%)を推定する。さらに、電池コントローラ30は、電流積算と同期させて、所定時間T毎に、電圧検知手段40で検知された各二次電池100の電池電圧Vを取得する。
 さらに、電池コントローラ30は、組電池10(二次電池100)の充放電時に、二次電池100の電池電圧Vの変化量dVに対する二次電池100の蓄電量Qの変化量dQの割合であるdQ/dVの値を算出する。換言すれば、二次電池100の充放電時に、二次電池100の蓄電量Qを電池電圧Vで微分して、dQ/dVの値を算出する。具体的には、二次電池100の充放電時に、所定時間T毎に、電池電圧Vと蓄電量Qを取得しつつ、各所定時間T毎の電池電圧Vの変化量dVと蓄電量Qの変化量dQとを算出し、これらに基づいて、所定時間T毎のdQ/dVの値を算出する。
 また、電池コントローラ30のROM31には、予め、二次電池100について取得した、電池電圧VとdQ/dVとの関係を表すV-dQ/dV曲線K(図9参照)を記憶させておく。さらに、V-dQ/dV曲線K上の第1ピークAにおけるSOCの値(SOC25%)と、第2ピークBにおけるSOCの値(SOC75%)を、ROM31に記憶させておく。さらに、V-dQ/dV曲線K上の第1ピークAにおける電池電圧値V1(3.8V)と第2ピークBにおける電池電圧値V2(4.0V)との差分値である基準電圧差分値ΔVK(=V2-V1=0.2V)を、ROM31に記憶させておく。
 さらに、電池コントローラ30は、所定時間T毎に検出される電池電圧Vと所定時間T毎に算出されるdQ/dVの値に基づいて、リアルタイムにV-dQ/dV曲線を描き、このQ-dQ/dV曲線と、ROM31に記憶されているV-dQ/dV曲線K(図9参照)との対比(パターンマッチング)により、二次電池100が、V-dQ/dV曲線上の第1ピークAまたは第2ピークBに対応する状態に至ったかどうかを判断する。換言すれば、所定時間T毎に検出される電池電圧Vの値と、所定時間T毎に算出されるdQ/dVの値とが、V-dQ/dV曲線上の第1ピークAまたは第2ピークBを示す値になったかどうかを判断する。
 ここで、図7及び図8を参照して、二次電池100の充放電制御及び状態検知(SOC検知)について具体的に説明する。図7は、二次電池100の放電を開始した後の充放電制御及び状態検知を示すフローチャートである。また、図8は、二次電池100の充電を開始した後の充放電制御及び状態検知を示すフローチャートである。
 電池コントローラ30は、組電池10(二次電池100)の放電を開始させると、図7に示すように、ステップS1において、電圧検知手段40によって検知された各々の二次電池100の電池電圧値Vを取得すると共に、電流検知手段50により検知された二次電池100を流れる電流値Iを取得する。なお、本実施例1では、電池コントローラ30は、所定時間T(例えば1秒)毎に、電池電圧値Vと電流値Iを取得する。
 次に、ステップS2に進み、電池コントローラ30は、電流検知手段50で検知された電流値Iを積算して、各二次電池100の充電電気量を算出する。次いで、ステップS3に進み、電池コントローラ30は、算出された充電電気量に基づいて、各二次電池100に蓄えられている電気量(蓄電量Q)を推定する。なお、本実施例1では、所定時間T(例えば1秒)毎に検知された電流値Iに基づいて、所定時間T毎の蓄電量Qを推定する。
 次に、ステップS4に進み、各二次電池100について、電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出する。換言すれば、二次電池100の蓄電量Qを、これに対応する電池電圧値Vで微分して、dQ/dVの値を算出する。具体的には、各二次電池100について、所定時間T毎に取得される電池電圧値Vと蓄電量Qに基づいて、各所定時間T毎の電池電圧Vの変化量dVと蓄電量Qの変化量dQとを算出し、これらに基づいて、所定時間T毎のdQ/dVの値を算出する。
 その後、ステップS5に進み、二次電池100がV-dQ/dV曲線上の第1ピークAに対応する状態に至ったかどうかを判断する。第1ピークAに対応する状態に達していない(No)と判定した場合は、二次電池100の放電中、所定時間毎に、ステップS1~S5の処理を繰り返し行う。
 一方、ステップS5において、二次電池100が第1ピークAに対応する状態に達した(Yes)と判断した場合は、ステップS6に進み、電池コントローラ30は、二次電池100の放電を停止させる。次いで、ステップS7に進み、電池コントローラ30は、二次電池100がSOC25%に達したと判断する。第1ピークAは明確なピークであるため、電池コントローラ30によって、二次電池100が第1ピークAに対応する状態に至ったかどうかを、精度良く判定することができる。このため、本実施例1では、二次電池100がSOC25%に達したことを、精度良く検知することができる。
 次いで、ステップS8に進み、電池コントローラ30は、組電池10(二次電池100)について、充電過多の制御を開始する。具体的には、放電電気量に比べて充電電気量を大きくして、二次電池100の充放電を行うようにする。これにより、二次電池100のSOCを25%未満にすることなく、SOCを徐々に増大させることができる。次いで、ステップS9に進み、二次電池100のSOCが50%に達したか否かを判定する。なお、二次電池100のSOCは、前述のように、所定時間毎に、電池コントローラ30において推定する。
 電池コントローラ30は、ステップS9において、SOCが50%に達していない(No)と判定した場合、充電過多の制御を継続して行う。一方、ステップS9において、SOCが50%に達した(Yes)と判定した場合は、ステップSAに進み、充電過多の制御を終了し、通常の充放電制御に戻る。
 また、電池コントローラ30は、組電池10(二次電池100)の充電を開始すると、図8に示すように、ステップT1において、電圧検知手段40によって検知された各々の二次電池100の電池電圧値Vを取得すると共に、電流検知手段50により検知された二次電池100を流れる電流値Iを取得する。なお、本実施例1では、電池コントローラ30は、所定時間T(例えば1秒)毎に、電池電圧値Vと電流値Iを取得する。
 次に、ステップT2に進み、電池コントローラ30は、電流検知手段50で検知された電流値Iを積算して、各二次電池100の充電電気量を算出する。次いで、ステップT3に進み、電池コントローラ30は、算出された充電電気量に基づいて、各二次電池100に蓄えられている電気量(蓄電量Q)を推定する。なお、本実施例1では、所定時間T(例えば1秒)毎に検知された電流値Iに基づいて、所定時間T毎の蓄電量Qを推定する。
 次に、ステップT4に進み、各二次電池100について、電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出する。換言すれば、二次電池100の蓄電量Qを、これに対応する電池電圧値Vで微分して、dQ/dVの値を算出する。具体的には、各二次電池100について、所定時間T毎に取得される電池電圧値Vと蓄電量Qに基づいて、各所定時間T毎の電池電圧Vの変化量dVと蓄電量Qの変化量dQとを算出し、これらに基づいて、所定時間T毎のdQ/dVの値を算出する。
 その後、ステップT5に進み二次電池100がV-dQ/dV曲線上の第2ピークBに対応する状態に至ったかどうかを判断する。第2ピークBに対応する状態に達していない(No)と判定した場合は、二次電池100の充電中、所定時間毎に、ステップT1~T5の処理を繰り返し行う。
 一方、ステップT5において、二次電池100が第2ピークBに対応する状態に達した(Yes)と判断した場合は、ステップT6に進み、電池コントローラ30は、二次電池100の充電を停止する。次いで、ステップT7に進み、電池コントローラ30は、二次電池100がSOC75%に達したと判断する。第2ピークBは明確なピークであるため、電池コントローラ30によって、二次電池100が第2ピークBに対応する状態に至ったかどうかを、精度良く判定することができる。このため、本実施例1では、二次電池100がSOC75%に達したことを、精度良く検知することができる。
 次いで、ステップT8に進み、電池コントローラ30は、組電池10(二次電池100)について、放電過多の制御を開始する。具体的には、充電電気量に比べて放電電気量を大きくして、二次電池100の充放電を行うようにする。これにより、二次電池100のSOCを75%より大きくすることなく、SOCを徐々に低減させることができる。次いで、ステップT9に進み、二次電池100のSOCが50%に達したか否かを判定する。なお、二次電池100のSOCは、前述のように、所定時間毎に、電池コントローラ30において推定する。
 電池コントローラ30は、ステップT9において、SOCが50%に達していない(No)と判定した場合、放電過多の制御を継続して行う。一方、ステップT9において、SOCが50%に達した(Yes)と判定した場合は、ステップTAに進み、放電過多の制御を終了し、通常の充放電制御に戻る。
 以上のように、本実施例1では、電池コントローラ30によって、組電池10を構成する二次電池100のSOCが25%を下回らないように、且つ、SOCが75%を上回らないように、二次電池100のSOCの制御を行っている。このようにして、本実施例1では、制御中心をSOC50%として、SOC25%~75%の範囲内で、二次電池100の充放電の制御を行っている。
 図6に示すように、二次電池100では、SOC25%~75%の範囲において、SOC(蓄電量)の変化に伴う電池電圧の変化量が小さい。詳細には、SOC25%からSOC75%に至る広範囲において、電池電圧値が約3.8Vから約4.0Vまでにしか変化しない。従って、SOC25%~75%の範囲にわたって、3.9V付近の高い電池電圧値で安定して維持することができる。このため、本実施例1のハイブリッド自動車1では、二次電池100から高い出力を安定して得ることができるので、良好な走行性能を発揮することができる。
 ところで、二次電池100は、前述のように、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質153を有している。従来、正極活物質としてスピネル型の結晶構造を有するマンガン酸リチウムを用いた二次電池では、正極から溶出したMn2+が、負極の表面を被覆し、負極にインターカレートしているLiを引き抜いて、電池性能を劣化させてしまう問題があった。
 これに対し、本願発明者は、Mn2+の溶出が、充放電に伴う正極活物質中のMnの価数変化(Mn3+→Mn4+ )に伴う結晶構造変化に起因するものであることを見出した。さらに、V-dQ/dV曲線上に現れる第2ピークBは、正極活物質(スピネル型の結晶構造を有するマンガン酸リチウム)の結晶構造変化に起因していることを見出した。これらのことから、二次電池100の電池電圧Vが、V-dQ/dV曲線上に現れる第2ピークBにおける電池電圧値V2に達し、これを上回ると、正極からMn2+が溶出し、電池性能が劣化すると考えた。
 そこで、本実施例1の二次電池システム6では、電池コントローラ30により、二次電池100の電池電圧Vが、V-dQ/dV曲線上に現れる第2ピークBにおける電池電圧値V2を上回らないように、二次電池の充放電を制御するようにした。
