JP2007171057A - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
JP2007171057A
JP2007171057A JP2005371030A JP2005371030A JP2007171057A JP 2007171057 A JP2007171057 A JP 2007171057A JP 2005371030 A JP2005371030 A JP 2005371030A JP 2005371030 A JP2005371030 A JP 2005371030A JP 2007171057 A JP2007171057 A JP 2007171057A
Authority
JP
Japan
Prior art keywords
acceleration
sensor chip
piezoresistors
acceleration sensor
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005371030A
Other languages
English (en)
Inventor
Makoto Morii
誠 森井
Hisakazu Miyajima
久和 宮島
Hidekazu Furukubo
英一 古久保
Koji Goto
浩嗣 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005371030A priority Critical patent/JP2007171057A/ja
Publication of JP2007171057A publication Critical patent/JP2007171057A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

【課題】センサチップの厚み方向の加速度に対応する出力電圧におけるオフセット電圧の温度変動を抑制できる加速度センサを提供することにある。
【解決手段】加速度センサは、フレーム部10と、フレーム部10の内側に配置される重り部11と、重り部11の四方からそれぞれ延設されて、重り部11をフレーム部10に揺動自在に支持させる4つの撓み部12とを備えて半導体基板から形成されるセンサチップ1を有し、該センサチップ1には、センサチップ1の厚み方向の加速度検出に用いられる厚み方向用圧電素子である4つのピエゾ抵抗Rz1〜Rz4と、前記厚み方向に直交する方向の加速度検出に用いられる各4つのピエゾ抵抗Rx1〜Rx4,Ry1〜Ry4とが設けられ、これらピエゾ抵抗Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4は、センサチップ1の撓み部12において重り部11側の端部Pに形成されている。
【選択図】図1

Description

本発明は、自動車、航空機、家電製品等に用いる加速度センサに関するものであり、特に、ゲージ抵抗のひずみによる抵抗値の変化により加速度を検出する加速度センサに関するものである。
従来から、小型の加速度センサとして、加速度をピエゾ抵抗からなるゲージ抵抗のひずみによる抵抗値の変化として検出する方式の半導体加速度センサが提供されており、この種の半導体加速度センサとしては、図4に示すようなセンサチップ100を有しているものがある(特許文献1)。
この加速度センサに用いられているセンサチップ100は、図4に示すように、シリコン基板から形成され、フレーム部110と、フレーム部110の内側に配置される重り部111と、重り部111の四方からそれぞれ延設されて、重り部111をフレーム部110に揺動自在に支持させる4つの撓み部112とを備えている。但し、以下の説明では、図4に示すように、センサチップ100の一表面(図4における上面)に平行な面内でフレーム部110の一辺に沿った一方向をx軸の正方向、この一辺に直交する辺に沿った一方向をy軸の正方向、センサチップ100の厚み方向の一方向をz軸方向と規定する。また、上述のx軸、y軸、z軸の3軸により規定した直交座標では、センサチップ100の一表面における重り部111の中心位置を原点としている。
そして、上記のセンサチップ100には、z軸方向の加速度検出に用いられる4つのピエゾ抵抗Rz1〜Rz4と、x軸方向の加速度検出に用いられる4つのピエゾ抵抗Rx1〜Rx4と、y軸方向の加速度検出に用いられる4つのピエゾ抵抗Ry1〜Ry4とが設けられている。ここで、ピエゾ抵抗Rx1〜Rx4,Ry1〜Ry4は、センサチップ100の撓み部112において重り部111側の端部に形成され、ピエゾ抵抗Rz1〜Rz4は、センサチップ100の撓み部112においてフレーム部111側の端部に形成されている。
