WO2011002035A1 - マグネシウム-ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール - Google Patents
マグネシウム-ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール Download PDFInfo
- Publication number
- WO2011002035A1 WO2011002035A1 PCT/JP2010/061185 JP2010061185W WO2011002035A1 WO 2011002035 A1 WO2011002035 A1 WO 2011002035A1 JP 2010061185 W JP2010061185 W JP 2010061185W WO 2011002035 A1 WO2011002035 A1 WO 2011002035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnesium
- thermoelectric conversion
- composite material
- silicon composite
- electrode
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 210
- 239000002131 composite material Substances 0.000 title claims abstract description 184
- MKPXGEVFQSIKGE-UHFFFAOYSA-N [Mg].[Si] Chemical compound [Mg].[Si] MKPXGEVFQSIKGE-UHFFFAOYSA-N 0.000 title claims abstract description 174
- 239000000463 material Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 67
- 230000008569 process Effects 0.000 title description 23
- 238000005245 sintering Methods 0.000 claims description 106
- 239000000203 mixture Substances 0.000 claims description 74
- 229910052710 silicon Inorganic materials 0.000 claims description 73
- 239000002994 raw material Substances 0.000 claims description 63
- 238000010438 heat treatment Methods 0.000 claims description 62
- 239000002019 doping agent Substances 0.000 claims description 53
- 238000002844 melting Methods 0.000 claims description 46
- 230000008018 melting Effects 0.000 claims description 46
- 239000010703 silicon Substances 0.000 claims description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 32
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 25
- 238000007747 plating Methods 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 239000000919 ceramic Substances 0.000 claims description 18
- 238000002441 X-ray diffraction Methods 0.000 claims description 13
- 238000005498 polishing Methods 0.000 claims description 11
- 230000006835 compression Effects 0.000 claims description 10
- 238000007906 compression Methods 0.000 claims description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 claims description 4
- 239000002783 friction material Substances 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 229910001416 lithium ion Inorganic materials 0.000 claims description 4
- 239000007773 negative electrode material Substances 0.000 claims description 4
- 229910000077 silane Inorganic materials 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 229910000765 intermetallic Inorganic materials 0.000 abstract description 6
- 229910019752 Mg2Si Inorganic materials 0.000 abstract description 5
- 239000011777 magnesium Substances 0.000 description 117
- 229910052749 magnesium Inorganic materials 0.000 description 72
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 43
- 239000000843 powder Substances 0.000 description 43
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 39
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 32
- 238000001816 cooling Methods 0.000 description 29
- 238000002156 mixing Methods 0.000 description 27
- 229910002804 graphite Inorganic materials 0.000 description 26
- 239000010439 graphite Substances 0.000 description 26
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 22
- 239000012298 atmosphere Substances 0.000 description 21
- 229910052799 carbon Inorganic materials 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 239000007789 gas Substances 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 229910052787 antimony Inorganic materials 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 239000004065 semiconductor Substances 0.000 description 14
- 229910004298 SiO 2 Inorganic materials 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 238000010298 pulverizing process Methods 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 239000011810 insulating material Substances 0.000 description 9
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 8
- 230000000630 rising effect Effects 0.000 description 8
- 229910052797 bismuth Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 7
- 230000003746 surface roughness Effects 0.000 description 7
- 239000002918 waste heat Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- VJTAZCKMHINUKO-UHFFFAOYSA-M chloro(2-methoxyethyl)mercury Chemical compound [Cl-].COCC[Hg+] VJTAZCKMHINUKO-UHFFFAOYSA-M 0.000 description 6
- 239000012776 electronic material Substances 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 238000010309 melting process Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000000879 optical micrograph Methods 0.000 description 4
- 238000004056 waste incineration Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910002909 Bi-Te Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910020712 Co—Sb Inorganic materials 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- RJTANRZEWTUVMA-UHFFFAOYSA-N boron;n-methylmethanamine Chemical compound [B].CNC RJTANRZEWTUVMA-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011802 pulverized particle Substances 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/06—Metal silicides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/58085—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62665—Flame, plasma or melting treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/004—Systems for reclaiming waste heat
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/8556—Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/401—Alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/407—Copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/408—Noble metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the present invention relates to a magnesium-silicon composite material; a thermoelectric conversion material, a thermoelectric conversion element, and a thermoelectric conversion module; and a method for producing a magnesium-silicon composite material.
- waste heat recovery is performed by generating high-pressure steam by waste heat and generating power by rotating a steam turbine with this steam.
- the amount of waste heat emitted is small, and therefore, a method for recovering waste heat generated by a steam turbine or the like cannot be adopted.
- thermoelectric conversion material that performs reversible thermoelectric conversion using the Seebeck effect or the Peltier effect
- a method using a thermoelectric conversion element / thermoelectric conversion module has been proposed.
- thermoelectric conversion module examples include those shown in FIGS. 1 and 2.
- an n-type semiconductor and a p-type semiconductor having low thermal conductivity are used as thermoelectric conversion materials for the n-type thermoelectric conversion unit 101 and the p-type thermoelectric conversion unit 102, respectively.
- Electrodes 1015 and 1025 are provided at the upper ends of the n-type thermoelectric converter 101 and the p-type thermoelectric converter 102 arranged side by side, and electrodes 1016 and 1026 are provided at the lower ends.
- the electrodes 1015 and 1025 provided at the upper ends of the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit are connected to form an integrated electrode, and the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit
- the electrodes 1016 and 1026 provided respectively at the lower end of each are separated.
- thermoelectric conversion modules include those shown in FIGS. 3 and 4 (see, for example, Patent Document 1).
- this thermoelectric conversion module only an n-type semiconductor having a low thermal conductivity is used as the thermoelectric conversion material.
- the n-type thermoelectric conversion unit 103 is provided with an electrode 1035 at the upper end and an electrode 1036 at the lower end.
- a direct current flows from the electrode 1036 side to the electrode 1035 side through the n-type thermoelectric conversion unit 103 by the DC power source 4, thereby generating an endothermic effect in the electrode 1035 and generating heat in the electrode 1036. Occurs.
- a direct current flows from the electrode 1035 side to the electrode 1036 through the n-type thermoelectric conversion unit 103 by the DC power supply 4
- a heat generation effect occurs in the electrode 1035 and a heat absorption effect occurs in the electrode 1036.
- thermoelectric conversion elements capable of efficiently performing thermoelectric conversion with an extremely simple configuration have been applied and developed mainly for special applications.
- thermoelectric conversion materials such as Bi—Te, Co—Sb, Zn—Sb, Pb—Te, and Ag—Sb—Ge—Te are used for fuel cells, automobiles, boilers, incinerators, Attempts have been made to convert to electricity using a waste heat source of about 200 ° C. to 800 ° C. such as a blast furnace.
- a waste heat source of about 200 ° C. to 800 ° C. such as a blast furnace.
- thermoelectric conversion material contains a harmful substance, there is a problem that an environmental load increases.
- B 4 C and other borides containing a large amount of boron, rare earth metal chalcogenites such as LaS, and the like have been studied for use in high-temperature applications, but mainly include intermetallic compounds such as B 4 C and LaS.
- the non-oxide type material exhibits relatively high performance in a vacuum, there is a problem that stability in a high temperature region is inferior, for example, a crystal phase is decomposed at a high temperature.
- silicide systems such as Mg 2 Si (see, for example, Patent Documents 2 and 3 and Non-Patent Documents 1 to 3) and Mg 2 Si 1-x C x (see, for example, Non-Patent Document 4) with low environmental impact. Materials containing intermetallic compounds are also being studied.
- thermoelectric conversion module there is a problem that the material containing the silicide-based intermetallic compound containing Mg has a low thermoelectric conversion performance, and the material containing the silicide-based intermetallic compound containing Mg is actually used in the thermoelectric conversion module. It was not reached.
- the thermoelectric properties of this composite material have not been studied at all.
- the magnesium-silicon composite material described in Patent Document 2 does not have the characteristics of the magnesium-silicon composite material required in the present application.
- the present invention has been made in view of the above problems, and is a magnesium-silicon composite material that contains Mg 2 Si as an intermetallic compound that does not give a load to the environment and can be suitably used as a material for a thermoelectric conversion module.
- An object of the present invention is to provide a magnesium-silicon composite material having excellent thermoelectric conversion performance.
- the present inventors realized the preparation of a magnesium-silicon composite material having a dimensionless figure of merit at 866K of 0.665 or more, and completed the present invention. Specifically, the present invention provides the following.
- a magnesium-silicon composite material having a dimensionless figure of merit of 0.665 or more at 866K and containing substantially no dopant.
- the magnesium-silicon composite material according to [1] has an atomic weight ratio of Mg and Si of approximately 2: 1, a dimensionless figure of merit at 866K of 0.665 or more, and substantially does not contain a dopant. It is. For this reason, for example, when a magnesium-silicon composite material is used for a thermoelectric conversion module, high thermoelectric conversion performance can be obtained.
- thermoelectric conversion performance of the thermoelectric conversion material is generally evaluated by a figure of merit (unit: K ⁇ 1 ) represented by the following formula (1).
- ⁇ represents the Seebeck coefficient
- ⁇ represents electrical conductivity
- ⁇ represents thermal conductivity.
- a dimensionless figure of merit ZT is obtained by multiplying this figure of merit by the absolute temperature T to obtain a dimensionless figure of merit ZT.
- the dimensionless figure of merit ZT is 0.665 or more. It prescribes.
- thermoelectric conversion material has a dimensionless figure of merit of 0.5 or more, which is a standard for practical use.
- a thermoelectric conversion material having a large dimensionless figure of merit tends to be obtained.
- the invention described in [2] shows the invention described in [1] with the peak intensities of Mg and Si in X-ray diffraction.
- the magnesium-silicon composite material according to the present invention is characterized in that the Mg peak intensity is small and metal magnesium is hardly contained in the material. According to the invention described in [2], an effect equivalent to that of the invention described in [1] can be obtained.
- the invention described in [3] shows the invention described in [1] or [2] in terms of the component composition of the composition raw material of the magnesium-silicon composite material. According to the invention described in [3], an effect equivalent to that of the invention described in [1] or [2] can be obtained.
- the magnesium-silicon composite material according to the present invention may contain a dopant.
- the dopant content is, for example, 0.10 to 2.00 at% in atomic weight ratio.
- the dimensionless figure of merit ZT is 0.665 or more. Therefore, when the magnesium-silicon composite material is used for the thermoelectric conversion module, high thermoelectric conversion performance can be obtained.
- the magnesium-silicon composite material according to the present invention is characterized in that the Mg peak intensity is small even when a dopant is contained, and the metal magnesium is hardly contained in the material.
- the ratio of the Mg content to the Si content is 66.17: 33.83 to 66.77: 33.23 in atomic weight ratio, and the dopant content is 0.10 to 2 in atomic weight ratio.
- the invention described in [6] shows the invention described in [4] or [5] by the component composition of the composition raw material of the magnesium-silicon composite material.
- the ratio of the Mg content excluding the dopant and the Si content may be 66.17: 33.83 to 66.77: 33.23 in terms of atomic weight ratio. According to the invention described in [6], an effect equivalent to that of the invention described in [4] or [5] can be obtained.
- a composition raw material having an Mg content of 66.17 to 66.77 at% in terms of atomic weight ratio and an Si content of 33.23 to 33.83 at% in terms of atomic weight ratio is formed between the opening and the opening. And a step of heating and melting in a heat-resistant container in which a contact surface to the lid at the edge of the opening and a contact surface to the opening in the lid are both polished.
- a method for producing a magnesium-silicon composite material having:
- the ratio of the Mg content to the Si content is 66.17: 33.83 to 66.77: 33.23 in atomic weight ratio, and the dopant content is 0.10 to 2 in atomic weight ratio.
- the composition raw material of 0.000% is provided with an opening and a lid that covers the opening, and a contact surface to the lid at the edge of the opening, and a contact surface to the opening in the lid And a method for producing a magnesium-silicon composite material comprising a step of heating and melting in a heat-resistant container that has been polished together.
- the invention described in [8] defines a method for producing a magnesium-silicon composite material in the case where the dopant is not substantially included, and the invention described in [9] is directed to magnesium-silicon in the case where the dopant is included. It defines the manufacturing method of composite materials. Therefore, according to the inventions described in [8] and [9], it is possible to obtain the same effect as the above invention.
- thermoelectric conversion material comprising the magnesium-silicon composite material according to any one of [1] to [7].
- thermoelectric conversion unit and a first electrode and a second electrode provided in the thermoelectric conversion unit, A thermoelectric conversion element produced using the magnesium-silicon composite material according to any one of [1] to [7].
- thermoelectric conversion material and a thermoelectric conversion element using the magnesium-silicon composite material described in any of [1] to [7]. Therefore, according to the inventions described in [10] and [11], an effect equivalent to that of the invention described in any one of [1] to [7] can be obtained.
- thermoelectric conversion element according to [11], wherein the first electrode and the second electrode are formed by a plating method.
- thermoelectric conversion element according to [11], wherein the first electrode, the second electrode, and the thermoelectric conversion unit are integrally formed by a pressure compression sintering method.
- thermoelectric conversion part manufactured using the magnesium-silicon composite material hydrogen gas is generated due to metal magnesium remaining in the material, and the adhesion of plating is reduced. Deteriorate.
- the electrode can be formed by a plating method.
- the first electrode and the second electrode can be formed integrally with the thermoelectric conversion portion when the magnesium-silicon composite material is sintered. That is, an electrode material, a magnesium-silicon composite material, and an electrode material are laminated in this order and subjected to pressure compression sintering to obtain a sintered body in which electrodes are formed at both ends.
- thermoelectric conversion unit has a plurality of layers made of different thermoelectric conversion materials, In the layer adjacent to the first electrode or the second electrode, the ratio of the Mg content to the Si content is 66.17: 33.83 to 66.77: 33.23 in terms of atomic weight ratio, and Sb
- the thermoelectric conversion element according to any one of [11] to [13], which is made of a magnesium-silicon composite material synthesized from a composition raw material having an atomic weight ratio of 0.10 to 2.0 at%.
- the thermoelectric conversion part has a multilayer structure made of different thermoelectric conversion materials, and a magnesium-silicon composite material containing Sb is used in a layer adjacent to the first electrode or the second electrode.