 具体的には、図8を参照して説明したように、電池コントローラ30は、二次電池100が第2ピークBに対応する状態に達したかどうかを判断する(ステップT5参照)。そして、二次電池100が第2ピークBに対応する状態に達した(Yes)と判断した場合は、二次電池100の充電を停止する(ステップT6参照)。その後、組電池10(二次電池100)について、放電過多の制御を開始する(ステップT8参照)。これにより、二次電池100の電池電圧Vを、第2ピークBにおける電池電圧値V2よりも高くすることなく、電池電圧値V2から徐々に低下させることができる。これにより、正極からMn2+が溶出するのを抑制できるので、Mn2+の溶出に起因する電池性能の劣化を抑制することができる。
 なお、本実施例1では、電池コントローラ30が、dQ/dV算出手段、制御手段、及び判断手段に相当する。
 ここで、本実施例1の二次電池100の製造方法について説明する。
 まず、スピネル型の結晶構造を有するマンガン酸リチウム(正極活物質153)とアセチレンブラック(導電助剤)とポリフッ化ビニリデン(バインダ樹脂)とを、87:10:3(重量比)の割合で混合し、これにN-メチルピロリドン(分散溶媒)を混合して、正極スラリを作製した。次いで、この正極スラリを、アルミニウム箔151の表面に塗布し、乾燥させた後、プレス加工を施した。これにより、アルミニウム箔151の表面に正極合材152が塗工された正極板155を得た(図5参照)。
 また、グラファイト(負極活物質154)と、スチレン-ブタジエン共重合体(バインダ樹脂)と、カルボキシメチルセルロース(増粘剤)とを、98:1:1(重量比)の割合で水中で混合して、負極スラリを作製した。次いで、この負極スラリを、銅箔158の表面に塗布し、乾燥させた後、プレス加工を施した。これにより、銅箔158の表面に負極合材159が塗工された負極板156を得た(図5参照)。なお、本実施例1では、正極の理論容量と負極の理論容量との比が1:1.5となるように、正極スラリ及び負極スラリの塗布量を調整している。
 次に、正極板155、負極板156、及びセパレータ157を積層し、これを捲回して断面長円状の電極体150を形成した(図4,図5参照)。但し、正極板155、負極板156、及びセパレータ157を積層する際には、電極体150の一端部から、正極板155のうち正極合材152を塗工していない未塗工部が突出するように、正極板155を配置しておく。さらには、負極板156のうち負極合材159を塗工していない未塗工部が、正極板155の未塗工部とは反対側から突出するように、負極板156を配置しておく。これにより、正極捲回部155b及び負極捲回部156bを有する電極体150(図3参照)が形成される。なお、本実施例1では、セパレータ157として、ポリエチレンからなる多孔質フィルムを用いている。
 次に、電極体150の正極捲回部155bと正極端子120とを、正極集電部材122を通じて接続する。さらに、電極体150の負極捲回部156bと負極端子130とを、負極集電部材132を通じて接続する。その後、これを角形収容部111内に収容し、角形収容部111と蓋部112とを溶接して、電池ケース110を封止した。次いで、蓋部112に設けられている注液口(図示しない)を通じて電解液を注液した後、注液口を封止することで、本実施例1の二次電池100が完成する。なお、本実施例1では、電解液として、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)とを、4:6(体積比)で混合した溶液中に、六フッ化燐酸リチウム(LiPF)を1mol/Lの割合で溶解したものを用いている。
(実施例2)
 実施例2では、まず、二次電池100についてサイクル劣化試験を行った。
 まず、槽内温度が、0℃、25℃、45℃、60℃と異なる4つの恒温槽を用意した。次いで、各恒温槽内に、二次電池100を1個ずつ配置し、各二次電池100について、サイクル充放電を行った。具体的には、充電上限電圧値を4.2V、放電下限電圧値を3.0Vとして、2Cの電流値で、500サイクルの充放電を行った。このようにして、4つの異なる環境温度下で、サイクル充放電を行い、二次電池100の劣化を促進させた。
 次いで、上述のサイクル劣化試験を行った二次電池100について、それぞれ、次のようにして内部抵抗(mΩ)を測定した。まず、各二次電池100について、1/3Cの電流値で、電池電圧が3.0Vに達するまで放電を行った。その後、1/5Cの電流値で充電を行い、SOC50%とした。この状態で、各二次電池100の内部抵抗を、交流インピーダンス法により測定した。具体的には、FRA(周波数応答アナライザ)としてソートラン社製の1252Aを用い、コントロールユニットとしてソートラン社製のSI1287を用いて、5mVの電位振幅を与えつつ、周波数を1MHzから1Hzまで変化させた。周波数を1kHzとしたときに計測された値を、二次電池100の内部抵抗値(mΩ)とした。その結果、サイクル劣化試験を行った二次電池100は、いずれも、初期状態の二次電池100(サイクル劣化試験を行っていない二次電池100)に比べて、内部抵抗が上昇していた(図13参照)。
 また、上述のサイクル劣化試験を行った各二次電池100について、電池電圧Vの値とdQ/dVの値との関係を表すV-dQ/dV曲線を取得した。具体的には、各二次電池100について、SOC0%(電池電圧3.0V)からSOC100%(電池電圧4.2V)に至る間、所定時間T(例えば1秒)毎に蓄電量Qと電池電圧Vを取得した。この蓄電量Qと電池電圧Vに基づいて、所定時間毎の電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出し、このdQ/dVの値と電池電圧Vとの関係をV-dQ/dV曲線として表した。このうちの1つ(60℃の恒温槽内に配置してサイクル劣化試験を行った二次電池100にかかるV-dQ/dV曲線)を、図10に示す。
 また、初期状態の二次電池100を接続不良とした状態で、上述のようにして、V-dQ/dV曲線を取得した。
 なお、本実施例2では、電池コントローラ130等と二次電池100の正極端子120を接続するケーブル127を、次のようにして接続している。図12に示すように、正極端子120の貫通孔120c及び接続端子127bの貫通孔127cに、ボルト125のネジ部125bを挿通させた状態で、ボルト125のネジ部125bにナット126を螺合させて、正極端子120と接続端子127bとを締結する。これにより、正極端子120と接続端子127bと密着させて、両者を適切に接続することができる。従って、ここでは、ナット126を緩めて、正極端子120と接続端子127bとが密着しない状態とすることで、接続不良の状態とした。
 ここで、初期状態の二次電池100のV-dQ/dV曲線(図9参照)と、サイクル劣化試験により内部抵抗が上昇した二次電池100のV-dQ/dV曲線(図10参照)とを比較する。2つのV-dQ/dV曲線には、明確な2つのピーク(第1ピークAと第2ピークB)が現れている。
 まず、図9において、第1ピークAにおける電池電圧値V1と第2ピークBにおける電池電圧値V2との差分値ΔVK(=V2-V1)を算出する。また、図10において、第1ピークAにおける電池電圧値V1と、第2ピークBにおける電池電圧値V2との差分値ΔVL(=V2-V1)を算出する。
 ΔVKとΔVLを比較すると、ΔVL>ΔVKであることがわかる。すなわち、初期状態の二次電池100よりも、内部抵抗が上昇した二次電池100のほうが、第1ピークAにおける電池電圧値V1と第2ピークBにおける電池電圧値V2との差分値ΔVが大きくなることがわかる。
 このようにして、サイクル劣化試験により内部抵抗が上昇した各二次電池100、及び、接続不良とした二次電池100について、第1ピークAにおける電池電圧値V1と第2ピークBにおける電池電圧値V2との差分値ΔVを算出した。この結果を、内部抵抗(mΩ)と差分値ΔVの関係を表すグラフとして、図13に示す。なお、図13では、初期状態の二次電池100を◆、内部抵抗が上昇した二次電池100(サイクル劣化試験を行った二次電池100)を○、接続不良とした二次電池100を△で表している。
 図13から、二次電池100の内部抵抗が大きくなるにしたがって、第1ピークAにおける電池電圧値V1と第2ピークBにおける電池電圧値V2との差分値ΔVが大きくなってゆくことがわかる。また、接続不良の二次電池100では、差分値ΔVが極端に大きくなる(初期状態の二次電池100の約1.9倍)ことがわかる。
 本実施例2では、このような特性を利用して、V-dQ/dV曲線における差分値ΔVに基づいて、二次電池100の内部抵抗の上昇及び接続不良を検知する。
 本実施例2のハイブリッド自動車201は、実施例1のハイブリッド自動車1と比較して、二次電池システムのみが異なる(図1参照)。本実施例2の二次電池システムは、実施例1の二次電池システム6と比較して、電池コントローラのみが異なり、その他については同様である。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
 本実施例2の二次電池システム26は、図11に示すように、組電池10と、電圧検知手段40と、電流検知手段50と、電池コントローラ130とを備えている。電池コントローラ130は、ROM131、CPU132、RAM133等を有している。
 電池コントローラ130のROM131には、実施例1の電池コントローラ30と同様に、予め、初期状態の二次電池100について取得した、電池電圧VとdQ/dVとの関係を表すV-dQ/dV曲線K(図9参照)を記憶させている。さらに、電池コントローラ130のROM131には、V-dQ/dV曲線K上の第1ピークAにおける電池電圧値V1と第2ピークBにおける電池電圧値V2との差分値である基準電圧差分値ΔVK(=V2-V1=0.2V)を記憶させている。
 さらに、電池コントローラ130は、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV-dQ/dV曲線を描き、このQ-dQ/dV曲線と、ROM31に記憶されているV-dQ/dV曲線K(図9参照)との対比(パターンマッチング)により、二次電池100がV-dQ/dV曲線上の第1ピークAまたは第2ピークBに対応する状態に至ったかどうかを判断する。換言すれば、所定時間T毎に検出される電池電圧Vの値と、所定時間T毎に算出されるdQ/dVの値とが、V-dQ/dV曲線上の第1ピークAまたは第2ピークBを示す値になったかどうかを判断する。
 例えば、電池コントローラ130は、二次電池100が第1ピークAに対応する状態に至ったと判断した場合は、そのときに電圧検知手段40で検知された二次電池100の電池電圧値V1(電池コントローラ130の判断により、二次電池100が第1ピークAに対応する状態に至ったと推定される時点において、電圧検知手段40で検知された二次電池100の電池電圧値V1)を記憶する。また、二次電池100が第2ピークBに対応する状態に至ったと判断した場合は、そのときに電圧検知手段40で検知された二次電池100の電池電圧値V2(電池コントローラ130の判断により、二次電池100が第2ピークBに対応する状態に至ったと推定される時点において、電圧検知手段40で検知された二次電池100の電池電圧値V2)を記憶する。そして、電池電圧値V2から電池電圧値V1を差し引いた差分値である実測電圧差分値ΔVS(=V2-V1)を算出する。