これら各4つのピエゾ抵抗Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4は、それぞれブリッジ回路を構成しており、センサチップ100にかかる加速度に応じてその抵抗値が変化するため、各ブリッジ回路それぞれの出力電圧の変化を検出することにより、センサチップ100に作用したx軸方向、y軸方向、z軸方向それぞれの加速度を検出することができるようになっている。
特開平11−242050号公報(第1図)
ところで、図4に示す加速度センサでは、周囲温度の変動によって、例えばシリコンとガラスとの熱膨張係数差に起因した熱応力や、パッケージとガラスとの熱膨張係数差に起因した熱応力や、パッケージと回路基板との熱膨張係数差に起因した熱応力等が撓み部112のピエゾ抵抗Rz1〜Rz4(の形成部位)に伝達されて、ピエゾ抵抗Rz1〜Rz4にひずみが生じ、これによりピエゾ抵抗Rz1〜Rz4の抵抗値が増減してしまう。
ここで、図4に示す加速度センサは、上述したようにピエゾ抵抗Rz1〜Rz4の抵抗値の変化によってz軸方向の加速度の検出を行うものであり、しかもピエゾ抵抗Rz1〜Rz4それぞれの抵抗値変動の増減方向がz軸方向の加速度の印加により生じるピエゾ抵抗Rz1〜Rz4それぞれの抵抗値変動の増減方向と同じであるから、上記のような周囲温度の変動によってピエゾ抵抗Rz1〜Rz4の抵抗値が増減した際には、加速度とは関係がない熱応力によって、ブリッジ回路の出力電圧が変動することになる。
つまり、従来の加速度センサでは、周囲温度の変動(熱応力)によって、z軸方向の加速度に対応するブリッジ回路の出力電圧におけるオフセット電圧(加速度センサに加速度が印加されていないときのブリッジ回路の出力電圧)が変動してしまい、これが高精度な加速度検出の妨げとなるという問題があった。このような問題は、加速度センサの小型化及び薄型化を図ったときに顕著であり、フレーム部110の幅を狭くすることによる機械的な強度の低下や、薄型化による応力発生源からピエゾ抵抗Rz1〜Rz4までの応力伝達距離の短縮化等によって、さらに温度特性が悪化してしまうという問題が生じていた。
本発明は上記事由に鑑みて為されたものであり、その目的は、センサチップの厚み方向の加速度に対応する出力電圧におけるオフセット電圧の温度変動を抑制できる加速度センサを提供することにある。
上述の課題を解決するために、請求項1の加速度センサの発明では、フレーム部と、フレーム部の内側に配置される重り部と、重り部の四方からそれぞれ延設されて、重り部をフレーム部に揺動自在に支持させる4つの撓み部とを備えて半導体基板から形成されるセンサチップを有し、該センサチップには、センサチップの厚み方向の加速度検出に用いられる厚み方向用圧電素子と、前記厚み方向に直交する方向の加速度検出に用いられる直交方向用圧電素子とが設けられ、前記厚み方向用圧電素子及び前記直交方向用圧電素子は、センサチップの撓み部において重り部側の端部に形成されていることを特徴とする。
請求項2の加速度センサの発明では、請求項1の構成に加えて、前記圧電素子は、ピエゾ抵抗であることを特徴とする。
請求項3の加速度センサの発明では、請求項1又は2の構成に加えて、前記撓み部には、厚み方向用圧電素子と、直交方向用圧電素子とが、1つの厚み方向用圧電素子を2つの直交方向用圧電素子で挟んだ状態で設けられていることを特徴とする。
請求項1の加速度センサの発明は、厚み方向用圧電素子に生じる熱応力の影響を低減することができ、これによりセンサチップの厚み方向の加速度に対応する出力電圧(厚み方向用圧電素子の出力電圧)におけるオフセット電圧の温度変動を抑制できるという効果を奏する。
請求項2の加速度センサの発明は、各圧電素子としてピエゾ抵抗を用いた加速度センサを得ることができるという効果を奏する。
請求項3の加速度センサの発明は、各圧電素子を撓み部における重り部側の端部に集中して配置することができるという効果を奏する。
本発明の加速度センサは、図1に示すように、フレーム部10と、フレーム部10の内側に配置される重り部11と、重り部11の四方からそれぞれ延設されて、重り部11をフレーム部10に揺動自在に支持させる4つの撓み部12とを備えて半導体基板から形成されるセンサチップ1を有している。但し、以下の説明では、図1に示すように、センサチップ1の一表面(図1における上面)に平行な面内でフレーム部10の一辺に沿った一方向をx軸の正方向、この一辺に直交する辺に沿った一方向をy軸の正方向、センサチップ1の厚み方向の一方向をz軸方向と規定する。また、上述のx軸、y軸、z軸の3軸により規定した直交座標では、センサチップ1の一表面における重り部11の中心位置を原点としている。
そして、上記のセンサチップ1には、図1に示すように、センサチップ1の厚み方向(上述で規定したz軸方向)の加速度検出に用いられる厚み方向用圧電素子である4つのピエゾ抵抗Rz1〜Rz4と、z軸方向に直交する方向(上述で規定したx軸方向)の加速度検出に用いられる直交方向用圧電素子である4つのピエゾ抵抗Rx1〜Rx4と、z軸方向に直交する方向(上述で規定したy軸方向)の加速度検出に用いられる直交方向用圧電素子である4つのピエゾ抵抗Ry1〜Ry4とが設けられ、これらピエゾ抵抗Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4は、センサチップ1の撓み部12において重り部11側の端部Pに形成されている。
以下、センサチップ1についてさらに詳細に説明する。センサチップ1は、図2(a)〜(c)に示すように、シリコン基板からなる支持基板20上のシリコン酸化膜からなる絶縁層(埋込酸化膜)21上にn形のシリコン層(活性層)22を有するSOIウェハ2である半導体基板を加工することにより形成され、上記のフレーム部10と、重り部11と、4つの短冊状の撓み部12とを備えている。尚、SOIウェハ2には、後述する絶縁層3,4が形成されている。
ここで、フレーム部10は、SOIウェハ2の支持基板20、絶縁層21、及びシリコン層22を利用して略矩形枠状に形成されており、その内側の開口部10aに重り部11が配置される。
重り部11は、上述の4つの撓み部12を介してフレーム部10に支持された直方体状のコア部11aと、センサチップ1の一表面側から見てコア部11aの四隅それぞれに連続一体に連結された直方体状の4つの付随部11bとを有している。言い換えれば、重り部11は、フレーム部10の内側面に一端側が連結された各撓み部12の他端側が外側面に連結されたコア部11aと、コア部11aと一体に形成されコア部11aとフレーム部10との間の空間に配置される4つの付随部11bとを有している。付随部11bは、センサチップ1の一表面側から見て、フレーム部10と、コア部11aと、互いに直交する方向に延長された2つの撓み部12,12とで囲まれる空間に配置されている。ここで、各付随部11bとフレーム部11及び撓み部12との間には、隙間が設けられており、この隙間は、加速度を受けて重り部11が揺動した際に、付随部11bがフレーム部10や撓み部12と接触しない程度の大きさに形成されている。
以上述べた重り部11は、x軸方向に延長されてコア部11aを挟む2つ1組の撓み部12,12と、y軸方向に延長されてコア部11aを挟む2つ1組の撓み部12,12との計4つの撓み部12を用いてフレーム部10に揺動自在に支持される。
撓み部(ビーム、梁部ともいう)12は、重り部11をフレーム部10に揺動自在に支持させるためのものであり、一端側がフレーム部10の内側面に一体に連結され、他端側が重り部11のコア部11aの外側面に一体に連結されている。尚、撓み部12は、SOIウェハ2におけるシリコン層22を利用して短冊状に形成してあり、フレーム部10よりも薄肉となっている。
そして、この撓み部12には、上記のピエゾ抵抗Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4が次のようにして形成されている。
すなわち、重り部11のコア部11aからx軸の正方向に延長された撓み部(図1の右側の撓み部12)における重り部11側の端部Pには、ピエゾ抵抗Rz3,Rx2,Rx4が、1つのピエゾ抵抗Rz3を2つのピエゾ抵抗Rx2,Rx4で挟んだ状態で設けられている。同様に、重り部11のコア部11aからx軸の負方向に延長された撓み部(図1の左側の撓み部12)における重り部11側の端部Pには、ピエゾ抵抗Rz2,Rx1,Rx3が、1つのピエゾ抵抗Rz2を2つのピエゾ抵抗Rx1,Rx3で挟んだ状態で設けられている。
また、重り部11のコア部11aからy軸の正方向に延長された撓み部(図1の上側の撓み部12)における重り部11側の端部Pには、ピエゾ抵抗Rz1,Ry1,Ry3が、1つのピエゾ抵抗Rz1を2つのピエゾ抵抗Ry1,Ry3で挟んだ状態で設けられている。同様に、重り部11のコア部11aからy軸の負方向に延長された撓み部(図1の下側の撓み部12)における重り部11側の端部Pには、ピエゾ抵抗Rz4,Ry2,Ry4が、1つのピエゾ抵抗Rz4を2つのピエゾ抵抗Ry2,Ry4で挟んだ状態で設けられている。
ここで、4つのピエゾ抵抗Rx1〜Rx4は、x軸方向の加速度を検出するために用いられるものであり、平面形状が細長の長方形状であって、シリコン層22の表面側のシリコン層22内に、長手方向が撓み部12の長手方向に一致するように形成されている。また、これらピエゾ抵抗Rx1〜Rx4は、図3に示すブリッジ回路Bxを構成するように配線(センサチップ1に形成されている図示しない拡散層配線、金属配線等)によって接続されている。加えて、ピエゾ抵抗Rx1〜Rx4は、加速度がかかっていない状態で、ピエゾ抵抗Rx1,Rx3の抵抗値の積と、ピエゾ抵抗Rx2,Rx4の抵抗値の積とが等しくなってブリッジ回路Bxの抵抗バランスがとれるように設計している(本実施形態では、ピエゾ抵抗Rx1〜Rx4の各抵抗値がいずれも同じ値となるように設計している)。ここで、ピエゾ抵抗Rx1〜Rx4の各抵抗値を同じ値にするには、具体的には、ピエゾ抵抗Rx1〜Rx4を、同じサイズ(長さ、幅、拡散深さ)且つ同じ不純物濃度にすればよい。
また、4つのピエゾ抵抗Ry1〜Ry4は、y軸方向の加速度を検出するために用いられるものであり、上記ピエゾ抵抗Rx1〜Rx4と同様に、平面形状が細長の長方形状であって、シリコン層22の表面側のシリコン層22内に、長手方向が撓み部12の長手方向に一致するように形成されている。また、これらピエゾ抵抗Ry1〜Ry4は、図3に示すブリッジ回路Byを構成するように配線(センサチップ1に形成されている図示しない拡散層配線、金属配線等)によって接続されている。加えて、ピエゾ抵抗Ry1〜Ry4は、上記ピエゾ抵抗Rx1〜Rx4と同様に、加速度がかかっていない状態で、ピエゾ抵抗Ry1,Ry3の抵抗値の積と、ピエゾ抵抗Ry2,Ry4の抵抗値の積とが等しくなってブリッジ回路Byの抵抗バランスがとれるように設計している(本実施形態では、ピエゾ抵抗Ry1〜Ry4の各抵抗値がいずれも同じ値となるように設計している)。つまり、ピエゾ抵抗Rz1〜Rz4においても、同じサイズ(長さ、幅、拡散深さ)且つ同じ不純物濃度にしてある。
一方、4つのピエゾ抵抗Rz1〜Rz4は、z軸方向の加速度を検出するために用いられるものであり、いずれも平面形状が細長の長方形状に形成されている。そして、ピエゾ抵抗Rz1,Rz4は、シリコン層22の表面側のシリコン層22内に、長手方向が撓み部12の長手方向に一致するように形成され、ピエゾ抵抗Rz2,Rz3は、シリコン層22の表面側のシリコン層22内に、長手方向が撓み部12の短手方向に一致するように形成されている。また、これらピエゾ抵抗Rz1〜Rz4は、図3に示すブリッジ回路Bzを構成するように配線(センサチップ1に形成されている図示しない拡散層配線、金属配線等)によって接続されている。加えて、ピエゾ抵抗Rz1〜Rz4は、上記ピエゾ抵抗Rx1〜Rx4と同様に、加速度がかかっていない状態で、ピエゾ抵抗Rz1,Rz4の抵抗値の積と、ピエゾ抵抗Rz2,Rz3の抵抗値の積とが等しくなってブリッジ回路Bzの抵抗バランスがとれるように設計している(本実施形態では、ピエゾ抵抗Rz1〜Rz4の各抵抗値がいずれも同じ値となるように設計している)。つまり、ピエゾ抵抗Rz1〜Rz4においても、同じサイズ(長さ、幅、拡散深さ)且つ同じ不純物濃度にしてある。但し、図1では、図面の簡略化のために、ピエゾ抵抗Rz1〜Rz4のサイズは異ならせている。
尚、各4つのピエゾ抵抗Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4は、それぞれx,y,z軸方向の加速度がかかったときに撓み部12の端部Pにおいて応力が集中する応力集中領域(応力分布のピークに対応した部位)に形成されている。
ところで、本実施形態の加速度センサでは、図3に示すように、上述の3つのブリッジ回路Bx,By,Bzに共通の2つの入力端子VDD,GNDと、ブリッジ回路Bxの2つの出力端子X1,X2と、ブリッジ回路Byの2つの出力端子Y1,Y2と、ブリッジ回路Bzの2つの出力端子Z1,Z2とを備えており、これらの各入力端子VDD,GND及び各出力端子X1,X2,Y1,Y2,Z1,Z2はセンサチップ1のフレーム部10に図示しないパッドとして設けられている。
以上により本実施形態の加速度センサに用いるセンサチップ1は構成されており、以下にセンサチップ1の製造方法について簡単に説明する。
まず、SOIウェハ2の一表面側(シリコン層22の表面側、以下、「主表面側」と称する)に上記各ピエゾ抵抗Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4及び上記各拡散層配線(図示せず)をリソグラフィ技術、不純物拡散技術等を利用して形成し、その後、SOIウェハ2の主表面側及び他表面側(以下、「裏面側」と称する)のそれぞれの全面に、シリコン酸化膜とシリコン窒化膜との積層膜からなる前述の絶縁膜3,4を形成する。尚、上述の金属配線(図示せず)を形成する工程は、シリコン酸化膜を形成する工程と、シリコン窒化膜を形成する工程との間に設け、上述のパッド(図示せず)は、シリコン窒化膜の形成後に、フォトリソグラフィ技術及びエッチング技術を利用して、シリコン窒化膜から露出させた上記金属配線(図示せず)の一部により形成される。
その後、SOIウェハ2の主表面側に、上述の絶縁膜3においてフレーム部10、重り部11、各撓み部12それぞれに対応する部位を覆い他の部位を露出させるようにパターニングされたレジスト層(図示せず)を形成し、当該レジスト層をエッチングマスクとして、絶縁膜3の露出部分をエッチングすることで絶縁膜3をパターニングし、SOIウェハ2を主表面側から絶縁層21に達する深さまで絶縁層21をエッチングストッパ層としてエッチングする表面側パターニング工程を行う。この表面側パターニング工程を行うことによって、SOIウェハ2におけるシリコン層22は、フレーム部10に対応する部位と、重り部11aに対応する部位と、各撓み部12に対応する部位とが残る。尚、この表面側パターニング工程におけるエッチングに際しては、例えば、誘導結合プラズマ(ICP)型のドライエッチング装置を用いてドライエッチングを行えばよく、エッチング条件としては、絶縁層21がエッチングストッパとして機能するような条件を設定する。
上述の表面側パターニング工程の後、SOIウェハ2の裏面側に、支持基板20においてフレーム部10に対応する部位と重り部11に対応する部位とを覆い且つ他の部位を露出させるようにパターニングされたレジスト層(図示せず)を形成し、当該レジスト層をエッチングマスクとして、絶縁膜4の露出部分をエッチングすることで絶縁膜4をパターニングし、SOIウェハ2を裏面側から絶縁層21に達する深さまで絶縁層21をエッチングストッパ層として略垂直にドライエッチングする裏面側パターニング工程を行い、続いて、レジスト層を除去する。
この裏面側パターニング工程を行うことにより、SOIウェハ2における支持基板20は、フレーム部10に対応する部位と、重り部11に対応する部位とが残る。尚、この裏面側パターニング工程におけるエッチング装置としては、例えば、誘導結合プラズマ(ICP)型のドライエッチング装置を用いればよく、エッチング条件としては、絶縁層21がエッチングストッパとして機能するような条件を設定する。
裏面側パターニング工程の後、上記絶縁膜3,4をエッチングマスクとして、絶縁層21のうちフレーム部10に対応する部位及び重り部11に対応する部位を残して不要部分をエッチング除去することでフレーム部10、重り部11、及び撓み部12を形成することによって、図2(a)〜(c)に示す構造を得る。
その後、SOIウェハ2をダイシング工程により個々のセンサチップ1に分離し、例えば、パッケージ(図示せず)へダイボンディングするダイボンディング工程、センサチップ1の各パッドとパッケージの電極とをボンディングワイヤ(図示せず)により電気的に接続するワイヤボンディング工程、パッケージにパッケージ蓋(図示せず)を気密的に封着する封止工程を順次行えばよい。尚、センサチップ1の裏面側にガラス製のカバーを必要とする場合には、カバーを多数形成したガラス基板とSOIウェハ2とを陽極接合により固着してから、ダイシング工程により個々のチップに分離すればよい。
次に、本実施形態の加速度センサの動作について説明する。本実施形態の加速度センサは、センサチップ1に加速度が作用すると、加速度の方向及び大きさに応じて重り部11がフレーム部10に対して相対的に変位し、結果的に撓み部12が撓んでピエゾ抵抗Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4の抵抗値が変化することになる。したがって、例えば、上述の入力端子VDD,GND間に外部電源から一定の直流電圧を印加して使用すればよく、センサチップ1にx軸方向の加速度がかかった場合にはブリッジ回路Bxの抵抗バランスが崩れて出力端子X1,X2間の電位差がx軸方向の加速度の大きさに応じて変化し、y軸方向の加速度がかかった場合にはブリッジ回路Byの抵抗バランスが崩れて出力端子Y1,Y2間の電位差がy軸方向の加速度の大きさに応じて変化し、z軸方向の加速度がかかった場合にはブリッジ回路Bzの抵抗バランスが崩れて出力端子Z1,Z2間の電位差がz軸方向の加速度の大きさに応じて変化する。
要するに、本実施形態の加速度センサは、各ブリッジ回路Bx〜Bzそれぞれの出力電圧の変化を検出することにより、センサチップ1に作用したx軸方向、y軸方向、z軸方向それぞれの加速度を検出することができる。
以上述べた本発明の加速度センサは、図4に示す従来例と、撓み部12におけるピエゾ抵抗Rz1〜Rz4の形成位置が異なっている他は略同じ構成である。つまり、本発明の加速度センサでは、センサチップ1の厚み方向(z軸方向)の加速度検出に用いられる厚み方向用圧電素子であるピエゾ抵抗Rz1〜Rz4が、センサチップ1の撓み部12において重り部11側の端部Pに形成されているが、図4に示す従来例の加速度センサでは、ピエゾ抵抗Rz1〜Rz4が、センサチップ1の撓み部12においてフレーム部10側の端部に形成されているのである。
したがって、本発明の加速度センサによれば、センサチップ1の厚み方向(z軸方向)の加速度検出に用いられる厚み方向用圧電素子であるピエゾ抵抗Rz1〜Rz4を、センサチップ1の撓み部12において重り部11側の端部Pに形成しているので、従来例に比べて、ピエゾ抵抗Rz1〜Rz4に熱応力(例えばシリコンとガラスとの熱膨張係数差に起因した熱応力や、パッケージとガラスとの熱膨張係数差に起因した熱応力や、パッケージと回路基板との熱膨張係数差に起因した熱応力等)が伝達しにくくなり、これによりピエゾ抵抗Rz1〜Rz4に生じる熱応力の影響を低減することができて、センサチップ1の厚み方向の加速度に対応する出力電圧におけるオフセット電圧の温度変動を抑制できるという効果を奏し、その結果、加速度の検出を高精度に行えるようになるという効果を奏する。
ところで、本発明の加速度センサと、従来例の加速度センサとのブリッジ回路Bzの出力電圧(センサチップの厚み方向の加速度に対応する出力電圧)におけるオフセット電圧(オフセット値)の温度変動のシミュレーション解析を行い、本発明の加速度センサによって、前記の出力電圧におけるオフセット電圧の温度変動を従来に比べてどの程度低減できるかを調べた結果、温度変動を約5.5%程度にまで低減できるという結果が得られた。
以下、このシミュレーション解析について説明する。このシミュレーション解析では、ピエゾ抵抗Rz1〜Rz4の熱応力の変化に起因する抵抗値の変化を用いてブリッジ回路Bzの出力電圧を求め、この出力電圧の値を比較することによって、オフセット電圧の温度変動の評価を行ったものであり、次のような計算式を用いて解析を行った。
まず、温度t1時におけるピエゾ抵抗Rz1〜Rz4の各抵抗値をそれぞれR1〜R4、温度t2時におけるピエゾ抵抗Rz1〜Rz4の各抵抗値をそれぞれR1´〜R4´、ピエゾ抵抗の短手方向におけるピエゾ抵抗係数をπt、ピエゾ抵抗Rz1〜Rz4の長手方向におけるピエゾ抵抗係数をπlとすると、抵抗値R1´〜R4´は、次式で表わすことができる。尚、ピエゾ抵抗Rz1〜Rz4は、厚みが非常に薄いものであるため、厚み方向におけるピエゾ抵抗係数については無視する。
Figure 2007171057
ここで、σx1〜σx4は、各ピエゾ抵抗Rz1〜Rz4において、撓み部12の短手方向に生じる熱応力の差分値(変化値)であって、温度t2時に撓み部12の短手方向に生じる熱応力から、温度t1時に撓み部12の短手方向に生じる熱応力を引いた値である。また、σy1〜σy4は、各ピエゾ抵抗Rz1〜Rz4において、撓み部12の長手方向に生じる熱応力の差分値(変化値)であって、温度t2時に撓み部12の長手方向に生じる熱応力から、温度t1時に撓み部12の長手方向に生じる熱応力を引いた値である。
また、ブリッジ回路Bzの出力電圧をVout、入力端子VDD,GND間に印加する入力電圧をVinとすると、出力電圧Voutは次式で表わすことができる。
Figure 2007171057
したがって、ピエゾ抵抗Rz1〜Rz4の各抵抗値R1〜R4と、ピエゾ抵抗Rz1〜Rz4の各ピエゾ抵抗係数πt,πlと、熱応力の変化値σx1〜σx4,σy1〜σy4と、入力電圧Vinとが与えられれば、加速度センサに加速度が与えられていないときの出力電圧Vout、つまりは出力電圧におけるオフセット電圧の値を算出することができる。
ここで、本発明の加速度センサ及び従来例の加速度センサのそれぞれについて、温度t1を20℃、温度t2を125℃とした際の各ピエゾ抵抗Rz1〜Rz4に生じる熱応力の変化値σx1〜σx4,σy1〜σy4を測定した結果、次のような結果が得られた。すなわち、本発明の加速度センサにおいては、σx1=σx2=σx3=σx4=4.58×10−5kgf/mm(ここで、kgf/mm≒9.80665×10N/m(=Pa))、σy1=σy2=σy3=σy4=2.36×10−4kgf/mmという値が得られ、従来例の加速度センサにおいては、σx1=σx2=σx3=σx4=−3.07×10−3kgf/mm、σy1=σy2=σy3=σy4=4.09×10−4kgf/mmという値が得られた。この測定結果からも、本発明の加速度センサによれば、従来例の加速度センサに比べてピエゾ抵抗Rz1〜Rz4に生じる熱応力の変動を低減できていることがわかる。尚、この測定に用いた本発明の加速度センサと従来例の加速度センサとは、ピエゾ抵抗Rz1〜Rz4の形成位置以外は、同一の構成としたものを用いている。
また、上記の測定に用いた本発明の加速度センサ及び従来例の加速度センサでは、各ピエゾ抵抗Rz1〜Rz4の抵抗値R1〜R4は、いずれも温度が20℃である際に2850Ωであり、ピエゾ抵抗係数πtは、−5.10×10−6mm/gf(ここで、mm/gf≒1/9.80665×10−3/N(=1/Pa))であり、ピエゾ抵抗係数πlは、5.49×10−6mm/gfである。
そして、入力電圧Vinを、5Vであるとして、本発明の加速度センサ及び従来例の加速度センサの各出力電圧Voutを算出すると、従来例の加速度センサでは、出力電圧Voutが−9.21×10−2mVとなったのに対して、本発明の加速度センサでは、出力電圧Voutが−5.01×10−3mVとなった。
したがって、本発明の加速度センサによれば、ブリッジ回路Bzの出力電圧におけるオフセット電圧の変動を、従来の約5.5%程度にまで低減できるのである。
一方、本発明の加速度センサによれば、重り部11のコア部11aからx軸の正方向に延長された撓み部(図1の右側の撓み部12)における重り部11側の端部Pに、ピエゾ抵抗Rz3,Rx2,Rx4が、1つのピエゾ抵抗Rz3を2つのピエゾ抵抗Rx2,Rx4で挟んだ状態で設けているので、撓み部12における重り部11側の端部Pに、ピエゾ抵抗Rz1,Rx2,Rx4を集中して配置することができるという効果を奏する。この点は、他の撓み部12においても同様であり、重り部11のコア部11aからx軸の負方向に延長された撓み部(図1の左側の撓み部12)の端部Pには、ピエゾ抵抗Rz2,Rx1,Rx3を集中して配置でき、重り部11のコア部11aからy軸の正方向に延長された撓み部(図1の上側の撓み部12)の端部Pには、ピエゾ抵抗Rz1,Ry1,Ry3を集中して配置でき、重り部11のコア部11aからy軸の負方向に延長された撓み部(図1の下側の撓み部12)の端部Pには、ピエゾ抵抗Rz4,Ry2,Ry4を集中して配置できる。
尚、SOIウェハ2については、支持基板20の厚さを400〜600μm程度、絶縁層21の厚さを0.3〜1.5μm程度、シリコン層22の厚さを4〜10μm程度に設定してあり、センサチップ1の各部の寸法については、フレーム部10の厚さを400〜600μm程度、フレーム部10の4辺それぞれの幅を250μm程度とし、重り部11の厚さを400μm〜600μm程度とし、撓み部12の延長方向の長さ(つまり、撓み部12の長手方向の長さ)を300〜700μm、センサチップ1の上記一表面内で撓み部12における延長方向に直交する方向の長さ(つまり、撓み部12の幅寸法)を60〜150μm、撓み部12の厚さを4〜10μm程度としてあるが、これらの数値は特に限定するものではない。
また尚、図1に示す加速度センサは、所謂3軸加速度センサであるが、本発明の加速度センサとしては、さらに多くの方向の加速度を検出できる多方向加速度センサであってもよく、つまるところ、センサチップ1の厚み方向の他に、前記厚み方向と直交する方向の加速度を検出するものであればよい。
ところで、上記の例では、圧電素子としてひずみにより抵抗値が増減するゲージ抵抗の一種であるピエゾ抵抗を用いているが、この他、ゲージ抵抗としては、カーボンナノチューブであってもよい。また、本実施形態では、重り部11をコア部11aと4つの付随部11bとで構成してあるが、コア部11aのみで重り部11を構成してもよい。
本発明の加速度センサの概略平面図である。 (a)は、図1のA−A線における概略断面図であり、(b)は、図1のB−B線における概略断面図であり、(c)は、図1のC−C線における概略断面図である。 本発明の加速度センサの回路図である。 従来の加速度センサの概略平面図である。
符号の説明
1 センサチップ
10 フレーム部
11 重り部
12 撓み部
Rx1〜Rx4,Ry1〜Ry4,Rz1〜Rz4 ピエゾ抵抗

Claims (3)

  1. フレーム部と、フレーム部の内側に配置される重り部と、重り部の四方からそれぞれ延設されて、重り部をフレーム部に揺動自在に支持させる4つの撓み部とを備えて半導体基板から形成されるセンサチップを有し、該センサチップには、センサチップの厚み方向の加速度検出に用いられる厚み方向用圧電素子と、前記厚み方向に直交する方向の加速度検出に用いられる直交方向用圧電素子とが設けられ、前記厚み方向用圧電素子及び前記直交方向用圧電素子は、センサチップの撓み部において重り部側の端部に形成されていることを特徴とする加速度センサ。
  2. 前記圧電素子は、ピエゾ抵抗であることを特徴とする請求項1に記載の加速度センサ。
  3. 前記撓み部には、厚み方向用圧電素子と、直交方向用圧電素子とが、1つの厚み方向用圧電素子を2つの直交方向用圧電素子で挟んだ状態で設けられていることを特徴とする請求項1又は2に記載の加速度センサ。
JP2005371030A 2005-12-22 2005-12-22 加速度センサ Withdrawn JP2007171057A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371030A JP2007171057A (ja) 2005-12-22 2005-12-22 加速度センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005371030A JP2007171057A (ja) 2005-12-22 2005-12-22 加速度センサ

Publications (1)

Publication Number Publication Date
JP2007171057A true JP2007171057A (ja) 2007-07-05

Family

ID=38297803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371030A Withdrawn JP2007171057A (ja) 2005-12-22 2005-12-22 加速度センサ

Country Status (1)

Country Link
JP (1) JP2007171057A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071678A (ja) * 2008-09-16 2010-04-02 Dainippon Printing Co Ltd 加速度センサおよびその製造方法
DE102010042088A1 (de) 2009-11-09 2011-05-12 Denso Corporation, Kariya-City Vorrichtung zur Erfassung einer dynamischen Grösse

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071678A (ja) * 2008-09-16 2010-04-02 Dainippon Printing Co Ltd 加速度センサおよびその製造方法
DE102010042088A1 (de) 2009-11-09 2011-05-12 Denso Corporation, Kariya-City Vorrichtung zur Erfassung einer dynamischen Grösse
US8547119B2 (en) 2009-11-09 2013-10-01 Denso Corporation Dynamic quantity detection device

Similar Documents

Publication Publication Date Title
JP6258977B2 (ja) センサおよびその製造方法
JP3985214B2 (ja) 半導体加速度センサー
JP3938198B1 (ja) ウェハレベルパッケージ構造体およびセンサエレメント
JP2007171057A (ja) 加速度センサ
JP2007173641A (ja) センサモジュール
JP3938204B1 (ja) ウェハレベルパッケージ構造体およびセンサエレメント
JP3938199B1 (ja) ウェハレベルパッケージ構造体およびセンサ装置
JP4466344B2 (ja) 加速度センサ
JP2006098323A (ja) 半導体型3軸加速度センサ
JP5093070B2 (ja) 加速度センサ及びそれを用いた半導体装置
JP2007173757A (ja) センサエレメント
JP5475946B2 (ja) センサモジュール
JP2007171152A (ja) ウェハレベルパッケージ構造体、加速度センサ
JP2006300904A (ja) 物理量センサ
JP3938206B1 (ja) ウェハレベルパッケージ構造体およびセンサエレメント
JP2004354074A (ja) 半導体加速度センサ
JP2010008172A (ja) 半導体装置
JP4179070B2 (ja) 半導体加速度センサおよびその製造方法
JP2007263767A (ja) センサ装置
JP4000169B2 (ja) チップサイズパッケージ
JP3938203B1 (ja) センサエレメントおよびウェハレベルパッケージ構造体
JP5069410B2 (ja) センサエレメント
JP2007266320A (ja) センサモジュール
JP2008244174A (ja) センサ素子の製造方法
JP2008157825A (ja) センサ装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303