- thermoelectric conversion module including the thermoelectric conversion element according to any one of [11] to [14].
- thermoelectric conversion module including the thermoelectric conversion element described in any one of [11] to [14]. Therefore, according to the invention described in [15], an effect equivalent to that of the invention described in any of [11] to [14] can be obtained.
- thermoelectric conversion materials for example, corrosion resistant materials, lightweight structural materials, friction materials, It can also be used for applications such as negative electrode materials for lithium ion secondary batteries, ceramic substrates, dielectric ceramic compositions, hydrogen storage compositions, silane generators, and the like.
- the magnesium-silicon composite material according to the present invention can obtain high thermoelectric conversion performance, for example, when it is used for a thermoelectric conversion module.
- FIG. 3 is a view showing characteristics of magnesium-silicon composite materials prepared in Examples 1 to 3 and Comparative Examples 2 to 4.
- FIG. 3 is a view showing characteristics of magnesium-silicon composite materials prepared in Examples 1 to 3 and Comparative Examples 2 to 4.
- FIG. 3 is a view showing characteristics of magnesium-silicon composite materials prepared in Examples 1 to 3 and Comparative Examples 2 to 4.
- FIG. 3 is a view showing characteristics of magnesium-silicon composite materials prepared in Examples 1 to 3 and Comparative Examples 2 to 4.
- FIG. 3 is a view showing characteristics of magnesium-silicon composite materials prepared in Examples 1 to 3 and Comparative Examples 2 to 4.
- FIG. 3 is a view showing characteristics of magnesium-silicon composite materials prepared in Examples 1 to 3 and Comparative Examples 2 to 4.
- FIG. 3 is a view showing characteristics of magnesium-silicon composite materials prepared in Examples 1 to 3 and Comparative Examples 2 to 4.
- FIG. 3 is a view showing characteristics of magnesium-silicon composite materials prepared in Examples 1 to 3 and Comparative Examples 2 to 4.
- FIG. 3 is a view showing optical microscopic images of magnesium-silicon composite materials prepared in Examples 1 to 3 and Comparative Examples 2 to 4.
- 4 is a view showing an optical microscope image of a magnesium-silicon composite material prepared in Comparative Example 1.
- FIG. FIG. 6 is a diagram showing the results of X-ray diffraction of the magnesium-silicon composite material prepared in Test Example 2.
- FIG. 6 is a view showing characteristics of magnesium-silicon composite materials prepared in Examples 4 to 8 and Comparative Example 5.
- 10 is a diagram showing a thermoelectric conversion element manufactured in Example 9.
- FIG. It is a figure which shows the characteristic of the thermoelectric conversion element manufactured in Example 9 and 10.
- FIG. It is a figure for confirming the existence of generation of hydrogen gas from a thermoelectric conversion element. It is a figure which shows the characteristic of the thermoelectric conversion element manufactured in Example 12, 14, and 15.
- the magnesium-silicon composite material according to the present invention has an atomic weight ratio of Mg to Si of about 2: 1 and a dimensionless figure of merit at 866K of 0.665 or more, preferably 0.700 or more.
- a dimensionless figure of merit at 866K of the magnesium-silicon composite material is 0.665 or more, for example, when the magnesium-silicon composite material is used for a thermoelectric conversion element or a thermoelectric conversion module, high thermoelectric conversion performance can be obtained. Can do.
- the magnesium-silicon composite material according to the present invention is one obtained by heating and melting the composition raw material, preferably after pulverizing the sample after heating and melting, but after sintering the sample after pulverization
- the composition raw material is heated and melted, preferably the sample after heating and melting is pulverized, and the sample after pulverization is sintered. Shall be measured after the measurement.
- the sample after heating and melting and the sample after pulverization / sintering tend to have higher dimensionless performance index because the sample after pulverization / sintering is less prone to defects such as cracks. For this reason, if the dimensionless figure of merit satisfies the above condition in the sample after heating and melting, the dimensionless figure of merit of the sample obtained by pulverizing and sintering the sample naturally satisfies the above condition.
- the magnesium-silicon composite material according to the present invention has a meaning including a heated melt of a composition raw material, a pulverized product of the heated melt, and a sintered body of the pulverized product, and these heated melt, pulverized product
- the product and the sintered body are each independently valuable as a product.
- the thermoelectric conversion material itself and the thermoelectric conversion part constituting the thermoelectric conversion element according to the present invention are composed of the sintered body.
- the magnesium-silicon composite material according to the present invention may contain substantially no dopant or may contain a dopant.
- “Substantially free of dopant” means that no additive element other than Si and Mg is contained as a composition raw material. Therefore, in the process of manufacturing a magnesium-silicon composite material, for example, even if other impurity elements are inevitably mixed from a heat-resistant container during heating and melting, the magnesium-silicon composite material mixed with the impurities is substantially Treat as containing no dopant.
- the dopant when a dopant is included, the dopant may be one or more selected from Sb, Al, Bi, Ag, Cu and the like. Further, the content is preferably 0.10 to 2.00 at% in atomic weight ratio.
- the magnesium-silicon composite material according to the present invention contains Sb as a dopant, it has excellent durability at high temperatures when used as a thermoelectric conversion material.
- the reason why the peak position is different from the case where the dopant is not substantially contained is that it receives a slight interference depending on the dopant species and the content thereof.
- the magnesium-silicon composite material according to the present invention preferably has a thermal conductivity of 3.50 W / m ⁇ K or less, more preferably 3.30 W / m ⁇ K or less, and 3.10 W / m. More preferably, it is m ⁇ K or less.
- the figure of merit expressed by the above formula (1)
- the figure of merit, the dimensionless figure of merit obtained by making this dimensionless, and the thermal conductivity have a negative correlation. Therefore, by setting the thermal conductivity of the magnesium-silicon composite material to 3.50 W / m ⁇ K or less, the dimensionless figure of merit becomes high, and the magnesium-silicon composite material has high thermoelectric conversion performance. Can be obtained.
- the magnesium-silicon composite material according to the present invention may be in any form such as an ingot, powder, sintered powder, etc. It is preferable that it is fired. Furthermore, preferred examples of the use of the magnesium-silicon composite material according to the present invention include uses of thermoelectric conversion materials, thermoelectric conversion elements, and thermoelectric conversion modules, which will be described later, but are limited to such uses. For example, it can also be used for applications such as corrosion resistant materials, lightweight structural materials, friction materials, negative electrode materials for lithium ion secondary batteries, ceramic substrates, dielectric ceramic compositions, hydrogen storage compositions, silane generators, etc. .
- the magnesium-silicon composite material according to the present invention can be suitably used as a thermoelectric conversion material. That is, since the magnesium-silicon composite material according to the present invention has a dimensionless figure of merit of 0.665 or more, when this is used as a thermoelectric conversion material in a thermoelectric conversion element or thermoelectric conversion module, a high thermoelectric conversion is achieved. Performance can be obtained.
- the magnesium-silicon composite material according to the present invention has an Mg content of 66.17 to 66.77 at% by atomic weight ratio and an Si content of 33.23 by atomic weight ratio.
- the composition raw material of ⁇ 33.83 at% has an opening and a cover that covers the opening, to the contact surface to the cover at the edge of the opening, and to the opening in the cover Are manufactured by a manufacturing method including a step of heating and melting in a heat-resistant container that has been polished together.
- the magnesium-silicon composite material according to the present invention has an atomic weight ratio of 66.17: 33.83 to 66.77: 33.23 in the ratio of Mg content to Si content.
- the contact surface and the contact surface to the opening in the lid are both manufactured by a manufacturing method including a step of heating and melting in a heat-resistant container that has been subjected to polishing treatment.
- This manufacturing method is preferably a mixing step in which Mg, Si and, if necessary, a dopant are mixed to obtain a composition raw material, a heat melting step in which the composition raw material is heated and melted, and a sample after heat melting is pulverized A crushing step and a sintering step of sintering the crushed sample.
- the Mg content is preferably 66.27 to 66.67 at% in atomic weight ratio, and the Si content at this time is preferably 33.33 to 33.73 at% in atomic weight ratio.
- high-purity silicon can be used.
- high-purity silicon has a purity of 99.9999% or higher and is used for manufacturing silicon products such as semiconductors and solar cells.
- Specific examples of high-purity silicon include high-purity silicon raw materials for LSI, high-purity silicon raw materials for solar cells, high-purity metal silicon, high-purity silicon ingots, and high-purity silicon wafers.
- Mg is not particularly limited as long as it has a purity of about 99.5% or more and does not substantially contain impurities.
- the mixing step Mg, Si and the dopant are mixed, and the ratio of the Mg content to the Si content is 66.17: 33.83 to 66.77 in atomic weight ratio. And a composition material having a dopant content of 0.10 to 2.00 at% in atomic weight ratio is obtained.
- the ratio between the Mg content and the Si content is preferably 66.27: 33.73 to 66.67: 33.33 in terms of atomic weight ratio.
- the composition raw material obtained in the mixing step is heat-treated under a reducing atmosphere and preferably under reduced pressure under a temperature condition that exceeds the melting point of Mg and lower than the melting point of Si, and melts and synthesizes Mg 2 Si.
- under a reducing atmosphere refers to an atmosphere containing hydrogen gas in an amount of 5% by volume or more and optionally containing an inert gas as another component.
- the pressure condition in the heating and melting step may be atmospheric pressure, but is preferably 1.33 ⁇ 10 ⁇ 3 Pa to atmospheric pressure. Considering safety, the pressure condition is, for example, about 0.08 MPa under reduced pressure or vacuum. Is preferred.
- the heating conditions in the heating and melting step are 700 ° C. or higher and lower than 1410 ° C., preferably 1085 ° C. or higher and lower than 1410 ° C., for example, heat treatment can be performed for about 3 hours.
- the heat treatment time is, for example, 2 to 10 hours. By making the heat treatment longer, the obtained magnesium-silicon composite material can be made more uniform.
- the melting point of Mg 2 Si is 1085 ° C.
- the melting point of silicon is 1410 ° C.
- a temperature raising condition when the composition material is heat-treated for example, a temperature raising condition of 150 to 250 ° C./h until reaching 150 ° C., a temperature raising condition of 350 to 450 ° C./h until reaching 100 ° C.
- a temperature raising condition after the heat treatment include a temperature lowering condition of 900 to 1000 ° C./h.
- an opening and a lid that covers the opening are provided, a contact surface to the lid at the edge of the opening, and the opening to the opening in the lid It is necessary to carry out in a heat-resistant container in which the contact surface is polished together.
- polishing in this way a magnesium-silicon composite material having a composition ratio close to the composition ratio of the composition raw material can be obtained. This is because a gap is not formed at the contact surface between the lid and the edge of the opening, and the heat-resistant container is sealed, so that it is possible to suppress scattering of evaporated Mg outside the heat-resistant container. Conceivable.
- the polishing treatment of the contact surface to the lid portion at the edge of the opening and the contact surface to the opening portion of the lid portion is not particularly limited, and it is only necessary that the polishing treatment is performed.
- the surface roughness Ra of the contact surface is 0.2 to 1 ⁇ m, it is preferable to form a close contact state, and more preferably 0.2 to 0.5 ⁇ m. If the surface roughness exceeds 1 ⁇ m, the adhesion between the edge of the opening and the lid may be insufficient.
- polishing is performed more than necessary, which is not preferable in terms of cost.
- the contact surface preferably has a surface waviness Rmax of 0.5 to 3 ⁇ m, more preferably 0.5 to 1 ⁇ m.
- Rmax 0.5 to 3 ⁇ m, more preferably 0.5 to 1 ⁇ m.
- the dimensions of the heat-resistant container include those having a container body having an inner diameter of 12 to 300 mm, an outer diameter of 15 to 320 mm, a height of 50 to 250 mm, and a lid portion having a diameter of 15 to 320 mm.
- the upper surface of the lid is directly or indirectly adjusted as necessary. It can be pressurized with a weight.
- the pressure during the pressurization is preferably 1 to 10 kg / cm 2 .
- the gas used to perform the heating and melting step in a reducing atmosphere may be 100% by volume hydrogen gas, but hydrogen gas and inert gas such as nitrogen gas or argon gas containing 5% by volume or more of hydrogen gas.
- a mixed gas can be mentioned.
- the reason for performing the heating and melting step in a reducing atmosphere is that it is necessary to avoid the production of not only silicon oxide but also magnesium oxide as much as possible when producing the magnesium-silicon composite material according to the present invention. be able to.
- the heated and melted sample can be cooled by natural cooling and forced cooling.
- the pulverization step is a step of pulverizing the heated and melted sample.
- the pulverized particles are fused to each other on at least a part of the surface, and almost no voids are observed. It is possible to obtain a sintered body having a density almost equal to the theoretical value from about 70% of the theoretical value.
- the above pulverized sample may have an average particle size of 0.1 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 0.2 ⁇ m. Specifically, particles having a particle size of 65 ⁇ m sieve on with 75 ⁇ m sieve pass and 20 ⁇ m sieve on with 30 ⁇ m sieve pass can be used.
- the sintering step is a step of sintering the crushed sample.
- the pulverized sample is sintered in a sintering jig made of graphite, for example, in a vacuum or reduced pressure atmosphere by a pressure compression sintering method, and a sintering pressure of 5 to 60 MPa.
- a method of sintering at 600 to 1000 ° C. can be mentioned.
- the sintering pressure When the sintering pressure is less than 5 MPa, it becomes difficult to obtain a sintered body having a sufficient density of about 70% or more of the theoretical density, and the obtained sample cannot be practically used in terms of strength. There is a fear. On the other hand, when the sintering pressure exceeds 60 MPa, it is not preferable in terms of cost and is not practical. If the sintering temperature is less than 600 ° C., it is difficult to obtain a sintered body having a density close to the theoretical density from 70% of the theoretical density obtained by fusing and firing at least part of the surfaces where the particles are in contact with each other. Therefore, there is a possibility that the obtained sample cannot be practically used in terms of strength. Further, when the sintering temperature exceeds 1000 ° C., the temperature is too high, so that not only the sample is damaged, but in some cases, Mg may rapidly become vapor and scatter.
- the sintering temperature is in the range of 600 to 800 ° C., and when the sintering temperature is close to 600 ° C., the sintering pressure is close to 60 MPa.