 さらに、電池コントローラ130は、基準電圧差分値ΔVKと実測電圧差分値ΔVSとを対比する。実測電圧差分値ΔVSが、基準電圧差分値ΔVKよりも大きい場合には、二次電池100の内部抵抗が上昇していると判断する。特に、実測電圧差分値ΔVSが、基準電圧差分値ΔVKの1.8倍より大きい場合には、二次電池100の接続不良が生じていると判断する。この場合、電池コントローラ130は、二次電池100の接続不良が生じている旨の信号を出力して、二次電池100の接続確認を促す。
 なお、本実施例2の二次電池システム26でも、実施例1の二次電池システム6と同様に、電池コントローラ130によって、組電池10を構成する二次電池100のSOCが25%を下回らないように、且つ、SOCが75%を上回らないように、二次電池100のSOCの制御を行っている(図7及び図8参照)。このようにして、制御中心をSOC50%として、SOC25%~75%の範囲内で、二次電池100の充放電の制御を行っている。
 次に、本実施例2にかかる二次電池100の内部抵抗上昇の検知方法及び二次電池100の接続不良の検知方法について、図14及び図15を参照して詳細に説明する。
 まず、電池コントローラ130は、組電池10(二次電池100)の充放電制御を開始すると、図14に示すように、ステップU1において、電圧検知手段40によって検知された各々の二次電池100の電池電圧値Vを取得すると共に、電流検知手段50により検知された二次電池100を流れる電流値Iを取得する。なお、本実施例2では、電池コントローラ130は、所定時間T(例えば1秒)毎に、電池電圧値Vと電流値Iを取得する。
 次に、ステップU2に進み、電池コントローラ130は、電流検知手段50で検知された電流値Iを積算して、各二次電池100の充電電気量を算出する。次いで、ステップU3に進み、電池コントローラ130は、算出された充電電気量に基づいて、各二次電池100に蓄えられている電気量(蓄電量Q)を推定する。なお、本実施例2では、所定時間T(例えば1秒)毎に検知された電流値Iに基づいて、所定時間T毎の蓄電量Qを推定する。
 次に、ステップU4に進み、各二次電池100について、電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出する。換言すれば、二次電池100の蓄電量Qを、これに対応する電池電圧値Vで微分して、dQ/dVの値を算出する。具体的には、各二次電池100について、所定時間T毎に取得される電池電圧値Vと蓄電量Qに基づいて、各所定時間T毎の電池電圧Vの変化量dVと蓄電量Qの変化量dQとを算出し、これらに基づいて、所定時間T毎のdQ/dVの値を算出する。
 次いで、ステップU5に進み、各二次電池100について状態検知を行う。詳細には、図15に示すサブルーチンに進み、まず、ステップU51において、各二次電池100について、V-dQ/dV曲線上の第1ピークAに対応する状態に至ったかどうかを判断する。具体的には、電池コントローラ130により、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV-dQ/dV曲線を描き、このV-dQ/dV曲線と、ROM131に記憶されているV-dQ/dV曲線K(図9参照)との対比(パターンマッチング)により、二次電池100がV-dQ/dV曲線上の第1ピークAに対応する状態に至ったかどうかを判断する。
 第1ピークAに対応する状態に至っていない(No)と判定された場合は、図14に示すメインルーチンに戻り、再び、ステップU1~U4の処理を行う。
 一方、第1ピークAに対応する状態に至った(Yes)と判定されると、ステップU52に進み、第1ピークAに対応する状態に達したときに電圧検知手段40で検知された、各二次電池100の電池電圧値V1を記憶する。なお、電池コントローラ130は、二次電池100が第1ピークAに対応する状態に至った(Yes)と判定した後は、二次電池100がSOC50%に達するまで、充電過多の制御を行う(図7参照)。
 次に、ステップU53に進み、各二次電池100について、V-dQ/dV曲線上の第2ピークBに対応する状態に至ったかどうかを判断する。具体的には、電池コントローラ130により、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV-dQ/dV曲線を描き、このV-dQ/dV曲線と、ROM131に記憶されているV-dQ/dV曲線Kとの対比(パターンマッチング)により、二次電池100がV-dQ/dV曲線上の第2ピークBに対応する状態に至ったかどうかを判断する。
 第2ピークBに対応する状態に至っていない(No)と判定された場合は、図14に示すメインルーチンに戻り、再び、ステップU1~U4の処理を行う。
 一方、第2ピークBに対応する状態に至った(Yes)と判定されると、ステップU54に進み、第2ピークBに対応する状態に達したときに電圧検知手段40で検知された、各二次電池100の電池電圧値V2を記憶する。なお、電池コントローラ130は、二次電池100が第2ピークBに対応する状態に至った(Yes)と判定した後は、二次電池100がSOC50%に達するまで、放電過多の制御を行う(図8参照)。
 次に、ステップU55に進み、電池電圧値V2から電池電圧値V1を差し引いた差分値である実測電圧差分値ΔVS(=V2-V1)を算出する。
 その後、ステップU56に進み、算出された実測電圧差分値ΔVSと、ROM131に記憶されている基準電圧差分値ΔVKとを対比する。具体的には、実測電圧差分値ΔVSを基準電圧差分値ΔVKで除して、ΔVS/ΔVKの値を算出する。
 次いで、ステップU57に進み、ΔVS/ΔVK>1を満たしているか否かを判定する。すなわち、実測電圧差分値ΔVSが基準電圧差分値ΔVKより大きいか否かを判定する。ΔVS/ΔVK>1を満たしていない(No)と判定された場合は、図14に示すメインルーチンに戻り、一連の処理を終了する。
 一方、ΔVS/ΔVK>1を満たしている(Yes)と判定された場合は、ステップU58に進み、ΔVS/ΔVK>1.8を満たしているか否かを判定する。すなわち、実測電圧差分値ΔVSが、基準差分値ΔVKの1.8倍より大きいか否かを判定する。
 ステップU58において、ΔVS/ΔVK>1.8を満たしていない(No)と判定された場合は、ステップU59に進み、二次電池100の内部抵抗が上昇していると判断する。一方、ΔVS/ΔVK>1.8を満たしている(Yes)と判定された場合は、ステップU5Aに進み、二次電池100の接続不良が生じていると判断する。この場合、ステップU5Bに進み、二次電池100の接続不良が生じている旨の信号を出力して、二次電池100の接続確認を促す。
 以上のようにして、本実施例2では、V-dQ/dV曲線上に現れる明確なピーク(第1ピークA及び第2ピークB)に基づいて、二次電池システム26の状態(具体的には、二次電池100の内部抵抗の上昇及び接続不良)を検知する。このため、本実施例2では、SOC(蓄電量)の変化に伴う電池電圧の変化量が小さい範囲内(具体的には、SOC25%~75%の範囲内)で二次電池100を使用しているにも拘わらず、二次電池100の内部抵抗上昇及び接続不良を、精度良く検知することができる。
 なお、本実施例2では、電池コントローラ130が、dQ/dV算出手段、制御手段、判断手段、抵抗上昇検知手段、及び接続不良検知手段に相当する。
(実施例3)
 実施例2においてサイクル劣化試験を行った4つの二次電池100について、次のようにして電池容量(満充電容量)を測定した。まず、各二次電池100について、1/5Cの電流値で、電池電圧が4.2V(SOC100%)に達するまで充電を行った。その後、4.2Vの定電圧で充電を行い、電流値が初期の1/10にまで低下したところで充電を終了した。その後、各二次電池100について、1/5Cの電流値で、電池電圧が3.0V(SOC0%)に達するまで、放電を行った。このときの放電容量を、各二次電池100の電池容量(満充電容量)として測定した。
 また、電池電圧が3.0V(SOC0%)に達した二次電池100について、1/5Cの電流値で充電を行い、その充電期間中、V-dQ/dV曲線をリアルタイムで描き、この曲線をモニターに表示させた。このモニターに描かれるV-dQ/dV曲線を目視で観察し、第1ピークAに至った(二次電池100が第1ピークAに対応する状態に至った)と判断したときに充電を停止した。その後、二次電池100について、電池電圧が3.0V(SOC0%)になるまで1/5Cの電流値で定電流放電を行った。このときの放電容量を、二次電池100が第1ピークAに対応する状態に至ったときの蓄電量Q1として取得した。
 さらに、電池電圧が3.0V(SOC0%)に達した二次電池100について、1/5Cの電流値で充電を行い、その充電期間中、V-dQ/dV曲線をリアルタイムで描き、この曲線をモニターに表示させた。このモニターに描かれるV-dQ/dV曲線を目視で観察し、第2ピークBに至った(二次電池100が第2ピークBに対応する状態に至った)と判断したときに充電を停止した。その後、二次電池100について、電池電圧が3.0V(SOC0%)になるまで1/5Cの電流値で定電流放電を行った。このときの放電容量を、二次電池100が第2ピークBに対応する状態に至ったときの蓄電量Q2として取得した。さらに、蓄電量Q1と蓄電量Q2との差分値ΔQ(=Q2-Q1)を算出した。
 また、サイクル劣化試験を行っていない初期状態の二次電池100について、上述のようにして、電池容量、蓄電量Q1、蓄電量Q2、及び差分値ΔQ(これを基準蓄電量差分値ΔQKとする)を取得した。
 また、微小短絡が生じている二次電池100を用意し、これについても、上述のようにして、電池容量、蓄電量Q1、蓄電量Q2、及び差分値ΔQを取得した。
 この結果を、電池容量(mAh)とΔQとの関係を表すグラフとして、図17に示す。なお、図17では、初期状態の二次電池100を◆、容量低下した二次電池100(サイクル劣化試験を行った4つの二次電池100)を○、内部微小短絡が生じている二次電池100を△で表している。なお、サイクル劣化試験を行った4つの二次電池100は、いずれも、初期状態の二次電池100(サイクル劣化試験を行っていない二次電池100)に比べて、電池容量が低下していた。
 図17から、電池容量(満充電容量)が低下するにしたがって、第1ピークAにおける蓄電量Q1と第2ピークBにおける蓄電量Q2との差分値ΔQ(=Q2-Q1)が小さくなってゆくことがわかる。また、内部微小短絡が生じている二次電池100では、初期状態の二次電池100に比べて、差分値ΔQが大きく低下する(初期状態の二次電池100の約74%)ことがわかる。
 本実施例3では、このような特性を利用して、蓄電量Q1と蓄電量Q2との差分値ΔQ(=Q2-Q1)に基づいて、二次電池100の電池容量(満充電容量)の低下及び内部微小短絡を検知する。
 本実施例3のハイブリッド自動車301は、実施例1のハイブリッド自動車1と比較して、二次電池システムのみが異なる(図1参照)。本実施例3の二次電池システムは、実施例1の二次電池システム6と比較して、電池コントローラのみが異なり、その他については同様である。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
