WO2011092563A1 - 圧力センサ - Google Patents
圧力センサ Download PDFInfo
- Publication number
- WO2011092563A1 WO2011092563A1 PCT/IB2011/000081 IB2011000081W WO2011092563A1 WO 2011092563 A1 WO2011092563 A1 WO 2011092563A1 IB 2011000081 W IB2011000081 W IB 2011000081W WO 2011092563 A1 WO2011092563 A1 WO 2011092563A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- pressure sensor
- diaphragm
- pressure
- signal processing
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 238000006243 chemical reaction Methods 0.000 claims abstract description 28
- 239000004065 semiconductor Substances 0.000 claims abstract description 28
- 239000012535 impurity Substances 0.000 claims abstract description 21
- 239000010409 thin film Substances 0.000 claims description 60
- 239000010408 film Substances 0.000 claims description 33
- 238000009792 diffusion process Methods 0.000 claims description 13
- 230000001681 protective effect Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 59
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
- H01L27/0629—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0042—Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0051—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
- G01L9/0052—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
- G01L9/0054—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0051—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
- G01L9/0052—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
- G01L9/0055—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements bonded on a diaphragm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
Definitions
- the present invention relates to a pressure sensor, and in particular, a pressure sensor formed by forming, on a single semiconductor substrate, a pressure conversion unit that converts pressure into an electrical signal and a signal processing circuit that processes the electrical signal converted by the pressure conversion unit.
- a pressure sensor formed by forming, on a single semiconductor substrate, a pressure conversion unit that converts pressure into an electrical signal and a signal processing circuit that processes the electrical signal converted by the pressure conversion unit.
- a pressure conversion unit including a diaphragm and a piezoresistive element and a signal processing circuit that processes an electric signal converted by the pressure conversion unit are formed on a single semiconductor substrate.
- a diaphragm and a piezoresistive element are formed on a single crystal silicon substrate, and a signal processing circuit is formed around the diaphragm.
- the manufacturing cost can be reduced by simultaneously performing the process of forming the piezoresistive element and the process of forming the signal processing circuit.
- an n-type epitaxial silicon layer is formed on the main surface side of a p-type single crystal silicon substrate, and a p-type impurity is formed in the n-type epitaxial silicon layer.
- a piezoresistive element consisting of a diffusion region is formed.
- a p-well region is formed in the n-type epitaxial silicon layer, an n-channel MOS structure of a signal processing circuit is formed in the p-well region, and a p-channel MOS is formed in the n-type epitaxial silicon layer.
- the structure is formed at the same time to constitute a CMOS integrated circuit.
- the n-channel type is equivalent to the p-well region.
- the problem is that the area occupied by the MOS structure increases, and if the p-well region is formed in the n-type epitaxial silicon layer, the concentration of the p-well becomes too high and the performance of the n-channel MOS structure is degraded. .
- a pressure sensor formed by forming, on a single semiconductor substrate, a pressure converter that converts pressure into an electric signal and a signal processing circuit that processes the electric signal converted by the pressure converter.
- the pressure converter includes a diaphragm formed by partially thinning the semiconductor substrate, and a plurality of piezoresistive elements formed on the surface of the diaphragm, and the signal processing circuit is provided on the surface of the semiconductor substrate.
- a piezoresistive element is n-type by n-type impurity diffusion in a p-type conductivity region provided on the surface of the diaphragm.
- a pressure sensor is provided which is formed by diffusing p-type impurities in the n-type conductivity type region.
- the signal processing circuit is formed in the p-type conductivity type region provided on the surface around the diaphragm in the semiconductor substrate, and the n-type impurity diffusion n is applied to the p-type conductivity type region.
- the piezoresistive element is formed by diffusing p-type impurities in the n-type conductivity type region and forming the piezoresistive element in the n-type conductivity type region, Compared with the conventional example in which the signal processing circuit is formed, the area occupied by the signal processing circuit with respect to the semiconductor substrate can be reduced and the performance can be improved.
- the thin film layer formed on the surface side in the manufacturing process of the signal processing circuit may be removed outside the region where the piezoresistive element is formed. According to such a structure, the sensitivity fall of the pressure conversion part by a thin film layer can be suppressed.
- the thin film layer may be removed including a region where the piezoresistive element is formed.
- a protective film and a stress adjusting film for adjusting the stress of the protective film may be formed on the surface of the diaphragm. According to this, the stress generated in the protective film can be offset by the stress of the stress adjustment film.
- An insulating thin film layer may be formed on the surface of the piezoresistive element, and a conductive thin film layer may be formed on the surface of the insulating thin film layer. According to this, the conductor thin film layer becomes a shield, and the change in the resistance value of the piezoresistive element due to the external electric field can be suppressed.
- the conductive thin film layer may be electrically connected to a high potential side or a low potential side of a power supply voltage supplied to the signal processing circuit.
- the piezoresistive element is electrically connected to another piezoresistive element and the signal processing circuit by an impurity diffusion region having a resistance value lower than that of the piezoresistive element and formed on the surface of the semiconductor substrate. May be. According to this, it is possible to increase the detection accuracy by reducing the influence of the resistance value change in the portion other than the piezoresistive element.
- the n-type conductivity region in which the piezoresistive element is formed may be electrically connected to a high potential side of a power supply voltage that supplies power to the signal processing circuit.
- the pressure converter may be covered with a protective film made of an insulating thin film. According to this, the pressure conversion part can be protected electrically, chemically and physically.
- Embodiment 1 of the present invention where (a) is a plan view, (b) is a side cross-sectional view, and (c) is a main part cross-sectional view. It is a circuit block diagram of the signal processing circuit in the same as the above.
- Embodiment 2 of the present invention is shown, (a) is a plan view, (b) is a cross-sectional view taken along the line A-A with partly omitted from (a), and (c) is partly omitted from (a).
