CN103822749A - 压力传感器装置以及电子设备 - Google Patents

压力传感器装置以及电子设备 Download PDF

Info

Publication number
CN103822749A
CN103822749A CN201410106439.2A CN201410106439A CN103822749A CN 103822749 A CN103822749 A CN 103822749A CN 201410106439 A CN201410106439 A CN 201410106439A CN 103822749 A CN103822749 A CN 103822749A
Authority
CN
China
Prior art keywords
voltage
pressure sensor
resistance
piezoelectric element
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410106439.2A
Other languages
English (en)
Other versions
CN103822749B (zh
Inventor
山田宣幸
樱木正广
吉田武司
林启
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Publication of CN103822749A publication Critical patent/CN103822749A/zh
Application granted granted Critical
Publication of CN103822749B publication Critical patent/CN103822749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/008Transmitting or indicating the displacement of flexible diaphragms using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

半导体压力传感器(720)包括对与薄壁区域(402)对应的半导体基板的部分赋予变形的薄膜压电元件(701)。薄膜压电元件(701)从具有作为变形计功能的扩散电阻(406、408、410、及412)隔开距离地形成,延伸设置到连接到薄膜压电元件的上部电极层的焊盘(716A)以及连接到下部电极层的焊盘(716F)附近为止。扩散电阻(406、408、410、及412)通过金属布线(722)和扩散布线(724)构成桥式电路。在自身诊断时,薄膜压电元件(701)上被施加规定电压。如果电压施加前后的桥式电路的输出差在规定的范围外,则判断为在半导体压力传感器(720)上产生了损坏。