- the sintering conditions are such that the sintering pressure is close to 5 MPa, and sintering is performed for about 5 to 60 minutes, preferably about 10 minutes.
- a hot press sintering method HP
- a hot isostatic sintering method HIP
- a discharge plasma sintering method is preferable.
- the spark plasma sintering method is a type of pressure compression sintering using the direct current pulse current method. It is a method of heating and sintering by applying a large pulse current to various materials. -This is a method in which an electric current is passed through a conductive material such as graphite and the material is processed and processed by Joule heating.
- the sintered body thus obtained becomes a sintered body having high physical strength and capable of stably exhibiting high thermoelectric conversion performance, is not weathered, has excellent durability, stability and reliability. It can be used as a thermoelectric conversion material with excellent properties.
- thermoelectric conversion element includes a thermoelectric conversion part, and a first electrode and a second electrode provided in the thermoelectric conversion part, and the thermoelectric conversion part uses the magnesium-silicon composite material according to the invention. It is manufactured.
- thermoelectric conversion part As a thermoelectric conversion part, what cut out the sintered compact obtained by said sintering process to the desired magnitude
- the thermoelectric conversion part having a multilayer structure can be manufactured by laminating a plurality of types of thermoelectric conversion materials before sintering in a desired order and then sintering (see Example 15 described later).
- the plurality of types of thermoelectric conversion materials may be a combination of the magnesium-silicon composite material according to the present invention having different dopants, and the magnesium-silicon composite material according to the present invention substantially free of dopant and the book containing the dopant. It may be a combination with the magnesium-silicon composite material according to the invention. Alternatively, a combination of the magnesium-silicon composite material according to the present invention and another conventionally known thermoelectric conversion material may be used. However, it is preferable to combine magnesium-silicon composite materials because the laminated interface does not deteriorate due to a difference in expansion coefficient.
- thermoelectric conversion part desired characteristics by making the thermoelectric conversion part have a multilayer structure.
- the magnesium-silicon composite material according to the present invention contains Sb as a dopant, a thermoelectric conversion material excellent in durability at high temperatures can be obtained.
- Sb since Sb has a large environmental load, it is preferable to reduce the amount of Sb used as much as possible. Therefore, it is possible to make the thermoelectric conversion part a multilayer structure, and to use a magnesium-silicon composite material containing Sb only in a layer adjacent to the first electrode or the second electrode. By setting the layer containing Sb on the high temperature side of the thermoelectric conversion element, it is possible to obtain a thermoelectric conversion element that is excellent in durability at high temperatures and has a reduced environmental load.
- the formation method of the first electrode and the second electrode is not particularly limited, but the thermoelectric conversion element manufactured using the magnesium-silicon composite material according to the present invention can form an electrode by a plating method. It is one of. Normally, when an electrode is formed by a plating method on a thermoelectric conversion part manufactured using a magnesium-silicon composite material, hydrogen gas is generated due to metal magnesium remaining in the material, and the adhesion of plating is reduced. Deteriorate. On the other hand, in the case of a thermoelectric conversion part manufactured using the magnesium-silicon composite material according to the present invention, since the material contains almost no metallic magnesium, an electrode having high adhesion can be formed by a plating method. Is possible. Although it does not specifically limit as a plating method, Electroless nickel plating is preferable.
- the sintered body with the plated layer thus obtained is cut into a predetermined size with a cutting machine such as a wire saw or a blade saw, and consists of a first electrode, a thermoelectric converter, and a second electrode. A thermoelectric conversion element is produced.
- the first electrode and the second electrode can be integrally formed during the sintering of the magnesium-silicon composite material. That is, by laminating an electrode material, a magnesium-silicon composite material, and an electrode material in this order and performing pressure compression sintering, a sintered body having electrodes formed at both ends can be obtained (Example 10 described later). Etc.).
- the layer of the pulverized product of the magnesium-silicon composite material according to the present invention, the layer of the metal powder for forming an electrode, and the layer of the insulating material powder are laminated to a predetermined thickness, followed by pressure compression sintering.
- the insulating material powder is effective for preventing electricity from flowing from the sintering apparatus to the electrode-forming metal powder and preventing melting, and separates the insulating material from the formed electrode after sintering.
- carbon paper is sandwiched between an insulating material powder layer and a metal powder layer for electrode formation, and further carbon paper is placed on the side inner wall surface of the cylindrical sintering jig, It is effective for preventing mixing and separating the electrode and the insulating material layer after sintering. Since many of the upper and lower surfaces of the sintered body thus obtained are uneven, it must be polished and smoothed, and then a predetermined size with a cutting machine such as a wire saw or blade saw.
- thermoelectric conversion element including the first electrode, the thermoelectric conversion unit, and the second electrode is manufactured.
- the metal powder for electrode formation is melted by the current, so that a large current cannot be used and it is difficult to adjust the current. Therefore, the electrode is removed from the obtained sintered body. There was a problem of peeling.
- the first method by providing the insulating material powder layer, a large current can be used, and as a result, an initial sintered body can be obtained.
- a layer of electrode-forming metal powder such as Ni is sequentially formed in the cylindrical sintering jig from the bottom.
- a layer of the pulverized product of the magnesium-silicon composite material according to the above and a layer of the metal powder for electrode formation are laminated, and the surface of the graphite die of the sintering jig in contact with the layer of the metal powder for electrode formation is Applying or spraying various insulating, heat-resistant, and releasable ceramic particles to perform pressure compression sintering. In this case, it is not necessary to use carbon paper as in the first method.
- thermoelectric conversion element which consists of a 1st electrode, a thermoelectric conversion part, and a 2nd electrode by cutting the obtained sintered compact to a predetermined magnitude
- thermoelectric conversion module The thermoelectric conversion module according to the present invention includes the thermoelectric conversion element according to the present invention as described above.
- thermoelectric conversion modules include those shown in FIGS. 1 and 2, for example.
- this thermoelectric conversion module an n-type semiconductor and a p-type semiconductor obtained from the magnesium-silicon composite material according to the present invention are used as thermoelectric conversion materials for the n-type thermoelectric conversion unit 101 and the p-type thermoelectric conversion unit 102, respectively.
- Electrodes 1015 and 1025 are provided at the upper ends of the n-type thermoelectric converter 101 and the p-type thermoelectric converter 102 arranged side by side, and electrodes 1016 and 1026 are provided at the lower ends.
- the electrodes 1015 and 1025 provided at the upper ends of the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit are connected to form an integrated electrode, and the n-type thermoelectric conversion unit and the p-type thermoelectric conversion unit
- the electrodes 1016 and 1026 provided respectively at the lower end of each are separated.
- thermoelectric conversion module for example, those shown in FIGS. 3 and 4 can be cited.
- an n-type semiconductor obtained from the magnesium-silicon composite material according to the present invention is used as the thermoelectric conversion material of the n-type thermoelectric conversion unit 103.
- the n-type thermoelectric conversion unit 103 is provided with an electrode 1035 at the upper end and an electrode 1036 at the lower end.
- the magnesium-silicon composite material according to the present invention can obtain high thermoelectric conversion performance when, for example, the magnesium-silicon composite material is used in a thermoelectric conversion module. Can do.
- high-purity silicon a semiconductor grade manufactured by MEMC Electronic Materials, having a purity of 99.999999999%, and having a diameter of 4 mm or less was used.
- magnesium a piece of magnesium manufactured by Nippon Thermochemical Co., Ltd., having a purity of 99.93% and a size of 1.4 mm ⁇ 0.5 mm was used.
- the above composition raw material was put into a melting crucible made of Al 2 O 3 (manufactured by Nippon Chemical Ceramics Co., Ltd., inner diameter 34 mm, outer diameter 40 mm, height 150 mm; lid portion 40 mm in diameter and thickness 2.5 mm).
- the melting crucible has a surface roughness Ra of 0.5 ⁇ m and a surface waviness Rmax of 1.0 ⁇ m on the contact surface of the edge of the opening to the lid and the contact surface of the lid on the edge of the opening. What was grind
- the edge of the opening of the melting crucible and the lid were brought into close contact with each other, placed in a heating furnace, and pressurized with a weight from the outside of the heating furnace through a ceramic rod to 3 kg / cm 2 . .
- the inside of the heating furnace was depressurized with a rotary pump to 5 Pa or less, and then with a diffusion pump to 1.33 ⁇ 10 ⁇ 2 Pa.
- the inside of the heating furnace was heated at 200 ° C./h until reaching 150 ° C., and kept at 150 ° C. for 1 hour to dry the composition raw material.
- the heating furnace was filled with a mixed gas of hydrogen gas and argon gas, the hydrogen gas partial pressure was 0.005 MPa, and the argon gas partial pressure was 0.052 MPa.
- Example 2 In the mixing step, the composition raw material (66.47 at% Mg, 33.53 at% Si) was obtained by changing the addition amount of high-purity silicon to 36.91 parts by mass and the addition amount of magnesium to 63.33 parts by mass.
- a magnesium-silicon composite material (Sample C) was obtained in the same manner as in Example 1 except for the above.
- Example 3> In the mixing step, the amount of high-purity silicon added was changed to 36.58 parts by mass, and the amount of magnesium added was changed to 63.61 parts by mass to obtain a composition raw material (66.77 at% Mg, 33.23 at% Si). A magnesium-silicon composite material (Sample E) was obtained in the same manner as in Example 1 except for the above.
- Example 2 In the mixing step, the amount of high-purity silicon added was changed to 38.01 parts by mass and the amount of magnesium added was changed to 62.37 parts by mass to obtain a composition raw material (65.47 at% Mg, 34.53 at% Si). A magnesium-silicon composite material (Sample B) was obtained in the same manner as in Example 1 except for the above.
- Example 3 In the mixing step, the amount of high-purity silicon added was changed to 38.89 parts by mass, and the amount of magnesium added was changed to 61.61 parts by mass to obtain a composition raw material (64.67 at% Mg, 35.33 at% Si). A magnesium-silicon composite material (sample A) was obtained in the same manner as in Example 1 except for the above.
- Example 4 In the mixing step, the amount of high-purity silicon added was changed to 34.49 parts by mass and the amount of magnesium added was changed to 65.42 parts by mass to obtain a composition material (68.67 at% Mg, 31.33 at% Si). A magnesium-silicon composite material (Sample F) was obtained in the same manner as in Example 1 except for the above.
- FIG. 10 shows the relationship between temperature and thermoelectric characteristics.
- the magnesium-silicon composite material (sintered body) obtained in Comparative Example 1 was polished with diamond abrasive grains in the order of 9 ⁇ m, 3 ⁇ m, and 1 ⁇ m, and the degree of aggregation of crystal grains was observed. The results are shown in Table 1 and FIG.
- the magnesium-silicon composite materials of Examples 1 to 3 have a dimensionless figure of merit of 0.665 or more.
- the magnesium-silicon composite material has a thermal conductivity of 3.50 W / m ⁇ K or less. From these results, it can be seen that the magnesium-silicon composite material according to the present invention exhibits excellent thermoelectric performance. Furthermore, it can be seen that the magnesium-silicon composite material according to the present invention has better characteristics than the magnesium-silicon composite material prepared by the mechanical alloy method.
- the dimensionless figure of merit is 0 although the raw material composition is the same as in Example 1. .573.
- unreacted Si was observed by observation under an optical microscope. This is presumably because the sealing performance at the contact surface between the melting crucible and the lid portion was deteriorated due to the absence of the polishing treatment, and the proportion of Si was relatively increased due to scattering of evaporated Mg.
- the dimensionless figure of merit was 0.644 at the maximum for the magnesium-silicon composite materials of Comparative Examples 2 to 4 having different raw material compositions from the Examples.
- magnesium-silicon composite materials were prepared from composition raw materials of Mg of 64.67 to 68.67 at% and Si of 31.33 to 35.33 at%, respectively.
- the target is Cu K-ALPHA 1
- the divergence slit is 1 deg
- the scattering slit is 1 deg
- the light emitting slit is 0.3 mm.
- the Mg peak intensity is 12.9 cps or less
- the Si peak intensity is 340. It can be seen that it is 5 cps or less.
- Example 3 Preparation of magnesium-silicon composite material >> ⁇ Example 4> [Mixing process] 36.44 parts by mass of high-purity silicon, 63.08 parts by mass of magnesium, and 0.47 parts by mass of antimony are mixed, and composition raw materials (66.60 at% Mg, 33.30 at% Si, 0.10 at% Sb) Got.
- high-purity silicon a semiconductor grade manufactured by MEMC Electronic Materials, having a purity of 99.999999999%, and having a diameter of 4 mm or less was used.
- magnesium a piece of magnesium manufactured by Nippon Thermochemical Co., Ltd., having a purity of 99.93% and a size of 1.4 mm ⁇ 0.5 mm was used.
- antimony a granular material manufactured by Electronics End Materials Corporation, having a purity of 99.9999% and a diameter of 5 mm or less was used.
- the above composition raw material was put into a melting crucible made of Al 2 O 3 (manufactured by Nippon Chemical Ceramics Co., Ltd., inner diameter 34 mm, outer diameter 40 mm, height 150 mm; lid portion 40 mm in diameter and thickness 2.5 mm).
- the melting crucible has a surface roughness Ra of 0.5 ⁇ m and a surface waviness Rmax of 1.0 ⁇ m on the contact surface of the edge of the opening to the lid and the contact surface of the lid on the edge of the opening. What was grind
- the edge of the opening of the melting crucible and the lid were brought into close contact with each other, placed in a heating furnace, and pressurized with a weight from the outside of the heating furnace through a ceramic rod to 3 kg / cm 2 . .
- the inside of the heating furnace was depressurized with a rotary pump to 5 Pa or less, and then with a diffusion pump to 1.33 ⁇ 10 ⁇ 2 Pa.
- the inside of the heating furnace was heated at 200 ° C./h until reaching 150 ° C., and kept at 150 ° C. for 1 hour to dry the composition raw material.
- the heating furnace was filled with a mixed gas of hydrogen gas and argon gas, the hydrogen gas partial pressure was 0.005 MPa, and the argon gas partial pressure was 0.052 MPa.
- the adhered carbon paper was removed with sandpaper to obtain a magnesium-silicon composite material (sintered body).