- FIG. 1 shows Embodiment 1 of the present invention, where (a) is a plan view, (b) is a side cross-sectional view, and (c) is a main part cross-sectional view. It is a circuit block diagram of the signal processing circuit in the same as the above.
- Embodiment 2 of the present invention is shown, (a) is a plan view, (b) is a cross-sectional view taken along the line A-A with partly omitted from (a), and (
- Embodiment 3 of the present invention is shown, (a) is a plan view, (b) is a cross-sectional view taken along the line AA with partly omitted from (a), and (c) is partly omitted from (a).
- FIG. 4 shows Embodiment 4 of the present invention, (a) is a cross-sectional view of the main part applied to the first embodiment, (b) is a cross-sectional view of a main part applied to the second embodiment, and (c) is a main part applied to the third embodiment.
- FIG. 1A is a plan view of the pressure sensor of the present embodiment
- FIG. 1B is a cross-sectional view thereof
- FIG. This pressure sensor has four piezoresistive elements (hereinafter abbreviated as piezoresistors) R1, R2, R2 on the main surface side (upper surface side in FIG. 1B) of the diaphragm 2 of the semiconductor substrate 1 made of a single crystal silicon substrate.
- the pressure conversion part 10 (refer FIG. 2) in which R3, R4 was formed is provided.
- the diaphragm 2 is formed by providing a recess 1A having a substantially truncated pyramid shape in side view on the back surface side (the lower surface side in FIG. 1B) of the semiconductor substrate 1 by an anisotropic etching technique or the like.
- a portion of the semiconductor substrate 1 outside the diaphragm 2 having a uniform thickness is referred to as a frame 3.
- the four piezoresistors R1, R2, R3, and R4 are disposed substantially at the center of the four sides of the diaphragm 2 when viewed from the thickness direction of the semiconductor substrate 1 (the vertical direction in FIG. 1B). Further, as shown in FIG.
- the pressure conversion unit 10 is configured by a bridge circuit of four piezoresistors R1, R2, R3, and R4 in terms of a circuit.
- the output voltage Vs of the pressure conversion unit 10 is amplified by the signal processing circuit B.
- the signal processing circuit B includes an operational amplifier OP1 in which one of the output ends of the pressure conversion unit 10, that is, a connection point between the piezoresistor R3 and the piezoresistor R4 is connected to the non-inverting input terminal, and the other output end of the pressure conversion unit 10.
- an operational amplifier OP2 is provided in which the connection point between the piezoresistor R1 and the piezoresistor R2 is connected to the non-inverting input terminal.
- the outputs of these two operational amplifiers OP1 and OP2 are differentially amplified by another operational amplifier OP3.
- the signal processing circuit B includes the above-described three operational amplifiers OP1, OP2, and OP3, resistors R11 to R14, and resistors R12 ′ to R14 ′.
- the resistors R12 and R12 ′ are designed to have the same resistance value.
- the resistors R13 and R13 ′ are designed to have the same resistance value
- the resistors R14 and R14 ′ are the same. It is designed to have a resistance value.
- the pressure conversion unit 10 is connected to the power supply VDD and the ground GND via a pad electrode (not shown) formed on the main surface side of the semiconductor substrate 1.
- the signal processing circuit B has a function of amplifying the output of the pressure conversion unit 10 and a function of temperature compensation.
- the resistors R11 to R14 and resistors R12 ′ to R14 ′ of the signal processing circuit B are constituted by diffusion resistors.
- each of the above-described operational amplifiers OP1 to OP3 is configured by a MOSFET or the like.
- the functions and circuit configurations of the signal processing circuit B described above are merely examples, and it is of course possible to add other functions or to realize the same functions with different circuit configurations.
- the signal processing circuit B comprises a CMOS integrated circuit formed by a conventionally well-known CMOS process on the main surface side of the semiconductor substrate 1 as shown in FIG.
- the signal processing circuit B is formed only in the region X corresponding to the frame 3 in the semiconductor substrate 1 (see FIGS. 1A and 1C).
- a p-type conductivity type region for example, a p-type epitaxial silicon layer
- the oxide film 22 is patterned, and n-type impurity diffusion regions 21A and 21B are formed in the p-type conductivity type region 20 where the oxide film 22 is removed by patterning.
- a polycrystalline silicon layer 25 serving as a gate region of the p-type MOSFET is formed on the surface side (upper surface side in FIG.
- the piezo resistors R1 to R4 and the signal processing circuit B can be simultaneously formed by a CMOS process.
- an n-type MOSFET structure is also formed in the p-type conductivity type region 20 at the same time.
- the n-type conductivity type region 21A in which the piezoresistor Ri is formed is connected to the high potential side of the power supply VDD by an interlayer wiring 38 and the like which will be described later.
- a thin film layer 30 for wiring is formed on the surface side of the p-type conductivity type region 20.
- the thin film layer 30 includes first to fourth insulating thin film layers 31 to 34 made of a silicon oxide film, and surfaces of the first to third insulating thin film layers 31 to 33 (second to fourth insulating thin film layers 32).
- First to third conductor thin film layers 35 to 37 made of a metal thin film formed on the interface between the first to third conductor thin film layers 35 to 37, and an interlayer wiring for electrically connecting the first to third conductor thin film layers 35 to 37 to each other. 38.
- the piezoresistor Ri and the signal processing circuit B are electrically connected by the first conductive thin film layer 35 via the interlayer wiring 38.
- an n-type conductivity type region (n-type epitaxial silicon layer) is formed on the main surface side of a p-type semiconductor substrate, and the n-type conductivity type. Piezoresistive elements and CMOS integrated circuits were formed in the region. For this reason, there is a problem that the exclusive area of the n-channel MOS structure increases, and when the p-well region is formed in the n-type conductivity type region, the concentration of the p-well becomes too high and the performance of the n-channel MOS structure is deteriorated. There was a problem.
