JPWO2011036760A1 - 二次電池システム - Google Patents

二次電池システム Download PDF

Info

Publication number
JPWO2011036760A1
JPWO2011036760A1 JP2010544105A JP2010544105A JPWO2011036760A1 JP WO2011036760 A1 JPWO2011036760 A1 JP WO2011036760A1 JP 2010544105 A JP2010544105 A JP 2010544105A JP 2010544105 A JP2010544105 A JP 2010544105A JP WO2011036760 A1 JPWO2011036760 A1 JP WO2011036760A1
Authority
JP
Japan
Prior art keywords
secondary battery
peak
value
battery
difference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010544105A
Other languages
English (en)
Other versions
JP5287872B2 (ja
Inventor
上木 智善
智善 上木
玉根 靖之
靖之 玉根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2011036760A1 publication Critical patent/JPWO2011036760A1/ja
Application granted granted Critical
Publication of JP5287872B2 publication Critical patent/JP5287872B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

二次電池システム6は、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質153と、充放電により相変化を伴う負極活物質154とを含む二次電池100を有している。二次電池システム6は、二次電池100の充放電時に、二次電池の電池電圧Vの変化量dVに対する二次電池100の蓄電量Qの変化量dQの割合であるdQ/dVの値を算出するdQ/dV算出手段(電池コントローラ30)を備え、電池電圧Vの値とdQ/dVの値との関係を表すV−dQ/dV曲線上に現れるピークに基づいて、二次電池システム6の状態を検知する。

Description

本発明は、二次電池システムに関する。
二次電池の状態を検知する二次電池システムとして、様々なものが提案されている。例えば、特許文献1〜4では、二次電池の電池電圧に基づいて、二次電池の充電状態(蓄電量またはSOC)を検知する。このうち、特許文献4では、さらに、電池電圧に基づいて算出したSOC(State Of Charge)と、温度検出手段により検出された電池温度とに基づいて、二次電池の劣化状態も検知する。
特開2007−292778号公報 特開平11−346444号公報 特開平7−294611号公報 特開2001−33532号公報
しかしながら、特許文献1〜4で提案されている手法では、蓄電量の変化に伴う電池電圧の変化量が小さい場合には、適切に、二次電池の充電状態(蓄電量またはSOC)を検知することができない虞がある。さらに、このような場合、特許文献4で提案されている手法では、二次電池の劣化状態も、適切に検知することができない虞がある。
また、近年、蓄電量の変化に伴う電池電圧の変化量が小さく、安定した出力特性を得ることができるリチウムイオン二次電池が提案されている。例えば、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質を備えるリチウムイオン二次電池が挙げられる。このリチウムイオン二次電池は、電池容量全体の50%以上の容量範囲(具体的には、SOC15%〜80%に相当する容量範囲)にわたって、蓄電量の変化に伴う電池電圧の変化量が小さい。このような二次電池については、特に、二次電池の状態を適切に検知することができない虞があった。
本発明は、かかる現状に鑑みてなされたものであって、二次電池システムの状態を精度良く検知することができる二次電池システムを提供することを目的とする。
本発明の一態様は、二次電池を備える二次電池システムであって、上記二次電池は、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質と、充放電により相変化を伴う負極活物質と、を含み、上記二次電池システムは、上記二次電池の充放電時に、上記二次電池の電池電圧Vの変化量dVに対する上記二次電池の蓄電量Qの変化量dQの割合であるdQ/dVの値を算出するdQ/dV算出手段を備え、上記電池電圧Vの値と上記dQ/dVの値との関係を表すV−dQ/dV曲線上に現れるピークに基づいて、上記二次電池システムの状態を検知する二次電池システムである。
上述の二次電池システムは、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質と充放電により相変化を伴う負極活物質とを含む二次電池を備えている。この二次電池では、SOC15%〜80%の範囲にわたって、SOC(蓄電量)の変化に伴う電池電圧の変化量が小さくなる。詳細には、SOC15%からSOC80%に至る広範囲において、電池電圧値が約3.8Vから約4.0Vまでにしか変化しない。従って、SOC15%〜80%の範囲にわたって、3.9V付近の高い電池電圧値を安定して維持することができる。このため、この二次電池を、SOC15%〜80%の範囲内で使用することで、高い出力を安定して得ることができる。
ところで、電池電圧の変動が小さいSOC範囲内で二次電池を使用する場合、二次電池の電池電圧値から二次電池システムの状態を適切に検知することは難しい。
しかしながら、上述の二次電池システムでは、電池電圧Vの値とdQ/dVの値との関係を表すV−dQ/dV曲線上に現れるピークに基づいて、二次電池システムの状態を検知する。上述の二次電池システムにかかる二次電池では、SOC15%〜80%の範囲内(詳細には、SOC25%付近とSOC70%付近の2箇所)において、V−dQ/dV曲線上に、明確なピーク(第1ピークと第2ピーク)が現れる。このため、上述の二次電池システムでは、SOC15%〜80%の範囲内で当該二次電池を使用する場合でも、この明確なピークに基づいて、精度良く、二次電池システムの状態を検知することができる。
なお、「充放電により相変化を伴う負極活物質」とは、充放電の途中で結晶構造が変化する負極活物質をいい、炭素材料を例示できる。炭素材料としては、天然黒鉛(グラファイトなど)、人造黒鉛(メソカーボンマイクロビーズなど)、難黒鉛化炭素材料などを例示できる。
また、検知可能な二次電池システムの状態としては、例えば、二次電池の状態や、二次電池システムの異常などが挙げられる。二次電池の状態としては、例えば、充電状態(SOC)や、電池容量(満充電容量)の低下や、内部抵抗の上昇などが挙げられる。また、二次電池システムの異常としては、二次電池の内部微小短絡や、二次電池の接続不良(二次電池の外部端子に接続するケーブルの接続端子の接続不良や、2つの二次電池の端子間を接続する接続部材の接続不良等)などを例示できる。
さらに、上記の二次電池システムであって、前記二次電池システムは、前記電池電圧Vの値と前記dQ/dVの値に基づいて、前記二次電池が前記V−dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうか、及び、上記二次電池が上記V−dQ/dV曲線上に現れる第2ピークであって上記第1ピークの電池電圧Vよりも高い電池電圧Vにかかる第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、上記判断手段により上記二次電池が上記第1ピークに対応する状態に至ったと判断されたときの電池電圧値V1と上記第2ピークに対応する状態に至ったと判断されたときの電池電圧値V2との差分値である実測電圧差分値に基づいて、上記二次電池システムの状態を検知する二次電池システムとすると良い。
上述の二次電池システムでは、判断手段が、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV−dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V−dQ/dV曲線上の第1ピークを示す値になったかどうかを判断する。さらに、判断手段は、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV−dQ/dV曲線上に現れる第2ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V−dQ/dV曲線上の第2ピークを示す値になったかどうかを判断する。
さらに、上述の二次電池システムでは、判断手段により二次電池が第1ピークに対応する状態に至ったと判断されたときの電池電圧値V1と第2ピークに対応する状態に至ったと判断されたときの電池電圧値V2との差分値(=V2−V1)である実測電圧差分値に基づいて、二次電池システムの状態を検知する。これにより、二次電池システムの状態(例えば、二次電池の内部抵抗の上昇や二次電池の接続不良)を精度良く検知することができる。
具体的には、本願発明者は、二次電池の内部抵抗が上昇するにしたがって、V−dV/dQ曲線の第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値(実測電圧差分値ΔVS=V2−V1)が大きくなってゆく特性を見いだした。この特性を利用して、実測電圧差分値ΔVSに基づいて、二次電池の内部抵抗の上昇を検知することができる。具体的には、例えば、実測電圧差分値ΔVSが基準電圧差分値ΔVK(例えば、初期状態の二次電池について予め取得しておいた、第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値)よりも大きい場合には、二次電池の内部抵抗が上昇していると判断することができる。
また、二次電池の接続不良が生じている場合は、接続不良のない場合に比べて、V−dV/dQ曲線の第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値(実測電圧差分値ΔVS=V2−V1)が、極端に大きくなる(例えば、初期状態の二次電池にかかる基準電圧差分値ΔVKの約1.9倍になる)。しかも、二次電池の接続不良が生じたときの実測電圧差分値ΔVSは、二次電池の内部抵抗が上昇した場合よりも大きくなる。また、内部抵抗が上昇した二次電池では、実測電圧差分値ΔVSの低下率は、いかに大きく内部抵抗が上昇したとしても、上記基準電圧差分値ΔVKの1.8倍を上回ることはないと考えられる。この特徴を利用して、実測電圧差分値ΔVSに基づいて、二次電池の接続不良を検知することができる。具体的には、例えば、実測電圧差分値ΔVSが所定の閾値(例えば、基準電圧差分値ΔVKの1.8倍)を上回った場合には、二次電池の接続不良が発生していると判断することができる。
さらに、上記の二次電池システムであって、前記二次電池システムは、前記二次電池の内部抵抗の上昇を検知する抵抗上昇検知手段を備え、上記抵抗上昇検知手段は、予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる電池電圧値V1と前記第2ピークにかかる電池電圧値V2との差分値である基準電圧差分値であって、初期状態の上記二次電池にかかる基準電圧差分値と、前記実測電圧差分値とを対比して、上記実測電圧差分値が上記基準電圧差分値よりも大きい場合に、上記二次電池の内部抵抗が上昇していると判断する二次電池システムとすると良い。
上述の二次電池システムでは、抵抗上昇検知手段が、予め二次電池システムに記憶させておいた基準電圧差分値ΔVK(初期状態の二次電池において予め取得しておいた、第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値)と、実測電圧差分値ΔVSとを対比して、実測電圧差分値ΔVSが基準電圧差分値ΔVKよりも大きい場合に、二次電池の内部抵抗が上昇していると判断する。前述のように、二次電池の内部抵抗が上昇するにしたがって、第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値(実測電圧差分値ΔVS=V2−V1)が大きくなってゆくので、上述の抵抗上昇検知手段によれば、二次電池の内部抵抗上昇を適切に検知することができる。
さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記二次電池の接続不良を検知する接続不良検知手段を備え、上記接続不良検知手段は、予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる電池電圧値V1と前記第2ピークにかかる電池電圧値V2との差分値である基準電圧差分値であって、初期状態の上記二次電池にかかる基準電圧差分値と、前記実測電圧差分値とを対比して、上記実測電圧差分値が、上記基準電圧差分値よりも大きく且つ所定の閾値よりも大きい場合に、上記二次電池の接続不良が生じていると判断する二次電池システムとすると良い。
上述の二次電池システムでは、接続不良検知手段が、予め二次電池システムに記憶させておいた基準電圧差分値ΔVK(初期状態の二次電池において予め取得しておいた、第1ピークにかかる電池電圧値V1と第2ピークにかかる電池電圧値V2との差分値)と、実測電圧差分値ΔVSとを対比して、実測電圧差分値ΔVSが、基準電圧差分値ΔVKよりも大きく且つ所定の閾値(例えば、基準電圧差分値ΔVKの1.8倍)を上回った場合には、二次電池の接続不良が発生していると判断する。これにより、二次電池の接続不良を適切に検知することができる。なお、二次電池の接続不良を検知した場合は、接続不良である旨の信号を出力して、接続の確認を促すようにすると良い。
さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記電池電圧Vの値と前記dQ/dVの値に基づいて、前記二次電池が前記V−dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうか、及び、上記二次電池が上記V−dQ/dV曲線上に現れる第2ピークであって上記第1ピークよりも高い電池電圧値Vにかかる第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、上記判断手段により上記二次電池が上記第1ピークに対応する状態に至ったと判断されたときの上記二次電池の蓄電量Q1と上記第2ピークに対応する状態に至ったと判断されたときの上記二次電池の蓄電量Q2との差分値である実測蓄電量差分値に基づいて、上記二次電池の状態を検知する二次電池システムとすると良い。
上述の二次電池システムでは、判断手段が、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV−dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V−dQ/dV曲線上の第1ピークを示す値になったかどうかを判断する。さらに、判断手段は、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV−dQ/dV曲線上に現れる第2ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V−dQ/dV曲線上の第2ピークを示す値になったかどうかを判断する。
さらに、上述の二次電池システムでは、判断手段により二次電池が第1ピークに対応する状態に至ったと判断されたときの二次電池の蓄電量Q1と第2ピークに対応する状態に至ったと判断されたときの二次電池の蓄電量Q2との差分値(=Q2−Q1)である実測蓄電量差分値に基づいて、二次電池システムの状態を検知する。これにより、二次電池システムの状態(例えば、二次電池の容量低下や二次電池の内部微小短絡)を精度良く検知することができる。
具体的には、本願発明者は、二次電池の電池容量が低下するにしたがって、二次電池が第1ピークに対応する状態に至ったときの蓄電量Q1と第2ピークに対応する状態に至ったときの蓄電量Q2との差分値(実測蓄電量差分値ΔQS=Q2−Q1)が小さくなってゆく特性を見いだした。この特性を利用して、実測蓄電量差分値ΔQSに基づいて、二次電池の容量低下を検知することができる。具体的には、例えば、実測蓄電量差分値ΔQSが基準蓄電量差分値ΔQK(例えば、初期状態の二次電池について予め取得しておいた、蓄電量Q1と蓄電量Q2との差分値)よりも小さい場合には、二次電池が容量低下していると判断することができる。
また、内部微小短絡が生じた二次電池は、内部微小短絡が生じていない二次電池に比べて、二次電池が第1ピークに対応する状態に至ったときの蓄電量Q1と第2ピークに対応する状態に至ったときの蓄電量Q2との差分値(実測蓄電量差分値ΔQS=Q2−Q1)が、大きく低下する(例えば、初期状態の二次電池にかかる基準蓄電量差分値ΔQKの約74%になる)。しかも、内部微小短絡が生じた二次電池の実測電圧差分値ΔVSは、電池容量が低下した二次電池の実測電圧差分値ΔVSよりも大きくなる。また、容量低下した二次電池では、実測蓄電量差分値ΔQSの低下率は、いかに大きく容量低下したとしても、上記基準蓄電量差分値ΔQKの75%を下回ることはないと考えられる。この特徴を利用して、実測蓄電量差分値ΔQSに基づいて、二次電池の内部微小短絡を検知することができる。具体的には、例えば、実測蓄電量差分値ΔQSが所定の閾値(例えば、基準蓄電量差分値ΔQKの75%)を下回った場合には、二次電池の内部微小短絡が発生していると判断することができる。
さらに、上記の二次電池システムであって、前記二次電池システムは、前記二次電池の電池容量の低下を検知する容量低下検知手段を備え、上記容量低下検知手段は、予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる上記二次電池の蓄電量Q1(二次電池が第1ピークに対応する状態に至ったときの二次電池の蓄電量Q1)と前記第2ピークにかかる上記二次電池の蓄電量Q2(二次電池が第2ピークに対応する状態に至ったときの二次電池の蓄電量Q2)との差分値である基準蓄電量差分値であって、初期状態の上記二次電池にかかる基準蓄電量差分値と、前記実測蓄電量差分値とを対比して、上記実測蓄電量差分値が上記基準蓄電量差分値よりも小さい場合に、上記二次電池の電池容量が低下していると判断する二次電池システムとすると良い。
上述の二次電池システムでは、容量低下検知手段が、予め二次電池システムに記憶させておいた基準蓄電量差分値ΔQK(初期状態の二次電池において予め取得しておいた、蓄電量Q1と蓄電量Q2との差分値)と、実測蓄電量差分値ΔQSとを対比して、実測蓄電量差分値ΔQSが基準蓄電量差分値ΔQKよりも小さい場合に、二次電池の電池容量が低下していると判断する。前述のように、二次電池の電池容量が低下するにしたがって、蓄電量Q1と蓄電量Q2との差分値(実測蓄電量差分値ΔQS=Q2−Q1)が小さくなってゆくので、上述の容量低下検知手段によれば、二次電池の容量低下を適切に検知することができる。
さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記二次電池の内部微小短絡を検知する微小短絡検知手段を含み、上記微小短絡検知手段は、予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる上記二次電池の蓄電量Q1(二次電池が第1ピークに対応する状態に至ったときの二次電池の蓄電量Q1)と前記第2ピークにかかる上記二次電池の蓄電量Q2(二次電池が第2ピークに対応する状態に至ったときの二次電池の蓄電量Q2)との差分値である基準蓄電量差分値であって、初期状態の上記二次電池にかかる基準蓄電量差分値と、前記実測蓄電量差分値とを対比して、上記実測電圧差分値が、上記基準電圧差分値よりも小さく且つ所定の閾値よりも小さい場合に、上記二次電池に内部微小短絡が生じていると判断する二次電池システムとすると良い。
上述の二次電池システムでは、微小短絡検知手段が、予め二次電池システムに記憶させておいた基準蓄電量差分値ΔQK(初期状態の二次電池において予め取得しておいた、蓄電量Q1と蓄電量Q2との差分値)と、実測蓄電量差分値ΔQSとを対比して、実測蓄電量差分値ΔQSが基準蓄電量差分値ΔQKよりも小さく且つ所定の閾値よりも小さい場合に、二次電池に内部微小短絡が生じていると判断する。これにより、二次電池の内部微小短絡を適切に検知することができる。なお、二次電池の内部微小短絡を検知した場合は、二次電池が異常である旨の信号を出力して、二次電池の交換を促すようにすると良い。
さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記二次電池の充放電を制御する制御手段を備え、上記制御手段は、前記二次電池の前記電池電圧Vの値が、前記V−dQ/dV曲線上に現れる第1ピーク及び第2ピークのうち上記第1ピークよりも高い電池電圧Vにかかる上記第2ピークにおける電池電圧値V2を上回らないように、上記二次電池の充放電を制御する二次電池システムとすると良い。
上述の二次電池システムにかかる二次電池は、前述のように、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質を有している。このような二次電池では、正極から溶出したMn2+が、負極の表面を被覆し、負極にインターカレートしているLiを引き抜いて、電池性能を劣化させてしまう課題があった。
これに対し、本願発明者は、Mn2+の溶出が、充放電に伴う正極活物質中のMnの価数変化(Mn3+→Mn4+ )に伴う結晶構造変化に起因するものであることを見出した。さらに、V−dQ/dV曲線上に現れる第2ピークは、正極活物質の結晶構造変化に起因していることを見出した。これらのことから、二次電池の電池電圧値Vが、V−dQ/dV曲線上に現れる第2ピークにおける電池電圧値V2に達し、これを上回ると、正極からMn2+が溶出し、電池性能が劣化すると考えた。
そこで、上述の二次電池システムでは、制御手段により、二次電池の電池電圧値Vが、V−dQ/dV曲線上に現れる第2ピークにおける電池電圧値V2を上回らないように、二次電池の充放電を制御する。これにより、正極からMn2+が溶出するのを抑制できるので、Mn2+の溶出に起因する電池性能の劣化を抑制することができる。
さらに、上記の二次電池システムであって、前記二次電池システムは、前記電池電圧Vの値と前記dQ/dVの値に基づいて、上記二次電池が、前記V−dQ/dV曲線上の前記第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、前記制御手段は、上記二次電池の充電時に、上記判断手段によって上記二次電池が上記第2ピークに対応する状態に至ったと判断されると、上記二次電池の充電を停止させて、上記二次電池について放電過多の制御を行う二次電池システムとすると良い。
上述の二次電池システムでは、判断手段が、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV−dQ/dV曲線上に現れる第2ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V−dQ/dV曲線上の第2ピークを示す値になったかどうかを判断する。
さらに、上述の二次電池システムでは、二次電池の充電時に、判断手段によって二次電池が第2ピークに対応する状態に至ったと判断されると、制御手段が、二次電池の充電を停止させて、二次電池について放電過多の制御を行う。具体的には、充電電気量に比べて放電電気量を大きくして、二次電池の充放電を行うようにする。これにより、二次電池の電池電圧値を、V−dQ/dV曲線上の第2ピークにおける電池電圧値V2よりも小さくすることができる。従って、正極からMn2+が溶出するのを抑制することができる。
実施例1〜3にかかるハイブリッド自動車の概略図である。 実施例1にかかる二次電池システムの概略図である。 実施例1〜3にかかる二次電池の断面図である。 同二次電池にかかる電極体の断面図である。 同電極体の部分拡大断面図であり、図4のB部拡大図に相当する。 二次電池にかかるSOCと電池電圧との関係を示す図である。 実施例1にかかる二次電池の充放電制御及び状態検知の流れを示すフローチャートである。 実施例1にかかる二次電池の充放電制御及び状態検知の流れを示すフローチャートである。 初期状態にかかる二次電池のV−dQ/dV曲線を示す図である。 内部抵抗が上昇した二次電池のV−dQ/dV曲線を示す図である。 実施例2にかかる二次電池システムの概略図である。 二次電池の正極端子とケーブルとの接続を説明する図である。 二次電池の内部抵抗(mΩ)とΔV(=V2−V1)との関係を示すグラフである。 実施例2にかかる二次電池の状態検知のメインルーチンである。 実施例2にかかる二次電池の状態検知のサブルーチンである。 実施例3にかかる二次電池システムの概略図である。 二次電池の電池容量とΔQ(=Q2−Q1)との関係を示すグラフである。 実施例3にかかる二次電池の状態検知のメインルーチンである。 実施例3にかかる二次電池の状態検知のサブルーチンである。
(実施例1)
次に、本発明の実施例1について、図面を参照しつつ説明する。
ハイブリッド自動車1は、図1に示すように、車体2、エンジン3、フロントモータ4、リヤモータ5、ケーブル7及び二次電池システム6を有し、エンジン3、フロントモータ4及びリヤモータ5との併用で駆動するハイブリッド自動車である。具体的には、このハイブリッド自動車1は、二次電池システム6をフロントモータ4及びリヤモータ5の駆動用電源として、公知の手段によりエンジン3、フロントモータ4及びリヤモータ5を用いて走行できるように構成されている。
このうち、本実施例1にかかる二次電池システム6は、ハイブリッド自動車1の車体2に取り付けられており、ケーブル7によりフロントモータ4及びリヤモータ5と接続されている。この二次電池システム6は、図2に示すように、複数の二次電池100(単電池)を互いに電気的に直列に接続した組電池10と、電圧検知手段40と、電流検知手段50と、電池コントローラ30とを備えている。電池コントローラ30は、ROM31、CPU32、RAM33等を有している。
電流検知手段50は、組電池10を構成する二次電池100を流れる電流値Iを検知する。また、電圧検知手段40は、組電池10を構成する各々の二次電池100について、電池電圧V(端子間電圧)を検知する。
電池コントローラ30は、組電池10を構成する二次電池100の充放電を制御する。具体的には、例えば、ハイブリッド自動車1の運転中は、組電池10(二次電池100)とフロントモータ4及びリヤモータ5との間における電気のやりとりを制御する。詳細には、電池コントローラ30は、例えば、ハイブリッド自動車1のアクセルが踏み込まれると、組電池10(二次電池100)を放電させて、インバータ(図示なし)を通じて、この電力をフロントモータ4及びリヤモータ5に供給する。一方、ハイブリッド自動車1のブレーキが踏み込まれると、電池コントローラ30は、回生ブレーキにより発生した電力を、組電池10(二次電池100)に供給して、組電池10を構成する各々の二次電池100を充電する。
二次電池100は、図3に示すように、直方体形状の電池ケース110と、正極端子120と、負極端子130とを備える、角形密閉式のリチウムイオン二次電池である。このうち、電池ケース110は、金属からなり、直方体形状の収容空間をなす角形収容部111と、金属製の蓋部112とを有している。電池ケース110(角形収容部111)の内部には、電極体150、正極集電部材122、負極集電部材132などが収容されている。
電極体150は、図4及び図5に示すように、断面長円状をなし、シート状の正極板155、負極板156、及びセパレータ157を捲回してなる扁平型の捲回体である。この電極体150は、その軸線方向(図3において左右方向)の一方端部(図3において右端部)に位置し、正極板155の一部のみが渦巻状に重なる正極捲回部155bと、他方端部(図3において左端部)に位置し、負極板156の一部のみが渦巻状に重なる負極捲回部156bとを有している。正極板155には、正極捲回部155bを除く部位に、正極活物質153を含む正極合材152が塗工されている(図5参照)。同様に、負極板156には、負極捲回部156bを除く部位に、負極活物質154を含む負極合材159が塗工されている(図5参照)。正極捲回部155bは、正極集電部材122を通じて、正極端子120に電気的に接続されている。負極捲回部156bは、負極集電部材132を通じて、負極端子130に電気的に接続されている。
本実施例1では、正極活物質153として、スピネル型の結晶構造を有するマンガン酸リチウムを用いている。また、負極活物質154として、炭素材料(詳細には、グラファイト)を用いている。この負極活物質154は、充放電により相変化を伴う活物質である。
ここで、図6に、初期状態の二次電池100にかかるSOC(State Of Charge)と電池電圧値(V)との関係を示す。図6からわかるように、二次電池100は、SOC15%〜80%の範囲にわたって、SOC(蓄電量)の変化に伴う電池電圧の変化量が小さくなる。詳細には、SOC15%からSOC80%に至る広範囲において、電池電圧値が約3.8Vから約4.0Vまでにしか変化しない。従って、SOC15%〜80%の範囲にわたって、3.9V付近の高い電池電圧値で安定して維持することができる。このため、この二次電池100を、SOC15%〜80%の範囲内で使用することで、高い出力を安定して得ることができる。
さらに、図9に、初期状態の二次電池100にかかる電池電圧VとdQ/dVとの関係を表すV−dQ/dV曲線Kを示している。このV−dQ/dV曲線Kは、図6に示す関数について蓄電量Qを電池電圧Vで微分して得たdQ/dVの値と、これに対応する電池電圧Vの値との関係を表す曲線に相当する。具体的には、図6の曲線を作成する際に、所定時間T(例えば1秒)毎に取得した蓄電量Qと電池電圧Vとに基づいて、所定時間毎の電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出し、このdQ/dVの値と電池電圧Vとの関係を図9に示している。
図9に示すように、V−dQ/dV曲線Kには、明確なピークが2つ(第1ピークAと第2ピークB)が現れる。具体的には、電池電圧Vの値が約3.8Vに達したとき、第1ピークAが現れる。なお、電池電圧Vの値が約3.8Vに達したとき、二次電池100のSOCは約25%に達する(図6参照)。また、電池電圧Vの値が約4.0Vに達したとき、第2ピークBが現れる。なお、電池電圧Vの値が約4.0Vに達したとき、二次電池100のSOCは約75%に達する(図6参照)。
ところで、前述のように、二次電池100は、SOC15%〜80%の範囲にわたって、SOC(蓄電量Q)の変化に伴う電池電圧Vの変化量が小さい。このように電池電圧Vの変動が小さいSOC範囲では、電池電圧Vに基づいて、二次電池システム(二次電池100)の状態を適切に検知することが難しい。
しかしながら、電池電圧Vの変動が小さいSOC範囲(SOC15%〜80%の範囲、図6参照)において、V−dQ/dV曲線Kには、明確なピークが2つ(第1ピークAと第2ピークB)現れる。前述のように、SOC25%において第1ピークAが現れ、SOC75%において第2ピークBが現れる。本実施例1の二次電池システム6では、後述するように、明確なピーク(第1ピークAと第2ピークB)に基づいて、二次電池100の状態を検知する。このため、二次電池システム6(二次電池100)の状態(具体的には、二次電池100のSOC、二次電池100の内部抵抗上昇、二次電池100の接続不良)を、精度良く検知することができる。
次に、二次電池システム6にかかる二次電池100の充放電制御及び状態検知について、詳細に説明する。
二次電池システム6の電池コントローラ30は、所定時間T毎に、電流検知手段50で検知された電流値Iを積算して、二次電池100の充電電気量または放電電気量を算出し、算出された充電電気量または放電電気量から二次電池100の蓄電量Qを推定する。さらに、推定された蓄電量Qと二次電池100の電池容量に基づいて、二次電池100のSOC(%)を推定する。さらに、電池コントローラ30は、電流積算と同期させて、所定時間T毎に、電圧検知手段40で検知された各二次電池100の電池電圧Vを取得する。
さらに、電池コントローラ30は、組電池10(二次電池100)の充放電時に、二次電池100の電池電圧Vの変化量dVに対する二次電池100の蓄電量Qの変化量dQの割合であるdQ/dVの値を算出する。換言すれば、二次電池100の充放電時に、二次電池100の蓄電量Qを電池電圧Vで微分して、dQ/dVの値を算出する。具体的には、二次電池100の充放電時に、所定時間T毎に、電池電圧Vと蓄電量Qを取得しつつ、各所定時間T毎の電池電圧Vの変化量dVと蓄電量Qの変化量dQとを算出し、これらに基づいて、所定時間T毎のdQ/dVの値を算出する。
また、電池コントローラ30のROM31には、予め、二次電池100について取得した、電池電圧VとdQ/dVとの関係を表すV−dQ/dV曲線K(図9参照)を記憶させておく。さらに、V−dQ/dV曲線K上の第1ピークAにおけるSOCの値(SOC25%)と、第2ピークBにおけるSOCの値(SOC75%)を、ROM31に記憶させておく。さらに、V−dQ/dV曲線K上の第1ピークAにおける電池電圧値V1(3.8V)と第2ピークBにおける電池電圧値V2(4.0V)との差分値である基準電圧差分値ΔVK(=V2−V1=0.2V)を、ROM31に記憶させておく。
さらに、電池コントローラ30は、所定時間T毎に検出される電池電圧Vと所定時間T毎に算出されるdQ/dVの値に基づいて、リアルタイムにV−dQ/dV曲線を描き、このQ−dQ/dV曲線と、ROM31に記憶されているV−dQ/dV曲線K(図9参照)との対比(パターンマッチング)により、二次電池100が、V−dQ/dV曲線上の第1ピークAまたは第2ピークBに対応する状態に至ったかどうかを判断する。換言すれば、所定時間T毎に検出される電池電圧Vの値と、所定時間T毎に算出されるdQ/dVの値とが、V−dQ/dV曲線上の第1ピークAまたは第2ピークBを示す値になったかどうかを判断する。
ここで、図7及び図8を参照して、二次電池100の充放電制御及び状態検知(SOC検知)について具体的に説明する。図7は、二次電池100の放電を開始した後の充放電制御及び状態検知を示すフローチャートである。また、図8は、二次電池100の充電を開始した後の充放電制御及び状態検知を示すフローチャートである。
電池コントローラ30は、組電池10(二次電池100)の放電を開始させると、図7に示すように、ステップS1において、電圧検知手段40によって検知された各々の二次電池100の電池電圧値Vを取得すると共に、電流検知手段50により検知された二次電池100を流れる電流値Iを取得する。なお、本実施例1では、電池コントローラ30は、所定時間T(例えば1秒)毎に、電池電圧値Vと電流値Iを取得する。
次に、ステップS2に進み、電池コントローラ30は、電流検知手段50で検知された電流値Iを積算して、各二次電池100の充電電気量を算出する。次いで、ステップS3に進み、電池コントローラ30は、算出された充電電気量に基づいて、各二次電池100に蓄えられている電気量(蓄電量Q)を推定する。なお、本実施例1では、所定時間T(例えば1秒)毎に検知された電流値Iに基づいて、所定時間T毎の蓄電量Qを推定する。
次に、ステップS4に進み、各二次電池100について、電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出する。換言すれば、二次電池100の蓄電量Qを、これに対応する電池電圧値Vで微分して、dQ/dVの値を算出する。具体的には、各二次電池100について、所定時間T毎に取得される電池電圧値Vと蓄電量Qに基づいて、各所定時間T毎の電池電圧Vの変化量dVと蓄電量Qの変化量dQとを算出し、これらに基づいて、所定時間T毎のdQ/dVの値を算出する。
その後、ステップS5に進み、二次電池100がV−dQ/dV曲線上の第1ピークAに対応する状態に至ったかどうかを判断する。第1ピークAに対応する状態に達していない(No)と判定した場合は、二次電池100の放電中、所定時間毎に、ステップS1〜S5の処理を繰り返し行う。
一方、ステップS5において、二次電池100が第1ピークAに対応する状態に達した(Yes)と判断した場合は、ステップS6に進み、電池コントローラ30は、二次電池100の放電を停止させる。次いで、ステップS7に進み、電池コントローラ30は、二次電池100がSOC25%に達したと判断する。第1ピークAは明確なピークであるため、電池コントローラ30によって、二次電池100が第1ピークAに対応する状態に至ったかどうかを、精度良く判定することができる。このため、本実施例1では、二次電池100がSOC25%に達したことを、精度良く検知することができる。
次いで、ステップS8に進み、電池コントローラ30は、組電池10(二次電池100)について、充電過多の制御を開始する。具体的には、放電電気量に比べて充電電気量を大きくして、二次電池100の充放電を行うようにする。これにより、二次電池100のSOCを25%未満にすることなく、SOCを徐々に増大させることができる。次いで、ステップS9に進み、二次電池100のSOCが50%に達したか否かを判定する。なお、二次電池100のSOCは、前述のように、所定時間毎に、電池コントローラ30において推定する。
電池コントローラ30は、ステップS9において、SOCが50%に達していない(No)と判定した場合、充電過多の制御を継続して行う。一方、ステップS9において、SOCが50%に達した(Yes)と判定した場合は、ステップSAに進み、充電過多の制御を終了し、通常の充放電制御に戻る。
また、電池コントローラ30は、組電池10(二次電池100)の充電を開始すると、図8に示すように、ステップT1において、電圧検知手段40によって検知された各々の二次電池100の電池電圧値Vを取得すると共に、電流検知手段50により検知された二次電池100を流れる電流値Iを取得する。なお、本実施例1では、電池コントローラ30は、所定時間T(例えば1秒)毎に、電池電圧値Vと電流値Iを取得する。
次に、ステップT2に進み、電池コントローラ30は、電流検知手段50で検知された電流値Iを積算して、各二次電池100の充電電気量を算出する。次いで、ステップT3に進み、電池コントローラ30は、算出された充電電気量に基づいて、各二次電池100に蓄えられている電気量(蓄電量Q)を推定する。なお、本実施例1では、所定時間T(例えば1秒)毎に検知された電流値Iに基づいて、所定時間T毎の蓄電量Qを推定する。
次に、ステップT4に進み、各二次電池100について、電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出する。換言すれば、二次電池100の蓄電量Qを、これに対応する電池電圧値Vで微分して、dQ/dVの値を算出する。具体的には、各二次電池100について、所定時間T毎に取得される電池電圧値Vと蓄電量Qに基づいて、各所定時間T毎の電池電圧Vの変化量dVと蓄電量Qの変化量dQとを算出し、これらに基づいて、所定時間T毎のdQ/dVの値を算出する。
その後、ステップT5に進み二次電池100がV−dQ/dV曲線上の第2ピークBに対応する状態に至ったかどうかを判断する。第2ピークBに対応する状態に達していない(No)と判定した場合は、二次電池100の充電中、所定時間毎に、ステップT1〜T5の処理を繰り返し行う。
一方、ステップT5において、二次電池100が第2ピークBに対応する状態に達した(Yes)と判断した場合は、ステップT6に進み、電池コントローラ30は、二次電池100の充電を停止する。次いで、ステップT7に進み、電池コントローラ30は、二次電池100がSOC75%に達したと判断する。第2ピークBは明確なピークであるため、電池コントローラ30によって、二次電池100が第2ピークBに対応する状態に至ったかどうかを、精度良く判定することができる。このため、本実施例1では、二次電池100がSOC75%に達したことを、精度良く検知することができる。
次いで、ステップT8に進み、電池コントローラ30は、組電池10(二次電池100)について、放電過多の制御を開始する。具体的には、充電電気量に比べて放電電気量を大きくして、二次電池100の充放電を行うようにする。これにより、二次電池100のSOCを75%より大きくすることなく、SOCを徐々に低減させることができる。次いで、ステップT9に進み、二次電池100のSOCが50%に達したか否かを判定する。なお、二次電池100のSOCは、前述のように、所定時間毎に、電池コントローラ30において推定する。
電池コントローラ30は、ステップT9において、SOCが50%に達していない(No)と判定した場合、放電過多の制御を継続して行う。一方、ステップT9において、SOCが50%に達した(Yes)と判定した場合は、ステップTAに進み、放電過多の制御を終了し、通常の充放電制御に戻る。
以上のように、本実施例1では、電池コントローラ30によって、組電池10を構成する二次電池100のSOCが25%を下回らないように、且つ、SOCが75%を上回らないように、二次電池100のSOCの制御を行っている。このようにして、本実施例1では、制御中心をSOC50%として、SOC25%〜75%の範囲内で、二次電池100の充放電の制御を行っている。
図6に示すように、二次電池100では、SOC25%〜75%の範囲において、SOC(蓄電量)の変化に伴う電池電圧の変化量が小さい。詳細には、SOC25%からSOC75%に至る広範囲において、電池電圧値が約3.8Vから約4.0Vまでにしか変化しない。従って、SOC25%〜75%の範囲にわたって、3.9V付近の高い電池電圧値で安定して維持することができる。このため、本実施例1のハイブリッド自動車1では、二次電池100から高い出力を安定して得ることができるので、良好な走行性能を発揮することができる。
ところで、二次電池100は、前述のように、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質153を有している。従来、正極活物質としてスピネル型の結晶構造を有するマンガン酸リチウムを用いた二次電池では、正極から溶出したMn2+が、負極の表面を被覆し、負極にインターカレートしているLiを引き抜いて、電池性能を劣化させてしまう問題があった。
これに対し、本願発明者は、Mn2+の溶出が、充放電に伴う正極活物質中のMnの価数変化(Mn3+→Mn4+ )に伴う結晶構造変化に起因するものであることを見出した。さらに、V−dQ/dV曲線上に現れる第2ピークBは、正極活物質(スピネル型の結晶構造を有するマンガン酸リチウム)の結晶構造変化に起因していることを見出した。これらのことから、二次電池100の電池電圧Vが、V−dQ/dV曲線上に現れる第2ピークBにおける電池電圧値V2に達し、これを上回ると、正極からMn2+が溶出し、電池性能が劣化すると考えた。
そこで、本実施例1の二次電池システム6では、電池コントローラ30により、二次電池100の電池電圧Vが、V−dQ/dV曲線上に現れる第2ピークBにおける電池電圧値V2を上回らないように、二次電池の充放電を制御するようにした。
具体的には、図8を参照して説明したように、電池コントローラ30は、二次電池100が第2ピークBに対応する状態に達したかどうかを判断する(ステップT5参照)。そして、二次電池100が第2ピークBに対応する状態に達した(Yes)と判断した場合は、二次電池100の充電を停止する(ステップT6参照)。その後、組電池10(二次電池100)について、放電過多の制御を開始する(ステップT8参照)。これにより、二次電池100の電池電圧Vを、第2ピークBにおける電池電圧値V2よりも高くすることなく、電池電圧値V2から徐々に低下させることができる。これにより、正極からMn2+が溶出するのを抑制できるので、Mn2+の溶出に起因する電池性能の劣化を抑制することができる。
なお、本実施例1では、電池コントローラ30が、dQ/dV算出手段、制御手段、及び判断手段に相当する。
ここで、本実施例1の二次電池100の製造方法について説明する。
まず、スピネル型の結晶構造を有するマンガン酸リチウム(正極活物質153)とアセチレンブラック(導電助剤)とポリフッ化ビニリデン(バインダ樹脂)とを、87:10:3(重量比)の割合で混合し、これにN−メチルピロリドン(分散溶媒)を混合して、正極スラリを作製した。次いで、この正極スラリを、アルミニウム箔151の表面に塗布し、乾燥させた後、プレス加工を施した。これにより、アルミニウム箔151の表面に正極合材152が塗工された正極板155を得た(図5参照)。
また、グラファイト(負極活物質154)と、スチレン−ブタジエン共重合体(バインダ樹脂)と、カルボキシメチルセルロース(増粘剤)とを、98:1:1(重量比)の割合で水中で混合して、負極スラリを作製した。次いで、この負極スラリを、銅箔158の表面に塗布し、乾燥させた後、プレス加工を施した。これにより、銅箔158の表面に負極合材159が塗工された負極板156を得た(図5参照)。なお、本実施例1では、正極の理論容量と負極の理論容量との比が1:1.5となるように、正極スラリ及び負極スラリの塗布量を調整している。
次に、正極板155、負極板156、及びセパレータ157を積層し、これを捲回して断面長円状の電極体150を形成した(図4,図5参照)。但し、正極板155、負極板156、及びセパレータ157を積層する際には、電極体150の一端部から、正極板155のうち正極合材152を塗工していない未塗工部が突出するように、正極板155を配置しておく。さらには、負極板156のうち負極合材159を塗工していない未塗工部が、正極板155の未塗工部とは反対側から突出するように、負極板156を配置しておく。これにより、正極捲回部155b及び負極捲回部156bを有する電極体150(図3参照)が形成される。なお、本実施例1では、セパレータ157として、ポリエチレンからなる多孔質フィルムを用いている。
次に、電極体150の正極捲回部155bと正極端子120とを、正極集電部材122を通じて接続する。さらに、電極体150の負極捲回部156bと負極端子130とを、負極集電部材132を通じて接続する。その後、これを角形収容部111内に収容し、角形収容部111と蓋部112とを溶接して、電池ケース110を封止した。次いで、蓋部112に設けられている注液口(図示しない)を通じて電解液を注液した後、注液口を封止することで、本実施例1の二次電池100が完成する。なお、本実施例1では、電解液として、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)とを、4:6(体積比)で混合した溶液中に、六フッ化燐酸リチウム(LiPF)を1mol/Lの割合で溶解したものを用いている。
(実施例2)
実施例2では、まず、二次電池100についてサイクル劣化試験を行った。
まず、槽内温度が、0℃、25℃、45℃、60℃と異なる4つの恒温槽を用意した。次いで、各恒温槽内に、二次電池100を1個ずつ配置し、各二次電池100について、サイクル充放電を行った。具体的には、充電上限電圧値を4.2V、放電下限電圧値を3.0Vとして、2Cの電流値で、500サイクルの充放電を行った。このようにして、4つの異なる環境温度下で、サイクル充放電を行い、二次電池100の劣化を促進させた。
次いで、上述のサイクル劣化試験を行った二次電池100について、それぞれ、次のようにして内部抵抗(mΩ)を測定した。まず、各二次電池100について、1/3Cの電流値で、電池電圧が3.0Vに達するまで放電を行った。その後、1/5Cの電流値で充電を行い、SOC50%とした。この状態で、各二次電池100の内部抵抗を、交流インピーダンス法により測定した。具体的には、FRA(周波数応答アナライザ)としてソートラン社製の1252Aを用い、コントロールユニットとしてソートラン社製のSI1287を用いて、5mVの電位振幅を与えつつ、周波数を1MHzから1Hzまで変化させた。周波数を1kHzとしたときに計測された値を、二次電池100の内部抵抗値(mΩ)とした。その結果、サイクル劣化試験を行った二次電池100は、いずれも、初期状態の二次電池100(サイクル劣化試験を行っていない二次電池100)に比べて、内部抵抗が上昇していた(図13参照)。
また、上述のサイクル劣化試験を行った各二次電池100について、電池電圧Vの値とdQ/dVの値との関係を表すV−dQ/dV曲線を取得した。具体的には、各二次電池100について、SOC0%(電池電圧3.0V)からSOC100%(電池電圧4.2V)に至る間、所定時間T(例えば1秒)毎に蓄電量Qと電池電圧Vを取得した。この蓄電量Qと電池電圧Vに基づいて、所定時間毎の電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出し、このdQ/dVの値と電池電圧Vとの関係をV−dQ/dV曲線として表した。このうちの1つ(60℃の恒温槽内に配置してサイクル劣化試験を行った二次電池100にかかるV−dQ/dV曲線)を、図10に示す。
また、初期状態の二次電池100を接続不良とした状態で、上述のようにして、V−dQ/dV曲線を取得した。
なお、本実施例2では、電池コントローラ130等と二次電池100の正極端子120を接続するケーブル127を、次のようにして接続している。図12に示すように、正極端子120の貫通孔120c及び接続端子127bの貫通孔127cに、ボルト125のネジ部125bを挿通させた状態で、ボルト125のネジ部125bにナット126を螺合させて、正極端子120と接続端子127bとを締結する。これにより、正極端子120と接続端子127bと密着させて、両者を適切に接続することができる。従って、ここでは、ナット126を緩めて、正極端子120と接続端子127bとが密着しない状態とすることで、接続不良の状態とした。
ここで、初期状態の二次電池100のV−dQ/dV曲線(図9参照)と、サイクル劣化試験により内部抵抗が上昇した二次電池100のV−dQ/dV曲線(図10参照)とを比較する。2つのV−dQ/dV曲線には、明確な2つのピーク(第1ピークAと第2ピークB)が現れている。
まず、図9において、第1ピークAにおける電池電圧値V1と第2ピークBにおける電池電圧値V2との差分値ΔVK(=V2−V1)を算出する。また、図10において、第1ピークAにおける電池電圧値V1と、第2ピークBにおける電池電圧値V2との差分値ΔVL(=V2−V1)を算出する。
ΔVKとΔVLを比較すると、ΔVL>ΔVKであることがわかる。すなわち、初期状態の二次電池100よりも、内部抵抗が上昇した二次電池100のほうが、第1ピークAにおける電池電圧値V1と第2ピークBにおける電池電圧値V2との差分値ΔVが大きくなることがわかる。
このようにして、サイクル劣化試験により内部抵抗が上昇した各二次電池100、及び、接続不良とした二次電池100について、第1ピークAにおける電池電圧値V1と第2ピークBにおける電池電圧値V2との差分値ΔVを算出した。この結果を、内部抵抗(mΩ)と差分値ΔVの関係を表すグラフとして、図13に示す。なお、図13では、初期状態の二次電池100を◆、内部抵抗が上昇した二次電池100(サイクル劣化試験を行った二次電池100)を○、接続不良とした二次電池100を△で表している。
図13から、二次電池100の内部抵抗が大きくなるにしたがって、第1ピークAにおける電池電圧値V1と第2ピークBにおける電池電圧値V2との差分値ΔVが大きくなってゆくことがわかる。また、接続不良の二次電池100では、差分値ΔVが極端に大きくなる(初期状態の二次電池100の約1.9倍)ことがわかる。
本実施例2では、このような特性を利用して、V−dQ/dV曲線における差分値ΔVに基づいて、二次電池100の内部抵抗の上昇及び接続不良を検知する。
本実施例2のハイブリッド自動車201は、実施例1のハイブリッド自動車1と比較して、二次電池システムのみが異なる(図1参照)。本実施例2の二次電池システムは、実施例1の二次電池システム6と比較して、電池コントローラのみが異なり、その他については同様である。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
本実施例2の二次電池システム26は、図11に示すように、組電池10と、電圧検知手段40と、電流検知手段50と、電池コントローラ130とを備えている。電池コントローラ130は、ROM131、CPU132、RAM133等を有している。
電池コントローラ130のROM131には、実施例1の電池コントローラ30と同様に、予め、初期状態の二次電池100について取得した、電池電圧VとdQ/dVとの関係を表すV−dQ/dV曲線K(図9参照)を記憶させている。さらに、電池コントローラ130のROM131には、V−dQ/dV曲線K上の第1ピークAにおける電池電圧値V1と第2ピークBにおける電池電圧値V2との差分値である基準電圧差分値ΔVK(=V2−V1=0.2V)を記憶させている。
さらに、電池コントローラ130は、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV−dQ/dV曲線を描き、このQ−dQ/dV曲線と、ROM31に記憶されているV−dQ/dV曲線K(図9参照)との対比(パターンマッチング)により、二次電池100がV−dQ/dV曲線上の第1ピークAまたは第2ピークBに対応する状態に至ったかどうかを判断する。換言すれば、所定時間T毎に検出される電池電圧Vの値と、所定時間T毎に算出されるdQ/dVの値とが、V−dQ/dV曲線上の第1ピークAまたは第2ピークBを示す値になったかどうかを判断する。
例えば、電池コントローラ130は、二次電池100が第1ピークAに対応する状態に至ったと判断した場合は、そのときに電圧検知手段40で検知された二次電池100の電池電圧値V1(電池コントローラ130の判断により、二次電池100が第1ピークAに対応する状態に至ったと推定される時点において、電圧検知手段40で検知された二次電池100の電池電圧値V1)を記憶する。また、二次電池100が第2ピークBに対応する状態に至ったと判断した場合は、そのときに電圧検知手段40で検知された二次電池100の電池電圧値V2(電池コントローラ130の判断により、二次電池100が第2ピークBに対応する状態に至ったと推定される時点において、電圧検知手段40で検知された二次電池100の電池電圧値V2)を記憶する。そして、電池電圧値V2から電池電圧値V1を差し引いた差分値である実測電圧差分値ΔVS(=V2−V1)を算出する。
さらに、電池コントローラ130は、基準電圧差分値ΔVKと実測電圧差分値ΔVSとを対比する。実測電圧差分値ΔVSが、基準電圧差分値ΔVKよりも大きい場合には、二次電池100の内部抵抗が上昇していると判断する。特に、実測電圧差分値ΔVSが、基準電圧差分値ΔVKの1.8倍より大きい場合には、二次電池100の接続不良が生じていると判断する。この場合、電池コントローラ130は、二次電池100の接続不良が生じている旨の信号を出力して、二次電池100の接続確認を促す。
なお、本実施例2の二次電池システム26でも、実施例1の二次電池システム6と同様に、電池コントローラ130によって、組電池10を構成する二次電池100のSOCが25%を下回らないように、且つ、SOCが75%を上回らないように、二次電池100のSOCの制御を行っている(図7及び図8参照)。このようにして、制御中心をSOC50%として、SOC25%〜75%の範囲内で、二次電池100の充放電の制御を行っている。
次に、本実施例2にかかる二次電池100の内部抵抗上昇の検知方法及び二次電池100の接続不良の検知方法について、図14及び図15を参照して詳細に説明する。
まず、電池コントローラ130は、組電池10(二次電池100)の充放電制御を開始すると、図14に示すように、ステップU1において、電圧検知手段40によって検知された各々の二次電池100の電池電圧値Vを取得すると共に、電流検知手段50により検知された二次電池100を流れる電流値Iを取得する。なお、本実施例2では、電池コントローラ130は、所定時間T(例えば1秒)毎に、電池電圧値Vと電流値Iを取得する。
次に、ステップU2に進み、電池コントローラ130は、電流検知手段50で検知された電流値Iを積算して、各二次電池100の充電電気量を算出する。次いで、ステップU3に進み、電池コントローラ130は、算出された充電電気量に基づいて、各二次電池100に蓄えられている電気量(蓄電量Q)を推定する。なお、本実施例2では、所定時間T(例えば1秒)毎に検知された電流値Iに基づいて、所定時間T毎の蓄電量Qを推定する。
次に、ステップU4に進み、各二次電池100について、電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出する。換言すれば、二次電池100の蓄電量Qを、これに対応する電池電圧値Vで微分して、dQ/dVの値を算出する。具体的には、各二次電池100について、所定時間T毎に取得される電池電圧値Vと蓄電量Qに基づいて、各所定時間T毎の電池電圧Vの変化量dVと蓄電量Qの変化量dQとを算出し、これらに基づいて、所定時間T毎のdQ/dVの値を算出する。
次いで、ステップU5に進み、各二次電池100について状態検知を行う。詳細には、図15に示すサブルーチンに進み、まず、ステップU51において、各二次電池100について、V−dQ/dV曲線上の第1ピークAに対応する状態に至ったかどうかを判断する。具体的には、電池コントローラ130により、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV−dQ/dV曲線を描き、このV−dQ/dV曲線と、ROM131に記憶されているV−dQ/dV曲線K(図9参照)との対比(パターンマッチング)により、二次電池100がV−dQ/dV曲線上の第1ピークAに対応する状態に至ったかどうかを判断する。
第1ピークAに対応する状態に至っていない(No)と判定された場合は、図14に示すメインルーチンに戻り、再び、ステップU1〜U4の処理を行う。
一方、第1ピークAに対応する状態に至った(Yes)と判定されると、ステップU52に進み、第1ピークAに対応する状態に達したときに電圧検知手段40で検知された、各二次電池100の電池電圧値V1を記憶する。なお、電池コントローラ130は、二次電池100が第1ピークAに対応する状態に至った(Yes)と判定した後は、二次電池100がSOC50%に達するまで、充電過多の制御を行う(図7参照)。
次に、ステップU53に進み、各二次電池100について、V−dQ/dV曲線上の第2ピークBに対応する状態に至ったかどうかを判断する。具体的には、電池コントローラ130により、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV−dQ/dV曲線を描き、このV−dQ/dV曲線と、ROM131に記憶されているV−dQ/dV曲線Kとの対比(パターンマッチング)により、二次電池100がV−dQ/dV曲線上の第2ピークBに対応する状態に至ったかどうかを判断する。
第2ピークBに対応する状態に至っていない(No)と判定された場合は、図14に示すメインルーチンに戻り、再び、ステップU1〜U4の処理を行う。
一方、第2ピークBに対応する状態に至った(Yes)と判定されると、ステップU54に進み、第2ピークBに対応する状態に達したときに電圧検知手段40で検知された、各二次電池100の電池電圧値V2を記憶する。なお、電池コントローラ130は、二次電池100が第2ピークBに対応する状態に至った(Yes)と判定した後は、二次電池100がSOC50%に達するまで、放電過多の制御を行う(図8参照)。
次に、ステップU55に進み、電池電圧値V2から電池電圧値V1を差し引いた差分値である実測電圧差分値ΔVS(=V2−V1)を算出する。
その後、ステップU56に進み、算出された実測電圧差分値ΔVSと、ROM131に記憶されている基準電圧差分値ΔVKとを対比する。具体的には、実測電圧差分値ΔVSを基準電圧差分値ΔVKで除して、ΔVS/ΔVKの値を算出する。
次いで、ステップU57に進み、ΔVS/ΔVK>1を満たしているか否かを判定する。すなわち、実測電圧差分値ΔVSが基準電圧差分値ΔVKより大きいか否かを判定する。ΔVS/ΔVK>1を満たしていない(No)と判定された場合は、図14に示すメインルーチンに戻り、一連の処理を終了する。
一方、ΔVS/ΔVK>1を満たしている(Yes)と判定された場合は、ステップU58に進み、ΔVS/ΔVK>1.8を満たしているか否かを判定する。すなわち、実測電圧差分値ΔVSが、基準差分値ΔVKの1.8倍より大きいか否かを判定する。
ステップU58において、ΔVS/ΔVK>1.8を満たしていない(No)と判定された場合は、ステップU59に進み、二次電池100の内部抵抗が上昇していると判断する。一方、ΔVS/ΔVK>1.8を満たしている(Yes)と判定された場合は、ステップU5Aに進み、二次電池100の接続不良が生じていると判断する。この場合、ステップU5Bに進み、二次電池100の接続不良が生じている旨の信号を出力して、二次電池100の接続確認を促す。
以上のようにして、本実施例2では、V−dQ/dV曲線上に現れる明確なピーク(第1ピークA及び第2ピークB)に基づいて、二次電池システム26の状態(具体的には、二次電池100の内部抵抗の上昇及び接続不良)を検知する。このため、本実施例2では、SOC(蓄電量)の変化に伴う電池電圧の変化量が小さい範囲内(具体的には、SOC25%〜75%の範囲内)で二次電池100を使用しているにも拘わらず、二次電池100の内部抵抗上昇及び接続不良を、精度良く検知することができる。
なお、本実施例2では、電池コントローラ130が、dQ/dV算出手段、制御手段、判断手段、抵抗上昇検知手段、及び接続不良検知手段に相当する。
(実施例3)
実施例2においてサイクル劣化試験を行った4つの二次電池100について、次のようにして電池容量(満充電容量)を測定した。まず、各二次電池100について、1/5Cの電流値で、電池電圧が4.2V(SOC100%)に達するまで充電を行った。その後、4.2Vの定電圧で充電を行い、電流値が初期の1/10にまで低下したところで充電を終了した。その後、各二次電池100について、1/5Cの電流値で、電池電圧が3.0V(SOC0%)に達するまで、放電を行った。このときの放電容量を、各二次電池100の電池容量(満充電容量)として測定した。
また、電池電圧が3.0V(SOC0%)に達した二次電池100について、1/5Cの電流値で充電を行い、その充電期間中、V−dQ/dV曲線をリアルタイムで描き、この曲線をモニターに表示させた。このモニターに描かれるV−dQ/dV曲線を目視で観察し、第1ピークAに至った(二次電池100が第1ピークAに対応する状態に至った)と判断したときに充電を停止した。その後、二次電池100について、電池電圧が3.0V(SOC0%)になるまで1/5Cの電流値で定電流放電を行った。このときの放電容量を、二次電池100が第1ピークAに対応する状態に至ったときの蓄電量Q1として取得した。
さらに、電池電圧が3.0V(SOC0%)に達した二次電池100について、1/5Cの電流値で充電を行い、その充電期間中、V−dQ/dV曲線をリアルタイムで描き、この曲線をモニターに表示させた。このモニターに描かれるV−dQ/dV曲線を目視で観察し、第2ピークBに至った(二次電池100が第2ピークBに対応する状態に至った)と判断したときに充電を停止した。その後、二次電池100について、電池電圧が3.0V(SOC0%)になるまで1/5Cの電流値で定電流放電を行った。このときの放電容量を、二次電池100が第2ピークBに対応する状態に至ったときの蓄電量Q2として取得した。さらに、蓄電量Q1と蓄電量Q2との差分値ΔQ(=Q2−Q1)を算出した。
また、サイクル劣化試験を行っていない初期状態の二次電池100について、上述のようにして、電池容量、蓄電量Q1、蓄電量Q2、及び差分値ΔQ(これを基準蓄電量差分値ΔQKとする)を取得した。
また、微小短絡が生じている二次電池100を用意し、これについても、上述のようにして、電池容量、蓄電量Q1、蓄電量Q2、及び差分値ΔQを取得した。
この結果を、電池容量(mAh)とΔQとの関係を表すグラフとして、図17に示す。なお、図17では、初期状態の二次電池100を◆、容量低下した二次電池100(サイクル劣化試験を行った4つの二次電池100)を○、内部微小短絡が生じている二次電池100を△で表している。なお、サイクル劣化試験を行った4つの二次電池100は、いずれも、初期状態の二次電池100(サイクル劣化試験を行っていない二次電池100)に比べて、電池容量が低下していた。
図17から、電池容量(満充電容量)が低下するにしたがって、第1ピークAにおける蓄電量Q1と第2ピークBにおける蓄電量Q2との差分値ΔQ(=Q2−Q1)が小さくなってゆくことがわかる。また、内部微小短絡が生じている二次電池100では、初期状態の二次電池100に比べて、差分値ΔQが大きく低下する(初期状態の二次電池100の約74%)ことがわかる。
本実施例3では、このような特性を利用して、蓄電量Q1と蓄電量Q2との差分値ΔQ(=Q2−Q1)に基づいて、二次電池100の電池容量(満充電容量)の低下及び内部微小短絡を検知する。
本実施例3のハイブリッド自動車301は、実施例1のハイブリッド自動車1と比較して、二次電池システムのみが異なる(図1参照)。本実施例3の二次電池システムは、実施例1の二次電池システム6と比較して、電池コントローラのみが異なり、その他については同様である。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
本実施例3の二次電池システム36は、図16に示すように、組電池10と、電圧検知手段40と、電流検知手段50と、電池コントローラ230とを備えている。電池コントローラ230は、ROM231、CPU232、RAM233等を有している。
電池コントローラ230は、実施例1の電池コントローラ30と同様に、所定時間T毎に、各二次電池100の蓄電量Qを推定する。さらに、電池コントローラ230は、所定時間T毎に、電圧検知手段40で検知された各二次電池100の電池電圧Vを取得する。さらに、電池コントローラ230は、所定時間T毎にdQ/dVの値を算出する。
なお、電池コントローラ230のROM231には、実施例1の電池コントローラ30と同様に、予め、初期状態の二次電池100について取得した、電池電圧VとdQ/dVとの関係を表すV−dQ/dV曲線K(図9参照)を記憶させている。さらに、電池コントローラ230のROM231には、初期状態の二次電池100にかかる蓄電量Q1と蓄電量Q2との差分値である基準蓄電量差分値ΔQK(=Q2−Q1)を記憶させている。
さらに、電池コントローラ230は、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV−dQ/dV曲線を描き、このQ−dQ/dV曲線と、ROM231に記憶されているV−dQ/dV曲線K(図9参照)との対比(パターンマッチング)により、二次電池100がV−dQ/dV曲線上の第1ピークAまたは第2ピークBに対応する状態に至ったかどうかを判断する。換言すれば、所定時間T毎に検出される電池電圧Vの値と、所定時間T毎に算出されるdQ/dVの値とが、V−dQ/dV曲線上の第1ピークAまたは第2ピークBを示す値になったかどうかを判断する。
例えば、電池コントローラ230は、二次電池100が第1ピークAに対応する状態に至ったと判断した場合は、そのときに推定された二次電池100の蓄電量Q1(電池コントローラ230の判断により、二次電池100が第1ピークAに対応する状態に至ったと推定される時点において、電池コントローラ230によって推定された二次電池100の蓄電量Q1)を記憶する。また、二次電池100が第2ピークBに対応する状態に至ったと判断した場合は、そのときに推定された二次電池100の蓄電量Q2(電池コントローラ230の判断により、二次電池100が第2ピークBに対応する状態に至ったと推定される時点において、電池コントローラ230によって推定された二次電池100の蓄電量Q2)を記憶する。そして、蓄電量Q2から蓄電量Q1を差し引いた差分値である実測蓄電量差分値ΔQS(=Q2−Q1)を算出する。
さらに、電池コントローラ230は、実測蓄電量差分値ΔQSと基準蓄電量差分値ΔQKとを対比する。実測蓄電量差分値ΔQSが、基準蓄電量差分値ΔQKよりも小さい場合には、二次電池100の電池容量が低下していると判断する。特に、実測蓄電量差分値ΔQSが、基準蓄電量差分値ΔQKの75%を下回った場合には、二次電池100に内部微小短絡が生じていると判断する。この場合、電池コントローラ230は、二次電池100が異常である旨の信号を出力して、二次電池100の交換を促す。
なお、本実施例3の二次電池システム36でも、実施例1の二次電池システム6と同様に、電池コントローラ230によって、組電池10を構成する二次電池100のSOCが25%を下回らないように、且つ、SOCが75%を上回らないように、二次電池100のSOCの制御を行っている(図7及び図8参照)。このようにして、制御中心をSOC50%として、SOC25%〜75%の範囲内で、二次電池100の充放電の制御を行っている。
次に、本実施例3にかかる二次電池100の電池容量低下の検知方法及び二次電池100の内部微小短絡の検知方法について、図18及び図19を参照して詳細に説明する。
まず、電池コントローラ230は、組電池10(二次電池100)の充放電制御を開始すると、図18に示すように、ステップW1において、電圧検知手段40によって検知された各々の二次電池100の電池電圧値Vを取得すると共に、電流検知手段50により検知された二次電池100を流れる電流値Iを取得する。なお、本実施例3では、電池コントローラ230は、所定時間T(例えば1秒)毎に、電池電圧値Vと電流値Iを取得する。
次に、ステップW2に進み、電池コントローラ230は、電流検知手段50で検知された電流値Iを積算して、各二次電池100の充電電気量を算出する。次いで、ステップW3に進み、電池コントローラ230は、算出された充電電気量に基づいて、各二次電池100に蓄えられている電気量(蓄電量Q)を推定する。なお、本実施例3では、所定時間T(例えば1秒)毎に検知された電流値Iに基づいて、所定時間T毎の蓄電量Qを推定する。
次に、ステップW4に進み、各二次電池100について、電池電圧Vの変化量dVに対する蓄電量Qの変化量dQの割合であるdQ/dVの値を算出する。換言すれば、二次電池100の蓄電量Qを、これに対応する電池電圧値Vで微分して、dQ/dVの値を算出する。具体的には、各二次電池100について、所定時間T毎に取得される電池電圧値Vと蓄電量Qに基づいて、各所定時間T毎の電池電圧Vの変化量dVと蓄電量Qの変化量dQとを算出し、これらに基づいて、所定時間T毎のdQ/dVの値を算出する。
次いで、ステップW5に進み、各二次電池100について状態検知を行う。詳細には、図19に示すサブルーチンに進み、まず、ステップW51において、各二次電池100について、V−dQ/dV曲線上の第1ピークAに対応する状態に至ったかどうかを判断する。具体的には、電池コントローラ230により、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV−dQ/dV曲線を描き、このV−dQ/dV曲線と、ROM231に記憶されているV−dQ/dV曲線K(図9参照)との対比(パターンマッチング)により、二次電池100がV−dQ/dV曲線上の第1ピークAに対応する状態に至ったかどうかを判断する。
第1ピークAに対応する状態に至っていない(No)と判定された場合は、図18に示すメインルーチンに戻り、再び、ステップW1〜W4の処理を行う。
一方、第1ピークAに対応する状態に至った(Yes)と判定されると、ステップW52に進み、第1ピークAに対応する状態に達したときに推定された、各二次電池100の蓄電量Q1を記憶する。なお、電池コントローラ230は、二次電池100が第1ピークAに対応する状態に至った(Yes)と判定した後は、二次電池100がSOC50%に達するまで、充電過多の制御を行う(図7参照)。
次に、ステップW53に進み、各二次電池100について、V−dQ/dV曲線上の第2ピークBに対応する状態に至ったかどうかを判断する。具体的には、電池コントローラ230により、所定時間T毎に算出されるdQ/dVの値に基づいてリアルタイムにV−dQ/dV曲線を描き、このV−dQ/dV曲線と、ROM231に記憶されているV−dQ/dV曲線Kとの対比(パターンマッチング)により、二次電池100がV−dQ/dV曲線上の第2ピークBに対応する状態に至ったかどうかを判断する。
第2ピークBに対応する状態に至っていない(No)と判定された場合は、図18に示すメインルーチンに戻り、再び、ステップW1〜W4の処理を行う。
一方、第2ピークBに対応する状態に至った(Yes)と判定されると、ステップW54に進み、第2ピークBに対応する状態に達したときに推定された、各二次電池100の蓄電量Q2を記憶する。なお、電池コントローラ230は、二次電池100が第2ピークBに対応する状態に至った(Yes)と判定した後は、二次電池100がSOC50%に達するまで、放電過多の制御を行う(図8参照)。
次に、ステップW55に進み、蓄電量Q2から蓄電量Q1を差し引いた差分値である実測蓄電量差分値ΔQS(=Q2−Q1)を算出する。
その後、ステップW56に進み、算出された実測蓄電量差分値ΔQSと、ROM231に記憶されている基準蓄電量差分値ΔQKとを対比する。具体的には、実測蓄電量差分値ΔQSを基準蓄電量差分値ΔQKで除して、ΔQS/ΔQKの値を算出する。
次いで、ステップW57に進み、ΔQS/ΔQK<1を満たしているか否かを判定する。すなわち、実測蓄電量差分値ΔQSが基準蓄電量差分値ΔQKより小さいか否かを判定する。ΔQS/ΔQK<1を満たしていない(No)と判定された場合は、図18に示すメインルーチンに戻り、一連の処理を終了する。
一方、ΔQS/ΔQK<1を満たしている(Yes)と判定された場合は、ステップW58に進み、ΔQS/ΔQK>0.75を満たしているか否かを判定する。すなわち、実測蓄電量差分値ΔQSが、基準蓄電量差分値ΔQKの75%より大きいか否かを判定する。
ステップW58において、ΔQS/ΔQK>0.75を満たしている(Yes)と判定された場合は、ステップW59に進み、二次電池100の電池容量が低下していると判断する。一方、ΔQS/ΔQK>0.75を満たしていない(No)と判定された場合は、ステップW5Aに進み、二次電池100に内部微小短絡が生じていると判断する。この場合、ステップW5Bに進み、二次電池100が異常である旨の信号を出力して、二次電池100の交換を促す。
以上のようにして、本実施例3では、V−dQ/dV曲線上に現れる明確なピーク(第1ピークA及び第2ピークB)に基づいて、二次電池システム36の状態(具体的には、二次電池100の電池容量低下及び内部微小短絡)を検知する。このため、本実施例3では、SOC(蓄電量)の変化に伴う電池電圧の変化量が小さい範囲内(具体的には、SOC25%〜75%の範囲内)で二次電池100を使用しているにも拘わらず、二次電池100の電池容量低下及び内部微小短絡を、精度良く検知することができる。
なお、本実施例3では、電池コントローラ230が、dQ/dV算出手段、制御手段、判断手段、容量低下検知手段、及び微小短絡検知手段に相当する。
以上において、本発明を実施例1〜3に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施例2では、二次電池の内部抵抗上昇と二次電池の接続不良の検知を行う二次電池システムを例示した(図14及び図15参照)。また、実施例3では、二次電池の電池容量低下と内部微小短絡を検知する二次電池システムを例示した(図18及び図19参照)。しかしながら、実施例2の状態検知と実施例3の状態検知を組み合わせた状態検知を行う二次電池システムとするのが好ましい。すなわち、二次電池の内部抵抗上昇と二次電池の接続不良の検知(図15に示すステップU51〜ステップU5Bの処理)に加えて、二次電池の電池容量低下と内部微小短絡をも検知(図19に示すステップW51〜ステップW5Bの処理)する二次電池システムとするのが好ましい。
1,101,201 ハイブリッド自動車
6,26,36 二次電池システム
10 組電池
30,130,230 電池コントローラ(dQ/dV算出手段、判断手段、抵抗上昇検知手段、接続不良検知手段、容量低下検知手段、微小短絡検知手段、制御手段)
40 電圧検知手段
50 電流検知手段
100 二次電池
153 正極活物質
154 負極活物質
155 正極板
156 負極板
157 セパレータ
A 第1ピーク
B 第2ピーク
本発明の一態様は、二次電池を備える二次電池システムであって、上記二次電池は、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質と、充放電により相変化を伴う負極活物質と、を含み、上記二次電池システムは、上記二次電池の充放電時に、上記二次電池の電池電圧Vの変化量dVに対する上記二次電池の蓄電量Qの変化量dQの割合であるdQ/dVの値を算出するdQ/dV算出手段を備え、上記電池電圧Vの値と上記dQ/dVの値との関係を表すV−dQ/dV曲線上に現れるピークに基づいて、上記二次電池システムの状態を検知する二次電池システムであって、上記二次電池システ ムは、上記電池電圧Vの値と上記dQ/dVの値に基づいて、上記二次電池が上記V−d Q/dV曲線上に現れる第1ピークに対応する状態に至ったかどうか、及び、上記二次電 池が上記V−dQ/dV曲線上に現れる第2ピークであって上記第1ピークよりも高い電 池電圧Vにかかる第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え 、上記判断手段により上記二次電池が上記第1ピークに対応する状態に至ったと判断され たときの電池電圧値V1と上記第2ピークに対応する状態に至ったと判断されたときの電 池電圧値V2との差分値である実測電圧差分値に基づいて、上記二次電池システムの状態 を検知する二次電池システムである。
さらに、上述の二次電池システムでは、判断手段が、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV−dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V−dQ/dV曲線上の第1ピークを示す値になったかどうかを判断する。さらに、判断手段は、電池電圧Vの値とdQ/dVの値に基づいて、二次電池がV−dQ/dV曲線上に現れる第2ピークに対応する状態に至ったかどうかを判断する。具体的には、判断手段は、例えば、二次電池について実測された電池電圧Vの値と、このときにdQ/dV算出手段により算出されたdQ/dVの値とが、V−dQ/dV曲線上の第2ピークを示す値になったかどうかを判断する。
さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記電池電圧Vの値と前記dQ/dVの値に基づいて、前記二次電池が前記V−dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうか、及び、上記二次電池が上記V−dQ/dV曲線上に現れる第2ピークであって上記第1ピークよりも高い電池電圧値Vにかかる第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、上記判断手段により上記二次電池が上記第1ピークに対応する状態に至ったと判断されたときの上記二次電池の蓄電量Q1と上記第2ピークに対応する状態に至ったと判断されたときの上記二次電池の蓄電量Q2との差分値である実測蓄電量差分値に基づいて、上記二次電池の状態を検知する二次電池システムとすると良い。
また、本発明の他の態様は、二次電池を備える二次電池システムであって、上記二次電 池は、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質と、充放電 により相変化を伴う負極活物質と、を含み、上記二次電池システムは、上記二次電池の充 放電時に、上記二次電池の電池電圧Vの変化量dVに対する上記二次電池の蓄電量Qの変 化量dQの割合であるdQ/dVの値を算出するdQ/dV算出手段を備え、上記電池電 圧Vの値と上記dQ/dVの値との関係を表すV−dQ/dV曲線上に現れるピークに基 づいて、上記二次電池システムの状態を検知する二次電池システムであって、上記二次電 池システムは、上記電池電圧Vの値と上記dQ/dVの値に基づいて、上記二次電池が上 記V−dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうか、及び、上 記二次電池が上記V−dQ/dV曲線上に現れる第2ピークであって上記第1ピークより も高い電池電圧値Vにかかる第2ピークに対応する状態に至ったかどうかを判断する判断 手段を備え、上記判断手段により上記二次電池が上記第1ピークに対応する状態に至った と判断されたときの上記二次電池の蓄電量Q1と上記第2ピークに対応する状態に至った と判断されたときの上記二次電池の蓄電量Q2との差分値である実測蓄電量差分値に基づ いて、上記二次電池の状態を検知する二次電池システムである。
さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記二次電池の電池容量の低下を検知する容量低下検知手段を備え、上記容量低下検知手段は、予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる上記二次電池の蓄電量Q1(二次電池が第1ピークに対応する状態に至ったときの二次電池の蓄電量Q1)と前記第2ピークにかかる上記二次電池の蓄電量Q2(二次電池が第2ピークに対応する状態に至ったときの二次電池の蓄電量Q2)との差分値である基準蓄電量差分値であって、初期状態の上記二次電池にかかる基準蓄電量差分値と、前記実測蓄電量差分値とを対比して、上記実測蓄電量差分値が上記基準蓄電量差分値よりも小さい場合に、上記二次電池の電池容量が低下していると判断する二次電池システムとすると良い。
さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記二次電池の充放電を制御する制御手段を備え、上記制御手段は、前記二次電池の前記電池電圧Vの値が、前記V−dQ/dV曲線上に現れる第1ピーク及び第2ピークのうち上記第1ピークよりも高い電池電圧Vにかかる上記第2ピークにおける電池電圧値V2を上回らないように、上記二次電池の充放電を制御する二次電池システムとすると良い。
また、本発明の他の態様は、二次電池を備える二次電池システムであって、上記二次電 池は、スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質と、充放電 により相変化を伴う負極活物質と、を含み、上記二次電池システムは、上記二次電池の充 放電時に、上記二次電池の電池電圧Vの変化量dVに対する上記二次電池の蓄電量Qの変 化量dQの割合であるdQ/dVの値を算出するdQ/dV算出手段を備え、上記電池電 圧Vの値と上記dQ/dVの値との関係を表すV−dQ/dV曲線上に現れるピークに基 づいて、上記二次電池システムの状態を検知する二次電池システムであって、上記二次電 池システムは、上記二次電池の充放電を制御する制御手段を備え、上記制御手段は、上記 二次電池の上記電池電圧Vの値が、上記V−dQ/dV曲線上に現れる第1ピーク及び第 2ピークのうち上記第1ピークよりも高い電池電圧Vにかかる上記第2ピークにおける電 池電圧値V2を上回らないように、上記二次電池の充放電を制御する二次電池システムで ある。
さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記電池電圧Vの値と前記dQ/dVの値に基づいて、上記二次電池が、前記V−dQ/dV曲線上の前記第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、前記制御手段は、上記二次電池の充電時に、上記判断手段によって上記二次電池が上記第2ピークに対応する状態に至ったと判断されると、上記二次電池の充電を停止させて、上記二次電池について放電過多の制御を行う二次電池システムとすると良い。

Claims (9)

  1. 二次電池を備える二次電池システムであって、
    上記二次電池は、
    スピネル型の結晶構造を有するマンガン酸リチウムからなる正極活物質と、充放電により相変化を伴う負極活物質と、を含み、
    上記二次電池システムは、
    上記二次電池の充放電時に、上記二次電池の電池電圧Vの変化量dVに対する上記二次電池の蓄電量Qの変化量dQの割合であるdQ/dVの値を算出するdQ/dV算出手段を備え、
    上記電池電圧Vの値と上記dQ/dVの値との関係を表すV−dQ/dV曲線上に現れるピークに基づいて、上記二次電池システムの状態を検知する
    二次電池システム。
  2. 請求項1に記載の二次電池システムであって、
    前記二次電池システムは、
    前記電池電圧Vの値と前記dQ/dVの値に基づいて、前記二次電池が前記V−dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうか、及び、上記二次電池が上記V−dQ/dV曲線上に現れる第2ピークであって上記第1ピークよりも高い電池電圧Vにかかる第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、
    上記判断手段により上記二次電池が上記第1ピークに対応する状態に至ったと判断されたときの電池電圧値V1と上記第2ピークに対応する状態に至ったと判断されたときの電池電圧値V2との差分値である実測電圧差分値に基づいて、上記二次電池システムの状態を検知する
    二次電池システム。
  3. 請求項2に記載の二次電池システムであって、
    前記二次電池システムは、
    前記二次電池の内部抵抗の上昇を検知する抵抗上昇検知手段を備え、
    上記抵抗上昇検知手段は、
    予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる電池電圧値V1と前記第2ピークにかかる電池電圧値V2との差分値である基準電圧差分値であって、初期状態の上記二次電池にかかる基準電圧差分値と、前記実測電圧差分値とを対比して、上記実測電圧差分値が上記基準電圧差分値よりも大きい場合に、上記二次電池の内部抵抗が上昇していると判断する
    二次電池システム。
  4. 請求項2または請求項3に記載の二次電池システムであって、
    前記二次電池システムは、
    前記二次電池の接続不良を検知する接続不良検知手段を備え、
    上記接続不良検知手段は、
    予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる電池電圧値V1と前記第2ピークにかかる電池電圧値V2との差分値である基準電圧差分値であって、初期状態の上記二次電池にかかる基準電圧差分値と、前記実測電圧差分値とを対比して、上記実測電圧差分値が、上記基準電圧差分値よりも大きく且つ所定の閾値よりも大きい場合に、上記二次電池の接続不良が生じていると判断する
    二次電池システム。
  5. 請求項1〜請求項4のいずれか一項に記載の二次電池システムであって、
    前記二次電池システムは、
    前記電池電圧Vの値と前記dQ/dVの値に基づいて、前記二次電池が前記V−dQ/dV曲線上に現れる第1ピークに対応する状態に至ったかどうか、及び、上記二次電池が上記V−dQ/dV曲線上に現れる第2ピークであって上記第1ピークよりも高い電池電圧値Vにかかる第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、
    上記判断手段により上記二次電池が上記第1ピークに対応する状態に至ったと判断されたときの上記二次電池の蓄電量Q1と上記第2ピークに対応する状態に至ったと判断されたときの上記二次電池の蓄電量Q2との差分値である実測蓄電量差分値に基づいて、上記二次電池の状態を検知する
    二次電池システム。
  6. 請求項5に記載の二次電池システムであって、
    前記二次電池システムは、
    前記二次電池の電池容量の低下を検知する容量低下検知手段を備え、
    上記容量低下検知手段は、
    予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる上記二次電池の蓄電量Q1と前記第2ピークにかかる上記二次電池の蓄電量Q2との差分値である基準蓄電量差分値であって、初期状態の上記二次電池にかかる基準蓄電量差分値と、前記実測蓄電量差分値とを対比して、上記実測蓄電量差分値が上記基準蓄電量差分値よりも小さい場合に、上記二次電池の電池容量が低下していると判断する
    二次電池システム。
  7. 請求項5または請求項6に記載の二次電池システムであって、
    前記二次電池システムは、
    前記二次電池の内部微小短絡を検知する微小短絡検知手段を含み、
    上記微小短絡検知手段は、
    予め上記二次電池システムに記憶させておいた、前記第1ピークにかかる上記二次電池の蓄電量Q1と前記第2ピークにかかる上記二次電池の蓄電量Q2との差分値である基準蓄電量差分値であって、初期状態の上記二次電池にかかる基準蓄電量差分値と、前記実測蓄電量差分値とを対比して、上記実測電圧差分値が、上記基準電圧差分値よりも小さく且つ所定の閾値よりも小さい場合に、上記二次電池に内部微小短絡が生じていると判断する
    二次電池システム。
  8. 請求項1〜請求項7のいずれか一項に記載の二次電池システムであって、
    前記二次電池システムは、
    前記二次電池の充放電を制御する制御手段を備え、
    上記制御手段は、
    前記二次電池の前記電池電圧Vの値が、前記V−dQ/dV曲線上に現れる第1ピーク及び第2ピークのうち上記第1ピークよりも高い電池電圧Vにかかる上記第2ピークにおける電池電圧値V2を上回らないように、上記二次電池の充放電を制御する
    二次電池システム。
  9. 請求項8に記載の二次電池システムであって、
    前記二次電池システムは、
    前記電池電圧Vの値と前記dQ/dVの値に基づいて、上記二次電池が、前記V−dQ/dV曲線上の前記第2ピークに対応する状態に至ったかどうかを判断する判断手段を備え、
    前記制御手段は、
    上記二次電池の充電時に、上記判断手段によって上記二次電池が上記第2ピークに対応する状態に至ったと判断されると、上記二次電池の充電を停止させて、上記二次電池について放電過多の制御を行う
    二次電池システム。
JP2010544105A 2009-09-25 2009-09-25 二次電池システム Active JP5287872B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066617 WO2011036760A1 (ja) 2009-09-25 2009-09-25 二次電池システム

Publications (2)

Publication Number Publication Date
JPWO2011036760A1 true JPWO2011036760A1 (ja) 2013-02-14
JP5287872B2 JP5287872B2 (ja) 2013-09-11

Family

ID=43795531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010544105A Active JP5287872B2 (ja) 2009-09-25 2009-09-25 二次電池システム

Country Status (4)

Country Link
US (1) US8653793B2 (ja)
JP (1) JP5287872B2 (ja)
CN (1) CN102369627B (ja)
WO (1) WO2011036760A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955828B2 (en) 2019-04-19 2024-04-09 Lg Energy Solution, Ltd. Battery management apparatus and method using non-destructive resistance analysis

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561859B2 (ja) 2008-04-01 2010-10-13 トヨタ自動車株式会社 二次電池システム
CN102695961B (zh) * 2010-01-19 2015-12-02 株式会社杰士汤浅国际 二次电池的充电状态测定装置以及二次电池的充电状态测定方法
JP5682955B2 (ja) * 2010-08-04 2015-03-11 Necエナジーデバイス株式会社 リチウム二次電池の制御システム、およびリチウム二次電池の状態検出方法
JP5255086B2 (ja) * 2011-04-08 2013-08-07 本田技研工業株式会社 電源装置及びその制御方法
FI123467B (fi) * 2011-07-08 2013-05-31 Europ Batteries Oy Menetelmä ja järjestelmä litium-ioni-kennoston varaustilan hallinnoimiseksi
JP6032473B2 (ja) * 2011-09-09 2016-11-30 株式会社Gsユアサ 状態管理装置、蓄電素子の均等化方法
JP5716979B2 (ja) * 2011-09-09 2015-05-13 トヨタ自動車株式会社 二次電池の検査方法
JP5741348B2 (ja) * 2011-09-21 2015-07-01 トヨタ自動車株式会社 二次電池システム及び車両
US9269994B2 (en) * 2011-12-29 2016-02-23 Blackberry Limited Power pack remaining capacity level detection
JP5779528B2 (ja) * 2012-03-16 2015-09-16 株式会社日立製作所 リチウムイオン二次電池システムおよびリチウムイオン二次電池システムの制御方法
JP5662968B2 (ja) * 2012-06-19 2015-02-04 株式会社日立製作所 二次電池の検査システム、充放電機、及び検査方法
JP5846054B2 (ja) * 2012-06-22 2016-01-20 トヨタ自動車株式会社 診断装置および診断方法
WO2014068919A1 (ja) * 2012-10-29 2014-05-08 三洋電機株式会社 回生制動する車両の電源装置
JP6466635B2 (ja) * 2013-06-14 2019-02-06 信越化学工業株式会社 非水電解質二次電池用負極の製造方法及び非水電解質二次電池の製造方法
EP3076478B1 (en) 2013-11-29 2019-06-05 Hitachi Automotive Systems, Ltd. Battery module and assembled battery
FR3015046B1 (fr) * 2013-12-12 2016-12-09 Commissariat Energie Atomique Procede d'estimation de l'etat de sante d'une batterie
CN103698714B (zh) * 2014-01-02 2016-06-29 清华大学 电池容量衰减机理辨识方法及系统
FR3020614B1 (fr) * 2014-04-30 2016-04-15 Renault Sa Procede et dispositif de surveillance d'une batterie electrique de vehicule
JP6314043B2 (ja) * 2014-06-26 2018-04-18 プライムアースEvエナジー株式会社 蓄電池の検査方法及び蓄電池の検査装置
JP6405754B2 (ja) * 2014-07-02 2018-10-17 日本電気株式会社 電池制御装置及び電池制御システム
JP6123844B2 (ja) * 2014-09-01 2017-05-10 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
EP2990818B1 (en) * 2014-09-01 2019-11-27 Yokogawa Electric Corporation Secondary battery capacity measurement system and secondary battery capacity measurement method
US10033213B2 (en) * 2014-09-30 2018-07-24 Johnson Controls Technology Company Short circuit wake-up system and method for automotive battery while in key-off position
JP6488105B2 (ja) 2014-10-28 2019-03-20 株式会社東芝 蓄電池評価装置及び方法
CN105807226B (zh) * 2014-12-31 2018-07-10 北京航天测控技术有限公司 基于等效电路模型的锂离子电池soc预测方法及装置
CN104617330B (zh) * 2015-01-19 2017-01-25 清华大学 电池微短路的识别方法
CN104730468B (zh) * 2015-04-07 2017-12-22 阳光电源股份有限公司 一种电池soc估算方法、装置以及电池管理系统
JP6500789B2 (ja) * 2016-01-19 2019-04-17 トヨタ自動車株式会社 二次電池の制御システム
JP6380417B2 (ja) * 2016-01-21 2018-08-29 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
JP6477610B2 (ja) * 2016-06-22 2019-03-06 横河電機株式会社 二次電池容量測定システムおよび二次電池容量測定方法
JP6607167B2 (ja) * 2016-11-03 2019-11-20 トヨタ自動車株式会社 リチウムイオン二次電池の検査方法
JP6350886B2 (ja) * 2016-12-09 2018-07-04 マツダ株式会社 リチウムイオン電池の劣化判定方法
CN108241102A (zh) * 2016-12-23 2018-07-03 华为技术有限公司 一种电池微短路的检测方法及装置
US11152602B2 (en) * 2017-01-12 2021-10-19 StoreDot Ltd. Using formation parameters to extend the cycling lifetime of lithium ion batteries
JP6614176B2 (ja) * 2017-02-09 2019-12-04 トヨタ自動車株式会社 電池状態推定装置
DE102017102877A1 (de) 2017-02-14 2018-08-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Regelung eines Batteriesystems
JP6690584B2 (ja) * 2017-03-10 2020-04-28 トヨタ自動車株式会社 電池状態推定装置
DE102017208770B4 (de) * 2017-05-23 2019-03-28 Audi Ag Verfahren zur Prüfung eines Batteriezustands und Prüfvorrichtung zur Prüfung eines Batteriezustands
JP6301048B1 (ja) * 2017-10-05 2018-03-28 三菱電機株式会社 組電池の管理装置および組電池システム
CN111542759B (zh) * 2018-01-11 2024-02-09 株式会社半导体能源研究所 二次电池的异常检测装置、异常检测方法以及程序
JP6973213B2 (ja) * 2018-03-16 2021-11-24 トヨタ自動車株式会社 二次電池システム、及び二次電池制御方法
JP2021089140A (ja) * 2018-03-19 2021-06-10 三菱自動車工業株式会社 二次電池の劣化度合測定装置
KR102349300B1 (ko) * 2018-04-10 2022-01-10 주식회사 엘지에너지솔루션 배터리의 전극 정보를 결정하기 위한 장치, 방법, 배터리 팩 및 전기 시스템
CN108808140B (zh) * 2018-04-26 2020-03-27 江西优特汽车技术有限公司 一种动力电池充电管理方法
US10895606B1 (en) * 2018-05-25 2021-01-19 The United States Of America As Represented By The Secretary Of The Navy Multi-short circuit mode electrochemical cell test method
KR102238559B1 (ko) * 2018-08-13 2021-04-09 삼성에스디아이 주식회사 배터리 제어 장치 및 배터리의 내부단락 검출 방법
US11041914B2 (en) 2018-08-13 2021-06-22 Samsung Sdi Co., Ltd. Battery control apparatus and method for detection internal short of battery
CN109143078A (zh) * 2018-08-28 2019-01-04 中航锂电技术研究院有限公司 一种磷酸铁锂动力电池“跳水”故障的辨识预判方法
KR102537607B1 (ko) 2019-05-14 2023-05-25 주식회사 엘지에너지솔루션 배터리의 퇴화도를 결정하기 위한 장치, 방법 및 배터리 팩
US11577624B2 (en) * 2019-06-05 2023-02-14 GM Global Technology Operations LLC Low voltage battery SOC confirmation and cell balancing
WO2021020250A1 (ja) * 2019-08-01 2021-02-04 株式会社デンソー 二次電池の劣化度判定装置及び組電池
CN110531276B (zh) * 2019-09-05 2022-04-26 江苏智蓝电源科技有限公司 电池状况检测方法及装置
KR20210031226A (ko) * 2019-09-11 2021-03-19 주식회사 엘지화학 배터리 관리 장치 및 방법
KR20210033764A (ko) * 2019-09-19 2021-03-29 주식회사 엘지화학 배터리 관리 장치, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2021181672A1 (ja) * 2020-03-13 2021-09-16 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021181650A1 (ja) * 2020-03-13 2021-09-16 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021186511A1 (ja) * 2020-03-16 2021-09-23 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021186550A1 (ja) * 2020-03-17 2021-09-23 Tdk株式会社 二次電池の制御装置、電池パックおよび二次電池の制御方法
WO2021191993A1 (ja) * 2020-03-24 2021-09-30 Tdk株式会社 二次電池の制御装置、二次電池の制御システム、二次電池パック及び二次電池の制御方法
US11614489B2 (en) 2020-04-13 2023-03-28 Samsung Electronics Co., Ltd. Battery management system and method for determining active material content in electrode of battery
US20230333165A1 (en) * 2020-08-04 2023-10-19 Mitsubishi Electric Corporation Storage battery internal state estimation device and storage battery internal state estimation method
KR20220019564A (ko) * 2020-08-10 2022-02-17 주식회사 엘지에너지솔루션 배터리 이상 진단 장치 및 방법
KR102652327B1 (ko) * 2020-09-09 2024-03-27 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
KR20220065604A (ko) * 2020-11-13 2022-05-20 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법
CN112731173B (zh) * 2020-12-22 2024-05-03 东软睿驰汽车技术(沈阳)有限公司 一种电池包的电芯内阻变化检测方法及装置
KR20230154196A (ko) * 2021-03-05 2023-11-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 이차 전지의 충전 방법
WO2023114882A1 (en) * 2021-12-15 2023-06-22 Element Energy, Inc. Methods and systems for detecting variations in minor total-impedance contributors in electrochemical cells
WO2024047499A1 (ja) * 2022-09-02 2024-03-07 株式会社半導体エネルギー研究所 蓄電システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188100B2 (ja) 1994-04-27 2001-07-16 株式会社日本自動車部品総合研究所 バッテリ状態検出方法
JPH0968561A (ja) * 1995-09-01 1997-03-11 Nissan Motor Co Ltd 組電池の残容量計
JP3959815B2 (ja) * 1997-12-09 2007-08-15 トヨタ自動車株式会社 電池蓄電量検出装置
JPH11346444A (ja) 1998-06-02 1999-12-14 Toyota Motor Corp 電池充電状態の推定方法
JP2001033532A (ja) 1999-07-23 2001-02-09 Toyota Motor Corp 電池状態検出装置および充放電制御装置
JP2001086604A (ja) * 1999-09-14 2001-03-30 Honda Motor Co Ltd 組電池及び残容量検出装置
JP4075451B2 (ja) 2001-05-15 2008-04-16 株式会社豊田中央研究所 リチウム二次電池
JP2004095400A (ja) * 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
WO2006050117A2 (en) 2004-10-29 2006-05-11 Medtronic, Inc. Method of charging lithium-ion battery
JP2008179284A (ja) * 2007-01-25 2008-08-07 Toyota Motor Corp 二次電池の劣化判定装置
JP4884404B2 (ja) * 2007-09-07 2012-02-29 日立ビークルエナジー株式会社 二次電池の内部情報検知方法及び装置
JP4561859B2 (ja) 2008-04-01 2010-10-13 トヨタ自動車株式会社 二次電池システム
JP5682955B2 (ja) * 2010-08-04 2015-03-11 Necエナジーデバイス株式会社 リチウム二次電池の制御システム、およびリチウム二次電池の状態検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955828B2 (en) 2019-04-19 2024-04-09 Lg Energy Solution, Ltd. Battery management apparatus and method using non-destructive resistance analysis

Also Published As

Publication number Publication date
WO2011036760A1 (ja) 2011-03-31
US20120169288A1 (en) 2012-07-05
JP5287872B2 (ja) 2013-09-11
CN102369627B (zh) 2013-09-11
US8653793B2 (en) 2014-02-18
CN102369627A (zh) 2012-03-07

Similar Documents

Publication Publication Date Title
JP5287872B2 (ja) 二次電池システム
JP4561859B2 (ja) 二次電池システム
US20200355749A1 (en) Device detecting abnormality of secondary battery, abnormality detection method, and program
CN104137324B (zh) 二次电池的控制装置和充电状态检测方法
JP5332983B2 (ja) 電池システム
KR101611116B1 (ko) 2차 전지의 제어 장치, 충전 제어 방법 및 soc 검출 방법
JP5741348B2 (ja) 二次電池システム及び車両
US20120158330A1 (en) Monitoring system for lithium ion secondary battery and monitoring method thereof
EP2482375A1 (en) Rechargeable battery system
KR101568110B1 (ko) 2차 전지의 충전 제어 방법 및 충전 제어 장치
JP2013019709A (ja) 二次電池システム及び車両
CN102403551A (zh) 电池控制器和电压异常检测方法
JP2019096552A (ja) 電池劣化判定システム
EP2291669B1 (en) Method of diagnosing a malfunction in an abnormal voltage detecting apparatus, secondary battery system, and hybrid vehicle
WO2014184861A1 (ja) 電池システム、その電池システムを備える移動体および電力貯蔵システム、および電池システムの制御方法
CN113809412A (zh) 电池系统
JP2022086165A (ja) リチウムイオン二次電池の制御方法
JP2022086167A (ja) リチウムイオン二次電池の制御方法
JP2021044151A (ja) リチウムイオン電池モジュール及びリチウムイオン電池モジュールの充電方法
JP2015041596A (ja) 全固体電池の過充電検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R151 Written notification of patent or utility model registration

Ref document number: 5287872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151