- Example 5 In the mixing step, the amount of high-purity silicon added was changed to 35.76 parts by mass, the amount of magnesium added was changed to 61.90 parts by mass, and the amount of antimony added was changed to 2.34 parts by mass to obtain a composition raw material (66.33 atm. % Mg, 33.17 at% Si, 0.50 at%) was obtained in the same manner as in Example 4 to obtain a magnesium-silicon composite material (sintered body).
- Example 6> In the mixing step, 36.23 parts by mass of high-purity silicon, 62.72 parts by mass of magnesium, and 1.06 parts by mass of aluminum were mixed to obtain a composition raw material (66.00 at% Mg, 33.00 at% Si, 1. A magnesium-silicon composite material (sintered body) was obtained in the same manner as in Example 4 except that 00at% Al) was obtained and the sintering conditions were changed as follows. In addition, as aluminum, the chip-like thing made from Furuuchi Chemical Co., Ltd., purity 99.99%, and a magnitude
- Example 7 In the mixing step, 35.17 parts by mass of high-purity silicon, 60.89 parts by mass of magnesium, and 3.95 parts by mass of bismuth were mixed, and the composition raw materials (66.33 at% Mg, 33.17 at% Si,. A magnesium-silicon composite material (sintered body) was obtained in the same manner as in Example 4 except that 50 at% Bi) was obtained.
- As the bismuth a granular product having a purity of 99.99% and a size of 3 mm or less manufactured by Mitsuwa Chemical Co., Ltd. was used.
- Example 8> In the mixing step, 33.46 parts by mass of high-purity silicon, 57.93 parts by mass of magnesium, 0.98 parts by mass of aluminum, and 7.62 parts by mass of bismuth are mixed, and composition raw materials (65.33 at% Mg, A magnesium-silicon composite material (sintered body) was obtained in the same manner as in Example 4 except that 32.66 at% Si, 1.00 at% Al, and 1.00 at% Bi) were obtained.
- aluminum the chip-like thing made from Furuuchi Chemical Co., Ltd., purity 99.99%, and a magnitude
- bismuth a granular product having a purity of 99.99% and a size of 3 mm or less manufactured by Mitsuwa Chemical Co., Ltd. was used.
- ⁇ Comparative Example 5> 35.76 parts by mass of high-purity silicon, 61.90 parts by mass of magnesium, and 2.34 parts by mass of antimony are mixed, and composition raw materials (66.33 at% Mg, 33.17 at% Si, 0.50 at% Sb) Got.
- high-purity silicon a semiconductor grade manufactured by MEMC Electronic Materials, having a purity of 99.999999999%, and having a diameter of 4 mm or less was used.
- magnesium a piece of magnesium manufactured by Nippon Thermochemical Co., Ltd., having a purity of 99.93% and a size of 1.4 mm ⁇ 0.5 mm was used.
- antimony a granular material manufactured by Electronics End Materials Corporation, having a purity of 99.9999% and a diameter of 5 mm or less was used.
- the adhered carbon paper was removed with sandpaper to obtain a magnesium-silicon composite material (sintered body).
- the magnesium-silicon composite materials of Examples 4 to 8 have a dimensionless figure of merit of 0.665 or more.
- the magnesium-silicon composite material has a thermal conductivity of 3.50 W / m ⁇ K or less. From these results, it can be seen that the magnesium-silicon composite material according to the present invention exhibits excellent thermoelectric performance.
- the dimensionless figure of merit was 0.551 at the maximum in the magnesium-silicon composite material of Comparative Example 5 whose raw material composition was different from the Examples.
- the Mg peak intensity was 12.9 cps or less and the Si peak intensity was 340.5 cps or less.
- high-purity silicon a semiconductor grade manufactured by MEMC Electronic Materials, having a purity of 99.999999999%, and having a diameter of 4 mm or less was used.
- magnesium a piece of magnesium manufactured by Nippon Thermochemical Co., Ltd., having a purity of 99.93% and a size of 1.4 mm ⁇ 0.5 mm was used.
- the above composition raw material was put into a melting crucible made of Al 2 O 3 (manufactured by Nippon Chemical Ceramics Co., Ltd., inner diameter 34 mm, outer diameter 40 mm, height 150 mm; lid portion 40 mm in diameter and thickness 2.5 mm).
- the melting crucible has a surface roughness Ra of 0.5 ⁇ m and a surface waviness Rmax of 1.0 ⁇ m on the contact surface of the edge of the opening to the lid and the contact surface of the lid on the edge of the opening. What was grind
- the edge of the opening of the melting crucible and the lid were brought into close contact with each other, placed in a heating furnace, and pressurized with a weight from the outside of the heating furnace through a ceramic rod to 3 kg / cm 2 . .
- the inside of the heating furnace the pressure was reduced to equal to or less than 5Pa a rotary pump, then the pressure was reduced to a 1.33 ⁇ 10 -2 Pa with a diffusion pump.
- the inside of the heating furnace was heated at 200 ° C./h until reaching 150 ° C., and kept at 150 ° C. for 1 hour to dry the composition raw material.
- the heating furnace was filled with a mixed gas of hydrogen gas and argon gas, the hydrogen gas partial pressure was 0.005 MPa, and the argon gas partial pressure was 0.052 MPa.
- SiO 2 powder (average particle size 63 ⁇ m, purity 99.9%) is charged outside the Ni electrode layer in order to prevent Ni leakage due to a large current from the sintering device to Ni. , and the SiO 2 layer. Carbon paper was sandwiched between the SiO 2 layer and the Ni electrode layer to prevent powder mixing.
- sintering was performed using a discharge plasma sintering apparatus (ELENIX, “PAS-III-Es”).
- the sintering conditions are as follows. Sintering temperature: 850 ° C Pressure: 30.0 MPa Temperature rising rate: 300 ° C / min ⁇ 2min (up to 600 ° C) 100 ° C / min ⁇ 2min (600-800 ° C) 10 °C / min ⁇ 5min (800 ⁇ 850 °C) 0 ° C / min ⁇ 5min (850 ° C) Cooling conditions: Vacuum cooling Atmosphere: Ar 60 Pa (vacuum when cooling)
- thermoelectric conversion element 2 mm ⁇ 2 mm ⁇ 10 mm was cut out using a wire saw.
- thermoelectric conversion element obtained in Examples 9 and 10
- the output power was measured using a thermoelectric property evaluation apparatus (“UMTE-1000M” manufactured by Union Material Co., Ltd.). Specifically, the low temperature side was fixed at 100 ° C., the high temperature side was changed from 200 to 600 ° C., and the temperature difference ⁇ T was measured as 100 to 500K. The results are shown in FIG. As can be seen from FIG. 16, the thermoelectric conversion element of Example 9 in which the electrode was formed by plating was equivalent to the thermoelectric conversion element of Example 10 in which the magnesium-silicon composite material and the electrode material were integrally sintered as in the prior art. Output power is obtained. From this, it can be seen that a good electrode bonding state is obtained even when the electrode is formed by plating.
- magnesium-silicon is obtained from a composition raw material of 66.67 at% Mg and 33.33 at% Si according to Example 1.
- a composite material sintered body
- a composition raw material having Mg of 66.67 at% and Si of 33.33 at% is charged into the space surrounded by the graphite die 10 and the graphite punches 11a and 11b in FIG.
- a magnesium-silicon composite material sintered body
- Sintering temperature 600 ° C Pressure: 30.0 MPa
- Temperature rising rate 300 ° C / min ⁇ 2min (up to 600 ° C) 0 °C / min ⁇ 15min (600 °C)
- FIG. 17 A state in which the sintered body is immersed in water is shown in FIG.
- the left side in the figure is a magnesium-silicon composite material according to the present invention
- the right side in the figure is a comparative magnesium-silicon composite material.
- hydrogen gas is not generated from the magnesium-silicon composite material according to the present invention, but a number of bubbles are attached to the comparative magnesium-silicon composite material, and hydrogen gas is generated. Is confirmed.
- thermoelectric conversion element was manufactured in the same manner as in Example 10 except that the composition raw material of 66.60 at% Mg, 33.30 at% Si, and 0.10 at% Sb was used according to Example 4. .
- thermoelectric conversion element was manufactured in the same manner as in Example 10 except that a composition raw material having 66.33 at% Mg, 33.17 at% Si, and 0.50 at% Sb was used according to Example 5. .
- thermoelectric conversion element was produced in the same manner as in Example 10 except that a composition material having Mg of 66.00 at%, Si of 33.00 at%, and Sb of 1.00 at% was used.
- ⁇ Comparative Example 6> 36.69 parts by mass of high-purity silicon and 63.52 parts by mass of magnesium were mixed to obtain a composition raw material (66.67 at% Mg, 33.33 at% Si).
- high-purity silicon a semiconductor grade manufactured by MEMC Electronic Materials, having a purity of 99.999999999%, and having a diameter of 4 mm or less was used.
- magnesium a piece of magnesium manufactured by Nippon Thermochemical Co., Ltd., having a purity of 99.93% and a size of 1.4 mm ⁇ 0.5 mm was used.
- sintering was performed using a discharge plasma sintering apparatus (ELENIX, “PAS-III-Es”).
- the sintering conditions are as follows. Sintering temperature: 600 ° C Pressure: 30.0 MPa Temperature rising rate: 300 ° C / min ⁇ 2min (up to 600 ° C) 0 °C / min ⁇ 15min (600 °C) Cooling conditions: Vacuum cooling Atmosphere: Ar 60 Pa (vacuum when cooling)
- thermoelectric conversion element 2 mm ⁇ 2 mm ⁇ 10 mm was cut out using a wire saw.
- thermoelectric conversion element was manufactured by the same method as Comparative Example 6 except that a composition raw material containing 66.33 at% Mg, 33.17 at% Si, and 0.50 at% Sb was used.
- thermoelectric conversion element obtained in Examples 10 to 13 and Comparative Examples 6 and 7 was subjected to an endurance test using a thermoelectric property evaluation apparatus (“UMTE-1000M” manufactured by Union Material Co., Ltd.). Specifically, the temperature change was measured at room temperature for 100 hours with the low temperature side fixed at 50 ° C. and the high temperature side fixed at 600 ° C. Table 5 shows the increase / decrease ratio (%) of the resistivity after the lapse of 2, 5, 10, 20, 50, and 100 hours, based on the resistivity after the lapse of 1 hour.
- thermoelectric conversion element of Example 10 As can be seen from Table 5, the resistivity of the thermoelectric conversion element of Example 10 was slightly increased by a 100-hour durability test, but the thermoelectric elements of Examples 11 to 13 using a magnesium-silicon composite material containing Sb as a dopant. The conversion element had little change in resistivity even after a 100-hour endurance test, and was excellent in durability. On the other hand, the thermoelectric conversion elements of Comparative Examples 6 and 7 using a magnesium-silicon composite material having a raw material composition different from that of the example showed a remarkable increase in resistivity in about 10 hours and poor durability. It was.
- thermoelectric conversion element >> ⁇ Example 14> According to Example 6, except that the composition raw material with 66.00 at% Mg, 33.00 at% Si, and 1.00 at% Al was used, and the sintering conditions were changed as follows. 10 was used to manufacture a thermoelectric conversion element.
- Example 15 A sample after pulverization was obtained in the same manner as in Example 10 except that the composition raw material of 66.33 at% Mg, 33.17 at% Si, and 0.50 at% Sb was used in the same manner as in Example 5. It was. Further, the sample after pulverization was performed in the same manner as in Example 10 except that a composition raw material of 66.00 at% Mg, 33.00 at% Si, and 1.00 at% Al was used according to Example 6. Got. As shown in FIG.
- Ni powder average particle size 2 ⁇ m, purity 99.9%
- dopant 1.77 g of pulverized magnesium-silicon composite material containing Sb as a base material, 1.77 g of pulverized magnesium-silicon composite material containing Al as a dopant and 0.3 g of Ni powder were charged in this order, and a thermoelectric conversion layer and a Ni electrode layer were prepared. Formed.
- thermoelectric conversion element 0.1 g of SiO 2 powder (average particle size 63 ⁇ m, purity 99.9%) is charged outside the Ni electrode layer in order to prevent Ni leakage due to a large current from the sintering device to Ni. SiO 2 layer. Carbon paper was sandwiched between the SiO 2 layer and the Ni electrode layer to prevent powder mixing. Thereafter, discharge plasma sintering was performed in the same manner as in Example 10 to produce a thermoelectric conversion element.
- thermoelectric property evaluation apparatus (“UMTE-1000M” manufactured by Union Material Co., Ltd.). Specifically, the low temperature side was fixed at 100 ° C., the high temperature side was changed from 200 to 600 ° C., and the temperature difference ⁇ T was measured as 100 to 500K. In addition, about the thermoelectric conversion element of Example 15, the side containing Sb as a dopant was made into the high temperature side, and the side containing Al as a dopant was made into the low temperature side. Further, FIG.
- thermoelectric conversion element of Example 12 containing Sb as the dopant hardly changed the output power after 1000 hours of endurance test, but the thermoelectric conversion element of Example 14 containing Al as the dopant.
- the output power decreased by about 10 mW after the endurance test for 1000 hours.
- thermoelectric conversion element of Example 15 including Sb and Al as dopants and the side containing Sb being a high temperature side a decrease in output power was suppressed as compared with the thermoelectric conversion element of Example 14.
- high-purity silicon a semiconductor grade manufactured by MEMC Electronic Materials, having a purity of 99.999999999%, and having a diameter of 4 mm or less was used.
- magnesium a piece of magnesium manufactured by Nippon Thermochemical Co., Ltd., having a purity of 99.93% and a size of 1.4 mm ⁇ 0.5 mm was used.
- the above composition raw material was put into a melting crucible made of Al 2 O 3 (manufactured by Nippon Chemical Ceramics Co., Ltd., inner diameter 34 mm, outer diameter 40 mm, height 150 mm; lid portion 40 mm in diameter and thickness 2.5 mm).
- the melting crucible has a surface roughness Ra of 0.5 ⁇ m and a surface waviness Rmax of 1.0 ⁇ m on the contact surface of the edge of the opening to the lid and the contact surface of the lid on the edge of the opening. What was grind
- the edge of the opening of the melting crucible and the lid were brought into close contact with each other, placed in a heating furnace, and pressurized with a weight from the outside of the heating furnace through a ceramic rod to 3 kg / cm 2 . .