- the p-type conductivity type region 20 is formed on the main surface side of the semiconductor substrate 1 as described above, and a CMOS integrated circuit is formed in the p-type conductivity type region 20.
- An n-type conductivity type region 21A is formed in the type region 20 by n-type impurity diffusion, and the piezoresistor Ri is formed by diffusing p-type impurities in the n-type conductivity type region 21A.
- the thin film layer 30 is formed on the entire main surface side of the semiconductor substrate 1 including the diaphragm 2.
- the diaphragm 2 Since the substantial thickness of the diaphragm 2 is increased by the thin film layer 30, the diaphragm 2 is difficult to bend and the detection sensitivity is lowered. 2)
- the piezoresistor Ri When the thin film layer 30 or the like is provided on the piezoresistor Ri, the piezoresistor Ri is positioned at the middle when viewed from the vertical cross section of the pressure sensor, and therefore when the piezoresistor Ri is on the surface of the pressure sensor. As compared with the above, the amount of bending with respect to the same pressure is reduced, and the detection sensitivity is lowered.
- the diaphragm 2 Since the diaphragm 2 is bent by the internal stress of the thin film layer 30 even when no pressure is applied from the outside, the offset of the output voltage Vs of the pressure conversion unit 10 becomes large. 4) Due to the internal stress of the thin film layer 30, the output voltage Vs of the pressure conversion unit 10 and the magnitude of pressure applied from the outside are not proportional. Therefore, in the present embodiment, as shown in FIG. 3, among the thin film layers 30 formed on the main surface side of the diaphragm 2, the thin film layers 30 other than the region where the piezoresistors Ri are formed (shaded portions in FIG. 3A). Is removed by an appropriate method such as etching.
- the thin film layer 30 other than the region where the piezoresistor Ri is formed is removed from the thin film layer 30 formed on the main surface side of the diaphragm 2.
- the thin film layer 30 (the hatched portion in FIG. 4A) formed on the main surface side of the diaphragm 2 including the region where the piezoresistor Ri is formed is removed.
- the problems 1) and 2) can be further improved.
- the end face of the diaphragm 2 and the piezoresistor and the thin film layer 30 are made of an insulating thin film (oxide film). 40 is preferable (see FIGS. 4B and 4C).
- the stress adjustment film 41 that generates a tensile stress is combined with the diaphragm 2. It is formed between the opposing insulating thin film layers 31-34. Note that a silicon nitride film is used as the stress adjustment film 41, and the magnitude of the tensile stress can be adjusted according to the conditions and film thickness when the silicon nitride film is formed.
- stress may be generated by the protective curtain 40 provided to electrically, chemically and physically protect the cross section of the diaphragm 2 and the piezoresistor and the thin film layer 30, and the stress adjusting curtain 41 of the present embodiment is
- the stress caused by the protective curtain 40 can also be offset.
- the compressive stress generated in the protective film 40, the insulating thin film layers 31 to 34, and the oxide film 22 is offset by the tensile stress generated in the stress adjusting film 41, so that the above 3) and 4).
- the stress adjusting film 41 has not only the structure of the first embodiment shown in FIG. 5A but also the structure of the second embodiment shown in FIG. 5B and the structure of the third embodiment shown in FIG. Either is possible.
- a stress adjustment film 41 is formed between the piezoresistor and the insulating film layer 31 so as to cover the oxide film 22, or as shown in FIG.
- a stress adjusting film 41 can be provided between the resistor, the oxide film 22 and the protective film 40 so as to cover the upper side of the diaphragm 2.
- the insulating thin film layer 43 is formed on the surface (upper surface) of the piezoresistor Ri, and the conductive thin film layer 42 is formed on the surface (upper surface) of the insulating thin film layer 43. Further, the conductive thin film layer 42 is electrically connected to the high potential side or the low potential side (GND) of the power supply voltage VDD fed to the signal processing circuit B.
- the conductor thin film layer 42 serves as a shield to suppress a change in the resistance value of the piezoresistor Ri due to the influence of the external electric field, thereby preventing a detection error (output fluctuation) of the pressure sensor.
- the structure of the present embodiment is applicable not only to the structure of the first embodiment shown in FIG.
- the actual piezoresistor Ri includes one or more piezoresistive element portions 50 electrically connected in series by an inter-element connection portion 51 and a pair of circuit connection portions 52 by a signal processing circuit B.
- the power supply (VDD) and the ground (GND) are electrically connected.
- VDD voltage supply
- GND ground
- the impurity concentration in the impurity diffusion region forming the inter-element connection portion 51 and the circuit connection portion 52 is made sufficiently higher than the impurity concentration of the piezoresistive element portion 50 so that the inter-element connection portion 51 and the circuit connection portion.
- the resistance value of 52 is lowered.
- the ratio of the resistance values of the inter-element connection portion 51 and the circuit connection portion 52 to the resistance value of the piezoresistor Ri decreases, so that the detection sensitivity of the pressure sensor can be increased.
- the structure of the present embodiment can be applied to all the structures of the first to fifth embodiments.