 本実施例3の二次電池システム36は、図16に示すように、組電池10と、電圧検知手段40と、電流検知手段50と、電池コントローラ230とを備えている。電池コントローラ230は、ROM231、CPU232、RAM233等を有している。
 電池コントローラ230は、実施例1の電池コントローラ30と同様に、所定時間T毎に、各二次電池100の蓄電量Qを推定する。さらに、電池コントローラ230は、所定時間T毎に、電圧検知手段40で検知された各二次電池100の電池電圧Vを取得する。さらに、電池コントローラ230は、所定時間T毎にdQ/dVの値を算出する。
 なお、電池コントローラ230のROM231には、実施例1の電池コントローラ30と同様に、予め、初期状態の二次電池100について取得した、電池電圧VとdQ/dVとの関係を表すV-dQ/dV曲線K(図9参照)を記憶させている。さらに、電池コントローラ230のROM231には、初期状態の二次電池100にかかる蓄電量Q1と蓄電量Q2との差分値である基準蓄電量差分値ΔQK(=Q2-Q1)を記憶させている。
 さらに、電池コントローラ230は、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV-dQ/dV曲線を描き、このQ-dQ/dV曲線と、ROM231に記憶されているV-dQ/dV曲線K(図9参照)との対比(パターンマッチング)により、二次電池100がV-dQ/dV曲線上の第1ピークAまたは第2ピークBに対応する状態に至ったかどうかを判断する。換言すれば、所定時間T毎に検出される電池電圧Vの値と、所定時間T毎に算出されるdQ/dVの値とが、V-dQ/dV曲線上の第1ピークAまたは第2ピークBを示す値になったかどうかを判断する。
 例えば、電池コントローラ230は、二次電池100が第1ピークAに対応する状態に至ったと判断した場合は、そのときに推定された二次電池100の蓄電量Q1(電池コントローラ230の判断により、二次電池100が第1ピークAに対応する状態に至ったと推定される時点において、電池コントローラ230によって推定された二次電池100の蓄電量Q1)を記憶する。また、二次電池100が第2ピークBに対応する状態に至ったと判断した場合は、そのときに推定された二次電池100の蓄電量Q2(電池コントローラ230の判断により、二次電池100が第2ピークBに対応する状態に至ったと推定される時点において、電池コントローラ230によって推定された二次電池100の蓄電量Q2)を記憶する。そして、蓄電量Q2から蓄電量Q1を差し引いた差分値である実測蓄電量差分値ΔQS(=Q2-Q1)を算出する。
 さらに、電池コントローラ230は、実測蓄電量差分値ΔQSと基準蓄電量差分値ΔQKとを対比する。実測蓄電量差分値ΔQSが、基準蓄電量差分値ΔQKよりも小さい場合には、二次電池100の電池容量が低下していると判断する。特に、実測蓄電量差分値ΔQSが、基準蓄電量差分値ΔQKの75%を下回った場合には、二次電池100に内部微小短絡が生じていると判断する。この場合、電池コントローラ230は、二次電池100が異常である旨の信号を出力して、二次電池100の交換を促す。
 なお、本実施例3の二次電池システム36でも、実施例1の二次電池システム6と同様に、電池コントローラ230によって、組電池10を構成する二次電池100のSOCが25%を下回らないように、且つ、SOCが75%を上回らないように、二次電池100のSOCの制御を行っている(図7及び図8参照)。このようにして、制御中心をSOC50%として、SOC25%~75%の範囲内で、二次電池100の充放電の制御を行っている。
 次に、本実施例3にかかる二次電池100の電池容量低下の検知方法及び二次電池100の内部微小短絡の検知方法について、図18及び図19を参照して詳細に説明する。
 まず、電池コントローラ230は、組電池10(二次電池100)の充放電制御を開始すると、図18に示すように、ステップW1において、電圧検知手段40によって検知された各々の二次電池100の電池電圧値Vを取得すると共に、電流検知手段50により検知された二次電池100を流れる電流値Iを取得する。なお、本実施例3では、電池コントローラ230は、所定時間T(例えば1秒)毎に、電池電圧値Vと電流値Iを取得する。
 次に、ステップW2に進み、電池コントローラ230は、電流検知手段50で検知された電流値Iを積算して、各二次電池100の充電電気量を算出する。次いで、ステップW3に進み、電池コントローラ230は、算出された充電電気量に基づいて、各二次電池100に蓄えられている電気量(蓄電量Q)を推定する。なお、本実施例3では、所定時間T(例えば1秒)毎に検知された電流値Iに基づいて、所定時間T毎の蓄電量Qを推定する。
 次に、ステップW4に進み、各二次電池100について、電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出する。換言すれば、二次電池100の蓄電量Qを、これに対応する電池電圧値Vで微分して、dQ/dVの値を算出する。具体的には、各二次電池100について、所定時間T毎に取得される電池電圧値Vと蓄電量Qに基づいて、各所定時間T毎の電池電圧Vの変化量dVと蓄電量Qの変化量dQとを算出し、これらに基づいて、所定時間T毎のdQ/dVの値を算出する。
 次いで、ステップW5に進み、各二次電池100について状態検知を行う。詳細には、図19に示すサブルーチンに進み、まず、ステップW51において、各二次電池100について、V-dQ/dV曲線上の第1ピークAに対応する状態に至ったかどうかを判断する。具体的には、電池コントローラ230により、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV-dQ/dV曲線を描き、このV-dQ/dV曲線と、ROM231に記憶されているV-dQ/dV曲線K(図9参照)との対比(パターンマッチング)により、二次電池100がV-dQ/dV曲線上の第1ピークAに対応する状態に至ったかどうかを判断する。
 第1ピークAに対応する状態に至っていない(No)と判定された場合は、図18に示すメインルーチンに戻り、再び、ステップW1~W4の処理を行う。
 一方、第1ピークAに対応する状態に至った(Yes)と判定されると、ステップW52に進み、第1ピークAに対応する状態に達したときに推定された、各二次電池100の蓄電量Q1を記憶する。なお、電池コントローラ230は、二次電池100が第1ピークAに対応する状態に至った(Yes)と判定した後は、二次電池100がSOC50%に達するまで、充電過多の制御を行う(図7参照)。
 次に、ステップW53に進み、各二次電池100について、V-dQ/dV曲線上の第2ピークBに対応する状態に至ったかどうかを判断する。具体的には、電池コントローラ230により、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV-dQ/dV曲線を描き、このV-dQ/dV曲線と、ROM231に記憶されているV-dQ/dV曲線Kとの対比(パターンマッチング)により、二次電池100がV-dQ/dV曲線上の第2ピークBに対応する状態に至ったかどうかを判断する。
 第2ピークBに対応する状態に至っていない(No)と判定された場合は、図18に示すメインルーチンに戻り、再び、ステップW1~W4の処理を行う。
 一方、第2ピークBに対応する状態に至った(Yes)と判定されると、ステップW54に進み、第2ピークBに対応する状態に達したときに推定された、各二次電池100の蓄電量Q2を記憶する。なお、電池コントローラ230は、二次電池100が第2ピークBに対応する状態に至った(Yes)と判定した後は、二次電池100がSOC50%に達するまで、放電過多の制御を行う(図8参照)。
 次に、ステップW55に進み、蓄電量Q2から蓄電量Q1を差し引いた差分値である実測蓄電量差分値ΔQS(=Q2-Q1)を算出する。
 その後、ステップW56に進み、算出された実測蓄電量差分値ΔQSと、ROM231に記憶されている基準蓄電量差分値ΔQKとを対比する。具体的には、実測蓄電量差分値ΔQSを基準蓄電量差分値ΔQKで除して、ΔQS/ΔQKの値を算出する。
 次いで、ステップW57に進み、ΔQS/ΔQK<1を満たしているか否かを判定する。すなわち、実測蓄電量差分値ΔQSが基準蓄電量差分値ΔQKより小さいか否かを判定する。ΔQS/ΔQK<1を満たしていない(No)と判定された場合は、図18に示すメインルーチンに戻り、一連の処理を終了する。
 一方、ΔQS/ΔQK<1を満たしている(Yes)と判定された場合は、ステップW58に進み、ΔQS/ΔQK>0.75を満たしているか否かを判定する。すなわち、実測蓄電量差分値ΔQSが、基準蓄電量差分値ΔQKの75%より大きいか否かを判定する。
 ステップW58において、ΔQS/ΔQK>0.75を満たしている(Yes)と判定された場合は、ステップW59に進み、二次電池100の電池容量が低下していると判断する。一方、ΔQS/ΔQK>0.75を満たしていない(No)と判定された場合は、ステップW5Aに進み、二次電池100に内部微小短絡が生じていると判断する。この場合、ステップW5Bに進み、二次電池100が異常である旨の信号を出力して、二次電池100の交換を促す。
 以上のようにして、本実施例3では、V-dQ/dV曲線上に現れる明確なピーク(第1ピークA及び第2ピークB)に基づいて、二次電池システム36の状態(具体的には、二次電池100の電池容量低下及び内部微小短絡)を検知する。このため、本実施例3では、SOC(蓄電量)の変化に伴う電池電圧の変化量が小さい範囲内(具体的には、SOC25%~75%の範囲内)で二次電池100を使用しているにも拘わらず、二次電池100の電池容量低下及び内部微小短絡を、精度良く検知することができる。
 なお、本実施例3では、電池コントローラ230が、dQ/dV算出手段、制御手段、判断手段、容量低下検知手段、及び微小短絡検知手段に相当する。
 以上において、本発明を実施例1~3に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
 例えば、実施例2では、二次電池の内部抵抗上昇と二次電池の接続不良の検知を行う二次電池システムを例示した(図14及び図15参照)。また、実施例3では、二次電池の電池容量低下と内部微小短絡を検知する二次電池システムを例示した(図18及び図19参照)。しかしながら、実施例2の状態検知と実施例3の状態検知を組み合わせた状態検知を行う二次電池システムとするのが好ましい。すなわち、二次電池の内部抵抗上昇と二次電池の接続不良の検知(図15に示すステップU51~ステップU5Bの処理)に加えて、二次電池の電池容量低下と内部微小短絡をも検知(図19に示すステップW51~ステップW5Bの処理)する二次電池システムとするのが好ましい。
1,101,201 ハイブリッド自動車
6,26,36 二次電池システム
10 組電池
30,130,230 電池コントローラ(dQ/dV算出手段、判断手段、抵抗上昇検知手段、接続不良検知手段、容量低下検知手段、微小短絡検知手段、制御手段)
40 電圧検知手段
50 電流検知手段
100 二次電池
153 正極活物質
154 負極活物質
155 正極板
156 負極板
157 セパレータ
A 第1ピーク
B 第2ピーク

Claims (9)

  1. 二次電池を備える二次電池システムであって、
     上記二次電池は、
      スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質と、充放電により相変化を伴う負極活物質と、を含み、
     上記二次電池システムは、
      上記二次電池の充放電時に、上記二次電池の電池電圧Vの変化量dVに対する上記二次電池の蓄電量Qの変化量dQの割合であるdQ/dVの値を算出するdQ/dV算出手段を備え、
      上記電池電圧Vの値と上記dQ/dVの値との関係を表すV-dQ/dV曲線上に現れるピークに基づいて、上記二次電池システムの状態を検知する
    二次電池システム。
  2. 請求項1に記載の二次電池システムであって、
     前記二次電池システムは、
      前記電池電圧Vの値と前記dQ/dVの値に基づいて、前記二次電池が前記V-dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうか、及び、上記二次電池が上記V-dQ/dV曲線上に現れる第2ピークであって上記第1ピークよりも高い電池電圧Vにかかる第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、
      上記判断手段により上記二次電池が上記第1ピークに対応する状態に至ったと判断されたときの電池電圧値V1と上記第2ピークに対応する状態に至ったと判断されたときの電池電圧値V2との差分値である実測電圧差分値に基づいて、上記二次電池システムの状態を検知する
    二次電池システム。
  3. 請求項2に記載の二次電池システムであって、
     前記二次電池システムは、
      前記二次電池の内部抵抗の上昇を検知する抵抗上昇検知手段を備え、
     上記抵抗上昇検知手段は、
      予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる電池電圧値V1と前記第2ピークにかかる電池電圧値V2との差分値である基準電圧差分値であって、初期状態の上記二次電池にかかる基準電圧差分値と、前記実測電圧差分値とを対比して、上記実測電圧差分値が上記基準電圧差分値よりも大きい場合に、上記二次電池の内部抵抗が上昇していると判断する
    二次電池システム。
  4. 請求項2または請求項3に記載の二次電池システムであって、
     前記二次電池システムは、
      前記二次電池の接続不良を検知する接続不良検知手段を備え、
     上記接続不良検知手段は、
      予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる電池電圧値V1と前記第2ピークにかかる電池電圧値V2との差分値である基準電圧差分値であって、初期状態の上記二次電池にかかる基準電圧差分値と、前記実測電圧差分値とを対比して、上記実測電圧差分値が、上記基準電圧差分値よりも大きく且つ所定の閾値よりも大きい場合に、上記二次電池の接続不良が生じていると判断する
    二次電池システム。
  5. 請求項1~請求項4のいずれか一項に記載の二次電池システムであって、
     前記二次電池システムは、
      前記電池電圧Vの値と前記dQ/dVの値に基づいて、前記二次電池が前記V-dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうか、及び、上記二次電池が上記V-dQ/dV曲線上に現れる第2ピークであって上記第1ピークよりも高い電池電圧値Vにかかる第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、
      上記判断手段により上記二次電池が上記第1ピークに対応する状態に至ったと判断されたときの上記二次電池の蓄電量Q1と上記第2ピークに対応する状態に至ったと判断されたときの上記二次電池の蓄電量Q2との差分値である実測蓄電量差分値に基づいて、上記二次電池の状態を検知する
    二次電池システム。
  6. 請求項5に記載の二次電池システムであって、
     前記二次電池システムは、
      前記二次電池の電池容量の低下を検知する容量低下検知手段を備え、
     上記容量低下検知手段は、
      予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる上記二次電池の蓄電量Q1と前記第2ピークにかかる上記二次電池の蓄電量Q2との差分値である基準蓄電量差分値であって、初期状態の上記二次電池にかかる基準蓄電量差分値と、前記実測蓄電量差分値とを対比して、上記実測蓄電量差分値が上記基準蓄電量差分値よりも小さい場合に、上記二次電池の電池容量が低下していると判断する
    二次電池システム。
  7. 請求項5または請求項6に記載の二次電池システムであって、
     前記二次電池システムは、
      前記二次電池の内部微小短絡を検知する微小短絡検知手段を含み、
     上記微小短絡検知手段は、
      予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる上記二次電池の蓄電量Q1と前記第2ピークにかかる上記二次電池の蓄電量Q2との差分値である基準蓄電量差分値であって、初期状態の上記二次電池にかかる基準蓄電量差分値と、前記実測蓄電量差分値とを対比して、上記実測電圧差分値が、上記基準電圧差分値よりも小さく且つ所定の閾値よりも小さい場合に、上記二次電池に内部微小短絡が生じていると判断する
    二次電池システム。
  8. 請求項1~請求項7のいずれか一項に記載の二次電池システムであって、
     前記二次電池システムは、
      前記二次電池の充放電を制御する制御手段を備え、
     上記制御手段は、
      前記二次電池の前記電池電圧Vの値が、前記V-dQ/dV曲線上に現れる第1ピーク及び第2ピークのうち上記第1ピークよりも高い電池電圧Vにかかる上記第2ピークにおける電池電圧値V2を上回らないように、上記二次電池の充放電を制御する
    二次電池システム。
  9. 請求項8に記載の二次電池システムであって、
     前記二次電池システムは、
      前記電池電圧Vの値と前記dQ/dVの値に基づいて、上記二次電池が、前記V-dQ/dV曲線上の前記第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、
     前記制御手段は、
      上記二次電池の充電時に、上記判断手段によって上記二次電池が上記第2ピークに対応する状態に至ったと判断されると、上記二次電池の充電を停止させて、上記二次電池について放電過多の制御を行う
    二次電池システム。
PCT/JP2009/066617 2009-09-25 2009-09-25 二次電池システム WO2011036760A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/066617 WO2011036760A1 (ja) 2009-09-25 2009-09-25 二次電池システム
JP2010544105A JP5287872B2 (ja) 2009-09-25 2009-09-25 二次電池システム
US13/145,118 US8653793B2 (en) 2009-09-25 2009-09-25 Secondary battery system
CN2009801585607A CN102369627B (zh) 2009-09-25 2009-09-25 二次电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066617 WO2011036760A1 (ja) 2009-09-25 2009-09-25 二次電池システム