- the inside of the heating furnace was depressurized with a rotary pump to 5 Pa or less, and then with a diffusion pump to 1.33 ⁇ 10 ⁇ 2 Pa.
- the inside of the heating furnace was heated at 200 ° C./h until reaching 150 ° C., and kept at 150 ° C. for 1 hour to dry the composition raw material.
- the heating furnace was filled with a mixed gas of hydrogen gas and argon gas, the hydrogen gas partial pressure was 0.005 MPa, and the argon gas partial pressure was 0.052 MPa.
- a liquid containing a heat-resistant release ceramic powder such as boron nitride is applied or sprayed only on the surface of the graphite die that is in contact with the sintered sample in advance to prevent Ni leakage due to a large current from the sintering device to Ni. It was used as a substitute for the carbon paper for preventing mixing of the SiO 2 layer and powder for prevention.
- sintering was performed using a discharge plasma sintering apparatus (ELENIX, “PAS-III-Es”).
- the sintering conditions are as follows. Sintering temperature: 840 ° C Pressure: 30.0 MPa After 1 min of rectangular wave current energization, the temperature is increased at the following rate. 100 ° C / min ⁇ 2min (600-800 ° C) 10 °C / min ⁇ 4min (800 ⁇ 840 °C) 0 ° C / min ⁇ 5min (840 ° C) Cooling conditions: Vacuum cooling Atmosphere: Ar 60 Pa (vacuum when cooling)
- thermoelectric conversion element 2 mm ⁇ 2 mm ⁇ 10 mm was cut out using a wire saw.
- Example 10 using an SiO 2 layer for preventing leakage of Ni due to a large current to Ni from the sintering apparatus and carbon paper for preventing powder mixing, and sintering in Example 16
- the Ni electrodes on the upper and lower surfaces were polished by a grinder so as to be smooth.
- Table 6 shows the height (mm) of the sintered pellets before and after polishing.
- thermoelectric conversion element As can be seen from Table 6, when a heat-resistant release agent is used as in Example 16, it is not necessary to use a SiO 2 layer and carbon paper for preventing powder mixing as in Example 10. Further, since the smoothness of the surface of the sintered pellet is improved, the polishing amount of the Ni electrode can be reduced. Therefore, it is possible to provide a thermoelectric conversion element that is simple, efficient, and highly reliable.
- thermoelectric converter 1015 101 n-type thermoelectric converter 1015, 1016 electrode 102 p-type thermoelectric converter 1025, 1026 electrode 103 n-type thermoelectric converter 1035, 1036 electrode 3 load 4 DC power supply 10 graphite die 11a, 11b graphite punch
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Metallurgy (AREA)
- Silicon Compounds (AREA)
- Powder Metallurgy (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
また、本発明に係るマグネシウム-ケイ素複合材料は、ドーパントを含む場合であっても、Mgピーク強度が小さく、材料中に金属マグネシウムが殆ど含まれない点に特徴を有する。
前記熱電変換部が[1]から[7]のいずれかに記載のマグネシウム-ケイ素複合材料を用いて製造される熱電変換素子。
また、第1電極及び第2電極は、マグネシウム-ケイ素複合材料の焼結時に、熱電変換部と一体に形成することも可能である。即ち、電極材料、マグネシウム-ケイ素複合材料、電極材料をこの順で積層し、加圧圧縮焼結することにより、両端に電極が形成された焼結体を得ることができる
前記第1電極又は前記第2電極に隣接した層が、Mgの含有量とSiの含有量との比が原子量比で66.17:33.83~66.77:33.23であり、Sbの含有量が原子量比で0.10~2.0at%である組成原料から合成されるマグネシウム-ケイ素複合材料からなる[11]から[13]のいずれかに記載の熱電変換素子。
[マグネシウム-ケイ素複合材料の特性]
本発明に係るマグネシウム-ケイ素複合材料は、MgとSiとの原子量比が略2:1であって、866Kにおける無次元性能指数が0.665以上、好ましくは0.700以上である。マグネシウム-ケイ素複合材料の866Kにおける無次元性能指数が0.665以上であることにより、例えば、マグネシウム-ケイ素複合材料を熱電変換素子、熱電変換モジュールに使用する場合に、高い熱電変換性能を得ることができる。
一方、ドーパントを含む場合、本発明に係るマグネシウム-ケイ素複合材料は、管電圧40kV、管電流40mAの条件下におけるX線回折において、2θ=36.34~36.68度におけるMgピーク強度が12.9cps以下であり、2θ=28.30~28.52度におけるSiピーク強度が340.5cps以下である。なお、実質的にドーパントを含まない場合とピーク位置が異なるのは、ドーパント種やその含有量によって若干の干渉を受けるためである。
本発明に係るマグネシウム-ケイ素複合材料は、熱電変換材料として好適に使用できるものである。即ち、本発明に係るマグネシウム-ケイ素複合材料は、無次元性能指数が0.665以上のものであるので、これを熱電変換材料として熱電変換素子、熱電変換モジュールに使用する場合に、高い熱電変換性能を得ることができる。
実質的にドーパントを含まない場合、本発明に係るマグネシウム-ケイ素複合材料は、Mgの含有量が原子量比で66.17~66.77at%であり、Siの含有量が原子量比で33.23~33.83at%である組成原料を、開口部とこの開口部を覆う蓋部とを有し、上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有する製造方法により製造される。
一方、ドーパントを含む場合、本発明に係るマグネシウム-ケイ素複合材料は、Mgの含有量とSiの含有量との比が原子量比で66.17:33.83~66.77:33.23であり、ドーパントの含有量が原子量比で0.10~2.0at%である組成原料を、開口部とこの開口部を覆う蓋部とを有し、上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有する製造方法により製造される。
実質的にドーパントを含まない場合、混合工程においては、MgとSiとを混合して、Mgの含有量が原子量比で66.17~66.77at%であり、Siの含有量が原子量比で33.23~33.83at%である組成原料を得る。
Mgの含有量とSiの含有量との比は、原子量比で66.27:33.73~66.67:33.33であることが好ましい。
加熱溶融工程においては、混合工程にて得た組成原料を還元雰囲気下且つ好ましくは減圧下において、Mgの融点を超えSiの融点を下回る温度条件下で熱処理してMg2Siを溶融合成することが好ましい。ここで、「還元雰囲気下」とは、特に水素ガスを5体積%以上含み、必要に応じてその他の成分として、不活性化ガスを含む雰囲気を指す。斯かる還元雰囲気下で加熱溶融工程を行うことにより、MgとSiとを確実に反応させることでき、マグネシウム-ケイ素複合材料を合成することができる。
また、加熱溶融工程における加熱条件としては、700℃以上1410℃未満、好ましくは1085℃以上1410℃未満で、例えば3時間程度熱処理することができる。ここで、熱処理の時間は、例えば2~10時間である。熱処理を長時間のものとすることにより、得られるマグネシウム-ケイ素複合材料をより均一化することができる。なお、Mg2Siの融点は1085℃であり、ケイ素の融点は1410℃である。
粉砕工程は、加熱溶融された試料を粉砕する工程である。粉砕工程においては、加熱溶融された試料を、微細で、狭い粒度分布を有する粒子に粉砕することが好ましい。微細で、狭い粒度分布を有する粒子に粉砕することにより、これを焼結する際に、粉砕された粒子同士がその表面の少なくとも一部において融着し、空隙(ボイド)の発生がほとんど観察されない程度に焼結することができ、理論値の約70%から理論値とほぼ同程度の密度を有する焼結体を得ることができる。
焼結工程は、粉砕した上記試料を焼結する工程である。焼結工程における焼結の条件としては、粉砕した上記試料を例えばグラファイト製の焼結用冶具内で、加圧圧縮焼結法により真空又は減圧雰囲気下で焼結圧力5~60MPa、焼結温度600~1000℃で焼結する方法を挙げることができる。
本発明に係る熱電変換素子は、熱電変換部と、該熱電変換部に設けられた第1電極及び第2電極とを備え、この熱電変換部が本発明に係るマグネシウム-ケイ素複合材料を用いて製造されるものである。
熱電変換部としては、上記の焼結工程にて得られた焼結体を、ワイヤーソー等を用いて所望の大きさに切り出したものを用いることができる。
この熱電変換部は、通常、1種類の熱電変換材料を用いて製造されるが、複数種類の熱電変換材料を用いて複層構造を有する熱電変換部としてもよい。複層構造を有する熱電変換部は、焼結前の複数種類の熱電変換材料を所望の順序で積層した後、焼結することにより製造することができる(後述する実施例15を参照)。複数種類の熱電変換材料としては、ドーパントが異なる本発明に係るマグネシウム-ケイ素複合材料の組み合わせであってもよく、実質的にドーパントを含まない本発明に係るマグネシウム-ケイ素複合材料とドーパントを含む本発明に係るマグネシウム-ケイ素複合材料との組み合わせであってもよい。或いは、本発明に係るマグネシウム-ケイ素複合材料と従来公知の他の熱電変換材料との組み合わせであってもよい。ただし、マグネシウム-ケイ素複合材料同士を組み合わせる方が、膨張係数の違い等によって積層界面が劣化することがないため好ましい。
上記第1電極及び第2電極の形成方法は特に限定されるものではないが、本発明に係るマグネシウム-ケイ素複合材料を用いて製造された熱電変換素子は、メッキ法により電極を形成できることが特徴の1つである。
通常、マグネシウム-ケイ素複合材料を用いて製造された熱電変換部にメッキ法で電極を形成しようとした場合、材料中に残留する金属マグネシウムに起因して水素ガスが発生し、メッキの接着性が悪くなる。一方、本発明に係るマグネシウム-ケイ素複合材料を用いて製造された熱電変換部の場合には、材料中に金属マグネシウムが殆ど含まれないため、メッキ法により接着性の高い電極を形成することが可能である。メッキ法としては、特に限定されないが、無電界ニッケルメッキが好ましい。
このようにして得られたメッキ層付きの焼結体を、ワイヤーソーやブレードソーのような切断機で所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子が作製される。
第1の方法は、例えばグラファイトダイ及びグラファイト製パンチからなる円筒型の焼結用冶具内にその底部から順次、SiO2のような絶縁性材料粉末の層、Niのような電極形成用金属粉末の層、本発明に係るマグネシウム-ケイ素複合材料の粉砕物の層、上記電極形成用金属粉末の層、上記絶縁性材料粉末の層を所定の厚さで積層した後、加圧圧縮焼結を行う。
上記絶縁性材料粉末は、焼結装置から電極形成用金属粉末に電気が流れるのを防止し、溶融を防ぐために有効であり、焼結後、形成された電極から該絶縁性材料を分離する。
第1の方法においては、カーボンペーパーを絶縁性材料粉末層と電極形成用金属粉末層との間に挟み、さらに円筒型焼結用冶具の側内壁表面にカーボンペーパーを設置しておけば、粉末同士の混合を防止し、また焼結後に電極と絶縁材料層を分離するのに有効である。
このようにして得られた焼結体の上下表面の多くは、凹凸が形成されるため、研磨して平滑にする必要があり、その後、ワイヤーソーやブレードソーのような切断機で所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子が作製される。
絶縁性材料粉末を用いない従来の方法によると、電流によって電極形成用金属粉末を溶融させてしまうため、大電流を使用できず電流の調整が難しく、したがって、得られた焼結体から電極が剥離してしまう問題があった。一方、第1の方法では絶縁性材料粉末層を設けることによって、大電流を用いることができ、その結果、初期の焼結体を得ることができる。
この第2の方法は、第1の方法の利点を全て有する上に、得られた焼結体の上下表面が平滑であるため、殆ど研磨する必要がないという利点を有する。
得られた焼結体を所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子を作製する方法は上記第1の方法と同様である。
本発明に係る熱電変換モジュールは、上記のような本発明に係る熱電変換素子を備えるものである。
<実施例1>
[混合工程]
高純度シリコン36.69質量部とマグネシウム63.52質量部とを混合し、Mg:Si=2:1の組成原料(66.67at%Mg、33.33at%Si)を得た。なお、高純度シリコンとしては、MEMC Electronic Materials社製で、純度が99.9999999%の半導体グレード、大きさが直径4mm以下の粒状のものを用いた。また、マグネシウムとしては、日本サーモケミカル社製で、純度が99.93%、大きさが1.4mm×0.5mmのマグネシウム片を用いた。
上記組成原料を、Al2O3製の溶融ルツボ(日本化学陶業社製、内径34mm、外径40mm、高さ150mm;蓋部は直径40mm、厚さ2.5mm)に投入した。当該溶融ルツボは、開口部の辺縁の蓋部への接触面と、蓋部の開口部の辺縁への接触面とが、表面粗さRaが0.5μm、表面うねりRmaxが1.0μmとなるように研磨されたものを用いた。溶融ルツボの開口部の辺縁と、蓋部とを密着させて、加熱炉内に静置し、加熱炉の外部からセラミック棒を介して、3kg/cm2となるようにおもりで加圧した。
加熱溶融後の試料は、陶製乳鉢を用いて75μmにまで粉砕し、75μmの篩に通した粉末を得た。そして、図5に示すように、内径15mmのグラファイトダイ10と、グラファイト製パンチ11a,11bとで囲まれた空間に、粉砕したマグネシウム-ケイ素複合材料1.0gを仕込んだ。粉末の上下端には、パンチへのマグネシウム-ケイ素複合材料固着防止のためにカーボンペーパーを挟んだ。その後、放電プラズマ焼結装置(ELENIX社製、「PAS-III-Es」)を用いて真空雰囲気下で焼結を行った。焼結条件は下記のとおりである。
焼結温度:850℃
圧力:30.0MPa
昇温レート:300℃/min×2min(~600℃)
100℃/min×2min(600~800℃)
10℃/min×5min(800~850℃)
0℃/min×5min(850℃)
冷却条件:真空放冷
雰囲気:Ar 60Pa(冷却時は真空)
混合工程において、高純度シリコンの添加量を36.91質量部に、マグネシウムの添加量を63.33質量部に変更して組成原料(66.47at%Mg、33.53at%Si)を得た点以外は実施例1と同様の方法により、マグネシウム-ケイ素複合材料(試料C)を得た。
混合工程において、高純度シリコンの添加量を36.58質量部に、マグネシウムの添加量を63.61質量部に変更して組成原料(66.77at%Mg、33.23at%Si)を得た点以外は実施例1と同様の方法により、マグネシウム-ケイ素複合材料(試料E)を得た。
加熱溶融工程において、溶融ルツボの開口部の辺縁の蓋部への接触面と、蓋部の、開口部の辺縁への接触面とが、研磨されていないものを用いた点以外は、実施例1と同様の方法によりマグネシウム-ケイ素複合材料を得た。
混合工程において、高純度シリコンの添加量を38.01質量部に、マグネシウムの添加量を62.37質量部に変更して組成原料(65.47at%Mg、34.53at%Si)を得た点以外は実施例1と同様の方法により、マグネシウム-ケイ素複合材料(試料B)を得た。
混合工程において、高純度シリコンの添加量を38.89質量部に、マグネシウムの添加量を61.61質量部に変更して組成原料(64.67at%Mg、35.33at%Si)を得た点以外は実施例1と同様の方法により、マグネシウム-ケイ素複合材料(試料A)を得た。
混合工程において、高純度シリコンの添加量を34.49質量部に、マグネシウムの添加量を65.42質量部に変更して組成原料(68.67at%Mg、31.33at%Si)を得た点以外は実施例1と同様の方法により、マグネシウム-ケイ素複合材料(試料F)を得た。
[ゼーベック係数、電気伝導率、及び熱伝導率の測定]
実施例1~3、比較例1~4で得られた各マグネシウム-ケイ素複合材料(焼結体)について、熱起電力・熱伝導率測定装置(アルバック理工社製、「ZEM2」)及びレーザーフラッシュ法熱伝導率測定装置(アルバック理工社製、「TC・7000H」)を用いて、動作温度350~866Kにおけるゼーベック係数α、電気伝導率σ、及び熱伝導率κを測定した。測定した各種パラメーターを元に、上記式(1)に従って無次元性能指数ZTを算出した。866Kにおける結果を表1に示す。
また、実施例1~3、比較例2~4で得られた焼結体におけるゼーベック係数α、電気伝導率σ、及び熱伝導率κ、並びにパワーファクターα2σとMg濃度との関係を図6~図9に示し、温度と熱電特性との関係を図10に示す。
実施例1~3、比較例2~4で得られたマグネシウム-ケイ素複合材料(焼結体)を9μm、3μm、及び1μmの順にダイヤモンド砥粒で研磨し、結晶粒の凝集度を観察した。結果を表1及び図11に示す。なお、図11において、光学顕微鏡写真(a)~(f)は、それぞれ上記試料A~Fに対応し、光学顕微鏡写真(a)中の白ぬきの矢印は、未反応Siを、光学顕微鏡写真(f)中の黒塗りの矢印は、析出したMgを示す。
また、比較例1で得られたマグネシウム-ケイ素複合材料(焼結体)を9μm、3μm、及び1μmの順にダイヤモンド砥粒で研磨し、結晶粒の凝集度を観察した。結果を表1及び図12に示す。
実施例1~3、比較例2~4で得られたマグネシウム-ケイ素複合材料(焼結体)を精密管状炉(精電舎電子工業社製、「SE-101」)に投入し、大気中、823Kで48時間加熱した。加熱後の焼結体について、目視にて変色の程度を観察した。結果を表1に示す。
また、原料組成が実施例とは異なる比較例2~4のマグネシウム-ケイ素複合材料においては、無次元性能指数が最大でも0.644であった。加えて、光学顕微鏡下の観察で、Mgの析出のある比較例4のマグネシウム-ケイ素複合材料では、823Kで48時間空気中に保持した場合に、表面に白色化の変色が見られ、耐久性に問題があることが分かった。このような結果から、特にMgの析出のあるマグネシウム-ケイ素複合材料は、酸化劣化を起こす可能性があるものと判断された。
実施例1に倣って、Mgが64.67~68.67at%、Siが31.33~35.33at%の組成原料から、それぞれマグネシウム-ケイ素複合材料を調製した。これらの試料について、X線回折装置(リガク株式会社製、「RINT 2100 線型ゴニオメーター」)を用い、ターゲットをCu K-ALPHA 1、発散スリットを1deg、散乱スリットを1deg、発光スリットを0.3mmとし、走査範囲を2θ=5~50度、スキャンスピードを4度/min、スキャンステップを0.020度、回転速度を60.00rpm、管電圧を40kV、管電流を40mAとしてX線回折を行った。Siピーク強度及びMgピーク強度は、それぞれ2θ=28.4度及び36.6度におけるピーク強度を6サンプルずつ計測することにより測定した。結果を表2及び図13に示す。
Mgピーク:y=64.62x+6.4768(x≧0)
Siピーク:y=-271.2x+204.86(x≦0)
<実施例4>
[混合工程]
高純度シリコン36.44質量部と、マグネシウム63.08質量部と、アンチモン0.47質量部とを混合し、組成原料(66.60at%Mg、33.30at%Si、0.10at%Sb)を得た。なお、高純度シリコンとしては、MEMC Electronic Materials社製で、純度が99.9999999%の半導体グレード、大きさが直径4mm以下の粒状のものを用いた。また、マグネシウムとしては、日本サーモケミカル社製で、純度が99.93%、大きさが1.4mm×0.5mmのマグネシウム片を用いた。また、アンチモンとしては、エレクトロニクス エンド マテリアルズ コーポレーション社製で、純度が99.9999%、大きさが直径5mm以下の粒状のものを用いた。
上記組成原料を、Al2O3製の溶融ルツボ(日本化学陶業社製、内径34mm、外径40mm、高さ150mm;蓋部は直径40mm、厚さ2.5mm)に投入した。当該溶融ルツボは、開口部の辺縁の蓋部への接触面と、蓋部の開口部の辺縁への接触面とが、表面粗さRaが0.5μm、表面うねりRmaxが1.0μmとなるように研磨されたものを用いた。溶融ルツボの開口部の辺縁と、蓋部とを密着させて、加熱炉内に静置し、加熱炉の外部からセラミック棒を介して、3kg/cm2となるようにおもりで加圧した。
加熱溶融後の試料は、陶製乳鉢を用いて75μmにまで粉砕し、75μmの篩に通した粉末を得た。そして、図5に示すように、内径15mmのグラファイトダイ10と、グラファイト製パンチ11a,11bとで囲まれた空間に、粉砕したマグネシウム-ケイ素複合材料1.0gを仕込んだ。粉末の上下端には、パンチへのマグネシウム-ケイ素複合材料固着防止のためにカーボンペーパーを挟んだ。その後、放電プラズマ焼結装置(ELENIX社製、「PAS-III-Es」)を用いて真空雰囲気下で焼結を行った。焼結条件は下記のとおりである。
焼結温度:850℃
圧力:30.0MPa
昇温レート:300℃/min×2min(~600℃)
100℃/min×2min(600~800℃)
10℃/min×5min(800~850℃)
0℃/min×5min(850℃)
冷却条件:真空放冷
雰囲気:Ar 60Pa(冷却時は真空)
混合工程において、高純度シリコンの添加量を35.76質量部に、マグネシウムの添加量を61.90質量部に、アンチモンの添加量を2.34質量部に変更して組成原料(66.33at%Mg、33.17at%Si、0.50at%)を得た点以外は実施例4と同様の方法により、マグネシウム-ケイ素複合材料(焼結体)を得た。
混合工程において、高純度シリコン36.23質量部と、マグネシウム62.72質量部と、アルミニウム1.06質量部とを混合し、組成原料(66.00at%Mg、33.00at%Si、1.00at%Al)を得た点、及び焼結条件を下記のとおりに変更した点以外は実施例4と同様の方法により、マグネシウム-ケイ素複合材料(焼結体)を得た。なお、アルミニウムとしては、フルウチ化学社製で、純度が99.99%、大きさが10mm×15mm×0.5mmのチップ状のものを用いた。
焼結温度:820℃
圧力:30.0MPa
昇温レート:300℃/min×2min(~600℃)
100℃/min×2min(600~800℃)
10℃/min×2min(800~820℃)
0℃/min×5min(820℃)
冷却条件:真空放冷
雰囲気:Ar 60Pa(冷却時は真空)
混合工程において、高純度シリコン35.17質量部と、マグネシウム60.89質量部と、ビスマス3.95質量部とを混合し、組成原料(66.33at%Mg、33.17at%Si、0.50at%Bi)を得た点以外は実施例4と同様の方法により、マグネシウム-ケイ素複合材料(焼結体)を得た。なお、ビスマスとしては、三津和化学社製で、純度が99.99%、大きさが3mm以下の粒状のものを用いた。
混合工程において、高純度シリコン33.46質量部と、マグネシウム57.93質量部と、アルミニウム0.98質量部と、ビスマス7.62質量部とを混合し、組成原料(65.33at%Mg、32.66at%Si、1.00at%Al、1.00at%Bi)を得た点以外は実施例4と同様の方法により、マグネシウム-ケイ素複合材料(焼結体)を得た。なお、アルミニウムとしては、フルウチ化学社製で、純度が99.99%、大きさが10mm×15mm×0.5mmのチップ状のものを用いた。また、ビスマスとしては、三津和化学社製で、純度が99.99%、大きさが3mm以下の粒状のものを用いた。
[混合工程]
高純度シリコン35.76質量部と、マグネシウム61.90質量部と、アンチモン2.34質量部とを混合し、組成原料(66.33at%Mg、33.17at%Si、0.50at%Sb)を得た。なお、高純度シリコンとしては、MEMC Electronic Materials社製で、純度が99.9999999%の半導体グレード、大きさが直径4mm以下の粒状のものを用いた。また、マグネシウムとしては、日本サーモケミカル社製で、純度が99.93%、大きさが1.4mm×0.5mmのマグネシウム片を用いた。また、アンチモンとしては、エレクトロニクス エンド マテリアルズ コーポレーション社製で、純度が99.9999%、大きさが直径5mm以下の粒状のものを用いた。
図5に示すように、内径15mmのグラファイトダイ10と、グラファイト製パンチ11a,11bとで囲まれた空間に、組成原料1.0gを仕込んだ。粉末の上下端には、パンチへのマグネシウム-ケイ素複合材料固着防止のためにカーボンペーパーを挟んだ。その後、放電プラズマ焼結装置(ELENIX社製、「PAS-III-Es」)を用いて真空雰囲気下で焼結を行った。焼結条件は下記のとおりである。
焼結温度:850℃
圧力:30.0MPa
昇温レート:300℃/min×2min(~600℃)
100℃/min×2min(600~800℃)
10℃/min×5min(800~850℃)
0℃/min×5min(850℃)
冷却条件:真空放冷
雰囲気:Ar 60Pa(冷却時は真空)
[ゼーベック係数、電気伝導率、及び熱伝導率の測定]
実施例4~8、比較例5で得られた各マグネシウム-ケイ素複合材料について、熱起電力・熱伝導率測定装置(アルバック理工社製、「ZEM2」)及びレーザーフラッシュ法熱伝導率測定装置(アルバック理工社製、「TC・7000H」)を用いて、動作温度350~866Kにおけるゼーベック係数α、電気伝導率σ、及び熱伝導率κを測定した。測定した各種パラメーターを元に、上記式(1)に従って無次元性能指数ZTを算出した。866Kにおける結果を表3に示す。
また、実施例4~8、比較例5で得られたマグネシウム-ケイ素複合材料における温度と熱電特性との関係を図14に示す。
一方、原料組成が実施例とは異なる比較例5のマグネシウム-ケイ素複合材料においては、無次元性能指数が最大でも0.551であった。
実施例4~8、比較例5で得られた各マグネシウム-ケイ素複合材料について、X線回折装置(リガク株式会社製、「RINT 2100 線型ゴニオメーター」)を用い、ターゲットをCu K-ALPHA 1、発散スリットを1deg、散乱スリットを1deg、発光スリットを0.3mmとし、走査範囲を2θ=5~50度、スキャンスピードを4度/min、スキャンステップを0.020度、回転速度を60.00rpm、管電圧を40kV、管電流を40mAとしてX線回折を行った。Si及びMgのピーク位置はドーパント種やその含有量により若干の干渉を受ける。そこで、Siピーク強度は2θ=28.30~28.52度、Mgピーク強度は36.34~36.68度におけるピーク強度を3サンプルずつ計測することにより測定した。結果を表4に示す。
<実施例9>
実施例1に倣って、Mgが66.67at%、Siが33.33at%の組成原料からマグネシウム-ケイ素複合材料(焼結体)を調製した。
ワイヤーソーを用いて2mm×2mm×10mmの焼結体を切り出し、アセトン:エタノール=1:1の混合溶媒に20分間浸漬して脱脂した。脱脂後、還元剤としてDMAB(ジメチルアミンボラン)を含む63℃のニッケルメッキ液(日本カニゼン社製、「SFB-26」)中に35分間浸漬し、焼結体の両端に無電界ニッケルメッキ処理を施した。その後、卓上型ランプ加熱装置(アルバック理工社製、「MILA-3000」)を用い、アルゴンガスフロー雰囲気下、600℃で10時間、加熱処理を行った。メッキ法によりNi電極が形成された熱電変換素子を図15に示す。
[混合工程]
高純度シリコン36.69質量部と、マグネシウム63.52質量部とを混合し、Mg:Si=2:1の組成原料(66.67at%Mg、33.33at%Si)を得た。なお、高純度シリコンとしては、MEMC Electronic Materials社製で、純度が99.9999999%の半導体グレード、大きさが直径4mm以下の粒状のものを用いた。また、マグネシウムとしては、日本サーモケミカル社製で、純度が99.93%、大きさが1.4mm×0.5mmのマグネシウム片を用いた。
上記組成原料を、Al2O3製の溶融ルツボ(日本化学陶業社製、内径34mm、外径40mm、高さ150mm;蓋部は直径40mm、厚さ2.5mm)に投入した。当該溶融ルツボは、開口部の辺縁の蓋部への接触面と、蓋部の開口部の辺縁への接触面とが、表面粗さRaが0.5μm、表面うねりRmaxが1.0μmとなるように研磨されたものを用いた。溶融ルツボの開口部の辺縁と、蓋部とを密着させて、加熱炉内に静置し、加熱炉の外部からセラミック棒を介して、3kg/cm2となるようにおもりで加圧した。
加熱溶融後の試料は、陶製乳鉢を用いて75μmにまで粉砕し、75μmの篩に通した粉末を得た。そして、図5に示すように、内径15mmのグラファイトダイ10と、グラファイト製パンチ11a,11bとで囲まれた空間に、Ni粉末0.3g(平均粒径2μm、純度99.9%)、粉砕したマグネシウム-ケイ素複合材料3.55g、Ni粉末0.3gをこの順で仕込み、熱電変換層、Ni電極層を形成した。更に、焼結装置からのNiへの大電流によるNiの漏れ等を防ぐため、Ni電極層の外側には、SiO2粉末0.1g(平均粒径63μm、純度99.9%)をそれぞれ仕込み、SiO2層とした。なお、SiO2層とNi電極層との間には、粉末の混合防止用にカーボンペーパーを挟んだ。
焼結温度:850℃
圧力:30.0MPa
昇温レート:300℃/min×2min(~600℃)
100℃/min×2min(600~800℃)
10℃/min×5min(800~850℃)
0℃/min×5min(850℃)
冷却条件:真空放冷
雰囲気:Ar 60Pa(冷却時は真空)
[出力電力の測定]
実施例9及び10で得られた各熱電変換素子について、熱電特性評価装置(ユニオンマテリアル社製、「UMTE-1000M」)を用いて出力電力を測定した。具体的には、低温側を100℃に固定し、高温側を200~600℃まで変化させて、温度差ΔTを100~500Kとして測定した。結果を図16に示す。
図16から分かるように、メッキ法により電極を形成した実施例9の熱電変換素子は、従来のようにマグネシウム-ケイ素複合材料と電極材料とを一体焼結した実施例10の熱電変換素子と同等の出力電力が得られている。このことから、メッキ法により電極を形成した場合でも、良好な電極接合状態が得られていることが分かる。
通常、マグネシウム-ケイ素複合材料を用いて製造された熱電変換部にメッキ法で電極を形成しようとした場合、材料中に残留する金属マグネシウムに起因して水素ガスが発生し、メッキの接着性が悪くなる。一方、本発明に係るマグネシウム-ケイ素複合材料を用いて製造された熱電変換部の場合には、実施例9に示したようにメッキ法により電極を形成することができたが、これは、材料中に金属マグネシウムが殆ど含まれず、水素ガスが発生しないためである。