Description

压力传感器装置以及电子设备
本申请是申请日为2010年7月12日、申请号为201080035964.X、发明名称为“半导体压力传感器、压力传感器装置、电子设备以及半导体压力传感器的制造方法”的发明专利申请的分案申请。
技术领域
本发明涉及基于压力施加造成的可变形的隔膜的变形(strain),将压力变换为电信号的半导体压力传感器、包括该半导体压力传感器的压力传感器装置、包含压力传感器装置的电子设备、以及半导体压力传感器的制造方法。
背景技术
以往,在遍及汽车的内燃机构、民用设备、测量设备、医疗设备等多分支的领域中,使用半导体压力传感器作为将压力变换为电信号的小型的装置。在民用设备的领域中,半导体压力传感器例如用于硬盘驱动器、电热水器、空调、洗衣机、洗碗机和吸尘器等。在测量设备的领域中,半导体压力传感器例如用于空气压力计、水压计和油压计等。在医疗设备的领域中,半导体压力传感器例如用于血压计等。
利用在半导体集成电路的制造上使用的微细加工技术来制作半导体压力传感器。一般地,半导体压力传感器具备通过将硅基板的一部分加工为薄膜状所形成的隔膜。
通过隔膜上施加的压力,在隔膜上产生变形。为了检测在隔膜中产生的变形,使其电阻值根据压力而变化的电阻元件(例如压电元件)被配置在硅基板的表面。半导体压力传感器根据电阻元件的电阻值的变化检测压力。
例如,专利文献1(特开2009-49026号公报)公开了各自具有电阻元件功能的包括四个肖特基势垒二极管(Schottky barrier diode)的半导体压力传感器。四个肖特基势垒二极管构成惠斯登电桥。肖特基势垒二极管的内部电阻因肖特基接合部产生的变形而变化。
图47是表示一例以往的半导体压力传感器的图。参照图47,半导体压力传感器100具有薄壁部102和厚壁部104产生的隔膜结构。在图47中,薄壁部102表示为虚线包围的区域。厚壁部104位于薄壁部102周围。在薄壁部102的一主面中,形成变形计电阻106、108、110、以及112。
图48是图47所示的半导体压力传感器100的XLVIII-XLVIII剖面图。参照图48,玻璃基板116被设置在厚壁部104的底面。
根据上述结构,在薄壁部102和玻璃基板116之间,形成其外周被厚壁部104包围的基准压力室114。在将半导体压力传感器100用作绝对气压的测量的情况下,基准压力室114通常为真空状态。
根据半导体压力传感器100的周围的气压,在薄壁部102中产生变形。根据该变形,变形计电阻106、108、110、以及112的电阻值产生变化。变形计电阻106、108、110、以及112通过未图示的布线构成桥式电路(bridgecircuit)。
图49是表示由图47所示的变形计电阻106、108、110、以及112构成的桥式电路150的图。参照图49,在输入端子122A、122B之间被施加规定电压。在输出端子120A、120B之间产生与薄壁部102的变形对应的电压。
为了提高具有图47~图49所示的结构的半导体压力传感器的灵敏度,需要使薄壁部薄。但是,在半导体压力传感器的制造中或半导体压力传感器的使用中,有时在薄壁部中产生损坏。
一般地,难以通过目视来确认薄壁部的损坏。因此,在以往的可靠性试验中,例如采用一边使配置了半导体压力传感器的密闭腔内的气压变化,一边确认该压力传感器的输出的方法。
但是,在上述方法中,为了可靠性试验而需要大规模的装置和较长的试验时间。而且,在将半导体压力传感器装入在电子设备内部后,难以对该传感器进行试验。
专利文献2(特开昭60-29627号公报(特公平4-26051号公报))公开了可检测隔膜的破损的半导体压力传感器。图50是用于说明专利文献2的图1所示的半导体压力传感器的图。参照图50,半导体压力传感器200包括:变形计电阻202、204;布线206;以及晶体管208。变形计电阻202、204、布线206、以及晶体管208被配置在隔膜201的一主面中。
布线206形成在与隔膜201的裂开方向A、B两方交叉的方向上。在布线206因隔膜201的破损而断线的情况下,通过晶体管208检测隔膜201的破损。
专利文献3(特开2001-349797号公报)公开了可检测隔膜的异常的压力传感器。图51是用于说明专利文献3的图1所示的半导体压力传感器的图。参照图51,半导体压力传感器300包括:包含薄壁部302A的隔膜302;检测部304A、304B、以及304C;变形赋予构件306;支承构件308;以及底座310。检测部304A、304B、以及304C基于薄壁部302A的变形输出电信号。变形赋予构件306使薄壁部304A强制性地产生变形。支承构件308支承变形赋予构件306。
变形赋予构件306由PZT(锆钛酸铅(lead zirconate titanate))等压电元件构成。通过在变形赋予构件306上施加电压,变形赋予构件306膨胀。通过变形赋予构件306膨胀,薄壁部302A被按压到下方。通过薄壁部302A被按下,可以使薄壁部302A强制性地产生变形。
现有技术文献
专利文献
专利文献1:特开2009-49026号公报
专利文献2:特开昭60-29627号公报(特公平4-26051号公报)
专利文献3:特开2001-349797号公报
发明内容
发明要解决的课题
专利文献2公开了通过沿与隔膜的裂开方向交叉的方向配置布线,检测隔膜的破损的技术思想。但是,根据专利文献2公开的结构,如果随着隔膜的破损用于检测破损的布线不断线则不能检测隔膜的破损。
而且,根据专利文献2公开的结构,使用用于检测隔膜的破损的晶体管。因此,为了检测隔膜的破损而需要向晶体管供给电流。
专利文献3公开了在半导体压力传感器的薄壁部的表面中配置压电元件,同时通过该压电元件使薄壁部中强制地产生变形的技术。
根据该技术,基于对压电元件的电压施加后的半导体压力传感器的输出,可以进行半导体压力传感器的自身诊断。
但是,专利文献3的图1所示的半导体压力传感器,具有通过支承构件固定压电元件的结构。因此,为了制造专利文献3所公开的半导体压力传感器而需要复杂的工序。专利文献3启示了通过公知的IC制造方法,在隔膜的一主面中形成压电元件。但是,专利文献3未明确论述有关在半导体压力传感器的一主面中作为薄膜形成压电,由此不需要压电元件的支承构件的结构。
在薄壁部的表面中配置薄膜的压电元件的情况下,需要考虑薄膜压电元件的配置。如果单纯地在薄壁部的全体表面中配置薄膜压电元件,则因薄壁部和薄膜压电元件之间的热膨胀率的差异,在薄壁部中产生未预期的变形。因此,在半导体压力传感器的输出上产生错乱。
而且,为了薄膜压电元件进行的自身诊断功能正常地进行工作,也必须顾及薄膜压电元件的配置。
因生成隔膜时的加工精度,在隔膜的位置和电阻元件的位置之间有可能产生偏移。因隔膜和电阻元件之间的相对位置偏移,在由相同工序制造的多个压力传感器装置之间,有可能产生电阻桥的特性的偏差。电阻桥的特性,例如是隔膜上所施加的压力和电阻桥的输出电压之间的关系。
一般地,压力传感器装置构成为可以在宽范围内检测压力。例如,大气压在标准气压(约101.3[kPa])的附近变化。在为了大气压的检测而使用半导体压力传感器的情况下,优选该传感器的灵敏度在标准气压附近较高。
但是,根据以往的压力传感器装置的结构,压力传感器装置的检测范围宽。因此,不容易构成这样的压力传感器装置,以使压力传感器装置的灵敏度在期望的区域、特别仅在靠近检测范围的上限值的区域中变高。
用于解决课题的方案
本发明的一个目的在于,提供通过在薄壁部上配置薄膜压电元件而能够执行自身诊断,同时可降低该薄膜压电元件造成的对输出的影响的半导体压力传感器。
本发明的另一目的在于,抑制因隔膜的位置和电阻桥的位置之间的偏移造成的电阻桥的特性的偏差增大。
本发明的另一目的在于,可在半导体压力传感器的检测范围的上限值附近的区域中提高该半导体压力传感器的检测灵敏度。
在本说明书中‘自身诊断功能’是指半导体压力传感器检测该半导体压力传感器自身的结构性缺陷的功能。
在本说明书中‘诊断基准电压’是指不存在隔膜的破损等缺陷的半导体压力传感器实施自身诊断时的、半导体压力传感器的输出电压的差分。
在本说明书中‘偏置(offset)电压’是指在隔膜中不产生变形的状态下的、半导体压力传感器的输出。
在本说明书中‘薄壁区域’包含在半导体基板中形成的薄壁部的表面、以及薄壁部。在本说明书中‘厚壁区域’包含在半导体基板中形成的厚壁部的表面、以及厚壁部。
在本发明的某个方案中,半导体压力传感器包括:半导体基板,其具有薄壁区域和设置在薄壁区域周围的厚壁区域;至少一个变形计电阻,其形成在半导体基板的一主面上,使电阻值根据与薄壁区域对应的半导体基板部分的变形变化;以及至少一个薄膜压电元件,其形成在半导体基板上的、包含薄壁区域的至少一部分的区域中,具有下部电极层、压电层和上部电极层。至少一个薄膜压电元件形成在由至少一个变形计电阻隔开距离的区域中。
根据上述结构,可以基于对薄膜压电元件的电压施加前后的半导体压力传感器的输出,进行半导体压力传感器的自身诊断。而且,通过降低薄膜压电元件和半导体基板之间的热膨胀率的差异造成的变形计电阻的变形,可以防止在半导体压力传感器的输出、例如偏置电压等上产生错乱。
优选是至少一个薄膜压电元件具有在面向薄壁区域的中央部分的方向上具有长度方向轴的细长形状。
根据上述结构,由于可以通过小面积的薄膜压电元件使薄壁区域整体均匀地变形,所以可以提高自身诊断的精度。
在本发明的一实施方式中,设置至少一个薄膜压电元件,以使其横穿薄壁区域和厚壁区域的边界并延伸至厚壁区域。
根据上述结构,由于薄膜压电元件的一部分被物理性地固定在牢固的厚壁区域上,所以在自身诊断时对薄壁部赋予的变形量稳定。由此,可以提高自身诊断的精度,同时可以仅在厚壁区域上进行薄膜压电元件的金属布线。
在本发明的一实施方式中,设置至少一个薄膜压电元件,以使其在厚壁区域中沿薄壁区域的外围延伸。
根据上述结构,薄膜压电元件的一部分被牢固地固定在厚壁区域上。由此,由于在自身诊断时对薄壁部赋予的变形量稳定,所以可以提高自身诊断的精度。
在本发明的一实施方式中,至少一个薄膜压电元件也可以包含形成在半导体基板上的多个薄膜压电元件。
根据上述结构,可以通过在半导体基板上的不同位置形成的多个薄膜压电元件上施加相同电压,使薄壁部全体均匀地变形。
在本发明的一实施方式中,多个薄膜压电元件在所述厚壁区域上相互地结合(couple)。
根据上述结构,由于薄膜压电元件的上部电极层的布线和薄膜压电元件的下部电极层的布线各一个即可,所以可以简化半导体压力传感器的结构。
在本发明的一实施方式中,多个薄膜压电元件也可以延伸至薄壁区域的中央部分并且在薄壁区域的中央部相互地结合。
在本发明的一实施方式中,半导体压力传感器还包括在厚壁区域上设置的多个焊盘,也可以设置至少一个薄膜压电元件,以使其延伸至多个焊盘中的至少一个焊盘附近。
根据上述结构,由于可以缩短薄膜压电元件的金属布线,所以可以扩大在变形计电阻的金属布线中能够利用的区域。由此,在连接多个变形计电阻构成桥式电路时,可以容易地进行布线长度的调整。
在本发明的一实施方式中,多个焊盘也可以并排设置在半导体基板的一侧。
根据上述结构,可以提高引线键合(wire bonding)时的便利性。
在本发明的一实施方式中,上部电极层和下部电极层也可以分别连接到半导体基板的一侧并排的多个焊盘中的、位于第1端的第1焊盘和位于第2端的第2焊盘。
在本发明的一实施方式中,半导体压力传感器包括四个上述变形计电阻,薄壁区域呈现大致四边形,变形计电阻也可以形成在所述薄壁区域的各边的中点附近。
根据上述结构,由于可以使变形计电阻的电阻值极大地变化,所以可以提高半导体压力传感器的灵敏度。
优选是至少一个薄膜压电元件形成在薄壁区域的对角线上。
在本发明的一实施方式中,薄壁区域也可以呈现大致圆形。
根据上述结构,由于圆周上的半导体基板的变形方式是相同的,所以变形计电阻的配置中的自由度高。
优选是变形计电阻是通过在半导体基板的一主面上扩散杂质而形成的扩散电阻。
优选是压电层的主成分是PZT。
优选是变形计电阻连接到薄壁区域上的布线,布线包含扩散布线。
优选是压电层的厚度为0.01μm以上、5μm以下。
根据上述结构,由于可以同时地形成到达薄膜压电元件的上部电极层的接触孔和到达薄膜压电元件的下部电极层的接触孔,所以可以缩短半导体压力传感器的制造时间。
优选是半导体基板是SOI(Silicon On Insulator;硅-绝缘体)基板。
根据上述结构,在薄壁部的制造时,可以使薄壁部的厚度的精度高。
在本发明的另一方案中,半导体压力传感器的制造方法包括:准备具有第1导电型的一主面Si层、以及具有其他主面Si层的半导体基板的工序;在一主面Si层中形成具有与第1导电型不同的第2导电型的变形计电阻的工序;在与一主面Si层中的变形计电阻邻接的区域中,形成具有所述第2导电型且杂质浓度比变形计电阻高的扩散布线的工序;在一主面Si层上形成第1层间绝缘膜的工序;在第1层间绝缘膜上形成下部电极层的工序;在下部电极层上形成压电层的工序;在压电层上形成上部电极层的工序;在第1层间绝缘膜、下部电极层、压电层、以及上部电极层上形成第2层间绝缘膜的工序;在第2层间绝缘膜中,形成至扩散布线、下部电极层、以及上部电极层的接触孔的工序;在第2层间绝缘膜上和接触孔中形成金属布线的工序;以及在其他主面Si层中形成基准压力室的工序。
在上述制造方法中,同时地形成至下部电极层的接触孔和至上部电极层的接触孔。
在本发明的另一方案中,半导体压力传感器包括:半导体基板;以及至少一个电阻桥。半导体基板包括:隔膜;以及用于支承隔膜的外缘部的支承部。至少一个电阻桥被配置在半导体基板的主表面中。至少一个电阻桥包含根据隔膜上所施加的压力使各个电阻值变化的多个电阻元件。多个电阻元件集中地配置在包含隔膜和支承部的边界的一部分的主表面内的一部分区域中。
优选是多个电阻元件包括:第1电阻元件;以及第2电阻元件。第2电阻元件与第1电阻元件进行电连接,并且配置在区域中,以使其与第1电阻元件邻接。
优选是第1电阻元件形成在区域中,以使其沿平行于边界的方向延展。第2电阻元件形成在区域中,以使其沿与边界交叉的方向延展。
优选是至少一个电阻桥是相互并联地电连接的多个电阻桥。
在本发明的另一方案中,压力传感器装置包括:半导体基板;以及至少一个电阻桥。半导体基板包括隔膜和用于支承隔膜的外缘部的支承部。至少一个电阻桥被配置在半导体基板的主表面中。至少一个电阻桥包含根据隔膜上所施加的压力而使各自的电阻值变化的多个电阻元件。多个电阻元件集中地配置在包含隔膜和支承部的边界的一部分的主表面内的一部分区域中。压力传感器装置还包括基于多个电阻元件的各自的电阻值,输出表示压力的信号的信号处理电路。
在本发明的另一方案中,电子设备包括:半导体基板;以及至少一个电阻桥。半导体基板包括隔膜和用于支承隔膜的外缘部的支承部。至少一个电阻桥被配置在半导体基板的主表面中。至少一个电阻桥包含根据对隔膜施加的压力而使各个电阻值变化的多个电阻元件。多个电阻元件集中地配置在包含隔膜和支承部的边界的一部分的主表面内的一部分区域中。电子设备还包括:用于基于多个电阻元件的各个电阻值,输出表示压力的信号的信号处理电路;以及基于来自信号处理电路的信号,执行规定的处理的本体部。
在本发明的另一方案中,压力传感器装置包括:传感器,使信号电压基于压力产生变化;以及信号处理电路,用于处理从传感器输出的信号。信号处理电路包括:放大电路,用于放大信号电压;以及运算电路,用于基于放大电路的输出电压,生成根据压力产生变化的检测电压。运算电路通过从规定的偏置电压中减去对于放大电路的输出电压具有规定的相关关系的电压,生成检测电压。
优选是信号处理电路还包括:第2运算电路,用于基于第1电压,生成根据压力产生变化的第2电压。第1电压对压力的第1变化率与第2电压对压力的第2变化率不同。第1电压在由传感器检测的压力范围的上限值中,与第2电压一致。
优选是第2变化率的绝对值大于第1变化率的绝对值。
优选是第2运算电路通过放大第1电压而生成第2电压。
优选是信号处理电路还包括:第1端子,用于将第1电压输出到信号处理电路的外部;以及第2端子,用于将第2电压输出到信号处理电路的外部。
优选是确定压力的范围,以使其包含大气压的标准值并且上限值为标准值附近的值。
在本发明的另一方案中,电子设备包括:传感器,其使信号电压基于压力产生变化;以及信号处理电路,用于处理从传感器输出的信号。信号处理电路包括:放大电路,用于放大信号电压;以及运算电路,用于基于放大电路的输出电压,生成根据压力产生变化的检测电压。运算电路通过从规定的偏置电压中减去对于放大电路的输出电压有规定的相关关系的电压,生成检测电压。电子设备还包括基于检测电压,执行规定的处理的本体部。
发明效果
根据本发明,通过对在薄壁区域上形成的薄膜压电元件施加电压,可以进行半导体压力传感器的自身诊断。由于薄膜压电元件形成在由变形计电阻隔开的区域中,所以可以将薄膜压电元件和半导体基板之间的热膨胀率的差异造成的变形计电阻的变形抑制到最小限度。因此,可以防止半导体压力传感器的输出上产生错乱。
根据本发明,设置薄膜压电元件,以使其延伸至厚壁区域上的规定的位置。由此,可以将薄膜压电元件的一部分固定在厚壁区域中,同时可以缩短薄膜压电元件的金属布线。因此,自身诊断的精度高,并且可以扩大在变形计电阻的金属布线中能够使用的区域。
根据本发明,可以抑制隔膜的位置和电阻桥的位置之间的偏移造成的、电阻桥的特性的偏差增大。
根据本发明,可以提高检测范围的上限值附近的区域中的压力传感器装置的检测灵敏度。
附图说明
图1是概念性地表示包括本发明的实施方式的压力传感器装置的电子设备的结构的方框图。
图2是图1所示的压力传感器装置10的俯视图。
图3是图1所示的压力传感器装置10的侧面图。
图4是表示图2及图3所示的压力传感器装置10的内部的剖面图。
图5是本发明的第1实施方式的半导体压力传感器400的俯视图。
图6是图5所示的半导体压力传感器400的VI-VI剖面图。
图7是示意地表示在图5所示的半导体压力传感器400中,因基准压力室418内部的压力和外部气压之间的气压差而在薄壁区域402中产生了变形的状态的图。
图8是示意地表示图5所示的半导体压力传感器400的VIII-VIII剖面的剖面图。
图9是绘制了改变了对薄膜压电元件414的施加电压时的、薄壁区域402中心的位移量的例子的图。
图10是表示一例在图1所示的半导体压力传感器400中的、扩散电阻406、408、410、412和薄膜压电元件414的布线图案的图。
图11是表示本发明的第1实施方式的半导体压力传感器400的变形例的俯视图。
图12是本发明的第2实施方式的半导体压力传感器500的俯视图。
图13是表示图12所示的半导体压力传感器500的变形例的图。
图14是表示图12所示的半导体压力传感器500的另一变形例的图。
图15是本发明的第3实施方式的半导体压力传感器600的俯视图。
图16是表示图15所示的半导体压力传感器600的变形例的图。
图17是本发明的第4实施方式的半导体压力传感器700的俯视图。
图18是表示可将偏置电压设定为0的金属布线和扩散布线的例子的图。
图19是表示图17所示的半导体压力传感器700的其他变形例的图。
图20是表示图17所示的半导体压力传感器700的又一其他变形例的图。
图21是表示本发明的制造方法的第1工序的图。
图22是表示本发明的制造方法的第2工序的图。
图23是表示本发明的制造方法的第3工序的图。
图24是表示本发明的制造方法的第4工序的图。
图25是表示本发明的制造方法的第5工序的图。
图26是表示本发明的制造方法的第6工序的图。
图27是表示本发明的制造方法的第7工序的图。
图28是概略性地表示本发明的第5实施方式的传感器的结构的平面图。
图29是表示图28所示的硅基板6的主表面6A上的应力与位置之间关系的图。
图30是图28所示的电阻桥B1~B4的电路图。
图31是详细地表示图28所示的电阻桥B1的图。
图32是表示第5实施方式的传感器的比较例的结构的平面图。
图33是用于说明在图32所示的传感器1A的制造时可能产生的问题的第1图。
图34是用于说明在图32所示的传感器1A的制造时可能产生的问题的第2图。
图35是第6实施方式的信号处理电路的电路图。
图36是表示隔膜上所施加的压力和从惠斯登电桥输出的电压之间关系的图。
图37是表示隔膜上所施加的压力和从信号处理电路2的运算单元22输出的电压Vout1之间关系的图。
图38是表示隔膜上所施加的压力和从信号处理电路2的运算单元23输出的电压Vout2之间关系的图。
图39是表示第6实施方式的信号处理电路的比较例的结构的电路图。
图40是表示隔膜上所施加的压力和从信号处理电路251的运算单元32输出的电压Vout之间关系的图。
图41是示意地表示压力传感器装置10中所包含的传感器1的状态的剖面图。
图42是示意地表示传感器的研讨例子的剖面图。
图43是表示第6实施方式的信号处理电路的第1变形例的图。
图44是用于说明从图43所示的运算单元22A输出的电压Vout1的图。
图45是表示第6实施方式的信号处理电路的第2变形例的图。
图46是表示第6实施方式的信号处理电路的第3变形例的图。
图47是表示一例以往的半导体压力传感器的图。
图48是图47所示的半导体压力传感器100的XLVIII-XLVIII剖面图。
图49是表示由图47所示的变形计电阻106、108、110及112构成的桥式电路150的图。
图50是用于说明专利文献2的图1所示的半导体压力传感器的图。
图51是用于说明专利文献3的图1所示的半导体压力传感器的图。
标号说明
1、400、500、530、550、600、630、700、720、730、780、800半导体压力传感器,1A传感器,2、2A、2B、2C、251信号处理电路,3外壳,3A容器,3B盖,4、6C开口部,5、15A、15B、15C布线,6硅基板,6A、6B主表面,6A1、6A2、6A3、6A4区域,7隔膜,7A边界,8支承部,9底座,10压力传感器装置,11~14、11A~14A、11B~14B、11C~14C、11D~14D电阻元件,16A、16B、16C、16D电极,20、25~29节点,21放大单元,22、23、22A、32运算单元,30、35端子,36选择单元,50本体部,211、212、221、231差动放大器,213~215、222~225、232、233电阻,226、226A偏置电源,227、234驱动电源,401半导体基板,402薄壁区域,402A薄壁部,402C中心,404厚壁区域,404A厚壁部,406、408、410、412、818扩散电阻,414、502、532、552、602、604、606、608、632、634、636、638、701、702、704、706、708、782薄膜压电元件,414A、502A、532A、552A、602A、604A、606A、608A、636A、701A、824下部电极层,414B、826压电层,414C、828上部电极层,415箭头,416、842玻璃基板,418、840基准压力室,420、432、504、712、722、834A金属布线,422、714、724、820A、820B扩散布线,424、426、428、434、438、516、518、610、612、614、616、618、620、622、624、640、642、716、716A、716B、716C、716D、716F、838焊盘,532X、532Y、554、710A、710E、710F延伸设置部,784缝隙部,802基板,804一主面Si层,806埋入氧化膜层,808其他主面Si层,810焊盘氧化膜,812SiN膜,813有源区域,814抗蚀剂,816场氧化膜,822第1层间绝缘膜,830第2层间绝缘膜,832A、832B、832C接触孔,836钝化膜,1000电子设备,B1~B4电阻桥,O中心点,X、Y直线。
具体实施方式
以下,参照附图详细地说明本发明的实施方式。再有,在图中同一或相当部分上附加同一标号而不重复其说明。
图1是概念性地表示包括本发明的实施方式的压力传感器装置的电子设备的结构的方框图。参照图1,本发明的实施方式的电子设备1000包括压力传感器装置10和本体部50。压力传感器装置10包括半导体压力传感器(以下,有时简称为‘传感器’)1和信号处理电路2。在一个实施方式中,压力传感器装置10被用于检测大气压。但是,压力传感器装置10的用途不限于大气压的检测。
半导体压力传感器1检测在半导体压力传感器1上施加的压力(例如大气压),同时将表示该检测结果的信号电压发送到信号处理电路2。半导体压力传感器1根据半导体压力传感器1上施加的压力使信号电压产生变化。
信号处理电路2基于来自半导体压力传感器1的信号电压,生成表示在半导体压力传感器1上施加的压力的检测电压(信号)。信号处理电路2将该检测电压输出到本体部50。本体部50基于从信号处理电路2输出的检测电压(即从压力传感器装置10输出的检测电压)执行规定的处理。
本发明的实施方式的电子设备1000的种类没有特别限定。作为一例,电子设备1000为硬盘。在硬盘的情况下,磁盘和磁头之间的间隔可因硬盘周边的气压而产生变动。例如,本体部50包括磁盘、磁头、以及用于调整磁盘和磁头之间的间隔的机构。本体部50基于来自压力传感器装置10的检测电压,调整磁盘和磁头之间的间隔,以使磁盘和磁头之间的间隔保持恒定。
在其他的例子中,电子设备1000是汽车导航系统。车辆周围的大气压因车辆的高度产生变化。本体部50基于来自压力传感器装置10的检测电压,计算车辆的当前的高度。由此,系统可以获取车辆的高度信息。
图2是图1所示的压力传感器装置10的俯视图。图3是图1所示的压力传感器装置10的侧面图。参照图2和图3,半导体压力传感器1和信号处理电路2被容纳在外壳3的内部。半导体压力传感器1和信号处理电路2通过布线5而被电连接。在外壳3中,形成用于将大气从外壳3的外部导入到外壳3的内部的开口部4。
图4是表示图2和图3所示的压力传感器装置10的内部的剖面图。参照图4,外壳3包括容器3A、以及用于挡住容器3A的盖3B。容器3A例如由陶瓷形成。盖3B例如由金属形成。在盖3B中形成开口部4(通孔)。
半导体压力传感器1包含一体地形成了隔膜7和支承隔膜7的外缘的支承部8的硅基板6。隔膜7通过将硅基板6的一部分加工为薄膜状而形成。例如,通过介由规定的蚀刻掩模(etching mask),在硅基板6的背面上进行蚀刻,形成隔膜7和支承部8。
硅基板6被设置在底座9上。硅基板6的背面上形成的开口部被底座9挡住。因此,在硅基板6的内部,形成固定地保持了压力的压力室。在本实施方式中,压力室的内部大致为真空(0[Pa])。以下将压力室的内部的压力也称为‘基准压力’。
信号处理电路2例如是在硅芯片上形成的半导体集成电路。信号处理电路的结构在后面详细地说明。在形成了隔膜7的硅基板6的主表面上,形成电阻元件(未图示)。该电阻元件和信号处理电路2通过布线5连接。布线5例如是金制的线。
为了提高形成了信号处理电路2的半导体芯片的防潮性,例如也可以由树脂密封硅芯片。同样地,从防潮的观点来说,外壳3的内部的空间也可以被填满难以通过水分的原材料(例如凝胶(gel)等)。但是,该原材料被要求可以变形,以通过压力传感器装置10的周围的气压对隔膜7施加压力。
下面,说明图1~图3所示的半导体压力传感器1的实施方式。再有,在各实施方式的半导体压力传感器的结构中,薄壁区域对应于图4所示的隔膜7,厚壁区域对应于图4所示的支承部8。
[第1实施方式]
图5是本发明的第1实施方式的半导体压力传感器400的俯视图。参照图5,半导体压力传感器400具有半导体基板401。半导体基板401具有薄壁区域402和厚壁区域404。薄壁区域402设置在半导体基板401的主表面的大致中央。厚壁区域404设置在薄壁区域402的周围。半导体基板401具有薄壁部和厚壁部形成的隔膜构造。
在薄壁部的一主面上,形成扩散电阻406、408、410、以及412。扩散电阻406、408、410、以及412通过在薄壁部的一主面上进行杂质的扩散而形成。扩散电阻406、408、410、以及412是检测薄壁部的变形的变形计电阻。扩散电阻406、408、410、以及412通过未图示的布线构成桥式电路(bridgecircuit)。
在薄壁区域402上,避开扩散电阻406、408、410、以及412表面而配置薄膜压电元件414。薄膜压电元件414被用于半导体压力传感器400的自身诊断。后面论述有关自身诊断的方法。
半导体基板401和薄膜压电元件414的热膨胀率不同。因此,在半导体压力传感器400中产生了温度变化的情况下,有时在半导体基板401中的与薄膜压电元件414的接触面附近产生未预期到的变形。
通常,在半导体压力传感器400中形成薄膜压电元件414时,将压电材料在500℃~800℃的高温下烧成后,将半导体压力传感器400冷却至常温。因此,上述变形在半导体压力传感器400的制造过程中已经产生。
为了防止该变形对扩散电阻406、408、410、以及412的电阻值产生影响,薄膜压电元件414从扩散电阻406、408、410、以及412尽可能隔开距离地配置。
而且,为了在自身诊断时使薄壁区域402整体均匀地变形,期望薄膜压电元件414具有在面向薄壁区域402的中心402的方向上有长度方向轴的细长形状。后面论述有关自身诊断时的薄膜压电元件414的变形方向和薄壁区域402的变形方面。
图6是图5所示的半导体压力传感器400的VI-VI剖面图。参照图6,在厚壁部404A的底部中固定作为底座的玻璃基板416。在薄壁部402A和玻璃基板416之间,形成基准压力室418。
薄壁部402A根据基准压力室418的内部的压力和外部气压之间的气压差产生变形。因此,在将半导体压力传感器400用于绝对压力的测量的情况下,通常,基准压力室418被设为真空状态。本发明的半导体压力传感器,在以下所有的实施方式中,可适用于绝对压力测量型压力传感器、相对压力测量型压力传感器双方。
薄膜压电元件414具有下部电极层414A、压电层414B、以及上部电极层414C。压电层414B例如由PZT等的压电材料构成。通过在下部电极层414A和上部电极层414C之间施加电压,压电层414B的整体产生膨胀或收缩。在本发明的实施方式中,通过使压电层414B在与薄壁区域402并行的方向上收缩,在薄壁区域402中有意地产生变形而进行自身诊断。后面论述有关自身诊断的方法。
图7是示意地表示在图5所示的半导体压力传感器400中,因基准压力室418的内部的压力和外部气压之间的气压差而在薄壁区域402中产生了变形的状态的图。
参照图7,因外部气压和基准压力室418的内部的压力之间的压力差,在薄壁部402A中产生变形。扩散电阻408和412在面向薄壁区域402的中心402C的方向上有长度方向轴。如图7所示,在薄壁部402A中产生了变形时,扩散电阻408、412各自变长。因此,扩散电阻408、412的电阻值增大。
另一方面,图5所示的扩散电阻406、410与扩散电阻408、412不同,在面向与薄壁区域402的中心402C的方向垂直的方向上有长度方向轴。在薄壁部402A中产生了变形的情况下,扩散电阻406、410的宽度变宽。因此,扩散电阻406、410的电阻值减小。
根据扩散电阻406、408、410、以及412的电阻值的变化,半导体压力传感器400可以测量外部气压。例如,将扩散电阻406、408、410、以及412进行桥式连接即可。后面论述扩散电阻406、408、410、以及412的连接的例子。
接着,说明有关基于薄膜压电元件414的半导体压力传感器400的自身诊断功能。
图8是示意地表示图5所示的半导体压力传感器400的VIII-VIII剖面的剖面图。图8是表示在薄膜压电元件414上施加了电压的状态下的半导体压力传感器400的剖面。
参照图8,在下部电极层414A和上部电极层414C之间施加电压时,压电层414B沿箭头415的方向收缩。压电层414B收缩时薄壁部402A的一主面(压电层414B侧)也同时地收缩。但是,薄壁部402A的其他主面(玻璃基板416侧的面)不受压电层414B的约束。因此,在薄壁部402A的一主面的面积和薄壁部402A的其他主面的面积上产生差异。因此,如图8所示,在薄壁部402A中产生变形,以作为整体向玻璃基板416侧凹陷。即,通过在薄膜压电元件414上施加电压,半导体压力传感器400可以模拟地产生在基准压力室418的内部压力和外部气压之间产生了压力差的状态。
为了使薄壁部402A整体均匀地变形,期望薄膜压电元件414具有在面向薄壁区域402的中心402C的方向上有长度方向轴的细长形状。此外,如果从图1所示的扩散电阻406、408、410、以及412隔开距离来配置薄膜压电元件414,则薄膜压电元件414的形状可以为大致长方形,也可以为大致椭圆形。这对于本说明书中的其他实施方式也是同样。
半导体压力传感器400的自身诊断时,如果对薄膜压电元件414的电压施加前后中的传感器输出之差距诊断基准电压在规定的范围内,则判断为在半导体压力传感器400中不产生损坏。对于预先判定不产生损坏的半导体压力传感器,基于对薄膜压电元件的电压施加前后的传感器输出来设定诊断基准电压即可。再有,在本实施方式中将对薄膜压电元件414的电压施加前后的传感器输出差采用作为诊断基准电压来,但也可以将电压施加后的传感器输出采用作为诊断基准电压。这对于本说明书中的其他实施方式也是同样。
图9是绘制了使对薄膜压电元件414的施加电压变化时的、薄壁区域402中心的位移量的例子的图。如图9中一例所示,薄膜压电元件414上施加了电压时的薄壁区域402的位移量,通常具有迟滞(hysteresis)特性。因此,在进行半导体压力传感器的自身诊断前,需要注意在薄膜压电元件414上不施加未预期的电压等。薄壁区域402的位移量,例如因薄膜压电元件414的材料、厚度、形状等而不同。
除了上述方法以外,通过在薄膜压电元件414上施加交流电压而使薄壁区域402振动,也可以进行半导体压力传感器400的自身诊断。这种情况下,基于薄膜压电元件414上施加了交流电压时的半导体压力传感器400的输出波形,进行传感器的自身诊断。
图10是表示一例图1所示的半导体压力传感器400中的、扩散电阻406、408、410、412、以及薄膜压电元件414的布线图案(pattern)的图。参照图10,金属布线420以实线表示,通过杂质的扩散而形成的扩散布线422以虚线表示。参考标号424、426、428、430、434、以及438指焊盘。
为了减轻金属布线420和半导体基板401之间的热膨胀率的差异造成的薄壁区域402的变形,期望在薄壁区域402上的布线上使用扩散布线。扩散布线422通过在半导体基板401的选择区域中注入高浓度的杂质而形成。
在焊盘426和430(或焊盘424和428)之间,例如被施加5V的电压作为基准电压。焊盘424和428(或焊盘426和430)之间的电压成为半导体压力传感器的输出。焊盘424和428也可以连接到未图示的放大电路。这对于本说明书中的其他实施方式也是同样。
为了没有焊盘424和焊盘428之间的偏置(offset)电压,期望扩散电阻406和408的电阻比、扩散电阻412和410的电阻比相同。各电阻值根据半导体压力传感器400的结构而被设定为规定的值。此外,也可以使扩散电阻406、408、410、以及412的电阻值全部为相同的值。这对于本说明书中的其他实施方式也是同样。
薄壁区域402的变形越大,扩散电阻406和扩散电阻410的电阻值越减少。另一方面,薄壁区域402的变形越大,扩散电阻408和扩散电阻412的电阻值越增大。因此,在焊盘424和428之间,产生与薄壁区域402的变形量对应的电压。
焊盘438连接到薄膜压电元件414的下部电极层414A。焊盘434连接到薄膜压电元件414的上部电极层(图6中由标号414C表示)。通过在焊盘438和434之间施加电压,可以在薄壁区域402中有意地产生变形。
半导体压力传感器400的自身诊断时,对薄膜压电元件414的电压施加前后的焊盘424和428之间的输出电压之差,如果距诊断基准电压在规定的范围内,则判断为没有隔膜的损坏,另一方面,如果距诊断基准电压在规定的范围外,则判断为隔膜有损坏。
在图5和图10中,薄壁区域402的形状作为大致正方形示出。但是,薄壁区域402的形状没有特别地限定。如图11所示,薄壁区域402的主表面的形状,例如也可以是大致圆形。这对于本说明书的其他实施方式也是同样。
在薄壁区域402的形状为大致正方形的情况下,在薄壁部产生了变形时薄壁区域402的各边的中点附近与薄壁区域402的顶点附近比较产生极大地变形。通过在薄壁区域的各边的中点附近配置扩散电阻,与薄壁区域的形状大致为圆形的情况比较,可以提高半导体压力传感器的灵敏度。这种情况下,薄膜压电元件配置在与扩散电阻隔开距离的位置、例如薄壁区域的对角线上即可。
另一方面,在薄壁区域402的形状为大致圆形的情况下,薄壁区域402中产生了变形时的薄壁区域402的圆周上的变形量大致相同。因此,扩散电阻的配置中的自由度提高。
根据图10所示的半导体压力传感器400的结构,薄膜压电元件414仅形成在薄壁区域402内。因此,薄膜压电元件414的下部电极和上部电极的布线(金属布线432和436)横穿扩散电阻406、408、410、以及412的桥式电路。这种情况下,在以相互不同的分层的金属布线形成桥式电路的金属布线420和薄膜压电元件414的金属布线423及436等上需要花费工夫。因此,有可能在半导体压力传感器的布线上产生制约。可解决这样的课题的半导体压力传感器,在第2实施方式中说明。
[第2实施方式]
图12是本发明的第2实施方式的半导体压力传感器500的俯视图。参照图12,半导体压力传感器500包括半导体压力传感器502取代薄膜压电元件414。薄膜压电元件502横穿桥式电路的金属布线420并延伸至厚壁区域404。在这方面,半导体压力传感器500的结构与图10所示的结构不同。薄膜压电元件502形成在与金属布线504电绝缘的其他分层中。这对于本说明书中的其他实施方式也是同样。后面论述有关本发明的半导体压力传感器的制造方法。
薄膜压电元件502具有下部电极层502A、压电层、以及上部电极层。下部电极层502A通过金属布线连接到焊盘518。薄膜压电元件502的上部电极层通过金属布线连接到焊盘516。根据本结构,可以将连接到薄膜压电元件502的下部电极层或上部电极层的金属布线配置在桥式电路的外侧。由此,可以仅由一层的布线形成半导体压力传感器500的金属布线,同时桥式电路的金属布线420的布局(layout)的自由度提高。
在将半导体压力传感器500的偏置电压、即薄壁区域402中不产生变形时的半导体压力传感器500的输出设定为0的情况下,为了使从各焊盘至各扩散电阻的布线电阻为相同值,期望金属布线420和扩散布线422的布线长度一致。在本实施方式的半导体压力传感器500中,配置薄膜压电元件502,以使薄膜压电元件502延伸至厚壁区域404上的任意的位置。由此,可以将薄膜压电元件502的金属布线配置在任意的位置。因此,焊盘424、426、428、430、516、以及518的配置、或者桥式电路的金属布线420和扩散布线422的布线长度的调整变得容易。
而且,薄膜压电元件502被固定在厚壁区域404的一部分上。因此,与图10所示的半导体压力传感器400进行比较,薄膜压电元件502可以使在厚壁区域402中造成的变形量稳定。由此,可以提高自身诊断的精度。
图13是表示图12所示的半导体压力传感器500的变形例的图。参照图13,半导体压力传感器530具有薄膜压电元件532取代薄膜压电元件502。薄膜压电元件532具有延伸设置部532X和532Y。在这方面,半导体压力传感器530与图12所示的半导体压力传感器500不同。延伸设置部532X和532Y形成在厚壁区域404上,以使其沿薄壁区域402的外周延伸。
薄膜压电元件532具有下部电极层532A、压电层、以及上部电极层。下部电极层532A连接到焊盘518。薄膜压电元件532的上部电极层连接到焊盘516。根据本结构,薄膜压电元件532通过延伸设置部532X和延伸设置部532Y被固定在厚壁区域404中,所以薄膜压电元件532可以使在薄壁区域402中造成的变形量进一步稳定。由此,可以提高自身诊断的精度。
图14是表示图12所示的半导体压力传感器500的另一变形例的图。参照图14,半导体压力传感器550包括薄膜压电元件552取代薄膜压电元件502。薄膜压电元件552形成在厚壁区域404上,以使其包围薄壁区域402的外周。在这方面,半导体压力传感器550与图12所示的半导体压力传感器500不同。薄膜压电元件552具有延伸设置部554作为包围薄壁区域402的外周的部分。
薄膜压电元件552具有下部电极层552A、压电层、以及上部电极层。下部电极层552A连接到焊盘518。薄膜压电元件552的上部电极层连接到焊盘516。根据本结构,由于薄膜压电元件552被牢固地固定在厚壁区域404中,所以可以使薄膜压电元件552在薄壁区域402中造成的变形量进一步稳定。由此,可以进一步提高自身诊断的精度。
[第3实施方式]
图15是本发明的第3实施方式的半导体压力传感器600的俯视图。参照图15,半导体压力传感器600包括在薄壁区域402上设置的多个薄膜压电元件602、604、606、以及608。在这方面,半导体压力传感器600与图10所示的半导体压力传感器400不同。
扩散电阻406、408、410、以及412被设置在薄壁区域402中产生了变形时的变形量大的位置、即薄壁区域402的各边的中点附近。
薄膜压电元件602、604、606、以及608被设置在从扩散电阻406、408、410、以及412隔开的位置、例如薄壁区域402的对角线上。薄膜压电元件602、604、606、以及608从扩散电阻406、408、410、以及412隔开规定距离即可,设置薄膜压电元件的位置不限定于薄壁区域402的对角线上。但是,为了使扩散电阻的未预期的变形最小,期望各薄膜压电元件配置在沿薄壁区域的外周相邻的两个扩散电阻的中间。
薄膜压电元件602具有下部电极层602A、压电层、以及上部电极层。下部电极层602A连接到焊盘610。薄膜压电元件602的上部电极层连接到焊盘612。
薄膜压电元件604具有下部电极层604A、压电层、以及上部电极层。下部电极层604A连接到焊盘614。薄膜压电元件604的上部电极层连接到焊盘616。
薄膜压电元件606具有下部电极层606A、压电层、以及上部电极层。下部电极层606A连接到焊盘618。薄膜压电元件604的上部电极层连接到焊盘620。
薄膜压电元件608具有下部电极层608A、压电层、以及上部电极层。下部电极层608A连接到焊盘622。薄膜压电元件608的上部电极层连接到焊盘624。
根据本结构,自身诊断时,薄膜压电元件602、604、606、以及608进行协同而在薄壁区域402中赋予变形。因此,如果在薄膜压电元件602、604、606、以及608上施加相同电压,则可以在薄壁区域402整体中赋予均匀的变形。由此,可以提高自身诊断的精度。
图16是表示图15所示的半导体压力传感器600的变形例的图。参照图16,半导体压力传感器630包括薄膜压电元件632、634、636、638。薄膜压电元件632、634、636、638被设置在薄壁区域402的对角线上,同时在薄壁区域402的中心402C附近相互地结合(couple。在这方面,半导体压力传感器630与图15所示的半导体压力传感器600不同。
下部电极层636A是薄膜压电元件632、634、636、638中共用的下部电极层。下部电极层636A被连接在焊盘640上。同样地,薄膜压电元件632、634、636、638中共用的上部电极层连接到焊盘642。根据本结构,由于将薄膜压电元件632~638的上部电极的布线和薄膜压电元件632~638的下部电极的布线分别各自设置一个即可,所以可以简化半导体压力传感器630的结构。
[第4实施方式]
图17是本发明的第4实施方式的半导体压力传感器700的俯视图。参照图17,半导体压力传感器700包括薄膜压电元件701。薄膜压电元件701包括:薄膜压电元件702、704、706、以及708;和延伸设置部710A、710B、710C、以及710D。薄膜压电元件702、704、706、以及708被设置在薄壁区域402的对角线上。延伸设置部710A、710B、710C、以及710D被配置在厚壁区域404上。薄膜压电元件702、704、706、以及708通过延伸设置部710A、710B、710C、以及710D而被相互地结合。在这方面,半导体压力传感器700与图15所示的半导体压力传感器600不同。
薄膜压电元件701还通过延伸设置部710E或710F被延伸设置至焊盘716F或716A附近。焊盘716A、716B、716C、716D、716E、以及716F和薄膜压电元件701形成在电绝缘的其他分层中。后面论述有关半导体压力传感器700的制造方法。延伸设置部710E、710F也可以延伸设置至焊盘正下方。
薄膜压电元件702、704、706、以及708通过厚壁区域上的延伸设置部710A、710B、710C、以及710D相互地结合。因此,可以将薄膜压电元件701的上部电极层和薄膜压电元件701的下部电极层701A的布线分别各自设置一个。薄膜压电元件701的上部电极层连接到焊盘716A。薄膜压电元件701的下部电极层701A连接到焊盘716F。
薄膜压电元件701在厚壁区域404上通过延伸设置部710A、710B、710C、以及710D被固定。因此,薄膜压电元件701可以使在薄壁区域402中造成的变形量稳定。由此,可以提高自身诊断的精度。
而且,薄膜压电元件701通过延伸设置部710E或710F延伸至焊盘716A或716F的附近。因此,可以缩短薄膜压电元件701的金属布线。由此,由于为了配置连接扩散电阻406、408、410、以及412的桥式电路的金属布线712而能够使用的空间扩大,所以容易进行利用金属布线712的布线电阻的调整。延伸设置部710F或710E也可以被延伸设置至焊盘716F或716A正下方。
如图17所示,焊盘716A、716B、716C、716D、716E、以及716F被并排设置在半导体基板401的一边。根据这样的结构,提高对焊盘进行引线连接时的便利性。
在图17中,金属布线712用实线表示,同时扩散布线714用虚线表示。扩散电阻406通过金属布线712和扩散布线714连接到焊盘716B和716E。扩散电阻408通过金属布线712和扩散布线714连接到焊盘716D和716E。扩散电阻410通过金属布线712和扩散布线714连接到焊盘716C和716D。扩散电阻412通过金属布线712和扩散布线714连接到焊盘716B和716C。为了没有半导体压力传感器700的偏置电压,期望金属布线712和扩散布线714的长度在各扩散电阻之间相互相等。
图18是表示可将偏置电压设定为0的金属布线和扩散布线的例子的图。参照图18,在半导体压力传感器720中,将各个扩散电阻406、408、410、412连接到焊盘的金属布线722和扩散布线724的长度相互地相等。由此,可以使布线电阻的电阻值相互地相等。在这方面,半导体压力传感器720与图17所示的半导体压力传感器700不同。
图19是表示图17所示的半导体压力传感器700的其他变形例的图。参照图19,薄膜压电元件702、704、706、708被设置在薄壁区域402的对角线上,并且在薄壁区域402的中心402C附近相互地结合。在这方面,半导体压力传感器730与图17所示的半导体压力传感器700不同。根据该结构,薄膜压电元件701可以增大对薄壁区域402赋予的变形量。由此,即使薄膜压电元件701上施加的电压低也可以进行自身诊断。
图20是表示图17所示的半导体压力传感器700的又一其他变形例的图。参照图20,半导体压力传感器780具有薄膜压电元件782。薄膜压电元件782具有缝隙(slit)部784。在这方面,半导体压力传感器780与图17所示的半导体压力传感器700不同。
通过在薄膜压电元件782中设置缝隙部784,薄膜压电元件782和半导体基板401之间的接触面积变小。由此,可以减轻因薄膜压电元件782和半导体基板401之间的热膨胀率的差异产生的、半导体基板401的未预期的变形。
对于本发明的各实施方式,使用了扩散电阻作为半导体压力传感器的变形计电阻,但变形计电阻也可以不是扩散电阻。例如,也可以将陶瓷复合材料或碳纳米管(carbon nanotube)复合材料形成在半导体基板上。
对于本发明的各实施方式,表示了使用四个扩散电阻的例子作为半导体压力传感器的变形计电阻,但扩散电阻的数也可以不是四个。只要能够以对半导体压力传感器所要求的灵敏度测量薄壁区域的变形量,扩散电阻的数也可以为一个。
对于本发明的各实施方式,也可以在半导体压力传感器的半导体基板的一主面上形成晶体管或二极管等的电路元件。
[本发明的实施方式的半导体压力传感器的制造方法]
下面,用图21~图27说明上述实施方式的半导体压力传感器的制造方法。再有,在作图和说明的情况上,各区域的膜厚和宽度的比率不一定正确。
为了形成被包含在半导体压力传感器800中的扩散电阻,例如使用LOCOS(Local Oxidation of Silicon;硅的局部氧化)方法。
图21是表示本发明的制造方法的第1工序的图。参照图21,首先,准备SOI(Silicon on Insulator;硅-绝缘体)基板802。SOI基板802具有一主面Si(Silicon;硅)层804、埋入氧化膜层806、以及其他主面Si层808。为了保护SOI基板802的一主面(一主面Si层804的表面),形成焊盘(pad)氧化膜810和SiN膜812。SOI基板802例如由两张半导体基板形成。将两张半导体基板各自粘贴的界面磨削和研磨而进行镜面加工,然后,通过热氧化使两张半导体基板接合。由此,形成SOI基板。SiN膜812例如通过CVD方法(化学汽相淀积生长方法)形成。
一主面Si层804具有第1导电型。以下,一主面Si层作为n型半导体来说明,但一主面Si层804也可以是p型半导体。
在SiN膜812上的有源(active)区域813中涂敷抗蚀剂814。有源区域813是在后面形成扩散电阻的区域。然后,进行SiN膜812的腐蚀,未涂敷抗蚀剂814的区域的SiN膜812被除去。
图22是表示本发明的制造方法的第2工序的图。参照图22,在进行了SiN膜812的腐蚀后,除去抗蚀剂814。接着,通过阱氧化方法或气相(pyrogenic)方法形成场氧化膜816。进而除去有源区域813的SiN膜812和焊盘氧化膜810。
然后,在有缘区域813中例如注入硼等杂质,形成扩散电阻818。场氧化膜816在扩散电阻818形成后被除去。
图23是表示本发明的制造方法的第3工序的图。参照图23,在扩散电阻818形成后,邻接扩散电阻818,形成被注入了具有与扩散电阻818相同导电型的杂质的扩散布线820A、820B。为了扩散布线820A、820B的杂质浓度高于扩散电阻818的杂质浓度,在邻接扩散电阻818的区域中,注入高浓度的杂质。然后,形成第1层间绝缘膜822。作为第1层间绝缘膜822,例如使用不包含磷或硼等杂质的硅氧化物的NSG(Nondoped Silicate Glass;非掺杂硅酸盐玻璃)膜。再有,在本说明书中记载的制造方法中,也可以将NSG膜以PSG(Phosphorous Silicate Glass;掺磷硅酸盐玻璃)膜或BPSG(BoronPhosphorous Silicate Glass;掺硼硅酸盐玻璃)膜替代。
图24是表示本发明的制造方法的第4工序的图。参照图24,在第1层间绝缘膜822上形成下部电极层824、压电层826、以及上部电极层828。
下部电极层824、压电层826、上部电极层828例如通过溅射方法形成。使用铂或钛作为下部电极层824的材料。下部电极层824的膜厚,在铂的情况下例如设定为
Figure BDA0000480020040000241
在钛的情况下,例如被设定为
Figure BDA0000480020040000242
例如使用PZT(钛酸硅酸铅)作为压电层826的材料。压电层826的膜厚例如被设定为
Figure BDA0000480020040000243
例如使用铱或氧化铱作为上部电极层828的材料。上部电极层828的膜厚,在铱的情况下例如被设定为在氧化铱的情况下例如被设定为
Figure BDA0000480020040000245
下部电极层824、压电层826、上部电极层828的膜厚不限定于上述情况。下部电极层824、上部电极层828的膜厚,在后述的接触孔(contact hole)形成时,设定在接触孔不贯通各电极层的范围内即可。
图25是表示本发明的制造方法的第5工序的图。参照图25,通过选择性地腐蚀下部电极层824、压电层826、以及上部电极层828,形成薄膜压电元件的规定的图案。此时,下部电极层824、压电层826、以及上部电极层828以与扩散电阻818不重叠地形成图案。
图26是表示本发明的制造方法的第6工序的图。参照图26,在下部电极层824、压电层826、以及上部电极层828的腐蚀后,形成第2层间绝缘膜830。进而,在第2层间绝缘膜830中,形成到达扩散布线820A的接触孔832A、到达扩散布线820B的接触孔、到达上部电极层828的接触孔832B、以及到达下部电极层824的接触孔832C。图示的情况上,到达扩散布线820B的接触孔未示于图26。
到达下部电极层824的接触孔832C、到达上部电极层828的接触孔832B通过第2层间绝缘膜830的腐蚀而被同时地形成。此时,如果压电层826的膜厚过大,则接触孔832B的深度和接触孔832的深度极大不同。因此,上部电极层828被长时间暴露在腐蚀液中。
而且,为了完成自身诊断功能,压电层828的膜厚必需确保规定的厚度。因此,期望压电层826的膜厚在0.01μm以上5μm以下。
图27是表示本发明的制造方法的第7工序的图。参照图27,在接触孔832A、832B、832C和第2层间绝缘膜830上形成金属布线834A、834B、834C。金属布线834A、834B、834C的主成分例如是铝或铜等。
在金属布线834A、834B、834C形成后,形成用于保护半导体压力传感器800的一主面的钝化膜836。例如使用SiN膜作为钝化膜836。
在钝化膜836的一部分中,形成用于形成焊盘838的开孔部。
接着,其他主面Si层808和埋入氧化膜层806的一部分被腐蚀。由此,形成隔膜。
在埋入氧化膜层806的腐蚀后,在其他主面Si层808的底部接合玻璃基板842。玻璃基板842和其他主面Si层808的接合在真空中进行。由此,一主面Si层804和玻璃基板842之间形成的基准压力室840的内部为真空。
以上,说明了有关本发明的半导体压力传感器的制造方法。根据本制造方法,可以利用以往的半导体装置制造工艺制造半导体压力传感器。
下部电极层824、压电层826、以及上部电极层828与金属布线834A、834B、以及834C形成在电绝缘的其他的分层上。因此,可以提高半导体压力传感器中的金属布线和薄膜压电元件的配置、形状的自由度。
而且,如果使压电层826的膜厚为0.01μm以上5μm以下,则能够同时地形成到达下部电极层824和上部电极层828的接触孔。由此,可以缩短半导体压力传感器的制造时间。
[第5实施方式]
图28是概略地表示本发明的第5实施方式的传感器的结构的平面图。再有,在与图1~图4所示的要素相同或对应的要素上,附加相同的标号。而且,在以后的说明中,也参照图1~图4所示的要素。
参照图28,传感器1具备包含隔膜7和用于支承隔膜7的外缘部的支承部8的硅基板6。传感器1进而具备电阻桥B1~B4。电阻桥B1~B4的各个电阻桥包含硅基板6的主表面6A上配置的多个电阻元件。各个电阻桥B1~B4包含四个电阻元件。具体地说,电阻桥B1包含电阻元件11A、12A、13A、14A。电阻桥B2包含电阻元件11B、12B、13B、14B。电阻桥B3包含电阻元件11C、12C、13C、14C。电阻桥B4包含电阻元件11D、12D、13D、14D。如后面详细地说明那样,四个电阻元件构成惠斯登电桥。各电阻元件是根据压力而改变其电阻值的电阻元件,例如是压电元件。再有,与实施方式1~4相同,在电阻元件上也可以使用扩散电阻。
一个电阻桥中包含的四个电阻元件被集中地配置在包含隔膜7和支承部8的边界7A的一部分的主表面6A的一部分区域中。具体地说,电阻元件11A~14A被配置在包含边界7A的一部分的区域6A1中。电阻元件11B~14B被配置在包含边界7A的一部分的区域6A2中。电阻元件11C~14C被配置在包含边界7A的一部分的区域6A3中。电阻元件11D~14D被配置在包含边界7A的一部分的区域6A4中。
电阻桥B1、B3以相互对置那样配置在硅基板6的主表面6A中。同样地,电阻桥B2、B4以相互对置那样配置在硅基板6的主表面6A中。图5所示的直线X、Y是通过隔膜7的中心点O的、相互正交的直线。电阻桥B1、B3被配置在直线X上。电阻桥B2、B4被配置在直线Y上。因此,电阻桥B1~B4以点O为中心,被各向同性地配置在硅基板6的主表面6A中。
在本实施方式中,如果电阻桥的个数为多个则无特别地限定。但是,电阻桥的个数越多,在各桥上施加了一定的电压时多个电阻桥整体的消耗电力越大。另一方面,在将多个电阻桥整体中流过的电流控制为恒定的情况下,电阻桥的个数越多,则在流过一个桥的电流越小。因此,电阻桥的输出电压相对于隔膜7上施加的压力的变化变小。
电阻桥的个数例如根据上述观点来确定。例如,如图28所示,四个电阻桥被配置在半导体基板的主表面上。而且,优选多个电阻桥被各向同性地配置在硅基板6的主表面6A上。
图29是表示图28所示的硅基板6的主表面6A上的应力与位置之间的关系的图。参照图29,图的横轴表示图28所示的直线X上的位置。位置x0是硅基板6的一个端(例如位于纸面左侧的硅基板6的端部)的位置。位置x1对应于直线X和边界7A的第1交点(对于直线Y位于纸面左侧的交点)的位置。位置x2对应于隔膜7的中心点O的位置。位置x3对应于直线X和边界7A的第2交点(对于直线Y位于纸面右侧的交点)的位置。位置x4表示硅基板6的其他端(例如位于纸面右侧的硅基板6的端部)的位置。
如图29所示,隔膜7中作用的应力在隔膜7的外缘部中最大。通过在隔膜7中施加的压力,在隔膜7的外缘部中作用的应力极大地变化。构成电阻桥的四个电阻元件被配置在隔膜7的外缘部。因此,通过隔膜7上施加的压力,可以使各电阻元件的电阻值极大地变化。
图30是图28所示的电阻桥B1~B4的电路图。参照图30,在本实施方式中,并联地电连接的四个电阻桥B1~B4被设置在半导体基板的主表面中。
各个电阻桥B1~B4是惠斯登电桥。由于电阻桥B1~B4的结构是相互同样的,所以代表性地说明电阻桥B1的结构。
电阻桥B1包含电阻元件11A~14A。电阻元件11A、13A串联地连接在电极16A和电极16D之间。同样地,电阻元件12A、14A串联地连接在电极16A和电极16D之间。电极16A上被施加电压Vbias。电极16D被接地。电阻元件11A、13A的连接点连接到电极16B。电阻元件12A、14A的连接点连接到电极16C。电极16A~16D是例如为了连接到布线5而形成在硅基板6的主表面6A中的焊盘。
在隔膜7上未施加压力的状态(即真空状态)下,各电阻元件11A~14A的电阻值相互相同。对隔膜7上施加的压力的变化,电阻元件11A、14A的电阻值和电阻元件12A、13A的电阻值相互反方向地变化。各个电阻桥B2~B4也是同样,根据隔膜7上施加的压力,各桥中包含的四个电阻元件的各自的电阻值变化。
在隔膜7上未施加压力的状态下,电极16B的电压VA0和电极16C的电压VB0都为1/2Vbias。隔膜7被加压而各桥的电阻元件的电阻值变化,从而电压VA0从1/2Vbias起减少,另一方面,电压VB0从1/2Vbias起增加。
图31是详细地表示图28所示的电阻桥B1的图。电阻桥B2~B4的各自的结构与图31所示的电阻桥B1的结构是同样的。
参照图31,电阻桥B1包括在包含隔膜7和支承部8的边界7A的一部分的区域6A1中配置的电阻元件11A~14A。电阻元件11A、12A相互地邻接配置。电阻元件11A通过布线15A电连接电阻元件12A。
电阻元件11A、13A相互地邻接配置。电阻元件11A通过布线15B电连接电阻元件13A。
电阻元件12A、14A相互地邻接配置。电阻元件12A通过布线15C电连接电阻元件14A。
相互地邻接配置的两个电阻元件中的一个,以沿平行于隔膜7和支承部8的边界7A的方向延伸地形成在硅基板6的主表面6A的区域6A1中。上述两个电阻元件的另一个,以沿与边界7A交叉的方向延伸地形成在区域6A1中。
具体地说明时,电阻元件13A以沿平行于边界7A的方向延伸地形成在硅基板6的主表面6A的区域6A1中。电阻元件11A以沿与边界7A交叉的方向延伸地形成区域6A1中。同样的关系,在电阻元件11A、12A之间成立,同时在电阻元件12A、14A之间成立。
在图31中,边界7A以直线表示。如图28所示,在隔膜7的轮廓为圆形的情况下,也可以沿该圆的切线延伸地形成电阻元件12A、13A。
相互地邻接配置的两个电阻元件,对于边界沿不同方向延伸地形成。由此,根据在隔膜7上所施加的压力,可以使各自的电阻值在相互相反方向上变化。因此,可以使多个电阻元件具有电阻桥功能。
图32是表示第5实施方式的传感器的比较例的结构的平面图。参照图32,传感器1A具备包含四个电阻元件11~14的一个电阻桥。电阻元件11~14被分散地配置在硅基板6的主表面6A上。根据图32所示的结构,因传感器1A的加工精度造成的电阻桥的特性偏差有可能变大。
图33是用于说明图32所示的传感器1A的制造时产生的课题的第1图。参照图33,电阻元件11~14形成在形成了隔膜7的硅基板6的主表面6A中。再有,在图33中四个电阻元件中仅表示电阻元件11、13。
在位于与主表面6A相反侧的主表面6B(背面)中,形成开口部6C。通过在主表面6B上进行腐蚀(各向异性腐蚀和各向同性腐蚀的其中之一即可),在主表面6B中形成开口部6C。
优选电阻元件11、13以与隔膜7和支承部8的边界7A重叠地配置。一般地,电阻元件被配置在硅基板6的主表面6A上,然后形成隔膜7和支承部8。因此,主表面6B的开口部6C的位置对于电阻元件11~14的主表面6A的位置有可能偏移。位置的偏移程度取决于传感器的加工精度。在偏移程度大的情况下,电阻桥的灵敏度、即电压与隔膜上所施加的压力的变化之比有可能偏差。由此,传感器的检测精度下降。
图34是用于说明图32所示的传感器1A的制造时产生的课题的第2图。参照图34,在从硅基板6的主表面6B面向主表面6A的方向上硅被腐蚀。硅基板6的内部被加工成锥(taper)状。因此,电阻元件11~14的位置对于隔膜7和支承部8的边界的位置有可能偏移。
返回到图31,在本实施方式中,构成电阻桥的多个电阻元件被集中地配置在一个区域中。电阻元件11A~14A是同种类的电阻,通过相同的工序形成。通过电阻元件11A~14A被集中地配置在一个区域中,可以抑制在电阻元件11A~14A之间特性(例如电阻值、温度特性等)的偏差增大。其结果,可以在压力未施加在隔膜中的状态中获得电阻桥B1的平衡状态。
在多个传感器之间,可能产生电阻元件的电阻值不同的情况。但是,在一个电阻桥中包含的多个电阻元件的电阻值的偏差小的情况下,可以获得电阻桥的平衡状态。因此,可以使多个传感器之间的电阻桥的特性的偏差小。
而且,在本实施方式中,第1电阻元件和与该第1电阻元件电连接的第2电阻元件被邻接配置。通过将相互地电连接的两个电阻元件邻接配置,即使产生隔膜7和支承部8的边界位置偏移,也可以使两个电阻元件的电阻值的变化方向相互地相同。由此,可以减小电阻桥的特性偏差。而且,可以缩短用于连接两个电阻元件的布线。
而且,在本实施方式中,传感器具备并联地电连接的多个电阻桥。在边界7A对于电阻桥B1向X、Y的至少一个方向上偏移的情况下,电阻桥B1~B4的各自特性变动。但是,通过多个电阻桥被并联地电连接,一个电阻桥的特性的变动因其他电阻桥的特性的变动而被相互抵消。其结果,可以减小多个传感器之间的电阻桥的特性的偏差。
再有,在第5实施方式中,隔膜7即薄壁区域的形状不限定于圆形。与第1~第4实施方式同样,隔膜(薄壁区域)的形状也可以是大致正方形。
[第6实施方式]
本实施方式涉及用于对从半导体压力传感器输出的信号进行处理的电路。该信号处理电路也可以与上述第1~第5实施方式的半导体压力传感器的任何一个组合。
图35是第6实施方式的信号处理电路的电路图。参照图35,电阻元件11~14构成惠斯登电桥(Wheatstone bridge)。具体地说明时,电阻元件11、12被串联地连接在节点20和接地节点之间。同样地,电阻元件13、14被串联地连接在节点20和接地节点之间。电压Vbias施加在节点20上。电阻元件13、14的连接点连接到节点25。电阻元件11、12的连接点连接到节点26。电阻元件11~14例如与图5所示的扩散电阻406、408、410、412对应。或者,也可以将电阻元件11~14与图30所示的电阻桥B1~B4分别置换。
信号处理电路2包括放大单元21、以及运算单元22、23。放大单元21包括差动放大器211、212以及电阻213、214、215。
差动放大器211包括:连接到节点25的同相输入端子(由记号‘+’表示。以下也同样);连接到电阻213的一端和电阻214的一端两方的反相输入端子(由记号‘-’表示。以下也同样);以及连接到节点27的输出端子。电阻214的另一端连接到差动放大器211的输出端子和节点27。
差动放大器212包括:连接到节点26的同相输入端子;连接到电阻213的另一端和电阻215的一端两方的反相输入端子;以及连接到节点28的输出端子。电阻215的另一端连接到差动放大器212的输出端子和节点28。
运算单元22包括:差动放大器221;电阻222~225;偏置电源226;以及驱动电源227。
差动放大器221通过从驱动电源227供给电源电压VDD而进行工作。电阻222连接在节点28和差动放大器221的反相输入端子之间。电阻223连接在差动放大器221的反相输入端子和差动放大器221的输出端子之间。电阻224连接在节点27和差动放大器221的同相输入端子之间。电阻225连接在差动放大器221的同相输入端子和偏置电源226之间。
偏置电源226产生电压VDD。在图35所示的结构中,偏置电源226和驱动电源227相互作为不同的电源表示,但它们也可以共用为一个电源。
运算单元23包括:差动放大器231;电阻232、233;以及驱动电源234。差动放大器231通过从驱动电源234供给电源电压VDD进行工作。差动放大器221包括:连接到节点29的同相输入端子;连接到电阻232的一端和电阻233的一端的反相输入端子;以及连接到端子30的输出端子。电阻233的另一端连接到差动放大器231的输出端子和端子30。电阻232、233各自是可变电阻。因此,电阻232、233的电阻值是可变的。
接着,详细说明信号处理电路2的工作。节点25上的电压VA0和节点26上的电压VB0因电阻元件11~14的电阻值的变化而变化。即,根据隔膜7上所施加的压力,电压VA0和VB0产生变化。隔膜7上未施加压力的情况下,电压VA0和VB0都为1/2Vbias。通过压力施加到隔膜7上,电压VA0和VB0从1/2Vbias起产生变化。
图36是表示隔膜上所施加的压力和从惠斯登电桥输出的电压之间的关系的图。参照图36,在隔膜7上所施加的压力为P0时,电压V(P)为1/2Vbias。压力P0相等于基准压力。
随着隔膜7上所施加的压力从P0起增加,电压VA0从1/2Vbias起下降。另一方面,电压VB0随着隔膜7上所施加的压力增加而从1/2Vbias上升。电压VB0对压力P的增加量和电压VA0对压力P的减少量是相同的。因此,电压VB0表示为VB0=1/2Vbias+ΔV(P),电压VA0表示为VA0=1/2Vbias-ΔV(P)。ΔV(P)根据压力P而变化。电压VB0和VA0之间的差为2ΔV(P)。电压VB0和VA0之间的电压差相当于从传感器1输出的信号电压。
放大单元21将与电压VB0和VA0之间的差对应的电压放大。将放大单元21的放大率(增益)表示为α。放大率α根据电阻213~215的电阻值而确定。将电阻213的电阻值表示为R1,电阻214、215各自的电阻值表示为R2。放大率α表示为α=R2/R1
节点28上的电压VB1表示为VB1=1/2Vbias+(1+α)ΔV(P)。另一方面,节点27上的电压VA1表示为VA1=1/2Vbias-(1+α)ΔV(P)。电压VB0和VA0之间的差是2(1+α)ΔV(P)。即,放大单元21将从传感器1输出的信号电压放大后输出。
压力P1是由传感器1检测的压力的范围的上限值。在本实施方式中,传感器1的检测范围如下确定。即,检测范围包含标准气压(约101.3[kPa])的值,并且,压力P1位于标准气压的附近。压力P1的值例如为110[kPa]。在本实施方式中,压力传感器装置10例如用作气压传感器。因此,由压力传感器装置10实际地检测的压力的范围,成为传感器1的检测范围的上限值附近的范围。
返回到图35,运算单元22基于电压VA1和VB1,生成随着隔膜7上所施加的压力变化的电压Vout1。具体地说,运算单元22通过将与电压VA1和VB1之间的差成比例的电压从偏置电压VDD中减去,生成电压Vout1。
图37是表示隔膜上所施加的压力和从信号处理电路2的运算单元2输出的电压Vout1之间关系的图。参照图37,压力P0下的电压Vout1是VDD,压力P1下的电压Vout1是0。电压Vout1的减少量与压力的增加量成比例。在本实施方式中,电阻222、224的电阻值都为R3,电阻223、225的电阻值都为R4。电压Vout1根据以下算式表示。
Vout1=VDD-R4/R3(VB1-VA1
于是,在本实施方式中,通过从偏置电压(VDD)中减去与放大单元21的输出电压(VB1-VA1)成比例的电压来生成电压Vout1。比例系数R4/R3被确定,以使压力P1下的电压Vout1为0。
电压Vout1在压力P1的附近区域中成为0附近的值。由此,可以提高压力P1的附近区域中的压力传感器装置的灵敏度。在本说明书中,‘灵敏度’意味着电压与压力的范围的变化量之比。在压力的范围是从P0至压力P1的范围的情况下,压力传感器装置的灵敏度表示为VDD/(P1-P0)。
运算单元22构成为生成对于从放大单元21输出的电压具有规定的相关关系的电压。‘规定的相关关系’是,由运算单元22生成的电压基于从放大单元21输出的电压而唯一地确定的关系。因此,相关关系不限定于比例关系。
再次参照图35,运算单元23通过将电压Vout1放大而将电压Vout2从端子30输出。将电阻232的电阻值表示为R5,将电阻233的电阻值表示为R6。电压Vout2根据以下算式表示。
Vout2=(R5+R6)/R5×Vout1
一般地,差动放大器不能输出高于电源电压的电压。因此,电压Vout2的最大值为VDD。
图38是表示隔膜上所施加的压力和从信号处理电路2的运算单元23输出的电压Vout2之间关系的图。参照图38,在压力P1’以下电压Vout2为VDD。随着压力从P1’起增加,电压Vout2从电压VDD起下降。电压Vout2在压力P1中为0。
运算单元23使电压Vout2的变化率与电压Vout1的变化率不同。这里,‘变化率’意味着电压的变化量与压力的变化量之比的绝对值。更具体地说,运算单元23使电压Vout2的变化率大于电压Vout1的变化率。由此,在检测范围的上限值附近的区域中压力传感器装置的检测灵敏度提高。电阻232、233都为可变电阻。通过使电阻232、233的至少一个的电阻值变化,可以变更电压Vout2的变化率。即,可以调节灵敏度。
在传感器(隔膜)上所施加的压力越高,其输出电压越大地构成信号处理电路的情况下,在检测范围的上限值附近的区域中不容易提高压力传感器装置的灵敏度。关于这方面,一边表示第6实施方式的信号处理电路的比较例子一边进行说明。
图39是表示第6实施方式的信号处理电路的比较例子的结构的电路图。参照图39,信号处理电路251在包括运算单元32取代运算单元22方面、以及不包含运算单元23方面,与信号处理电路2不同。电阻222的一端连接到节点27,电阻224的一端连接到节点28。在这方面,运算单元32与运算单元22不同。而且,运算单元32在不包含偏置电源226方面、以及电阻225的一端被接地方面,与运算单元22不同。运算单元32输出电压Vout。
图40是表示隔膜上所施加的压力和从信号处理电路251的运算单元32输出的电压Vout之间关系的图。参照图40,电压Vout在压力P0下为0,并且与压力成比例。在压力P1下电压Vout为VDD。根据图40所示的结构,压力传感器装置的最大灵敏度是VDD/(P1-P0)。无法使从压力P1’至压力P1的范围内的压力传感器装置的灵敏度高于上述灵敏度。
为了提高压力传感器装置的灵敏度,例如可考虑将具有图35所示的结构的运算单元23连接到图39所示的运算单元32的输出上。但是,如图40所示,对于其上限值小于P1’的范围的压力,压力传感器装置的灵敏度高。另一方面,在从压力P1’至压力P1的范围内,Vout固定。即,该范围中的压力传感器装置的灵敏度下降。
图41是示意地表示压力传感器装置10所包含的传感器1的状态的剖面图。参照图41,传感器1的内部的压力(基准压力)为P0。在本实施方式中,传感器1的内部大致为真空。因此,压力P0的值大致为0。
由于压力(气压)P高于P0,所以隔膜7因来自传感器1的外侧的压力而变形。另一方面,在传感器1的周围的环境也为真空的情况下,即传感器1上所施加的压力P为P0的情况下,不产生隔膜7的变形。因此,隔膜7随着压力P,以实线的箭头和虚线的箭头所示地动作。
根据图39所示的结构,与压力P=P0时的隔膜7的状态对应的电压是压力传感器装置10的基准电压。即,传感器1的内部的压力和传感器1的外部的压力相等时,压力传感器装置10的输出电压为基准电压(0)。但是,在将压力传感器装置用作气压传感器的情况下,不发生传感器1(隔膜7)上所施加的压力P在P0附近变化的状况。
而且,在从压力P1’至P1的范围中压力传感器装置的输出电压成为接近上限(VDD)的电压。因此,根据图39所示的结构,难以在上述范围中提高压力传感器装置的灵敏度。
在本实施方式中,将与压力P=P1时的隔膜7的状态对应的电压作为压力传感器装置10的基准电压。而且,随着压力P造成的隔膜7的状态的变化,使压力传感器装置的输出电压从基准电压变化。由此,可以将压力传感器装置的灵敏度在包含标准气压的期望的区域中提高。
图37所示的电压和压力之间的关系,例如可以通过使用具有与图41所示的结构不同的结构的传感器来获得。图42是示意地表示传感器的研讨例子的剖面图。参照图42,传感器1的内部的压力与传感器1的检测范围的上限值(P1)相等。传感器1的周围的气压(压力P)小于传感器1的内部的压力P1。因此,隔膜7面向半导体压力传感器1的外侧突出地变形。
与上述说明同样,传感器1的内部的压力和传感器1的外部的压力相等时,压力传感器装置10的输出电压为基准电压(0)。因此,在压力P=P1时,压力传感器装置10的输出电压为基准电压。压力P小于压力P1地变化。其结果,可以使压力传感器装置10的输出电压根据图37所示的关系变化。
但是,以半导体压力传感器1的内部的压力准确地成为P1来制造半导体压力传感器1是不容易的。更一般地说,如图41所示,半导体压力传感器1的内部为真空。根据本实施方式,在将这样的普通的压力传感器用作气压传感器的情况下,可以提高包含标准气压的期望的区域中的灵敏度。
再有,本实施方式的信号处理电路不限定于具有图35所示的结构。以下,说明本实施方式的信号处理电路的变形例。
图43是表示第6实施方式的信号处理电路的第1变形例的图。参照图43,信号处理电路2A在包括运算单元22A取代运算单元22方面与信号处理电路2不同。运算单元22A在包含偏置电源226A取代偏置电源226方面与运算单元22不同。信号处理电路2A的其他部分的结构与信号处理电路2的对应部分的结构是同样的。
偏置电源226A产生偏置电压V1。电压V1是低于差动放大器221的电源电压VDD的电压。
图44是用于说明从图43所示的运算单元22A输出的电压Vout1的图。参照图44,电压Vout1在压力P0中为V1,在压力P1中为0。电压Vout1与压力成比例地下降。再有,比例系数由电阻222、224的电阻值R3和电阻223、225的电阻值R4之比确定。R4/R3=V1/(P1-P0)。
在图43所示的结构中,在接近半导体压力传感器1的检测范围的上限值(压力P1)的区域中,电压Vout1也为0附近的电压。因此,可以提高接近压力P1区域中的压力传感器装置的灵敏度。
图45是表示第6实施方式的信号处理电路的第2变形例的图。参照图45,信号处理电路2B在还包括端子35方面与信号处理电路2不同。端子35连接到节点29。信号处理电路2B可以将电压Vout1、Vout2两方输出到外部。例如,可以基于电压Vout1检测宽范围的压力。而且,可以基于电压Vout2,在包含标准气压的期望的区域(接近检测范围的上限值的区域)中,提高检测灵敏度。
图46是表示第6实施方式的信号处理电路的第3变形例的图。参照图46,信号处理电路2C在具备选择电压Vout1和Vout2的其中一个的选择单元36方面与信号处理电路2不同。选择单元36根据信号SEL选择电压Vout1、Vout2的其中一个,并且将其选择出的电压输出到端子30。信号SEL例如从信号处理电路2C的外部提供给选择单元36。如图46所示,也可以构成为可选择性地输出电压Vout1和Vout2的一方的信号处理电路。
本次公开的实施方式在所有方面都是例示而不应该被认为是限制性的。本发明的范围不是以上述说明而是以权利要求的范围来表示,意图在于包含与权利要求范围同等的意义和范围内的所有变更。
工业实用性
如以上说明,本发明的半导体压力传感器具备薄膜压电元件进行的自身诊断功能。通过在薄膜压电元件上施加电压,可以检测半导体压力传感器的结构性的缺陷。而且,薄膜压电元件从具有作为变形计电阻功能的扩散电阻隔开距离地形成。由此,可以降低因薄膜压电元件和半导体基板之间的热膨胀率的差异而在扩散电阻上产生的变形,可以降低扩散电阻的未预期的电阻值变化。
薄膜压电元件延伸至薄壁区域上的规定的位置。由此,可以使薄膜压电元件对薄壁区域赋予的变形量稳定,可以提高半导体压力传感器的自身诊断精度。
而且,薄膜压电元件与用于将扩散电阻桥式连接的金属布线形成在电绝缘的不同的分层中。因此,薄膜压电元件和金属布线的配置、形状的自由度高。例如,具有金属布线和扩散布线的布线长度的调整容易的优点。因此,本发明的工业上的实用性高。

Claims (7)

1.压力传感器装置,包括:
传感器,使信号电压基于压力产生变化;以及
信号处理电路,用于处理从所述传感器输出的信号,
所述信号处理电路包括:
放大电路,用于放大所述信号电压;以及
第1运算电路,用于基于所述放大电路的输出电压,生成根据所述压力产生变化的第1电压,
所述第1运算电路通过从规定的偏置电压中减去对于所述放大电路的所述输出电压具有规定的相关关系的电压,生成所述第1电压。
2.如权利要求1所述的压力传感器装置,
所述信号处理电路还包括:
第2运算电路,用于基于所述第1电压,生成根据所述压力产生变化的第2电压,
所述第1电压对所述压力的第1变化率与所述第2电压对所述压力的第2变化率不同,
所述第1电压在由所述传感器检测的所述压力范围的上限值中,与所述第2电压一致。
3.如权利要求2所述的压力传感器装置,
所述第2变化率的绝对值大于所述第1变化率的绝对值。
4.如权利要求3所述的压力传感器装置,
所述第2运算电路通过放大所述第1电压而生成所述第2电压。
5.如权利要求2所述的压力传感器装置,
所述信号处理电路还包括:
第1端子,用于将所述第1电压输出到所述信号处理电路的外部;以及
第2端子,用于将所述第2电压输出所述信号处理电路的外部。
6.如权利要求2所述的压力传感器装置,
确定所述范围,以使其包含大气压的标准值并且所述上限值为所述标准值附近的值。
7.电子设备,包括:
传感器,其使信号电压基于压力产生变化;以及
信号处理电路,用于处理从所述传感器输出的信号,
所述信号处理电路包括:
放大电路,用于放大所述信号电压;以及
运算电路,用于基于所述放大电路的输出电压,生成根据所述压力产生变化的检测电压,
所述运算电路通过从规定的偏置电压中减去对于所述放大电路的所述输出电压有规定的相关关系的电压,生成所述检测电压,
所述电子设备还包括基于所述检测电压,执行规定的处理的本体部。
CN201410106439.2A 2009-07-24 2010-07-12 压力传感器装置以及电子设备 Active CN103822749B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2009-173306 2009-07-24
JP2009-173305 2009-07-24
JP2009173306 2009-07-24
JP2009173305 2009-07-24
JP2009-209699 2009-09-10
JP2009209699 2009-09-10
CN201080035964.XA CN102472678B (zh) 2009-07-24 2010-07-12 半导体压力传感器、压力传感器装置、电子设备以及半导体压力传感器的制造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201080035964.XA Division CN102472678B (zh) 2009-07-24 2010-07-12 半导体压力传感器、压力传感器装置、电子设备以及半导体压力传感器的制造方法

