WO2011003266A1 - 一种利用氯化锂溶液制备电池级碳酸锂的方法 - Google Patents

一种利用氯化锂溶液制备电池级碳酸锂的方法 Download PDF

Info

Publication number
WO2011003266A1
WO2011003266A1 PCT/CN2010/000708 CN2010000708W WO2011003266A1 WO 2011003266 A1 WO2011003266 A1 WO 2011003266A1 CN 2010000708 W CN2010000708 W CN 2010000708W WO 2011003266 A1 WO2011003266 A1 WO 2011003266A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
chloride solution
lithium chloride
lithium carbonate
carbonate
Prior art date
Application number
PCT/CN2010/000708
Other languages
English (en)
French (fr)
Inventor
李良彬
胡耐根
黄学武
葛钰玮
朱实贵
熊训满
马振千
Original Assignee
江西赣锋锂业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41483544&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011003266(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 江西赣锋锂业股份有限公司 filed Critical 江西赣锋锂业股份有限公司
Publication of WO2011003266A1 publication Critical patent/WO2011003266A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates

Definitions

  • the invention belongs to the field of battery materials, and in particular relates to a method for preparing battery grade lithium carbonate by using a lithium chloride solution. Background technique
  • Lithium carbonate is a basic compound of lithium and is used in a variety of industrial applications, such as ceramics, glass, atomic energy, aerospace, military industry and refrigeration, welding, lithium alloys, lithium batteries, controlled nuclear fusion reactors, and pharmaceuticals.
  • lithium carbonate as a basic raw material for lithium, can be converted into other lithium compounds.
  • Battery-grade lithium carbonate is mainly used to produce lithium ion battery cathode materials such as lithium cobaltate, lithium iron phosphate, lithium nickelate, lithium manganate or lithium nickel cobalt manganate. Its market demand is increasing, and global lithium carbonate demand is 8 per year. The speed of % increases.
  • the battery grade lithium carbonate is mainly produced by a lithium sulfate conversion method produced by a spodumene sulfuric acid method, a lithium hydroxide carbonization method, and a deep carbonation of lithium carbonate into a lithium hydrogencarbonate and lithium hydroxide precipitation method.
  • Battery-grade lithium carbonate is silvery white, easily reacts with oxygen and nitrogen in humid air, reacts with water, and burns or explodes in case of fire.
  • the production method of lithium carbonate is divided into two categories depending on the resources used: the ore method and the salt lake brine method.
  • the production capacity of lithium by ore method is mainly concentrated in China.
  • the use of ore to extract lithium must heat the lithium ore to a high temperature, and there are problems such as increased energy consumption and cost of the process, large material flow, large slag, and low recovery.
  • lithium extraction by salt lake brine method is the mainstream production method in the world.
  • There are many methods for extracting lithium from salt lake brine which are mainly divided into precipitation method, solvent extraction method, carbonization method, calcination leaching method, etc. Complex, high cost, and low resource utilization. Summary of the invention
  • the object of the present invention is to overcome the disadvantages of high cost and complicated technology in the prior art, and to provide a method for preparing battery grade lithium carbonate by using a lithium chloride solution.
  • the method has the advantages of simple utility, low production cost and stable product quality. Better economic and social benefits.
  • a method for preparing battery grade lithium carbonate by using a lithium chloride solution comprising the following steps: (1) Dilution of lithium chloride solution (A): introducing a lithium chloride solution (A) into a batching kettle, sampling analysis The concentration of the lithium chloride solution is calculated according to the concentration of the lithium chloride solution, and then diluted with water to make the concentration of the diluted lithium chloride solution 60 to 180 g/l;
  • the dried battery-grade lithium carbonate gas obtained in the step (4) is pulverized to a D 50 of 2 to 6 ⁇ ⁇ , and the obtained product is cleanly packaged.
  • the purpose of the dilution of the step (1) is: if the content of lithium chloride in the solution after the pressure filtration is too high, the adverse effect on the lithium in the step (2) is adversely affected, and the impurity sodium in the lithium carbonate obtained after the lithium deposition is caused. The content is too high, which seriously affects the quality of battery grade lithium carbonate.
  • the water in the step (1) is preferably pure water.
  • the dehydration of lithium carbonate in the step (3) is carried out by dehydrating lithium carbonate into a centrifuge until the water at the outlet is not streamlined, then washed with water, centrifuged again, and repeatedly rinsed 3 to 5 times.
  • step (3) when adding lithium carbonate to the centrifuge, the centrifuge runs at a low speed to control the feeding rate, so that the lithium carbonate is uniformly added. After the filling is completed, the centrifuge runs at a high speed and dehydrates until the water at the outlet is not streamlined. shape.
  • step (3) pure water is slowly added to the centrifuge at each washing, and the mass ratio of the amount of the lithium carbonate to the amount of the pure water is 1:1 to 1:2.5.
  • the water in the step (3) is preferably pure water.
  • the preparation of the lithium chloride solution (A) comprises the following steps:
  • Adsorption of organic matter The activated carbon is used to adsorb organic matter in water, thereby separating the organic matter from other components of water.
  • the adsorption temperature is 20-100 ° C
  • the adsorption time is 0.5-3 hours, and after the filter press is clear, the next step is entered;
  • (A.2) In addition to magnesium: adding liquid alkali to the solution obtained in the step (A.1), the pH of the mixture is 9-13, the temperature is 70-120 ° C, the reaction time is 0.5-3 hours, brine
  • the magnesium chloride reacts with the liquid base to form a magnesium hydroxide precipitate, which realizes the removal of magnesium from water, and then separates the impurities from the lithium chloride by pressure filtration, and after clearing by pressure filtration, the process proceeds to the next step;
  • the reaction is stopped to remove the crude solution to obtain a lithium chloride solution or a solution of the step (A.2) is added with a soluble carbonate or lithium carbonate to obtain a lithium chloride solution, and the soluble carbonate is carbonated.
  • Sodium or potassium carbonate is added with a soluble carbonate or lithium carbonate to obtain a lithium chloride solution.
  • step (A.1) 1 to 3 kg of activated carbon per cubic meter of water is used for adsorption of organic matter in the water.
  • the preparation of the lithium chloride solution (A) further comprises the following steps: (A.4) adsorption of organic substances in the lithium chloride solution: adsorption of the organic matter in the solution obtained in the step (A.3) with activated carbon, the adsorption temperature is 20 ⁇ At 100 °C, the adsorption time is 0.5 ⁇ 3 hours. After the filter press is clear, the lithium chloride solution is obtained and enters the storage tank.
  • step (A.4) 1-3 kg of activated carbon per cubic meter of solution is used for adsorption of organic matter in the solution.
  • lithium chloride solution (A) of the present invention may also be added to pure water with solid lithium chloride. Dilute, the specific steps are the same as above.
  • the method for preparing battery grade lithium carbonate by using lithium chloride solution has the advantages of single process, easy operation and low production cost, and the obtained product battery grade lithium carbonate has the advantage of having a sulfate content of 4 ⁇ .
  • the quality is stable and the resource utilization rate is high. It is suitable for the production and application of raw materials for lithium-ion batteries, and has broad market prospects and good economic and social benefits.
  • FIG. 1 is a flow chart of a method for preparing battery grade lithium carbonate using a lithium chloride solution of the present invention.
  • Figure 2 is a flow chart of Embodiment 2-5 of the present invention. detailed description
  • a method for preparing battery grade lithium carbonate using a lithium chloride solution according to the present invention as shown in FIG. 1 includes: dilution of a lithium chloride solution, separation of soda ash, lithium carbonate, washing, drying, pulverization and packaging .
  • the specific implementation is as follows:
  • the method of the specific embodiment 2-5 of the present invention shown in FIG. 2 is a method for preparing a lithium chloride solution by using a brine, and further preparing a battery grade lithium carbonate, specifically comprising: removing activated organic matter and liquid alkali in the brine by using activated carbon.
  • activated carbon Magnesium, carbon dioxide or soluble carbonate, lithium carbonate coarsely divided by 4 bow, using activated carbon to adsorb lithium chloride Solution organics, dilution of lithium chloride solution, separation of soda ash, lithium carbonate, washing, drying, pulverization and packaging.
  • Embodiments 2-5 will be described in detail below.
  • the calcium content in the lithium chloride solution is 0.03g / l
  • the lithium chloride solution is added to the pure water 7m 3
  • the lithium chloride content in the sample analysis solution is lOOg / 1
  • heated to 95 ° C and added 2.8kgEDTA and 17kg mass concentration of 30% liquid caustic soda, stirred for 20 minutes, and thereto was slowly added dropwise 230g / l sodium carbonate solution 6.7m 3, addition time 1.5
  • the temperature is kept for 1 hour, and the mixture is centrifuged.
  • the sample after the filter press is analyzed and the calcium content in the lithium chloride solution is 0.04g/l.
  • the lithium chloride solution was added to pure water 15m 3 , the lithium chloride content in the sample analysis solution was 60g / l, the temperature was raised to 97 ° C, and 2.5kg EDTA and 24kg mass concentration of 30% liquid alkali were added, and after stirring for 20 minutes, Then slowly add 6.2m 3 of 250g/l sodium carbonate solution to the mixture, and add the time for 1.5 hours. After the addition, the temperature is kept for 1 hour, and centrifuged. Each time, the liquid-solid ratio is 1:1 and pure water is added. Wash, rinse three times, then dry at 150 ° C for 40 minutes, and pulverize to D 5 . A qualified battery grade lithium carbonate of 713 kg was obtained at 3.6 ⁇ m, and the direct yield of lithium was 68.1%.
  • the lithium chloride solution was added to pure water 7.5 m 3 , and the lithium chloride content in the sample analysis solution was 80 g/l. , warmed to 95 ° C, and added 1.7kg EDTA and 16kg mass concentration of 30% liquid alkali, after stirring for 20 minutes, then slowly add 200g / l sodium carbonate solution 6m 3 , the addition time is 1.5 hours, plus After the temperature is 1 hour, centrifuge, separate each time according to the liquid-solid ratio of 1:1, rinse three times, then dry at 145 ° C for 20 minutes, air flow pulverized to D 5Q is 4.7 ⁇ ⁇ , qualified Battery-grade lithium carbonate 580 kg, the direct yield of lithium is 69.2%.
  • the calcium content in the lithium chloride solution is 0.044 g / l.
  • the lithium chloride solution is added to the pure water 1.7 m 3 , and the lithium chloride in the analysis solution is sampled.
  • the content is 180g / l, the temperature is raised to 95 ° C, and 2.5kg EDTA and 12kg mass concentration of 30% liquid alkali are added, stirring After 20 minutes, slowly add 250g/l sodium carbonate solution 6m 3 to the mixture, and add the time for 1.5 hours. After the addition, the temperature is kept for 1 hour, centrifuged, and each time the liquid-solid ratio is 1:1. Wash and rinse five times, then dry at 155 ° C for 30 minutes and pulverize to D 5 . At 3.9 ⁇ m, 777 kg of qualified battery grade lithium carbonate was obtained, and the direct yield of lithium was 74.2%.
  • composition analysis results of the products of the above Examples 1-5 are shown in Table 2.
  • the method for preparing battery grade lithium carbonate by using the lithium chloride solution of the invention has the advantages of simple operation, low operation cost and low production cost, and the obtained product battery grade lithium carbonate has

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

说 明 书
一种利用氯化锂溶液制备电池级碳酸锂的方法
技术领域
本发明属于电池材料领域, 具体涉及一种利用氯化锂溶液制备电池级碳酸 锂的方法。 背景技术
碳酸锂是锂的基础性化合物, 有多种工业用途, 广泛应用于陶瓷、 玻璃、 原子能、 航空航天、 军事工业和制冷、 焊接、 锂合金、 锂电池、 受控核聚变反 应堆、 医药等领域。 此外, 碳酸锂作为一种锂的基础原材料, 可转化成其它多 种锂化合物。 电池级碳酸锂主要用于生产钴酸锂、 磷酸铁锂、 镍酸锂、 锰酸锂 或镍钴锰酸锂等锂离子电池正极材料, 其市场需求量不断增加, 全球碳酸锂需 求以每年 8%的速度增加。电池级碳酸锂主要是用锂辉石硫酸法生产的硫酸锂转 型法、 氢氧化锂碳化法、 碳酸锂深度碳化成碳酸氢锂再氢氧化锂沉淀法生产而 得。 电池级碳酸锂呈银白色, 易与湿空气中的氧气、 氮气反应, 遇水反应, 遇 火剧烈燃烧或爆炸。
碳酸锂的生产方法因所用资源的不同而分为两大类: 矿石法和盐湖卤水法。 矿石法提锂的产能主要集中在我国, 目前有石灰乳压煮法、 硫酸盐法和石灰石 焙烧法等。 利用矿石法提锂必须要将锂矿石加热至高温, 存在着工艺的能耗和 成本增加、 物料流量大、 渣量大以及回收率低等问题。 目前, 盐湖卤水法提锂 是世界上的主流生产方法, 盐湖卤水提锂的方法有很多, 主要分为沉淀法、 溶 剂萃取法、 碳化法、 煅烧浸取法等, 但大多数方法生产加工的工艺复杂, 成本 高, 资源利用率低。 发明内容
本发明的目的在于克服现有技术的成本高、 技术复杂的缺点, 提供一种利 用氯化锂溶液制备电池级碳酸锂的方法, 本方法工艺筒单实用, 生产成本低, 产品质量稳定, 有较好的经济和社会效益。
本发明的技术方案是:
一种利用氯化锂溶液制备电池级碳酸锂的方法, 特征在于包括如下步骤: (1)氯化锂溶液 (A)的稀释: 向配料釜中打入氯化锂溶液 (A), 取样分析氯化 锂溶液的浓度, 根据氯化锂溶液的浓度计算加水的体积, 再加水进行稀释, 使 稀释后的氯化锂溶液的浓度为 60 ~ 180g/l;
(2)沉锂: 在步骤( 1 )得到的溶液中加入浓度为 30%的液碱, 使其 pH达到
9-13 , 然后加入 EDTA来络合钙离子, EDTA与溶液中的钙离子的摩尔比为 1: 1 ~ 1: 2, 边搅拌边升温, 在温度达到 95°C后, 向其中均匀加入纯碱溶液, 纯 碱溶液中碳酸钠的浓度为 200~260g/l, 加纯碱溶液的时间为 1~2小时, 在加入 过程中保持配料釜的温度为 90~100°C , 加完纯碱溶液后, 恒温 1小时;
(3)分离及洗涤: 将步骤(2 )得到的碳酸锂脱水, 再加水洗涤, 再次脱水, 反复淋洗 3~5次, 即得碳酸锂。
(4)烘干:用烘干机对步骤 (3)得到的碳酸锂在 100~200°C下烘干 20~70分钟, 得到电池级碳酸锂;
(5)粉碎及包装: 将步骤 (4)得到的烘干好的电池级碳酸锂气流粉碎至 D50为 2~6 μ ιη, 再将得到的产品进行洁净包装。
步骤( 1 )的稀释的目的是: 如果压滤后溶液中的氯化锂的含量过高, 则对 步骤(2 )的沉锂产生不良影响, 造成沉锂后得到的碳酸锂中的杂质钠的含量过 高, 严重影响电池级碳酸锂的质量。 步骤(1 ) 中的水优选纯水。
进一步地, 本发明的技术方案还可以是:
所述步骤 (3)中的碳酸锂脱水是将碳酸锂放入离心机内脱水, 直至出水口处 流水不呈流线状时, 再加水洗涤, 再次离心脱水, 反复淋洗 3~5次。 在步骤 (3)中, 向离心机加入碳酸锂时, 离心机低速运行, 控制加料速度, 使碳酸锂均匀添加, 加满料后离心机高速运行, 脱水, 直至出水口处流水不呈 流线状。
在步骤(3 ) 中, 每次洗涤时, 向离心机内緩慢加入纯水, 碳酸锂的量和纯 水的用量的质量比为 1: 1 ~ 1: 2.5。
所述步骤(3 ) 中的水优选纯水。
所述氯化锂溶液 (A)的制备包括如下步骤:
(A.1)有机物吸附: 用活性炭吸附 水中的有机物, 从而将有机物与 水其 它成分分离, 吸附温度为 20~100°C , 吸附时间为 0.5~3小时, 压滤清亮后, 进 入下一步;
(A.2)除镁:在步骤( A.1 )得到的溶液中加入液碱,使混合液的 pH为 9~13, 温度为 70~120°C , 反应时间为 0.5~3小时, 卤水中的氯化镁与液碱反应生成氢 氧化镁沉淀, 实现 水除镁, 再通过压滤将杂质与氯化锂分离, 压滤清亮后, 进入下一步;
(A.3)粗除 4弓: 在步骤( A.2 )得到的溶液中通入二氧化碳至混合液的 pH为
7时停止反应粗除 4弓得到氯化锂溶液或者在步骤( A.2 )得到的溶液中加入可溶 性碳酸盐或碳酸锂粗除钙得到氯化锂溶液, 所述可溶性碳酸盐为碳酸钠或碳酸 钾。
所述步骤(A.1 ) 中, 每立方米 水用 1 ~ 3kg活性炭进行 水中的有机物 的吸附。
所述氯化锂溶液 (A)的制备进一步包括如下步骤:(A.4)氯化锂溶液有机物吸 附: 用活性炭吸附在步骤(A.3 )得到的溶液中的有机物, 吸附温度为 20~100 °C , 吸附时间为 0.5~3小时, 压滤清亮后得到氯化锂溶液, 进入贮槽。
所述步骤(A.4 ) 中, 每立方米溶液用 1 ~ 3kg活性炭进行溶液中的有机物 的吸附。
进一步地, 本发明的所述氯化锂溶液( A )还可以用固态氯化锂加入纯水 稀释而得, 具体步骤同上。
与现有技术相比较, 本发明的一种利用氯化锂溶液制备电池级碳酸锂的方 法工艺筒单、 操作容易、 生产成本低, 所得产品电池级碳酸锂具有硫酸根含量 4艮低的优点, 质量稳定, 资源利用率高, 适宜锂离子电池原材料的生产应用, 具有广阔的市场前景, 较好的经济和社会效益。 附图说明
图 1为本发明的一种利用氯化锂溶液制备电池级碳酸锂的方法的流程图。 图 2为本发明的实施例 2-5的的流程图。 具体实施方式
如图 1所示的本发明的一种利用氯化锂溶液制备电池级碳酸锂的方法, 包 括: 氯化锂溶液的稀释、 纯碱沉锂、 碳酸锂的分离、 洗涤、 烘干、 粉碎及包装。 具体实施例如下:
实施例 1
5立方米的氯化锂溶液, 取样分析氯化锂溶液中的钙含量为 0.025g/l、 将得 到氯化锂溶液加入纯水 7m3,取样分析溶液中氯化锂含量为 lOOg/1,升温至 95 °C , 并加入 2.33kg EDTA和 17kg质量浓度为 30%液碱, 搅拌 20分钟后, 再向其中 緩慢滴加 220g/l的碳酸钠溶液 7m3, 滴加时间为 1.5小时, 加完后恒温 1小时, 离心分离, 每次纯水与碳酸锂质量比 1 : 2.5加入纯水进行淋洗, 淋洗三次, 再 在 140 °C下烘干 30分钟, 气流粉碎至 D5。为 4.2 μ ιη得到合格电池级碳酸锂 685kg , 锂的直收率为 65.4%。 EDTA 为乙二胺四乙酸(Ethylene Diamine Tetraacetic Acid) , 是一种给合剂。
如图 2所示的本发明的具体实施例 2-5的方法是利用卤水制备氯化锂溶液, 再进一步制备电池级碳酸锂的方法, 具体包括: 利用活性炭除卤水中的有机物、 液碱除镁、 二氧化碳或可溶性碳酸盐、 碳酸锂粗除 4弓、 利用活性炭吸附氯化锂 溶液有机物、 氯化锂溶液的稀释、 纯碱沉锂、 碳酸锂的分离、 洗涤、 烘干、 粉 碎及包装。
实施例 2-5的本发明的 水中的主成分及杂质含量如表 1所示。
表 1: 水的主成份及杂质含量
Figure imgf000007_0001
下面分别对实施例 2-5进行详细说明。
实施例 2
在 2.5m3卤水中加入 2.5kg的活性炭, 80°C吸附卤水中的有机物 lh后压滤, 将压滤后卤水升温到 100°C , 向其中加入液碱, 升温搅拌, 调节 pH约为 13, 板压分离, 并用 2.5m3水逆流洗涤氢氧化镁二次, 洗涤完后, 将洗液和母液混 合后向其中通入二氧化碳, 终点 pH控制在 7, 并向其中加入活性炭 12kg, 升 温到 75 °C ,恒温 1小时,压滤后溶液取样分析氯化锂溶液中的钙含量为 0.03g/l、 将得到氯化锂溶液加入纯水 7m3, 取样分析溶液中氯化锂含量为 lOOg/1, 升温 至 95°C , 并加入 2.8kgEDTA和 17kg质量浓度为 30%液碱, 搅拌 20分钟后, 再向其中緩慢滴加 230g/l的碳酸钠溶液 6.7m3, 滴加时间为 1.5小时, 加完后恒 温 1小时, 离心分离, 每次按液固比为 1 : 1加入纯水进行淋洗, 淋洗四次, 再 在 140 °C下烘干 30分钟, 气流粉碎至 D5。为 4.3 μ ιη得到合格电池级碳酸锂 740kg, 锂的直收率为 70.7%。
实施例 3
在 2.5m3卤水中加入 2.5kg的活性炭, 75°C吸附卤水中的有机物 lh后压滤, 将压滤后 水升温到 100°C , 向其中加入液碱, 升温搅拌, 调节 pH约为 13, 板压分离, 并用 3m3水逆流洗涤氢氧化镁二次, 洗涤完后, 将洗液和母液混合 后向其中通入二氧化碳, 终点 pH控制在 7, 并向其中加入活性炭 12kg, 升温 到 75 °C , 恒温 1小时, 压滤后溶液取样分析氯化锂溶液中的钙含量为 0.04g/l, 将得到氯化锂溶液加入纯水 15m3, 取样分析溶液中的氯化锂含量为 60g/l, 升 温至 97°C , 并加入 2.5kgEDTA和 24kg质量浓度为 30%液碱, 搅拌 20分钟后, 再向其中緩慢滴加 250g/l的碳酸钠溶液 6.2m3, 滴加时间为 1.5小时, 加完后恒 温 1小时, 离心分离, 每次按液固比为 1 : 1加入纯水进行淋洗, 淋洗三次, 再 在 150°C下烘干 40分钟, 气流粉碎至 D5。为 3.6 μ ιη得到合格电池级碳酸锂 713kg, 锂的直收率为 68.1%。
实施例 4
在 2m3卤水中加入 2.5kg的活性炭, 80°C吸附 lh后压滤, 将压滤后卤水升 温到 110°C , 向其中加入液碱, 升温搅拌, 测试 pH约为 13, 板压分离, 并用 2.5m3水逆流洗涤氢氧化镁二次, 洗涤完后, 将洗液和母液混合后, 向其中通入 二氧化碳, 终点 pH控制在 7, 并向其中加入活性炭 12kg, 升温到 75°C , 恒温 1小时, 压滤后溶液取样分析氯化锂溶液中的钙含量为 0.033g/l, 将得到氯化锂 溶液加入纯水 7.5m3, 取样分析溶液中的氯化锂含量为 80g/l, 升温至 95°C , 并 加入 1.7kgEDTA和 16kg质量浓度为 30%液碱,搅拌 20分钟后,再向其中緩慢 滴加 200g/l的碳酸钠溶液 6m3, 滴加时间为 1.5小时, 加完后恒温 1小时, 离 心分离, 每次按液固比为 1: 1进行淋洗, 淋洗三次, 再在 145°C下烘干 20分 钟, 气流粉碎至 D5Q为 4.7 μ ιη, 得到合格电池级碳酸锂 580kg, 锂的直收率为 69.2%。
实施例 5
在 2.5m3卤水中加入 2.5kg的活性炭, 85°C吸附卤水中的有机物 lh后压滤, 将压滤后卤水升温到 100°C , 向其中加入液碱, 升温搅拌, 测试 pH约为 13, 板压分离, 并用 2.5m3水逆流洗涤氢氧化镁二次, 洗涤完后, 将洗液和母液混 合后, 向其中通入二氧化碳, 终点 pH控制在 7, 并向其中加入活性炭 12kg, 升温到 75 °C , 恒温 1 小时, 压滤后溶液取样分析氯化锂溶液中的钙含量为 0.044g/l, 将得到氯化锂溶液加入纯水 1.7m3, 取样分析溶液中的氯化锂含量为 180g/l, 升温至 95°C , 并加入 2.5kgEDTA和 12kg质量浓度为 30%液碱, 搅拌 20分钟后, 再向其中緩慢滴加 250g/l的碳酸钠溶液 6m3, 滴加时间为 1.5小时, 加完后恒温 1小时, 离心分离,每次按液固比为 1: 1加入进行淋洗,淋洗五次, 再在 155°C下烘干 30分钟气流粉碎至 D5。为 3.9 μ ιη, 得到合格电池级碳酸锂 777kg, 锂的直收率为 74.2%。
上述实施例 1-5的产品的成分分析结果如表 2所示。
表 2: 产品成分分析结果
Figure imgf000009_0001
由上述实施例及产品成分分析结果可以看出本发明的利用氯化锂溶液制备 电池级碳酸锂的方法筒单、 操作容易、 生产成本低, 所得产品电池级碳酸锂具

Claims

权 利 要 求 书
1、 一种利用氯化锂溶液制备电池级碳酸锂的方法, 特征在于包括如下步 骤:
(1)氯化锂溶液 (A)的稀释: 向配料釜中打入氯化锂溶液 (A), 取样分析氯化 锂溶液的浓度, 根据氯化锂溶液的浓度计算加水的体积, 再加水进行稀释, 使 稀释后的氯化锂溶液的浓度为 60 ~ 180g/l;
(2)沉锂: 在步骤( 1 )得到的溶液中加入浓度为 30%的液碱, 使其 pH达到 9-13 , 然后加入 EDTA来络合钙离子, EDTA与溶液中的钙离子的摩尔比为 1: 1 ~ 1: 2, 边搅拌边升温, 在温度达到 95 °C后, 向其中均匀加入纯碱溶液, 纯 碱溶液中碳酸钠的浓度为 200~260g/l , 加纯碱溶液的时间为 1~2小时, 在加入 过程中保持配料釜的温度为 90~100°C , 加完纯碱溶液后, 恒温 1小时;
(3)分离及洗涤: 将步骤(2 )得到的碳酸锂脱水, 再加水洗涤, 再次脱水, 反复淋洗 3~5次, 即得碳酸锂;
(4)烘干:用烘干机对步骤 (3)得到的碳酸锂在 100~200°C下烘干 20~70分钟, 得电池级碳酸锂;
(5)粉碎及包装: 将步骤 (4)得到的烘干好的电池级碳酸锂气流粉碎至 D50为 2~6 μ ιη, 再将得到的产品进行洁净包装。
2、 根据权利要求 1所述的一种利用氯化锂溶液制备电池级碳酸锂的方法, 其特征在于: 所述步骤 (3)中的碳酸锂脱水是将碳酸锂放入离心机内脱水, 直至 出水口处流水不呈流线状时, 再加水洗涤, 再次离心脱水, 反复淋洗 3~5次。
3、 根据权利要求 2所述的一种利用氯化锂溶液制备电池级碳酸锂的方法, 其特征在于: 在步骤 (3)中, 向离心机加入碳酸锂时, 离心机低速运行, 控制加 料速度, 使碳酸锂均匀添加, 加满料后离心机高速运行, 脱水, 直至出水口处 流水不呈流线状。
4、 根据权利要求 3所述的一种利用氯化锂溶液制备电池级碳酸锂的方法, 其特征在于: 在步骤(3 ) 中, 每次洗涤时, 向离心机内緩慢加水, 碳酸锂的量 和纯水的用量的质量比为 1: 1 - 1: 2.5。
5、根据权利要求 1至 4中任意一项所述的一种利用氯化锂溶液制备电池级 碳酸锂的方法, 其特征在于: 所述步骤(1 )和步骤(3 ) 中的水为纯水。
6、根据权利要求 5中任意一项所述的一种利用氯化锂溶液制备电池级碳酸 锂的方法, 其特征在于: 所述氯化锂溶液 (A)的制备包括如下步骤:
(A.1)有机物吸附: 用活性炭吸附 水中的有机物, 从而将有机物与 水其 它成分分离, 吸附温度为 20~100°C , 吸附时间为 0.5~3小时, 压滤清亮后, 进 入下一步;
(A.2)除镁:在步骤( A.1 )得到的溶液中加入液碱,使混合液的 pH为 9~13, 温度为 70~120°C , 反应时间为 0.5~3小时, 卤水中的氯化镁与液碱反应生成氢 氧化镁沉淀, 实现 水除镁, 再通过压滤将杂质与氯化锂分离, 压滤清亮后, 进入下一步;
(A.3)粗除 4弓: 在步骤( A.2 )得到的溶液中通入二氧化碳至混合液的 pH为 7时停止反应粗除 4弓得到氯化锂溶液或者在步骤( A.2 )得到的溶液中加入可溶 性碳酸盐或碳酸锂粗除钙得到氯化锂溶液, 所述可溶性碳酸盐为碳酸钠或碳酸 钾。
7、 根据权利要求 6所述的一种利用氯化锂溶液制备电池级碳酸锂的方法, 其特征在于所述氯化锂溶液 (A)的制备还包括如下步骤:
(A.4)氯化锂溶液有机物吸附: 用活性炭吸附在步骤(A.3 )得到的溶液中 的有机物, 吸附温度为 20~100°C , 吸附时间为 0.5~3小时, 压滤清亮后得到氯 化锂溶液, 进入贮槽。
8、 根据权利要求 7所述的一种利用氯化锂溶液制备电池级碳酸锂的方法, 其特征在于: 所述步骤(A.1 ) 中, 每立方米 水用 l ~ 3kg活性炭进行 水中 的有机物的吸附。
9、 根据权利要求 7所述的一种利用氯化锂溶液制备电池级碳酸锂的方法, 其特征在于: 所述步骤(A.4 ) 中, 每立方米溶液用 1 ~ 3kg活性炭进行溶液中 的有机物的吸附。
PCT/CN2010/000708 2009-07-10 2010-05-19 一种利用氯化锂溶液制备电池级碳酸锂的方法 WO2011003266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910158532.7 2009-07-10
CN2009101585327A CN101609888B (zh) 2009-07-10 2009-07-10 一种利用氯化锂溶液制备电池级碳酸锂的方法

Publications (1)

Publication Number Publication Date
WO2011003266A1 true WO2011003266A1 (zh) 2011-01-13

Family

ID=41483544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000708 WO2011003266A1 (zh) 2009-07-10 2010-05-19 一种利用氯化锂溶液制备电池级碳酸锂的方法

Country Status (3)

Country Link
CN (1) CN101609888B (zh)
CL (1) CL2012000060A1 (zh)
WO (1) WO2011003266A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108423695A (zh) * 2017-11-14 2018-08-21 中国地质科学院矿产综合利用研究所 一种电池级碳酸锂的制备方法
DE102018005586A1 (de) * 2018-07-17 2020-01-23 Manfred Koch Ein neuer integrierter Prozess für die Herstellung von Kathodenmaterial für Batterien

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609888B (zh) * 2009-07-10 2011-06-22 江西赣锋锂业股份有限公司 一种利用氯化锂溶液制备电池级碳酸锂的方法
CN102010051A (zh) * 2010-12-31 2011-04-13 重庆昆瑜锂业有限公司 利用含钙镁离子水制取锂消化液处理液的方法
CN102009989B (zh) * 2010-12-31 2012-07-18 重庆昆瑜锂业有限公司 利用锂生产中产生的消化液制取高纯碳酸锂的方法
CN104733797B (zh) * 2015-04-08 2017-03-08 湖北百杰瑞新材料股份有限公司 一种高纯碳酸锂的制备方法
CN105036159A (zh) * 2015-07-23 2015-11-11 韦海棉 一种高锂盐湖卤水制备碳酸锂的方法
CN106186002B (zh) * 2016-07-22 2017-12-15 中国科学院青海盐湖研究所 一种电池级碳酸锂的制备方法
CN106276988B (zh) * 2016-08-12 2018-06-29 青海大学 一种以碳酸钾为沉淀剂制备电池级碳酸锂的方法
CN106379919B (zh) * 2016-08-29 2018-03-23 中国科学院青海盐湖研究所 一种含锂废弃液的综合利用方法
KR101918234B1 (ko) * 2016-09-05 2018-11-13 주식회사 포스코 염화 리튬의 제조 방법 및 탄산 리튬의 제조 방법
CN106505225A (zh) * 2016-12-12 2017-03-15 江西赣锋锂业股份有限公司 一种从锂废旧电池中回收锂制备电池级碳酸锂的方法
CN107311206A (zh) * 2017-07-21 2017-11-03 江苏万年长药业有限公司 一种阿托伐他汀中间体制备过程中碳酸锂的制备方法
CN108428893B (zh) * 2017-09-21 2020-04-17 中国地质科学院矿产综合利用研究所 一种卤水碳酸锂的制备方法
CN108059176B (zh) * 2017-12-27 2019-08-30 江西赣锋锂业股份有限公司 一种利用硫化锂废料制备工业级碳酸锂的方法
CN108178170A (zh) * 2017-12-27 2018-06-19 江西赣锋循环科技有限公司 一种从磷酸亚铁锂废料中回收锂制备电池级碳酸锂的方法
CN109612978B (zh) * 2018-10-30 2022-02-25 欣旺达电子股份有限公司 锂离子电池电极膜片补锂量检测方法
CN110420613A (zh) * 2019-08-27 2019-11-08 东华工程科技股份有限公司 碳酸锂反应器
CN110963512A (zh) * 2019-12-06 2020-04-07 江西赣锋循环科技有限公司 一种连续沉锂制备电池级碳酸锂的工艺
CN111186849A (zh) * 2019-12-30 2020-05-22 江西赣锋循环科技有限公司 一种沉锂母液回收有机络合剂的方法
CN112624155A (zh) * 2021-02-02 2021-04-09 江西赣锋锂业股份有限公司 一种提纯老卤制备电池级无水氯化锂的方法
KR102627665B1 (ko) * 2021-09-09 2024-01-23 국립부경대학교 산학협력단 리튬망간철인 산화물로부터 리튬의 선택적인 회수 방법
CN113830801A (zh) * 2021-10-22 2021-12-24 江西赣锋锂业股份有限公司 一种利用碘化锂废料制备工业级碳酸锂的方法
CN116143149A (zh) * 2022-12-29 2023-05-23 江西赣锋锂业集团股份有限公司 一种利用含锂矿石回收料制备工业级碳酸锂的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267636A (zh) * 1999-03-22 2000-09-27 四川省射洪锂业有限责任公司 硫酸法生产电池级碳酸锂
US20030049524A1 (en) * 2001-09-13 2003-03-13 Spillman David M. Lithium oxyhalide cell with improved safety and voltage delay characteristics
JP2006196435A (ja) * 2004-12-17 2006-07-27 Sanyo Electric Co Ltd リチウム二次電池
JP2006236890A (ja) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd 非水電解液一次電池
CN101125668A (zh) * 2007-08-21 2008-02-20 四川省射洪锂业有限责任公司 硫酸锂溶液生产低镁电池级碳酸锂的方法
CN101609888A (zh) * 2009-07-10 2009-12-23 江西赣锋锂业股份有限公司 一种利用氯化锂溶液制备电池级碳酸锂的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1218873C (zh) * 2001-07-26 2005-09-14 陆增 从高镁锂比盐湖水中提取碳酸锂的方法
CN100528753C (zh) * 2007-01-30 2009-08-19 西部矿业集团有限公司 一种从盐湖卤水中联合提取硼、镁、锂的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267636A (zh) * 1999-03-22 2000-09-27 四川省射洪锂业有限责任公司 硫酸法生产电池级碳酸锂
US20030049524A1 (en) * 2001-09-13 2003-03-13 Spillman David M. Lithium oxyhalide cell with improved safety and voltage delay characteristics
JP2006196435A (ja) * 2004-12-17 2006-07-27 Sanyo Electric Co Ltd リチウム二次電池
JP2006236890A (ja) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd 非水電解液一次電池
CN101125668A (zh) * 2007-08-21 2008-02-20 四川省射洪锂业有限责任公司 硫酸锂溶液生产低镁电池级碳酸锂的方法
CN101609888A (zh) * 2009-07-10 2009-12-23 江西赣锋锂业股份有限公司 一种利用氯化锂溶液制备电池级碳酸锂的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108423695A (zh) * 2017-11-14 2018-08-21 中国地质科学院矿产综合利用研究所 一种电池级碳酸锂的制备方法
DE102018005586A1 (de) * 2018-07-17 2020-01-23 Manfred Koch Ein neuer integrierter Prozess für die Herstellung von Kathodenmaterial für Batterien

Also Published As

Publication number Publication date
CL2012000060A1 (es) 2012-09-28
CN101609888A (zh) 2009-12-23
CN101609888B (zh) 2011-06-22

Similar Documents

Publication Publication Date Title
WO2011003266A1 (zh) 一种利用氯化锂溶液制备电池级碳酸锂的方法
CN109879301B (zh) 从盐湖卤水高效分离镁锂及同时制备高纯氧化镁和电池级碳酸锂的方法
CN103145158B (zh) 一种硫酸焙烧法锂云母制备碳酸锂的方法
CN102531002B (zh) 一种纯化碳酸锂的方法
CN106587116B (zh) 一种利用锂云母和粉煤灰提取碳酸锂和氢氧化铝的方法
WO2020030123A1 (zh) 大幅度降低锂辉石硫酸法各级碳酸锂中硫酸根含量的方法
WO2016184055A1 (zh) 从卤水中提取镁、锂同时生产水滑石的工艺方法
CN102295303B (zh) 提取碳酸锂的方法
CN109110788B (zh) 一种盐湖卤水中锂镁资源综合利用的方法
CN101955211A (zh) 从锂云母中提取碳酸锂的方法
WO2013053165A1 (zh) 以碳酸盐型卤水和硫酸盐型卤水为原料用重叠兑卤法制取碳酸锂的生产方法
CN108793204B (zh) 一种含锂料液制备碳酸锂的方法及系统
CN113511663A (zh) 一种油田地下卤水提锂制备碳酸锂工艺
CN113926419A (zh) 一种Keggin链式结构铝系锂吸附剂的制备方法
CN113772696A (zh) 一种采用硝酸加压法处理锂云母生产多种锂产品的方法
CN102897804B (zh) 一种由氯化锂和二氧化碳直接制备碳酸锂的方法
CN114751433A (zh) 一种锂云母超高效深度提锂的工艺方法
CN111592017A (zh) 一种锂辉石压浸制备电池级氯化锂的方法
CN109088116A (zh) 一种废旧锂离子电池正极粉料的回收方法
CN115477289A (zh) 一种碱浸锂辉石矿相重构提锂的方法
CN109179455B (zh) 一种碳酸盐型盐湖卤水富集锂盐同时提取钾盐的方法
CN110002475A (zh) 氢氧化锂的制备方法
CN113603122A (zh) 一种电池级碳酸锂的合成方法
CN116904766A (zh) 一种盐湖提锂的离心吸附方法
CN112357938A (zh) 一种利用磷酸锂制备电池级碳酸锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012000060

Country of ref document: CL

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10796643

Country of ref document: EP

Kind code of ref document: A1