Publications (1)

Publication Number Publication Date
WO2011036760A1 true WO2011036760A1 (ja) 2011-03-31

Family

ID=43795531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066617 WO2011036760A1 (ja) 2009-09-25 2009-09-25 二次電池システム

Country Status (4)

Country Link
US (1) US8653793B2 (ja)
JP (1) JP5287872B2 (ja)
CN (1) CN102369627B (ja)
WO (1) WO2011036760A1 (ja)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013007881A1 (en) * 2011-07-08 2013-01-17 European Batteries Oy Method and system for managing the state of charge of a lithium-ion cell module
JP2013070599A (ja) * 2011-09-09 2013-04-18 Gs Yuasa Corp 状態管理装置、蓄電素子の均等化方法
JP2013068458A (ja) * 2011-09-21 2013-04-18 Toyota Motor Corp 二次電池システム及び車両
US20130169235A1 (en) * 2011-12-29 2013-07-04 Research In Motion Limited Power pack remaining capacity level detection
JP2013196805A (ja) * 2012-03-16 2013-09-30 Hitachi Ltd リチウムイオン二次電池システムおよびリチウムイオン二次電池システムの制御方法
JP2014002055A (ja) * 2012-06-19 2014-01-09 Hitachi Ltd 二次電池の検査システム、充放電機、及び検査方法
JP2014007025A (ja) * 2012-06-22 2014-01-16 Toyota Motor Corp 診断装置および診断方法
US8742725B2 (en) 2008-04-01 2014-06-03 Toyota Jidosha Kabushiki Kaisha Secondary battery system
WO2014199554A1 (ja) * 2013-06-14 2014-12-18 信越化学工業株式会社 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法
JP2016009659A (ja) * 2014-06-26 2016-01-18 プライムアースEvエナジー株式会社 蓄電池の検査方法及び蓄電池の検査装置
JP2016015820A (ja) * 2014-07-02 2016-01-28 日本電気株式会社 電池制御装置及び電池制御システム
JP2016085166A (ja) * 2014-10-28 2016-05-19 株式会社東芝 蓄電池評価装置及び方法
JP2017129409A (ja) * 2016-01-19 2017-07-27 トヨタ自動車株式会社 二次電池の制御システム
JP2017227539A (ja) * 2016-06-22 2017-12-28 横河電機株式会社 二次電池容量測定システムおよび二次電池容量測定方法
JP6301048B1 (ja) * 2017-10-05 2018-03-28 三菱電機株式会社 組電池の管理装置および組電池システム
JP2018073755A (ja) * 2016-11-03 2018-05-10 トヨタ自動車株式会社 リチウムイオン二次電池の検査方法
JP2018096744A (ja) * 2016-12-09 2018-06-21 マツダ株式会社 リチウムイオン電池の劣化判定方法
WO2019181138A1 (ja) * 2018-03-19 2019-09-26 三菱自動車工業株式会社 二次電池の劣化度合測定装置
CN112731173A (zh) * 2020-12-22 2021-04-30 东软睿驰汽车技术(沈阳)有限公司 一种电池包的电芯内阻变化检测方法及装置
WO2021181672A1 (ja) * 2020-03-13 2021-09-16 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021181650A1 (ja) * 2020-03-13 2021-09-16 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021186511A1 (ja) * 2020-03-16 2021-09-23 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021186550A1 (ja) * 2020-03-17 2021-09-23 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021191993A1 (ja) * 2020-03-24 2021-09-30 Tdk株式会社 二次電池の制御装置、二次電池の制御システム、二次電池パック及び二次電池の制御方法
JP6968302B1 (ja) * 2020-08-04 2021-11-17 三菱電機株式会社 蓄電池内部状態推定装置及び蓄電池内部状態推定方法
JP2022510075A (ja) * 2019-05-14 2022-01-26 エルジー エナジー ソリューション リミテッド バッテリーの退化度を決定するための装置及び方法、並びにその装置を含むバッテリーパック
JP2022520765A (ja) * 2019-09-19 2022-04-01 エルジー エナジー ソリューション リミテッド バッテリー管理装置、バッテリー管理方法、バッテリーパック及び電気車両
WO2022185152A1 (ja) * 2021-03-05 2022-09-09 株式会社半導体エネルギー研究所 二次電池の充電方法
JP2023522605A (ja) * 2020-11-13 2023-05-31 エルジー エナジー ソリューション リミテッド バッテリー診断装置及び方法
JP2023524846A (ja) * 2020-08-10 2023-06-13 エルジー エナジー ソリューション リミテッド バッテリー異常診断装置及び方法
JP2023539583A (ja) * 2021-02-19 2023-09-15 エルジー エナジー ソリューション リミテッド バッテリー状態診断装置及び方法
JP2023543497A (ja) * 2020-09-30 2023-10-16 ビーワイディー カンパニー リミテッド 電池容量を取得する方法、装置、記憶媒体及びサーバ
WO2024047499A1 (ja) * 2022-09-02 2024-03-07 株式会社半導体エネルギー研究所 蓄電システム
JP2024511082A (ja) * 2021-03-23 2024-03-12 シーメンス アクチエンゲゼルシヤフト 蓄電装置の容量損失を算定する方法、装置およびコンピュータプログラム製品
JP2024531594A (ja) * 2021-09-06 2024-08-29 デューコシ リミティド バッテリーシステムの健全度監視システム

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527855B1 (en) * 2010-01-19 2019-03-06 GS Yuasa International Ltd. Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
JP5682955B2 (ja) 2010-08-04 2015-03-11 Necエナジーデバイス株式会社 リチウム二次電池の制御システム、およびリチウム二次電池の状態検出方法
JP5255086B2 (ja) * 2011-04-08 2013-08-07 本田技研工業株式会社 電源装置及びその制御方法
EP2755270B1 (en) * 2011-09-09 2020-06-24 Toyota Jidosha Kabushiki Kaisha Secondary cell inspecting method
WO2014068919A1 (ja) * 2012-10-29 2014-05-08 三洋電機株式会社 回生制動する車両の電源装置
CN105723559B (zh) * 2013-11-29 2018-10-12 日立汽车系统株式会社 电池组件和组合电池
FR3015046B1 (fr) * 2013-12-12 2016-12-09 Commissariat Energie Atomique Procede d'estimation de l'etat de sante d'une batterie
CN103698714B (zh) * 2014-01-02 2016-06-29 清华大学 电池容量衰减机理辨识方法及系统
FR3020614B1 (fr) * 2014-04-30 2016-04-15 Renault Sa Procede et dispositif de surveillance d'une batterie electrique de vehicule
JP6123844B2 (ja) * 2014-09-01 2017-05-10 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
EP2990818B1 (en) * 2014-09-01 2019-11-27 Yokogawa Electric Corporation Secondary battery capacity measurement system and secondary battery capacity measurement method
US10033213B2 (en) * 2014-09-30 2018-07-24 Johnson Controls Technology Company Short circuit wake-up system and method for automotive battery while in key-off position
CN105807226B (zh) * 2014-12-31 2018-07-10 北京航天测控技术有限公司 基于等效电路模型的锂离子电池soc预测方法及装置
CN104617330B (zh) * 2015-01-19 2017-01-25 清华大学 电池微短路的识别方法
CN104730468B (zh) * 2015-04-07 2017-12-22 阳光电源股份有限公司 一种电池soc估算方法、装置以及电池管理系统
JP6380417B2 (ja) * 2016-01-21 2018-08-29 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
CN108241102A (zh) * 2016-12-23 2018-07-03 华为技术有限公司 一种电池微短路的检测方法及装置
US11152602B2 (en) * 2017-01-12 2021-10-19 StoreDot Ltd. Using formation parameters to extend the cycling lifetime of lithium ion batteries
JP6614176B2 (ja) * 2017-02-09 2019-12-04 トヨタ自動車株式会社 電池状態推定装置
DE102017102877A1 (de) 2017-02-14 2018-08-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Regelung eines Batteriesystems
JP6690584B2 (ja) * 2017-03-10 2020-04-28 トヨタ自動車株式会社 電池状態推定装置
DE102017208770B4 (de) * 2017-05-23 2019-03-28 Audi Ag Verfahren zur Prüfung eines Batteriezustands und Prüfvorrichtung zur Prüfung eines Batteriezustands
JP7131568B2 (ja) * 2017-10-24 2022-09-06 株式会社Gsユアサ 推定装置、推定方法及びコンピュータプログラム
US20200355749A1 (en) * 2018-01-11 2020-11-12 Semiconductor Energy Laboratory Co., Ltd. Device detecting abnormality of secondary battery, abnormality detection method, and program
JP6973213B2 (ja) * 2018-03-16 2021-11-24 トヨタ自動車株式会社 二次電池システム、及び二次電池制御方法
KR102349300B1 (ko) * 2018-04-10 2022-01-10 주식회사 엘지에너지솔루션 배터리의 전극 정보를 결정하기 위한 장치, 방법, 배터리 팩 및 전기 시스템
CN108808140B (zh) * 2018-04-26 2020-03-27 江西优特汽车技术有限公司 一种动力电池充电管理方法
US11043705B1 (en) * 2018-05-25 2021-06-22 The United States Government Of America As Represented By The Secretary Of The Navy Cell having implanted electronic circuit
EP3611817B1 (en) * 2018-08-13 2025-07-30 Samsung SDI Co., Ltd. Appratus and method of controlling battery
KR102238559B1 (ko) * 2018-08-13 2021-04-09 삼성에스디아이 주식회사 배터리 제어 장치 및 배터리의 내부단락 검출 방법
CN109143078A (zh) * 2018-08-28 2019-01-04 中航锂电技术研究院有限公司 一种磷酸铁锂动力电池“跳水”故障的辨识预判方法
KR102824995B1 (ko) 2019-04-19 2025-06-24 주식회사 엘지에너지솔루션 비파괴 저항 분석을 이용한 배터리 관리 장치 및 방법
US11577624B2 (en) 2019-06-05 2023-02-14 GM Global Technology Operations LLC Low voltage battery SOC confirmation and cell balancing
WO2021020250A1 (ja) 2019-08-01 2021-02-04 株式会社デンソー 二次電池の劣化度判定装置及び組電池
JP7341322B2 (ja) * 2019-08-23 2023-09-08 エルジー エナジー ソリューション リミテッド バッテリーのsohの予測方法及びこれを適用したバッテリーパック
CN110531276B (zh) * 2019-09-05 2022-04-26 江苏智蓝电源科技有限公司 电池状况检测方法及装置
KR102714079B1 (ko) 2019-09-11 2024-10-04 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
US11614489B2 (en) 2020-04-13 2023-03-28 Samsung Electronics Co., Ltd. Battery management system and method for determining active material content in electrode of battery
KR102652327B1 (ko) * 2020-09-09 2024-03-27 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
KR102730220B1 (ko) * 2020-12-07 2024-11-13 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법
WO2023114882A1 (en) * 2021-12-15 2023-06-22 Element Energy, Inc. Methods and systems for detecting variations in minor total-impedance contributors in electrochemical cells
US20250076403A1 (en) * 2022-01-12 2025-03-06 Panasonic Intellectual Property Management Co., Ltd. Battery abnormality detection system, battery abnormality detection method, and battery abnormality detection program
CN114740383A (zh) * 2022-05-24 2022-07-12 北京新能源汽车股份有限公司 一种蓄电池内部电路检测方法、装置、系统及汽车
KR20250091899A (ko) * 2023-12-14 2025-06-23 주식회사 엘지에너지솔루션 배터리 진단 장치 및 배터리 진단 방법
KR102812805B1 (ko) * 2024-02-16 2025-05-23 주식회사 엘지에너지솔루션 배터리 정보 생성 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174134A (ja) * 1997-12-09 1999-07-02 Toyota Motor Corp 電池蓄電量検出装置
JP2001086604A (ja) * 1999-09-14 2001-03-30 Honda Motor Co Ltd 組電池及び残容量検出装置
JP2004095400A (ja) * 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
JP2008179284A (ja) * 2007-01-25 2008-08-07 Toyota Motor Corp 二次電池の劣化判定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188100B2 (ja) 1994-04-27 2001-07-16 株式会社日本自動車部品総合研究所 バッテリ状態検出方法
JPH0968561A (ja) * 1995-09-01 1997-03-11 Nissan Motor Co Ltd 組電池の残容量計
JPH11346444A (ja) 1998-06-02 1999-12-14 Toyota Motor Corp 電池充電状態の推定方法
JP2001033532A (ja) 1999-07-23 2001-02-09 Toyota Motor Corp 電池状態検出装置および充放電制御装置
JP4075451B2 (ja) 2001-05-15 2008-04-16 株式会社豊田中央研究所 リチウム二次電池
ATE499714T1 (de) * 2004-10-29 2011-03-15 Medtronic Inc Verfahren zum aufladen einer lithiumionenbatterie
JP4884404B2 (ja) * 2007-09-07 2012-02-29 日立ビークルエナジー株式会社 二次電池の内部情報検知方法及び装置
JP4561859B2 (ja) 2008-04-01 2010-10-13 トヨタ自動車株式会社 二次電池システム
JP5682955B2 (ja) * 2010-08-04 2015-03-11 Necエナジーデバイス株式会社 リチウム二次電池の制御システム、およびリチウム二次電池の状態検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174134A (ja) * 1997-12-09 1999-07-02 Toyota Motor Corp 電池蓄電量検出装置
JP2001086604A (ja) * 1999-09-14 2001-03-30 Honda Motor Co Ltd 組電池及び残容量検出装置
JP2004095400A (ja) * 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
JP2008179284A (ja) * 2007-01-25 2008-08-07 Toyota Motor Corp 二次電池の劣化判定装置

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742725B2 (en) 2008-04-01 2014-06-03 Toyota Jidosha Kabushiki Kaisha Secondary battery system
US9007029B2 (en) 2011-07-08 2015-04-14 European Batteries Oy Konkurssipesa Method and system for managing the state of charge of a lithium-ion cell module
CN103918153A (zh) * 2011-07-08 2014-07-09 欧洲电池公司财产管理公司 用于管理锂离子电池模块的荷电状态的方法和系统
WO2013007881A1 (en) * 2011-07-08 2013-01-17 European Batteries Oy Method and system for managing the state of charge of a lithium-ion cell module
JP2013070599A (ja) * 2011-09-09 2013-04-18 Gs Yuasa Corp 状態管理装置、蓄電素子の均等化方法
JP2013068458A (ja) * 2011-09-21 2013-04-18 Toyota Motor Corp 二次電池システム及び車両
US20130169235A1 (en) * 2011-12-29 2013-07-04 Research In Motion Limited Power pack remaining capacity level detection
US9269994B2 (en) * 2011-12-29 2016-02-23 Blackberry Limited Power pack remaining capacity level detection
JP2013196805A (ja) * 2012-03-16 2013-09-30 Hitachi Ltd リチウムイオン二次電池システムおよびリチウムイオン二次電池システムの制御方法
JP2014002055A (ja) * 2012-06-19 2014-01-09 Hitachi Ltd 二次電池の検査システム、充放電機、及び検査方法
JP2014007025A (ja) * 2012-06-22 2014-01-16 Toyota Motor Corp 診断装置および診断方法
JP2015002036A (ja) * 2013-06-14 2015-01-05 信越化学工業株式会社 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法
WO2014199554A1 (ja) * 2013-06-14 2014-12-18 信越化学工業株式会社 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法
JP2016009659A (ja) * 2014-06-26 2016-01-18 プライムアースEvエナジー株式会社 蓄電池の検査方法及び蓄電池の検査装置
JP2016015820A (ja) * 2014-07-02 2016-01-28 日本電気株式会社 電池制御装置及び電池制御システム
JP2016085166A (ja) * 2014-10-28 2016-05-19 株式会社東芝 蓄電池評価装置及び方法
JP2017129409A (ja) * 2016-01-19 2017-07-27 トヨタ自動車株式会社 二次電池の制御システム
JP2017227539A (ja) * 2016-06-22 2017-12-28 横河電機株式会社 二次電池容量測定システムおよび二次電池容量測定方法
JP2018073755A (ja) * 2016-11-03 2018-05-10 トヨタ自動車株式会社 リチウムイオン二次電池の検査方法
JP2018096744A (ja) * 2016-12-09 2018-06-21 マツダ株式会社 リチウムイオン電池の劣化判定方法
JP6301048B1 (ja) * 2017-10-05 2018-03-28 三菱電機株式会社 組電池の管理装置および組電池システム
WO2019181138A1 (ja) * 2018-03-19 2019-09-26 三菱自動車工業株式会社 二次電池の劣化度合測定装置
US11852688B2 (en) 2019-05-14 2023-12-26 Lg Energy Solution, Ltd. Apparatus and method for determining degradation degree of battery and battery pack comprising the apparatus
JP2022510075A (ja) * 2019-05-14 2022-01-26 エルジー エナジー ソリューション リミテッド バッテリーの退化度を決定するための装置及び方法、並びにその装置を含むバッテリーパック
JP7151044B2 (ja) 2019-05-14 2022-10-12 エルジー エナジー ソリューション リミテッド バッテリーの退化度を決定するための装置及び方法、並びにその装置を含むバッテリーパック
JP7159524B2 (ja) 2019-09-19 2022-10-25 エルジー エナジー ソリューション リミテッド バッテリー管理装置、バッテリー管理方法、バッテリーパック及び電気車両
JP2022520765A (ja) * 2019-09-19 2022-04-01 エルジー エナジー ソリューション リミテッド バッテリー管理装置、バッテリー管理方法、バッテリーパック及び電気車両
WO2021181650A1 (ja) * 2020-03-13 2021-09-16 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021181672A1 (ja) * 2020-03-13 2021-09-16 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021186511A1 (ja) * 2020-03-16 2021-09-23 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021186550A1 (ja) * 2020-03-17 2021-09-23 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021191993A1 (ja) * 2020-03-24 2021-09-30 Tdk株式会社 二次電池の制御装置、二次電池の制御システム、二次電池パック及び二次電池の制御方法
JP6968302B1 (ja) * 2020-08-04 2021-11-17 三菱電機株式会社 蓄電池内部状態推定装置及び蓄電池内部状態推定方法
WO2022029892A1 (ja) * 2020-08-04 2022-02-10 三菱電機株式会社 蓄電池内部状態推定装置及び蓄電池内部状態推定方法
US12130338B2 (en) 2020-08-10 2024-10-29 Lg Energy Solution, Ltd. Battery abnormality diagnosis apparatus and method
JP7501976B2 (ja) 2020-08-10 2024-06-18 エルジー エナジー ソリューション リミテッド バッテリー異常診断装置及び方法
JP2023524846A (ja) * 2020-08-10 2023-06-13 エルジー エナジー ソリューション リミテッド バッテリー異常診断装置及び方法
JP2023543497A (ja) * 2020-09-30 2023-10-16 ビーワイディー カンパニー リミテッド 電池容量を取得する方法、装置、記憶媒体及びサーバ
JP7591136B2 (ja) 2020-09-30 2024-11-27 ビーワイディー カンパニー リミテッド 電池容量を取得する方法、装置、記憶媒体及びサーバ
JP2023522605A (ja) * 2020-11-13 2023-05-31 エルジー エナジー ソリューション リミテッド バッテリー診断装置及び方法
JP7419647B2 (ja) 2020-11-13 2024-01-23 エルジー エナジー ソリューション リミテッド バッテリー診断装置及び方法
US12360171B2 (en) 2020-11-13 2025-07-15 Lg Energy Solution, Ltd. Battery diagnosing apparatus and method
CN112731173B (zh) * 2020-12-22 2024-05-03 东软睿驰汽车技术(沈阳)有限公司 一种电池包的电芯内阻变化检测方法及装置
CN112731173A (zh) * 2020-12-22 2021-04-30 东软睿驰汽车技术(沈阳)有限公司 一种电池包的电芯内阻变化检测方法及装置
JP2023539583A (ja) * 2021-02-19 2023-09-15 エルジー エナジー ソリューション リミテッド バッテリー状態診断装置及び方法
JP7643785B2 (ja) 2021-02-19 2025-03-11 エルジー エナジー ソリューション リミテッド バッテリー状態診断装置及び方法
US12379418B2 (en) 2021-02-19 2025-08-05 Lg Energy Solution, Ltd. Apparatus and method for diagnosing state of battery
WO2022185152A1 (ja) * 2021-03-05 2022-09-09 株式会社半導体エネルギー研究所 二次電池の充電方法
JP2024511082A (ja) * 2021-03-23 2024-03-12 シーメンス アクチエンゲゼルシヤフト 蓄電装置の容量損失を算定する方法、装置およびコンピュータプログラム製品
JP2024531594A (ja) * 2021-09-06 2024-08-29 デューコシ リミティド バッテリーシステムの健全度監視システム
WO2024047499A1 (ja) * 2022-09-02 2024-03-07 株式会社半導体エネルギー研究所 蓄電システム

Also Published As

Publication number Publication date
US8653793B2 (en) 2014-02-18
JP5287872B2 (ja) 2013-09-11
CN102369627B (zh) 2013-09-11
US20120169288A1 (en) 2012-07-05
CN102369627A (zh) 2012-03-07
JPWO2011036760A1 (ja) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5287872B2 (ja) 二次電池システム
JP4561859B2 (ja) 二次電池システム
TWI814765B (zh) 二次電池的異常檢測裝置、異常檢測方法、充電狀態推測方法、充電狀態推測裝置以及電腦可讀取媒體
JP5741348B2 (ja) 二次電池システム及び車両
US9577457B2 (en) Control device for secondary battery, charging control method, and SOC detection method
US20120194139A1 (en) Rechargeable battery system
KR101568110B1 (ko) 2차 전지의 충전 제어 방법 및 충전 제어 장치
JP2013019709A (ja) 二次電池システム及び車両
CN102403551A (zh) 电池控制器和电压异常检测方法
CN104137324A (zh) 二次电池的控制装置和充电状态检测方法
JP6607167B2 (ja) リチウムイオン二次電池の検査方法
EP2291669B1 (en) Method of diagnosing a malfunction in an abnormal voltage detecting apparatus, secondary battery system, and hybrid vehicle
WO2020044932A1 (ja) 二次電池の充電システム
JP7608132B2 (ja) リチウムイオン二次電池の制御方法
JP7508346B2 (ja) リチウムイオン二次電池の制御方法
JP4517273B2 (ja) 二次電池の充放電制御装置及び二次電池の充放電制御方法
JP7599908B2 (ja) リチウムイオン二次電池の制御方法
WO2022034717A1 (ja) 容量回復装置およびプログラム
JP2015041596A (ja) 全固体電池の過充電検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158560.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010544105

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13145118

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849791

Country of ref document: EP

Kind code of ref document: A1