Publications (2)

Publication Number Publication Date
CN103822749A true CN103822749A (zh) 2014-05-28
CN103822749B CN103822749B (zh) 2016-05-04

Family

ID=43499043

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410106439.2A Active CN103822749B (zh) 2009-07-24 2010-07-12 压力传感器装置以及电子设备
CN201080035964.XA Active CN102472678B (zh) 2009-07-24 2010-07-12 半导体压力传感器、压力传感器装置、电子设备以及半导体压力传感器的制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201080035964.XA Active CN102472678B (zh) 2009-07-24 2010-07-12 半导体压力传感器、压力传感器装置、电子设备以及半导体压力传感器的制造方法

Country Status (6)

Country Link
US (2) US8770035B2 (zh)
EP (1) EP2458359B1 (zh)
JP (1) JP5696045B2 (zh)
KR (1) KR101408578B1 (zh)
CN (2) CN103822749B (zh)
WO (1) WO2011010571A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125789A (zh) * 2016-07-25 2016-11-16 四川人杰筑路机械有限公司 一种电加热罐智能控制系统
CN106461484A (zh) * 2014-06-09 2017-02-22 日立汽车系统株式会社 力学量测量装置及使用其的压力传感器
CN106487371A (zh) * 2015-09-01 2017-03-08 北京自动化控制设备研究所 一种兼容不同压力传感器的自适应接口装置
CN107152982A (zh) * 2016-03-02 2017-09-12 欧姆龙株式会社 压力传感器芯片及压力传感器
CN107687915A (zh) * 2016-08-03 2018-02-13 麦克罗特尔电子技术股份公司 设有偏置的校准电阻器的压阻式压力传感器
CN108692837A (zh) * 2017-04-06 2018-10-23 恩智浦美国有限公司 信号接口电路和包括信号接口电路的压力传感器系统
CN111238698A (zh) * 2020-02-27 2020-06-05 中国科学院微电子研究所 一种mems压阻传感器的内建自测试装置及测试方法
CN113203515A (zh) * 2020-01-30 2021-08-03 阿自倍尔株式会社 压力测定装置
CN114295276A (zh) * 2020-10-08 2022-04-08 阿自倍尔株式会社 压力测定装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9557230B2 (en) * 2011-10-21 2017-01-31 Csem Centre Suisse D'electronique Et De Microtechnique Sa—Recherche Et Developpement SiC high temperature pressure transducer
TWI486566B (zh) * 2012-02-27 2015-06-01 Fujikura Ltd 壓力感測器模組
RU2528541C1 (ru) * 2013-05-08 2014-09-20 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
US20150135634A1 (en) * 2013-11-15 2015-05-21 Tor Hoie Composite Building Components Building System
JP6166185B2 (ja) * 2014-01-06 2017-07-19 アルプス電気株式会社 Memsセンサ
JP2015184100A (ja) * 2014-03-24 2015-10-22 セイコーエプソン株式会社 物理量センサー、物理量センサーの製造方法、圧力センサー、高度計、電子機器および移動体
JP6340985B2 (ja) * 2014-08-12 2018-06-13 セイコーエプソン株式会社 物理量センサー、圧力センサー、高度計、電子機器および移動体
US9862592B2 (en) 2015-03-13 2018-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS transducer and method for manufacturing the same
US10353503B2 (en) * 2015-10-29 2019-07-16 Texas Instruments Incorporated Integrated force sensing element
KR102455040B1 (ko) * 2016-01-29 2022-10-17 삼성디스플레이 주식회사 디스플레이 장치
JP6665588B2 (ja) * 2016-03-02 2020-03-13 オムロン株式会社 圧力センサ
JP6983490B2 (ja) 2016-03-29 2021-12-17 ローム株式会社 電子部品
JP6663284B2 (ja) * 2016-04-19 2020-03-11 アズビル株式会社 真空計状態検出方法およびシステム
CN107505089B (zh) * 2016-06-14 2021-01-12 日本特殊陶业株式会社 爆燃传感器的制造方法
CN206818338U (zh) * 2016-12-19 2017-12-29 深圳纽迪瑞科技开发有限公司 压力感应组件及具有该压力感应组件的电子设备
JP6947367B2 (ja) * 2016-12-20 2021-10-13 ローム株式会社 センサモジュールおよびその製造方法
US10597288B2 (en) 2017-05-30 2020-03-24 Rohm Co., Ltd. MEMS-device manufacturing method, MEMS device, and MEMS module
CN107272961B (zh) 2017-06-30 2020-07-24 厦门天马微电子有限公司 一种显示面板及显示装置
CN107479743B (zh) * 2017-07-28 2020-08-18 上海天马微电子有限公司 一种显示基板、显示面板和显示装置
WO2019107680A1 (ko) * 2017-11-28 2019-06-06 대양전기공업 주식회사 반도체 압력센서
KR101990706B1 (ko) * 2017-12-05 2019-06-18 전자부품연구원 압력 센서 및 그 제조 방법
CN108319394B (zh) * 2018-02-06 2022-04-19 京东方科技集团股份有限公司 触控面板及其驱动方法、触控装置
CN109545953B (zh) * 2018-12-24 2023-01-17 中国航空工业集团公司西安飞行自动控制研究所 一种高温压力传感器芯片的制备方法
CN109655140A (zh) * 2019-01-29 2019-04-19 深圳市伊欧乐科技有限公司 电子秤
US11653568B2 (en) * 2020-01-08 2023-05-16 Texas Instmments Incorporated Integrated circuit stress sensor
JP7359032B2 (ja) * 2020-02-25 2023-10-11 Tdk株式会社 圧力センサ
WO2021201847A1 (en) * 2020-03-31 2021-10-07 Hewlett-Packard Development Company, L.P. Strain sensor with offset control
CN111735559B (zh) * 2020-06-29 2021-09-07 沈阳中科博微科技股份有限公司 电容型边缘计算压力变送器采集诊断电路及其工作方法
US11965790B2 (en) * 2020-07-03 2024-04-23 Honeywell International Inc. Sensor diagnostic method and system for pressure transmitter
KR20220039920A (ko) 2020-09-21 2022-03-30 삼성디스플레이 주식회사 표시장치
KR20220039988A (ko) 2020-09-22 2022-03-30 삼성디스플레이 주식회사 온도 센서 및 이를 포함하는 표시 장치
EP3978890A1 (de) * 2020-10-01 2022-04-06 König Metall GmbH & Co. KG Vorrichtung zur überwachung eines vakuums
JP2022139616A (ja) * 2021-03-12 2022-09-26 Tdk株式会社 圧力センサおよびセンサシステム
CN114136537B (zh) * 2021-11-04 2024-06-11 歌尔微电子股份有限公司 压力传感器
CN115127705B (zh) * 2022-06-23 2023-04-14 中国科学院力学研究所 一种主动驱动变形的薄膜式柔性压力传感器
EP4325189A1 (en) * 2022-08-19 2024-02-21 Meggitt SA Piezoelectric sensor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409213A2 (en) * 1989-07-19 1991-01-23 Fuji Electric Co., Ltd. Amplifiying compensation circuit for semiconductor pressure sensor
EP1286148A1 (en) * 2001-02-08 2003-02-26 TGK CO., Ltd. Method for adjusting pressure sensor
CN2637741Y (zh) * 2003-07-25 2004-09-01 无锡市海鹰传感器公司 电子式车用机油压力传感器
CN201130046Y (zh) * 2007-12-18 2008-10-08 昆山双桥传感器测控技术有限公司 波浪采集仪
CN101644612A (zh) * 2009-07-17 2010-02-10 昆山诺金传感技术有限公司 可编程压力传感器
CN201464117U (zh) * 2009-06-01 2010-05-12 杭州科岛微电子有限公司 电子式机油压力传感器

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029627A (ja) 1983-07-27 1985-02-15 Toshiba Corp 半導体圧力センサ
US4771638A (en) * 1985-09-30 1988-09-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor pressure sensor
US4975390A (en) * 1986-12-18 1990-12-04 Nippondenso Co. Ltd. Method of fabricating a semiconductor pressure sensor
US4993266A (en) * 1988-07-26 1991-02-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor pressure transducer
JP2890601B2 (ja) * 1990-02-08 1999-05-17 株式会社デンソー 半導体センサ
US5142912A (en) * 1990-06-15 1992-09-01 Honeywell Inc. Semiconductor pressure sensor
JPH0575637A (ja) 1991-09-18 1993-03-26 Hitachi Ltd ネームサーバー制御方式
US5291788A (en) * 1991-09-24 1994-03-08 Kabushiki Kaisha Toshiba Semiconductor pressure sensor
JPH0575637U (ja) * 1992-03-16 1993-10-15 横河電機株式会社 圧力センサ
JPH05322927A (ja) * 1992-05-26 1993-12-07 Matsushita Electric Works Ltd 自己診断用駆動部を有する半導体加速度センサー
JPH06234917A (ja) 1992-12-14 1994-08-23 Mitsubishi Electric Corp 高誘電性樹脂組成物、並びにそれを用いたマルチチップモジュール、圧力センサー、感湿センサー、コンデンサー、光フィルター、光導波路およびプラズマディスプレイ
JPH08274350A (ja) * 1995-03-29 1996-10-18 Yokogawa Electric Corp 半導体圧力センサ及びその製造方法
JPH1022509A (ja) * 1996-06-28 1998-01-23 Omron Corp センサ装置
JPH10281897A (ja) * 1997-04-08 1998-10-23 Mitsubishi Electric Corp 半導体圧力検出装置
CN1147719C (zh) * 1999-04-07 2004-04-28 株式会社山武 半导体压力传感器
US6056888A (en) * 1999-04-19 2000-05-02 Motorola, Inc. Electronic component and method of manufacture
US6422088B1 (en) * 1999-09-24 2002-07-23 Denso Corporation Sensor failure or abnormality detecting system incorporated in a physical or dynamic quantity detecting apparatus
JP2001349797A (ja) * 2000-06-06 2001-12-21 Denso Corp 圧力センサ
TWI224190B (en) * 2003-05-28 2004-11-21 Au Optronics Corp Semiconductor pressure sensor
US7131334B2 (en) 2004-04-19 2006-11-07 Celerity, Inc. Pressure sensor device and method
JP2009049026A (ja) 2006-08-01 2009-03-05 Rohm Co Ltd 半導体圧力センサ
JP4611251B2 (ja) * 2006-07-04 2011-01-12 日本碍子株式会社 流体特性測定装置
EP2037251A4 (en) 2006-07-04 2012-10-24 Ngk Insulators Ltd PIEZOELECTRIC / ELECTROSTRICTIVE FILM-TYPE SENSOR
KR100807193B1 (ko) * 2006-09-08 2008-02-28 한국과학기술원 정전용량형 압력센서의 제조방법 및 이에 의해 제조된정전용량형 압력센서
JP2009156658A (ja) * 2007-12-26 2009-07-16 Renesas Technology Corp 半導体圧力センサ装置、データ処理装置、血圧計、掃除機及び気圧計
CN102834715B (zh) * 2010-04-08 2015-09-16 恩德莱斯和豪瑟尔两合公司 应变式压力传感器
KR101215919B1 (ko) * 2010-08-13 2012-12-27 전자부품연구원 정전용량형 압력센서 및 그의 제조방법
WO2012080811A1 (ja) * 2010-12-15 2012-06-21 パナソニック株式会社 半導体圧力センサ
JP5878340B2 (ja) * 2011-11-15 2016-03-08 ルネサスエレクトロニクス株式会社 半導体装置及びセンサシステム
JP6054732B2 (ja) * 2012-12-14 2016-12-27 ルネサスエレクトロニクス株式会社 半導体装置及びオフセット電圧の補正方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409213A2 (en) * 1989-07-19 1991-01-23 Fuji Electric Co., Ltd. Amplifiying compensation circuit for semiconductor pressure sensor
EP1286148A1 (en) * 2001-02-08 2003-02-26 TGK CO., Ltd. Method for adjusting pressure sensor
CN2637741Y (zh) * 2003-07-25 2004-09-01 无锡市海鹰传感器公司 电子式车用机油压力传感器
CN201130046Y (zh) * 2007-12-18 2008-10-08 昆山双桥传感器测控技术有限公司 波浪采集仪
CN201464117U (zh) * 2009-06-01 2010-05-12 杭州科岛微电子有限公司 电子式机油压力传感器
CN101644612A (zh) * 2009-07-17 2010-02-10 昆山诺金传感技术有限公司 可编程压力传感器

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461484B (zh) * 2014-06-09 2019-04-12 日立汽车系统株式会社 力学量测量装置及使用其的压力传感器
CN106461484A (zh) * 2014-06-09 2017-02-22 日立汽车系统株式会社 力学量测量装置及使用其的压力传感器
US10197463B2 (en) 2014-06-09 2019-02-05 Hitachi Automotive Systems, Ltd. Dynamic quantity measuring device and pressure sensor using same
CN106487371A (zh) * 2015-09-01 2017-03-08 北京自动化控制设备研究所 一种兼容不同压力传感器的自适应接口装置
CN107152982A (zh) * 2016-03-02 2017-09-12 欧姆龙株式会社 压力传感器芯片及压力传感器
CN106125789B (zh) * 2016-07-25 2018-03-23 四川人杰筑路机械有限公司 一种电加热罐智能控制系统
CN106125789A (zh) * 2016-07-25 2016-11-16 四川人杰筑路机械有限公司 一种电加热罐智能控制系统
CN107687915A (zh) * 2016-08-03 2018-02-13 麦克罗特尔电子技术股份公司 设有偏置的校准电阻器的压阻式压力传感器
CN108692837A (zh) * 2017-04-06 2018-10-23 恩智浦美国有限公司 信号接口电路和包括信号接口电路的压力传感器系统
CN108692837B (zh) * 2017-04-06 2021-10-15 恩智浦美国有限公司 信号接口电路和包括信号接口电路的压力传感器系统
CN113203515A (zh) * 2020-01-30 2021-08-03 阿自倍尔株式会社 压力测定装置
CN113203515B (zh) * 2020-01-30 2022-11-08 阿自倍尔株式会社 压力测定装置
CN111238698A (zh) * 2020-02-27 2020-06-05 中国科学院微电子研究所 一种mems压阻传感器的内建自测试装置及测试方法
CN111238698B (zh) * 2020-02-27 2021-10-22 中国科学院微电子研究所 一种mems压阻传感器的内建自测试装置及测试方法
CN114295276A (zh) * 2020-10-08 2022-04-08 阿自倍尔株式会社 压力测定装置

Also Published As

Publication number Publication date
EP2458359A1 (en) 2012-05-30
US9568385B2 (en) 2017-02-14
EP2458359B1 (en) 2022-04-27
EP2458359A4 (en) 2018-01-10
JP5696045B2 (ja) 2015-04-08
WO2011010571A1 (ja) 2011-01-27
JPWO2011010571A1 (ja) 2012-12-27
CN102472678B (zh) 2014-04-23
CN102472678A (zh) 2012-05-23
KR101408578B1 (ko) 2014-06-17
US20140311249A1 (en) 2014-10-23
CN103822749B (zh) 2016-05-04
US8770035B2 (en) 2014-07-08
US20120118068A1 (en) 2012-05-17
KR20120053010A (ko) 2012-05-24

Similar Documents

Publication Publication Date Title
CN102472678B (zh) 半导体压力传感器、压力传感器装置、电子设备以及半导体压力传感器的制造方法
US6658948B2 (en) Semiconductor dynamic quantity sensor
US9291516B2 (en) Internally switched multiple range transducers
US20050274193A1 (en) Monolithic multi-functional integrated sensor and method for fabricating the same
US20060219021A1 (en) Line pressure compensated differential pressure transducer assembly
US20020086460A1 (en) Pressure transducer employing on-chip resistor compensation
JP2004257864A (ja) 圧力検出装置
CN109425460B (zh) 用于高压的具有薄膜的微机电换能器、其制造方法和包括微机电换能器的系统
JP2895262B2 (ja) 複合センサ
JP2001183254A (ja) 圧力センサ
US11609139B2 (en) Pressure sensor
JPH04178533A (ja) 半導体圧力センサ
JP3019549B2 (ja) 半導体加速度センサ
US6938501B2 (en) Semiconductor dynamic quantity sensor
JPH0337503A (ja) 歪ゲージ
CN116839771B (zh) 一种单轴敏感的集成应力传感器及其设计方法
US20220074880A1 (en) Mems hydrogen sensor and hydrogen sensing system
WO2007052800A1 (ja) 半導体圧力センサ
JPH0337537A (ja) 圧力センサ
JP3509336B2 (ja) 集積化センサ
JP2021039043A (ja) 圧力感知素子及び圧力センサ
JPH0818067A (ja) 半導体圧力センサ
JP2650623B2 (ja) 半導体加速度センサ
JPH0714070B2 (ja) 力変換素子
TW200538711A (en) Semiconductor pressure sensor and method of making the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant