WO2011010571A1 - 半導体圧力センサ、圧力センサ装置、電子機器、および半導体圧力センサの製造方法 - Google Patents

半導体圧力センサ、圧力センサ装置、電子機器、および半導体圧力センサの製造方法 Download PDF

Info

Publication number
WO2011010571A1
WO2011010571A1 PCT/JP2010/061764 JP2010061764W WO2011010571A1 WO 2011010571 A1 WO2011010571 A1 WO 2011010571A1 JP 2010061764 W JP2010061764 W JP 2010061764W WO 2011010571 A1 WO2011010571 A1 WO 2011010571A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
voltage
resistance
region
semiconductor
Prior art date
Application number
PCT/JP2010/061764
Other languages
English (en)
French (fr)
Inventor
宣幸 山田
正広 櫻木
吉田 武司
啓 林
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to KR1020127004745A priority Critical patent/KR101408578B1/ko
Priority to US13/386,712 priority patent/US8770035B2/en
Priority to EP10802191.6A priority patent/EP2458359B1/en
Priority to JP2011523609A priority patent/JP5696045B2/ja
Priority to CN201080035964.XA priority patent/CN102472678B/zh
Publication of WO2011010571A1 publication Critical patent/WO2011010571A1/ja
Priority to US14/322,306 priority patent/US9568385B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/008Transmitting or indicating the displacement of flexible diaphragms using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • the present invention relates to a semiconductor pressure sensor that converts pressure into an electrical signal based on distortion of a diaphragm that can be deformed by applying pressure, a pressure sensor device that includes the semiconductor pressure sensor, an electronic device that includes the pressure sensor device, and a semiconductor
  • the present invention relates to a method for manufacturing a pressure sensor.
  • a semiconductor pressure sensor is used as a small device for converting pressure into an electric signal in various fields such as an internal combustion engine, a consumer device, a measuring device, and a medical device of an automobile.
  • semiconductor pressure sensors are used in, for example, hard disk drives, water heaters, air conditioners, washing machines, dishwashers and vacuum cleaners.
  • semiconductor pressure sensors are used in, for example, air pressure gauges, water pressure gauges, and oil pressure gauges.
  • semiconductor pressure sensors are used for blood pressure monitors, for example.
  • the semiconductor pressure sensor is manufactured using a microfabrication technique used for manufacturing a semiconductor integrated circuit.
  • a semiconductor pressure sensor generally includes a diaphragm formed by processing a part of a silicon substrate into a thin film.
  • the diaphragm is distorted by the pressure applied to the diaphragm.
  • a resistance element for example, a piezo element
  • the semiconductor pressure sensor detects pressure based on a change in the resistance value of the resistance element.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2009-49026 discloses a semiconductor pressure sensor including four Schottky barrier diodes each functioning as a resistance element.
  • the four Schottky barrier diodes constitute a Wheatstone bridge.
  • the internal resistance of the Schottky barrier diode changes due to distortion generated in the Schottky junction.
  • FIG. 47 is a diagram showing an example of a conventional semiconductor pressure sensor.
  • semiconductor pressure sensor 100 has a diaphragm structure including thin portion 102 and thick portion 104.
  • the thin wall portion 102 is shown as a region surrounded by a broken line.
  • the thick part 104 is located around the thin part 102.
  • Strain gauge resistors 106, 108, 110, and 112 are formed on one main surface of the thin portion 102.
  • FIG. 48 is a cross-sectional view of the semiconductor pressure sensor 100 shown in FIG. 47 taken along XLVIII-XLVIII. Referring to FIG. 48, glass substrate 116 is provided on the bottom surface of thick portion 104.
  • the reference pressure chamber 114 whose outer periphery is surrounded by the thick portion 104 is formed between the thin portion 102 and the glass substrate 116.
  • the reference pressure chamber 114 is normally in a vacuum state.
  • the thin portion 102 is distorted according to the atmospheric pressure around the semiconductor pressure sensor 100.
  • the resistance values of the strain gauge resistors 106, 108, 110, and 112 change according to the strain.
  • the strain gauge resistors 106, 108, 110, and 112 constitute a bridge circuit by wiring not shown.
  • FIG. 49 is a diagram showing a bridge circuit 150 constituted by the strain gauge resistors 106, 108, 110, and 112 shown in FIG. Referring to FIG. 49, a predetermined voltage is applied between input terminals 122A and 122B. A voltage corresponding to the distortion of the thin portion 102 is generated between the output terminals 120A and 120B.
  • the thin portion In order to improve the sensitivity of the semiconductor pressure sensor having the configuration shown in FIGS. 47 to 49, the thin portion must be thinned. However, the thin wall portion may be damaged during the manufacture of the semiconductor pressure sensor or the use of the semiconductor pressure sensor.
  • Patent Document 2 Japanese Patent Laid-Open No. 60-29627 (Japanese Patent Publication No. 4-26051) discloses a semiconductor pressure sensor capable of detecting the breakage of a diaphragm.
  • FIG. 50 is a diagram for explaining the semiconductor pressure sensor shown in FIG. Referring to FIG. 50, the semiconductor pressure sensor 200 includes strain gauge resistors 202 and 204, a wiring 206, and a transistor 208. The strain gauge resistors 202 and 204, the wiring 206, and the transistor 208 are disposed on one main surface of the diaphragm 201.
  • the wiring 206 is formed in a direction crossing both the cleavage directions A and B of the diaphragm 201.
  • the breakage of the diaphragm 201 is detected by the transistor 208.
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-34979 discloses a pressure sensor that can detect an abnormality of a diaphragm.
  • FIG. 51 is a diagram for explaining the semiconductor pressure sensor shown in FIG. Referring to FIG. 51, semiconductor pressure sensor 300 includes a diaphragm 302 including a thin portion 302A, detection units 304A, 304B, and 304C, a strain applying member 306, a support member 308, and a pedestal 310.
  • the detection units 304A, 304B, and 304C output an electrical signal based on the distortion of the thin portion 302A.
  • the strain imparting member 306 forcibly causes strain in the thin portion 304A.
  • the support member 308 supports the strain imparting member 306.
  • the strain imparting member 306 is composed of a piezoelectric element such as PZT (lead zirconate titanate).
  • PZT lead zirconate titanate
  • Patent Document 2 discloses a technical idea of detecting breakage of a diaphragm by arranging wiring along a direction that intersects the cleavage direction of the diaphragm.
  • the diaphragm breakage cannot be detected unless the breakage detection wiring is disconnected along with the diaphragm breakage.
  • a transistor is used to detect the breakage of the diaphragm. For this reason, it is necessary to supply current to the transistor in order to detect damage to the diaphragm.
  • Patent Document 3 discloses a technique in which a piezoelectric element is arranged on the surface of a thin portion of a semiconductor pressure sensor, and the thin portion is forcibly generated by the piezoelectric element.
  • the self-diagnosis of the semiconductor pressure sensor can be performed based on the output of the semiconductor pressure sensor after the voltage is applied to the piezoelectric element.
  • Patent Document 3 has a configuration in which a piezoelectric element is fixed by a support member. For this reason, a complicated process is required to manufacture the semiconductor pressure sensor disclosed in Patent Document 3.
  • Patent Document 3 suggests that a piezoelectric element is formed on one main surface of the diaphragm by a known IC manufacturing method.
  • Patent Document 3 does not clearly show a configuration in which a piezoelectric element is formed as a thin film on one main surface of a semiconductor pressure sensor, thereby eliminating the need for a supporting member for the piezoelectric element.
  • the arrangement of the thin film piezoelectric element must also be considered.
  • the resistance bridge characteristics may vary among a plurality of pressure sensor devices manufactured by the same process.
  • the characteristic of the resistance bridge is, for example, the relationship between the pressure applied to the diaphragm and the output voltage of the resistance bridge.
  • the pressure sensor device is configured to detect pressure over a wide range.
  • the atmospheric pressure changes in the vicinity of the standard atmospheric pressure (about 101.3 [kPa]).
  • the sensitivity of the sensor is high near the standard atmospheric pressure.
  • the detection range of the pressure sensor device is wide. Therefore, it is not easy to configure the pressure sensor device so that the sensitivity of the pressure sensor device is high only in a desired region, particularly in a region near the upper limit value of the detection range.
  • One object of the present invention is to provide a semiconductor pressure sensor capable of performing self-diagnosis by disposing a thin film piezoelectric element on a thin portion and reducing the influence on the output of the thin film piezoelectric element. Is to provide.
  • Another object of the present invention is to suppress an increase in the dispersion of the characteristics of the resistance bridge caused by the deviation between the position of the diaphragm and the position of the resistance bridge.
  • Another object of the present invention is to make it possible to increase the detection sensitivity of a semiconductor pressure sensor in a region near the upper limit value of the detection range of the semiconductor pressure sensor.
  • the “self-diagnosis function” refers to a function in which a semiconductor pressure sensor detects a structural defect of the semiconductor pressure sensor itself.
  • diagnostic reference voltage refers to a difference in output voltage of a semiconductor pressure sensor when a semiconductor pressure sensor that does not have a defect such as a broken diaphragm performs a self-diagnosis.
  • the “offset voltage” refers to the output of the semiconductor pressure sensor in a state where the diaphragm is not distorted.
  • the “thin region” includes the surface of the thin portion formed on the semiconductor substrate and the thin portion.
  • the “thick region” includes the surface of the thick portion formed on the semiconductor substrate and the thick portion.
  • a semiconductor pressure sensor includes a semiconductor substrate having a thin region and a thick region provided around the thin region, and a semiconductor substrate formed on one main surface of the semiconductor substrate and corresponding to the thin region.
  • a strain gauge resistor that changes a resistance value in accordance with the strain of the portion; and at least one having a lower electrode layer, a piezoelectric layer, and an upper electrode layer formed on a semiconductor substrate in a region including at least a part of the thin region.
  • Two thin film piezoelectric elements At least one thin film piezoelectric element is formed in a region spaced from the strain gauge resistance.
  • the self-diagnosis of the semiconductor pressure sensor can be performed based on the output of the semiconductor pressure sensor before and after the voltage application to the thin film piezoelectric element. Further, by reducing the deformation of the strain gauge resistance due to the difference in thermal expansion coefficient between the thin film piezoelectric element and the semiconductor substrate, it is possible to prevent the output of the semiconductor pressure sensor, for example, the offset voltage from being distorted.
  • At least one thin film piezoelectric element has an elongated shape having a longitudinal axis in a direction toward the center of the thin region.
  • the entire thin region can be uniformly distorted by the small-area thin film piezoelectric element, the accuracy of self-diagnosis can be increased.
  • the at least one thin film piezoelectric element may be provided so as to extend to the thick region across the boundary between the thin region and the thick region.
  • the strain applied to the thin portion at the time of self-diagnosis is stabilized.
  • the accuracy of self-diagnosis can be improved, and metal wiring of the thin film piezoelectric element can be performed only on the thick region.
  • the at least one thin film piezoelectric element may be further provided in the thick region so as to extend along the outer periphery of the thin region.
  • a part of the thin film piezoelectric element is firmly fixed on the thick region. This stabilizes the amount of distortion applied to the thin portion during self-diagnosis, so that the self-diagnosis accuracy can be increased.
  • the at least one thin film piezoelectric element may include a plurality of thin film piezoelectric elements formed on a semiconductor substrate.
  • the entire thin portion can be uniformly distorted by applying the same voltage to a plurality of thin film piezoelectric elements formed at different positions on the semiconductor substrate.
  • the plurality of thin film piezoelectric elements may be coupled to each other on the thick region.
  • the wiring of the upper electrode layer of the thin film piezoelectric element and the wiring of the lower electrode layer of the thin film piezoelectric element may be provided one by one, so that the configuration of the semiconductor pressure sensor can be simplified.
  • the plurality of thin film piezoelectric elements may be extended to the central portion of the thin region and coupled to each other at the central portion of the thin region.
  • the semiconductor pressure sensor further includes a plurality of bonding pads provided on the thick region, and the at least one thin film piezoelectric element includes at least one bonding pad of the plurality of bonding pads. It may be provided so as to extend to the vicinity.
  • the metal wiring of the thin film piezoelectric element can be shortened, the area that can be used for the metal wiring of the strain gauge resistance can be widened. Thereby, when connecting a some strain gauge resistance and comprising a bridge circuit, adjustment of wiring length can be made easy.
  • the plurality of bonding pads may be provided along one side of the semiconductor substrate.
  • the convenience at the time of wire bonding can be improved.
  • the upper electrode layer and the lower electrode layer are positioned at the first end and the second end of the plurality of bonding pads arranged on one side of the semiconductor substrate. Each may be connected to the second bonding pad.
  • the semiconductor pressure sensor includes the four strain gauge resistors, the thin region has a substantially quadrangular shape, and the strain gauge resistor is formed near the midpoint of each side of the thin region. Also good.
  • the resistance value of the strain gauge resistance can be greatly changed, the sensitivity of the semiconductor pressure sensor can be improved.
  • the at least one thin film piezoelectric element may be formed on a diagonal line of the thin region.
  • the thin region may have a substantially circular shape. According to the above configuration, since the semiconductor substrate on the circumference is strained in the same way, the degree of freedom in disposing strain gauge resistors is increased.
  • the strain gauge resistance is a diffusion resistance formed by diffusing impurities on one main surface of the semiconductor substrate.
  • the main component of the piezoelectric layer is PZT.
  • the strain gauge resistance is connected to a wiring on the thin region, and the wiring includes a diffusion wiring.
  • the piezoelectric layer has a thickness of 0.01 ⁇ m or more and 5 ⁇ m or less. According to the above configuration, since the contact hole reaching the upper electrode layer of the thin film piezoelectric element and the contact hole reaching the lower electrode layer of the thin film piezoelectric element can be formed simultaneously, the manufacturing time of the semiconductor pressure sensor can be shortened. it can.
  • the semiconductor substrate is an SOI (Silicon On Insulator) substrate.
  • a method of manufacturing a semiconductor pressure sensor includes the steps of preparing a semiconductor substrate having one principal surface Si layer having a first conductivity type and another principal surface Si layer, and one principal surface Si. Forming a strain gauge resistance having a second conductivity type different from the first conductivity type on the layer, and having the second conductivity type in a region adjacent to the strain gauge resistance in the one principal surface Si layer.
  • Forming, forming a piezoelectric layer on the lower electrode layer, forming an upper electrode layer on the piezoelectric layer, and on the first interlayer insulating film, the lower electrode layer, the piezoelectric layer, and the upper electrode layer Forming a second interlayer insulating film on the second interlayer insulating film, and forming a diffusion wiring on the second interlayer insulating film
  • the contact hole reaching the lower electrode layer and the contact hole reaching the upper electrode layer are formed simultaneously.
  • a semiconductor pressure sensor in another aspect of the present invention, includes a semiconductor substrate and at least one resistance bridge.
  • the semiconductor substrate includes a diaphragm and a support portion for supporting the outer edge portion of the diaphragm.
  • At least one resistance bridge is disposed on the main surface of the semiconductor substrate.
  • At least one resistance bridge includes a plurality of resistance elements that change their resistance values in response to pressure applied to the diaphragm. The plurality of resistance elements are collectively arranged in a partial region in the main surface including a part of the boundary between the diaphragm and the support portion.
  • the plurality of resistance elements include a first resistance element and a second resistance element.
  • the second resistance element is electrically connected to the first resistance element, and is disposed in the region adjacent to the first resistance element.
  • the first resistance element is formed in the region so as to extend along a direction parallel to the boundary.
  • the second resistance element is formed in the region so as to extend along the direction intersecting the boundary.
  • the at least one resistance bridge is a plurality of resistance bridges electrically connected to each other in parallel.
  • the pressure sensor device includes a semiconductor substrate and at least one resistance bridge.
  • the semiconductor substrate includes a diaphragm and a support portion for supporting the outer edge portion of the diaphragm.
  • At least one resistance bridge is disposed on the main surface of the semiconductor substrate.
  • At least one resistance bridge includes a plurality of resistance elements that change their resistance values in response to pressure applied to the diaphragm.
  • the plurality of resistance elements are collectively arranged in a partial region in the main surface including a part of the boundary between the diaphragm and the support portion.
  • the pressure sensor device further includes a signal processing circuit for outputting a signal indicating pressure based on the resistance value of each of the plurality of resistance elements.
  • an electronic device in another aspect of the present invention, includes a semiconductor substrate and at least one resistance bridge.
  • the semiconductor substrate includes a diaphragm and a support portion for supporting the outer edge portion of the diaphragm.
  • At least one resistance bridge is disposed on the main surface of the semiconductor substrate.
  • At least one resistance bridge includes a plurality of resistance elements that change their resistance values in response to pressure applied to the diaphragm. The plurality of resistance elements are collectively arranged in a partial region in the main surface including a part of the boundary between the diaphragm and the support portion.
  • the electronic device includes a signal processing circuit for outputting a signal indicating a pressure based on the resistance value of each of the plurality of resistance elements, and a main body for executing a predetermined process based on a signal from the signal processing circuit. Is further provided.
  • a pressure sensor device in another aspect of the present invention, includes a sensor that changes a signal voltage based on pressure, and a signal processing circuit that processes a signal output from the sensor.
  • the signal processing circuit includes an amplifier circuit for amplifying the signal voltage, and an arithmetic circuit for generating a detection voltage that changes according to the pressure based on the output voltage of the amplifier circuit.
  • the arithmetic circuit is configured to generate a detection voltage by subtracting a voltage having a predetermined correlation with the output voltage of the amplifier circuit from a predetermined offset voltage.
  • the signal processing circuit further includes a second arithmetic circuit for generating a second voltage that changes according to the pressure based on the first voltage.
  • the first rate of change of the first voltage with respect to the pressure is different from the second rate of change of the second voltage with respect to the pressure.
  • the first voltage matches the second voltage at the upper limit value of the pressure range detected by the pressure sensor.
  • the absolute value of the second rate of change is larger than the absolute value of the first rate of change.
  • the second arithmetic circuit generates the second voltage by amplifying the first voltage.
  • the signal processing circuit includes a first terminal for outputting the first voltage to the outside of the signal processing circuit, and a second terminal for outputting the second voltage to the outside of the signal processing circuit. Further prepare.
  • the range of pressure is determined so as to include a standard value of atmospheric pressure and the upper limit value is a value close to the standard value.
  • an electronic device in another aspect of the present invention, includes a sensor configured to change a signal voltage based on pressure, and a signal processing circuit for processing a signal output from the sensor.
  • the signal processing circuit includes an amplifier circuit for amplifying the signal voltage, and an arithmetic circuit for generating a detection voltage that changes according to the pressure based on the output voltage of the amplifier circuit.
  • the arithmetic circuit is configured to generate a detection voltage by subtracting a voltage having a predetermined correlation with the output voltage of the amplifier circuit from a predetermined offset voltage.
  • the electronic device further includes a main body that executes predetermined processing based on the detected voltage.
  • the self-diagnosis of the semiconductor pressure sensor can be performed by applying a voltage to the thin film piezoelectric element formed on the thin region. Since the thin film piezoelectric element is formed in a region separated from the strain gauge resistance, the deformation of the strain gauge resistance due to the difference in thermal expansion coefficient between the thin film piezoelectric element and the semiconductor substrate can be minimized. Therefore, it is possible to prevent the output of the semiconductor pressure sensor from being distorted.
  • the thin film piezoelectric element is provided so as to extend to a predetermined position on the thick region.
  • a part of the thin film piezoelectric element can be fixed to the thick region, and the metal wiring of the thin film piezoelectric element can be shortened. For this reason, the accuracy of self-diagnosis can be improved and the area that can be used for the metal wiring of the strain gauge resistor can be widened.
  • the present invention it is possible to increase the detection sensitivity of the pressure sensor device in a region near the upper limit value of the detection range.
  • FIG. 6 is a VI-VI cross-sectional view of the semiconductor pressure sensor 400 shown in FIG. 5.
  • FIG. 6 is a diagram schematically showing a state in which the thin region 402 is distorted due to the atmospheric pressure difference between the pressure inside the reference pressure chamber 418 and the external atmospheric pressure in the semiconductor pressure sensor 400 shown in FIG. 5.
  • FIG. 6 is a diagram schematically showing a state in which the thin region 402 is distorted due to the atmospheric pressure difference between the pressure inside the reference pressure chamber 418 and the external atmospheric pressure in the semiconductor pressure sensor 400 shown in FIG. 5.
  • FIG. 6 is a cross-sectional view schematically showing a VIII-VIII cross section of the semiconductor pressure sensor 400 shown in FIG. 5. It is the figure which plotted the example of the amount of displacement of the thin area
  • FIG. 2 is a diagram showing an example of wiring patterns of diffusion resistors 406, 408, 410, 412 and a thin film piezoelectric element 414 in the semiconductor pressure sensor 400 shown in FIG. It is the top view which showed the modification of the semiconductor pressure sensor 400 concerning the 1st Embodiment of this invention. It is a top view of the semiconductor pressure sensor 500 concerning the 2nd Embodiment of this invention. It is the figure which showed the modification of the semiconductor pressure sensor 500 shown in FIG.
  • FIG. 16 is a view showing a modification of the semiconductor pressure sensor 600 shown in FIG. 15. It is a top view of the semiconductor pressure sensor 700 concerning the 4th Embodiment of this invention. It is the figure which showed the example of the metal wiring and diffusion wiring which can set an offset voltage to 0.
  • FIG. 18 is a view showing another modification of the semiconductor pressure sensor 700 shown in FIG. 17. It is the figure which showed another modification of the semiconductor pressure sensor 700 shown in FIG. It is a figure which shows the 1st process of the manufacturing method which concerns on this invention.
  • FIG. 29 is a circuit diagram of resistance bridges B1 to B4 shown in FIG. 28. It is the figure which showed the resistance bridge B1 shown in FIG. 28 in detail. It is the top view which showed the structure of the comparative example of the sensor which concerns on 5th Embodiment.
  • FIG. 33 is a first diagram for describing a problem that may occur when the sensor 1 ⁇ / b> A illustrated in FIG. 32 is manufactured.
  • FIG. 33 is a second diagram for illustrating a problem that may occur when the sensor 1A illustrated in FIG. 32 is manufactured. It is a circuit diagram of the signal processing circuit which concerns on 6th Embodiment. It is the figure which showed the relationship between the pressure applied to a diaphragm, and the voltage output from a Wheatstone bridge.
  • FIG. 4 is a diagram illustrating a relationship between a pressure applied to a diaphragm and a voltage Vout1 output from a calculation unit 22 of the signal processing circuit 2.
  • FIG. 6 is a diagram illustrating a relationship between a pressure applied to a diaphragm and a voltage Vout2 output from a calculation unit 23 of the signal processing circuit 2.
  • FIG. It is a circuit diagram which shows the structure of the comparative example of the signal processing circuit which concerns on 6th Embodiment.
  • 4 is a diagram illustrating a relationship between a pressure applied to a diaphragm and a voltage Vout output from a calculation unit 32 of the signal processing circuit 251.
  • FIG. 3 is a cross-sectional view schematically showing a state of the sensor 1 included in the pressure sensor device 10.
  • FIG. It is sectional drawing which showed the examination example of the sensor typically. It is the figure which showed the 1st modification of the signal processing circuit which concerns on 6th Embodiment.
  • FIG. 44 is a diagram for describing a voltage Vout1 output from the calculation unit 22A illustrated in FIG. 43. It is the figure which showed the 2nd modification of the signal processing circuit which concerns on 6th Embodiment. It is the figure which showed the 3rd modification of the signal processing circuit which concerns on 6th Embodiment. It is the figure which showed an example of the conventional semiconductor pressure sensor.
  • FIG. 48 is a cross-sectional view of the semiconductor pressure sensor 100 shown in FIG. 47 taken along XLVIII-XLVIII.
  • FIG. 48 is a diagram illustrating a bridge circuit 150 including the strain gauge resistors 106, 108, 110, and 112 illustrated in FIG. 47. It is a figure for demonstrating the semiconductor pressure sensor shown by FIG. It is a figure for demonstrating the semiconductor pressure sensor shown by FIG.
  • FIG. 1 is a block diagram conceptually showing the configuration of an electronic apparatus provided with a pressure sensor device according to an embodiment of the present invention.
  • electronic device 1000 according to the embodiment of the present invention includes a pressure sensor device 10 and a main body 50.
  • the pressure sensor device 10 includes a semiconductor pressure sensor (hereinafter also simply referred to as “sensor”) 1 and a signal processing circuit 2.
  • the pressure sensor device 10 is used to detect atmospheric pressure.
  • the use of the pressure sensor device 10 is not limited to the detection of atmospheric pressure.
  • the semiconductor pressure sensor 1 detects a pressure (for example, atmospheric pressure) applied to the semiconductor pressure sensor 1 and transmits a signal voltage indicating the detection result to the signal processing circuit 2.
  • the semiconductor pressure sensor 1 changes the signal voltage according to the pressure applied to the semiconductor pressure sensor 1.
  • the signal processing circuit 2 generates a detection voltage (signal) indicating the pressure applied to the semiconductor pressure sensor 1 based on the signal voltage from the semiconductor pressure sensor 1.
  • the signal processing circuit 2 outputs the detected voltage to the main body unit 50.
  • the main body 50 performs a predetermined process based on the detection voltage output from the signal processing circuit 2 (that is, the detection voltage output from the pressure sensor device 10).
  • the type of the electronic device 1000 according to the embodiment of the present invention is not particularly limited.
  • the electronic device 1000 is a hard disk.
  • the distance between the magnetic disk and the head can vary depending on the atmospheric pressure around the hard disk.
  • the main body 50 includes a magnetic disk, a head, and a mechanism for adjusting the interval between the magnetic disk and the head. The main body 50 adjusts the distance between the magnetic disk and the head based on the detection voltage from the pressure sensor device 10 so that the distance between the magnetic disk and the head is kept constant.
  • the electronic device 1000 is a car navigation system.
  • the atmospheric pressure around the vehicle changes depending on the altitude of the vehicle.
  • the main body 50 calculates the current altitude of the vehicle based on the detected voltage from the pressure sensor device 10. Thereby, the system can acquire information on the altitude of the vehicle.
  • FIG. 2 is a top view of the pressure sensor device 10 shown in FIG.
  • FIG. 3 is a side view of the pressure sensor device 10 shown in FIG.
  • the semiconductor pressure sensor 1 and the signal processing circuit 2 are accommodated in a package 3.
  • the semiconductor pressure sensor 1 and the signal processing circuit 2 are electrically connected by wiring 5.
  • the package 3 is formed with an opening 4 for introducing air into the package 3 from the outside of the package 3.
  • FIG. 4 is a cross-sectional view showing the inside of the pressure sensor device 10 shown in FIGS.
  • the package 3 includes a container 3A and a lid 3B for closing the container 3A.
  • the container 3A is made of, for example, ceramic.
  • the lid 3B is made of metal, for example.
  • An opening 4 (through hole) is formed in the lid 3B.
  • the semiconductor pressure sensor 1 includes a silicon substrate 6 on which a diaphragm 7 and a support portion 8 that supports the outer edge of the diaphragm 7 are integrally formed.
  • the diaphragm 7 is formed by processing a part of the silicon substrate 6 into a thin film.
  • the diaphragm 7 and the support portion 8 are formed by etching the back surface of the silicon substrate 6 through a predetermined etching mask.
  • the silicon substrate 6 is installed on the pedestal 9.
  • the opening formed on the back surface of the silicon substrate 6 is closed by the base 9. Therefore, a pressure chamber in which the pressure is kept constant is formed inside the silicon substrate 6.
  • the inside of the pressure chamber is substantially vacuum (0 [Pa]).