- the preferred embodiments of the present invention have been described above, but the present invention is not limited to these specific embodiments, and various modifications and variations that do not depart from the scope of the claims are possible. It belongs to the category of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Ceramic Engineering (AREA)
- Pressure Sensors (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
例えば、特許文献1に記載されている圧力センサは、単結晶のシリコン基板にダイヤフラム並びにピエゾ抵抗素子が形成されるとともに当該ダイヤフラムの周囲に信号処理回路が形成されている。かかる従来例では、ピエゾ抵抗素子を形成するプロセスと信号処理回路を形成するプロセスを同時に行うことで製造コストが低減できる。
しかしながら、上記従来例のようにn型のエピタキシャル・シリコン層にpウェル領域を形成し、さらに、このpウェル領域内にnチャネル型MOS構造を形成した場合、pウェル領域の分だけnチャネル型MOS構造の専有面積が増えてしまうという問題や、n型のエピタキシャル・シリコン層にpウェル領域を形成するとpウェルの濃度が高くなり過ぎてnチャネル型MOS構造の性能が低下するという問題が生じる。
本発明の一様態によれば、圧力を電気信号に変換する圧力変換部と当該圧力変換部で変換された電気信号を処理する信号処理回路とを単一の半導体基板に形成してなる圧力センサであって、前記圧力変換部は前記半導体基板を部分的に薄くしてなるダイヤフラムと、当該ダイヤフラムの表面に形成される複数のピエゾ抵抗素子とを有し、前記信号処理回路は前記半導体基板表面における前記ダイヤフラムの周囲に設けられたp型導電型領域に形成されるCMOS集積回路からなり、前記ピエゾ抵抗素子は前記ダイヤフラムの表面に設けられるp型導電型領域にn型の不純物拡散によるn型の導電型領域が形成されるとともに、当該n型導電型領域にp型の不純物が拡散されることにより形成されている圧力センサが提供される。
このような構成によれば、前記信号処理回路が前記半導体基板においてダイヤフラムの周囲の表面に設けられたp型の導電型領域に形成され、当該p型導電型領域にn型の不純物拡散によるn型の導電型領域が形成されるとともに、当該n型導電型領域にp型の不純物が拡散されることにより前記ピエゾ抵抗素子が形成されているので、n型の導電型領域にピエゾ抵抗素子並びに信号処理回路が形成される従来例と比較して、半導体基板に対する信号処理回路の専有面積の削減と性能向上が図れる。
前記圧力変換部は、前記信号処理回路の製造プロセスにおいて表面側に形成された薄膜層が前記ピエゾ抵抗素子の形成領域以外で除去されても良い。
このような構成によれば、薄膜層による圧力変換部の感度低下を抑制することができる。
前記圧力変換部は、前記薄膜層が前記ピエゾ抵抗素子の形成領域も含めて除去されても良い。
これにより、薄膜層による圧力変換部の感度低下をさらに抑制することができる。
前記ダイヤフラムの表面には保護膜と当該保護膜の応力を調整するための応力調整膜とが形成されても良い。
これによれば、保護膜に生じる応力を応力調整膜の応力で相殺することができる。
前記ピエゾ抵抗素子の表面に絶縁薄膜層が形成され、前記絶縁薄膜層の表面に導体薄膜層が形成されても良い。
これによれば、導体薄膜層がシールドとなって外部電界によるピエゾ抵抗素子の抵抗値変化を抑制することができる。
前記導体薄膜層は前記信号処理回路に給電される電源電圧の高電位側又は低電位側と電気的に接続されても良い。
前記ピエゾ抵抗素子は、当該ピエゾ抵抗素子の抵抗値よりも低い抵抗値を有して前記半導体基板表面に形成された不純物拡散領域によって他のピエゾ抵抗素子並びに前記信号処理回路と電気的に接続されても良い。
これによれば、ピエゾ抵抗素子以外の部分の抵抗値変化の影響を低減して検出精度を高めることができる。
前記ピエゾ抵抗素子が形成されている前記n型導電型領域が前記信号処理回路に給電する電源電圧の高電位側と電気的に接続されても良い。
前記圧力変換部は絶縁体薄膜からなる保護膜で覆われても良い。
これによれば、圧力変換部を電気的、化学的、物理的に保護することができる。
(実施形態1)
図1(a)は本実施形態の圧力センサの平面図、同図(b)は同じく断面図、同図(c)は同じく要部断面図である。この圧力センサは、単結晶シリコン基板からなる半導体基板1のダイヤフラム2の主表面側(図1(b)における上面側)に、4つのピエゾ抵抗素子(以下、ピエゾ抵抗と略す)R1,R2,R3,R4が形成された圧力変換部10(図2参照)を備えている。ダイヤフラム2は、異方性エッチング技術などによって半導体基板1の裏面側(図1(b)における下面側)に側面視略角錐台形状の凹所1Aを設けることで形成されている。なお、以下では半導体基板1のうちで均一の厚みを有しているダイヤフラム2の外側の部分をフレーム3と呼ぶことにする。
4つのピエゾ抵抗R1,R2,R3,R4は半導体基板1の厚み方向(図1(b)における上下方向)からみてダイヤフラム2の4つの辺のほぼ中央に配置されている。また、圧力変換部10は、図2に示すように回路的には4つのピエゾ抵抗R1,R2,R3,R4のブリッジ回路で構成されている。
圧力変換部10の出力電圧Vsは、信号処理回路Bにより増幅される。信号処理回路Bは、圧力変換部10の出力端の一方、つまりピエゾ抵抗R3とピエゾ抵抗R4との接続点が非反転入力端子に接続されるオペアンプOP1と、圧力変換部10の出力端の他方、つまりピエゾ抵抗R1とピエゾ抵抗R2との接続点が非反転入力端子に接続されるオペアンプOP2とを備えている。これら2つのオペアンプOP1,OP2の出力は別のオペアンプOP3によって差動増幅される。信号処理回路Bは、上述の3つのオペアンプOP1,OP2,OP3と、抵抗R11~R14と、抵抗R12’~R14’とで構成される。ここにおいて、抵抗R12とR12’とは同じ抵抗値になるように設計され、同様に、抵抗R13と抵抗R13’とは同じ抵抗値になるように設計され、抵抗R14と抵抗R14’とは同じ抵抗値になるように設計されている。なお、圧力変換部10は、半導体基板1の主表面側に形成された図示しないパッド電極などを介して電源VDDとグランドGNDに接続される。
したがって、図2に示す信号処理回路Bの出力電圧Voutは、Vout=Vs(1+2R12/R11)×(R14/R13)(VsはオペアンプOP1、OP2の非反転入力端子に印加される入力電圧差)となる。また、信号処理回路Bは、抵抗R11および抵抗R12の抵抗温度係数を所望のセンサ特性に応じて数百PPmないし数千PPmの範囲でそれぞれ適宜設定することにより(要するに、抵抗R11と抵抗R12とで抵抗温度係数を異ならせることにより)、抵抗R11と抵抗R12とで温度補償回路を構成している。同様に、抵抗R11と抵抗R12’とで温度補償回路を構成している。すなわち、信号処理回路Bは、圧力変換部10の出力を増幅する機能と温度補償する機能とを備えている。また、上記信号処理回路Bの抵抗R11~R14、抵抗R12’~R14’は拡散抵抗により構成される。さらに、上述の各オペアンプOP1~OP3はそれぞれMOSFETなどにより構成される。ただし、上述した信号処理回路Bの機能並びに回路構成はそれぞれ一例にすぎず、その他の機能を追加したり、同一の機能を別の回路構成で実現することも勿論可能である。
ところで、上記信号処理回路Bは、図1(c)に示すように半導体基板1の主表面側において従来周知のCMOSプロセスにより形成されるCMOS集積回路からなる。なお、信号処理回路Bは半導体基板1のうちのフレーム3に対応する領域Xにのみ形成される(図1(a)及び(c)参照)。
図1(c)に示すように半導体基板1の主表面側全体にp型導電型領域(例えば、p型のエピタキシャル・シリコン層)20が形成され、さらにp型導電型領域20に形成された酸化膜22がパターニングされ、パターニングで酸化膜22が除去された部分のp型導電型領域20内にn型の不純物拡散領域21A,21Bが形成されている。そして、これらのn型不純物拡散領域(n型導電型領域)21A,21Bにp型の不純物が拡散されることにより、一方のn型導電型領域21Aにはピエゾ抵抗Ri(i=1,2,3,4)を構成するp型不純物拡散領域24Aが形成され、他方のn型導電型領域21Bにはp型のMOSFETのドレイン領域及びソース領域となるp型不純物拡散領域24B,24Cが形成される。なお、p型不純物拡散領域24B,24Cに挟まれたn型導電型領域21Bの表面側(図1における上面側)には前記p型MOSFETのゲート領域となる多結晶シリコン層25が形成される。このように、ピエゾ抵抗R1~R4と信号処理回路BとはCMOSプロセスによって同時に形成することが可能である。ただし、図示は省略するが、p型導電型領域20にはn型のMOSFET構造も同時に形成されている。また、ピエゾ抵抗Riが形成されているn型導電型領域21Aは後述する層間配線38等によって電源VDDの高電位側と接続されている。
さらに、p型導電型領域20の表面側には配線用の薄膜層30が形成されている。この薄膜層30は、シリコン酸化膜からなる第1~第4の絶縁薄膜層31~34と、第1~第3の絶縁薄膜層31~33の表面(第2~第4の絶縁薄膜層32~34との界面)に形成された金属薄膜からなる第1~第3の導体薄膜層35~37と、これら第1~第3の導体薄膜層35~37同士を電気的に接続する層間配線38とを有している。なお、ピエゾ抵抗Riと信号処理回路Bとは層間配線38を介して第1の導体薄膜層35によって電気的に接続されている。
ここで、特許文献1に記載されている従来例においては、p型の半導体基板の主表面側にn型の導電型領域(n型のエピタキシャル・シリコン層)が形成され、当該n型導電型領域にピエゾ抵抗素子並びにCMOS集積回路が形成されていた。このため、nチャネル型MOS構造の専有面積が増えてしまうという問題や、n型導電型領域にpウェル領域を形成するとpウェルの濃度が高くなり過ぎてnチャネル型MOS構造の性能が低下するといった問題があった。
これに対して本実施形態では、上述のように半導体基板1の主表面側にp型導電型領域20が形成され、当該p型導電型領域20にCMOS集積回路が形成され、当該p型導電型領域20にn型の不純物拡散によるn型導電型領域21Aが形成されるとともに、当該n型導電型領域21Aにp型の不純物が拡散されることにより前記ピエゾ抵抗Riが形成されているため、特許文献1の従来例における上記問題を解決し、半導体基板1に対する信号処理回路Bの専有面積の削減と性能向上が図れる。
(実施形態2)
実施形態1においては、ダイヤフラム2も含めて半導体基板1の主表面側全体に薄膜層30が形成されている。この場合、以下のような問題が生じる。
1)ダイヤフラム2の実質的な厚みが薄膜層30によって増えるため、ダイヤフラム2が撓み難くなって検出感度が低下してしまう。
2)ピエゾ抵抗Riの上に薄膜層30などが設けられることによりピエゾ抵抗Riが圧力センサの垂直断面から見て中間あたりに位置するようになるため、ピエゾ抵抗Riが圧力センサの表面にあるときと比較して同じ圧力に対する撓み量が小さくなって検出感度が低下してしまう。
3)外部から圧力が加わっていないときにも薄膜層30の内部応力によってダイヤフラム2が撓んでしまうため、圧力変換部10の出力電圧Vsのオフセットが大きくなってしまう。
4)薄膜層30の内部応力の影響により圧力変換部10の出力電圧Vsと外部から加わる圧力の大きさとが比例しなくなる。
そこで本実施形態では、図3に示すようにダイヤフラム2の主表面側に形成されている薄膜層30のうちでピエゾ抵抗Riの形成領域以外の薄膜層30(図3(a)における斜線部分)をエッチングなどの適宜の方法で除去している。つまり、圧力変換部10は、図3(b)に示すようにピエゾ抵抗Riの形成領域のみが薄膜層30で覆われ、図3(c)に示すようにピエゾ抵抗Riの形成領域を除くダイヤフラム2の主表面側にp型導電型領域20が露出している。
而して、ダイヤフラム2の主表面側の薄膜層30が除去されることにより、上記1)~4)の問題を全て解決することができる。ただし、ダイヤフラム2を電気的、化学的、物理的に保護するため、ダイヤフラム2の主表面側に露出するp型導電型領域20を後述する図4(b)及び(c)に示すように絶縁体薄膜(酸化膜)からなる保護膜で覆うことが望ましい。
(実施形態3)
実施形態2においては、ダイヤフラム2の主表面側に形成されている薄膜層30のうちでピエゾ抵抗Riの形成領域以外の薄膜層30を除去している。これに対して本実施形態では、図4に示すようにピエゾ抵抗Riの形成領域を含めてダイヤフラム2の主表面側に形成されている薄膜層30(図4(a)における斜線部分)を除去している点に特徴がある。而して、上述のようにピエゾ抵抗Riの形成領域の薄膜層30を除去することにより、上記1)、2)の問題をさらに改善することができる。ただし、ダイヤフラム2並びにピエゾ抵抗、薄膜層30の端面を電気的、化学的、物理的に保護するため、ダイヤフラム2並びにピエゾ抵抗、薄膜層30の端面を絶縁体薄膜(酸化膜)からなる保護膜40で覆うことが望ましい(図4(b),(c)参照)。
(実施形態4)
既に説明したように、ダイヤフラム2の主表面側に薄膜層30が形成される場合、薄膜層30の絶縁薄膜層31~34に生じる圧縮応力により、
3)外部から圧力が加わっていないときにも薄膜層30の内部応力によってダイヤフラム2が撓んでしまうため、圧力変換部10の出力電圧Vsのオフセットが大きくなってしまう。
4)薄膜層30の内部応力の影響により圧力変換部10の出力電圧Vsと外部から加わる圧力の大きさとが比例しなくなる。という問題が生じる。なお、上記3),4)の問題は薄膜層30とp型導電型領域20との間に介在する酸化膜22によっても生じる。
そこで本実施形態では、図5(a)に示すように薄膜層30の絶縁薄膜層31~34や酸化膜22に生じる圧縮応力を相殺するため、引張応力を生じる応力調整膜41がダイヤフラム2と対向する絶縁薄膜層31~34の層間に形成されている。なお、応力調整膜41としては窒化シリコン膜が用いられ、当該窒化シリコン膜の形成時の条件や膜厚によって引張応力の大きさを調整することができる。また、ダイヤフラム2及びピエゾ抵抗、薄膜層30の断面を電気的、化学的、物理的に保護するために設けた保護幕40によって、応力が生じることもあり、本実施形態の応力調整幕41は保護幕40に起因して生じる応力も相殺することができる。
上述のように本実施形態によれば、応力調整膜41に生じる引張応力によって保護膜40、絶縁薄膜層31~34や酸化膜22に生じる圧縮応力を相殺することにより、上記3),4)の問題を解決することができる。なお、応力調整膜41は、図5(a)に示す実施形態1の構造だけでなく、図5(b)に示す実施形態2の構造並びに図5(c)に示す実施形態3の構造の何れにも可能である。例えば、図5(b)に示すように、ピエゾ抵抗と酸化膜22を覆うように絶縁膜層31との間に応力調整膜41を形成するか、図5(c)に示すように、ピエゾ抵抗と酸化膜22とダイヤフラム2の上側を覆うように保護膜40との間に応力調整膜41を設けることができる。
(実施形態5)
ところで、圧力変換部10のピエゾ抵抗Riに外部電界(外部電源VDDの給電路の周囲に生じる電界や外来ノイズなど)が印加された場合、ピエゾ抵抗Riの抵抗値が変化して検出誤差を生じる虞がある。
そこで本実施形態では、図6に示すようにピエゾ抵抗Riの表面(上面)に絶縁薄膜層43を形成するとともに当該絶縁薄膜層43の表面(上面)に導体薄膜層42を形成している。さらに、この導体薄膜層42を信号処理回路Bに給電される電源電圧VDDの高電位側又は低電位側(GND)と電気的に接続している。
而して、導体薄膜層42がシールドとなって外部電界の影響によるピエゾ抵抗Riの抵抗値変化を抑制し、圧力センサの検出誤差(出力変動)を防ぐことができる。なお、本実施形態の構造は、図6に示した実施形態1の構造だけでなく、実施形態2~4の何れの構造にも適用可能である。
(実施形態6)
実際のピエゾ抵抗Riは、図7に示すように1つ以上のピエゾ抵抗素子部50が、素子間接続部51によって電気的に直列接続されるとともに、一対の回路接続部52によって信号処理回路B及び電源(VDD),接地(GND)に電気的に接続されて構成されている。ここで、素子間接続部51や回路接続部52は導電路として機能するので、圧力が印加されたときに生じる抵抗値の変化が少ないことが望ましい。
そこで本実施形態では、素子間接続部51並びに回路接続部52を形成する不純物拡散領域の不純物濃度をピエゾ抵抗素子部50の不純物濃度よりも十分に高くして素子間接続部51並びに回路接続部52の抵抗値を下げている。その結果、素子間接続部51並びに回路接続部52の抵抗値がピエゾ抵抗Riの抵抗値に占める割合が低下するので、圧力センサの検出感度を高めることができる。なお、本実施形態の構造は、実施形態1~5の全ての構造に適用可能である。
以上、本発明の好ましい実施形態が説明されているが、本発明はこれらの特定の実施形態に限られるものではなく、請求範囲の範疇から離脱しない多様な変更及び変形が可能であり、それも本発明の範疇内に属する。
Claims (9)
- 圧力を電気信号に変換する圧力変換部と当該圧力変換部で変換された電気信号を処理する信号処理回路とを単一の半導体基板に形成してなる圧力センサであって、
前記圧力変換部は前記半導体基板を部分的に薄くしてなるダイヤフラムと、当該ダイヤフラムの表面に形成される複数のピエゾ抵抗素子とを有し、
前記信号処理回路は前記半導体基板表面における前記ダイヤフラムの周囲に設けられたp型導電型領域に形成されるCMOS集積回路からなり、
前記ピエゾ抵抗素子は前記ダイヤフラムの表面に設けられるp型導電型領域にn型の不純物拡散によるn型の導電型領域が形成されるとともに、当該n型導電型領域にp型の不純物が拡散されることにより形成されている圧力センサ。 - 前記圧力変換部は、前記信号処理回路の製造プロセスにおいて表面側に形成された薄膜層が前記ピエゾ抵抗素子の形成領域以外で除去されてなる請求項1記載の圧力センサ。
- 前記圧力変換部は、前記薄膜層が前記ピエゾ抵抗素子の形成領域も含めて除去されてなる請求項2記載の圧力センサ。
- 前記ダイヤフラムの表面には保護膜と当該保護膜の応力を調整するための応力調整膜とが形成されている請求項1~3の何れか1項に記載の圧力センサ。
- 前記ピエゾ抵抗素子の表面に絶縁薄膜層が形成され、前記絶縁薄膜層の表面に導体薄膜層が形成されている請求項1~4の何れか1項に記載の圧力センサ。
- 前記導体薄膜層は前記信号処理回路に給電される電源電圧の高電位側又は低電位側と電気的に接続されている請求項5記載の圧力センサ。
- 前記ピエゾ抵抗素子は、当該ピエゾ抵抗素子の抵抗値よりも低い抵抗値を有して前記半導体基板表面に形成された不純物拡散領域によって他のピエゾ抵抗素子並びに前記信号処理回路と電気的に接続されている請求項1~6の何れか1項に記載の圧力センサ。
- 前記ピエゾ抵抗素子が形成されている前記n型導電型領域が前記信号処理回路に給電する電源電圧の高電位側と電気的に接続されている請求項1~7の何れか1項に記載の圧力センサ。
- 前記圧力変換部は絶縁体薄膜からなる保護膜で覆われている請求項1~8の何れか1項に記載の圧力センサ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127019777A KR20120125264A (ko) | 2010-01-29 | 2011-01-21 | 압력 센서 |
CN2011800071779A CN102770743A (zh) | 2010-01-29 | 2011-01-21 | 压力传感器 |
US13/574,269 US20120285254A1 (en) | 2010-01-29 | 2011-01-21 | Pressure sensor |
EP11736675A EP2530444A1 (en) | 2010-01-29 | 2011-01-21 | Pressure sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-018984 | 2010-01-29 | ||
JP2010018984A JP2011158317A (ja) | 2010-01-29 | 2010-01-29 | 圧力センサ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011092563A1 true WO2011092563A1 (ja) | 2011-08-04 |
Family
ID=44318722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2011/000081 WO2011092563A1 (ja) | 2010-01-29 | 2011-01-21 | 圧力センサ |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120285254A1 (ja) |
EP (1) | EP2530444A1 (ja) |
JP (1) | JP2011158317A (ja) |
KR (1) | KR20120125264A (ja) |
CN (1) | CN102770743A (ja) |
TW (1) | TW201140013A (ja) |
WO (1) | WO2011092563A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2657669A2 (en) * | 2012-04-27 | 2013-10-30 | Melexis Technologies NV | TMAP sensor systems and methods of manufacturing those |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011158317A (ja) * | 2010-01-29 | 2011-08-18 | Panasonic Electric Works Co Ltd | 圧力センサ |
JP5656894B2 (ja) | 2012-02-03 | 2015-01-21 | 株式会社アドバンテスト | 接触圧力検出装置および接点圧力測定装置 |
TWI475194B (zh) * | 2012-03-23 | 2015-03-01 | Windtop Technology Corp | 具機電隔離功能的微機電壓力感測器 |
JP6119518B2 (ja) * | 2013-02-12 | 2017-04-26 | ソニー株式会社 | センサ装置、入力装置及び電子機器 |
JP6127625B2 (ja) * | 2013-03-19 | 2017-05-17 | オムロン株式会社 | 静電容量型圧力センサ及び入力装置 |
US11051554B2 (en) * | 2014-11-12 | 2021-07-06 | Rai Strategic Holdings, Inc. | MEMS-based sensor for an aerosol delivery device |
JP6371012B2 (ja) * | 2015-09-30 | 2018-08-08 | 日立オートモティブシステムズ株式会社 | 力学量測定装置およびそれを用いた圧力センサ |
US10556532B2 (en) * | 2017-05-15 | 2020-02-11 | Lear Corporation | Seating system having seat with individually controllable thermal units |
US11885704B2 (en) | 2020-07-27 | 2024-01-30 | Precision Biomems Corporation | Flexible two-dimensional sheet array of electronic sensor devices |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06207871A (ja) * | 1993-01-12 | 1994-07-26 | Yamatake Honeywell Co Ltd | 圧力センサ |
JPH0887439A (ja) | 1994-09-20 | 1996-04-02 | Fujitsu Ltd | ディレクトリシステム |
JPH0897439A (ja) * | 1994-09-14 | 1996-04-12 | Delco Electron Corp | ワン・チップ集積センサ |
JPH10274581A (ja) * | 1997-03-31 | 1998-10-13 | Matsushita Electric Works Ltd | 半導体圧力センサチップ及びその製造方法 |
JP2004109112A (ja) * | 2002-07-22 | 2004-04-08 | Denso Corp | 半導体センサ |
JP2005156164A (ja) * | 2003-11-20 | 2005-06-16 | Matsushita Electric Works Ltd | 圧力センサ及び該圧力センサの製造方法 |
JP2008190970A (ja) * | 2007-02-05 | 2008-08-21 | Mitsubishi Electric Corp | 圧力センサ |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6012336A (en) * | 1995-09-06 | 2000-01-11 | Sandia Corporation | Capacitance pressure sensor |
SG68002A1 (en) * | 1997-11-25 | 1999-10-19 | Inst Of Microelectronics Natio | Cmos compatible integrated pressure sensor |
US20020003274A1 (en) * | 1998-08-27 | 2002-01-10 | Janusz Bryzek | Piezoresistive sensor with epi-pocket isolation |
JP3567094B2 (ja) * | 1999-02-09 | 2004-09-15 | 株式会社日立製作所 | 回路内蔵型センサおよびそれを用いた圧力検出装置 |
US6472243B2 (en) * | 2000-12-11 | 2002-10-29 | Motorola, Inc. | Method of forming an integrated CMOS capacitive pressure sensor |
US7144750B2 (en) * | 2003-06-12 | 2006-12-05 | Dalsa Semiconductor Inc. | Method of fabricating silicon-based MEMS devices |
JP4600468B2 (ja) * | 2007-12-10 | 2010-12-15 | セイコーエプソン株式会社 | 半導体圧力センサ及びその製造方法、半導体装置並びに電子機器 |
JP2011158317A (ja) * | 2010-01-29 | 2011-08-18 | Panasonic Electric Works Co Ltd | 圧力センサ |
-
2010
- 2010-01-29 JP JP2010018984A patent/JP2011158317A/ja active Pending
-
2011
- 2011-01-21 EP EP11736675A patent/EP2530444A1/en not_active Withdrawn
- 2011-01-21 KR KR1020127019777A patent/KR20120125264A/ko not_active Application Discontinuation
- 2011-01-21 CN CN2011800071779A patent/CN102770743A/zh active Pending
- 2011-01-21 US US13/574,269 patent/US20120285254A1/en not_active Abandoned
- 2011-01-21 WO PCT/IB2011/000081 patent/WO2011092563A1/ja active Application Filing
- 2011-01-27 TW TW100103122A patent/TW201140013A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06207871A (ja) * | 1993-01-12 | 1994-07-26 | Yamatake Honeywell Co Ltd | 圧力センサ |
JPH0897439A (ja) * | 1994-09-14 | 1996-04-12 | Delco Electron Corp | ワン・チップ集積センサ |
JPH0887439A (ja) | 1994-09-20 | 1996-04-02 | Fujitsu Ltd | ディレクトリシステム |
JPH10274581A (ja) * | 1997-03-31 | 1998-10-13 | Matsushita Electric Works Ltd | 半導体圧力センサチップ及びその製造方法 |
JP2004109112A (ja) * | 2002-07-22 | 2004-04-08 | Denso Corp | 半導体センサ |
JP2005156164A (ja) * | 2003-11-20 | 2005-06-16 | Matsushita Electric Works Ltd | 圧力センサ及び該圧力センサの製造方法 |
JP2008190970A (ja) * | 2007-02-05 | 2008-08-21 | Mitsubishi Electric Corp | 圧力センサ |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2657669A2 (en) * | 2012-04-27 | 2013-10-30 | Melexis Technologies NV | TMAP sensor systems and methods of manufacturing those |
Also Published As
Publication number | Publication date |
---|---|
CN102770743A (zh) | 2012-11-07 |
US20120285254A1 (en) | 2012-11-15 |
KR20120125264A (ko) | 2012-11-14 |
TW201140013A (en) | 2011-11-16 |
EP2530444A1 (en) | 2012-12-05 |
JP2011158317A (ja) | 2011-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011092563A1 (ja) | 圧力センサ | |
USRE46486E1 (en) | Semiconductor pressure sensor | |
JP5696045B2 (ja) | 半導体圧力センサ | |
US6615668B2 (en) | Semiconductor pressure sensor having signal processor circuit | |
JP5853169B2 (ja) | 半導体圧力センサ | |
US20150008544A1 (en) | Physical quantity sensor | |
US11643324B2 (en) | MEMS sensor | |
JP2002195902A (ja) | 圧力センサ | |
US6683358B1 (en) | Silicon integrated accelerometer | |
JP4589605B2 (ja) | 半導体多軸加速度センサ | |
KR20040010394A (ko) | 도핑된 반도체층을 배선으로 사용한 반도체 가속도 센서 | |
JP2009300197A (ja) | 半導体圧力センサ | |
US10962430B2 (en) | Pressure sensor | |
JP2014048237A (ja) | 磁気ホールセンサー | |
JP5793700B2 (ja) | 半導体圧力センサ | |
JP2015143713A (ja) | 半導体圧力センサ | |
JP4035519B2 (ja) | 半導体圧力センサおよびその製造方法 | |
JP5151281B2 (ja) | 半導体圧力センサ | |
JP2011027611A (ja) | 半導体圧力センサ及びその製造方法 | |
WO2023176082A1 (ja) | Memsセンサ | |
JP2007171057A (ja) | 加速度センサ | |
JP2009175088A (ja) | 半導体圧力センサ | |
JP2006153513A (ja) | 加速度センサ | |
JP2014016189A (ja) | 半導体センサ | |
JP2010139374A (ja) | 半導体圧力センサのオフセット電圧調整方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180007177.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11736675 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13574269 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011736675 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127019777 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |