WO2011004793A1 - シリコンウエハ用研磨液組成物 - Google Patents

シリコンウエハ用研磨液組成物 Download PDF

Info

Publication number
WO2011004793A1
WO2011004793A1 PCT/JP2010/061411 JP2010061411W WO2011004793A1 WO 2011004793 A1 WO2011004793 A1 WO 2011004793A1 JP 2010061411 W JP2010061411 W JP 2010061411W WO 2011004793 A1 WO2011004793 A1 WO 2011004793A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
silicon wafer
carbon atoms
group
structural unit
Prior art date
Application number
PCT/JP2010/061411
Other languages
English (en)
French (fr)
Inventor
鈴木眞彦
岡村真美
大井利昭
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US13/382,839 priority Critical patent/US8926859B2/en
Priority to KR1020127002818A priority patent/KR101331823B1/ko
Priority to EP10797104.6A priority patent/EP2444996B1/en
Priority to SG2012000923A priority patent/SG177532A1/en
Publication of WO2011004793A1 publication Critical patent/WO2011004793A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition for a silicon wafer, a method for producing a semiconductor substrate using the same, and a method for polishing a silicon wafer.
  • a polishing liquid composition containing silica particles is known as a polishing liquid composition used for polishing a silicon wafer used for manufacturing a semiconductor substrate.
  • a filter is used when the polishing liquid composition is filtered to remove surface defects (LPD: Light point defects) due to aggregation of silica particles or to remove the aggregate. Clogging is a problem (see, for example, Patent Document 1 and Patent Document 2).
  • a polishing liquid composition containing a water-soluble polymer compound containing a nitrogen-containing group is known (see Patent Document 3).
  • Patent Document 1 proposes a polishing composition containing colloidal silica, potassium hydroxide, and potassium bicarbonate for the purpose of preventing clogging of the filter.
  • this polishing liquid composition contains sodium ions and potassium ions, there is a problem that abrasive grains are likely to adhere to the silicon wafer surface, and as a result, defects are likely to occur on the silicon wafer surface.
  • Patent Document 2 proposes a polishing composition containing at least one water-soluble polymer selected from polyvinyl pyrrolidone and poly N-vinylformamide and an alkali in order to reduce LPD.
  • polishing using this polishing composition is not sufficient in polishing rate.
  • Patent Document 3 proposes a polishing liquid composition containing a water-soluble polymer compound containing a nitrogen-containing group such as polyethyleneimine.
  • a water-soluble polymer compound containing a nitrogen-containing group such as polyethyleneimine.
  • Patent Document 4 proposes a polishing composition containing hydroxyethyl cellulose (HEC) in order to improve the polishing rate and improve the wettability of the surface of an object to be polished.
  • HEC hydroxyethyl cellulose
  • agglomeration of silica particles is likely to occur, and even when the polishing composition is filtered, the filter is clogged immediately. Therefore, there is a problem that the polishing composition cannot be filtered immediately before polishing.
  • polishing liquid composition is stored and transported in the state of a concentrated liquid, and storage stability in the concentrated liquid is also required.
  • a polishing composition for a silicon wafer that can polish a silicon wafer at high speed, has good storage stability of the concentrated liquid and good wettability of the surface of the silicon wafer, and can also reduce clogging of the filter, and the polishing liquid
  • a method for producing a semiconductor substrate using the composition and a method for polishing a silicon wafer are provided.
  • the polishing composition for a silicon wafer of the present invention comprises a structural unit (a1) represented by the following general formula (1), a structural unit (a2) represented by the following general formula (2), and the following general formula (3 A polymer compound, an abrasive, and an aqueous medium in which the total of the structural units (a3) is 0.001 to 1.5 mol% in the structural units of the polymer compound. It is a polishing composition for silicon wafers contained.
  • R is an alkyl group having 1 to 3 carbon atoms
  • X is a structural unit derived from an unsaturated compound having a cationic group in the molecule and copolymerizable with a vinyl alcohol lower fatty acid ester.
  • the method for producing a semiconductor substrate of the present invention includes a step of polishing a silicon wafer using the polishing composition for a silicon wafer of the present invention.
  • the silicon wafer polishing method of the present invention includes a step of polishing a silicon wafer using the silicon wafer polishing composition of the present invention.
  • a polishing composition for a silicon wafer that can polish a silicon wafer at high speed, has good storage stability of the concentrated liquid and good wettability of the silicon wafer, and can also reduce clogging of the filter, and the polishing liquid
  • a method for producing a semiconductor substrate using the composition and a method for polishing a silicon wafer can be provided.
  • the present invention includes a structural unit (a1) represented by the following general formula (1), a structural unit (a2) represented by the following general formula (2), and a structural unit represented by the following general formula (3) ( a polymer compound having a3) and the total of structural units (a3) being 0.001 to 1.5 mol% in the structural units of the polymer compound (hereinafter abbreviated as “polymer compound having a cationic group”)
  • a polymer compound having a3) and the total of structural units (a3) being 0.001 to 1.5 mol% in the structural units of the polymer compound (hereinafter abbreviated as “polymer compound having a cationic group”).
  • the storage stability of the concentrated liquid and the wettability of the silicon wafer are good, and the filter used for removing abrasive agglomerates in the polishing liquid composition performed immediately before polishing or the like is used. This is based on the knowledge that clogging can be reduced and the surface of a silicon wafer can be polished at a high polishing rate
  • the surface of a silicon wafer or the surface of an abrasive such as silica is negatively (minus) charged under alkali.
  • the polymer compound having a cationic group used in the present invention is appropriately adsorbed on the surface of the silicon wafer and exhibits good wettability.
  • the high molecular compound having a cationic group used in the present invention is also adsorbed on the surface of the abrasive material, causes the abrasive material to agglomerate appropriately, and combines with the good wettability of the surface of the silicon wafer, thereby high-speed polishing of the silicon wafer. Is estimated to be possible.
  • polishing composition Polymer compound having a cationic group
  • the polymer compound having a cationic group contained in the polishing composition for a silicon wafer of the present invention (hereinafter sometimes abbreviated as “polishing composition”) is represented by the following general formulas (1) to (3). It has structural units (a1) to (a3) represented.
  • R is an alkyl group having 1 to 3 carbon atoms
  • X is a structural unit derived from an unsaturated compound having a cationic group in the molecule and copolymerizable with a vinyl alcohol lower fatty acid ester.
  • the polymer compound having a cationic group having the structural unit (a1), the structural unit (a2), and the structural unit (a3) includes a monomer compound that is a supply source of the structural unit (a2) and the structural unit (a3). It is obtained by copolymerizing with a monomer compound as a supply source and partially saponifying the obtained copolymer.
  • R in the general formula (2) is a methyl group
  • the structural unit (a3) contains a cationic group
  • the monomer compound that is the supply source of the structural unit (a3) is a vinyl alcohol lower (carbon number 1 to 3) fatty acid ester (the structural unit (a1), ( It is a compound copolymerizable with the monomer compound) which is the supply source of a2).
  • the monomer compound that is a supply source of the structural unit (a3) include compounds selected from compounds represented by the following general formula (3-1) and compounds represented by the following general formula (3-2). It is done.
  • the structural unit (a3) is represented by the following general formula (3-1) and the following general formula (3-2) from the viewpoint of improving the polishing rate and improving the wettability of the surface of the silicon wafer. It is preferably derived from at least one compound selected from compounds.
  • each of R 1 , R 2 , R 3 , R 7 , R 8 and R 9 is independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • X 1 and Y are each independently a group selected from an alkylene group having 1 to 12 carbon atoms, —COOR 12 —, —CONHR 12 —, —OCOR 12 —, and —R 13 —OCO—R 12 —. is there.
  • R 12 and R 13 are each independently an alkylene group having 1 to 5 carbon atoms.
  • R 4 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group having 1 to 3 carbon atoms, or R 1 R 2 C ⁇ C (R 3 ) —X 1 —.
  • R 5 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a hydroxyalkyl group having 1 to 3 carbon atoms
  • R 6 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a hydroxy group having 1 to 3 carbon atoms.
  • An alkyl group or a benzyl group, Z ⁇ represents an anion;
  • R 10 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a hydroxyalkyl group having 1 to 3 carbon atoms, or R 7 R 8 C ⁇ C (R 9 ) —Y—.
  • R 11 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a hydroxyalkyl group having 1 to 3 carbon atoms.
  • Z - is, for example, a halogen ion.
  • Examples of the monomer compound that is a supply source of the structural unit (a3) include diallyldialkyl (the alkyl group has 1 to 3 carbon atoms) ammonium salt, N- (meth) acryloylaminoalkyl (carbon of the alkyl group) 1-5) -N, N-dialkyl (the alkyl group has 1 to 3 carbon atoms) amine, N- (meth) acryloylaminoalkyl (the alkyl group has 1 to 5 carbon atoms) -N, N , N-trialkyl (the alkyl group has 1 to 3 carbon atoms) ammonium salt, N- (meth) acryloyloxyalkyl (the alkyl group has 1 to 5 carbon atoms) -N, N, N-trialkyl ( The alkyl group has 1 to 3 carbon atoms ammonium salt, and N- ( ⁇ -alkenyl (the alkenyl group has 2 to 10 carbon atoms))-N
  • the total of the structural unit (a1), the structural unit (a2) and the structural unit (a3) is a viewpoint of improving the polishing rate and improving the storage stability of the polishing composition. Therefore, it is preferably 50 to 100 mol%, more preferably 80 to 100 mol%, still more preferably 90 to 100 mol%, still more preferably 100 mol%.
  • the total of the structural unit (a3) including the cation group is the polishing rate, the storage stability of the concentrated liquid, the improvement of the wettability of the surface of the silicon wafer, and the filter. From the viewpoint of reducing clogging, the amount is 0.001 to 1.5 mol%, preferably 0.01 to 1 mol%, more preferably 0.01 to 0.5 mol%, and still more preferably 0.01. To 0.35 mol%.
  • the total of the structural unit (a3) containing the cation group can be measured by the [cationization modification rate measuring method] described in Examples.
  • the molar ratio (a1) / (a2) between the structural unit (a1) and the structural unit (a2) is preferably 1 to 300, more preferably from the viewpoint of improving solubility. Is from 2 to 50, more preferably from 2.5 to 20, even more preferably from 3.0 to 15, and even more preferably from 5.0 to 10.
  • the degree of polymerization of the polymer compound having a cationic group is preferably 220 to 20000, more preferably 220 to 10,000, still more preferably 220 to 4500, from the viewpoint of improving the wettability of the surface of the silicon wafer. Preferably it is 300-2000, and more preferably 300-1000.
  • the degree of polymerization of the polymer compound is generally the number of repeating units constituting the polymer molecule, but regarding the degree of polymerization of the polymer compound having a cationic group in the present invention, (a1) Means the sum of the number of repeating units and the number of repeating units (a2).
  • the weight average molecular weight of the polymer compound having a cationic group is preferably 10,000 to 1,000,000, more preferably 10,000 to 500,000, and still more preferably, from the viewpoint of improving the wettability of the silicon wafer. Is from 10,000 to 200,000, even more preferably from 10,000 to 100,000, and even more preferably from 10,000 to 50,000.
  • the weight average molecular weight can be determined by gel permeation chromatography using pullulan as a standard under the following measurement conditions.
  • the weight average molecular weight of the polymer compound having a cationic group is a value calculated based on a peak in a chromatogram obtained by applying a gel permeation chromatography (GPC) method under the following conditions.
  • GPC gel permeation chromatography
  • the polymer compound having a cationic group contained in the polishing composition of the present invention may contain structural units other than the structural units (a1) to (a3) within a range not impairing the effects of the present invention. It is preferable not to contain, and it is more preferable not to contain.
  • the content of the polymer compound having a cationic group in the polishing composition of the present invention is preferably 0.0001% by weight (1 ppm by weight) or more from the viewpoint of improving the wettability of the surface of the silicon wafer. It is more preferably 0005% by weight (5 ppm by weight) or more, and further preferably 0.001% by weight (10 ppm by weight) or more. Further, from the viewpoint of improving the storage stability of the polishing composition, it is preferably 0.1 wt% (1000 wt ppm) or less, more preferably 0.02 wt% (200 wt ppm) or less, 0 It is still more preferable that it is 0.01 wt% (100 wt ppm) or less.
  • the content of the polymer compound having a cationic group is preferably 0.0001 to 0.1 wt% (1 to 1000 wt ppm), and 0.0005 to 0.02 wt% (5 to 200 wt ppm). ), More preferably 0.001 to 0.01% by weight (10 to 100 ppm by weight).
  • the abrasive contained in the polishing composition of the present invention is not particularly limited as long as it is abrasive grains generally used for polishing.
  • abrasive grains generally used for polishing.
  • silicon dioxide, aluminum oxide, cerium oxide, zirconium oxide, titanium oxide examples thereof include particles containing at least one selected from the group consisting of silicon nitride, manganese dioxide, silicon carbide, zinc oxide, diamond and magnesium oxide.
  • abrasive materials include colloidal silica, fumed silica, surface-modified silica and other silicon dioxide; ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, amorphous alumina, Aluminum oxides such as fumed alumina and colloidal alumina; cerium oxide with trivalent or tetravalent oxidation number, hexagonal, equiaxed or face-centered cubic cerium oxide, other cerium oxides; crystal Monoclinic, tetragonal, or amorphous zirconium oxide, fumed zirconium, other zirconium oxides; titanium monoxide, titanium trioxide, titanium dioxide, fumed titania, other titanium oxides ⁇ -silicon nitride, ⁇ -silicon nitride, amorphous silicon nitride, other silicon nitrides; ⁇ -manganese dioxide, ⁇ -dioxide Ngan, ⁇ - manganes
  • silicon dioxide is preferable and colloidal silica is more preferable from the viewpoint of improving the surface smoothness of the silicon wafer.
  • These abrasives may be used alone or in admixture of two or more.
  • a slurry is preferable from the viewpoint of operability.
  • colloidal silica colloidal silica is obtained from a hydrolyzate of alkoxysilane from the viewpoint of preventing contamination of the silicon wafer by alkali metal or alkaline earth metal. It is preferable that Silica particles obtained from the hydrolyzate of alkoxysilane can be produced by a conventionally known method.
  • the average primary particle diameter of the abrasive contained in the polishing composition of the present invention is preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 15 nm or more from the viewpoint of maintaining a constant polishing rate. Moreover, from a viewpoint of suppressing generation
  • the average primary particle diameter is preferably 5 to 50 nm, more preferably 10 to 45 nm, and still more preferably 15 to 40 nm from the viewpoint of improving the polishing rate.
  • the content of the abrasive in the polishing composition of the present invention is preferably 0.05% by weight or more, more preferably 0.1% by weight or more from the viewpoint of improving the polishing rate, and 0.5% by weight. More preferably, the above is true. Further, from the viewpoint of improving the storage stability of the polishing composition, it is preferably 10% by weight or less, more preferably 7.5% by weight or less, further preferably 5% by weight or less, and 2.5% by weight. % Or less is even more preferable. Therefore, the content of the abrasive is preferably 0.05 to 10% by weight, more preferably 0.1 to 7.5% by weight, still more preferably 0.5 to 5% by weight, More preferably, it is 0.5 to 2.5% by weight.
  • the average primary particle diameter of the abrasive is calculated using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method.
  • S specific surface area
  • BET nitrogen adsorption
  • the degree of association of the abrasive is preferably 3.0 or less from the viewpoint of reducing the surface roughness, and the shape of the abrasive is preferably a so-called spherical type and a so-called mayu type. Further, from the viewpoint of achieving both reduction of the surface roughness and improvement of the polishing rate, the degree of association of the abrasive is preferably 1.1 to 3.0, and the shape of the abrasive is preferably a so-called mayu type. .
  • the degree of association of the abrasive is preferably 1.8 or more and more preferably 2.0 or more from the viewpoint of improving the polishing rate.
  • the abrasive is colloidal silica
  • the degree of association is preferably 1.1 to 3.0 and more preferably 1.8 to 2.5 from the viewpoint of further improving the polishing rate.
  • the method for adjusting the degree of association of the abrasive is not particularly limited.
  • JP-A-6-254383, JP-A-11-214338, JP-A-11-60232, JP-A-2005-060217, A method described in JP-A-2005-060219 can be employed.
  • the average secondary particle diameter is a value measured by a dynamic light scattering method, and can be measured using, for example, the apparatus described in the examples.
  • aqueous medium examples include water, a mixed medium of water and a solvent, and the solvent includes a solvent that can be mixed with water (for example, alcohol such as ethanol). Is preferred. Among these, water is preferable as the aqueous medium, and ion-exchanged water is more preferable.
  • a water-soluble polymer compound other than the polymer compound having a cationic group, a basic compound, a pH adjuster, and a preservative as long as the effects of the present invention are not hindered.
  • Alcohols, chelating agents, cationic surfactants, anionic surfactants, nonionic surfactants and oxidizing agents may be included.
  • the polishing composition of the present invention preferably further contains a water-soluble polymer compound other than the polymer compound having a cationic group from the viewpoint of improving the polishing rate.
  • the water-soluble polymer compound is a polymer compound having a water-soluble group having a weight average molecular weight of 10,000 or more, preferably 100,000 or more, and having a high cationic group. This refers to something other than molecular compounds.
  • the water-soluble group include a hydroxyl group, a carboxyl group, a carboxylic acid ester group, and a sulfonic acid group.
  • water-soluble polymer compounds include polyvinyl pyrrolidone, poly (N-acylalkylenimine), cellulose derivatives, polyvinyl alcohol, and polyethylene oxide.
  • poly (N-acylalkylenimine) include poly (N-acetylethyleneimine), poly (N-propionylethyleneimine), poly (N-caproylethyleneimine), poly (N-benzoylethyleneimine), poly (N N-nonadezoylethyleneimine), poly (N-acetylpropyleneimine), poly (N-butionylethyleneimine) and the like.
  • cellulose derivative examples include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, and carboxymethyl ethyl cellulose.
  • These water-soluble polymer compounds may be used in a mixture of two or more at any ratio.
  • Examples of the water-soluble polymer compound contained in the polishing liquid composition of the present invention include polyvinylpyrrolidone, poly (vinyl pyrrolidone) and poly (polypyrrolidone) from the viewpoint of improving the polishing rate, improving the wettability of the silicon wafer surface, and reducing the adhesion of particles to the polished surface. At least one selected from (N-acylalkylenimine) and hydroxyethylcellulose is preferable, and at least one selected from polyvinylpyrrolidone and poly (N-acylalkylenimine) is more preferable.
  • the viscosity average molecular weight of polyvinylpyrrolidone is preferably 10,000 to 3,000,000 from the viewpoint of improving the polishing rate, improving the wettability of the surface of the silicon wafer, and reducing particle adhesion to the polished surface. Is more preferable, 100,000 to 1,500,000 is more preferable, 300,000 to 1,500,000 is still more preferable, and 400,000 to 1,500,000 is even more preferable.
  • the viscosity average molecular weight Mv is a value calculated from the following equation.
  • the intrinsic viscosity ⁇ is an intercept value obtained by plotting ( ⁇ rel ⁇ 1) against the concentration of polyvinylpyrrolidone, and an intercept value obtained by plotting (Ln ⁇ rel ) against the concentration of polyvinylpyrrolidone.
  • ⁇ rel is a kinematic viscosity at 30 ° C., and is a value measured using a Canon Fenceke's capillary kinematic viscometer (viscosity number 75) according to the method of JIS Z 8803.
  • [ ⁇ ] KMv a ⁇ : Intrinsic viscosity
  • Mv Viscosity average molecular weight
  • the weight average molecular weight (polystyrene conversion) of poly (N-acylalkylenimine) is 10,000 to from the viewpoint of improving the polishing rate, improving the wettability of the surface of the silicon wafer, and reducing particle adhesion to the polished surface. 4 million are preferred, 10,000 to 2 million are more preferred, 10,000 to 1.5 million are more preferred, 10,000 to 1 million are even more preferred, 50,000 to 1 million are even more preferred, and 100,000 to 1 million are even more preferred preferable.
  • the method for measuring the weight average molecular weight of poly (N-acylalkylenimine) is the same as the method for measuring the weight average molecular weight of the polymer compound having a cationic group, except that the standard substance is polystyrene.
  • the weight average molecular weight (in terms of polyethylene glycol) of hydroxyethyl cellulose is 300,000 to 4,000,000 from the viewpoint of improving the polishing rate, improving the wettability of the surface of the silicon wafer, and reducing the adhesion of particles to the polished surface. 000 is preferred, 600,000 to 3,000,000 is more preferred, and 900,000 to 2,500,000 is even more preferred.
  • the method for measuring the weight average molecular weight of hydroxyethyl cellulose is the same as the method for measuring the weight average molecular weight of the polymer compound having a cationic group, except that the standard substance is polyethylene glycol.
  • the content of the water-soluble polymer compound in the polishing composition of the present embodiment is preferably 0.0001% by weight (1 ppm by weight) or more, more preferably 0.0005% by weight (from the viewpoint of improving the polishing rate). 5 wt ppm) or more, more preferably 0.001 wt% (10 wt ppm) or more, and even more preferably 0.002 wt% (20 wt ppm) or more. Further, from the viewpoint of improving the wettability of the surface of the silicon wafer, it is preferably 5 wt% (50000 wtppm) or less, more preferably 1 wt% (10000 wtppm) or less, and even more preferably 0.5 wt% (5000 wt%).
  • the content of the water-soluble polymer compound is preferably 0.0001 to 5 wt% (1 to 50000 wt ppm), more preferably 0.0005 to 1 wt% (5 to 10000 wt ppm), and still more preferably 0.001 to 0.5 wt% (10 to 5000 wtppm), even more preferably 0.001 to 0.1 wt% (10 to 1000 wtppm), and even more preferably 0.002 to 0.005 wt%. 05% by weight (20 to 500 ppm by weight).
  • the polishing composition of the present invention preferably contains a basic compound from the viewpoint of improving the polishing rate.
  • the basic compound include nitrogen-containing basic compounds, alkali metal or alkaline earth metal hydroxides, carbonates, bicarbonates, and the like.
  • Nitrogen-containing basic compounds include ammonia, ammonium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, N-methylethanolamine.
  • the basic compound that can be contained in the polishing composition of the present invention is preferably a nitrogen-containing basic
  • the content of the basic compound in the polishing composition of the present invention is preferably 0.001% by weight or more, more preferably 0.01% by weight or more from the viewpoint of improving the polishing rate, and 0.02% by weight. % Or more is more preferable. Further, from the viewpoint of preventing corrosion of the semiconductor substrate, it is preferably 10% by weight or less, more preferably 5% by weight or less, further preferably 1% by weight or less, and further more preferably 0.5% by weight or less. preferable. Accordingly, the content of the basic compound is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight, still more preferably 0.02 to 1% by weight, More preferably, the content is 0.02 to 0.5% by weight.
  • pH adjusters examples include acidic compounds.
  • the acidic compound include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, and organic acids such as acetic acid, oxalic acid, succinic acid, glycolic acid, malic acid, citric acid and benzoic acid.
  • preservatives examples include benzalkonium chloride, benzethonium chloride, 1,2-benzisothiazolin-3-one, (5-chloro-) 2-methyl-4-isothiazolin-3-one, hydrogen peroxide, or hypochlorite Examples include acid salts.
  • Alcohols examples include methanol, ethanol, propanol, butanol, isopropyl alcohol, 2-methyl-2-propanool, ethylene glycol, propylene glycol, polyethylene glycol, glycerin and the like.
  • the alcohol content in the polishing composition of the present invention is preferably 0.1 to 5% by weight.
  • Chelating agents include: ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, triethylenetetraminehexaacetic acid, triethylenetetramine Examples include sodium hexaacetate.
  • the chelating agent content in the polishing composition of the present invention is preferably 0.01 to 1% by weight.
  • cationic surfactant examples include aliphatic amine salts and aliphatic ammonium salts.
  • anionic surfactant examples include fatty acid soaps, carboxylates such as alkyl ether carboxylates, sulfonates such as alkylbenzene sulfonates and alkylnaphthalene sulfonates, higher alcohol sulfates, alkyl ether sulfates. And sulfate ester salts such as alkyl phosphate esters and the like.
  • Nonionic surfactant The polishing composition of the present invention preferably contains a nonionic surfactant from the viewpoint of improving the polishing rate and suppressing the corrosion of the wafer.
  • Nonionic surfactants include, for example, ether types such as polyoxyethylene alkyl ether, ether ester types such as glycerin ester polyoxyethylene ether, ester types such as polyethylene glycol fatty acid ester, glycerin ester, and sorbitan ester. Examples thereof include ether-type nonionic surfactants, and polyoxyethylene alkyl ethers are more preferable from the viewpoint of improving the polishing rate and suppressing corrosion of the wafer.
  • the reason why the nonionic surfactant prevents corrosion is not clear, but the hydrophobic group of the nonionic surfactant is adsorbed to the silicon wafer and forms a protective film, which prevents contact with alkaline substances. It is estimated that.
  • the content of the nonionic surfactant in the polishing composition of the present invention is preferably 0.01% by weight (100 ppm by weight) or less from the viewpoint of suppressing a decrease in polishing rate, and is 0.005% by weight. (50 wt ppm) or less is more preferable, 0.0025 wt% (25 wt ppm) or less is further preferable, and 0.001 wt% (10 wt ppm) or less is even more preferable. Further, from the viewpoint of preventing corrosion of the semiconductor substrate, it is preferably 0.00005 wt% (0.5 wt ppm) or more, more preferably 0.0001 wt% (1 wt ppm) or more, and 0.0003 wt%.
  • the content of the nonionic surfactant is preferably 0.00005 to 0.01 wt% (0.5 to 100 wt ppm), and 0.0001 to 0.005 wt% (1 to 50 wt%).
  • ppm more preferably 0.0003 to 0.0025 wt% (3 to 25 wt ppm), even more preferably 0.0004 to 0.001 wt% (4 to 10 wt ppm). Even more preferable.
  • the cloud point of the nonionic surfactant in the polishing composition of the present invention is preferably 30 ° C. or more, more preferably 35 ° C. or more, from the viewpoint of storage stability of the polishing composition. More preferably, the temperature is higher than or equal to ° C.
  • oxidizing agent examples include peroxides such as permanganic acid and peroxo acid, chromic acid, nitric acid, and salts thereof.
  • the pH at 25 ° C. of the polishing composition of the present embodiment is not particularly limited, but is preferably 8.0 to 12.0, more preferably 9.0 to 11.5, and still more preferably from the viewpoint of improving the polishing rate. Is 9.5 to 11.0.
  • the pH at 25 ° C. can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and is a value one minute after the electrode is immersed in the polishing composition.
  • the amount of filter passing through the polishing composition of the present invention is preferably 1.0 g / min ⁇ cm 2 or more, more preferably 2.0 g / min ⁇ cm 2 or more, and nano From the viewpoint of reducing LPD such as scratches, it is preferably 3.7 g / min ⁇ cm 2 or more, more preferably 5 g / min ⁇ cm 2 or more, still more preferably 10 g / min ⁇ cm 2 or more, and even more preferably 12 g / Min ⁇ cm 2 or more.
  • This flow rate is a method of reducing the viscosity of the polishing composition, increasing the dispersibility of the abrasive in the polishing composition, removing aggregates of the abrasive in the polishing composition by filtration, etc. Can be adjusted.
  • the polishing liquid composition of this embodiment is preserve
  • the concentrate may be used after appropriately diluted with the above-mentioned aqueous medium as necessary.
  • the content of the polymer compound having a cationic group is preferably 0.005% by weight or more, more preferably from the viewpoint of reducing production and transportation costs. Is 0.01% by weight or more, more preferably 0.02% by weight or more.
  • the content of the polymer compound having a cationic group in the concentrate is preferably 5% by weight or less, more preferably 2% by weight or less, and still more preferably 1% by weight or less from the viewpoint of improving storage stability. It is. Therefore, the content of the polymer compound having a cationic group in the concentrated liquid is preferably 0.005 to 5% by weight, more preferably 0.01 to 2% by weight, and 0.02 to 1% by weight. Is even more preferable.
  • the content of the abrasive is preferably 5% by weight or more, more preferably 7% by weight or more, and still more preferably from the viewpoint of reducing manufacturing and transportation costs. Is 8% by weight or more.
  • the content of the abrasive in the concentrated liquid is preferably 40% by weight or less, more preferably 35% by weight or less, and still more preferably 30% by weight or less from the viewpoint of improving storage stability. Therefore, the content of the abrasive in the concentrated liquid is preferably 5 to 40% by weight, more preferably 7 to 35% by weight, and even more preferably 8 to 30% by weight.
  • the content of the water-soluble polymer compound is preferably 0.02% by weight or more, more preferably 0.02% by weight from the viewpoint of reducing production and transportation costs. It is at least 05% by weight, more preferably at least 0.1% by weight.
  • the content of the water-soluble polymer compound in the concentrate is preferably 5% by weight or less, more preferably 2% by weight or less, and still more preferably 1% by weight or less from the viewpoint of improving storage stability. Therefore, the content of the water-soluble polymer compound in the concentrated liquid is preferably 0.02 to 5% by weight, more preferably 0.05 to 2% by weight, and 0.1 to 1% by weight. And even more preferred.
  • An example of the manufacturing method of the polishing composition of the present embodiment is not limited at all.
  • a polymer compound having a cationic group, an abrasive, an aqueous medium, and optional components are mixed as necessary. Can be prepared.
  • the mixing order of these components is not particularly limited, and all the components may be mixed at the same time.
  • a water-soluble polymer compound is included as an optional component, an aqueous system in which the water-soluble polymer compound is dissolved in advance.
  • An abrasive may be mixed in the medium. From the viewpoint of sufficiently preventing the agglomeration of the abrasive and the like, the latter is preferable.
  • the dispersion of the abrasive in the aqueous medium can be carried out using a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, a wet ball mill, or a bead mill.
  • a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, a wet ball mill, or a bead mill.
  • coarse particles produced by agglomeration of the abrasive are contained in the aqueous medium, it is preferable to remove the coarse particles by centrifugation or filtration using a filter. It is preferable to disperse the abrasive in the aqueous medium in the presence of a water-soluble polymer compound.
  • the polishing liquid composition of the present invention is used, for example, in a silicon wafer polishing step in the process of manufacturing a semiconductor substrate.
  • the silicon wafer polishing process includes a lapping (rough polishing) process for flattening a silicon wafer obtained by slicing a silicon single crystal ingot into a thin disk shape, etching the lapped silicon wafer, and then silicon There is a final polishing process in which the wafer surface is mirror-finished.
  • the polishing composition of the present invention is more preferably used in the above-described finish polishing step.
  • the specific surface area of the abrasive is subjected to the following [pretreatment], and then approximately 0.1 g of a measurement sample is accurately weighed to 4 digits after the decimal point in a measurement cell, and immediately under the measurement at a specific temperature of 110 ° C. for 30 minutes. After drying, the surface area was measured by a nitrogen adsorption method (BET method) using a specific surface area measuring device (micromeritic automatic specific surface area measuring device, Flowsorb III2305, manufactured by Shimadzu Corporation).
  • BET method nitrogen adsorption method
  • Preprocessing (A) The slurry-like abrasive is adjusted to pH 2.5 ⁇ 0.1 with an aqueous nitric acid solution. (B) A slurry-like abrasive adjusted to pH 2.5 ⁇ 0.1 is placed in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour. (C) After drying, the obtained sample is finely ground in an agate mortar. (D) The pulverized sample is suspended in ion exchange water at 40 ° C. and filtered through a membrane filter having a pore size of 1 ⁇ m. (E) The filtrate on the filter is washed 5 times with 20 g of ion exchange water (40 ° C.).
  • ⁇ Average secondary particle size of abrasive> The average secondary particle diameter (nm) of the abrasive was such that the abrasive was added to ion-exchanged water so that the concentration of the abrasive was 0.5% by weight, and then the resulting aqueous solution was disposable sizing cuvette (polystyrene 10 mm). The cell was measured up to a height of 10 mm from the bottom and measured using a dynamic light scattering method (device name: Zetasizer Nano ZS, manufactured by Sysmex Corporation).
  • polishing liquid composition Polishing material (colloidal silica), polymer compound having a cationic group, 28% ammonia water (Kishida Chemical Co., Ltd. reagent special grade), ion-exchanged water, and other high if necessary
  • a molecular compound or a nonionic surfactant was stirred and mixed to obtain a concentrated liquid (pH 10.0 to 11.0 (25 ° C.)) of the polishing liquid composition.
  • the content of ammonia in each concentrate is 0.4% by weight.
  • the polymerization degree and composition of the polymer compounds 1 to 11 having a cationic group used in the following Examples 1 to 43 are shown in Table 1 below.
  • the polymer compounds 1 to 11 are obtained by copolymerizing a monomer compound that is a supply source of the structural unit (a2) and a monomer compound that is a supply source of the structural unit (a3), and obtaining the resulting copolymer. Obtained by partial saponification.
  • the total of the structural unit (a1), the structural unit (a2) and the structural unit (a3) in all the structural units of each polymer compound is 100 mol%. is there.
  • R is CH 3
  • the monomer compound that is a supply source of the structural unit (a2) is vinyl acetate.
  • the structural unit (a3) is derived from the compound represented by the general formula (3-1).
  • Z— is Cl—
  • X 1 is —CONHR 12 —
  • R 12 is — (CH 2 ) 3.
  • R 1 is —H
  • R 2 is —H
  • R 3 is —CH 3
  • R 4 is H
  • R 5 is H
  • R 6 is H.
  • the CO side of —CONHR 12 — is bonded to the carbon to which R3 is bonded.
  • the total of the structural unit (a1), the structural unit (a2) and the structural unit (a3) in all the structural units of each polymer compound is 100 mol%.
  • R is CH 3
  • the monomer compound that is a supply source of the structural unit (a2) is vinyl acetate.
  • the structural unit (a3) is derived from the compound represented by the general formula (3-1).
  • Z— is Cl—
  • X 1 is —CH 2 —
  • R 1 is —H
  • R 2 is —H
  • R 3 is —H
  • R 4 is R 1 R 2 C ⁇ C (R 3 ) —X 1 —
  • R 5 is H
  • R 6 is H.
  • the mol% of (a3) described in Table 1 was calculated using the nitrogen amount and chlorine concentration measured by the following cationization modification rate measurement method.
  • Measuring device TN-10 manufactured by Mitsubishi Chemical Analytech Electric furnace setting conditions: INLET 800 °C : OUTLET 900 °C Gas flow rate: O 2 MAIN 300ml / min : Ar 1L / min : O 2 0.5L / min
  • Calibration curve adjustment method A solution obtained by dissolving aniline in toluene was used as a calibration curve sample. (2) On the other hand, 100 mg of the sample was burned in an oxygen stream, and the generated gas was absorbed in 3% hydrogen peroxide solution. Chlorine concentration was determined by measuring chloride ions in the absorbing solution by ion chromatography.
  • Combustion device QS-AB2 manufactured by Yoshida Scientific Instruments Combustion temperature: PREH 400 °C : HIH 1000 °C Combustion gas flow rate: 2.5L / min (Ar) Measuring device: Dionex ICS-2000 Separation column: IonPack AS418 Guard column: IonPack AG18 Eluent: 30 mM KOH Detector: Electrical conductivity detector (3)
  • the polymer compounds 1 to 11 contain N and Cl in a molar ratio of 1: 1, and the source of (a3) contains N atoms And Cl atoms are contained one by one, so the content (mol%) of the cation group is calculated from each of the nitrogen amount and the chlorine concentration, and the average value is the constituent unit amount (mol%) of (a3) It was.
  • the above concentrated liquid was diluted 20 times with ion exchange water to obtain a polishing liquid composition having a pH of 10.0 to 11.0 (25 ° C.).
  • the content of the abrasive is 0.5% by weight, and the content of ammonia is 0.02% by weight.
  • the content of the polymer compound having a cationic group, the content of a water-soluble polymer compound other than the polymer compound having a cationic group, and the content of a nonionic surfactant are as shown in Table 2 and Table 3. is there.
  • polishing Method Using the obtained polishing composition, the following silicon wafer was polished for 15 minutes under the following polishing conditions.
  • Polishing machine Single-side polishing machine MA-300 (Musashino Electronics Co., Ltd. platen diameter 300mm) Polishing pad: SUPREME RN-H (Nita Haas) Turntable rotation speed: 90 r / min (linear velocity 45 m / min) Platen rotation speed: 16r / min Polishing liquid composition supply amount: 15 ml / min (supplied to the center of the rotating disk) Polishing load: 100 g / cm 2 Polishing time: 15 min
  • the silicon wafer polished under the above polishing conditions was cleaned using a wafer jet cleaning machine WJS-150B (manufactured by M-Tech Co., Ltd.) and then dried. Specifically, spin rinse using ion-exchanged water (rotation speed 1500 rpm, 30 seconds), scrub rinse using ion-exchanged water (rotation speed 100 rpm, 60 seconds), spin rinse using ion-exchanged water (rotation speed) After performing 1500 rpm for 30 seconds in this order, spin drying (rotation speed 3000 rpm, 30 seconds) was performed.
  • the polishing rate when using the polishing liquid compositions of Examples 1 to 43 and Comparative Examples 1 to 4 was evaluated by the following method. First, the weight of each silicon wafer before and after polishing was measured (measured by “BP-210S” manufactured by Sartorius), and the obtained weight difference was divided by the density, area and polishing time of the silicon wafer. The single-side polishing rate per hour was determined. In Tables 2 and 3, the single-side polishing rate when the polishing liquid composition of Comparative Example 4 is used is “1.00”, and the polishing rates when other polishing liquid compositions are used are relative values. It showed in.
  • Suction pressure setting means using a water circulation aspirator (“CIRCULATING ASPIRETOR WJ-15”, manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd.), pressure between the aspirator and the suction filter (position 20 cm away from the suction filter) A gauge was connected and the pressure during filtration was adjusted to -100 kPa.
  • the test room temperature was 25 ° C.
  • Suction filter 1L suction bottle with filter holder for vacuum filtration (model number: KGS-47, manufactured by Advantech Toyo Co., Ltd.)
  • Liquid passing time 1 minute (1 minute from the time when 300 g of the polishing liquid composition has been put into the funnel on the filter in 2 seconds)
  • Amount of liquid flow It was determined by dividing the weight (g) of the polishing liquid composition in the suction bottle 1 minute after the liquid flow by the filtration area of the filter.
  • ⁇ Evaluation of corrosion amount> A silicon wafer cut to 40 ⁇ 40 mm square was immersed in a 1% dilute hydrofluoric acid solution for 2 minutes to remove the oxide film, and then immersed in ion-exchanged water, rinsed, and air blow dried. Next, the silicon wafer was placed in a plastic container, and 20 g of the polishing composition was added to the plastic container and covered. The silicon wafer was dipped in the polishing composition at 80 ° C. for 5 hours, then dipped in ion exchange water, rinsed, and air blow dried. The amount of weight loss before and after immersion of the air blow-dried silicon wafer in the polishing composition was defined as the amount of corrosion.
  • Each of the polymer compounds 1 to 11 described in the column of polymer compound (1) in Table 2 and Table 3 is an example of a polymer compound having a cationic group in the present invention.
  • (2) is an example of a water-soluble polymer compound other than the polymer compound having a cationic group. Details of the abrasives and components * 1 to * 9 in Tables 2 and 3 are as follows.
  • Silica 1 average primary particle size: 26 nm, average secondary particle size: 58 nm, degree of association: 2.2
  • Silica 2 Average primary particle size: 38 nm, Average secondary particle size: 78 nm, Association degree: 2.1
  • Component * 1 Completely saponified polyvinyl alcohol, manufactured by Kuraray Co., Ltd., PVA-124
  • Ingredient * 2 Cationic polyvinyl alcohol, manufactured by Kuraray Co., Ltd., CM-318
  • Component * 3 Polyethyleneimine, manufactured by Nippon Shokubai Co., Ltd., SP-006
  • Ingredient * 4 HEC, manufactured by Sumitomo Seika Co., Ltd., CF-V, weight average molecular weight 1,600,000
  • Ingredient * 5 Poly (N-propionylethyleneimine), manufactured by Kao Corporation, weight average molecular weight 770,000
  • Ingredient * 6 Polyvinylpyrrolidone, Wako Pure Chemical Industries, K90, viscosity average molecular weight
  • the polishing liquid compositions of Examples 1 to 43 have good storage stability in the concentrated liquid, a large amount of liquid passing through the filter, good wettability of the silicon wafer, and polishing speed. Is also high.
  • the polishing liquid compositions of Comparative Examples 1-2 were poor in wettability
  • the polishing liquid compositions of Comparative Examples 2-3 were poor in storage stability of the concentrated liquid.
  • the polishing liquid compositions of Comparative Examples 2 to 3 supplied on the polishing pad there are large aggregates that can be seen with the naked eyes, and these aggregates cause scratches. Was obvious.
  • liquid permeability was bad.
  • the polishing liquid composition of the present invention is useful as a polishing liquid composition used in various semiconductor substrate manufacturing processes, and is particularly useful as a polishing liquid composition for finish polishing of silicon wafers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

下記一般式(1)で表される構成単位(a1)、下記一般式(2)で表される構成単位(a2)、及び下記一般式(3)で表される構成単位(a3)を有し、構成単位(a3)の合計が高分子化合物の全構成単位中0.001~1.5モル%である高分子化合物、研磨材及び水系媒体を含有するシリコンウエハ用研磨液組成物。

Description

シリコンウエハ用研磨液組成物
 本発明はシリコンウエハ用研磨液組成物およびこれを用いた半導体基板の製造方法並びにシリコンウエハの研磨方法に関する。
 半導体基板の製造に用いられるシリコンウエハの研磨に用いられる研磨液組成物として、シリカ粒子を含有する研磨液組成物が知られている。この種の研磨液組成物においては、シリカ粒子の凝集に起因するシリコンウエハの表面欠陥(LPD:Light point defects)の発生や、凝集物を除去するために研磨液組成物をろ過する場合のフィルター目詰まりが問題となっている(例えば、特許文献1および特許文献2等参照)。また、研磨速度を向上させる目的で、窒素含有基を含む水溶性高分子化合物を含む研磨液組成物が知られている(特許文献3参照)。
特開2006-128518号公報 特開2008-53415号公報 特開2007-19093号公報 特開平11-116942号公報
 特許文献1では、フィルターの目詰まりを防止することを目的として、コロイダシリカと水酸化カリウムと炭酸水素カリウムとを含有する研磨液組成物が提案されている。しかし、この研磨液組成物にはナトリウムイオンやカリウムイオンが含まれているので、シリコンウエハ表面に砥粒が付着しやすくなり、その結果、シリコンウエハ表面に欠陥が生じやすくなるという問題がある。
 特許文献2では、LPDを低減するために、ポリビニルピロリドン及びポリN-ビニルホルムアミドから選ばれる少なくとも一種類の水溶性高分子とアルカリとを含有する研磨液組成物が提案されている。しかし、この研磨液組成物を用いた研磨では、研磨速度が十分とはいえない。
 特許文献3では、ポリエチレンイミンなどの窒素含有基を含む水溶性高分子化合物を含む研磨液組成物が提案されている。しかし、この研磨液組成物を用いると、窒素含有基を含む水溶性高分子化合物によりシリカ粒子が凝集し、スクラッチの発生などシリコンウエハの表面状態が悪化するという問題がある。
 特許文献4では、研磨速度の向上及び研磨対象物の表面の濡れ性向上のために、ヒドロキシエチルセルロース(HEC)を含む研磨液組成物が提案されている。しかし、HECを用いるとシリカ粒子の凝集物を生じやすく、研磨液組成物をろ過しても直ちにフィルター目詰まりを起こすため、研磨直前に研磨液組成物をろ過できないという問題がある。
 さらに、研磨液組成物は、濃縮液の状態で保管、輸送されるものであり、濃縮液での保存安定性も要求される。
 本発明では、シリコンウエハを高速研磨でき、濃縮液の保存安定性及びシリコンウエハの表面の濡れ性が良好で、しかも、フィルターの目詰まりも低減できるシリコンウエハ用研磨液組成物、および当該研磨液組成物を用いた半導体基板の製造方法並びにシリコンウエハの研磨方法を提供する。
 本発明のシリコンウエハ用研磨液組成物は、下記一般式(1)で表される構成単位(a1)、下記一般式(2)で表される構成単位(a2)、及び下記一般式(3)で表される構成単位(a3)を有し、構成単位(a3)の合計が高分子化合物の構成単位中0.001~1.5モル%である高分子化合物、研磨材及び水系媒体を含有するシリコンウエハ用研磨液組成物である。
Figure JPOXMLDOC01-appb-C000003
 〔式中、Rは炭素数1~3のアルキル基であり、Xは分子中にカチオン基を有し且つビニルアルコール低級脂肪酸エステルと共重合可能な不飽和化合物に由来する構成単位である。〕
 本発明の半導体基板の製造方法は、本発明のシリコンウエハ用研磨液組成物を用いてシリコンウエハを研磨する工程を含む。
 本発明のシリコンウエハの研磨方法は、本発明のシリコンウエハ用研磨液組成物を用いてシリコンウエハを研磨する工程を含む。
 本発明によれば、シリコンウエハを高速研磨でき、濃縮液の保存安定性及びシリコンウエハの濡れ性が良好で、しかも、フィルターの目詰まりも低減できるシリコンウエハ用研磨液組成物、および当該研磨液組成物を用いた半導体基板の製造方法並びにシリコンウエハの研磨方法を提供できる。
 本発明は、下記一般式(1)で表される構成単位(a1)、下記一般式(2)で表される構成単位(a2)、及び下記一般式(3)で表される構成単位(a3)を有し、構成単位(a3)の合計が高分子化合物の構成単位中0.001~1.5モル%である高分子化合物(以下「カチオン基を有する高分子化合物」と略する場合もある。)を含むことにより、濃縮液の保存安定性及びシリコンウエハの濡れ性が良好で、研磨直前等に行われる研磨液組成物中の研磨材の凝集物等の除去に用いられるフィルターの目詰まりを低減でき、かつ、高い研磨速度でシリコンウエハの表面の研磨が行えるという知見に基づく。
 一般に、シリコンウエハの表面やシリカ等の研磨材表面は、アルカリ下では負(マイナス)に帯電している。このため、本発明で使用されるカチオン基を有する高分子化合物は、シリコンウエハの表面に適度に吸着して、良好な濡れ性を発現していると推定される。また、本発明で使用されるカチオン基を有する高分子化合物は、研磨材表面にも吸着し、研磨材を適度に凝集させ、シリコンウエハの表面の良好な濡れ性と相まって、シリコンウエハの高速研磨を可能にしていると推定される。
 (カチオン基を有する高分子化合物)
 本発明のシリコンウエハ用研磨液組成物(以下「研磨液組成物」と略して称する場合もある。)に含まれるカチオン基を有する高分子化合物は、下記一般式(1)~(3)で表される構成単位(a1)~(a3)を有する。
Figure JPOXMLDOC01-appb-C000004
 上記式中、Rは炭素数1~3のアルキル基であり、Xは分子中にカチオン基を有し且つビニルアルコール低級脂肪酸エステルと共重合可能な不飽和化合物に由来する構成単位である。
 構成単位(a1)と構成単位(a2)と構成単位(a3)とを有するカチオン基を有する高分子化合物は、構成単位(a2)の供給源である単量体化合物と構成単位(a3)の供給源である単量体化合物とを共重合し、得られた共重合体を部分的にケン化することで得られる。例えば、一般式(2)中のRがメチル基である場合、重合性カチオン単量体(構成単位(a3)の供給源である化合物)と酢酸ビニルとの共重合体を部分ケン化することで得られるカチオン化ポリビニルアルコールを上記カチオン基を有する高分子化合物として使用できる。
 ここで、構成単位(a3)はカチオン基を含み、構成単位(a3)の供給源である単量体化合物は、ビニルアルコール低級(炭素数1~3)脂肪酸エステル(構成単位(a1)、(a2)の供給源である単量体化合物)と共重合可能な化合物である。構成単位(a3)の供給源である単量体化合物としては、下記一般式(3-1)で表される化合物及び下記一般式(3-2)で表される化合物から選ばれる化合物が挙げられる。構成単位(a3)は、研磨速度の向上及びシリコンウエハの表面の濡れ性向上の観点から、下記一般式(3-1)で表される化合物及び下記一般式(3-2)で表される化合物から選ばれる少なくとも1種の化合物に由来するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 式中、R、R、R、R、R、Rは、それぞれ独立して、水素原子又は炭素数1~3のアルキル基である。X、Yは、それぞれ独立して、炭素数1~12のアルキレン基、-COOR12-、-CONHR12-、-OCOR12-、および-R13-OCO-R12-から選ばれる基である。ここで、R12、R13は、それぞれ独立して、炭素数1~5のアルキレン基である。Rは水素原子、炭素数1~3のアルキル基、炭素数1~3のヒドロキシアルキル基、又はRC=C(R)-X-である。Rは水素原子、炭素数1~3のアルキル基、又は炭素数1~3のヒドロキシアルキル基であり、Rは水素原子、炭素数1~3のアルキル基、炭素数1~3のヒドロキシアルキル基、又はベンジル基であり、Z-は陰イオンを示す。R10は水素原子、炭素数1~3のアルキル基、炭素数1~3のヒドロキシアルキル基、又はRC=C(R)-Y-である。R11は水素原子、炭素数1~3のアルキル基、又は炭素数1~3のヒドロキシアルキル基である。Z-は、例えば、ハロゲンイオンである。
 構成単位(a3)の供給源である単量体化合物としては、例えば、ジアリルジアルキル(該アルキル基の炭素数は1~3)アンモニウム塩、N-(メタ)アクリロイルアミノアルキル(該アルキル基の炭素数は1~5)-N,N-ジアルキル(該アルキル基の炭素数は1~3)アミン、N-(メタ)アクリロイルアミノアルキル(該アルキル基の炭素数は1~5)-N,N,N-トリアルキル(該アルキル基の炭素数は1~3)アンモニウム塩、N-(メタ)アクリロイルオキシアルキル(該アルキル基の炭素数は1~5)-N,N,N-トリアルキル(アルキル基の炭素数は1~3)アンモニウム塩、及びN-(ω-アルケニル(該アルケニル基の炭素数は2~10))-N,N-ジアルキル(該アルキル基の炭素数は1~3)アミンから選ばれる化合物が挙げられる。
 カチオン基を有する高分子化合物の全構成単位中、構成単位(a1)、構成単位(a2)及び構成単位(a3)の合計は、研磨速度の向上及び研磨液組成物の保存安定性向上の観点から、好ましくは50~100モル%、より好ましくは80~100モル%であり、さらに好ましくは90~100モル%であり、さらにより好ましくは100モル%である。
 また、カチオン基を有する高分子化合物の全構成単位中、カチオン基を含む構成単位(a3)の合計は、研磨速度、濃縮液の保存安定性、シリコンウエハの表面の濡れ性の向上、およびフィルターの目詰まり低減の観点から、0.001~1.5モル%であり、好ましくは0.01~1モル%、より好ましくは0.01~0.5モル%、さらにより好ましくは0.01~0.35モル%である。ここで、前記カチオン基を含む構成単位(a3)の合計は、実施例に記載の[カチオン化変性率測定方法]により測定することができる。
 また、カチオン基を有する高分子化合物においては、溶解性向上の観点から、構成単位(a1)及び構成単位(a2)のモル比(a1)/(a2)が、好ましくは1~300、より好ましくは2~50、さらに好ましくは2.5~20であり、さらにより好ましくは3.0~15であり、よりいっそう好ましくは5.0~10である。
 また、カチオン基を有する高分子化合物の重合度は、シリコンウエハの表面の濡れ性向上の観点から、好ましくは220~20000、より好ましくは220~10000、さらに好ましくは220~4500であり、さらにより好ましくは300~2000であり、よりいっそう好ましくは300~1000である。ここで、高分子化合物の重合度とは、一般的には重合体分子を構成する繰返し単位数のことであるが、本発明におけるカチオン基を有する高分子化合物の重合度に関しては、(a1)の繰り返し単位数と(a2)の繰り返し単位数の合計を意味する。
 また、カチオン基を有する高分子化合物の重量平均分子量は、シリコンウエハの濡れ性向上の観点から、好ましくは10,000~1,000,000、より好ましくは10,000~500,000、さらに好ましくは10,000~200,000であり、さらにより好ましくは10,000~100,000であり、よりいっそう好ましくは10,000~50,000である。ここで重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより、下記測定条件で、プルランを標準として求めることができる。
 <重量平均分子量の測定法>
 カチオン基を有する高分子化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を下記の条件で適用して得たクロマトグラム中のピークに基づいて算出した値である。
カラム:α-M+α-M
溶離液:0.15mol/L NaSO,1%CHCOOH/水
流量:1.0mL/min
カラム温度:40℃
検出器:RI検出器
標準物質:プルラン(分子量;78.8万,19.4万,4.73万,5900 全てShodex社製)
 本発明の研磨液組成物に含まれるカチオン基を有する高分子化合物は、構成単位(a1)~(a3)以外の構成単位を本発明の効果を損なわない範囲で含んでいてもよいが、実質的に含まないことが好ましく、含まないことがより好ましい。
 本発明の研磨液組成物におけるカチオン基を有する高分子化合物の含有量は、シリコンウエハの表面の濡れ性向上の観点から、0.0001重量%(1重量ppm)以上であると好ましく、0.0005重量%(5重量ppm)以上であるとより好ましく、0.001重量%(10重量ppm)以上であるとさらに好ましい。また、研磨液組成物の保存安定性の向上の観点から、0.1重量%(1000重量ppm)以下であると好ましく、0.02重量%(200重量ppm)以下であるとより好ましく、0.01重量%(100重量ppm)以下であるとさらにより好ましい。よって、カチオン基を有する高分子化合物の含有量は、0.0001~0.1重量%(1~1000重量ppm)であると好ましく、0.0005~0.02重量%(5~200重量ppm)であるとより好ましく、0.001~0.01重量%(10~100重量ppm)であるとさらにより好ましい。
 (研磨材)
 本発明の研磨液組成物に含まれる研磨材としては、研磨用に一般に使用される砥粒であれば特に制限はないが、例えば、二酸化ケイ素、酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化チタン、窒化ケイ素、二酸化マンガン、炭化ケイ素、酸化亜鉛、ダイヤモンド及び酸化マグネシウムからなる群から選ばれる少なくとも1種を含む粒子が挙げられる。
 研磨材の材料の具体例としては、コロイダルシリカ、フュームドシリカ、表面修飾したシリカ等の二酸化ケイ素;α―アルミナ、γ―アルミナ、δ―アルミナ、θ―アルミナ、η―アルミナ、無定型アルミナ、フュームドアルミナ、コロイダルアルミナ等の酸化アルミニウム;酸化数が3価又は4価の酸化セリウム、結晶系が六方晶系、等軸晶系又は面心立方晶系の酸化セリウム、その他の酸化セリウム;結晶系が、単斜晶系、正方晶系、又は非晶質の酸化ジルコニウム、フュームドジルコニウム、その他の酸化ジルコニウム;一酸化チタン、三酸化チタン二チタン、二酸化チタン、フュームドチタニア、その他の酸化チタン;α―窒化ケイ素、β―窒化ケイ素、アモルファス窒化ケイ素、その他の窒化ケイ素;α―二酸化マンガン、β―二酸化マンガン、γ―二酸化マンガン、δ―二酸化マンガン、ε―二酸化マンガン、η―二酸化マンガン、その他の二酸化マンガン等が挙げられる。
 これらの研磨材の中でも、シリコンウエハの表面平滑性を向上させる観点から、二酸化ケイ素が好ましく、コロイダルシリカがより好ましい。これらの研磨材は、単独で又は2種以上を混合して用いてもよい。
 研磨材の使用形態としては、操作性の観点からスラリー状であることが好ましい。本発明の研磨液組成物に含まれる研磨材がコロイダルシリカである場合、アルカリ金属やアルカリ土類金属等によるシリコンウエハの汚染を防止する観点から、コロイダルシリカは、アルコキシシランの加水分解物から得たものであると好ましい。アルコキシシランの加水分解物から得られるシリカ粒子は、従来から公知の方法によって作製できる。
 本発明の研磨液組成物に含まれる研磨材の平均一次粒子径は、一定の研磨速度を維持する観点から、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは15nm以上である。また、スクラッチの発生を抑制する観点から、好ましくは50nm以下、より好ましくは45nm以下、さらに好ましくは40nm以下である。よって、研磨材の平均一次粒子径は、好ましくは5~50nm、より好ましくは10~45nm、さらに好ましくは15~40nmである。
 特に、研磨材としてコロイダルシリカを用いた場合には、研磨速度を向上させる観点から、平均一次粒子径は、5~50nmが好ましく、より好ましくは10~45nm、さらに好ましくは15~40nmである。
 本発明の研磨液組成物における研磨材の含有量は、研磨速度の向上の観点から0.05重量%以上であると好ましく、0.1重量%以上であるとより好ましく、0.5重量%以上であるとさらに好ましい。また、研磨液組成物の保存安定性の向上の観点から10重量%以下であると好ましく、7.5重量%以下であるとより好ましく、5重量%以下であるとさらに好ましく、2.5重量%以下であるとさらにより好ましい。よって、研磨材の含有量は、0.05~10重量%であると好ましく、0.1~7.5重量%であるとより好ましく、0.5~5重量%であるとさらにより好ましく、0.5~2.5重量%であるとよりいっそう好ましい。
 研磨材の平均一次粒子径は、BET(窒素吸着)法によって算出される比表面積S(m/g)を用いて算出される。比表面積は、例えば、実施例に記載の方法により測定できる。
 研磨材の会合度は、表面粗さの低減の観点から、3.0以下であると好ましく、研磨材の形状はいわゆる球型といわゆるマユ型であると好ましい。さらに、表面粗さの低減と研磨速度の向上とを両立させる観点から、研磨材の会合度は、1.1~3.0であると好ましく、研磨材の形状はいわゆるマユ型であると好ましい。研磨材の会合度は、研磨速度を向上させる観点から、1.8以上であると好ましく、2.0以上であるとより好ましい。また、表面粗さ低減の観点から、2.5以下であると好ましく、2.3以下であるとより好ましい。研磨材がコロイダルシリカである場合、その会合度は、研磨速度をより向上させる観点から、1.1~3.0であると好ましく、1.8~2.5であるとより好ましい。
 研磨材の会合度とは、研磨材の形状を表す係数であり、下記式により算出される。
会合度=平均二次粒子径/平均一次粒子径
 研磨材の会合度の調整方法としては、特に限定されないが、例えば、特開平6-254383号公報、特開平11-214338号公報、特開平11-60232号公報、特開2005-060217号公報、特開2005-060219号公報等に記載の方法を採用できる。
 平均二次粒子径は、動的光散乱法によって測定される値であり、例えば、実施例に記載の装置を用いて測定できる。
 (水系媒体)
 本実施形態の研磨液組成物に含まれる水系媒体としては、水、又は水と溶媒との混合媒体等が挙げられ、上記溶媒としては、水と混合可能な溶媒(例えば、エタノール等のアルコール)が好ましい。水系媒体としては、なかでも、水が好ましく、イオン交換水がより好ましい。
 本実施形態の研磨液組成物には、本発明の効果が妨げられない範囲で、さらに、上記カチオン基を有する高分子化合物以外の水溶性高分子化合物、塩基性化合物、pH調整剤、防腐剤、アルコール類、キレート剤、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤および酸化剤から選ばれる少なくとも1種の任意成分が含まれていてもよい。
 (水溶性高分子化合物)
 本発明の研磨液組成物は、研磨速度向上の観点から、さらに上記カチオン基を有する高分子化合物以外の水溶性高分子化合物を含有することが好ましい。ここで水溶性高分子化合物とは、重量平均分子量が10,000以上、好ましくは100,000以上の水溶性基を有する高分子化合物であって、本発明で使用される上記カチオン基を有する高分子化合物以外のものをいう。上記水溶性基としては、例えば水酸基、カルボキシル基、カルボン酸エステル基、スルホン酸基等が挙げられる。このような水溶性高分子化合物としては、ポリビニルピロリドン、ポリ(N-アシルアルキレンイミン)、セルロース誘導体、ポリビニルアルコール、ポリエチレンオキサイド等が例示できる。ポリ(N-アシルアルキレンイミン)としては、ポリ(N-アセチルエチレンイミン)、ポリ(N-プロピオニルエチレンイミン)、ポリ(N-カプロイルエチレンイミン)、ポリ(N-ベンゾイルエチレンイミン)、ポリ(N-ノナデゾイルエチレンイミン)、ポリ(N-アセチルプロピレンイミン)、ポリ(N-ブチオニルエチレンイミン)等があげられる。セルロース誘導体としては、カルボキシメチルセルロ-ス、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、およびカルボキシメチルエチルセルロース等が挙げられる。これらの水溶性高分子化合物は任意の割合で2種以上を混合して用いてもよい。
 本発明の研磨液組成物に含まれる水溶性高分子化合物としては、研磨速度の向上、シリコンウエハの表面の濡れ性向上、及び研磨された面へのパーティクル付着低減の観点から、ポリビニルピロリドン、ポリ(N-アシルアルキレンイミン)及びヒドロキシエチルセルロースから選ばれる少なくとも1種が好ましく、ポリビニルピロリドン及びポリ(N-アシルアルキレンイミン)から選ばれる少なくとも1種がより好ましい。
 ポリビニルピロリドンの粘度平均分子量としては、研磨速度の向上、シリコンウエハの表面の濡れ性向上、及び研磨された面へのパーティクル付着低減の観点から、1万~300万が好ましく、4万~200万がより好ましく、10万~150万がさらに好ましく、30万~150万がさらにより好ましく、40万~150万がよりいっそう好ましい。ここで粘度平均分子量Mvは、以下の式から計算される値である。固有粘度ηは、ポリビニルピロリドンの濃度に対して(ηrel-1)をプロットして得られる切片の値と、ポリビニルピロリドンの濃度に対して(Lnηrel)をプロットして得られる切片の値との平均値である。ηrelは、30℃における動粘度であり、JIS Z 8803の方法に従い、キャノンフェンスケの細管式動粘度計(粘度計番号75番)を用いて測定される値である。
[η]=KMv
  η:固有粘度
  Mv:粘度平均分子量
  K=1.4×10-4
  a=0.7
 ポリ(N-アシルアルキレンイミン)の重量平均分子量(ポリスチレン換算)としては、研磨速度の向上、シリコンウエハの表面の濡れ性向上、及び研磨された面へのパーティクル付着低減の観点から、1万~400万が好ましく、1万~200万がより好ましく、1万~150万がさらに好ましく、1万~100万がさらにより好ましく、5万~100万がよりいっそう好ましく、10万~100万がさらに好ましい。尚、ポリ(N-アシルアルキレンイミン)の重量平均分子量の測定方法は、標準物質がポリスチレンであること以外は、カチオン基を有する高分子化合物の重量平均分子量の測定方法と同じである。
 ヒドロキシエチルセルロースの重量平均分子量(ポリエチレングリコール換算)としては、研磨速度の向上、シリコンウエハの表面の濡れ性向上、及び研磨された面へのパーティクル付着低減の観点から、300,000~4,000,000が好ましく、600,000~3,000,000がより好ましく、900,000~2,500,000がさらに好ましい。尚、ヒドロキシエチルセルロースの重量平均分子量の測定方法は、標準物質がポリエチレングリコールであること以外は、カチオン基を有する高分子化合物の重量平均分子量の測定方法と同じである。
 本実施形態の研磨液組成物における水溶性高分子化合物の含有量は、研磨速度の向上の観点から、好ましくは0.0001重量%(1重量ppm)以上、より好ましくは0.0005重量%(5重量ppm)以上、さらに好ましくは0.001重量%(10重量ppm)以上であり、さらにより好ましくは0.002重量%(20重量ppm)以上である。また、シリコンウエハの表面の濡れ性向上の観点から、好ましくは5重量%(50000重量ppm)以下、より好ましくは1重量%(10000重量ppm)以下、さらに好ましくは0.5重量%(5000重量ppm)以下、さらにより好ましくは0.1重量%(1000重量ppm)以下であり、よりいっそう好ましくは0.05重量%以下(500重量ppm)である。よって、水溶性高分子化合物の含有量は、好ましくは0.0001~5重量%(1~50000重量ppm)、より好ましくは0.0005~1重量%(5~10000重量ppm)、さらに好ましくは0.001~0.5重量%(10~5000重量ppm)、さらにより好ましくは0.001~0.1重量%(10~1000重量ppm)であり、よりいっそう好ましくは0.002~0.05重量%(20~500重量ppm)である。
 (塩基性化合物)
 本発明の研磨液組成物は、研磨速度向上の観点から、塩基性化合物を含有することが好ましい。塩基性化合物としては、含窒素塩基性化合物、アルカリ金属又はアルカリ土類金属の、水酸化物、炭酸塩、および炭酸水素塩等が挙げられる。含窒素塩基性化合物としては、アンモニア、水酸化アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N一メチルエタノールアミン、N-メチル-N,N一ジエタノ-ルアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン、N-(β-アミノエチル)エタノ-ルアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、およびトリイソプロパノールアミン、エチレンジアミン、ヘキサメチレンジアミン、ピペラジン・六水和物、無水ピペラジン、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、ジエチレントリアミン、および水酸化テトラメチルアンモニウムが挙げられ;アルカリ金属又はアルカリ土類金属の、水酸化物、炭酸塩、および炭酸水素塩としては、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウムおよび炭酸水素ナトリウムが挙げられる。これらの塩基性化合物は2種以上を混合して用いてもよい。本発明の研磨液組成物に含まれ得る塩基性化合物としては、研磨速度向上の観点から、含窒素塩基性化合物が好ましく、アンモニア、メチルアミンがより好ましい。
 本発明の研磨液組成物における塩基性化合物の含有量は、研磨速度向上の観点から、0.001重量%以上であると好ましく、0.01重量%以上であるとより好ましく、0.02重量%以上であるとさらに好ましい。また、半導体基板の腐食防止の観点から10重量%以下であると好ましく、5重量%以下であるとより好ましく、1重量%以下であるとさらに好ましく、0.5重量%以下であるとさらにより好ましい。よって、塩基性化合物の含有量は、0.001~10重量%であると好ましく、0.01~5重量%であるとより好ましく、0.02~1重量%であるとさらにより好ましく、0.02~0.5重量%であるとよりいっそう好ましい。
 (pH調整剤)
 pH調整剤としては、酸性化合物等が挙げられる。酸性化合物としては、硫酸、塩酸、硝酸又はリン酸等の無機酸、酢酸、シュウ酸、コハク酸、グリコール酸、リンゴ酸、クエン酸又は安息香酸等の有機酸等が挙げられる。
 (防腐剤)
 防腐剤としては、ベンザルコニウムクロライド、ベンゼトニウムクロライド、1,2-ベンズイソチアゾリン-3-オン、(5-クロロ-)2-メチル-4-イソチアゾリン-3-オン、過酸化水素、又は次亜塩素酸塩等が挙げられる。
 (アルコール類)
 アルコール類としては、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、2-メチル-2-プロパノオール、エチレングリコール、プロピレングリコール、ポリエチレングリコール、グリセリン等が挙げられる。本発明の研磨液組成物におけるアルコール類の含有量は、0.1~5重量%が好ましい。
 (キレート剤)
 キレート剤としては、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、トリエチレンテトラミン六酢酸、トリエチレンテトラミン六酢酸ナトリウム等が挙げられる。本発明の研磨液組成物におけるキレート剤の含有量は、0.01~1重量%が好ましい。
 (カチオン性界面活性剤)
カチオン性界面活性剤としては、例えば、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。
 (アニオン性界面活性剤)
アニオン性界面活性剤としては、例えば、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩等のスルホン酸塩、高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩等の硫酸エステル塩、アルキルリン酸エステル等のリン酸エステル塩などが挙げられる。
 (非イオン性界面活性剤)
 本発明の研磨液組成物は、研磨速度向上の観点及びウエハの腐食抑制の観点から、非イオン性界面活性剤を含むことが好ましい。非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル等のエーテル型、グリセリンエステルのポリオキシエチレンエーテル等のエーテルエステル型、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ソルビタンエステル等のエステル型などが挙げられるが、研磨速度向上の観点及びウエハの腐食抑制の観点から、エーテル型の非イオン性界面活性剤が好ましく、ポリオキシエチレンアルキルエーテルがより好ましい。非イオン性界面活性剤が腐食を防止する理由は明らかではないが、非イオン性界面活性剤の疎水基がシリコンウエハへ吸着し、保護膜を形成することで、アルカリ性物質との接触が抑制されるためと推定される。
 また、本発明の研磨液組成物における非イオン性界面活性剤の含有量は、研磨速度低下抑制の観点から、0.01重量%(100重量ppm)以下であると好ましく、0.005重量%(50重量ppm)以下であるとより好ましく、0.0025重量%(25重量ppm)以下であるとさらに好ましく、0.001重量%(10重量ppm)以下であるとよりいっそう好ましい。また、半導体基板の腐食防止の観点から0.00005重量%(0.5重量ppm)以上であると好ましく、0.0001重量%(1重量ppm)以上であるとより好ましく、0.0003重量%(3重量ppm)以上であるとさらに好ましく、0.0004重量%(4重量ppm)以上であるとよりいっそう好ましい。よって、非イオン性界面活性剤の含有量は、0.00005~0.01重量%(0.5~100重量ppm)であると好ましく、0.0001~0.005重量%(1~50重量ppm)であるとより好ましく、0.0003~0.0025重量%(3~25重量ppm)であるとさらにより好ましく、0.0004~0.001重量%(4~10重量ppm)であるとよりいっそう好ましい。
 また、本発明の研磨液組成物における非イオン性界面活性剤のHLBは、研磨液組成物中の溶解性の観点から8以上であると好ましく、10以上であるとより好ましく、12以上であるとさらに好ましい。また、腐食防止の観点から、19.5以下が好ましく、18以下がより好ましく、16以下がさらに好ましい。よって、非イオン性界面活性剤のHLBは、8~19.5であると好ましく、10~18であることより好ましく、12~16であるとさらに好ましい。なお、本明細書において、HLBは、グリフィン法により、HLB=20×(親水基の重量%)の式から算出したものをいう。
 また、本発明の研磨液組成物における非イオン性界面活性剤の曇点は、研磨液組成物の保存安定性の観点から30℃以上であると好ましく、35℃以上であるとより好ましく、40℃以上であるとさらに好ましい。
 (酸化剤)
 酸化剤としては、過マンガン酸、ペルオキソ酸等の過酸化物、クロム酸、又は硝酸、並びにこれらの塩等が挙げられる。
 本実施形態の研磨液組成物の25℃におけるpHは、特に制限されないが、研磨速度向上の観点から、8.0~12.0が好ましく、より好ましくは9.0~11.5、さらに好ましくは9.5~11.0である。ここで、25℃におけるpHは、pHメータ(東亜電波工業株式会社、HM-30G)を用いて測定でき、電極の研磨液組成物への浸漬後1分後の数値である。
 本発明の研磨液組成物のフィルター通液量は、下記標準試験Aにおいて、1.0g/分・cm以上であると好ましく、2.0g/分・cm以上であるとより好ましく、ナノスクラッチ等のLPDの低減の観点から、好ましくは3.7g/分・cm以上、より好ましくは5g/分・cm以上、更に好ましくは10g/分・cm以上、更により好ましくは12g/分・cm以上である。この通液量は、研磨液組成物の粘度を低減する、研磨液組成物中の研磨材の分散性を高める、研磨液組成物中の研磨材の凝集物をろ過等で除く、等の方法により調整できる。
 (標準試験A)
 (1)試験室内温度:25℃
 (2)吸引圧力:-100kPa
 (3)ろ過フィルター:メンブランフィルター
  材質:親水性PTFE(ポリテトラフルオロエチレン)
  孔径:0.5μm(JIS K3832に記載の方法で、該フィルターを通して研磨液組成物が出始める時の圧力が0.14MPa以上に相当)
  厚さ:35μm
  ろ過面積:17.3cm(直径=47mm)
 メンブランフィルターとして、例えば、アドバンテック東洋社製「H050A047A」が使用できる。
 (4)操作:上記フィルターが装着された吸引濾過器に上記吸引圧力下、300gの研磨液組成物を2秒間で流し込み、その直後から1分間にフィルターを通過した研磨液組成物の重量を測定する。この重量を標準試験Aで用いたフィルターのろ過面積で除したものを通液量とする。減圧の方法は特に限定はないが、例えば、水循環式のアスピレーターを用いることができる。
 なお、上記において説明した各成分の含有量は、使用時における含有量であるが、本実施形態の研磨液組成物は、その保存安定性が損なわれない範囲で濃縮された状態で保存および供給されてもよい。この場合、製造及び輸送コストをさらに低くできる点で好ましい。濃縮液は、必要に応じて前述の水系媒体で適宜希釈して使用すればよい。
 本実施形態の研磨液組成物が上記濃縮液である場合、上記カチオン基を有する高分子化合物の含有量は、製造及び輸送コストを低くする観点から、0.005重量%以上が好ましく、より好ましくは0.01重量%以上、さらに好ましくは0.02重量%以上である。また、濃縮液中における上記カチオン基を有する高分子化合物の含有量は、保存安定性を向上させる観点から、5重量%以下が好ましく、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。よって、上記濃縮液におけるカチオン基を有する高分子化合物の含有量は、0.005~5重量%であると好ましく、0.01~2重量%であるとより好ましく、0.02~1重量%であるとさらにより好ましい。
 本実施形態の研磨液組成物が上記濃縮液である場合、研磨材の含有量は、製造および輸送コストを低くする観点から、5重量%以上が好ましく、より好ましくは7重量%以上、さらに好ましくは8重量%以上である。また、濃縮液中における研磨材の含有量は、保存安定性を向上させる観点から、40重量%以下が好ましく、より好ましくは35重量%以下、さらに好ましくは30重量%以下である。よって、上記濃縮液における研磨材の含有量は、5~40重量%であると好ましく、7~35重量%であるとより好ましく、8~30重量%であるとさらにより好ましい。
 本実施形態の研磨液組成物が上記濃縮液である場合、水溶性高分子化合物の含有量は、製造及び輸送コストを低くする観点から、0.02重量%以上が好ましく、より好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上である。また、濃縮液中における水溶性高分子化合物の含有量は、保存安定性を向上させる観点から、5重量%以下が好ましく、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。よって、上記濃縮液における水溶性高分子化合物の含有量は、0.02~5重量%であると好ましく、0.05~2重量%であるとより好ましく、0.1~1重量%であるとさらにより好ましい。
 次に、本実施形態の研磨液組成物の製造方法の一例について説明する。
 本実施形態の研磨液組成物の製造方法の一例は、何ら制限されず、例えば、カチオン基を有する高分子化合物と、研磨材と、水系媒体と、必要に応じて任意成分とを混合することによって調製できる。
 これらの各成分の混合順序については特に制限はなく、全ての成分を同時に混合してもよいし、任意成分として水溶性高分子化合物を含む場合は、予め、水溶性高分子化合物を溶解した水系媒体に研磨材を混合してもよい。研磨材の凝集等を十分に防止する観点からは、後者が好ましい。
 研磨材の水系媒体への分散は、例えば、ホモミキサー、ホモジナイザー、超音波分散機、湿式ボールミル、又はビーズミル等の撹拌機等を用いて行うことができる。研磨材が凝集等してできた粗大粒子が水系媒体中に含まれる場合、遠心分離やフィルターを用いたろ過等により、当該粗大粒子を除去すると好ましい。研磨材の水系媒体への分散は、水溶性高分子化合物の存在下で行うと好ましい。
 本発明の研磨液組成物は、例えば、半導体基板の製造過程における、シリコンウエハの研磨工程に用いられる。
 シリコンウエハの研磨工程には、シリコン単結晶インゴットを薄円板状にスライスすることにより得られたシリコンウエハを平面化するラッピング(粗研磨)工程と、ラッピングされたシリコンウエハをエッチングした後、シリコンウエハ表面を鏡面化する仕上げ研磨工程とがある。本発明の研磨液組成物は、上記仕上げ研磨工程で用いられるとより好ましい。
 <研磨材の平均一次粒子径>
 研磨材の平均一次粒子径(nm)は、BET(窒素吸着)法によって算出される比表面積S(m/g)を用いて下記式で算出した。
平均一次粒子径(nm)=2727/S
 研磨材の比表面積は、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置 フローソーブIII2305、島津製作所製)を用いて窒素吸着法(BET法)により測定した。
 [前処理]
(a)スラリー状の研磨材を硝酸水溶液でpH2.5±0.1に調整する。
(b)pH2.5±0.1に調整されたスラリー状の研磨材をシャーレにとり150℃の熱風乾燥機内で1時間乾燥させる。
(c)乾燥後、得られた試料をメノウ乳鉢で細かく粉砕する。
(d)粉砕された試料を40℃のイオン交換水に懸濁させ、孔径1μmのメンブランフィルターで濾過する。
(e)フィルター上の濾過物を20gのイオン交換水(40℃)で5回洗浄する。
(f)濾過物が付着したフィルターをシャーレにとり、110℃の雰囲気下で4時間乾燥させる。
(g)乾燥した濾過物(砥粒)をフィルター屑が混入しないようにとり、乳鉢で細かく粉砕して測定サンプルを得た。
 <研磨材の平均二次粒子径>
 研磨材の平均二次粒子径(nm)は、研磨材の濃度が0.5重量%となるように研磨材をイオン交換水に添加した後、得られた水溶液をDisposable Sizing Cuvette(ポリスチレン製 10mmセル)に下底からの高さ10mmまで入れ、動的光散乱法(装置名:ゼータサイザーNano ZS、シスメックス(株)製)を用いて測定した。
 (1)研磨液組成物の調製
 研磨材(コロイダルシリカ)、カチオン基を有する高分子化合物、28%アンモニア水(キシダ化学(株)試薬特級)、イオン交換水、および必要に応じてその他の高分子化合物又は非イオン性界面活性剤を攪拌混合して、研磨液組成物の濃縮液(pH10.0~11.0(25℃))を得た。各濃縮液中のアンモニアの含有量は0.4重量%である。下記実施例1~43で使用したカチオン基を有する高分子化合物1~11の重合度及び組成は下記表1に示している。
 高分子化合物1~11は、構成単位(a2)の供給源である単量体化合物と構成単位(a3)の供給源である単量体化合物とを共重合し、得られた共重合体を部分的にケン化することで得た。
Figure JPOXMLDOC01-appb-T000006
 (注)表1中の高分子化合物10~11において、各高分子化合物の全構成単位中の、構成単位(a1)、構成単位(a2)および構成単位(a3)の合計は100モル%である。RはCHであり、構成単位(a2)の供給源である単量体化合物は酢酸ビニルである。構成単位(a3)は、上記一般式(3-1)で表される化合物に由来するものであり、Z-はCl-、Xは-CONHR12-、R12は-(CH、Rは-H、Rは-H、Rは-CH、RはH、RはH、RはHである。ここで、-CONHR12-のCO側が、R3が結合した炭素に結合している。
 表1中の高分子化合物1~9において、各高分子化合物の全構成単位中の、構成単位(a1)、構成単位(a2)および構成単位(a3)の合計は100モル%である。RはCHであり、構成単位(a2)の供給源である単量体化合物は酢酸ビニルである。構成単位(a3)は、上記一般式(3-1)で表される化合物に由来するものであり、Z-はCl-、Xは-CH-、Rは-H、Rは-H、Rは-Hである。RはRC=C(R)―X―、RはH、RはHである。
 表1に記載の(a3)のモル%は下記のカチオン化変性率測定方法により測定した窒素量および塩素濃度を用いて算出した。
 [カチオン化変性率測定方法]
(1)試料1~5mgをウルトラミクロ天秤にて精秤し、試料を触媒存在下、アルゴン-酸素気流中で分解してNOに変換した。このNOとオゾンとが反応する際に発する化学発光強度を測定して窒素量を求めた。試料の燃焼・分解は、試料状況を確認しながら手動で行った。この際、不完全燃焼が起きていないことを目視レベルならびに検出強度により確認した。
測定装置    :三菱化学アナリテック社製 TN-10
電気炉設定条件 :INLET  800℃
        :OUTLET 900℃
ガス流量    :O2 MAIN 300ml/min
        :Ar      1L/min
        :O2      0.5L/min
検量線調整法  :アニリンをトルエンに溶解した溶液を検量線試料とした。
(2)一方で、試料100mgを酸素気流中で燃焼し、発生ガスを3%過酸化水素水に吸収させた。吸収液中の塩化物イオンをイオンクロマトグラフ法により測定して塩素濃度を求めた。
燃焼装置   :吉田科学器械社製 QS-AB2
燃焼温度   :PREH 400℃
       :HIH 1000℃
燃焼ガス流量 :2.5L/min(Ar)
測定装置   :Dionex社製 ICS-2000
分離カラム  :IonPack AS418
ガードカラム :IonPack AG18
溶離液    :30mM KOH
検出器    :電気伝導度検出器
(3)高分子化合物1~11には、NとClがモル比1:1の割合で含まれており、且つ、(a3)の供給源には、N原子とCl原子が各々一つずつ含まれているので、窒素量および塩素濃度のそれぞれからカチオン基の含有量(mol%)を計算し、その平均値を(a3)の構成単位量(mol%)とした。
 上記濃縮液をイオン交換水で20倍希釈して、pH10.0~11.0(25℃)の研磨液組成物を得た。研磨液組成物中、研磨材の含有量は0.5重量%、アンモニアの含有量は0.02重量%である。カチオン基を有する高分子化合物の含有量、カチオン基を有する高分子化合物以外の水溶性高分子化合物の含有量、および非イオン性界面活性剤の含有量は表2および表3に記載のとおりである。
 (2)研磨方法
 得られた研磨液組成物を用いて、下記の研磨条件で下記シリコンウエハを15分間研磨した。
 <シリコンウエハ>
 8インチシリコン片面鏡面ウエハ(二段研磨終了後のもの、厚さ0.7mm)を4cm×4cmに切断して使用
 <研磨条件>
研磨機:片面研磨機MA-300(武蔵野電子(株)製、プラテン直径300mm)
研磨パッド:SUPREME RN-H(Nitta Haas製)
回転盤回転数:90r/min(線速度45m/min)
プラテン回転数:16r/min
研磨液組成物供給量:15ml/min(回転盤中心に供給)
研磨荷重:100g/cm
研磨時間:15min
 上記研磨条件で研磨されたシリコンウエハを、ウエハジェット洗浄機WJS-150B(エムテック(株)製)を用いて洗浄した後、乾燥させた。具体的には、イオン交換水を用いたスピンリンス(回転速度1500rpm、30秒間)、イオン交換水を用いたスクラブリンス(回転速度100rpm、60秒間)、イオン交換水を用いたスピンリンス(回転速度1500rpm、30秒間)をこの順で行った後、スピン乾燥(回転速度3000rpm、30秒間)を行った。
 (3)評価方法
<濃縮液の保存安定性>
 濃縮液100gを100mlスクリュー管に入れて密閉し、1日後の保存安定性を確認した。濃縮液は、23℃の部屋に保管した。
 ×:調製1日後に、凝集物及び分離が生じているもの。
 ○:調製1日後に、凝集物及び分離が生じず、分散安定性を保っているもの。
 <研磨速度の評価>
 実施例1~43及び比較例1~4の研磨液組成物を用いたときの研磨速度は、以下の方法で評価した。まず、研磨前後の各シリコンウエハの重さを計り(Sartorius社製「BP-210S」)を用いて測定し、得られた重量差をシリコンウエハの密度、面積および研磨時間で除して、単位時間当たりの片面研磨速度を求めた。なお、表2および表3には、比較例4の研磨液組成物を用いた場合の片面研磨速度を「1.00」として、他の研磨液組成物を用いた場合の研磨速度を相対値で示した。
 <フィルター通液量の評価>
(1)吸引圧力設定手段:水循環式アスピレーター(「CIRCULATING ASPIRATOR WJ-15」、柴田科学器械工業社製)を用い、アスピレーターと吸引濾過器との間(吸引濾過器から20cm離れた位置)に圧力計を接続して、濾過中の圧力を-100kPaに調整した。試験室内温度は25℃とした。
(2)吸引濾過器:減圧濾過用フィルターホルダー(型番:KGS-47、アドバンテック東洋株式会社製)付の1L吸引瓶
(3)フィルター:メンブランフィルター(「H050A047A」、アドバンテック東洋株式会社製)、材質:親水性PTFE、孔径:0.5μm、厚さ:35μm、ろ過面積:17.3cm(直径=47mm)
(4)通液時間:1分(300gの研磨液組成物を2秒間でフィルター上のファンネルに投入し終わった時点から1分)
(5)通液量:通液1分後の吸引瓶中の研磨液組成物の重量(g)をフィルターのろ過面積で除して求めた。
 <シリコンウエハ表面の濡れ性評価(シリコンウエハの濡れ面積)>
 前処理として、40×40mm角にカットしたシリコンウエハを、1%希フッ酸水溶液に2分浸漬させ酸化膜を除去した後、イオン交換水に瞬時浸漬、リンス後、エアブロー乾燥した。各研磨液組成物にシリコンウエハを20秒間浸漬した後、引き上げて15秒間空中で静置し、シリコンウエハ下部の液溜りをキムワイプで除去した後のシリコンウエハの鏡面の親水化部面積を目視で判定した。測定は3回行い、その平均値を算出した。なお、シリコンウエハの一方の主面の全面が濡れている場合を100%とした。
 <腐食量の評価>
 40×40mm角にカットしたシリコンウエハを、1%希フッ酸水溶液に2分浸漬させ酸化膜を除去した後、イオン交換水に瞬時浸漬し、リンスし、エアブロー乾燥した。次いでシリコンウエハをプラスチック容器に入れ、当該プラスチック容器に研磨液組成物20gを加えて蓋をした。シリコンウエハを、研磨液組成物に80℃で5時間浸漬した後、イオン交換水に瞬時浸漬し、リンスし、エアブロー乾燥した。エアブロー乾燥されたシリコンウエハの研磨液組成物への浸漬前後での重量減少量を腐食量とした。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 (注)表2および表3中の高分子化合物(1)の欄に記載された高分子化合物1~11の各々は、本発明におけるカチオン基を有する高分子化合物の例であり、高分子化合物(2)は、カチオン基を有する高分子化合物以外の水溶性高分子化合物の例である。表2および表3中の研磨材及び成分*1~*9の詳細は下記のとおりである。
 シリカ1:平均一次粒子径:26nm、平均二次粒子径:58nm、会合度:2.2
 シリカ2:平均一次粒子径:38nm、平均二次粒子径:78nm、会合度:2.1
 成分*1:完全鹸化ポリビニルアルコール、クラレ社製、PVA-124
 成分*2:カチオン性ポリビニルアルコール、クラレ社製、CM-318
 成分*3:ポリエチレンイミン、日本触媒社製、SP-006
 成分*4:HEC、住友精化社製、CF-V、重量平均分子量160万
 成分*5:ポリ(N-プロピオニルエチレンイミン)、花王社製、重量平均分子量77万
 成分*6:ポリビニルピロリドン、和光純薬社製、K90、粘度平均分子量59万
 成分*7:ポリオキシエチレンアルキルエーテル(花王社製、エマルゲン3140S-90、HLB=19)
 成分*8:ポリオキシエチレンアルキルエーテル(花王社製、エマルゲン350、HLB=18)
 成分*9:ポリオキシエチレンアルキルエーテル(花王社製、エマルゲン409PV、HLB=14)
 表2および表3に示すように、実施例1~43の研磨液組成物は、濃縮液での保存安定性が良好で、フィルター通液量が多く、シリコンウエハの濡れ性も良好で研磨速度も高くなっている。これに対して、比較例1~2の研磨液組成物は濡れ性が悪く、比較例2~3の研磨液組成物は、その濃縮液の保存安定性が悪かった。また、研磨パッド上に供給された比較例2~3の研磨液組成物中には、目視にて分かるほどの大きな凝集物が存在しており、この凝集物がスクラッチの発生の原因となることは明らかであった。比較例4の研磨液組成物については、通液性が悪かった。
 本発明の研磨液組成物を用いれば、シリコンウエハを高速研磨でき、しかも、フィルターの目詰まりも低減できる。よって、本発明の研磨液組成物は、様々な半導体基板の製造過程で用いられる研磨液組成物として有用であり、なかでも、シリコンウエハの仕上げ研磨用の研磨液組成物として有用である。

Claims (9)

  1.  下記一般式(1)で表される構成単位(a1)、下記一般式(2)で表される構成単位(a2)、及び下記一般式(3)で表される構成単位(a3)を有し、構成単位(a3)の合計が高分子化合物の構成単位中0.001~1.5モル%である高分子化合物、研磨材及び水系媒体を含有するシリコンウエハ用研磨液組成物。
    Figure JPOXMLDOC01-appb-C000001
     〔式中、Rは炭素数1~3のアルキル基であり、Xは分子中にカチオン基を有し且つビニルアルコール低級脂肪酸エステルと共重合可能な不飽和化合物に由来する構成単位である。〕
  2.  前記高分子化合物の構成単位中、構成単位(a1)、構成単位(a2)及び構成単位(a3)の合計が50~100モル%である請求項1に記載のシリコンウエハ用研磨液組成物。
  3.  構成単位(a3)が下記一般式(3-1)で表される化合物及び下記一般式(3-2)で表される化合物から選ばれる化合物に由来するものである請求項1又は2に記載のシリコンウエハ用研磨液組成物。
    Figure JPOXMLDOC01-appb-C000002
     〔式中、R、R、R、R、R、Rは、それぞれ独立して、水素原子又は炭素数1~3のアルキル基である。X、Yは、それぞれ独立して、炭素数1~12のアルキレン基、-COOR12-、-CONHR12-、-OCOR12-、および-R13-OCO-R12-から選ばれる基である。ここで、R12、R13は、それぞれ独立して、炭素数1~5のアルキレン基である。Rは水素原子、炭素数1~3のアルキル基、炭素数1~3のヒドロキシアルキル基、又はRC=C(R)-X-である。Rは水素原子、炭素数1~3のアルキル基、又は炭素数1~3のヒドロキシアルキル基であり、Rは水素原子、炭素数1~3のアルキル基、炭素数1~3のヒドロキシアルキル基、又はベンジル基であり、Z-は陰イオンを示す。R10は水素原子、炭素数1~3のアルキル基、炭素数1~3のヒドロキシアルキル基、又はRC=C(R)-Y-である。R11は水素原子、炭素数1~3のアルキル基、又は炭素数1~3のヒドロキシアルキル基である。〕
  4.  ポリビニルピロリドン、ポリ(N-アシルアルキレンイミン)及びヒドロキシエチルセルロースから選ばれる少なくとも1種をさらに含有する、請求項1~3のいずれか1項に記載のシリコンウエハ用研磨液組成物。
  5.  非イオン性界面活性剤をさらに含有する、請求項1~4のいずれか1項に記載のシリコンウエハ用研磨液組成物。
  6.  前記研磨材の平均一次粒子径が、5~50nmである、請求項1~5のいずれか1項に記載のシリコンウエハ用研磨液組成物。
  7.  前記研磨材がコロイダルシリカである、請求項1~6のいずれか1項に記載のシリコンウエハ用研磨液組成物。
  8.  請求項1~7のいずれか1項に記載のシリコンウエハ用研磨液組成物を用いてシリコンウエハを研磨する工程を含む、半導体基板の製造方法。
  9.  請求項1~7のいずれか1項に記載のシリコンウエハ用研磨液組成物を用いてシリコンウエハを研磨する工程を含む、シリコンウエハの研磨方法。
PCT/JP2010/061411 2009-07-07 2010-07-05 シリコンウエハ用研磨液組成物 WO2011004793A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/382,839 US8926859B2 (en) 2009-07-07 2010-07-05 Polishing composition for silicon wafers
KR1020127002818A KR101331823B1 (ko) 2009-07-07 2010-07-05 실리콘 웨이퍼용 연마액 조성물
EP10797104.6A EP2444996B1 (en) 2009-07-07 2010-07-05 Polishing liquid composition for silicon wafers
SG2012000923A SG177532A1 (en) 2009-07-07 2010-07-05 Polishing liquid composition for silicon wafers

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009160943 2009-07-07
JP2009-160943 2009-07-07
JP2009-270471 2009-11-27
JP2009270471 2009-11-27
JP2010-104079 2010-04-28
JP2010104079A JP2011171689A (ja) 2009-07-07 2010-04-28 シリコンウエハ用研磨液組成物

Publications (1)

Publication Number Publication Date
WO2011004793A1 true WO2011004793A1 (ja) 2011-01-13

Family

ID=43429217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061411 WO2011004793A1 (ja) 2009-07-07 2010-07-05 シリコンウエハ用研磨液組成物

Country Status (7)

Country Link
US (1) US8926859B2 (ja)
EP (1) EP2444996B1 (ja)
JP (1) JP2011171689A (ja)
KR (1) KR101331823B1 (ja)
SG (1) SG177532A1 (ja)
TW (1) TWI411670B (ja)
WO (1) WO2011004793A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772156B1 (ja) * 2010-07-05 2011-09-14 花王株式会社 シリコンウエハ用研磨液組成物
CN103906601A (zh) * 2011-10-27 2014-07-02 信越半导体株式会社 浆液及浆液的制造方法
JPWO2012141145A1 (ja) * 2011-04-13 2014-07-28 株式会社フジミインコーポレーテッド 基板のエッジ研磨用組成物及びそれを用いた基板のエッジ研磨方法
US20150166838A1 (en) * 2012-01-16 2015-06-18 Fujimi Incorporated Polishing composition, manufacturing process therefor, undiluted liquid, process for producing silicon substrate, and silicon substrate

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323162B2 (en) * 2009-12-11 2019-06-18 Mitsui Minig & Smelting Co., Ltd. Abrasive material
KR20130136593A (ko) 2010-03-12 2013-12-12 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액 및 이것들을 이용한 기판의 연마 방법
KR101886892B1 (ko) 2010-11-22 2018-08-08 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기판의 연마 방법 및 기판
KR20140034231A (ko) * 2011-05-24 2014-03-19 가부시키가이샤 구라레 화학 기계 연마용 부식 방지제, 화학 기계 연마용 슬러리, 및 화학 기계 연마 방법
JP5798450B2 (ja) * 2011-11-15 2015-10-21 花王株式会社 シリコンウエハ用研磨液組成物
JP5833435B2 (ja) * 2011-12-28 2015-12-16 花王株式会社 シリコンウエハ用研磨液組成物
JP6357296B2 (ja) * 2012-02-10 2018-07-11 株式会社フジミインコーポレーテッド 研磨用組成物、及び半導体基板の製造方法
WO2013125445A1 (ja) * 2012-02-21 2013-08-29 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
KR102005132B1 (ko) * 2012-02-21 2019-07-29 히타치가세이가부시끼가이샤 연마제, 연마제 세트 및 기체의 연마 방법
US10557059B2 (en) 2012-05-22 2020-02-11 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
SG11201407087XA (en) 2012-05-22 2014-12-30 Hitachi Chemical Co Ltd Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
EP2682441A1 (en) * 2012-07-06 2014-01-08 Basf Se A chemical mechanical polishing (CMP) composition comprising a non-ionic surfactant and an aromatic compound comprising at least one acid group
EP2682440A1 (en) * 2012-07-06 2014-01-08 Basf Se A chemical mechanical polishing (cmp) composition comprising a non-ionic surfactant and a carbonate salt
WO2014034425A1 (ja) * 2012-08-31 2014-03-06 株式会社 フジミインコーポレーテッド 研磨用組成物及び基板の製造方法
KR102226441B1 (ko) * 2013-02-13 2021-03-12 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물, 연마용 조성물 제조 방법 및 연마물 제조 방법
JP5890583B2 (ja) * 2013-02-21 2016-03-22 株式会社フジミインコーポレーテッド 研磨用組成物および研磨物製造方法
US10717899B2 (en) 2013-03-19 2020-07-21 Fujimi Incorporated Polishing composition, method for producing polishing composition and polishing composition preparation kit
KR102330030B1 (ko) 2013-03-19 2021-11-24 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물, 연마용 조성물 제조 방법 및 연마용 조성물 조제용 키트
US9388328B2 (en) * 2013-08-23 2016-07-12 Diamond Innovations, Inc. Lapping slurry having a cationic surfactant
JP6169938B2 (ja) * 2013-10-04 2017-07-26 花王株式会社 シリコンウェーハ用研磨液組成物
JP6373273B2 (ja) * 2013-10-04 2018-08-15 株式会社Sumco 研磨剤組成物、シリコンウェハー用研磨剤組成物、およびシリコンウェハー製品の製造方法
WO2015068672A1 (ja) * 2013-11-08 2015-05-14 東亞合成株式会社 半導体用濡れ剤及び研磨用組成物
JP6185432B2 (ja) * 2014-06-24 2017-08-23 株式会社フジミインコーポレーテッド シリコンウェーハ研磨用組成物
JP6655354B2 (ja) * 2014-12-26 2020-02-26 花王株式会社 シリコンウェーハ用研磨液組成物、又はシリコンウェーハ用研磨液組成物キット
WO2018179061A1 (ja) * 2017-03-27 2018-10-04 日立化成株式会社 研磨液、研磨液セット及び研磨方法
CN108059921B (zh) * 2017-12-25 2019-09-03 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 一种优化晶圆表面形貌的化学机械平坦化方法
JP7253335B2 (ja) * 2018-07-31 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物、その製造方法および研磨用組成物を用いた研磨方法
CN112846948B (zh) * 2019-11-28 2024-02-23 东莞新科技术研究开发有限公司 一种晶圆表面的加工方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254383A (ja) 1993-03-01 1994-09-13 Tokuyama Soda Co Ltd 金属酸化物微粒子の製造方法
JPH1160232A (ja) 1997-08-11 1999-03-02 Mamoru Iso 繭型コロイダルシリカの製造方法
JPH11116942A (ja) 1997-10-14 1999-04-27 Fujimi Inc 研磨用組成物
JPH11214338A (ja) 1998-01-20 1999-08-06 Memc Kk シリコンウェハーの研磨方法
JP2004204116A (ja) * 2002-12-26 2004-07-22 Kao Corp 微小うねり低減剤
JP2005060217A (ja) 2003-07-25 2005-03-10 Fuso Chemical Co Ltd シリカゾル及びその製造方法
JP2005060219A (ja) 2003-07-25 2005-03-10 Fuso Chemical Co Ltd シリカゾル及びその製造方法
JP2006128518A (ja) 2004-10-29 2006-05-18 Fujimi Inc 研磨用組成物
JP2007019093A (ja) 2005-07-05 2007-01-25 Nitta Haas Inc 半導体研磨用組成物
JP2008053415A (ja) 2006-08-24 2008-03-06 Fujimi Inc 研磨用組成物及び研磨方法
JP2009094233A (ja) * 2007-10-05 2009-04-30 Showa Denko Kk 半導体基板用研磨組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662997A (en) * 1994-05-23 1997-09-02 Seiko Epson Corporation Ink jet recording film comprising cation-modified polyvinyl alcohol and recording method using the same
WO2004007366A1 (ja) * 2002-07-10 2004-01-22 Tokuyama Corporation 易分散性沈降シリカのケーク及びその製造方法
US7553345B2 (en) * 2002-12-26 2009-06-30 Kao Corporation Polishing composition
KR100663781B1 (ko) * 2003-01-31 2007-01-02 히다치 가세고교 가부시끼가이샤 Cμρ연마제 및 연마방법
JP2005097445A (ja) 2003-09-25 2005-04-14 Yasuhiro Tani 研磨剤用キャリア粒子、研磨剤および研磨方法
JP2005353681A (ja) * 2004-06-08 2005-12-22 Hitachi Chem Co Ltd 半導体絶縁膜用cmp研磨剤、その製造方法及び基板の研磨方法
TW200604097A (en) 2004-07-26 2006-02-01 Fuso Chemical Co Ltd Silica sol and manufacturing method therefor
JP4145865B2 (ja) * 2004-11-18 2008-09-03 花王株式会社 硬質表面用洗浄剤
US20060118760A1 (en) 2004-12-03 2006-06-08 Yang Andy C Slurry composition and methods for chemical mechanical polishing
US20060135045A1 (en) * 2004-12-17 2006-06-22 Jinru Bian Polishing compositions for reducing erosion in semiconductor wafers
CN101184629B (zh) * 2005-06-02 2012-07-11 爱克发印艺公司 用于产品或产品包装的喷墨认证标志
JP2007214205A (ja) 2006-02-07 2007-08-23 Fujimi Inc 研磨用組成物
JP5196819B2 (ja) 2007-03-19 2013-05-15 ニッタ・ハース株式会社 研磨用組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254383A (ja) 1993-03-01 1994-09-13 Tokuyama Soda Co Ltd 金属酸化物微粒子の製造方法
JPH1160232A (ja) 1997-08-11 1999-03-02 Mamoru Iso 繭型コロイダルシリカの製造方法
JPH11116942A (ja) 1997-10-14 1999-04-27 Fujimi Inc 研磨用組成物
JPH11214338A (ja) 1998-01-20 1999-08-06 Memc Kk シリコンウェハーの研磨方法
JP2004204116A (ja) * 2002-12-26 2004-07-22 Kao Corp 微小うねり低減剤
JP2005060217A (ja) 2003-07-25 2005-03-10 Fuso Chemical Co Ltd シリカゾル及びその製造方法
JP2005060219A (ja) 2003-07-25 2005-03-10 Fuso Chemical Co Ltd シリカゾル及びその製造方法
JP2006128518A (ja) 2004-10-29 2006-05-18 Fujimi Inc 研磨用組成物
JP2007019093A (ja) 2005-07-05 2007-01-25 Nitta Haas Inc 半導体研磨用組成物
JP2008053415A (ja) 2006-08-24 2008-03-06 Fujimi Inc 研磨用組成物及び研磨方法
JP2009094233A (ja) * 2007-10-05 2009-04-30 Showa Denko Kk 半導体基板用研磨組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2444996A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772156B1 (ja) * 2010-07-05 2011-09-14 花王株式会社 シリコンウエハ用研磨液組成物
JPWO2012141145A1 (ja) * 2011-04-13 2014-07-28 株式会社フジミインコーポレーテッド 基板のエッジ研磨用組成物及びそれを用いた基板のエッジ研磨方法
JP6134644B2 (ja) * 2011-04-13 2017-05-24 株式会社フジミインコーポレーテッド 基板のエッジ研磨用組成物及びそれを用いた基板のエッジ研磨方法
CN103906601A (zh) * 2011-10-27 2014-07-02 信越半导体株式会社 浆液及浆液的制造方法
US20150166838A1 (en) * 2012-01-16 2015-06-18 Fujimi Incorporated Polishing composition, manufacturing process therefor, undiluted liquid, process for producing silicon substrate, and silicon substrate

Also Published As

Publication number Publication date
EP2444996A4 (en) 2014-10-08
US20120108064A1 (en) 2012-05-03
KR101331823B1 (ko) 2013-11-22
JP2011171689A (ja) 2011-09-01
TWI411670B (zh) 2013-10-11
KR20120030160A (ko) 2012-03-27
US8926859B2 (en) 2015-01-06
SG177532A1 (en) 2012-02-28
TW201111488A (en) 2011-04-01
EP2444996A1 (en) 2012-04-25
EP2444996B1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
US8926859B2 (en) Polishing composition for silicon wafers
JP4772156B1 (ja) シリコンウエハ用研磨液組成物
TWI541335B (zh) Silicon wafer polishing composition
TWI555831B (zh) Silicon wafer polishing composition
JP5798450B2 (ja) シリコンウエハ用研磨液組成物
JP5287174B2 (ja) 研磨剤及び研磨方法
JP5441578B2 (ja) 研磨液組成物
JPH11116942A (ja) 研磨用組成物
JP2009054935A (ja) 半導体ウエハ研磨用組成物および研磨方法
JP2009231486A (ja) シリコンウエハ用研磨液組成物
JP6087143B2 (ja) シリコンウェーハ用研磨液組成物
JP6678076B2 (ja) シリコンウェーハ用研磨液組成物
JP5362319B2 (ja) 研磨液組成物
JP2020027834A (ja) シリコンウェーハ研磨用組成物
JP6245939B2 (ja) シリコンウェーハ用研磨液組成物
JP5833435B2 (ja) シリコンウエハ用研磨液組成物
JP6086725B2 (ja) シリコンウェーハ用研磨液組成物
JP6168984B2 (ja) シリコンウェーハ用研磨液組成物
JP2023020529A (ja) 研磨液組成物
JP2016119418A (ja) シリコンウェーハ用研磨液組成物
JP2020109864A (ja) シリコンウェーハ用研磨液組成物
JP2023154963A (ja) シリコン基板用研磨液組成物
JPWO2019187969A1 (ja) 研磨用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13382839

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010797104

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127002818

Country of ref document: KR

Kind code of ref document: A