  • the pressure inside the pressure chamber is also referred to as “reference pressure”.
  • the signal processing circuit 2 is a semiconductor integrated circuit formed on a silicon chip, for example. The configuration of the signal processing circuit will be described in detail later.
  • a resistance element (not shown) is formed on the main surface of the silicon substrate 6 on which the diaphragm 7 is formed. The resistance element and the signal processing circuit 2 are connected by a wiring 5.
  • the wiring 5 is, for example, a gold wire.
  • the silicon chip may be sealed with a resin.
  • the space inside the package 3 may be filled with a material that hardly allows moisture to pass therethrough (for example, gel).
  • the material is required to be deformable so that pressure is applied to the diaphragm 7 by the atmospheric pressure around the pressure sensor device 10.
  • the thin region corresponds to the diaphragm 7 shown in FIG. 4
  • the thick region corresponds to the support portion 8 shown in FIG.
  • FIG. 5 is a top view of the semiconductor pressure sensor 400 according to the first embodiment of the present invention.
  • the semiconductor pressure sensor 400 has a semiconductor substrate 401.
  • the semiconductor substrate 401 has a thin region 402 and a thick region 404.
  • Thin region 402 is provided at substantially the center of the main surface of semiconductor substrate 401.
  • the thick region 404 is provided around the thin region 402.
  • the semiconductor substrate 401 has a diaphragm structure including a thin part and a thick part.
  • Diffusion resistances 406, 408, 410, and 412 are formed on one main surface of the thin portion.
  • the diffusion resistors 406, 408, 410, and 412 are formed by diffusion of impurities on one main surface of the thin portion.
  • the diffused resistors 406, 408, 410, and 412 are strain gauge resistors that detect strain in the thin portion.
  • the diffused resistors 406, 408, 410, and 412 form a bridge circuit by wiring not shown.
  • the thin film piezoelectric element 414 is disposed avoiding the diffusion resistors 406, 408, 410, and 412.
  • the thin film piezoelectric element 414 is used for self-diagnosis of the semiconductor pressure sensor 400. The self-diagnosis method will be described later.
  • the semiconductor substrate 401 and the thin film piezoelectric element 414 have different coefficients of thermal expansion. For this reason, when a temperature change occurs in the semiconductor pressure sensor 400, unexpected distortion may occur in the vicinity of the contact surface of the semiconductor substrate 401 with the thin film piezoelectric element 414.
  • the semiconductor pressure sensor 400 when the thin film piezoelectric element 414 is formed on the semiconductor pressure sensor 400, after firing the piezoelectric material at a high temperature of 500 ° C. to 800 ° C., the semiconductor pressure sensor 400 is cooled to room temperature. For this reason, the distortion has already occurred in the manufacturing process of the semiconductor pressure sensor 400.
  • the thin film piezoelectric element 414 is arranged as far as possible from the diffusion resistors 406, 408, 410, and 412. .
  • the thin film piezoelectric element 414 has an elongated shape having a longitudinal axis in the direction toward the center 402C of the thin region 402 in order to uniformly distort the entire thin region 402 during self-diagnosis.
  • the deformation direction of the thin film piezoelectric element 414 and the distortion of the thin region 402 during self-diagnosis will be described later.
  • FIG. 6 is a VI-VI cross-sectional view of the semiconductor pressure sensor 400 shown in FIG. Referring to FIG. 6, a glass substrate 416 as a pedestal is fixed to the bottom of thick portion 404A. A reference pressure chamber 418 is formed between the thin wall portion 402A and the glass substrate 416.
  • the thin-walled portion 402A is distorted according to the pressure difference between the internal pressure of the reference pressure chamber 418 and the external air pressure. Therefore, when the semiconductor pressure sensor 400 is used for measuring absolute pressure, the reference pressure chamber 418 is normally in a vacuum state.
  • the semiconductor pressure sensor according to the present invention can be applied to both the absolute pressure measurement type pressure sensor and the relative pressure measurement type pressure sensor in all the following embodiments.
  • the thin film piezoelectric element 414 has a lower electrode layer 414A, a piezoelectric layer 414B, and an upper electrode layer 414C.
  • the piezoelectric layer 414B is made of a piezoelectric material such as PZT.
  • PZT a piezoelectric material
  • the entire piezoelectric layer 414B expands or contracts.
  • the piezoelectric layer 414 ⁇ / b> B is contracted in a direction parallel to the thin region 402, so that the thin region 402 is intentionally distorted and self-diagnosis is performed. The self-diagnosis method will be described later.
  • FIG. 7 is a diagram schematically showing a state in which the thin region 402 is distorted due to the atmospheric pressure difference between the internal pressure of the reference pressure chamber 418 and the external atmospheric pressure in the semiconductor pressure sensor 400 shown in FIG. is there.
  • the thin wall portion 402 ⁇ / b> A is distorted by the pressure difference between the external air pressure and the pressure inside the reference pressure chamber 418.
  • Diffusion resistors 408 and 412 have longitudinal axes in the direction toward the center 402C of thin region 402. As shown in FIG. 7, when the thin wall portion 402A is distorted, each of the diffusion resistors 408 and 412 becomes longer. For this reason, the resistance values of the diffusion resistors 408 and 412 increase.
  • the diffusion resistors 406 and 410 shown in FIG. 5 have a longitudinal axis in a direction perpendicular to the direction toward the center 402C of the thin region 402, unlike the diffusion resistors 408 and 412.
  • the diffusion resistors 406 and 410 are wide. For this reason, the resistance values of the diffusion resistors 406 and 410 are reduced.
  • the semiconductor pressure sensor 400 can measure the atmospheric pressure by changing the resistance values of the diffusion resistors 406, 408, 410, and 412.
  • the diffusion resistors 406, 408, 410, and 412 may be bridge-connected. An example of the connection of the diffusion resistors 406, 408, 410, and 412 will be described later.
  • FIG. 8 is a cross-sectional view schematically showing a VIII-VIII cross section of the semiconductor pressure sensor 400 shown in FIG.
  • FIG. 8 shows a cross section of the semiconductor pressure sensor 400 in a state where a voltage is applied to the thin film piezoelectric element 414.
  • piezoelectric layer 414B contracts in the direction along arrow 415.
  • the piezoelectric layer 414B contracts, one main surface (the piezoelectric layer 414B side) of the thin portion 402A contracts simultaneously.
  • the other main surface (surface on the glass substrate 416 side) of the thin portion 402A is not restricted by the piezoelectric layer 414B.
  • the thin portion 402A is distorted so as to be recessed toward the glass substrate 416 as a whole. That is, when a voltage is applied to the thin film piezoelectric element 414, the semiconductor pressure sensor 400 can artificially generate a state in which a pressure difference is generated between the pressure inside the reference pressure chamber 418 and the external pressure. .
  • the thin film piezoelectric element 414 has an elongated shape having a longitudinal axis in the direction toward the center 402C of the thin region 402. Further, if the thin film piezoelectric element 414 is disposed apart from the diffusion resistors 406, 408, 410, and 412 shown in FIG. 1, the shape of the thin film piezoelectric element 414 may be a substantially rectangular shape or a substantially elliptical shape. The same applies to other embodiments in this specification.
  • a diagnostic reference voltage may be set based on sensor outputs before and after voltage application to the thin film piezoelectric element.
  • the sensor output difference before and after voltage application to the thin film piezoelectric element 414 is adopted as the diagnostic reference voltage, but the sensor output after voltage application can also be adopted as the diagnostic reference voltage. The same applies to other embodiments in this specification.
  • FIG. 9 is a diagram plotting an example of the amount of displacement at the center of the thin region 402 when the voltage applied to the thin film piezoelectric element 414 is changed.
  • the displacement amount of the thin region 402 when a voltage is applied to the thin film piezoelectric element 414 usually has a hysteresis characteristic. For this reason, before performing self-diagnosis of the semiconductor pressure sensor, care must be taken to prevent an unexpected voltage from being applied to the thin film piezoelectric element 414.
  • the displacement amount of the thin region 402 varies depending on, for example, the material, thickness, shape, etc. of the thin film piezoelectric element 414.
  • self-diagnosis of the semiconductor pressure sensor 400 can be performed by applying an AC voltage to the thin film piezoelectric element 414 to vibrate the thin region 402.
  • the sensor self-diagnosis is performed based on the output waveform of the semiconductor pressure sensor 400 when an AC voltage is applied to the thin film piezoelectric element 414.
  • FIG. 10 is a diagram showing an example of the wiring pattern of the diffusion resistors 406, 408, 410, 412 and the thin film piezoelectric element 414 in the semiconductor pressure sensor 400 shown in FIG.
  • metal wiring 420 is indicated by a solid line
  • diffusion wiring 422 formed by impurity diffusion is indicated by a dotted line.
  • Reference numerals 424, 426, 428, 430, 434, and 438 refer to bonding pads.
  • the diffusion wiring 422 is formed by injecting a high concentration impurity into a selected region of the semiconductor substrate 401.
  • the voltage between bonding pads 424 and 428 (or bonding pads 426 and 430) is the output of the semiconductor pressure sensor.
  • Bonding pads 424 and 428 may be connected to an amplifier circuit (not shown). The same applies to other embodiments in this specification.
  • the resistance ratio of the diffusion resistors 406 and 408 and the resistance ratio of the diffusion resistors 412 and 410 are the same.
  • Each resistance value is set to a predetermined value according to the configuration of the semiconductor pressure sensor 400.
  • the resistance values of the diffusion resistors 406, 408, 410, and 412 may all be the same value. The same applies to other embodiments in this specification.
  • the resistance values of the diffusion resistor 406 and the diffusion resistor 410 decrease as the strain of the thin region 402 increases.
  • the resistance values of the diffusion resistor 408 and the diffusion resistor 412 increase as the strain of the thin region 402 increases. For this reason, a voltage corresponding to the strain amount of the thin region 402 is generated between the bonding pads 424 and 428.
  • the bonding pad 438 is connected to the lower electrode layer 414A of the thin film piezoelectric element 414.
  • the bonding pad 434 is connected to the upper electrode layer (indicated by reference numeral 414C in FIG. 6) of the thin film piezoelectric element 414.
  • the semiconductor pressure sensor 400 During self-diagnosis of the semiconductor pressure sensor 400, if the difference in output voltage between the bonding pads 424 and 428 before and after voltage application to the thin film piezoelectric element 414 is within a predetermined range from the diagnostic reference voltage, it is determined that there is no diaphragm damage. On the other hand, if it is outside the predetermined range from the diagnostic reference voltage, it is determined that the diaphragm is damaged.
  • the shape of the thin region 402 is shown as a substantially square shape.
  • the shape of the thin region 402 is not particularly limited.
  • the shape of the main surface of the thin region 402 may be, for example, a substantially circular shape. The same applies to other embodiments of the present specification.
  • the thin film piezoelectric element may be disposed at a position separated from the diffusion resistor, for example, on the diagonal line of the thin region.
  • the deformation amount on the circumference of the thin region 402 when the thin region 402 is distorted is substantially the same. For this reason, the freedom degree in arrangement
  • the thin film piezoelectric element 414 is formed only in the thin region 402. According to the configuration of the semiconductor pressure sensor 400 shown in FIG. Therefore, the lower electrode and upper electrode wirings (metal wirings 432 and 436) of the thin film piezoelectric element 414 cross the bridge circuit of the diffusion resistors 406, 408, 410, and 412. In this case, it is necessary to devise such as forming the metal wiring 420 of the bridge circuit and the metal wirings 432 and 436 of the thin film piezoelectric element 414 with metal wirings of different layers. This may limit the wiring of the semiconductor pressure sensor. A semiconductor pressure sensor capable of solving such a problem will be described in a second embodiment.
  • FIG. 12 is a top view of a semiconductor pressure sensor 500 according to the second embodiment of the present invention.
  • the semiconductor pressure sensor 500 includes a thin film piezoelectric element 502 instead of the thin film piezoelectric element 414.
  • the thin film piezoelectric element 502 extends to the thick region 404 across the metal wiring 420 of the bridge circuit.
  • the configuration of the semiconductor pressure sensor 500 is different from the configuration shown in FIG.
  • the thin film piezoelectric element 502 is formed in another layer that is electrically insulated from the metal wiring 504. The same applies to the other embodiments in this specification. The manufacturing method of the semiconductor pressure sensor in the present invention will be described later.
  • the thin film piezoelectric element 502 includes a lower electrode layer 502A, a piezoelectric layer, and an upper electrode layer.
  • Lower electrode layer 502A is connected to bonding pad 518 through a metal wiring.
  • the upper electrode layer of the thin film piezoelectric element 502 is connected to the bonding pad 516 through a metal wiring.
  • the metal wiring connected to the lower electrode or the upper electrode of the thin film piezoelectric element 502 can be disposed outside the bridge circuit.
  • the metal wiring of the semiconductor pressure sensor 500 can be formed by only one wiring, and the degree of freedom in the layout of the metal wiring 420 of the bridge circuit is increased.
  • the offset voltage of the semiconductor pressure sensor 500 that is, the output of the semiconductor pressure sensor 500 when the thin region 402 is not distorted
  • the wiring resistance from each bonding pad to each diffusion resistance is set to the same value. Therefore, it is desirable that the metal wiring 420 and the diffusion wiring 422 have the same wiring length.
  • the thin film piezoelectric element 502 is disposed so that the thin film piezoelectric element 502 extends to an arbitrary position on the thick region 404. Thereby, the metal wiring of the thin film piezoelectric element 502 can be arranged at an arbitrary position. Therefore, the arrangement of the bonding pads 424, 426, 428, 430, 516, and 518, or the adjustment of the wiring length of the metal wiring 420 and the diffusion wiring 422 of the bridge circuit is facilitated.
  • the thin film piezoelectric element 502 is fixed to a part of the thick region 404. Therefore, as compared with the semiconductor pressure sensor 400 shown in FIG. 10, the amount of strain exerted on the thin region 402 by the thin film piezoelectric element 502 can be stabilized. Thereby, the accuracy of self-diagnosis can be improved.
  • FIG. 13 is a view showing a modification of the semiconductor pressure sensor 500 shown in FIG.
  • the semiconductor pressure sensor 530 includes a thin film piezoelectric element 532 instead of the thin film piezoelectric element 502.
  • the thin film piezoelectric element 532 has extended portions 532X and 532Y.
  • the semiconductor pressure sensor 530 is different from the semiconductor pressure sensor 500 shown in FIG.
  • the extending portions 532X and 532Y are formed on the thick region 404 so as to extend along the outer periphery of the thin region 402.
  • the thin film piezoelectric element 532 has a lower electrode layer 532A, a piezoelectric layer, and an upper electrode layer.
  • the lower electrode layer 532A is connected to the bonding pad 518.
  • the upper electrode layer of the thin film piezoelectric element 532 is connected to the bonding pad 516.
  • FIG. 14 is a view showing another modification of the semiconductor pressure sensor 500 shown in FIG.
  • the semiconductor pressure sensor 550 includes a thin film piezoelectric element 552 instead of the thin film piezoelectric element 502.
  • the thin film piezoelectric element 552 is formed on the thick region 404 so as to surround the outer periphery of the thin region 402.
  • the semiconductor pressure sensor 550 is different from the semiconductor pressure sensor 500 shown in FIG.
  • the thin film piezoelectric element 552 has an extending portion 554 as a portion surrounding the outer periphery of the thin region 402.
  • the thin film piezoelectric element 552 has a lower electrode layer 552A, a piezoelectric layer, and an upper electrode layer.
  • the lower electrode layer 552A is connected to the bonding pad 518.
  • the upper electrode layer of the thin film piezoelectric element 552 is connected to the bonding pad 516.
  • FIG. 15 is a top view of a semiconductor pressure sensor 600 according to the third embodiment of the present invention.
  • semiconductor pressure sensor 600 includes a plurality of thin film piezoelectric elements 602, 604, 606, and 608 provided on thin region 402. In this respect, the semiconductor pressure sensor 600 is different from the semiconductor pressure sensor 400 shown in FIG.
  • the diffusion resistors 406, 408, 410, and 412 are provided at positions where the amount of deformation when the thin region 402 is distorted, that is, near the midpoint of each side of the thin region 402.
  • the thin film piezoelectric elements 602, 604, 606, and 608 are provided at positions away from the diffusion resistors 406, 408, 410, and 412, for example, on the diagonal line of the thin region 402.
  • the thin film piezoelectric elements 602, 604, 606, and 608 need only be separated from the diffused resistors 406, 408, 410, and 412 by a predetermined distance, and the position where the thin film piezoelectric element is provided is not limited to the diagonal line of the thin region 402.
  • the thin film piezoelectric element 602 has a lower electrode layer 602A, a piezoelectric layer, and an upper electrode layer.
  • the lower electrode layer 602A is connected to the bonding pad 610.
  • the upper electrode layer of the thin film piezoelectric element 602 is connected to the bonding pad 612.
  • the thin film piezoelectric element 604 has a lower electrode layer 604A, a piezoelectric layer, and an upper electrode layer.
  • the lower electrode layer 604A is connected to the bonding pad 614.
  • the upper electrode layer of the thin film piezoelectric element 604 is connected to the bonding pad 616.
  • the thin film piezoelectric element 606 has a lower electrode layer 606A, a piezoelectric layer, and an upper electrode layer.
  • the lower electrode layer 606A is connected to the bonding pad 618.
  • the upper electrode layer of the thin film piezoelectric element 604 is connected to the bonding pad 620.
  • the thin film piezoelectric element 608 has a lower electrode layer 608A, a piezoelectric layer, and an upper electrode layer.
  • the lower electrode layer 608A is connected to the bonding pad 622.
  • the upper electrode layer of the thin film piezoelectric element 608 is connected to the bonding pad 624.
  • the thin film piezoelectric elements 602, 604, 606, and 608 cooperate to apply strain to the thin region 402. For this reason, if the same voltage is applied to the thin film piezoelectric elements 602, 604, 606, and 608, uniform strain can be applied to the entire thin region 402. Thereby, the precision of self-diagnosis can be improved.
  • FIG. 16 is a view showing a modification of the semiconductor pressure sensor 600 shown in FIG.
  • the semiconductor pressure sensor 630 includes thin film piezoelectric elements 632, 634, 636, and 638.
  • the thin film piezoelectric elements 632, 634, 636, and 638 are provided on the diagonal line of the thin region 402 and are coupled to each other in the vicinity of the center 402C of the thin region 402.
  • the semiconductor pressure sensor 630 is different from the semiconductor pressure sensor 600 shown in FIG.
  • the lower electrode layer 636A is a lower electrode layer common to the thin film piezoelectric elements 632, 634, 636, and 638.
  • Lower electrode layer 636 A is coupled to bonding pad 640.
  • the upper electrode layer common to the thin film piezoelectric elements 632, 634, 636 and 638 is connected to the bonding pad 642. According to this configuration, the wiring of the upper electrodes of the thin film piezoelectric elements 632 to 638 and the wiring of the lower electrode of the thin film piezoelectric elements 632 to 638 need only be provided one by one, so that the configuration of the semiconductor pressure sensor 630 can be simplified. Can be
  • FIG. 17 is a top view of a semiconductor pressure sensor 700 according to the fourth embodiment of the present invention.
  • the semiconductor pressure sensor 700 includes a thin film piezoelectric element 701.
  • the thin film piezoelectric element 701 includes thin film piezoelectric elements 702, 704, 706, and 708 and extending portions 710A, 710B, 710C, and 710D.
  • the thin film piezoelectric elements 702, 704, 706, and 708 are provided on the diagonal line of the thin region 402. Extension portions 710A, 710B, 710C, and 710D are arranged on thick region 404.
  • Thin film piezoelectric elements 702, 704, 706, and 708 are coupled to each other by extensions 710A, 710B, 710C, and 710D.
  • the semiconductor pressure sensor 700 is different from the semiconductor pressure sensor 600 shown in FIG.
  • the thin film piezoelectric element 701 is further extended to the vicinity of the bonding pad 716F or 716A by the extending portion 710E or 710F.
  • the bonding pads 716A, 716B, 716C, 716D, 716E, and 716F and the thin film piezoelectric element 701 are formed in separate layers that are electrically insulated. A method for manufacturing the semiconductor pressure sensor 700 will be described later.
  • the extending portions 710E and 710F may be extended to just below the bonding pads.
  • Thin film piezoelectric elements 702, 704, 706, and 708 are coupled to each other by extending portions 710A, 710B, 710C, and 710D on the thick region. Therefore, it is only necessary to provide one wiring each for the upper electrode layer of the thin film piezoelectric element 701 and the lower electrode layer 701A of the thin film piezoelectric element 701.
  • the upper electrode layer of the thin film piezoelectric element 701 is connected to the bonding pad 716A.
  • the lower electrode layer 701A of the thin film piezoelectric element 701 is connected to the bonding pad 716F.
  • the thin film piezoelectric element 701 is fixed on the thick region 404 by extending portions 710A, 710B, 710C, and 710D. Therefore, the amount of strain exerted on the thin region 402 by the thin film piezoelectric element 701 can be stabilized. Thereby, the accuracy of self-diagnosis can be improved.
  • the thin film piezoelectric element 701 extends to the vicinity of the bonding pad 716A or 716F by the extending portion 710E or 710F. For this reason, the metal wiring of the thin film piezoelectric element 701 can be shortened. As a result, a space that can be used for arranging the metal wiring 712 of the bridge circuit that connects the diffusion resistors 406, 408, 410, and 412 is widened, so that adjustment of the wiring resistance by the metal wiring 712 is facilitated.
  • the extending portion 710F or 710E may be extended to a position immediately below the bonding pad 716F or 716A.
  • bonding pads 716A, 716B, 716C, 716D, 716E, and 716F are provided side by side on one side of the semiconductor substrate 401. With such a configuration, convenience when wire bonding to the bonding pad is improved.
  • the metal wiring 712 is indicated by a solid line and the diffusion wiring 714 is indicated by a broken line.
  • Diffusion resistor 406 is connected to bonding pads 716B and 716E by metal interconnection 712 and diffusion interconnection 714.
  • Diffusion resistor 408 is connected to bonding pads 716D and 716E by metal wiring 712 and diffusion wiring 714.
  • Diffusion resistor 410 is connected to bonding pads 716C and 716D by metal interconnection 712 and diffusion interconnection 714.
  • Diffusion resistor 412 is connected to bonding pads 716B and 716C by metal wiring 712 and diffusion wiring 714.
  • FIG. 18 is a diagram showing an example of metal wiring and diffusion wiring in which the offset voltage can be set to zero.
  • semiconductor pressure sensor 720 the lengths of metal wiring 722 and diffusion wiring 724 that connect each of diffusion resistors 406, 408, 410, and 412 to the bonding pads are equal to each other. As a result, the resistance values of the wiring resistors can be made equal to each other.
  • the semiconductor pressure sensor 720 is different from the semiconductor pressure sensor 700 shown in FIG.
  • FIG. 19 is a view showing another modification of the semiconductor pressure sensor 700 shown in FIG.
  • thin film piezoelectric elements 702, 704, 706, and 708 are provided on the diagonal line of thin region 402 and are coupled to each other in the vicinity of center 402 ⁇ / b> C of thin region 402.
  • the semiconductor pressure sensor 730 is different from the semiconductor pressure sensor 700 shown in FIG. With such a configuration, the amount of strain applied to the thin region 402 by the thin film piezoelectric element 701 can be increased. As a result, self-diagnosis is possible even when the voltage applied to the thin film piezoelectric element 701 is low.
  • FIG. 20 is a view showing still another modification of the semiconductor pressure sensor 700 shown in FIG.
  • the semiconductor pressure sensor 780 has a thin film piezoelectric element 782.
  • the thin film piezoelectric element 782 has a slit portion 784.
  • the semiconductor pressure sensor 780 is different from the semiconductor pressure sensor 700 shown in FIG.
  • the contact area between the thin film piezoelectric element 782 and the semiconductor substrate 401 is reduced. Thereby, an unexpected distortion of the semiconductor substrate 401 caused by a difference in thermal expansion coefficient between the thin film piezoelectric element 782 and the semiconductor substrate 401 can be reduced.
  • a diffused resistor is used as the strain gauge resistance of the semiconductor pressure sensor, but the strain gauge resistor need not be a diffused resistor.
  • a ceramic composite material or a carbon nanotube composite material formed on a semiconductor substrate may be used.
  • each embodiment of the present invention an example is shown in which four diffusion resistors are used as strain gauge resistors of a semiconductor pressure sensor, but the number of diffusion resistors may not be four.
  • the number of diffusion resistors may be one as long as the strain amount in the thin region can be measured with the sensitivity required for the semiconductor pressure sensor.
  • circuit elements such as transistors and diodes can be formed on one main surface of the semiconductor substrate of the semiconductor pressure sensor.
  • LOCOS Local Oxidation of Silicon
  • FIG. 21 is a diagram showing a first step of the manufacturing method according to the present invention.
  • SOI substrate 802 has one main surface Si (Silicon) layer 804, buried oxide film layer 806, and another main surface Si layer 808.
  • pad oxide film 810 and SiN film 812 are formed.
  • the SOI substrate 802 is formed by, for example, two semiconductor substrates. Each bonded interface of the two semiconductor substrates is mirror-finished by grinding and polishing, and then the two semiconductor substrates are joined by thermal oxidation. Thereby, an SOI substrate is formed.
  • the SiN film 812 is formed by, for example, a CVD method (chemical vapor deposition method).
  • the one principal surface Si layer 804 has the first conductivity type.
  • one main surface Si layer is explained as an n-type semiconductor, one main surface Si layer 804 may be a p-type semiconductor.
  • a resist 814 is applied to the active region 813 on the SiN film 812.
  • the active region 813 is a region where a diffused resistor is formed later. Thereafter, the SiN film 812 is etched, and the SiN film 812 in the region where the resist 814 is not applied is removed.
  • FIG. 22 is a diagram showing a second step of the manufacturing method according to the present invention.
  • resist 814 is removed.
  • a field oxide film 816 is formed by a wet oxidation method or a pyrogenic method. Further, the SiN film 812 and the pad oxide film 810 in the active region 813 are removed.
  • impurities such as boron are implanted into the active region 813 to form a diffused resistor 818.
  • the field oxide film 816 is removed after the diffusion resistor 818 is formed.
  • FIG. 23 is a diagram showing a third step of the manufacturing method according to the present invention.
  • diffusion wirings 820A and 820B into which impurities having the same conductivity type as diffusion resistor 818 are implanted are formed adjacent to diffusion resistor 818.
  • a high concentration impurity is implanted into a region adjacent to the diffusion resistor 818 so that the impurity concentration of the diffusion wirings 820A and 820B is higher than the impurity concentration of the diffusion resistor 818.
  • a first interlayer insulating film 822 is formed.
  • the first interlayer insulating film 822 for example, an NSG (Nondoped Silicate Glass) film that is a silicon oxide not containing impurities such as phosphorus and boron is used.
  • the NSG film can be replaced with a PSG (Phosphorous Silicate Glass) film or a BPSG (Boron Phosphorous Silicate Glass) film.
  • FIG. 24 is a diagram showing a fourth step of the manufacturing method according to the present invention. Referring to FIG. 24, lower electrode layer 824, piezoelectric layer 826, and upper electrode layer 828 are formed on first interlayer insulating film 822.
  • the lower electrode layer 824, the piezoelectric layer 826, and the upper electrode layer 828 are formed by sputtering, for example. Platinum or titanium is used as the material of the lower electrode layer 824.
  • the film thickness of the lower electrode layer 824 is set to, for example, 1750 mm in the case of platinum, and is set to, for example, 200 mm in the case of titanium.
  • the piezoelectric layer 826 As a material of the piezoelectric layer 826, for example, PZT (lead zirconate titanate) is used.
  • the film thickness of the piezoelectric layer 826 is set to, for example, 10,000 mm.
  • the material of the upper electrode layer 828 for example, iridium or iridium oxide is used.
  • the film thickness of the upper electrode layer 828 is set to, for example, 1000 mm in the case of iridium, and is set to, for example, 800 mm in the case of iridium oxide.
  • the film thicknesses of the lower electrode layer 824, the piezoelectric layer 826, and the upper electrode layer 828 are not limited to those described above.
  • the film thicknesses of the lower electrode layer 824 and the upper electrode layer 828 may be set within a range in which the contact hole does not penetrate each electrode layer when the contact hole described later is formed.
  • FIG. 25 is a diagram showing a fifth step of the manufacturing method according to the present invention.
  • a predetermined pattern of the thin film piezoelectric element is formed.
  • the pattern is formed so that the lower electrode layer 824, the piezoelectric layer 826, and the upper electrode layer 828 do not overlap with the diffused resistor 818.
  • FIG. 26 is a diagram showing a sixth step of the manufacturing method according to the present invention.
  • second interlayer insulating film 830 is formed after etching lower electrode layer 824, piezoelectric layer 826, and upper electrode layer 828.
  • second interlayer insulating film 830 is formed in the second interlayer insulating film 830.
  • a contact hole 832A reaching the diffusion wiring 820A, a contact hole reaching the diffusion wiring 820B, a contact hole 832B reaching the upper electrode layer 828, and a contact hole 832C reaching the lower electrode layer 824 are formed. Is done.
  • the contact hole reaching the diffusion wiring 820B is not shown in FIG.
  • the contact hole 832C reaching the lower electrode layer 824 and the contact hole 832B reaching the upper electrode layer 828 are simultaneously formed by etching the second interlayer insulating film 830. At this time, if the thickness of the piezoelectric layer 826 is too large, the depth of the contact hole 832B and the depth of the contact hole 832C are greatly different. For this reason, the upper electrode layer 828 is exposed to the etching solution for a long time.
  • the piezoelectric layer 826 in order to fulfill the self-diagnosis function, the piezoelectric layer 826 must have a predetermined thickness. Therefore, it is desirable that the thickness of the piezoelectric layer 826 be 0.01 ⁇ m or more and 5 ⁇ m or less.
  • FIG. 27 is a diagram showing a seventh step of the manufacturing method according to the present invention.
  • metal wirings 834A, 834B, 834C are formed on contact holes 832A, 832B, 832C and second interlayer insulating film 830.
  • the main component of the metal wirings 834A, 834B, 834C is, for example, aluminum or copper.
  • a passivation film 836 for protecting one main surface of the semiconductor pressure sensor 800 is formed after the metal wirings 834A, 834B, and 834C are formed.
  • a SiN film is used as the passivation film 836.
  • An opening for forming the bonding pad 838 is formed in part of the passivation film 836.
  • the glass substrate 842 is bonded to the bottom of the other main surface Si layer 808.
  • the glass substrate 842 and the other main surface Si layer 808 are joined in a vacuum. Thereby, the inside of the reference pressure chamber 840 formed between the one principal surface Si layer 804 and the glass substrate 842 is evacuated.
  • a semiconductor pressure sensor can be manufactured using a conventional semiconductor device manufacturing process.
  • the lower electrode layer 824, the piezoelectric layer 826, and the upper electrode layer 828 are formed in another layer that is electrically insulated from the metal wirings 834A, 834B, and 834C. For this reason, the freedom degree of arrangement
  • the thickness of the piezoelectric layer 826 is 0.01 ⁇ m or more and 5 ⁇ m or less, contact holes reaching the lower electrode layer 824 and the upper electrode layer 828 can be formed simultaneously. Thereby, the manufacturing time of the semiconductor pressure sensor can be shortened.
  • FIG. 28 is a plan view schematically showing a configuration of a sensor according to the fifth embodiment of the present invention. Elements that are the same as or correspond to those shown in FIGS. 1 to 4 are denoted by the same reference numerals. Further, the elements shown in FIGS. 1 to 4 are referred to in the following description.
  • the sensor 1 includes a silicon substrate 6 including a diaphragm 7 and a support portion 8 for supporting an outer edge portion of the diaphragm 7.
  • the sensor 1 further includes resistance bridges B1 to B4.
  • Each of resistance bridges B1 to B4 includes a plurality of resistance elements arranged on main surface 6A of silicon substrate 6.
  • Each of the resistance bridges B1 to B4 includes four resistance elements.
  • the resistance bridge B1 includes resistance elements 11A, 12A, 13A, and 14A.
  • the resistance bridge B2 includes resistance elements 11B, 12B, 13B, and 14B.
  • the resistance bridge B3 includes resistance elements 11C, 12C, 13C, and 14C.
  • the resistance bridge B4 includes resistance elements 11D, 12D, 13D, and 14D.
  • the four resistance elements constitute a Wheatstone bridge.
  • Each resistance element is a resistance element that changes its resistance value according to pressure, for example, a piezo element.
  • a diffused resistor can be used for the resistance element.
  • the four resistance elements included in one resistance bridge are collectively arranged in a partial region of the main surface 6A including a part of the boundary 7A between the diaphragm 7 and the support portion 8.
  • the resistance elements 11A to 14A are arranged in a region 6A1 including a part of the boundary 7A.
  • Resistance elements 11B to 14B are arranged in region 6A2 including a part of boundary 7A.
  • Resistance elements 11C to 14C are arranged in region 6A3 including a part of boundary 7A.
  • Resistance elements 11D to 14D are arranged in region 6A4 including a part of boundary 7A.
  • the resistance bridges B1 and B3 are arranged on the main surface 6A of the silicon substrate 6 so as to face each other.
  • resistance bridges B2 and B4 are arranged on main surface 6A of silicon substrate 6 so as to face each other.
  • 5 are straight lines that pass through the center point O of the diaphragm 7 and are orthogonal to each other.
  • the resistance bridges B1 and B3 are arranged on the straight line X.
  • the resistance bridges B2 and B4 are arranged on the straight line Y. Therefore, the resistance bridges B1 to B4 are isotropically arranged on the main surface 6A of the silicon substrate 6 with the point O as the center.
  • the number of resistance bridges is not particularly limited as long as it is plural. However, as the number of resistance bridges increases, the power consumption of the entire plurality of resistance bridges increases when a certain voltage is applied to each bridge. On the other hand, when the current flowing through the plurality of resistance bridges is controlled to be constant, the current flowing through one bridge decreases as the number of resistance bridges increases. For this reason, the change of the output voltage of the resistance bridge with respect to the pressure applied to the diaphragm 7 becomes small.
  • the number of resistance bridges is determined from the above viewpoint, for example.
  • four resistance bridges are arranged on the main surface of the semiconductor substrate.
  • the plurality of resistance bridges are preferably isotropically arranged on the main surface 6 ⁇ / b> A of the silicon substrate 6.
  • FIG. 29 is a diagram showing the relationship of stress to the position on main surface 6A of silicon substrate 6 shown in FIG.
  • the horizontal axis of the graph indicates the position on the straight line X shown in FIG.
  • the position x 0 is the position of one end of the silicon substrate 6 (for example, the end of the silicon substrate 6 located on the left side of the paper).
  • the position x 1 corresponds to the position of the first intersection (the intersection located on the left side of the page with respect to the straight line Y) between the straight line X and the boundary 7A.
  • the position x 2 corresponds to the position of the center point O of the diaphragm 7.
  • the position x 3 corresponds to the position of the second intersection (the intersection located on the right side of the page with respect to the straight line Y) between the straight line X and the boundary 7A.
  • the position x 4 indicates the position of the other end of the silicon substrate 6 (for example, the end of the silicon substrate 6 located on the right side of the paper).
  • the stress acting on the diaphragm 7 is greatest at the outer edge of the diaphragm 7.
  • the stress acting on the outer edge of the diaphragm 7 changes greatly.
  • Four resistance elements constituting the resistance bridge are arranged at the outer edge of the diaphragm 7. Therefore, the resistance value of each resistance element can be greatly changed by the pressure applied to the diaphragm 7.
  • FIG. 30 is a circuit diagram of the resistor bridges B1 to B4 shown in FIG. Referring to FIG. 30, in this embodiment, four resistance bridges B1-B4 electrically connected in parallel are provided on the main surface of the semiconductor substrate.
  • Each of the resistance bridges B1 to B4 is a Wheatstone bridge. Since the resistance bridges B1 to B4 have the same configuration, the configuration of the resistance bridge B1 will be described as a representative.
  • the resistance bridge B1 includes resistance elements 11A to 14A. Resistance elements 11A and 13A are connected in series between electrode 16A and electrode 16D. Similarly, the resistance elements 12A and 14A are connected in series between the electrode 16A and the electrode 16D. A voltage Vbias is applied to the electrode 16A. The electrode 16D is grounded. A connection point between the resistance elements 11A and 13A is connected to the electrode 16B. A connection point between the resistance elements 12A and 14A is connected to the electrode 16C.
  • the electrodes 16A to 16D are bonding pads formed on the main surface 6A of the silicon substrate 6 so as to be connected to the wiring 5, for example.
  • the resistance values of the resistance elements 11A to 14A are the same. With respect to the change in pressure applied to the diaphragm 7, the resistance values of the resistance elements 11A and 14A and the resistance values of the resistance elements 12A and 13A change in opposite directions. Similarly, for each of the resistance bridges B2 to B4, the resistance value of each of the four resistance elements included in each bridge changes according to the pressure applied to the diaphragm 7.
  • the voltage VA 0 of the electrode 16B and the voltage VB 0 of the electrode 16C are both 1 ⁇ 2 Vbias.
  • the voltage VA 0 decreases from 1/2 Vbias, while the voltage VB 0 increases from 1/2 Vbias.
  • FIG. 31 is a diagram showing in detail the resistance bridge B1 shown in FIG.
  • the configuration of each of the resistance bridges B2 to B4 is the same as the configuration of the resistance bridge B1 shown in FIG.
  • resistance bridge B1 includes resistance elements 11A to 14A arranged in region 6A1 including a part of boundary 7A between diaphragm 7 and support portion 8. Resistance elements 11A and 12A are arranged adjacent to each other. The resistance element 11A is electrically connected to the resistance element 12A by the wiring 15A.
  • Resistance elements 11A and 13A are arranged adjacent to each other.
  • the resistance element 11A is electrically connected to the resistance element 13A by the wiring 15B.
  • Resistance elements 12A and 14A are arranged adjacent to each other.
  • the resistance element 12A is electrically connected to the resistance element 14A by the wiring 15C.
  • One of the two resistance elements arranged adjacent to each other is formed in the region 6A1 of the main surface 6A of the silicon substrate 6 so as to extend along a direction parallel to the boundary 7A between the diaphragm 7 and the support portion 8. It is formed.
  • the other of the two resistance elements is formed in region 6A1 so as to extend along the direction intersecting with boundary 7A.
  • the resistance element 13A is formed in the region 6A1 of the main surface 6A of the silicon substrate 6 so as to extend along a direction parallel to the boundary 7A.
  • the resistive element 11A is formed in the region 6A1 so as to extend along the direction intersecting the boundary 7A.
  • a similar relationship is established between the resistance elements 11A and 12A and also between the resistance elements 12A and 14A.
  • the boundary 7A is indicated by a straight line.
  • the resistance elements 12A and 13A may be formed so as to extend along the tangent line of the circle.
  • the two resistance elements arranged adjacent to each other are formed to extend along different directions with respect to the boundary. Thereby, according to the pressure applied to the diaphragm 7, each resistance value can be changed in a mutually reverse direction. Therefore, a plurality of resistance elements can function as a resistance bridge.
  • FIG. 32 is a plan view showing a configuration of a comparative example of the sensor according to the fifth embodiment.
  • sensor 1A includes one resistance bridge including four resistance elements 11-14. Resistance elements 11 to 14 are distributed on main surface 6A of silicon substrate 6. According to the configuration shown in FIG. 32, there is a possibility that the characteristic variation of the resistance bridge due to the processing accuracy of the sensor 1A becomes large.
  • FIG. 33 is a first diagram for explaining a problem that may occur when the sensor 1A shown in FIG. 32 is manufactured.
  • resistance elements 11 to 14 are formed on main surface 6A of silicon substrate 6 on which diaphragm 7 is formed. In FIG. 33, only the resistance elements 11 and 13 among the four resistance elements are shown.
  • An opening 6C is formed on the main surface 6B (back surface) located on the opposite side to the main surface 6A.
  • etching any of anisotropic etching and isotropic etching
  • the resistance elements 11 and 13 are preferably arranged so as to overlap with the boundary 7A between the diaphragm 7 and the support portion 8.
  • a resistance element is arranged on the main surface 6A of the silicon substrate 6, and then the diaphragm 7 and the support portion 8 are formed. For this reason, the position of the opening 6C of the main surface 6B may be shifted from the position of the main surface 6A of the resistance elements 11-14.
  • the degree of positional deviation depends on the processing accuracy of the sensor. If the degree of deviation is large, the sensitivity of the resistance bridge, i.e. the ratio of the change in voltage to the pressure applied to the diaphragm, may vary. This reduces the detection accuracy of the sensor.
  • FIG. 34 is a second diagram for explaining a problem that may occur when the sensor 1A shown in FIG. 32 is manufactured.
  • silicon is etched in a direction from main surface 6B of silicon substrate 6 toward main surface 6A.
  • the inside of the silicon substrate 6 is processed into a taper shape. For this reason, there is a possibility that the positions of the resistance elements 11 to 14 are shifted from the position of the boundary between the diaphragm 7 and the support portion 8.
  • a plurality of resistance elements constituting a resistance bridge are collectively arranged in one region.
  • the resistance elements 11A to 14A are the same type of resistors and are formed by the same process.
  • By arranging the resistance elements 11A to 14A collectively in one region it is possible to suppress an increase in variations in characteristics (for example, resistance values, temperature characteristics, etc.) among the resistance elements 11A to 14A.
  • an equilibrium state of the resistance bridge B1 can be obtained in a state where no pressure is applied to the diaphragm.
  • the first resistance element and the second resistance element electrically connected to the first resistance element are arranged adjacent to each other.
  • the direction of change in the resistance value of the two resistance elements is mutually changed. It can be the same.
  • the characteristic variation of the resistance bridge can be reduced.
  • the wiring for connecting the two resistance elements can be shortened.
  • the senor includes a plurality of resistance bridges electrically connected in parallel.
  • the boundary 7A is displaced in at least one of the X and Y directions with respect to the resistance bridge B1
  • the characteristics of the resistance bridges B1 to B4 change.
  • the plurality of resistance bridges are electrically connected in parallel, the variation in the characteristics of one resistance bridge is offset by the variation in the characteristics of the other resistance bridge. As a result, it is possible to reduce variation in characteristics of the resistance bridge among the plurality of sensors.
  • the shape of the diaphragm 7, that is, the thin region is not limited to a circle. Similar to the first to fourth embodiments, the shape of the diaphragm (thin region) may be substantially square.
  • This embodiment relates to a circuit for processing a signal output from a semiconductor pressure sensor.
  • This signal processing circuit can be combined with any of the semiconductor pressure sensors according to the first to fifth embodiments.
  • FIG. 35 is a circuit diagram of a signal processing circuit according to the sixth embodiment.
  • resistance elements 11 to 14 constitute a Wheatstone bridge. More specifically, the resistance elements 11 and 12 are connected in series between the node 20 and the ground node. Similarly, resistance elements 13 and 14 are connected in series between node 20 and the ground node. Voltage Vbias is applied to node 20. A connection point between the resistance elements 13 and 14 is connected to the node 25. A connection point between the resistance elements 11 and 12 is connected to the node 26.
  • Resistance elements 11 to 14 correspond to diffusion resistors 406, 408, 410, and 412 shown in FIG. Alternatively, the resistance elements 11 to 14 may be replaced with resistance bridges B1 to B4 shown in FIG.
  • the signal processing circuit 2 includes an amplifying unit 21 and arithmetic units 22 and 23.
  • the amplifying unit 21 includes differential amplifiers 211 and 212 and resistors 213, 214, and 215.
  • Differential amplifier 211 has a non-inverting input terminal (indicated by symbol “+” connected to node 25, the same applies hereinafter) and an inverting input terminal connected to both one end of resistor 213 and one end of resistor 214. (Indicated by the symbol “ ⁇ ”, the same applies to the following) and an output terminal connected to the node 27. The other end of the resistor 214 is connected to the node 27 together with the output terminal of the differential amplifier 211.
  • Differential amplifier 212 has a non-inverting input terminal connected to node 26, an inverting input terminal connected to both the other end of resistor 213 and one end of resistor 215, and an output terminal connected to node 28. Prepare. The other end of the resistor 215 is connected to the node 28 together with the output terminal of the differential amplifier 212.
  • the calculation unit 22 includes a differential amplifier 221, resistors 222 to 225, an offset power supply 226, and a drive power supply 227.
  • the differential amplifier 221 operates when the power supply voltage VDD is supplied from the drive power supply 227.
  • the resistor 222 is connected between the node 28 and the inverting input terminal of the differential amplifier 221.
  • the resistor 223 is connected between the inverting input terminal of the differential amplifier 221 and the output terminal of the differential amplifier 221.
  • the resistor 224 is connected between the node 27 and the non-inverting input terminal of the differential amplifier 221.
  • the resistor 225 is connected between the non-inverting input terminal of the differential amplifier 221 and the offset power source 226.
  • the offset power supply 226 generates the voltage VDD.
  • the offset power source 226 and the drive power source 227 are shown as separate power sources, but they may be shared by one power source.
  • the calculation unit 23 includes a differential amplifier 231, resistors 232 and 233, and a drive power source 234.
  • the differential amplifier 221 operates when the power supply voltage VDD is supplied from the drive power supply 234.
  • Differential amplifier 221 includes a non-inverting input terminal connected to node 29, an inverting input terminal connected to one end of resistor 232 and one end of resistor 233, and an output terminal connected to terminal 30.
  • the other end of the resistor 233 is connected to the terminal 30 together with the output terminal of the differential amplifier 231.
  • Each of the resistors 232 and 233 is a variable resistor. Therefore, the resistance values of the resistors 232 and 233 are variable.
  • Voltage VA 0 at node 25 and voltage VB 0 at node 26 change according to changes in resistance values of resistance elements 11-14. That is, the voltages VA 0 and VB 0 change depending on the pressure applied to the diaphragm 7. When no pressure is applied to the diaphragm 7, the voltages VA 0 and VB 0 are both 1/2 Vbias. When pressure is applied to the diaphragm 7, the voltages VA 0 and VB 0 change from 1/2 Vbias.
  • FIG. 36 is a diagram showing the relationship between the pressure applied to the diaphragm and the voltage output from the Wheatstone bridge. Referring to FIG. 36, when the pressure applied to diaphragm 7 is P 0 , voltage V (P) is 1 ⁇ 2 Vbias. The pressure P 0 is equal to the reference pressure.
  • the voltage VA 0 decreases from 1/2 Vbias.
  • the voltage VB 0 increases from 1/2 Vbias as the pressure applied to the diaphragm 7 increases.
  • ⁇ V (P) varies according to the pressure P.
  • the difference between the voltages VB 0 and VA 0 is 2 ⁇ V (P).
  • the voltage difference between the voltages VB 0 and VA 0 corresponds to the signal voltage output from the sensor 1.
  • the amplifying unit 21 amplifies a voltage corresponding to the difference between the voltages VB 0 and VA 0 .
  • the amplification degree (gain) of the amplification unit 21 is represented by ⁇ .
  • the amplification degree ⁇ is determined according to the resistance values of the resistors 213 to 215.
  • the resistance value of the resistor 213 is indicated as R 1
  • the resistance values of the resistors 214 and 215 are indicated as R 2 .
  • the difference between the voltages VB 0 and VA 0 is 2 (1 + ⁇ ) ⁇ V (P). That is, the amplification unit 21 amplifies and outputs the signal voltage output from the sensor 1.
  • the pressure P 1 is the upper limit value of the pressure range detected by the sensor 1.
  • the detection range of the sensor 1 is determined as follows. That is, the detection range includes a value of standard atmospheric pressure (about 101.3 [kPa]), and the pressure P 1 is located in the vicinity of the standard atmospheric pressure. The value of the pressure P 1 is 110 [kPa], for example.
  • the pressure sensor device 10 is used as an atmospheric pressure sensor, for example. Therefore, the range of pressure actually detected by the pressure sensor device 10 is a range near the upper limit value of the detection range of the sensor 1.
  • the computing unit 22 generates a voltage Vout1 that changes according to the pressure applied to the diaphragm 7 based on the voltages VA 1 and VB 1 . Specifically, the calculation unit 22 generates the voltage Vout1 by subtracting a voltage proportional to the difference between the voltages VA 1 and VB 1 from the offset voltage VDD.
  • FIG. 37 is a diagram showing the relationship between the pressure applied to the diaphragm and the voltage Vout1 output from the calculation unit 22 of the signal processing circuit 2.
  • the voltage Vout1 at the pressure P 0 is VDD
  • the voltage Vout1 at the pressure P 1 is 0.
  • the amount of decrease in the voltage Vout1 is proportional to the amount of increase in pressure.
  • the resistance values of the resistors 222 and 224 are both R 3
  • the resistance values of the resistors 223 and 225 are both R 4 .
  • Voltage Vout1 is expressed according to the following equation.
  • Vout1 VDD ⁇ R 4 / R 3 (VB 1 ⁇ VA 1 )
  • the voltage Vout1 is generated by subtracting the voltage proportional to the output voltage (VB 1 -VA 1 ) of the amplifying unit 21 from the offset voltage (VDD).
  • the proportionality coefficient (R 4 / R 3 ) is determined so that the voltage Vout1 at the pressure P 1 is zero.
  • Voltage Vout1 becomes a value near 0 in the region in the vicinity of the pressure P 1. Thereby, the sensitivity of the pressure sensor device in the region near the pressure P 1 can be increased.
  • “sensitivity” means the ratio of the amount of change in voltage to the range of pressure. When the pressure range is from P 0 to P 1 , the sensitivity of the pressure sensor device is expressed as VDD / (P 1 ⁇ P 0 ).
  • the calculation unit 22 is configured to generate a voltage having a predetermined correlation with the voltage output from the amplification unit 21.
  • the “predetermined correlation” is a relationship in which the voltage generated by the calculation unit 22 is uniquely determined based on the voltage output from the amplification unit 21. Therefore, the correlation is not limited to a proportional relationship.
  • operation unit 23 outputs voltage Vout2 from terminal 30 by amplifying voltage Vout1.
  • the resistance value of the resistor 232 is indicated as R 5
  • the resistance value of the resistor 233 is indicated as R 6 .
  • the voltage Vout2 is expressed according to the following equation.
  • Vout2 (R 5 + R 6 ) / R 5 ⁇ Vout1
  • the differential amplifier cannot output a voltage higher than the power supply voltage. Therefore, the maximum value of the voltage Vout2 is VDD.
  • FIG. 38 is a diagram illustrating the relationship between the pressure applied to the diaphragm and the voltage Vout2 output from the calculation unit 23 of the signal processing circuit 2.
  • voltage Vout2 is VDD below pressure P 1 ′.
  • the voltage Vout2 decreases from the voltage VDD.
  • Voltage Vout2 is 0 at a pressure P 1.
  • the calculation unit 23 makes the change rate of the voltage Vout2 different from the change rate of the voltage Vout1.
  • the “change rate” means the absolute value of the ratio of the voltage change amount to the pressure change amount. More specifically, the calculation unit 23 makes the change rate of the voltage Vout2 larger than the change rate of the voltage Vout1. As a result, the detection sensitivity of the pressure sensor device is increased in a region near the upper limit value of the detection range.
  • Both resistors 232 and 233 are variable resistors. By changing the resistance value of at least one of the resistors 232 and 233, the rate of change of the voltage Vout2 can be changed. That is, the sensitivity can be adjusted.
  • the signal processing circuit When the signal processing circuit is configured so that the output voltage increases as the pressure applied to the sensor (diaphragm) increases, it is easy to increase the sensitivity of the pressure sensor device in the region near the upper limit value of the detection range. is not. This point will be described with reference to a comparative example of the signal processing circuit according to the sixth embodiment.
  • FIG. 39 is a circuit diagram showing a configuration of a comparative example of the signal processing circuit according to the sixth embodiment.
  • signal processing circuit 251 is different from signal processing circuit 2 in that it includes a calculation unit 32 instead of calculation unit 22 and does not include calculation unit 23.
  • One end of resistor 222 is connected to node 27, and one end of resistor 224 is connected to node 28.
  • the calculation unit 32 is different from the calculation unit 22.
  • the calculation unit 32 differs from the calculation unit 22 in that it does not include the offset power supply 226 and that one end of the resistor 225 is grounded.
  • the calculation unit 32 outputs the voltage Vout.
  • FIG. 40 is a diagram illustrating the relationship between the pressure applied to the diaphragm and the voltage Vout output from the calculation unit 32 of the signal processing circuit 251.
  • voltage Vout is 0 at pressure P 0 and is proportional to the pressure.
  • the voltage Vout is VDD at the pressure P 1 .
  • the maximum sensitivity of the pressure sensor device is VDD / (P 1 -P 0 ). The sensitivity of the pressure sensor device in the range from the pressure P 1 ′ to the pressure P 1 cannot be higher than the above sensitivity.
  • FIG. 41 is a cross-sectional view schematically showing the state of the sensor 1 included in the pressure sensor device 10.
  • the pressure inside the sensor 1 reference pressure
  • P 0 the pressure inside the sensor 1
  • the inside of the sensor 1 is almost vacuum. Therefore, the value of the pressure P 0 is almost zero.
  • the diaphragm 7 Since the pressure (atmospheric pressure) P is higher than P 0 , the diaphragm 7 is deformed by the pressure from the outside of the sensor 1. On the other hand, when the environment around the sensor 1 is also a vacuum, that is, when the pressure P applied to the sensor 1 is P 0 , the diaphragm 7 is not distorted. Accordingly, the diaphragm 7 moves according to the pressure P as indicated by solid arrows and broken arrows.
  • the pressure sensor device is used as an atmospheric pressure sensor, a situation in which the pressure P applied to the sensor 1 (diaphragm 7) changes in the vicinity of P 0 does not occur.
  • the output voltage of the pressure sensor device becomes a voltage close to the upper limit (VDD). For this reason, according to the structure shown in FIG. 39, it becomes difficult to raise the sensitivity of a pressure sensor apparatus in said range.
  • FIG. 42 is a cross-sectional view schematically illustrating a sensor study example.
  • the pressure inside sensor 1 is equal to the upper limit value (P 1 ) of the detection range of sensor 1.
  • the atmospheric pressure (pressure P) around the sensor 1 is smaller than the pressure P 1 inside the sensor 1. Therefore, the diaphragm 7 is deformed so as to protrude toward the outside of the semiconductor pressure sensor 1.
  • the semiconductor pressure sensor 1 it is not easy to manufacture the semiconductor pressure sensor 1 so that the pressure inside the semiconductor pressure sensor 1 becomes exactly P 1 . Therefore, generally, as shown in FIG. 41, the inside of the semiconductor pressure sensor 1 is a vacuum. According to the present embodiment, when such a general pressure sensor is used as an atmospheric pressure sensor, the sensitivity in a desired region including the standard atmospheric pressure can be increased.
  • FIG. 43 is a diagram showing a first modification of the signal processing circuit according to the sixth embodiment.
  • signal processing circuit 2A is different from signal processing circuit 2 in that arithmetic unit 22A is provided instead of arithmetic unit 22.
  • the calculation unit 22A is different from the calculation unit 22 in that an offset power source 226A is included instead of the offset power source 226.
  • the configuration of the other part of the signal processing circuit 2A is the same as the configuration of the corresponding part of the signal processing circuit 2.
  • the offset power supply 226A generates an offset voltage V1.
  • the voltage V1 is lower than the power supply voltage VDD of the differential amplifier 221.
  • FIG. 44 is a diagram for explaining the voltage Vout1 output from the arithmetic unit 22A shown in FIG.
  • the voltage Vout1 is V1 at a pressure P 0, the 0 at a pressure P 1.
  • the voltage Vout1 decreases in proportion to the pressure.
  • the proportional coefficient is determined by the ratio between the resistance value R 3 of the resistor 222 and the resistance value R 4 of the resistors 223 and 225.
  • R 4 / R 3 V1 / (P 1 ⁇ P 0 ).
  • the voltage Vout1 is a voltage near 0 in a region close to the upper limit (pressure P 1 ) of the detection range of the semiconductor pressure sensor 1. Therefore, the sensitivity of the pressure sensor device in the region close to the pressure P 1 can be increased.
  • FIG. 45 is a diagram showing a second modification of the signal processing circuit according to the sixth embodiment.
  • signal processing circuit 2B is different from signal processing circuit 2 in that it further includes a terminal 35. Terminal 35 is connected to node 29.
  • the signal processing circuit 2B can output both voltages Vout1 and Vout2 to the outside. For example, pressure over a wide range can be detected based on the voltage Vout1. Further, based on the voltage Vout2, the detection sensitivity can be increased in a desired region including the standard atmospheric pressure (region close to the upper limit value of the detection range).
  • FIG. 46 is a diagram showing a third modification of the signal processing circuit according to the sixth embodiment.
  • signal processing circuit 2C is different from signal processing circuit 2 in that it includes a selection unit 36 that selects one of voltages Vout1 and Vout2.
  • the selection unit 36 selects one of the voltages Vout1 and Vout2 according to the signal SEL and outputs the selected voltage to the terminal 30.
  • the signal SEL is applied to the selection unit 36 from the outside of the signal processing circuit 2C, for example.
  • the signal processing circuit may be configured such that one of the voltages Vout1 and Vout2 is selectively output.
  • the semiconductor pressure sensor of the present invention has a self-diagnosis function using a thin film piezoelectric element.
  • a voltage to the thin film piezoelectric element By applying a voltage to the thin film piezoelectric element, a structural defect of the semiconductor pressure sensor can be detected.
  • the thin film piezoelectric element is formed away from the diffusion resistance that functions as a strain gauge resistance. As a result, deformation caused in the diffusion resistance due to the difference in thermal expansion coefficient between the thin film piezoelectric element and the semiconductor substrate can be reduced, and an unexpected change in resistance value of the diffusion resistance can be reduced.
  • the thin film piezoelectric element extends to a predetermined position on the thick region. As a result, the strain applied to the thin region by the thin film piezoelectric element can be stabilized, and the self-diagnosis accuracy of the semiconductor pressure sensor is improved.
  • the thin film piezoelectric element is formed in a separate layer that is electrically insulated from the metal wiring for bridging the diffusion resistance. For this reason, the freedom degree of arrangement

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

 半導体圧力センサ(720)は、薄肉領域(402)に対応する半導体基板の部分に歪みを付与する薄膜圧電素子(701)を備える。薄膜圧電素子(701)は、歪みゲージとして機能する拡散抵抗(406、408、410、および412)から離間して形成され、薄膜圧電素子の上部電極層に接続されるボンディングパッド(716A)、および下部電極層に接続されるボンディングパッド(716F)近傍まで延設される。拡散抵抗(406、408、410、および412)は金属配線(722)および拡散配線(724)によりブリッジ回路を構成する。自己診断時、薄膜圧電素子(701)に所定電圧が印加される。電圧印加前後のブリッジ回路の出力差が所定の範囲外であれば、半導体圧力センサ(720)に破損が生じたと判断される。

Description

半導体圧力センサ、圧力センサ装置、電子機器、および半導体圧力センサの製造方法
 本発明は、圧力印加により変形可能なダイアフラムの歪みに基づいて、圧力を電気信号に変換する半導体圧力センサ、その半導体圧力センサを備えた圧力センサ装置、圧力センサ装置を含む電子機器、および、半導体圧力センサの製造方法に関する。
 従来、自動車の内燃機関、民生機器、測定機器、医療機器などといった多岐に渡る分野において、圧力を電気信号に変換する小型の装置として半導体圧力センサが用いられている。民生機器の分野では、半導体圧力センサは、たとえばハードディスクドライブ、給湯器、エアコン、洗濯機、食器洗い機および掃除機等に用いられる。測定機器の分野では、半導体圧力センサは、たとえば空圧計、水圧計、および油圧計等に用いられる。医療機器の分野では、半導体圧力センサは、たとえば血圧計等に用いられる。
 半導体圧力センサは、半導体集積回路の製造に用いられる微細加工技術を利用して作製される。半導体圧力センサは、一般的に、シリコン基板の一部を薄膜状に加工することによって形成されたダイアフラムを備える。
 ダイアフラムに印加される圧力により、ダイアフラムに歪みが生じる。ダイアフラムに生じた歪みを検出するために、圧力によってその抵抗値を変化させる抵抗素子(たとえばピエゾ素子)が、シリコン基板の表面に配置される。半導体圧力センサは、抵抗素子の抵抗値の変化により圧力を検出する。
 たとえば、特許文献1(特開2009-49026号公報)は、各々が抵抗素子として機能する4つのショットキーバリアダイオードを備えた半導体圧力センサを開示する。4つのショットキーバリアダイオードは、ホイートストンブリッジを構成する。ショットキーバリアダイオードの内部抵抗は、ショットキー接合部に生じた歪みにより変化する。
 図47は、従来の半導体圧力センサの一例を示した図である。図47を参照して、半導体圧力センサ100は、薄肉部102と厚肉部104とによるダイアフラム構造を有する。図47では、薄肉部102は破線で囲まれた領域として示される。厚肉部104は、薄肉部102周囲に位置する。薄肉部102の一主面には、歪みゲージ抵抗106、108、110、および112が形成される。
 図48は、図47に示した半導体圧力センサ100のXLVIII-XLVIII断面図である。図48を参照して、ガラス基板116が厚肉部104の底面に設けられる。
 上記した構成により、薄肉部102とガラス基板116との間には、その外周が厚肉部104によって囲まれた基準圧力室114が形成される。半導体圧力センサ100を絶対気圧の測定に用いる場合、通常、基準圧力室114は真空状態とされる。
 半導体圧力センサ100の周囲の気圧に応じて薄肉部102に歪みが生じる。その歪みに応じて、歪みゲージ抵抗106、108、110、および112の抵抗値が変化する。歪みゲージ抵抗106、108、110、および112は図示しない配線によってブリッジ回路を構成する。
 図49は、図47に示した歪みゲージ抵抗106、108、110、および112によって構成されたブリッジ回路150を示した図である。図49を参照して、入力端子122A、122Bの間には所定電圧が印加される。出力端子120A、120Bの間には、薄肉部102の歪みに応じた電圧が発生する。
 図47~図49に示した構成を有する半導体圧力センサの感度を向上させるためには、薄肉部を薄くしなければならない。しかし、半導体圧力センサの製造中または半導体圧力センサの使用中に、薄肉部に破損が生じることがあった。
 一般に、薄肉部の破損を目視で確認することは困難である。このため従来の信頼性試験では、たとえば半導体圧力センサが配された密閉チャンバ内の気圧を変化させながら、その圧力センサの出力を確認するといった方法が採用されていた。
 しかしながら、上述した方法では、信頼性試験のために大掛かりな装置および長い試験時間が必要であった。さらに、半導体圧力センサを電子機器内部に組み込んだ後には、そのセンサを試験することは困難であった。
 特許文献2(特開昭60-29627号公報(特公平4-26051号公報))は、ダイアフラムの破損を検出可能な半導体圧力センサを開示する。図50は、特許文献2の図1に示された半導体圧力センサを説明するための図である。図50を参照して、半導体圧力センサ200は、歪みゲージ抵抗202,204と、配線206と、トランジスタ208とを備える。歪みゲージ抵抗202、204と、配線206と、トランジスタ208とは、ダイアフラム201の一主面に配置される。
 配線206は、ダイアフラム201のへき開方向A、Bの両方と交差する方向に形成される。ダイアフラム201の破損により配線206が断線した場合、ダイアフラム201の破損がトランジスタ208によって検知される。
 特許文献3(特開2001-349797号公報)は、ダイアフラムの異常を検出可能な圧力センサを開示する。図51は、特許文献3の図1に示された半導体圧力センサを説明するための図である。図51を参照して、半導体圧力センサ300は、薄肉部302Aを含むダイアフラム302と、検出部304A,304B、および304Cと、歪付与部材306と、支持部材308と、台座310とを備える。検出部304A,304B,および304Cは、薄肉部302Aの歪みに基づいて電気信号を出力する。歪付与部材306は、薄肉部304Aに強制的に歪みを生じさせる。支持部材308は、歪付与部材306を支持する。
 歪付与部材306はPZT(チタン酸ジルコン酸鉛)等の圧電素子により構成される。歪付与部材306に電圧が印加されることによって歪付与部材306が膨張する。歪付与部材306が膨張することによって、薄肉部302Aが下方に押し下げられる。薄肉部302Aが押し下げられることによって、薄肉部302Aに強制的に歪みを生じさせることができる。
特開2009-49026号公報 特開昭60-29627号公報(特公平4-26051号公報) 特開2001-349797号公報
 特許文献2は、ダイアフラムのへき開方向と交差する方向に沿って配線を配置することにより、ダイアフラムの破損を検知する技術思想を開示する。しかし特許文献2に開示された構成によれば、ダイアフラムの破損にともなって破損検知用の配線が断線しなければダイアフラムの破損を検知することができない。
 さらに、特許文献2に開示された構成によれば、ダイアフラムの破損を検出するためにトランジスタが用いられる。このため、ダイアフラムの破損を検出するためにトランジスタへの電流供給が必要となる。
 特許文献3は、半導体圧力センサの薄肉部の表面に圧電素子を配置するとともに、その圧電素子により薄肉部に強制的に歪みを生じさせる技術を開示する。
 この技術によれば、圧電素子への電圧印加後における半導体圧力センサの出力に基づいて半導体圧力センサの自己診断を行なうことができる。
 しかしながら、特許文献3の図1に示された半導体圧力センサは、支持部材により圧電素子を固定する構成を有する。このため、特許文献3に開示された半導体圧力センサを製造するために複雑な工程を要する。特許文献3は、周知のIC製造手法によって、ダイアフラムの一主面に圧電素子が形成されることを示唆している。しかし特許文献3は、半導体圧力センサの一主面に薄膜として圧電素子を形成し、これにより圧電素子の支持部材を不要とする構成について明示していない。
 薄肉部の表面に薄膜の圧電素子を配置する場合、薄膜圧電素子の配置を考慮する必要がある。単純に薄肉部の表面全体に薄膜圧電素子を配置すると、薄肉部と薄膜圧電素子との間の熱膨張率の違いにより、薄肉部に予期しない歪みが生じる。このため、半導体圧力センサの出力に狂いが生ずる。
 さらに、薄膜圧電素子による自己診断機能が正常に動作するためには、薄膜圧電素子の配置にも配慮しなければならない。
 ダイアフラムを作成する際の加工精度により、ダイアフラムの位置と抵抗素子の位置との間にずれが生じる可能性がある。ダイアフラムおよび抵抗素子の間の相対的な位置がずれることによって、同じ工程により製造された複数の圧力センサ装置の間で、抵抗ブリッジの特性のばらつきが生じる可能性がある。抵抗ブリッジの特性とは、たとえば、ダイアフラムに印加される圧力と抵抗ブリッジの出力電圧との関係である。
 一般的に、圧力センサ装置は、広い範囲にわたり圧力を検出できるように構成される。たとえば大気圧は、標準気圧(約101.3[kPa])の付近で変化する。半導体圧力センサを大気圧の検出のために使用する場合、そのセンサの感度が標準気圧の近傍で高いことが好ましい。
 しかしながら、従来の圧力センサ装置の構成によれば、圧力センサ装置の検出範囲が広い。したがって、圧力センサ装置の感度が所望の領域、特に検出範囲の上限値近くの領域においてのみ高くなるように圧力センサ装置を構成することは容易ではない。
 本発明の1つの目的は、薄肉部上に薄膜圧電素子を配置することによって自己診断を実行することが可能であるととともに、その薄膜圧電素子による出力への影響を低減可能な半導体圧力センサを提供することである。
 本発明の他の目的は、ダイアフラムの位置と抵抗ブリッジの位置との間のずれに起因する抵抗ブリッジの特性のばらつきが大きくなることを抑制することである。
 本発明の他の目的は、半導体圧力センサの検出範囲の上限値付近の領域においてその半導体圧力センサの検出感度を高めることを可能にすることである。
 本明細書において「自己診断機能」とは、半導体圧力センサが該半導体圧力センサ自身の構造的な欠陥を検知する機能を指す。
 本明細書において「診断基準電圧」とは、ダイアフラムの破損等の欠陥が存在しない半導体圧力センサが自己診断を実施した時の、半導体圧力センサの出力電圧の差分を指す。
 本明細書において「オフセット電圧」とは、ダイアフラムに歪みが生じていない状態における、半導体圧力センサの出力を指す。
 本明細書において「薄肉領域」とは、半導体基板に形成された薄肉部の表面、および薄肉部を含む。本明細書において「厚肉領域」とは、半導体基板に形成された厚肉部の表面、および厚肉部を含む。
 本発明のある局面では、半導体圧力センサは、薄肉領域および薄肉領域の周囲に設けられた厚肉領域を有する半導体基板と、半導体基板の一主面に形成され、薄肉領域に対応する半導体基板の部分の歪みに応じて抵抗値を変化させる歪みゲージ抵抗と、半導体基板上において、薄肉領域の少なくとも一部を含む領域に形成されて、下部電極層、圧電層、および上部電極層を有する少なくとも1つの薄膜圧電素子とを備える。少なくとも1つの薄膜圧電素子は、歪みゲージ抵抗から離間した領域に形成される。
 上記構成によれば、薄膜圧電素子への電圧印加前後の半導体圧力センサの出力に基づいて、半導体圧力センサの自己診断を行なうことができる。さらに、薄膜圧電素子と半導体基板の熱膨張率の違いによる歪みゲージ抵抗の変形を低減することによって、半導体圧力センサの出力、たとえばオフセット電圧等に狂いが生じることを防止することができる。
 好ましくは、少なくとも1つの薄膜圧電素子は、薄肉領域の中央部に向かう方向に長手軸を有する細長形状を有する。
 上記構成によれば、小面積の薄膜圧電素子によって薄肉領域全体を均一に歪ませることができるので、自己診断の精度を高めることができる。
 本発明の一実施形態において、少なくとも1つの薄膜圧電素子は、薄肉領域と厚肉領域との境界を横切って厚肉領域まで延びるように設けられてもよい。
 上記構成によれば、薄膜圧電素子の一部が物理的に強固な厚肉領域上に固定されるため、自己診断時に薄肉部に付与される歪み量が安定する。これにより、自己診断の精度を高めることができるとともに、薄膜圧電素子の金属配線を厚肉領域上のみで行なうことができる。
 本発明の一実施形態において、少なくとも1つの薄膜圧電素子はさらに、厚肉領域において、薄肉領域の外周に沿って延びるように設けられてもよい。
 上記構成によれば、薄膜圧電素子の一部が厚肉領域上に強固に固定される。これにより自己診断時に薄肉部に付与される歪み量が安定するので、自己診断の精度を高めることができる。
 本発明の一実施形態において、少なくとも1つの薄膜圧電素子は、半導体基板上に形成された複数の薄膜圧電素子を含んでもよい。
 上記構成によれば、半導体基板上の異なる位置に形成された複数の薄膜圧電素子に同じ電圧を印加することによって薄肉部全体を均一に歪ませることができる。
 本発明の一実施形態において、複数の薄膜圧電素子は、前記厚肉領域上で互いに結合されてもよい。
 上記構成によれば、薄膜圧電素子の上部電極層の配線および薄膜圧電素子の下部電極層の配線がひとつずつでよいため、半導体圧力センサの構成を簡便にすることができる。
 本発明の一実施形態において、複数の薄膜圧電素子は、薄肉領域の中央部まで延長されるとともに薄肉領域の中央部で互いに結合されてもよい。
 本発明の一実施形態において、半導体圧力センサは、さらに、厚肉領域上に設けられた複数のボンディングパッドを備え、少なくとも1つの薄膜圧電素子は、複数のボンディングパッドのうちの少なくとも1つのボンディングパッドの近傍まで延びるように設けられてもよい。
 上記構成によれば、薄膜圧電素子の金属配線を短くすることができるので、歪みゲージ抵抗の金属配線に利用できる領域を広くすることができる。これにより、複数の歪みゲージ抵抗を接続してブリッジ回路を構成する際に、配線長の調整を容易にすることができる。
 本発明の一実施形態において、複数のボンディングパッドは半導体基板の一辺に並んで設けられてもよい。
 上記構成によれば、ワイヤボンディング時の利便性を向上することができる。
 本発明の一実施形態において、上部電極層および下部電極層は、半導体基板の一辺に並んだ複数のボンディングパッドのうち、第1端に位置する第1のボンディングパッドと、第2端に位置する第2のボンディングパッドとにそれぞれ接続されてもよい。
 本発明の一実施形態において、半導体圧力センサは、4つの前記歪みゲージ抵抗を備え、薄肉領域は略四辺形を呈し、歪みゲージ抵抗は、前記薄肉領域の各辺の中点近傍に形成されてもよい。
 上記構成によれば、歪みゲージ抵抗の抵抗値を大きく変化させることができるので、半導体圧力センサの感度を向上させることができる。
 好ましくは、少なくとも1つの薄膜圧電素子は、薄肉領域の対角線上に形成されてもよい。
 本発明の一実施形態において、薄肉領域は、略円形を呈していてもよい。
 上記構成によれば、円周上の半導体基板の歪み方が同じであるために、歪みゲージ抵抗の配置における自由度が高まる。
 好ましくは、歪みゲージ抵抗は、半導体基板の一主面に不純物を拡散することによって形成された拡散抵抗である。
 好ましくは、圧電層の主成分はPZTである。
 好ましくは、歪みゲージ抵抗は、薄肉領域上の配線に接続され、配線は、拡散配線を含む。
 好ましくは、圧電層の厚さは0.01μm以上5μm以下である。
 上記構成によれば、薄膜圧電素子の上部電極層に至るコンタクトホールと薄膜圧電素子の下部電極層に至るコンタクトホールとを同時に形成することができるので、半導体圧力センサの製造時間を短縮することができる。
 好ましくは、半導体基板は、SOI(Silicon On Insulator)基板である。
 上記構成によれば、薄肉部の製造時に、薄肉部の厚さの精度を良くすることができる。
 本発明の他の局面において、半導体圧力センサの製造方法は、第1の導電型を有する一主面Si層と、他主面Si層とを有する半導体基板を準備する工程と、一主面Si層に、第1の導電型とは異なる第2の導電型を有する歪みゲージ抵抗を形成する工程と、一主面Si層における歪みゲージ抵抗と隣接する領域に、前記第2の導電型を有し前記歪みゲージ抵抗よりも不純物濃度の高い拡散配線を形成する工程と、一主面Si層上に第1の層間絶縁膜を形成する工程と、第1の層間絶縁膜上に下部電極層を形成する工程と、下部電極層上に圧電層を形成する工程と、圧電層上に上部電極層を形成する工程と、第1の層間絶縁膜、下部電極層、圧電層、および上部電極層上に第2の層間絶縁膜を形成する工程と、第2の層間絶縁膜に、拡散配線、下部電極層、および上部電極層に至るコンタクトホールを形成する工程と、第2の層間絶縁膜上およびコンタクトホールに金属配線を形成する工程と、他主面Si層に基準圧力室を形成する工程とを備える。
 前記製造方法において、下部電極層に至るコンタクトホールと上部電極層に至るコンタクトホールとは同時に形成される。
 本発明の他の局面において、半導体圧力センサは、半導体基板と、少なくとも1つの抵抗ブリッジとを備える。半導体基板は、ダイアフラムと、ダイアフラムの外縁部を支持するための支持部とを含む。少なくとも1つの抵抗ブリッジは、半導体基板の主表面に配置される。少なくとも1つの抵抗ブリッジは、ダイアフラムに印加された圧力に応じて各々の抵抗値を変化させる複数の抵抗素子を含む。複数の抵抗素子は、ダイアフラムと支持部との境界の一部を含む主表面内の一部の領域に、集合的に配置される。
 好ましくは、複数の抵抗素子は、第1の抵抗素子と、第2の抵抗素子とを含む。第2の抵抗素子は、第1の抵抗素子に電気的に接続されるとともに、第1の抵抗素子に隣接するように領域に配置される。
 好ましくは、第1の抵抗素子は、境界に平行する方向に沿って延在するように、領域に形成される。第2の抵抗素子は、境界と交差する方向に沿って延在するように、領域に形成される。
 好ましくは、少なくとも1つの抵抗ブリッジは、互いに電気的に並列に接続された複数の抵抗ブリッジである。
 本発明の他の局面において、圧力センサ装置は、半導体基板と、少なくとも1つの抵抗ブリッジとを備える。半導体基板は、ダイアフラムと、ダイアフラムの外縁部を支持するための支持部とを含む。少なくとも1つの抵抗ブリッジは、半導体基板の主表面に配置される。少なくとも1つの抵抗ブリッジは、ダイアフラムに印加された圧力に応じて各々の抵抗値を変化させる複数の抵抗素子を含む。複数の抵抗素子は、ダイアフラムと支持部との境界の一部を含む主表面内の一部の領域に、集合的に配置される。圧力センサ装置は、複数の抵抗素子の各々の抵抗値に基づいて圧力を示す信号を出力するための信号処理回路をさらに備える。
 本発明の他の局面において、電子機器は、半導体基板と、少なくとも1つの抵抗ブリッジとを備える。半導体基板は、ダイアフラムと、ダイアフラムの外縁部を支持するための支持部とを含む。少なくとも1つの抵抗ブリッジは、半導体基板の主表面に配置される。少なくとも1つの抵抗ブリッジは、ダイアフラムに印加された圧力に応じて各々の抵抗値を変化させる複数の抵抗素子を含む。複数の抵抗素子は、ダイアフラムと支持部との境界の一部を含む主表面内の一部の領域に、集合的に配置される。電子機器は、複数の抵抗素子の各々の抵抗値に基づいて圧力を示す信号を出力するための信号処理回路と、信号処理回路からの信号に基づいて所定の処理を実行するための本体部とをさらに備える。
 本発明の他の局面において、圧力センサ装置は、圧力に基づいて信号電圧を変化させるセンサと、センサから出力された信号を処理するための信号処理回路とを備える。信号処理回路は、信号電圧を増幅するための増幅回路と、増幅回路の出力電圧に基づいて、圧力に従って変化する検出電圧を生成するための演算回路とを含む。演算回路は、増幅回路の出力電圧に対して所定の相関関係を有する電圧を、所定のオフセット電圧から減算することによって、検出電圧を生成するように構成される。
 好ましくは、信号処理回路は、第1の電圧に基づいて、圧力に従って変化する第2の電圧を生成するための第2の演算回路をさらに備える。圧力に対する第1の電圧の第1の変化率は、圧力に対する第2の電圧の第2の変化率と異なる。第1の電圧は、圧力センサにより検出される圧力の範囲の上限値において、第2の電圧に一致する。
 好ましくは、第2の変化率の絶対値は、第1の変化率の絶対値よりも大きい。
 好ましくは、第2の演算回路は、第1の電圧を増幅することにより第2の電圧を生成する。
 好ましくは、信号処理回路は、第1の電圧を信号処理回路の外部に出力するための第1の端子と、第2の電圧を信号処理回路の外部に出力するための第2の端子とをさらに備える。
 好ましくは、圧力の範囲は、大気圧の標準値を含みかつ上限値が標準値の近傍の値となるように定められる。
 本発明の他の局面では、電子機器は、圧力に基づいて信号電圧を変化させるように構成されたセンサと、センサから出力された信号を処理するための信号処理回路とを備える。信号処理回路は、信号電圧を増幅するための増幅回路と、増幅回路の出力電圧に基づいて、圧力に従って変化する検出電圧を生成するための演算回路とを含む。演算回路は、増幅回路の出力電圧に対して所定の相関関係を有する電圧を、所定のオフセット電圧から減算することによって、検出電圧を生成するように構成される。電子機器は、検出電圧に基づいて、所定の処理を実行する本体部をさらに備える。
 本発明によれば、薄肉領域上に形成された薄膜圧電素子に電圧を印加することにより、半導体圧力センサの自己診断を行なうことができる。薄膜圧電素子が歪みゲージ抵抗から離間した領域に形成されているため、薄膜圧電素子と半導体基板との熱膨張率の違いによる歪みゲージ抵抗の変形を最小限に抑えることができる。したがって、半導体圧力センサの出力に狂いが生じることを防止することができる。
 本発明によれば、薄膜圧電素子が厚肉領域上の所定の位置まで延びるように設けられる。これにより薄膜圧電素子の一部を厚肉領域に固定することができるとともに、薄膜圧電素子の金属配線を短くすることができる。このため、自己診断の精度が高まるとともに、歪みゲージ抵抗の金属配線に使用できる領域を広くすることができる。
 本発明によれば、ダイアフラムの位置と抵抗ブリッジの位置との間のずれに起因する、抵抗ブリッジの特性のばらつきが大きくなることを抑制することができる。
 本発明によれば、検出範囲の上限値付近の領域における圧力センサ装置の検出感度を高めることが可能となる。
本発明の実施の形態に係る圧力センサ装置を備える電子機器の構成を概念的に示すブロック図である。 図1に示した圧力センサ装置10の上面図である。 図1に示した圧力センサ装置10の側面図である。 図2および図3に示した圧力センサ装置10の内部を示した断面図である。 本発明の第1の実施の形態にかかる半導体圧力センサ400の上面図である。 図5に示した半導体圧力センサ400のVI-VI断面図である。 図5に示した半導体圧力センサ400について、基準圧力室418の内部の圧力と外気圧との間の気圧差によって薄肉領域402に歪みが生じた状態を模式的に示した図である。 図5に示した半導体圧力センサ400のVIII-VIII断面を模式的に示した断面図である。 薄膜圧電素子414への印加電圧を変化させた時の、薄肉領域402中心の変位量の例をプロットした図である。 図1に示した半導体圧力センサ400における、拡散抵抗406、408、410、412、および薄膜圧電素子414の配線パターンの一例を示した図である。 本発明の第1の実施の形態にかかる半導体圧力センサ400の変形例を示した上面図である。 本発明の第2の実施の形態にかかる半導体圧力センサ500の上面図である。 図12に示した半導体圧力センサ500の変形例を示した図である。 図12に示した半導体圧力センサ500の別の変形例を示した図である。 本発明の第3の実施の形態にかかる半導体圧力センサ600の上面図である。 図15に示した半導体圧力センサ600の変形例を示した図である。 本発明の第4の実施の形態にかかる半導体圧力センサ700の上面図である。 オフセット電圧を0に設定可能な金属配線および拡散配線の例を示した図である。 図17に示した半導体圧力センサ700の他の変形例を示した図である。 図17に示した半導体圧力センサ700のさらに別の変形例を示した図である。 本発明に係る製造方法の第1工程を示す図である。 本発明に係る製造方法の第2工程を示す図である。 本発明に係る製造方法の第3工程を示す図である。 本発明に係る製造方法の第4工程を示す図である。 本発明に係る製造方法の第5工程を示す図である。 本発明に係る製造方法の第6工程を示す図である。 本発明に係る製造方法の第7工程を示す図である。 本発明の第5の実施の形態に係るセンサの構成を概略的に示す平面図である。 図28に示したシリコン基板6の主表面6A上の位置に対する応力の関係を示した図である。 図28に示した抵抗ブリッジB1~B4の回路図である。 図28に示した抵抗ブリッジB1を詳細に示した図である。 第5の実施の形態に係るセンサの比較例の構成を示した平面図である。 図32に示したセンサ1Aの製造の際に生じ得る課題を説明するための第1の図である。 図32に示したセンサ1Aの製造の際に生じ得る課題を説明するための第2の図である。 第6の実施の形態に係る信号処理回路の回路図である。 ダイアフラムに印加される圧力と、ホイートストンブリッジから出力される電圧との関係を示した図である。 ダイアフラムに印加される圧力と、信号処理回路2の演算部22から出力される電圧Vout1との関係を示した図である。 ダイアフラムに印加される圧力と、信号処理回路2の演算部23から出力される電圧Vout2との関係を示した図である。 第6の実施の形態に係る信号処理回路の比較例の構成を示す回路図である。 ダイアフラムに印加される圧力と、信号処理回路251の演算部32から出力される電圧Voutとの関係を示す図である。 圧力センサ装置10に含まれるセンサ1の状態を模式的に示した断面図である。 センサの検討例を模式的に示した断面図である。 第6の実施の形態に係る信号処理回路の第1の変形例を示した図である。 図43に示した演算部22Aから出力される電圧Vout1を説明するための図である。 第6の実施の形態に係る信号処理回路の第2の変形例を示した図である。 第6の実施の形態に係る信号処理回路の第3の変形例を示した図である。 従来の半導体圧力センサの一例を示した図である。 図47に示した半導体圧力センサ100のXLVIII-XLVIII断面図である。 図47に示した歪みゲージ抵抗106、108、110、および112によって構成されたブリッジ回路150を示した図である。 特許文献2の図1に示された半導体圧力センサを説明するための図である。 特許文献3の図1に示された半導体圧力センサを説明するための図である。
 以下において本発明の実施の形態について図面を参照して詳細に説明する。なお図中同一または相当部分には同一符号を付してその説明は繰返さない。
 図1は、本発明の実施の形態に係る圧力センサ装置を備える電子機器の構成を概念的に示すブロック図である。図1を参照して、本発明の実施の形態に係る電子機器1000は、圧力センサ装置10と、本体部50とを備える。圧力センサ装置10は、半導体圧力センサ(以下、単に「センサ」と称することもある)1と、信号処理回路2とを含む。1つの実施の形態において、圧力センサ装置10は大気圧を検出するために用いられる。ただし、圧力センサ装置10の用途は大気圧の検出に限定されるものではない。
 半導体圧力センサ1は、半導体圧力センサ1に印加された圧力(たとえば大気圧)を検出するとともに、その検出結果を示す信号電圧を信号処理回路2に送信する。半導体圧力センサ1は、半導体圧力センサ1に印加された圧力に従って信号電圧を変化させる。
 信号処理回路2は、半導体圧力センサ1からの信号電圧に基づいて、半導体圧力センサ1に印加された圧力を示す検出電圧(信号)を生成する。信号処理回路2は、その検出電圧を本体部50に出力する。本体部50は、信号処理回路2から出力された検出電圧(すなわち圧力センサ装置10から出力された検出電圧)に基づいて所定の処理を実行する。
 本発明の実施の形態に係る電子機器1000の種類は特に限定されるものではない。一例として、電子機器1000は、ハードディスクである。ハードディスクの場合、磁気ディスクとヘッドとの間の間隔がハードディスクの周辺の気圧によって変動しうる。たとえば本体部50は、磁気ディスクと、ヘッドと、磁気ディスクとヘッドとの間の間隔を調整するための機構とを含む。本体部50は、圧力センサ装置10からの検出電圧に基づいて、磁気ディスクとヘッドとの間の間隔が一定に保たれるよう、磁気ディスクとヘッドとの間の間隔を調整する。
 他の例では、電子機器1000はカーナビゲーションシステムである。車両の周囲の大気圧は、車両の高度によって変化する。本体部50は、圧力センサ装置10からの検出電圧に基づいて、車両の現在の高度を算出する。これにより、システムは、車両の高度の情報を取得することができる。
 図2は、図1に示した圧力センサ装置10の上面図である。図3は、図1に示した圧力センサ装置10の側面図である。図2および図3を参照して、半導体圧力センサ1および信号処理回路2は、パッケージ3の内部に収納される。半導体圧力センサ1および信号処理回路2は配線5によって電気的に接続される。パッケージ3には、パッケージ3の外部からパッケージ3の内部に大気を導入するための開口部4が形成される。
 図4は、図2および図3に示した圧力センサ装置10の内部を示した断面図である。図4を参照して、パッケージ3は、容器3Aと、容器3Aを塞ぐための蓋3Bとを備える。容器3Aは、たとえばセラミックにより形成される。蓋3Bは、たとえば金属により形成される。蓋3Bには開口部4(貫通孔)が形成される。
 半導体圧力センサ1は、ダイアフラム7とダイアフラム7の外縁を支持する支持部8とが一体的に形成されたシリコン基板6を含む。ダイアフラム7は、シリコン基板6の一部を薄膜状に加工することによって形成される。たとえば、所定のエッチングマスクを介してシリコン基板6の裏面にエッチングを施すことにより、ダイアフラム7および支持部8が形成される。
 シリコン基板6は、台座9に設置される。シリコン基板6の裏面に形成された開口部は台座9によって塞がれる。したがってシリコン基板6の内部には、圧力が一定に保たれた圧力室が形成される。本実施の形態では、圧力室の内部はほぼ真空(0[Pa])である。圧力室の内部の圧力を以下では「基準圧力」とも呼ぶ。
 信号処理回路2は、たとえばシリコンチップに形成された半導体集積回路である。信号処理回路の構成は後に詳細に説明する。ダイアフラム7が形成されたシリコン基板6の主表面には、抵抗素子(図示せず)が形成される。この抵抗素子と信号処理回路2とは配線5により接続される。配線5は、たとえば金製のワイヤである。
 信号処理回路2が形成された半導体チップの防湿性を高めるために、たとえばシリコンチップは樹脂により封止されてもよい。同様に、防湿の観点から、パッケージ3の内部の空間は、水分を通しにくい素材(たとえばジェル等)で満たされていてもよい。ただし、その素材は、圧力センサ装置10の周囲の気圧によってダイアフラム7に圧力を印加するように変形できることが求められる。
 次に、図1~図3に示された半導体圧力センサ1の実施形態が説明される。なお、各実施の形態に係る半導体圧力センサの構成において、薄肉領域は図4に示したダイアフラム7に対応し、厚肉領域は、図4に示した支持部8に対応する。
 [第1の実施の形態]
 図5は、本発明の第1の実施の形態にかかる半導体圧力センサ400の上面図である。図5を参照して、半導体圧力センサ400は、半導体基板401を有する。半導体基板401は、薄肉領域402および厚肉領域404を有する。薄肉領域402は、半導体基板401の主表面のほぼ中央に設けられる。厚肉領域404は、薄肉領域402の周囲に設けられる。半導体基板401は、薄肉部および厚肉部によるダイアフラム構造を有する。
 薄肉部の一主面には、拡散抵抗406、408、410、および412が形成される。拡散抵抗406、408、410、および412は、薄肉部の一主面に不純物の拡散によって形成される。拡散抵抗406、408、410、および412は、薄肉部の歪みを検知する歪みゲージ抵抗である。拡散抵抗406、408、410、および412は図示しない配線によりブリッジ回路を構成する。
 薄肉領域402上には、拡散抵抗406、408、410、および412上を避けて薄膜圧電素子414が配置される。薄膜圧電素子414は、半導体圧力センサ400の自己診断に使用される。自己診断の方法については後述する。
 半導体基板401と薄膜圧電素子414とは熱膨張率が異なる。このため、半導体圧力センサ400に温度変化が生じた場合には、半導体基板401における薄膜圧電素子414との接触面付近において予期しない歪みが生ずることがある。
 通常、半導体圧力センサ400に薄膜圧電素子414を形成する際には、500℃~800℃の高温下で圧電材料を焼成した後、半導体圧力センサ400を常温まで冷却する。このため、前記歪みは半導体圧力センサ400の製造過程において既に発生している。
 この歪みが拡散抵抗406、408、410、および412の抵抗値に影響を与えることを防止するために、薄膜圧電素子414は、拡散抵抗406、408、410、および412からできるだけ離して配置される。
 さらに、自己診断時に薄肉領域402全体を均一に歪ませるために、薄膜圧電素子414は薄肉領域402の中心402Cに向かう方向に長手軸を有する細長形状を有することが望ましい。自己診断時の薄膜圧電素子414の変形方向および薄肉領域402の歪み方については後述する。
 図6は、図5に示した半導体圧力センサ400のVI-VI断面図である。図6を参照して、厚肉部404Aの底部には台座としてのガラス基板416が固着される。薄肉部402Aとガラス基板416との間には、基準圧力室418が形成される。
 薄肉部402Aは、基準圧力室418の内部の圧力と外気圧との気圧差に応じて歪みを生ずる。そのため、半導体圧力センサ400を絶対圧の測定に用いる場合には、通常、基準圧力室418は真空状態とされる。本発明に係る半導体圧力センサは、以下の全ての実施形態について、絶対圧測定型圧力センサ、相対圧測定型圧力センサの双方に適用可能である。
 薄膜圧電素子414は、下部電極層414A、圧電層414B、および上部電極層414Cを有する。圧電層414Bは例えばPZT等の圧電材料によって構成される。下部電極層414Aと上部電極層414Cとの間に電圧が印加されることにより、圧電層414Bの全体が膨張または収縮する。本発明の実施の形態では、圧電層414Bを薄肉領域402と並行な方向に収縮させることにより、薄肉領域402に意図的に歪みを生じさせて自己診断が行なわれる。自己診断の方法については後述する。
 図7は、図5に示した半導体圧力センサ400について、基準圧力室418の内部の圧力と外気圧との間の気圧差によって薄肉領域402に歪みが生じた状態を模式的に示した図である。
 図7を参照して、外気圧と基準圧力室418の内部の圧力との間の圧力差によって、薄肉部402Aに歪みが生ずる。拡散抵抗408および412は、薄肉領域402の中心402Cに向かう方向に長手軸を有する。図7に示されるように、薄肉部402Aに歪みが生じたときに、拡散抵抗408,412の各々が長くなる。このため、拡散抵抗408,412の抵抗値が増大する。
 一方、図5に示した拡散抵抗406,410は、拡散抵抗408,412とは異なり、薄肉領域402の中心402Cに向かう方向と垂直な向きに長手軸を有する。薄肉部402Aに歪みが生じた場合には、拡散抵抗406,410の幅が広くなる。このため拡散抵抗406,410の抵抗値が減少する。
 拡散抵抗406、408、410、および412の抵抗値の変化によって半導体圧力センサ400は外気圧を測定することができる。例えば、拡散抵抗406、408、410、および412をブリッジ接続すればよい。拡散抵抗406、408、410、および412の接続の例は後述する。
 次に、薄膜圧電素子414による半導体圧力センサ400の自己診断機能について説明する。
 図8は、図5に示した半導体圧力センサ400のVIII-VIII断面を模式的に示した断面図である。図8は、薄膜圧電素子414に電圧が印加された状態における半導体圧力センサ400の断面を示す。
 図8を参照して、下部電極層414Aと上部電極層414Cの間に電圧が印加されると、圧電層414Bは矢印415に沿った方向に収縮する。圧電層414Bが収縮すると薄肉部402Aの一主面(圧電層414B側)も同時に収縮する。しかしながら薄肉部402Aの他主面(ガラス基板416側の面)は圧電層414Bの拘束を受けない。このため薄肉部402Aの一主面の面積と薄肉部402Aの他主面の面積とに違いが生じる。したがって図8に示されるように、全体としてガラス基板416側に凹むように薄肉部402Aに歪みが生じる。すなわち薄膜圧電素子414に電圧が印加されることにより、半導体圧力センサ400は、基準圧力室418の内部の圧力と外気圧との間に圧力差が発生した状態を擬似的に発生させることができる。
 薄肉部402A全体を均一に歪ませるために、薄膜圧電素子414は、薄肉領域402の中心402Cに向かう方向に長手軸を有する細長形状を有することが望ましい。また、図1に示した拡散抵抗406、408、410、および412から離間して薄膜圧電素子414を配置するならば、薄膜圧電素子414の形状は略長方形でもよいし、略楕円形でもよい。これは本明細書中の他の実施形態についても同様である。
 半導体圧力センサ400の自己診断時、薄膜圧電素子414への電圧印加前後でのセンサ出力の差が診断基準電圧から所定の範囲内であれば、半導体圧力センサ400に破損が生じていないと判断される。破損が生じていないことが予め判っている半導体圧力センサについて、薄膜圧電素子への電圧印加前後のセンサ出力に基づいて診断基準電圧を設定すればよい。なお、この実施形態では薄膜圧電素子414への電圧印加前後のセンサ出力差を診断基準電圧として採用しているが、電圧印加後のセンサ出力を診断基準電圧として採用することもできる。これは本明細書中の他の実施形態についても同様である。
 図9は、薄膜圧電素子414への印加電圧を変化させた時の、薄肉領域402中心の変位量の例をプロットした図である。図9に一例が示されるように、薄膜圧電素子414に電圧が印加された際の薄肉領域402の変位量は、通常、ヒステリシス特性を有する。このため、半導体圧力センサの自己診断を行なう前には、薄膜圧電素子414に予期しない電圧が印加されないようにする等の注意が必要である。薄肉領域402の変位量は、たとえば薄膜圧電素子414の材料、厚さ、形状等によって異なる。
 上記した方法以外に、薄膜圧電素子414に交流電圧を印加して薄肉領域402を振動させることによって、半導体圧力センサ400の自己診断を行なうこともできる。この場合、薄膜圧電素子414に交流電圧が印加された際における半導体圧力センサ400の出力波形に基づいてセンサの自己診断が行なわれる。
 図10は、図1に示した半導体圧力センサ400における、拡散抵抗406、408、410、412、および薄膜圧電素子414の配線パターンの一例を示した図である。図10を参照して、金属配線420は実線で示され、不純物の拡散により形成される拡散配線422は点線で示される。参照符号424、426、428、430、434、および438はボンディングパッドを指している。
 金属配線420と半導体基板401との熱膨張率の違いによる薄肉領域402の歪みを軽減するために、薄肉領域402上の配線には拡散配線を用いることが望ましい。拡散配線422は、半導体基板401の選択領域に高濃度の不純物を注入することにより形成される。
 ボンディングパッド426および430(またはボンディングパッド424および428)の間には、基準電圧として例えば5Vの電圧が印加される。ボンディングパッド424および428(またはボンディングパッド426および430)の間の電圧が半導体圧力センサの出力となる。ボンディングパッド424および428は図示しない増幅回路に接続されていてもよい。これは本明細書中の他の実施形態についても同様である。
 ボンディングパッド424とボンディングパッド428との間のオフセット電圧を無くすために、拡散抵抗406および408の抵抗比と、拡散抵抗412および410の抵抗比とは同一であることが望ましい。各抵抗値は半導体圧力センサ400の構成に応じて所定の値に設定される。また、拡散抵抗406、408、410、および412の抵抗値を全て同一の値としてもよい。これは本明細書中の他の実施形態についても同様である。
 拡散抵抗406および拡散抵抗410の抵抗値は、薄肉領域402の歪みが大きくなるほど減少する。一方、拡散抵抗408および拡散抵抗412の抵抗値は、薄肉領域402の歪みが大きくなるほど増大する。このため、ボンディングパッド424および428の間には、薄肉領域402の歪み量に応じた電圧が生じる。
 ボンディングパッド438は薄膜圧電素子414の下部電極層414Aに接続される。ボンディングパッド434は薄膜圧電素子414の上部電極層(図6において符号414Cにより示される)に接続される。ボンディングパッド438および434の間に電圧を印加することにより、薄肉領域402に意図的に歪みを生じさせることができる。
 半導体圧力センサ400の自己診断時、薄膜圧電素子414への電圧印加前後におけるボンディングパッド424および428間の出力電圧の差が、診断基準電圧から所定の範囲内であればダイアフラムの破損が無いと判断される一方、診断基準電圧から所定の範囲外であればダイアフラムの破損有りと判断される。
 図5および図10において、薄肉領域402の形状が略正方形として示される。しかし薄肉領域402の形状は特に限定されるものではない。図11に示されるように、薄肉領域402の主表面の形状は、例えば略円形でもよい。これは本明細書の他の実施形態についても同様である。
 薄肉領域402の形状が略正方形である場合には、薄肉部に歪みが生じた際に薄肉領域402の各辺の中点近傍が、薄肉領域402の頂点近傍と比較して大きく変形する。薄肉領域の各辺の中点近傍に拡散抵抗を配置することによって、薄肉領域の形状を略円形とした場合と比較して半導体圧力センサの感度を向上することができる。この場合、薄膜圧電素子は拡散抵抗と離間した位置、たとえば薄肉領域の対角線上に配置すればよい。
 一方、薄肉領域402の形状が略円形である場合には、薄肉領域402に歪みが生じた際における薄肉領域402の円周上での変形量がほぼ同一となる。このため拡散抵抗の配置における自由度が高まる。
 図10に示す半導体圧力センサ400の構成によれば、薄膜圧電素子414が薄肉領域402内にのみ形成される。このため、薄膜圧電素子414の下部電極および上部電極の配線(金属配線432および436)が拡散抵抗406、408、410、および412のブリッジ回路を横切ることになる。この場合、ブリッジ回路の金属配線420と薄膜圧電素子414の金属配線432および436とを互いに別の階層の金属配線で形成する等の工夫が必要になる。このために半導体圧力センサの配線に制約が生ずる可能性がある。このような課題を解決可能な半導体圧力センサが、第2の実施の形態で説明される。
 [第2の実施の形態]
 図12は、本発明の第2の実施の形態にかかる半導体圧力センサ500の上面図である。図12を参照して、半導体圧力センサ500は、薄膜圧電素子414に代えて薄膜圧電素子502を備える。薄膜圧電素子502はブリッジ回路の金属配線420を横切って厚肉領域404まで延びる。この点において、半導体圧力センサ500の構成は、図10に示した構成と異なる。薄膜圧電素子502は金属配線504とは電気的に絶縁された別の階層に形成される。これは、本明細書における他の実施形態についても同様である。本発明における半導体圧力センサの製造方法については後述する。
 薄膜圧電素子502は、下部電極層502Aと、圧電層と、上部電極層とを有する。下部電極層502Aは、金属配線を介してボンディングパッド518に接続される。薄膜圧電素子502の上部電極層は、金属配線を介してボンディングパッド516に接続される。本構成によれば、薄膜圧電素子502の下部電極または上部電極に接続される金属配線をブリッジ回路の外側に配置することができる。これにより、半導体圧力センサ500の金属配線を一層のみの配線によって形成できるとともに、ブリッジ回路の金属配線420のレイアウトの自由度が高まる。
 半導体圧力センサ500のオフセット電圧、すなわち薄肉領域402に歪みが生じていない時の半導体圧力センサ500の出力を0に設定する場合には、各ボンディングパッドから各拡散抵抗までの配線抵抗を同じ値とするために、金属配線420および拡散配線422の配線長を揃えることが望ましい。本実施の形態に係る半導体圧力センサ500においては、薄膜圧電素子502が厚肉領域404上の任意の位置まで延びるように薄膜圧電素子502が配置される。これにより、薄膜圧電素子502の金属配線を任意の位置に配置できる。したがってボンディングパッド424、426、428、430、516、および518の配置、あるいはブリッジ回路の金属配線420および拡散配線422の配線長の調整が容易となる。
 さらに、薄膜圧電素子502が厚肉領域404の一部に固定される。このため、図10に示された半導体圧力センサ400と比較して、薄膜圧電素子502が薄肉領域402に及ぼす歪み量を安定させることができる。これにより自己診断の精度を高めることができる。
 図13は、図12に示した半導体圧力センサ500の変形例を示した図である。図13を参照して、半導体圧力センサ530は薄膜圧電素子502に代えて薄膜圧電素子532を有する。薄膜圧電素子532は、延設部532Xおよび532Yを有する。この点において、半導体圧力センサ530は図12に示した半導体圧力センサ500と異なる。延設部532Xおよび532Yは、薄肉領域402の外周に沿って延びるように厚肉領域404上に形成される。
 薄膜圧電素子532は、下部電極層532Aと、圧電層と、上部電極層とを有する。下部電極層532Aは、ボンディングパッド518に接続される。薄膜圧電素子532の上部電極層は、ボンディングパッド516に接続される。本構成によれば、薄膜圧電素子532が延設部532Xおよび延設部532Yによって厚肉領域404に固定されるので、薄膜圧電素子532が薄肉領域402に及ぼす歪み量をさらに安定させることができる。これにより自己診断の精度を高めることができる。
 図14は、図12に示した半導体圧力センサ500の別の変形例を示した図である。図14を参照して、半導体圧力センサ550は、薄膜圧電素子502に代えて薄膜圧電素子552を備える。薄膜圧電素子552は、薄肉領域402の外周を囲むように厚肉領域404上に形成される。この点において、半導体圧力センサ550は、図12に示した半導体圧力センサ500と異なる。薄膜圧電素子552は、薄肉領域402の外周を囲む部分として延設部554を有する。
 薄膜圧電素子552は、下部電極層552Aと、圧電層と、上部電極層とを有する。下部電極層552Aは、ボンディングパッド518に接続される。薄膜圧電素子552の上部電極層は、ボンディングパッド516に接続される。本構成によれば、薄膜圧電素子552が厚肉領域404に強固に固定されるので、薄膜圧電素子552が薄肉領域402に及ぼす歪み量をさらに安定させることができる。これにより自己診断の精度をさらに高めることができる。
 [第3の実施の形態]
 図15は、本発明の第3の実施の形態にかかる半導体圧力センサ600の上面図である。図15を参照して、半導体圧力センサ600は、薄肉領域402上に設けられた複数の薄膜圧電素子602、604、606、および608を備える。この点において、半導体圧力センサ600は、図10に示した半導体圧力センサ400と異なる。
 拡散抵抗406、408、410、および412は、薄肉領域402に歪みが生じた時の変形量が大きい位置、すなわち薄肉領域402の各辺の中点近傍に設けられる。
 薄膜圧電素子602、604、606、および608は、拡散抵抗406、408、410、および412から離れた位置、たとえば薄肉領域402の対角線上に設けられる。薄膜圧電素子602、604、606、および608は拡散抵抗406、408、410、および412から所定距離離れていれば良く、薄膜圧電素子を設ける位置は薄肉領域402の対角線上に限定されない。ただし拡散抵抗の予期しない歪みを最小とするために、各薄膜圧電素子は、薄肉領域の外周に沿って隣り合った2つの拡散抵抗の中間に配置することが望ましい。
 薄膜圧電素子602は、下部電極層602Aと、圧電層と、上部電極層とを有する。下部電極層602Aは、ボンディングパッド610に接続される。薄膜圧電素子602の上部電極層は、ボンディングパッド612に接続される。
 薄膜圧電素子604は、下部電極層604Aと、圧電層と、上部電極層とを有する。下部電極層604Aは、ボンディングパッド614に接続される。薄膜圧電素子604の上部電極層は、ボンディングパッド616に接続される。
 薄膜圧電素子606は、下部電極層606Aと、圧電層と、上部電極層とを有する。下部電極層606Aは、ボンディングパッド618に接続される。薄膜圧電素子604の上部電極層は、ボンディングパッド620に接続される。
 薄膜圧電素子608は、下部電極層608Aと、圧電層と、上部電極層とを有する。下部電極層608Aは、ボンディングパッド622に接続される。薄膜圧電素子608の上部電極層は、ボンディングパッド624に接続される。
 本構成によれば、自己診断時、薄膜圧電素子602、604、606、および608が協働して薄肉領域402に歪みを付与する。このため、薄膜圧電素子602、604、606、および608に同じ電圧を印加すれば、薄肉領域402全体に均一な歪みを付与することができる。これにより、自己診断の精度を高めることができる。
 図16は、図15に示した半導体圧力センサ600の変形例を示した図である。図16を参照して、半導体圧力センサ630は、薄膜圧電素子632,634,636,638を備える。薄膜圧電素子632,634,636,638は、薄肉領域402の対角線上に設けられるとともに、薄肉領域402の中心402C近傍で互いに結合される。この点において半導体圧力センサ630は、図15に示した半導体圧力センサ600と異なる。
 下部電極層636Aは、薄膜圧電素子632,634,636,638に共通の下部電極層である。下部電極層636Aは、ボンディングパッド640に結合される。同様に、薄膜圧電素子632,634,636,638に共通の上部電極層がボンディングパッド642に接続される。本構成によれば、薄膜圧電素子632~638の上部電極の配線と、薄膜圧電素子632~638の下部電極の配線とをそれぞれ1つずつ設ければよいため、半導体圧力センサ630の構成を簡便化することができる。
 [第4の実施の形態]
 図17は、本発明の第4の実施の形態にかかる半導体圧力センサ700の上面図である。図17を参照して、半導体圧力センサ700は、薄膜圧電素子701を備える。薄膜圧電素子701は、薄膜圧電素子702、704、706、および708と、延設部710A、710B、710C、および710Dとを備える。薄膜圧電素子702、704、706、および708は、薄肉領域402の対角線上に設けられる。延設部710A、710B、710C、および710Dは厚肉領域404上に配置される。薄膜圧電素子702、704、706、および708は、延設部710A、710B、710C、および710Dによって互いに結合される。この点において、半導体圧力センサ700は、図15に示した半導体圧力センサ600と異なる。
 薄膜圧電素子701はさらに延設部710E、または710Fによってボンディングパッド716F、または716A近傍まで延設されている。ボンディングパッド716A、716B、716C、716D、716E、および716Fと、薄膜圧電素子701とは電気的に絶縁された別の階層に形成される。半導体圧力センサ700の製造方法については後述する。延設部710E、710Fはボンディングパッド直下まで延設されていてもよい。
 薄膜圧電素子702、704、706、および708が厚肉領域上の延設部710A、710B、710C、および710Dにより互いに結合されている。このため薄膜圧電素子701の上部電極層および薄膜圧電素子701の下部電極層701Aの配線をそれぞれ1つずつ設ければよい。薄膜圧電素子701の上部電極層は、ボンディングパッド716Aに接続される。薄膜圧電素子701の下部電極層701Aは、ボンディングパッド716Fに接続される。
 薄膜圧電素子701は厚肉領域404上で延設部710A、710B、710C、および710Dによって固定される。このため薄膜圧電素子701が薄肉領域402に及ぼす歪み量を安定させることができる。これにより自己診断の精度を高めることができる。
 さらに、薄膜圧電素子701は延設部710E、または710Fによってボンディングパッド716Aまたは716Fの近傍まで延びている。このため、薄膜圧電素子701の金属配線を短くすることができる。これにより、拡散抵抗406、408、410、および412を接続するブリッジ回路の金属配線712を配置するために使用できるスペースが広くなるので、金属配線712による配線抵抗の調整が容易となる。延設部710F、または710Eはボンディングパッド716F、または716A直下まで延設されていてもよい。
 図17に示されるように、ボンディングパッド716A、716B、716C、716D、716E、および716Fは半導体基板401の一辺に並んで設けられる。このような構成によって、ボンディングパッドへワイヤボンディングを行なう際の利便性が向上する。
 図17では、金属配線712が実線で示されるとともに、拡散配線714が破線で示される。拡散抵抗406は、金属配線712および拡散配線714によってボンディングパッド716Bおよび716Eに接続される。拡散抵抗408は、金属配線712および拡散配線714によってボンディングパッド716Dおよび716Eに接続される。拡散抵抗410は、金属配線712および拡散配線714によってボンディングパッド716Cおよび716Dに接続される。拡散抵抗412は、金属配線712および拡散配線714によってボンディングパッド716Bおよび716Cに接続される。半導体圧力センサ700のオフセット電圧を無くすために、金属配線712および拡散配線714の長さを各拡散抵抗の間で互いに等しくすることが望ましい。
 図18は、オフセット電圧を0に設定可能な金属配線および拡散配線の例を示した図である。図18を参照して、半導体圧力センサ720において、拡散抵抗406,408,410,412の各々をボンディングパッドに接続する金属配線722および拡散配線724の長さは、互いに等しい。これにより配線抵抗の抵抗値を互いに等しくすることができる。この点において、半導体圧力センサ720は、図17に示した半導体圧力センサ700と異なる。
 図19は、図17に示した半導体圧力センサ700の他の変形例を示した図である。図19を参照して、薄膜圧電素子702,704,706,708は、薄肉領域402の対角線上に設けられるとともに薄肉領域402の中心402C近傍で互いに結合される。この点において、半導体圧力センサ730は、図17に示した半導体圧力センサ700と異なる。このような構成によって、薄膜圧電素子701が薄肉領域402に付与する歪み量を大きくすることができる。これにより薄膜圧電素子701に印加する電圧が低くても自己診断が可能となる。
 図20は、図17に示した半導体圧力センサ700のさらに別の変形例を示した図である。図20を参照して、半導体圧力センサ780は薄膜圧電素子782を有する。薄膜圧電素子782はスリット部784を有する。この点において半導体圧力センサ780は図17に示した半導体圧力センサ700と異なる。
 薄膜圧電素子782にスリット部784を設けることにより、薄膜圧電素子782と半導体基板401との接触面積が小さくなる。これにより、薄膜圧電素子782と半導体基板401の熱膨張率の違いにより生ずる、半導体基板401の予期しない歪みを軽減することができる。
 本発明の各実施の形態について、半導体圧力センサの歪みゲージ抵抗として拡散抵抗を用いたが、歪みゲージ抵抗は拡散抵抗でなくても良い。例えば、セラミックス複合材料あるいはカーボンナノチューブ複合材料を半導体基板上に形成したものであってもよい。
 本発明の各実施の形態について、半導体圧力センサの歪みゲージ抵抗として4つの拡散抵抗を用いる例を示したが、拡散抵抗の数は4つでなくてもよい。半導体圧力センサに要求される感度で薄肉領域の歪み量を測定できるのであれば、拡散抵抗の数は1つであってもよい。
 本発明の各実施の形態について、半導体圧力センサの半導体基板の一主面にトランジスタやダイオード等の回路素子を形成することもできる。
 [本発明の実施形態に係る半導体圧力センサの製造方法]
 次に、上記の実施形態に係る半導体圧力センサの製造方法について図21~図27を用いて説明する。なお作図および説明の都合上、各領域の膜厚および幅の比率は必ずしも正確ではない。
 半導体圧力センサ800に含まれる拡散抵抗を形成するために、たとえばLOCOS(Local Oxidation of Silicon)法が用いられる。
 図21は、本発明に係る製造方法の第1工程を示す図である。図21を参照して、まず、SOI(Silicon on Insulator)基板802を用意する。SOI基板802は、一主面Si(Silicon)層804と、埋込酸化膜層806と、他主面Si層808とを有する。SOI基板802の一主面(一主面Si層804の表面)を保護するために、パッド酸化膜810およびSiN膜812を形成する。SOI基板802は、例えば、2枚の半導体基板によって形成される。2枚の半導体基板の各々の貼り合わせ界面を、研削および研磨して鏡面仕上げし、その後に、熱酸化により2枚の半導体基板を接合する。これによりSOI基板が形成される。SiN膜812は、例えばCVD法(化学気相成長法)により形成する。
 一主面Si層804は第1の導電型を有する。以下、一主面Si層はn型半導体として説明するが、一主面Si層804がp型半導体であってもよい。
 SiN膜812上のアクティブ領域813にはレジスト814が塗布される。アクティブ領域813とは後に拡散抵抗が形成される領域である。その後、SiN膜812のエッチングを行ない、レジスト814が塗布されていない領域のSiN膜812が除去される。
 図22は、本発明に係る製造方法の第2工程を示す図である。図22を参照して、SiN膜812のエッチングを行った後、レジスト814を除去する。次に、ウェット酸化法やパイロジェニック法によりフィールド酸化膜816を形成する。さらにアクティブ領域813のSiN膜812およびパッド酸化膜810を除去する。
 その後、アクティブ領域813には例えばボロン等の不純物が注入され、拡散抵抗818が形成される。フィールド酸化膜816は拡散抵抗818の形成後に除去される。
 図23は、本発明に係る製造方法の第3工程を示す図である。図23を参照して、拡散抵抗818の形成後に、拡散抵抗818に隣接して、拡散抵抗818と同じ導電型を有する不純物が注入された拡散配線820A、820Bが形成される。拡散配線820A、820Bの不純物濃度が拡散抵抗818の不純物濃度より高くなるように、拡散抵抗818に隣接した領域に、高濃度の不純物が注入される。その後、第1の層間絶縁膜822が形成される。第1の層間絶縁膜822としては例えば、リンやボロン等の不純物を含まないシリコン酸化物であるNSG(Nondoped Silicate Glass)膜が用いられる。なお、本明細書に記載の製造方法では、NSG膜をPSG(Phosphorous Silicate Glass)膜あるいはBPSG(Boron Phosphorous Silicate Glass)膜に代用することもできる。
 図24は、本発明に係る製造方法の第4工程を示す図である。図24を参照して、第1の層間絶縁膜822上に下部電極層824、圧電層826、および上部電極層828が形成される。
 下部電極層824、圧電層826、上部電極層828は例えばスパッタ法により形成される。下部電極層824の材料としては白金あるいはチタンが用いられる。下部電極層824の膜厚は、白金の場合には例えば1750Åに設定され、チタンの場合には例えば200Åに設定される。
 圧電層826の材料としては例えばPZT(チタン酸ジルコン酸鉛)が用いられる。圧電層826の膜厚は例えば10000Åに設定される。
 上部電極層828の材料としては例えばイリジウムあるいは酸化イリジウムが用いられる。上部電極層828の膜厚は、イリジウムの場合には例えば1000Åに設定され、酸化イリジウムの場合には例えば800Åに設定される。
 下部電極層824、圧電層826、上部電極層828の膜厚は上記したものに限定されない。下部電極層824、上部電極層828の膜厚は、後述するコンタクトホール形成時に、コンタクトホールが各電極層を貫通しないような範囲で設定すればよい。
 図25は、本発明に係る製造方法の第5工程を示す図である。図25を参照して、下部電極層824、圧電層826、および上部電極層828を選択的にエッチングすることにより、薄膜圧電素子の所定のパターンが形成される。この時、下部電極層824、圧電層826、および上部電極層828が拡散抵抗818と重ならないように、パターンが形成される。
 図26は、本発明に係る製造方法の第6工程を示す図である。図26を参照して、下部電極層824、圧電層826、および上部電極層828のエッチング後、第2の層間絶縁膜830が形成される。さらに第2の層間絶縁膜830には、拡散配線820Aに至るコンタクトホール832A、拡散配線820Bに至るコンタクトホール、上部電極層828に至るコンタクトホール832B、および下部電極層824に至るコンタクトホール832Cが形成される。図示の都合上、拡散配線820Bに至るコンタクトホールは図26には示されていない。
 下部電極層824に至るコンタクトホール832Cと、上部電極層828に至るコンタクトホール832Bとは第2の層間絶縁膜830のエッチングによって同時に形成される。この時、圧電層826の膜厚が大きすぎると、コンタクトホール832Bの深さとコンタクトホール832Cの深さとが大きく異なる。このため、上部電極層828がエッチング液に長時間曝される。
 さらに、自己診断機能を果たすために、圧電層826の膜厚は所定の厚みを確保しなければならない。したがって、圧電層826の膜厚は0.01μm以上5μm以下とすることが望ましい。
 図27は、本発明に係る製造方法の第7工程を示す図である。図27を参照して、コンタクトホール832A、832B、832Cおよび第2の層間絶縁膜830上には金属配線834A、834B、834Cが形成される。金属配線834A、834B、834Cの主成分は、例えばアルミニウムあるいは銅等である。
 金属配線の834A、834B、834Cの形成後に半導体圧力センサ800の一主面を保護するためのパッシベーション膜836が形成される。パッシベーション膜836としては例えばSiN膜が用いられる。
 パッシベーション膜836の一部には、ボンディングパッド838を形成するための開孔部が形成される。
 次に、他主面Si層808および埋込酸化膜層806の一部がエッチングされる。これによりダイアフラムが形成される。
 埋込酸化膜層806のエッチングの後、他主面Si層808の底部にはガラス基板842が接合される。ガラス基板842と他主面Si層808との接合は真空中で行なわれる。これにより一主面Si層804とガラス基板842との間に形成される基準圧力室840の内部は真空とされる。
 以上、本発明に係る半導体圧力センサの製造方法について説明した。本製造方法によれば、従来の半導体装置製造プロセスを利用して半導体圧力センサを製造することができる。
 下部電極層824、圧電層826、および上部電極層828は、金属配線834A、834B、および834Cとは電気的に絶縁された別の階層に形成される。このため、半導体圧力センサにおける、金属配線および薄膜圧電素子の配置、形状の自由度を高めることができる。
 さらに、圧電層826の膜厚を0.01μm以上5μm以下とすれば、下部電極層824および上部電極層828に至るコンタクトホールを同時に形成することが可能となる。これにより半導体圧力センサの製造時間を短縮することができる。
 [第5の実施の形態]
 図28は、本発明の第5の実施の形態に係るセンサの構成を概略的に示す平面図である。なお、図1~図4に示された要素と同一または対応する要素には、同一の符号が付されている。さらに、以後の説明においても、図1~図4に示された要素が参照される。
 図28を参照して、センサ1は、ダイアフラム7およびダイアフラム7の外縁部を支持するための支持部8とを含むシリコン基板6を備える。センサ1は、さらに、抵抗ブリッジB1~B4を備える。抵抗ブリッジB1~B4の各々は、シリコン基板6の主表面6Aに配置された複数の抵抗素子を含む。
 抵抗ブリッジB1~B4の各々は4つの抵抗素子を含む。具体的には、抵抗ブリッジB1は、抵抗素子11A,12A,13A,14Aを含む。抵抗ブリッジB2は、抵抗素子11B,12B,13B,14Bを含む。抵抗ブリッジB3は、抵抗素子11C,12C,13C,14Cを含む。抵抗ブリッジB4は、抵抗素子11D,12D,13D,14Dを含む。後に詳細に説明するように、4つの抵抗素子は、ホイートストンブリッジを構成する。各抵抗素子は、圧力に応じてその抵抗値を変化させる抵抗素子であり、たとえばピエゾ素子である。なお、実施の形態1~4と同じく、抵抗素子に拡散抵抗を用いることもできる。
 1つの抵抗ブリッジに含まれる4つの抵抗素子は、ダイアフラム7と支持部8との境界7Aの一部を含む主表面6Aの一部の領域に集合的に配置される。具体的には、抵抗素子11A~14Aは、境界7Aの一部を含む領域6A1に配置される。抵抗素子11B~14Bは、境界7Aの一部を含む領域6A2に配置される。抵抗素子11C~14Cは、境界7Aの一部を含む領域6A3に配置される。抵抗素子11D~14Dは、境界7Aの一部を含む領域6A4に配置される。
 抵抗ブリッジB1,B3は互いに対向するようにシリコン基板6の主表面6Aに配置される。同様に、抵抗ブリッジB2,B4は、互いに対向するようにシリコン基板6の主表面6Aに配置される。図5に示す直線X,Yは、ダイアフラム7の中心点Oを通り、互いに直交する直線である。抵抗ブリッジB1,B3は直線X上に配置される。抵抗ブリッジB2,B4は直線Y上に配置される。したがって、抵抗ブリッジB1~B4は、点Oを中心として、シリコン基板6の主表面6Aに等方的に配置される。
 この実施の形態では、抵抗ブリッジの個数は、複数であれば特に限定されない。ただし、抵抗ブリッジの個数が多くなるほど、各ブリッジに一定の電圧を印加したときに複数の抵抗ブリッジ全体での消費電力が大きくなる。一方、複数の抵抗ブリッジ全体に流れる電流を一定に制御する場合、抵抗ブリッジの個数が多くなるほど1つのブリッジを流れる電流が小さくなる。このため、ダイアフラム7に印加される圧力に対する抵抗ブリッジの出力電圧の変化が小さくなる。
 抵抗ブリッジの個数は、たとえば上述の観点から定められる。たとえば図28に示したように、4つの抵抗ブリッジが半導体基板の主表面上に配置される。さらに複数の抵抗ブリッジは、シリコン基板6の主表面6A上に等方的に配置されることが好ましい。
 図29は、図28に示したシリコン基板6の主表面6A上の位置に対する応力の関係を示した図である。図29を参照して、グラフの横軸は、図28に示した直線X上の位置を示す。位置x0は、シリコン基板6の一方端(たとえば紙面左側に位置するシリコン基板6の端部)の位置である。位置x1は、直線Xと境界7Aとの第1の交点(直線Yに対して紙面左側に位置する交点)の位置に対応する。位置x2は、ダイアフラム7の中心点Oの位置に対応する。位置x3は、直線Xと境界7Aとの第2の交点(直線Yに対して紙面右側に位置する交点)の位置に対応する。位置x4は、シリコン基板6の他方端(たとえば紙面右側に位置するシリコン基板6の端部)の位置を示す。
 図29に示すように、ダイアフラム7に働く応力は、ダイアフラム7の外縁部において最も大きくなる。ダイアフラム7に印加する圧力によって、ダイアフラム7の外縁部に作用する応力が大きく変化する。抵抗ブリッジを構成する4つの抵抗素子はダイアフラム7の外縁部に配置される。したがって、ダイアフラム7に印加される圧力により、各抵抗素子の抵抗値を大きく変化させることができる。
 図30は、図28に示した抵抗ブリッジB1~B4の回路図である。図30を参照して、この実施の形態では、電気的に並列に接続された4つの抵抗ブリッジB1~B4が半導体基板の主表面に設けられる。
 抵抗ブリッジB1~B4の各々はホイートストンブリッジである。抵抗ブリッジB1~B4の構成は互いに同様であるので、抵抗ブリッジB1の構成を代表的に説明する。
 抵抗ブリッジB1は、抵抗素子11A~14Aを含む。抵抗素子11A,13Aは、電極16Aと電極16Dとの間に直列に接続される。同様に、抵抗素子12A,14Aは、電極16Aと電極16Dとの間に直列に接続される。電圧Vbiasが電極16Aに印加される。電極16Dは接地される。抵抗素子11A,13Aの接続点は、電極16Bに接続される。抵抗素子12A,14Aの接続点は、電極16Cに接続される。電極16A~16Dは、たとえば配線5に接続されるためにシリコン基板6の主表面6Aに形成されたボンディングパッドである。
 ダイアフラム7に圧力が印加されていない状態(すなわち真空状態)では、各抵抗素子11A~14Aの抵抗値が互いに同じとなる。ダイアフラム7に印加される圧力の変化に対し、抵抗素子11A,14Aの抵抗値と抵抗素子12A,13Aの抵抗値とは互いに逆方向に変化する。抵抗ブリッジB2~B4の各々についても同様に、ダイアフラム7に印加される圧力に応じて各ブリッジに含まれる4つの抵抗素子の各々の抵抗値が変化する。
 ダイアフラム7に圧力が印加されていない状態では、電極16Bの電圧VA0および電極16Cの電圧VB0はともに1/2Vbiasである。ダイアフラム7が加圧されて各ブリッジの抵抗素子の抵抗値が変化することにより、電圧VA0は1/2Vbiasから減少する一方で、電圧VB0は1/2Vbiasから増加する。
 図31は、図28に示した抵抗ブリッジB1を詳細に示した図である。抵抗ブリッジB2~B4の各々の構成は、図31に示される抵抗ブリッジB1の構成と同様である。
 図31を参照して、抵抗ブリッジB1は、ダイアフラム7と支持部8との境界7Aの一部を含む領域6A1に配置された抵抗素子11A~14Aを含む。抵抗素子11A,12Aは互いに隣接して配置される。抵抗素子11Aは配線15Aによって抵抗素子12Aに電気的に接続される。
 抵抗素子11A,13Aは互いに隣接して配置される。抵抗素子11Aは配線15Bによって抵抗素子13Aに電気的に接続される。
 抵抗素子12A,14Aは互いに隣接して配置される。抵抗素子12Aは配線15Cによって抵抗素子14Aに電気的に接続される。
 互いに隣接して配置される2つの抵抗素子のうちの一方は、ダイアフラム7と支持部8との境界7Aに平行する方向に沿って延在するようにシリコン基板6の主表面6Aの領域6A1に形成される。上記の2つの抵抗素子の他方は、境界7Aと交差する方向に沿って延在するように領域6A1に形成される。
 具体的に説明すると、抵抗素子13Aは、境界7Aに平行な方向に沿って延在するようにシリコン基板6の主表面6Aの領域6A1に形成される。抵抗素子11Aは境界7Aと交差する方向に沿って延在するように領域6A1に形成される。同様の関係は、抵抗素子11A,12Aの間に成立するとともに、抵抗素子12A,14Aの間に成立する。
 図31では、境界7Aは直線で示される。図28に示されるように、ダイアフラム7の輪郭が円形である場合には、その円の接線に沿って延在するように抵抗素子12A,13Aが形成されてもよい。
 互いに隣接して配置された2つの抵抗素子は、境界に対して異なる方向に沿って延在するように形成される。これによりダイアフラム7に印加される圧力に応じて、各々の抵抗値を互いに逆方向に変化させることができる。したがって複数の抵抗素子を抵抗ブリッジとして機能させることができる。
 図32は、第5の実施の形態に係るセンサの比較例の構成を示した平面図である。図32を参照して、センサ1Aは、4つの抵抗素子11~14を含む1つの抵抗ブリッジを備える。抵抗素子11~14は、シリコン基板6の主表面6A上に分散的に配置される。図32に示した構成によれば、センサ1Aの加工精度に起因する抵抗ブリッジの特性ばらつきが大きくなる可能性がある。
 図33は、図32に示したセンサ1Aの製造の際に生じ得る課題を説明するための第1の図である。図33を参照して、抵抗素子11~14は、ダイアフラム7が形成されたシリコン基板6の主表面6Aに形成される。なお、図33では4つの抵抗素子のうち抵抗素子11,13のみを示す。
 主表面6Aと反対側に位置する主表面6B(裏面)には、開口部6Cが形成される。主表面6Bにエッチング(異方性エッチングおよび等方性エッチングのいずれでもよい)を施すことによって、主表面6Bに開口部6Cが形成される。
 抵抗素子11,13は、ダイアフラム7と支持部8との境界7Aと重なるように配置されることが好ましい。一般的には、シリコン基板6の主表面6A上に抵抗素子が配置され、その後にダイアフラム7および支持部8が形成される。このため、主表面6Bの開口部6Cの位置が抵抗素子11~14の主表面6Aの位置に対してずれる可能性がある。位置のずれの程度は、センサの加工精度に依存する。ずれの程度が大きい場合、抵抗ブリッジの感度、すなわちダイアフラムに印加される圧力に対する電圧の変化の比がばらつく可能性がある。これによりセンサの検出精度が低下する。
 図34は、図32に示したセンサ1Aの製造の際に生じ得る課題を説明するための第2の図である。図34を参照して、シリコン基板6の主表面6Bから主表面6Aへ向かう向きにシリコンがエッチングされる。シリコン基板6の内部はテーパ状に加工される。このため、抵抗素子11~14の位置がダイアフラム7と支持部8との境界の位置に対してずれる可能性がある。
 図31に戻り、この実施の形態では、抵抗ブリッジを構成する複数の抵抗素子が1つの領域に集合的に配置される。抵抗素子11A~14Aは同種類の抵抗であり、同一の工程によって形成される。抵抗素子11A~14Aが1つの領域に集合的に配置されることによって、抵抗素子11A~14Aの間で特性(たとえば抵抗値、温度特性など)のばらつきが大きくなることを抑制できる。この結果、圧力がダイアフラムに印加されていない状態において抵抗ブリッジB1の平衡状態を得ることができる。
 複数のセンサの間では、抵抗素子の抵抗値が異なる場合が生じ得る。しかしながら1つの抵抗ブリッジに含まれる複数の抵抗素子の抵抗値のばらつきが小さい場合には、抵抗ブリッジの平衡状態を得ることができる。よって、複数のセンサの間における抵抗ブリッジの特性のばらつきを小さくすることができる。
 さらに、この実施の形態では、第1の抵抗素子と、その第1の抵抗素子と電気的に接続される第2の抵抗素子とが隣接して配置される。互いに電気的に接続される2つの抵抗素子を隣接して配置することによって、ダイアフラム7と支持部8との境界の位置ずれが生じても、2つの抵抗素子の抵抗値の変化の方向を互いに同じとすることができる。これにより、抵抗ブリッジの特性ばらつきを小さくすることができる。さらに2つの抵抗素子を接続するための配線を短くすることができる。
 さらに、この実施の形態では、センサは、電気的に並列に接続された複数の抵抗ブリッジを備える。抵抗ブリッジB1に対して境界7AがX,Yの少なくとも一方の方向にずれた場合、抵抗ブリッジB1~B4の各々の特性が変動する。しかしながら、複数の抵抗ブリッジが電気的に並列に接続されることにより、1つの抵抗ブリッジの特性の変動が、他の抵抗ブリッジの特性の変動によって相殺される。この結果、複数のセンサの間における抵抗ブリッジの特性のばらつきを小さくすることができる。
 なお、第5の実施の形態では、ダイアフラム7すなわち薄肉領域の形状は円形に限定されるものではない。第1~第4の実施の形態と同様に、ダイアフラム(薄肉領域)の形状が略正方形であってもよい。
 [第6の実施の形態]
 この実施の形態は、半導体圧力センサから出力される信号を処理するための回路に関する。この信号処理回路は、上記の第1~第5の実施形態に係る半導体圧力センサのいずれとも組み合わせることができる。
 図35は、第6の実施の形態に係る信号処理回路の回路図である。図35を参照して、抵抗素子11~14は、ホイートストンブリッジを構成する。具体的に説明すると、抵抗素子11,12は、ノード20と接地ノードとの間に直列に接続される。同様に、抵抗素子13,14は、ノード20と接地ノードとの間に直列に接続される。電圧Vbiasがノード20に印加される。抵抗素子13,14の接続点はノード25に接続される。抵抗素子11,12の接続点はノード26に接続される。抵抗素子11~14は、たとえば図5に示した拡散抵抗406,408,410,412に対応する。あるいは、抵抗素子11~14を図30に示した抵抗ブリッジB1~B4にそれぞれ置き換えてもよい。
 信号処理回路2は、増幅部21と、演算部22,23とを備える。増幅部21は、差動増幅器211,212と、抵抗213,214,215とを含む。
 差動増幅器211は、ノード25に接続された非反転入力端子(記号「+」により示す。以下も同様)と、抵抗213の一方端および抵抗214の一方端の両方に接続された反転入力端子(記号「-」により示す。以下も同様)と、ノード27に接続された出力端子とを備える。抵抗214の他方端は、差動増幅器211の出力端子とともにノード27に接続される。
 差動増幅器212は、ノード26に接続された非反転入力端子と、抵抗213の他方端および抵抗215の一方端の両方に接続された反転入力端子と、ノード28に接続された出力端子とを備える。抵抗215の他方端は、差動増幅器212の出力端子とともにノード28に接続される。
 演算部22は、差動増幅器221と、抵抗222~225と、オフセット電源226と、駆動電源227とを含む。
 差動増幅器221は、駆動電源227から電源電圧VDDが供給されることにより動作する。抵抗222は、ノード28と、差動増幅器221の反転入力端子との間に接続される。抵抗223は、差動増幅器221の反転入力端子と差動増幅器221の出力端子との間に接続される。抵抗224は、ノード27と、差動増幅器221の非反転入力端子との間に接続される。抵抗225は、差動増幅器221の非反転入力端子とオフセット電源226との間に接続される。
 オフセット電源226は、電圧VDDを発生させる。図35に示した構成では、オフセット電源226および駆動電源227は互いに別の電源として示されているが、これらは1つの電源に共通化されてもよい。
 演算部23は、差動増幅器231と、抵抗232,233と、駆動電源234とを含む。差動増幅器221は、駆動電源234から電源電圧VDDが供給されることにより動作する。差動増幅器221は、ノード29に接続された非反転入力端子と、抵抗232の一方端および抵抗233の一方端に接続された反転入力端子と、端子30に接続された出力端子とを備える。抵抗233の他方端は、差動増幅器231の出力端子とともに端子30に接続される。抵抗232,233の各々は可変抵抗である。したがって抵抗232,233の抵抗値は可変である。
 次に、信号処理回路2の動作について詳しく説明する。ノード25における電圧VA0およびノード26における電圧VB0は、抵抗素子11~14の抵抗値の変化によって変化する。すなわちダイアフラム7に印加される圧力によって、電圧VA0およびVB0が変化する。ダイアフラム7に圧力が印加されていない場合には、電圧VA0およびVB0はともに1/2Vbiasである。圧力がダイアフラム7に印加されることにより、電圧VA0およびVB0は、1/2Vbiasから変化する。
 図36は、ダイアフラムに印加される圧力と、ホイートストンブリッジから出力される電圧との関係を示した図である。図36を参照して、ダイアフラム7に印加される圧力がP0であるとき、電圧V(P)は1/2Vbiasである。圧力P0は基準圧力に等しい。
 ダイアフラム7に印加される圧力がP0から増加するに従って、電圧VA0は1/2Vbiasから低下する。一方で、電圧VB0は、ダイアフラム7に印加される圧力が増加するに従って1/2Vbiasより上昇する。圧力Pに対する電圧VB0の増加量と圧力Pに対する電圧VA0の減少量とは同じである。したがって、電圧VB0はVB0=1/2Vbias+ΔV(P)と表わされ、電圧VA0は、VA0=1/2Vbias-ΔV(P)と表わされる。ΔV(P)は圧力Pに応じて変化する。電圧VB0およびVA0の間の差は2ΔV(P)である。電圧VB0およびVA0の間の電圧差は、センサ1から出力される信号電圧に相当する。
 増幅部21は、電圧VB0およびVA0の間の差に対応する電圧を増幅する。増幅部21の増幅度(利得)をαと表わす。増幅度αは抵抗213~215の抵抗値に従って定められる。抵抗213の抵抗値をR1と示し、抵抗214,215の各々の抵抗値をR2と示す。増幅度αは、α=R2/R1と表わされる。
 ノード28における電圧VB1は、VB1=1/2Vbias+(1+α)ΔV(P)と表わされる。一方、ノード27における電圧VA1は、VA1=1/2Vbias-(1+α)ΔV(P)と表わされる。電圧VB0およびVA0の間の差は2(1+α)ΔV(P)である。すなわち、増幅部21は、センサ1から出力される信号電圧を増幅して出力する。
 圧力P1は、センサ1によって検出される圧力の範囲の上限値である。この実施の形態では、センサ1の検出範囲は以下のように定められる。すなわち、検出範囲は、標準気圧(約101.3[kPa])の値を含み、かつ、圧力P1が標準気圧の近傍に位置する。圧力P1の値は、たとえば110[kPa]である。この実施の形態では、圧力センサ装置10がたとえば気圧センサとして使用される。よって、圧力センサ装置10により実際に検出される圧力の範囲は、センサ1の検出範囲の上限値近傍の範囲となる。
 図35に戻り、演算部22は、電圧VA1およびVB1に基づき、ダイアフラム7に印加された圧力に従って変化する電圧Vout1を生成する。具体的には、演算部22は電圧VA1およびVB1の間の差に比例する電圧を、オフセット電圧VDDから減算することによって、電圧Vout1を生成する。
 図37は、ダイアフラムに印加される圧力と、信号処理回路2の演算部22から出力される電圧Vout1との関係を示した図である。図37を参照して、圧力P0における電圧Vout1はVDDであり、圧力P1における電圧Vout1は0である。電圧Vout1の減少量は圧力の増加量に比例する。この実施の形態では、抵抗222,224の抵抗値はともにR3であり、抵抗223,225の抵抗値はいずれもR4である。電圧Vout1は、以下の式に従って表わされる。
 Vout1=VDD-R4/R3(VB1-VA1
 このように、本実施の形態ではオフセット電圧(VDD)から、増幅部21の出力電圧(VB1-VA1)に比例する電圧を減算することによって電圧Vout1を生成する。比例係数(R4/R3)は、圧力P1における電圧Vout1が0となるように定められる。
 電圧Vout1は圧力P1の近傍の領域では0付近の値となる。これにより、圧力P1の近傍の領域における圧力センサ装置の感度を高めることができる。本明細書では、「感度」とは、圧力の範囲に対する電圧の変化量の比を意味する。圧力の範囲がP0から圧力P1までの範囲である場合、圧力センサ装置の感度はVDD/(P1-P0)と表わされる。
 演算部22は、増幅部21から出力される電圧に対して所定の相関関係を有する電圧を生成するように構成される。「所定の相関関係」とは、演算部22により生成される電圧が、増幅部21から出力される電圧に基づいて一意的に定まるという関係である。したがって相関関係は比例関係に限定されない。
 再び図35を参照して、演算部23は、電圧Vout1を増幅することにより電圧Vout2を端子30から出力する。抵抗232の抵抗値をR5と示し、抵抗233の抵抗値をR6と示す。電圧Vout2は以下の式に従って表わされる。
 Vout2=(R5+R6)/R5×Vout1
 一般に、差動増幅器は、電源電圧よりも高い電圧を出力することができない。したがって、電圧Vout2の最大値はVDDである。
 図38は、ダイアフラムに印加される圧力と、信号処理回路2の演算部23から出力される電圧Vout2との関係を示した図である。図38を参照して、圧力P1′以下では電圧Vout2はVDDである。圧力がP1′から増加するに従って、電圧Vout2は電圧VDDから低下する。電圧Vout2は、圧力P1において0である。
 演算部23は電圧Vout2の変化率を電圧Vout1の変化率と異ならせる。ここで「変化率」とは、圧力の変化量に対する電圧の変化量の比の絶対値を意味する。より具体的には、演算部23は電圧Vout2の変化率を電圧Vout1の変化率よりも大きくする。これにより検出範囲の上限値付近の領域において圧力センサ装置の検出感度が高められる。抵抗232,233はともに可変抵抗である。抵抗232,233の少なくとも一方の抵抗値を変化させることによって、電圧Vout2の変化率を変更できる。すなわち、感度を調節することができる。
 センサ(ダイアフラム)に印加される圧力が高くなるほど、その出力電圧が大きくなるように信号処理回路を構成する場合には、検出範囲の上限値付近の領域において圧力センサ装置の感度を高めることは容易ではない。この点について、第6の実施の形態に係る信号処理回路の比較例を示しながら説明する。
 図39は、第6の実施の形態に係る信号処理回路の比較例の構成を示す回路図である。図39を参照して、信号処理回路251は、演算部22に代えて演算部32を備える点、および、演算部23を含まない点において信号処理回路2と異なる。抵抗222の一方端はノード27に接続され、抵抗224の一方端はノード28に接続される。この点において、演算部32は演算部22と異なる。さらに、演算部32はオフセット電源226を含まない点、および、抵抗225の一端が接地される点において演算部22と異なる。演算部32は電圧Voutを出力する。
 図40は、ダイアフラムに印加される圧力と、信号処理回路251の演算部32から出力される電圧Voutとの関係を示す図である。図40を参照して、電圧Voutは圧力P0において0であり、かつ圧力に比例する。圧力P1において電圧VoutはVDDである。図40に示した構成によれば、圧力センサ装置の最大の感度は、VDD/(P1-P0)である。圧力P1′から圧力P1までの範囲における圧力センサ装置の感度を上記の感度より高くすることはできない。
 圧力センサ装置の感度を高めるため、たとえば図35に示した構成を有する演算部23を図39に示す演算部32の出力に接続することが考えられる。しかしながら、図40に示されるように、その上限値がP1′よりも小さい範囲の圧力に対して圧力センサ装置の感度が高くなる。一方、圧力P1′から圧力P1までの範囲では、Voutが一定である。すなわち、この範囲における圧力センサ装置の感度が低下する。
 図41は、圧力センサ装置10に含まれるセンサ1の状態を模式的に示した断面図である。図41を参照して、センサ1の内部の圧力(基準圧力)はP0である。この実施の形態では、センサ1の内部はほぼ真空である。よって圧力P0の値は、ほぼ0である。
 圧力(気圧)PはP0より高いため、ダイアフラム7はセンサ1の外側からの圧力によって変形する。一方、センサ1の周囲の環境も真空である場合、すなわちセンサ1に印加される圧力PがP0である場合、ダイアフラム7の歪みは発生しない。したがって、ダイアフラム7は、圧力Pにしたがって、実線の矢印および破線の矢印に示すように動く。
 図39に示した構成によれば、圧力P=P0であるときのダイアフラム7の状態に対応する電圧が圧力センサ装置10の基準電圧である。すなわちセンサ1の内部の圧力と、センサ1の外部の圧力とが等しいときに、圧力センサ装置10の出力電圧が基準電圧(0)になる。しかしながら圧力センサ装置を気圧センサとして用いる場合には、センサ1(ダイアフラム7)に印加される圧力PがP0近傍で変化する状況は発生しない。
 さらに、圧力P1′から圧力P1までの範囲において圧力センサ装置の出力電圧は上限(VDD)に近い電圧となる。このため、図39に示した構成によれば、上記の範囲において圧力センサ装置の感度を高めることが困難となる。
 この実施の形態では、圧力P=P1であるときのダイアフラム7の状態に対応する電圧を圧力センサ装置10の基準電圧とする。さらに、圧力Pによるダイアフラム7の状態の変化にともなって、圧力センサ装置の出力電圧を基準電圧より変化させる。これにより、圧力センサ装置の感度を、標準気圧を含む所望の領域において高くすることができる。
 図37に示される電圧と圧力との関係は、たとえば図41に示した構造と異なる構造を有するセンサを用いることによって得られることができる。図42は、センサの検討例を模式的に示した断面図である。図42を参照して、センサ1の内部の圧力は、センサ1の検出範囲の上限値(P1)に等しい。センサ1の周囲の気圧(圧力P)はセンサ1の内部の圧力P1より小さい。したがって、ダイアフラム7は半導体圧力センサ1の外側に向けて突出するように変形する。
 上述の説明と同様に、センサ1の内部の圧力と、センサ1の外部の圧力とが等しいときに、圧力センサ装置10の出力電圧が基準電圧(0)になる。したがって、圧力P=P1であるときに、圧力センサ装置10の出力電圧が基準電圧になる。圧力Pは圧力P1よりも小さくなるように変化する。この結果、圧力センサ装置10の出力電圧を図37に示した関係に従って変化させることができる。
 しかしながら、半導体圧力センサ1の内部の圧力が正確にP1となるように半導体圧力センサ1を製造することは容易ではない。よって一般的には、図41に示されるように、半導体圧力センサ1の内部は真空である。本実施の形態によれば、このような一般的な圧力センサを気圧センサとして使用する場合に、標準気圧を含む所望の領域における感度を高くすることができる。
 なお、この実施の形態に係る信号処理回路は図35に示した構成を有するものと限定されない。以下に、本実施の形態に係る信号処理回路の変形例について説明する。
 図43は、第6の実施の形態に係る信号処理回路の第1の変形例を示した図である。図43を参照して、信号処理回路2Aは、演算部22に代えて演算部22Aを備える点において信号処理回路2と異なる。演算部22Aは、オフセット電源226に代えてオフセット電源226Aを含む点において演算部22と異なる。信号処理回路2Aの他の部分の構成は、信号処理回路2の対応する部分の構成と同様である。
 オフセット電源226Aは、オフセット電圧V1を発生させる。電圧V1は差動増幅器221の電源電圧VDDよりも低い電圧である。
 図44は、図43に示した演算部22Aから出力される電圧Vout1を説明するための図である。図44を参照して、電圧Vout1は圧力P0においてV1であり、圧力P1において0となる。電圧Vout1は圧力に比例して低下する。なお、比例係数は、抵抗222,224の抵抗値R3と抵抗223,225の抵抗値R4との比によって定められる。R4/R3=V1/(P1-P0)である。
 図43に示した構成においても、半導体圧力センサ1の検出範囲の上限値(圧力P1)に近い領域において、電圧Vout1は0付近の電圧となる。したがって、圧力P1に近い領域における圧力センサ装置の感度を高くすることができる。
 図45は、第6の実施の形態に係る信号処理回路の第2の変形例を示した図である。図45を参照して、信号処理回路2Bは、端子35をさらに備える点において信号処理回路2と異なる。端子35は、ノード29に接続される。信号処理回路2Bは電圧Vout1,Vout2の両方を外部に出力することができる。たとえば電圧Vout1に基づいて広い範囲にわたる圧力を検出することができる。さらに、電圧Vout2に基づいて、標準気圧を含む所望の領域(検出範囲の上限値に近い領域)では、検出感度を高くすることができる。
 図46は、第6の実施の形態に係る信号処理回路の第3の変形例を示した図である。図46を参照して、信号処理回路2Cは、電圧Vout1およびVout2のいずれか一方を選択する選択部36を備える点において信号処理回路2と異なる。選択部36は、信号SELに応じて電圧Vout1,Vout2の一方を選択するとともに、その選択された電圧を、端子30に出力する。信号SELはたとえば信号処理回路2Cの外部から選択部36に与えられる。図46に示すように、電圧Vout1およびVout2の一方が選択的に出力されるように信号処理回路が構成されていてもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 以上説明したように本発明の半導体圧力センサは薄膜圧電素子による自己診断機能を備える。薄膜圧電素子に電圧を印加することにより、半導体圧力センサの構造的な欠陥を検知することができる。さらに、薄膜圧電素子は歪みゲージ抵抗として機能する拡散抵抗から離間して形成される。これにより薄膜圧電素子と半導体基板の熱膨張率の違いによって拡散抵抗に生ずる変形を低減することができ、拡散抵抗の予期しない抵抗値変化を低減することができる。
 薄膜圧電素子は厚肉領域上の所定の位置まで延びている。これにより薄膜圧電素子が薄肉領域に付与する歪み量を安定させることができ、半導体圧力センサの自己診断精度が向上する。
 さらに、薄膜圧電素子は拡散抵抗をブリッジ接続するための金属配線とは電気的に絶縁された別の階層に形成される。このため、薄膜圧電素子および金属配線の配置、形状の自由度が高まる。たとえば、金属配線および拡散配線の配線長の調整が容易となる等の利点がある。したがって、本発明の産業上の利用可能性は高い。
 1、400,500,530,550,600,630,700,720,730,780,800 半導体圧力センサ、1A センサ、2,2A,2B,2C,251 信号処理回路、3 パッケージ、3A 容器、3B 蓋、4,6C 開口部、5,15A,15B,15C 配線、6 シリコン基板、6A,6B 主表面、6A1,6A2,6A3,6A4 領域、7 ダイアフラム、7A 境界、8 支持部、9 台座、10 圧力センサ装置、11~14,11A~14A,11B~14B,11C~14C,11D~14D 抵抗素子、16A,16B,16C,16D 電極、20,25~29 ノード、21 増幅部、22,23,22A,32 演算部、30,35 端子、36 選択部、50 本体部、211,212,221,231 差動増幅器、213~215,222~225,232,233 抵抗、226,226A オフセット電源、227,234 駆動電源、401 半導体基板、402 薄肉領域、402A 薄肉部、402C 中心、404 厚肉領域、404A 厚肉部、406,408,410,412,818 拡散抵抗、414,502,532,552,602,604,606,608,632,634,636,638,701,702,704,706,708,782 薄膜圧電素子、414A,502A,532A,552A,602A,604A,606A,608A,636A,701A,824 下部電極層、414B,826 圧電層、414C,828 上部電極層、415 矢印、416,842 ガラス基板、418,840 基準圧力室、420,432,504,712,722,834A 金属配線、422,714,724,820A,820B 拡散配線、424,426,428,434,438,516,518,610,612,614,616,618,620,622,624,640,642,716,716A,716B,716C,716D,716F,838 ボンディングパッド、532X,532Y,554,710A,710E,710F 延設部、784 スリット部、802 基板、804 一主面Si層、806 埋込酸化膜層、808 他主面Si層、810 パッド酸化膜、812 SiN膜、813 アクティブ領域、814 レジスト、816 フィールド酸化膜、822 第1の層間絶縁膜、830 第2の層間絶縁膜、832A,832B,832C コンタクトホール、836 パッシベーション膜、1000 電子機器、B1~B4 抵抗ブリッジ、O 中心点、X,Y 直線。

Claims (33)

  1.  薄肉領域および前記薄肉領域の周囲に設けられた厚肉領域を有する半導体基板と、
     前記半導体基板の一主面に形成され、前記薄肉領域に対応する前記半導体基板の部分の歪みに応じて抵抗値を変化させる少なくとも1つの歪みゲージ抵抗と、
     前記半導体基板上において、前記薄肉領域の少なくとも一部を含む領域に形成されて、下部電極層、圧電層、および上部電極層を有する少なくとも1つの薄膜圧電素子とを備え、
     前記少なくとも1つの薄膜圧電素子は、前記少なくとも1つの歪みゲージ抵抗から離間した領域に形成される、半導体圧力センサ。
  2.  前記少なくとも1つの薄膜圧電素子は、前記薄肉領域の中央部に向かう方向に長手軸を有する細長形状を有する、請求の範囲第1項に記載の半導体圧力センサ。
  3.  前記少なくとも1つの薄膜圧電素子は、前記薄肉領域と前記厚肉領域との境界を横切って前記厚肉領域まで延びるように設けられる、請求の範囲第2項に記載の半導体圧力センサ。
  4.  前記少なくとも1つの薄膜圧電素子はさらに、前記厚肉領域において、前記薄肉領域の外周に沿って延びるように設けられる、請求の範囲第3項に記載の半導体圧力センサ。
  5.  前記少なくとも1つの薄膜圧電素子は、前記半導体基板上に形成された複数の薄膜圧電素子を含む、請求の範囲第3項に記載の半導体圧力センサ。
  6.  前記複数の薄膜圧電素子は、前記厚肉領域上で互いに結合される、請求の範囲第5項に記載の半導体圧力センサ。
  7.  前記複数の薄膜圧電素子は、前記薄肉領域の中央部まで延長されるとともに前記薄肉領域の前記中央部で互いに結合される、請求の範囲第5項に記載の半導体圧力センサ。
  8.  前記半導体圧力センサは、さらに、
     前記厚肉領域上に設けられた複数のボンディングパッドを備え、
     前記少なくとも1つの薄膜圧電素子は、前記複数のボンディングパッドのうちの少なくとも1つのボンディングパッドの近傍まで延びるように設けられる、請求の範囲第3項に記載の半導体圧力センサ。
  9.  前記複数のボンディングパッドは前記半導体基板の一辺に並んで設けられる、請求の範囲第8項に記載の半導体圧力センサ。
  10.  前記上部電極層および前記下部電極層は、前記半導体基板の前記一辺に並んだ前記複数のボンディングパッドのうち、第1端に位置する第1のボンディングパッドと、第2端に位置する第2のボンディングパッドとにそれぞれ接続される、請求の範囲第9項に記載の半導体圧力センサ。
  11.  前記半導体圧力センサは、前記少なくとも1つの歪みゲージ抵抗として4つの歪みゲージ抵抗を備え、
     前記薄肉領域は略四辺形を呈し、
     前記4つの歪みゲージ抵抗は、前記薄肉領域の各辺の中点近傍に形成される、請求の範囲第1項に記載の半導体圧力センサ。
  12.  前記少なくとも1つの薄膜圧電素子は、前記薄肉領域の対角線上に形成される、請求の範囲第11項に記載の半導体圧力センサ。
  13.  前記薄肉領域は、略円形を呈している、請求の範囲第1項に記載の半導体圧力センサ。
  14.  前記少なくとも1つの歪みゲージ抵抗は、前記半導体基板の一主面に不純物を拡散することによって形成された拡散抵抗である、請求の範囲第1項に記載の半導体圧力センサ。
  15.  前記圧電層の主成分は、PZTである、請求の範囲第1項に記載の半導体圧力センサ。
  16.  前記少なくとも1つの歪みゲージ抵抗は、前記薄肉領域上の配線に接続され、
     前記配線は、拡散配線を含む、請求の範囲第1項に記載の半導体圧力センサ。
  17.  前記圧電層の厚さは、0.01μm以上5μm以下である、請求の範囲第1項に記載の半導体圧力センサ。
  18.  前記半導体基板は、SOI(Silicon on Insulator)基板である、請求の範囲第1項に記載の半導体圧力センサ。
  19.  半導体圧力センサの製造方法であって、
     第1の導電型を有する一主面Si層と、他主面Si層とを有する半導体基板を準備する工程と、
     前記一主面Si層に、前記第1の導電型とは異なる第2の導電型を有する歪みゲージ抵抗を形成する工程と、
     前記一主面Si層における前記歪みゲージ抵抗と隣接する領域に、前記第2の導電型を有し前記歪みゲージ抵抗よりも不純物濃度の高い拡散配線を形成する工程と、
     前記一主面Si層上に第1の層間絶縁膜を形成する工程と、
     前記第1の層間絶縁膜上に下部電極層を形成する工程と、
     前記下部電極層上に圧電層を形成する工程と、
     前記圧電層上に上部電極層を形成する工程と、
     前記第1の層間絶縁膜、前記下部電極層、前記圧電層、および前記上部電極層上に第2の層間絶縁膜を形成する工程と、
     前記第2の層間絶縁膜に、前記拡散配線、前記下部電極層、および前記上部電極層に至るコンタクトホールを形成する工程と、
     前記第2の層間絶縁膜上および前記コンタクトホールに金属配線を形成する工程と、
     前記他主面Si層に基準圧力室を形成する工程とを備える、半導体圧力センサの製造方法。
  20.  前記下部電極層に至るコンタクトホールと前記上部電極層に至るコンタクトホールとは、同時に形成される、請求の範囲第19項に記載の半導体圧力センサの製造方法。
  21.  ダイアフラムと、前記ダイアフラムの外縁部を支持するための支持部とを含む半導体基板と、
     前記半導体基板の主表面に配置されるとともに、前記ダイアフラムに印加された圧力に応じて各々の抵抗値を変化させる複数の抵抗素子を含む、少なくとも1つの抵抗ブリッジとを備え、
     前記複数の抵抗素子は、前記ダイアフラムと前記支持部との境界の一部を含む前記主表面内の一部の領域に、集合的に配置される、半導体圧力センサ。
  22.  前記複数の抵抗素子は、
     第1の抵抗素子と、
     前記第1の抵抗素子に電気的に接続されるとともに、前記第1の抵抗素子に隣接するように前記領域に配置された、第2の抵抗素子とを含む、請求の範囲第21項に記載の半導体圧力センサ。
  23.  前記第1の抵抗素子は、前記境界に平行する方向に沿って延在するように、前記領域に形成され、
     前記第2の抵抗素子は、前記境界と交差する方向に沿って延在するように、前記領域に形成される、請求の範囲第22項に記載の半導体圧力センサ。
  24.  前記少なくとも1つの抵抗ブリッジは、互いに電気的に並列に接続された複数の抵抗ブリッジである、請求の範囲第21項に記載の半導体圧力センサ。
  25.  ダイアフラムと、前記ダイアフラムの外縁部を支持するための支持部とを含む半導体基板と、
     前記半導体基板の主表面に配置されるとともに、前記ダイアフラムに印加された圧力に応じて各々の抵抗値を変化させる複数の抵抗素子を含む、少なくとも1つの抵抗ブリッジとを備え、
     前記複数の抵抗素子は、前記ダイアフラムと前記支持部との境界の一部を含む前記主表面内の一部の領域に、集合的に配置され、
     前記複数の抵抗素子の各々の前記抵抗値に基づいて前記圧力を示す信号を出力するための信号処理回路をさらに備える、圧力センサ装置。
  26.  電子機器であって、
     ダイアフラムと、前記ダイアフラムの外縁部を支持するための支持部とを含む半導体基板と、
     前記半導体基板の主表面に配置されるとともに、前記ダイアフラムに印加された圧力に応じて各々の抵抗値を変化させる複数の抵抗素子を含む、少なくとも1つのブリッジとを備え、
     前記複数の抵抗素子は、前記ダイアフラムと前記支持部との境界の一部を含む前記主表面内の一部の領域に、集合的に配置され、
     前記複数の抵抗素子の各々の前記抵抗値に基づいて前記圧力を示す信号を出力するための信号処理回路と、
     前記信号処理回路からの前記信号に基づいて所定の処理を実行するための本体部とをさらに備える、電子機器。
  27.  圧力に基づいて信号電圧を変化させるように構成されたセンサと、
     前記センサから出力された信号を処理するための信号処理回路とを備え、
     前記信号処理回路は、
     前記信号電圧を増幅するための増幅回路と、
     前記増幅回路の出力電圧に基づいて、前記圧力に従って変化する第1の電圧を生成するための第1の演算回路とを備え、
     前記第1の演算回路は、前記増幅回路の前記出力電圧に対して所定の相関関係を有する電圧を、所定のオフセット電圧から減算することによって、前記第1の電圧を生成するように構成される、圧力センサ装置。
  28.  前記信号処理回路は、
     前記第1の電圧に基づいて、前記圧力に従って変化する第2の電圧を生成するための第2の演算回路をさらに備え、
     前記圧力に対する前記第1の電圧の第1の変化率は、前記圧力に対する前記第2の電圧の第2の変化率と異なり、
     前記第1の電圧は、前記センサにより検出される前記圧力の範囲の上限値において、前記第2の電圧に一致する、請求の範囲第27項に記載の圧力センサ装置。
  29.  前記第2の変化率の絶対値は、前記第1の変化率の絶対値よりも大きい、請求の範囲第28項に記載の圧力センサ装置。
  30.  前記第2の演算回路は、前記第1の電圧を増幅することにより前記第2の電圧を生成する、請求の範囲第29項に記載の圧力センサ装置。
  31.  前記信号処理回路は、
     前記第1の電圧を前記信号処理回路の外部に出力するための第1の端子と、
     前記第2の電圧を前記信号処理回路の外部に出力するための第2の端子とをさらに備える、請求の範囲第28項に記載の圧力センサ装置。
  32.  前記範囲は、大気圧の標準値を含みかつ前記上限値が前記標準値の近傍の値となるように定められる、請求の範囲第28項に記載の圧力センサ装置。
  33.  圧力に基づいて信号電圧を変化させるように構成されたセンサと、
     前記センサから出力された信号を処理するための信号処理回路とを備え、
     前記信号処理回路は、
     前記信号電圧を増幅するための増幅回路と、
     前記増幅回路の出力電圧に基づいて、前記圧力に従って変化する検出電圧を生成するための演算回路とを含み、
     前記演算回路は、前記増幅回路の前記出力電圧に対して所定の相関関係を有する電圧を、所定のオフセット電圧から減算することによって、前記検出電圧を生成するように構成され、
     前記検出電圧に基づいて、所定の処理を実行する本体部をさらに備える、電子機器。
PCT/JP2010/061764 2009-07-24 2010-07-12 半導体圧力センサ、圧力センサ装置、電子機器、および半導体圧力センサの製造方法 WO2011010571A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127004745A KR101408578B1 (ko) 2009-07-24 2010-07-12 반도체 압력 센서, 압력 센서 장치, 전자 기기 및 반도체 압력 센서의 제조 방법
US13/386,712 US8770035B2 (en) 2009-07-24 2010-07-12 Semiconductor pressure sensor, pressure sensor apparatus, electronic equipment, and method of manufacturing semiconductor pressure sensor
EP10802191.6A EP2458359B1 (en) 2009-07-24 2010-07-12 Semiconductor pressure sensor, pressure sensor device, electronic apparatus, and method for manufacturing semiconductor pressure sensor
JP2011523609A JP5696045B2 (ja) 2009-07-24 2010-07-12 半導体圧力センサ
CN201080035964.XA CN102472678B (zh) 2009-07-24 2010-07-12 半导体压力传感器、压力传感器装置、电子设备以及半导体压力传感器的制造方法
US14/322,306 US9568385B2 (en) 2009-07-24 2014-07-02 Semiconductor pressure sensor, pressure sensor apparatus, electronic equipment, and method of manufacturing semiconductor pressure sensor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-173306 2009-07-24
JP2009-173305 2009-07-24
JP2009173306 2009-07-24
JP2009173305 2009-07-24
JP2009-209699 2009-09-10
JP2009209699 2009-09-10

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/386,712 A-371-Of-International US8770035B2 (en) 2009-07-24 2010-07-12 Semiconductor pressure sensor, pressure sensor apparatus, electronic equipment, and method of manufacturing semiconductor pressure sensor
US14/322,306 Continuation-In-Part US9568385B2 (en) 2009-07-24 2014-07-02 Semiconductor pressure sensor, pressure sensor apparatus, electronic equipment, and method of manufacturing semiconductor pressure sensor
US14/322,306 Division US9568385B2 (en) 2009-07-24 2014-07-02 Semiconductor pressure sensor, pressure sensor apparatus, electronic equipment, and method of manufacturing semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
WO2011010571A1 true WO2011010571A1 (ja) 2011-01-27

Family

ID=43499043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061764 WO2011010571A1 (ja) 2009-07-24 2010-07-12 半導体圧力センサ、圧力センサ装置、電子機器、および半導体圧力センサの製造方法

Country Status (6)

Country Link
US (2) US8770035B2 (ja)
EP (1) EP2458359B1 (ja)
JP (1) JP5696045B2 (ja)
KR (1) KR101408578B1 (ja)
CN (2) CN103822749B (ja)
WO (1) WO2011010571A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2528541C1 (ru) * 2013-05-08 2014-09-20 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
CN105366623A (zh) * 2014-08-12 2016-03-02 精工爱普生株式会社 物理量传感器、压力传感器、高度计、电子设备及移动体
KR20170102804A (ko) * 2016-03-02 2017-09-12 오므론 가부시키가이샤 압력 센서
KR20170102802A (ko) * 2016-03-02 2017-09-12 오므론 가부시키가이샤 압력 센서 칩 및 압력 센서
JP2018101684A (ja) * 2016-12-20 2018-06-28 ローム株式会社 センサモジュールおよびその製造方法
CN109545953A (zh) * 2018-12-24 2019-03-29 中国航空工业集团公司西安飞行自动控制研究所 一种高温压力传感器芯片的制备方法
US10260974B2 (en) 2016-03-29 2019-04-16 Rohm Co., Ltd. Electronic part with sensor exposed to ambient air
WO2021172103A1 (ja) * 2020-02-25 2021-09-02 Tdk株式会社 圧力センサ
WO2022190913A1 (ja) * 2021-03-12 2022-09-15 Tdk株式会社 圧力センサおよびセンサシステム

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9557230B2 (en) * 2011-10-21 2017-01-31 Csem Centre Suisse D'electronique Et De Microtechnique Sa—Recherche Et Developpement SiC high temperature pressure transducer
TWI486566B (zh) * 2012-02-27 2015-06-01 Fujikura Ltd 壓力感測器模組
US20150135634A1 (en) * 2013-11-15 2015-05-21 Tor Hoie Composite Building Components Building System
JP6166185B2 (ja) * 2014-01-06 2017-07-19 アルプス電気株式会社 Memsセンサ
JP2015184100A (ja) * 2014-03-24 2015-10-22 セイコーエプソン株式会社 物理量センサー、物理量センサーの製造方法、圧力センサー、高度計、電子機器および移動体
JP6130598B2 (ja) * 2014-06-09 2017-05-17 日立オートモティブシステムズ株式会社 力学量測定装置およびそれを用いた圧力センサ
US9862592B2 (en) 2015-03-13 2018-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS transducer and method for manufacturing the same
CN106487371B (zh) * 2015-09-01 2019-05-10 北京自动化控制设备研究所 一种兼容不同压力传感器的自适应接口装置
US10353503B2 (en) * 2015-10-29 2019-07-16 Texas Instruments Incorporated Integrated force sensing element
KR102455040B1 (ko) * 2016-01-29 2022-10-17 삼성디스플레이 주식회사 디스플레이 장치
JP6663284B2 (ja) * 2016-04-19 2020-03-11 アズビル株式会社 真空計状態検出方法およびシステム
CN107505089B (zh) * 2016-06-14 2021-01-12 日本特殊陶业株式会社 爆燃传感器的制造方法
CN106125789B (zh) * 2016-07-25 2018-03-23 四川人杰筑路机械有限公司 一种电加热罐智能控制系统
IT201600081649A1 (it) * 2016-08-03 2018-02-03 Kolektor Microtel S P A Sensore di pressione piezoresistivo munito di resistore di calibrazione dell’offset
CN206818338U (zh) * 2016-12-19 2017-12-29 深圳纽迪瑞科技开发有限公司 压力感应组件及具有该压力感应组件的电子设备
US10215653B2 (en) * 2017-04-06 2019-02-26 Nxp Usa, Inc. Signal interface circuit and pressure sensor system including same
US10597288B2 (en) 2017-05-30 2020-03-24 Rohm Co., Ltd. MEMS-device manufacturing method, MEMS device, and MEMS module
CN107272961B (zh) 2017-06-30 2020-07-24 厦门天马微电子有限公司 一种显示面板及显示装置
CN107479743B (zh) * 2017-07-28 2020-08-18 上海天马微电子有限公司 一种显示基板、显示面板和显示装置
WO2019107680A1 (ko) * 2017-11-28 2019-06-06 대양전기공업 주식회사 반도체 압력센서
KR101990706B1 (ko) * 2017-12-05 2019-06-18 전자부품연구원 압력 센서 및 그 제조 방법
CN108319394B (zh) * 2018-02-06 2022-04-19 京东方科技集团股份有限公司 触控面板及其驱动方法、触控装置
CN109655140A (zh) * 2019-01-29 2019-04-19 深圳市伊欧乐科技有限公司 电子秤
US11653568B2 (en) * 2020-01-08 2023-05-16 Texas Instmments Incorporated Integrated circuit stress sensor
JP7396913B2 (ja) * 2020-01-30 2023-12-12 アズビル株式会社 圧力測定装置
CN111238698B (zh) * 2020-02-27 2021-10-22 中国科学院微电子研究所 一种mems压阻传感器的内建自测试装置及测试方法
WO2021201847A1 (en) * 2020-03-31 2021-10-07 Hewlett-Packard Development Company, L.P. Strain sensor with offset control
CN111735559B (zh) * 2020-06-29 2021-09-07 沈阳中科博微科技股份有限公司 电容型边缘计算压力变送器采集诊断电路及其工作方法
US11965790B2 (en) * 2020-07-03 2024-04-23 Honeywell International Inc. Sensor diagnostic method and system for pressure transmitter
KR20220039920A (ko) 2020-09-21 2022-03-30 삼성디스플레이 주식회사 표시장치
KR20220039988A (ko) 2020-09-22 2022-03-30 삼성디스플레이 주식회사 온도 센서 및 이를 포함하는 표시 장치
EP3978890A1 (de) * 2020-10-01 2022-04-06 König Metall GmbH & Co. KG Vorrichtung zur überwachung eines vakuums
JP2022062350A (ja) * 2020-10-08 2022-04-20 アズビル株式会社 圧力測定装置
CN114136537B (zh) * 2021-11-04 2024-06-11 歌尔微电子股份有限公司 压力传感器
CN115127705B (zh) * 2022-06-23 2023-04-14 中国科学院力学研究所 一种主动驱动变形的薄膜式柔性压力传感器
EP4325189A1 (en) * 2022-08-19 2024-02-21 Meggitt SA Piezoelectric sensor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029627A (ja) 1983-07-27 1985-02-15 Toshiba Corp 半導体圧力センサ
JPH0575637U (ja) * 1992-03-16 1993-10-15 横河電機株式会社 圧力センサ
JPH05322927A (ja) * 1992-05-26 1993-12-07 Matsushita Electric Works Ltd 自己診断用駆動部を有する半導体加速度センサー
JPH1022509A (ja) * 1996-06-28 1998-01-23 Omron Corp センサ装置
JP2000340805A (ja) * 1999-04-19 2000-12-08 Motorola Inc 電子部品および製造方法
JP2001349797A (ja) 2000-06-06 2001-12-21 Denso Corp 圧力センサ
JP2008014690A (ja) * 2006-07-04 2008-01-24 Ngk Insulators Ltd 圧電/電歪膜型センサ
JP2009049026A (ja) 2006-08-01 2009-03-05 Rohm Co Ltd 半導体圧力センサ

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771638A (en) * 1985-09-30 1988-09-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor pressure sensor
US4975390A (en) * 1986-12-18 1990-12-04 Nippondenso Co. Ltd. Method of fabricating a semiconductor pressure sensor
US4993266A (en) * 1988-07-26 1991-02-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor pressure transducer
JP3071202B2 (ja) * 1989-07-19 2000-07-31 富士電機株式会社 半導体圧力センサの増巾補償回路
JP2890601B2 (ja) * 1990-02-08 1999-05-17 株式会社デンソー 半導体センサ
US5142912A (en) * 1990-06-15 1992-09-01 Honeywell Inc. Semiconductor pressure sensor
JPH0575637A (ja) 1991-09-18 1993-03-26 Hitachi Ltd ネームサーバー制御方式
US5291788A (en) * 1991-09-24 1994-03-08 Kabushiki Kaisha Toshiba Semiconductor pressure sensor
JPH06234917A (ja) 1992-12-14 1994-08-23 Mitsubishi Electric Corp 高誘電性樹脂組成物、並びにそれを用いたマルチチップモジュール、圧力センサー、感湿センサー、コンデンサー、光フィルター、光導波路およびプラズマディスプレイ
JPH08274350A (ja) * 1995-03-29 1996-10-18 Yokogawa Electric Corp 半導体圧力センサ及びその製造方法
JPH10281897A (ja) * 1997-04-08 1998-10-23 Mitsubishi Electric Corp 半導体圧力検出装置
CN1147719C (zh) * 1999-04-07 2004-04-28 株式会社山武 半导体压力传感器
US6422088B1 (en) * 1999-09-24 2002-07-23 Denso Corporation Sensor failure or abnormality detecting system incorporated in a physical or dynamic quantity detecting apparatus
JP2002310826A (ja) * 2001-02-08 2002-10-23 Tgk Co Ltd 圧力センサの調整方法
TWI224190B (en) * 2003-05-28 2004-11-21 Au Optronics Corp Semiconductor pressure sensor
CN2637741Y (zh) * 2003-07-25 2004-09-01 无锡市海鹰传感器公司 电子式车用机油压力传感器
US7131334B2 (en) 2004-04-19 2006-11-07 Celerity, Inc. Pressure sensor device and method
EP2037251A4 (en) 2006-07-04 2012-10-24 Ngk Insulators Ltd PIEZOELECTRIC / ELECTROSTRICTIVE FILM-TYPE SENSOR
KR100807193B1 (ko) * 2006-09-08 2008-02-28 한국과학기술원 정전용량형 압력센서의 제조방법 및 이에 의해 제조된정전용량형 압력센서
CN201130046Y (zh) * 2007-12-18 2008-10-08 昆山双桥传感器测控技术有限公司 波浪采集仪
JP2009156658A (ja) * 2007-12-26 2009-07-16 Renesas Technology Corp 半導体圧力センサ装置、データ処理装置、血圧計、掃除機及び気圧計
CN201464117U (zh) * 2009-06-01 2010-05-12 杭州科岛微电子有限公司 电子式机油压力传感器
CN101644612B (zh) * 2009-07-17 2011-12-28 昆山诺金传感技术有限公司 可编程压力传感器
CN102834715B (zh) * 2010-04-08 2015-09-16 恩德莱斯和豪瑟尔两合公司 应变式压力传感器
KR101215919B1 (ko) * 2010-08-13 2012-12-27 전자부품연구원 정전용량형 압력센서 및 그의 제조방법
WO2012080811A1 (ja) * 2010-12-15 2012-06-21 パナソニック株式会社 半導体圧力センサ
JP5878340B2 (ja) * 2011-11-15 2016-03-08 ルネサスエレクトロニクス株式会社 半導体装置及びセンサシステム
JP6054732B2 (ja) * 2012-12-14 2016-12-27 ルネサスエレクトロニクス株式会社 半導体装置及びオフセット電圧の補正方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029627A (ja) 1983-07-27 1985-02-15 Toshiba Corp 半導体圧力センサ
JPH0426051B2 (ja) 1983-07-27 1992-05-06 Tokyo Shibaura Electric Co
JPH0575637U (ja) * 1992-03-16 1993-10-15 横河電機株式会社 圧力センサ
JPH05322927A (ja) * 1992-05-26 1993-12-07 Matsushita Electric Works Ltd 自己診断用駆動部を有する半導体加速度センサー
JPH1022509A (ja) * 1996-06-28 1998-01-23 Omron Corp センサ装置
JP2000340805A (ja) * 1999-04-19 2000-12-08 Motorola Inc 電子部品および製造方法
JP2001349797A (ja) 2000-06-06 2001-12-21 Denso Corp 圧力センサ
JP2008014690A (ja) * 2006-07-04 2008-01-24 Ngk Insulators Ltd 圧電/電歪膜型センサ
JP2009049026A (ja) 2006-08-01 2009-03-05 Rohm Co Ltd 半導体圧力センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2458359A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2528541C1 (ru) * 2013-05-08 2014-09-20 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
CN105366623A (zh) * 2014-08-12 2016-03-02 精工爱普生株式会社 物理量传感器、压力传感器、高度计、电子设备及移动体
KR101953455B1 (ko) 2016-03-02 2019-02-28 오므론 가부시키가이샤 압력 센서
KR20170102802A (ko) * 2016-03-02 2017-09-12 오므론 가부시키가이샤 압력 센서 칩 및 압력 센서
KR101953454B1 (ko) 2016-03-02 2019-02-28 오므론 가부시키가이샤 압력 센서 칩
KR20170102804A (ko) * 2016-03-02 2017-09-12 오므론 가부시키가이샤 압력 센서
US10260974B2 (en) 2016-03-29 2019-04-16 Rohm Co., Ltd. Electronic part with sensor exposed to ambient air
JP2018101684A (ja) * 2016-12-20 2018-06-28 ローム株式会社 センサモジュールおよびその製造方法
CN109545953A (zh) * 2018-12-24 2019-03-29 中国航空工业集团公司西安飞行自动控制研究所 一种高温压力传感器芯片的制备方法
CN109545953B (zh) * 2018-12-24 2023-01-17 中国航空工业集团公司西安飞行自动控制研究所 一种高温压力传感器芯片的制备方法
WO2021172103A1 (ja) * 2020-02-25 2021-09-02 Tdk株式会社 圧力センサ
JP2021135084A (ja) * 2020-02-25 2021-09-13 Tdk株式会社 圧力センサ
JP7359032B2 (ja) 2020-02-25 2023-10-11 Tdk株式会社 圧力センサ
WO2022190913A1 (ja) * 2021-03-12 2022-09-15 Tdk株式会社 圧力センサおよびセンサシステム

Also Published As

Publication number Publication date
EP2458359A1 (en) 2012-05-30
US9568385B2 (en) 2017-02-14
EP2458359B1 (en) 2022-04-27
CN103822749A (zh) 2014-05-28
EP2458359A4 (en) 2018-01-10
JP5696045B2 (ja) 2015-04-08
JPWO2011010571A1 (ja) 2012-12-27
CN102472678B (zh) 2014-04-23
CN102472678A (zh) 2012-05-23
KR101408578B1 (ko) 2014-06-17
US20140311249A1 (en) 2014-10-23
CN103822749B (zh) 2016-05-04
US8770035B2 (en) 2014-07-08
US20120118068A1 (en) 2012-05-17
KR20120053010A (ko) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5696045B2 (ja) 半導体圧力センサ
US8631707B2 (en) Differential temperature and acceleration compensated pressure transducer
KR100741520B1 (ko) 다이어프램을 갖는 반도체 압력 센서
US11054319B2 (en) Strain gauge with mechanically decoupled temperature sensor
US7343808B2 (en) Line pressure compensated differential pressure transducer assembly
US7866215B2 (en) Redundant self compensating leadless pressure sensor
KR20060124537A (ko) 반도체 압력 센서
WO2011092563A1 (ja) 圧力センサ
JP5853169B2 (ja) 半導体圧力センサ
JP2001272293A (ja) 圧力センサ
KR20090087847A (ko) 반도체 감왜 센서
US11643324B2 (en) MEMS sensor
JP2014048072A (ja) 圧力センサモジュール
US7178403B2 (en) Transducer responsive to pressure, vibration/acceleration and temperature and methods of fabricating the same
JP5866496B2 (ja) 半導体圧力センサ
JP2019060810A (ja) 圧力センサ
JP3019549B2 (ja) 半導体加速度センサ
US20190204171A1 (en) Pressure sensor
JPS59217374A (ja) 半導体ひずみ変換器
JP2650623B2 (ja) 半導体加速度センサ
CN114577390A (zh) 一种低压mems压力传感器及其制备方法
JPS61245036A (ja) 半導体圧力検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035964.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802191

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523609

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13386712

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010802191

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127004745

Country of ref document: KR

Kind code of ref document: A