そこで、本発明に係るマグネシウム-ケイ素複合材料から水素ガスが発生しないことを確認するため、実施例1に倣って、Mgが66.67at%、Siが33.33at%の組成原料からマグネシウム-ケイ素複合材料(焼結体)を調製した。
焼結温度:600℃
圧力:30.0MPa
昇温レート:300℃/min×2min(~600℃)
0℃/min×15min(600℃)
冷却条件:真空放冷
雰囲気:Ar 60Pa(冷却時は真空)
<実施例11>
実施例4に倣ってMgが66.60at%、Siが33.30at%、Sbが0.10at%の組成原料を用いた点以外は実施例10と同様の方法により、熱電変換素子を製造した。
実施例5に倣ってMgが66.33at%、Siが33.17at%、Sbが0.50at%の組成原料を用いた点以外は実施例10と同様の方法により、熱電変換素子を製造した。
Mgが66.00at%、Siが33.00at%、Sbが1.00at%の組成原料を用いた点以外は実施例10と同様の方法により、熱電変換素子を製造した。
[混合工程] 高純度シリコン36.69質量部と、マグネシウム63.52質量部とを混合し、組成原料(66.67at%Mg、33.33at%Si)を得た。なお、高純度シリコンとしては、MEMC Electronic Materials社製で、純度が99.9999999%の半導体グレード、大きさが直径4mm以下の粒状のものを用いた。また、マグネシウムとしては、日本サーモケミカル社製で、純度が99.93%、大きさが1.4mm×0.5mmのマグネシウム片を用いた。
図5に示すように、内径15mmのグラファイトダイ10と、グラファイト製パンチ11a,11bとで囲まれた空間に、Ni粉末0.3g(平均粒径2μm、純度99.9%)、組成原料3.55g、Ni粉末0.3gをこの順で仕込み、熱電変換層、Ni電極層を形成した。更に、焼結装置からのNiへの大電流によるNiの漏れ等を防ぐため、Ni電極層の外側には、SiO2粉末0.1g(平均粒径63μm、純度99.9%)をそれぞれ仕込み、SiO2層とした。なお、SiO2層とNi電極層との間には、粉末の混合防止用にカーボンペーパーを挟んだ。
焼結温度:600℃
圧力:30.0MPa
昇温レート:300℃/min×2min(~600℃)
0℃/min×15min(600℃)
冷却条件:真空放冷
雰囲気:Ar 60Pa(冷却時は真空)
Mgが66.33at%、Siが33.17at%、Sbが0.50at%の組成原料を用いた点以外は比較例6と同様の方法により、熱電変換素子を製造した。
[耐久試験による抵抗率の変化]
実施例10~13、比較例6及び7で得られた各熱電変換素子について、熱電特性評価装置(ユニオンマテリアル社製、「UMTE-1000M」)を用いて、耐久試験を行った。具体的には、低温側を50℃、高温側を600℃に固定した状態で100時間経過させ、室温における抵抗率の変化を測定した。1時間経過後の抵抗率を基準としたときの、2,5,10,20,50,100時間経過後における抵抗率の増減割合(%)を表5に示す。
これに対して、原料組成が実施例とは異なるマグネシウム-ケイ素複合材料を用いた比較例6及び7の熱電変換素子は、10時間程度で抵抗率が著しく大きくなり、耐久性に劣るものであった。
<実施例14>
実施例6に倣ってMgが66.00at%、Siが33.00at%、Alが1.00at%の組成原料を用いた点、及び焼結条件を下記のとおりに変更した点以外は実施例10と同様の方法により、熱電変換素子を製造した。
焼結温度:820℃
圧力:30.0MPa
昇温レート:300℃/min×2min(~600℃)
100℃/min×2min(600~800℃)
10℃/min×2min(800~820℃)
0℃/min×5min(820℃)
冷却条件:真空放冷
雰囲気:Ar 60Pa(冷却時は真空)
実施例5に倣ってMgが66.33at%、Siが33.17at%、Sbが0.50at%の組成原料を用いた点以外は実施例10と同様の方法により、粉砕後の試料を得た。
また、実施例6に倣ってMgが66.00at%、Siが33.00at%、Alが1.00at%の組成原料を用いた点以外は実施例10と同様の方法により、粉砕後の試料を得た。
そして、図5に示すように、内径15mmのグラファイトダイ10と、グラファイト製パンチ11a,11bとで囲まれた空間に、Ni粉末0.3g(平均粒径2μm、純度99.9%)、ドーパントとしてSbを含む粉砕したマグネシウム-ケイ素複合材料1.77g、ドーパントとしてAlを含む粉砕したマグネシウム-ケイ素複合材料1.77g、Ni粉末0.3gをこの順で仕込み、熱電変換層、Ni電極層を形成した。更に、焼結装置からのNiへの大電流によるNiの漏れ等を防ぐため、Ni電極層の外側には、SiO2粉末0.1g(平均粒径63μm、純度99.9%)をそれぞれ仕込み、SiO2層とした。なお、SiO2層とNi電極層との間には、粉末の混合防止用にカーボンペーパーを挟んだ。
その後、実施例10と同様の方法により放電プラズマ焼結を行い、熱電変換素子を製造した。
[耐久試験による出力電力の変化]
実施例12、14、及び15で得られた各熱電変換素子について、熱電特性評価装置(ユニオンマテリアル社製、「UMTE-1000M」)を用いて出力電力を測定した。具体的には、低温側を100℃に固定し、高温側を200~600℃まで変化させて、温度差ΔTを100~500Kとして測定した。なお、実施例15の熱電変換素子については、ドーパントとしてSbを含む側を高温側、ドーパントとしてAlを含む側を低温側とした。
また、低温側を50℃、高温側を600℃に固定した状態で1000時間経過させた後、上記と同様にして出力電力を測定した結果を図18に示す。
図18から分かるように、ドーパントとしてSbを含む実施例12の熱電変換素子は、1000時間の耐久試験後にも出力電力が殆ど変化しなかったが、ドーパントとしてAlを含む実施例14の熱電変換素子は、1000時間の耐久試験後に出力電力が10mW程度低下した。一方、ドーパントとしてSb及びAlを含み、Sbを含む側を高温側とした実施例15の熱電変換素子は、実施例14の熱電変換素子よりも出力電力の低下が抑えられた。
<実施例16>
[混合工程]
高純度シリコン36.69質量部と、マグネシウム63.52質量部とを混合し、Mg:Si=2:1の組成原料(66.67at%Mg、33.33at%Si)を得た。なお、高純度シリコンとしては、MEMC Electronic Materials社製で、純度が99.9999999%の半導体グレード、大きさが直径4mm以下の粒状のものを用いた。また、マグネシウムとしては、日本サーモケミカル社製で、純度が99.93%、大きさが1.4mm×0.5mmのマグネシウム片を用いた。
上記組成原料を、Al2O3製の溶融ルツボ(日本化学陶業社製、内径34mm、外径40mm、高さ150mm;蓋部は直径40mm、厚さ2.5mm)に投入した。当該溶融ルツボは、開口部の辺縁の蓋部への接触面と、蓋部の開口部の辺縁への接触面とが、表面粗さRaが0.5μm、表面うねりRmaxが1.0μmとなるように研磨されたものを用いた。溶融ルツボの開口部の辺縁と、蓋部とを密着させて、加熱炉内に静置し、加熱炉の外部からセラミック棒を介して、3kg/cm2となるようにおもりで加圧した。
加熱溶融後の試料は、陶製乳鉢を用いて75μmにまで粉砕し、75μmの篩に通した粉末を得た。そして、図5に示すように、内径15mmのグラファイトダイ10と、グラファイト製パンチ11a,11bとで囲まれた空間に、Ni粉末0.3g(平均粒径2μm、純度99.9%)、粉砕したマグネシウム-ケイ素複合材料3.55g、Ni粉末0.3gをこの順で仕込み、熱電変換層、Ni電極層を形成した。ただし、グラファイトダイの焼結試料に接する表面にのみ、予め窒化硼素等の耐熱離型セラミックス粉末を含んだ液体を塗布又はスプレーし、焼結装置からのNiへの大電流によるNiの漏れ等を防ぐためのSiO2層及び粉末の混合防止用のカーボンペーパーの代替とした。
焼結温度:840℃
圧力:30.0MPa
矩形波電流通電1min後、下記レートで昇温
昇温レート:300℃/min×2min(~600℃)
100℃/min×2min(600~800℃)
10℃/min×4min(800~840℃)
0℃/min×5min(840℃)
冷却条件:真空放冷
雰囲気:Ar 60Pa(冷却時は真空)
焼結装置からのNiへの大電流によるNiの漏れ等を防ぐためのSiO2層と粉末の混合防止用のカーボンペーパーとを使用した実施例10における焼結ペレットと、実施例16における焼結ペレットとについて、平滑になるように上下面のNi電極をグラインダーにて研磨した。研磨前後における焼結ペレットの高さ(mm)を表6に示す。
1015,1016 電極
102 p型熱電変換部
1025,1026 電極
103 n型熱電変換部
1035,1036 電極
3 負荷
4 直流電源
10 グラファイトダイ
11a,11b グラファイト製パンチ
Claims (16)
- 866Kにおける無次元性能指数が0.665以上であり、実質的にドーパントを含まないマグネシウム-ケイ素複合材料。
- 管電圧40kV、管電流40mAの条件下におけるX線回折において、2θ=36.6度におけるMgピーク強度が12.9cps以下であり、2θ=28.4度におけるSiピーク強度が340.5cps以下である請求項1に記載のマグネシウム-ケイ素複合材料。
- Mgの含有量が原子量比で66.17~66.77at%であり、Siの含有量が原子量比で33.23~33.83at%である組成原料から合成される請求項1又は2に記載のマグネシウム-ケイ素複合材料。
- ドーパントを含有し、管電圧40kV、管電流40mAの条件下におけるX線回折において、2θ=36.34~36.68度におけるMgピーク強度が12.9cps以下であり、2θ=28.30~28.52度におけるSiピーク強度が340.5cps以下である請求項1に記載のマグネシウム-ケイ素複合材料。
- ドーパントを原子量比で0.10~2.00at%含有する請求項4に記載のマグネシウム-ケイ素複合材料。
- Mgの含有量とSiの含有量との比が原子量比で66.17:33.83~66.77:33.23であり、ドーパントの含有量が原子量比で0.10~2.00at%である組成原料から合成される請求項4又は5に記載のマグネシウム-ケイ素複合材料。
- 熱伝導率が3.50W/m・K以下である請求項1から6のいずれかに記載のマグネシウム-ケイ素複合材料。
- Mgの含有量が原子量比で66.17~66.77at%であり、Siの含有量が原子量比で33.23~33.83at%である組成原料を、開口部と前記開口部を覆う蓋部とを備え、前記開口部の辺縁における前記蓋部への接触面と、前記蓋部における前記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有するマグネシウム-ケイ素複合材料の製造方法。
- Mgの含有量とSiの含有量との比が原子量比で66.17:33.83~66.77:33.23であり、ドーパントの含有量が原子量比で0.10~2.00at%である組成原料を、開口部と前記開口部を覆う蓋部とを備え、前記開口部の辺縁における前記蓋部への接触面と、前記蓋部における前記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有するマグネシウム-ケイ素複合材料の製造方法。
- 請求項1から7のいずれかに記載のマグネシウム-ケイ素複合材料からなる熱電変換材料。
- 熱電変換部と、該熱電変換部に設けられた第1電極及び第2電極とを備え、
前記熱電変換部が請求項1から7のいずれかに記載のマグネシウム-ケイ素複合材料を用いて製造される熱電変換素子。 - 前記第1電極及び前記第2電極がメッキ法により形成されてなる請求項11に記載の熱電変換素子。
- 加圧圧縮焼結法によって前記第1電極及び前記第2電極と前記熱電変換部とが一体成形されてなる請求項11に記載の熱電変換素子。
- 前記熱電変換部は、異なる熱電変換材料からなる複数の層を有し、
前記第1電極又は前記第2電極に隣接した層が、Mgの含有量とSiの含有量との比が原子量比で66.17:33.83~66.77:33.23であり、Sbの含有量が原子量比で0.10~2.00at%である組成原料から合成されるマグネシウム-ケイ素複合材料からなる請求項11から13のいずれかに記載の熱電変換素子。 - 請求項11から14のいずれかに記載の熱電変換素子を備える熱電変換モジュール。
- 請求項1から7のいずれかに記載のマグネシウム-ケイ素複合材料が用いられてなる耐食性材料、軽量構造材、摩擦材、リチウムイオン二次電池用負極材、セラミックス基板、誘電体磁器組成物、水素吸蔵組成物、又はシラン発生装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127001588A KR101418076B1 (ko) | 2009-06-30 | 2010-06-30 | 마그네슘-규소 복합재료 및 그 제조방법, 그리고 이 복합재료를 이용한 열전변환 재료, 열전변환 소자, 및 열전변환 모듈 |
CN201080028725.1A CN102804433B (zh) | 2009-06-30 | 2010-06-30 | 镁‑硅复合材料及其制造方法、以及采用该复合材料的热电转换材料、热电转换元件及热电转换模块 |
EP10794203.9A EP2461383B1 (en) | 2009-06-30 | 2010-06-30 | Magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module each comprising or including the composite material |
US13/379,593 US20120097205A1 (en) | 2009-06-30 | 2010-06-30 | Magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module each comprising or including the composite material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009154701 | 2009-06-30 | ||
JP2009-154701 | 2009-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011002035A1 true WO2011002035A1 (ja) | 2011-01-06 |
Family
ID=43411105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/061185 WO2011002035A1 (ja) | 2009-06-30 | 2010-06-30 | マグネシウム-ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120097205A1 (ja) |
EP (1) | EP2461383B1 (ja) |
JP (1) | JP6029256B2 (ja) |
KR (1) | KR101418076B1 (ja) |
CN (1) | CN102804433B (ja) |
WO (1) | WO2011002035A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013035735A (ja) * | 2011-08-10 | 2013-02-21 | Toyota Central R&D Labs Inc | Mg2Si微粒子及びその製造方法 |
WO2013047475A1 (ja) * | 2011-09-26 | 2013-04-04 | 学校法人東京理科大学 | マグネシウムシリサイド、熱電変換材料、焼結体、熱電変換素子用焼結体、熱電変換素子、及び熱電変換モジュール |
WO2014084163A1 (ja) * | 2012-11-27 | 2014-06-05 | 学校法人東京理科大学 | Mg-Si系熱電変換材料及びその製造方法、熱電変換用焼結体、熱電変換素子、並びに熱電変換モジュール |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5737566B2 (ja) * | 2011-03-10 | 2015-06-17 | 日立化成株式会社 | マグネシウムシリサイド焼結体の製造方法及びそれを用いた熱電変換素子の製造方法 |
KR101322779B1 (ko) * | 2011-05-09 | 2013-10-29 | 한국세라믹기술원 | 비스무스가 도핑된 규화마그네슘 열전재료용 조성물 및 그 제조방법 |
KR20150007865A (ko) * | 2013-07-12 | 2015-01-21 | 삼성디스플레이 주식회사 | 스퍼터링 타겟의 제조 방법, 그 방법으로 제조된 스퍼터링 타겟 및 그 스퍼터링 타겟을 이용하여 유기 발광 표시 장치를 제조하는 방법 |
CN103553053B (zh) * | 2013-11-01 | 2015-07-01 | 内蒙古科技大学 | 利用微波热处理制备稀土掺杂Mg2Si粉体的方法 |
JP6240525B2 (ja) * | 2014-02-04 | 2017-11-29 | 株式会社アツミテック | 熱電変換素子の製造方法及び熱電変換素子 |
JP6188635B2 (ja) * | 2014-05-28 | 2017-08-30 | 株式会社日立製作所 | 熱電変換材料および熱電変換素子 |
JP6603518B2 (ja) * | 2015-09-04 | 2019-11-06 | 株式会社日立製作所 | 熱電変換材料および熱電変換モジュール |
CN108701749B (zh) * | 2016-02-24 | 2022-02-01 | 三菱综合材料株式会社 | 镁系热电转换材料的制造方法、镁系热电转换元件的制造方法、镁系热电转换材料、镁系热电转换元件及热电转换装置 |
KR20180127349A (ko) * | 2016-03-31 | 2018-11-28 | 스미또모 가가꾸 가부시키가이샤 | 화합물, 열전 변환 재료 및 화합물의 제조 방법 |
KR20180127350A (ko) | 2016-03-31 | 2018-11-28 | 스미또모 가가꾸 가부시키가이샤 | 화합물 및 열전 변환 재료 |
JP6830587B2 (ja) * | 2016-04-11 | 2021-02-17 | 学校法人東京理科大学 | 導電膜付き柱状インゴット基板及びその製造方法、シリサイド系熱電変換素子及びその製造方法、熱電変換モジュール、並びにシリサイド系熱電変換素子の電極層形成用組成物 |
US11114600B2 (en) * | 2016-07-12 | 2021-09-07 | Tokyo University Of Science Foundation | Polycrystalline magnesium silicide and use thereof |
JP6768556B2 (ja) * | 2017-02-27 | 2020-10-14 | 株式会社日立製作所 | 熱電変換材料及びその製造方法 |
JP2018157130A (ja) * | 2017-03-21 | 2018-10-04 | 三菱マテリアル株式会社 | 熱電変換材料の製造方法 |
JP7176248B2 (ja) * | 2017-06-29 | 2022-11-22 | 三菱マテリアル株式会社 | 熱電変換材料、熱電変換素子、熱電変換モジュール、及び、熱電変換材料の製造方法 |
JP6981094B2 (ja) * | 2017-08-15 | 2021-12-15 | 三菱マテリアル株式会社 | マグネシウム系熱電変換材料、マグネシウム系熱電変換素子、及び、マグネシウム系熱電変換材料の製造方法 |
JP7157993B2 (ja) * | 2018-01-16 | 2022-10-21 | 学校法人東京理科大学 | 多結晶性マグネシウムシリサイド及びその利用 |
EP3595019B1 (en) * | 2018-03-30 | 2024-02-28 | Ibaraki University | Photodiode and light-sensitive device |
CN111211215B (zh) * | 2020-03-06 | 2022-08-26 | 深圳市坤城科技有限公司 | 一种纳米复合热电材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11274578A (ja) | 1998-03-19 | 1999-10-08 | Matsushita Electric Ind Co Ltd | 熱電変換材料の製造方法および熱電変換モジュール |
JP2002285274A (ja) | 2001-03-27 | 2002-10-03 | Daido Steel Co Ltd | Mg−Si系熱電材料及びその製造方法 |
JP2005314805A (ja) | 2004-03-29 | 2005-11-10 | Toudai Tlo Ltd | マグネシウム化合物、金属材料およびマグネシウム化合物の製造方法 |
JP2006128235A (ja) * | 2004-10-27 | 2006-05-18 | National Institute Of Advanced Industrial & Technology | 熱電材料及びその製造方法 |
WO2008075789A1 (ja) * | 2006-12-20 | 2008-06-26 | Showa Kde Co., Ltd. | 熱電変換材料、その製造方法および熱電変換素子 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4896742B2 (ja) * | 2004-12-20 | 2012-03-14 | 株式会社東芝 | 熱電変換モジュールとそれを用いた熱交換器および熱電発電装置 |
JP4850083B2 (ja) * | 2007-02-01 | 2012-01-11 | 京セラ株式会社 | 熱電変換モジュール及びそれを用いた発電装置及び冷却装置 |
TWI485266B (zh) * | 2009-07-27 | 2015-05-21 | Univ Tokyo Sci Educ Found | Aluminum-magnesium-silicon composite material and method for manufacturing the same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module using the composite material |
-
2010
- 2010-06-30 JP JP2010149506A patent/JP6029256B2/ja active Active
- 2010-06-30 KR KR1020127001588A patent/KR101418076B1/ko active IP Right Grant
- 2010-06-30 WO PCT/JP2010/061185 patent/WO2011002035A1/ja active Application Filing
- 2010-06-30 US US13/379,593 patent/US20120097205A1/en not_active Abandoned
- 2010-06-30 CN CN201080028725.1A patent/CN102804433B/zh active Active
- 2010-06-30 EP EP10794203.9A patent/EP2461383B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11274578A (ja) | 1998-03-19 | 1999-10-08 | Matsushita Electric Ind Co Ltd | 熱電変換材料の製造方法および熱電変換モジュール |
JP2002285274A (ja) | 2001-03-27 | 2002-10-03 | Daido Steel Co Ltd | Mg−Si系熱電材料及びその製造方法 |
JP2005314805A (ja) | 2004-03-29 | 2005-11-10 | Toudai Tlo Ltd | マグネシウム化合物、金属材料およびマグネシウム化合物の製造方法 |
JP2006128235A (ja) * | 2004-10-27 | 2006-05-18 | National Institute Of Advanced Industrial & Technology | 熱電材料及びその製造方法 |
WO2008075789A1 (ja) * | 2006-12-20 | 2008-06-26 | Showa Kde Co., Ltd. | 熱電変換材料、その製造方法および熱電変換素子 |
Non-Patent Citations (5)
Title |
---|
"Bulk Crystals Growth of Mg2Si by the Vertical Bridgeman Method", SCIENCE DIRECT THIN SOLID FILMS, vol. 461, 2004, pages 86 - 89 |
"Seebeck Effect in Mg2Si Single Crystals", J. PHYS. CHEM. SOLIDS PROGRAM PRESS, vol. 23, 1962, pages 601 - 610 |
"Semiconducting Properties of Mg2Si Single Crystals", PHYSICAL REVIEW, vol. 109, no. 6, 15 March 1958 (1958-03-15), pages 1909 - 1915 |
See also references of EP2461383A4 |
ZAITSEV V.K. ET AL.: "Thermoelectrics of n-type With ZT>1 Based on Mg2Si-Mg2Sn Solid Solutions", 24TH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 2005, 2005, pages 189 - 195, XP008159373 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013035735A (ja) * | 2011-08-10 | 2013-02-21 | Toyota Central R&D Labs Inc | Mg2Si微粒子及びその製造方法 |
WO2013047475A1 (ja) * | 2011-09-26 | 2013-04-04 | 学校法人東京理科大学 | マグネシウムシリサイド、熱電変換材料、焼結体、熱電変換素子用焼結体、熱電変換素子、及び熱電変換モジュール |
JP2013073960A (ja) * | 2011-09-26 | 2013-04-22 | Tokyo Univ Of Science | マグネシウムシリサイド、熱電変換材料、焼結体、熱電変換素子用焼結体、熱電変換素子、及び熱電変換モジュール |
WO2014084163A1 (ja) * | 2012-11-27 | 2014-06-05 | 学校法人東京理科大学 | Mg-Si系熱電変換材料及びその製造方法、熱電変換用焼結体、熱電変換素子、並びに熱電変換モジュール |
JPWO2014084163A1 (ja) * | 2012-11-27 | 2017-01-05 | 学校法人東京理科大学 | Mg−Si系熱電変換材料及びその製造方法、熱電変換用焼結体、熱電変換素子、並びに熱電変換モジュール |
US9627600B2 (en) | 2012-11-27 | 2017-04-18 | Yasunaga Corporation | Mg—Si system thermoelectric conversion material, method for producing same, sintered body for thermoelectric conversion, thermoelectric conversion element, and thermoelectric conversion module |
Also Published As
Publication number | Publication date |
---|---|
EP2461383A1 (en) | 2012-06-06 |
EP2461383B1 (en) | 2019-04-03 |
CN102804433A (zh) | 2012-11-28 |
JP6029256B2 (ja) | 2016-11-24 |
KR101418076B1 (ko) | 2014-07-10 |
JP2011029632A (ja) | 2011-02-10 |
US20120097205A1 (en) | 2012-04-26 |
EP2461383A4 (en) | 2013-05-08 |
CN102804433B (zh) | 2017-08-25 |
KR20120061800A (ko) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6029256B2 (ja) | マグネシウム−ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール | |
JP5629920B2 (ja) | アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール | |
JP5765776B2 (ja) | Mg2Si1−xSnx系多結晶体およびその製造方法 | |
Zheng et al. | High thermoelectric performance of mechanically robust n-type Bi 2 Te 3− x Se x prepared by combustion synthesis | |
JP7042517B2 (ja) | 多結晶性マグネシウムシリサイドおよびその利用 | |
US9627600B2 (en) | Mg—Si system thermoelectric conversion material, method for producing same, sintered body for thermoelectric conversion, thermoelectric conversion element, and thermoelectric conversion module | |
WO2013047474A1 (ja) | 焼結体、熱電変換素子用焼結体、熱電変換素子及び熱電変換モジュール | |
Tiwari et al. | Ball mill synthesis of bulk quaternary Cu 2 ZnSnSe 4 and thermoelectric studies | |
JP7076093B2 (ja) | ストロンチウムを含む薄膜及びその製造方法 | |
WO2013047475A1 (ja) | マグネシウムシリサイド、熱電変換材料、焼結体、熱電変換素子用焼結体、熱電変換素子、及び熱電変換モジュール | |
Zybała et al. | Characterization of nanostructured bulk cobalt triantimonide doped with tellurium and indium prepared by pulsed plasma in liquid method | |
JP4123388B2 (ja) | 亜鉛アンチモン化合物焼結体 | |
JP7157993B2 (ja) | 多結晶性マグネシウムシリサイド及びその利用 | |
JP2021005593A (ja) | マグネシウムシリサイド及びその利用 | |
JP3564541B2 (ja) | 亜鉛アンチモン化合物焼結体及びその製造法 | |
Oulfarsi et al. | Thermal Stability of Mg2Si0. 6Sn0. 4 under Oxidation Conditions | |
Trivedi et al. | Magnesium and manganese silicides for efficient and low cost thermo-electric power generation | |
WO2023145340A1 (ja) | 熱電変換モジュール及び熱電変換システム | |
JP2022051194A (ja) | 珪化物系合金薄膜及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080028725.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10794203 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 13379593 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127001588 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010794203 Country of ref document: EP |