WO2010150915A1 - 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法 - Google Patents

耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法 Download PDF

Info

Publication number
WO2010150915A1
WO2010150915A1 PCT/JP2010/061093 JP2010061093W WO2010150915A1 WO 2010150915 A1 WO2010150915 A1 WO 2010150915A1 JP 2010061093 W JP2010061093 W JP 2010061093W WO 2010150915 A1 WO2010150915 A1 WO 2010150915A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
less
seamless steel
mass
composition
Prior art date
Application number
PCT/JP2010/061093
Other languages
English (en)
French (fr)
Inventor
江口健一郎
田中裕二
木村光男
石黒康英
山田克美
仲道治郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43386682&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010150915(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201080028634.8A priority Critical patent/CN102459677B/zh
Priority to CA2766028A priority patent/CA2766028C/en
Priority to RU2012102294/02A priority patent/RU2493268C1/ru
Priority to US13/379,723 priority patent/US9234254B2/en
Priority to EP10792232.0A priority patent/EP2447386B1/en
Priority to BRPI1011755-5A priority patent/BRPI1011755B1/pt
Priority to MX2011013872A priority patent/MX2011013872A/es
Publication of WO2010150915A1 publication Critical patent/WO2010150915A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength seamless steel tube suitable for use in oil wells, and in particular, resistance to sulfide stress cracking in a sour environment containing hydrogen sulfide (hereinafter referred to as SSC). (Referred to as sex).
  • SSC hydrogen sulfide
  • sex a sour environment containing hydrogen sulfide
  • “high strength” refers to the case where the strength is 110 ksi class, that is, the yield strength is 758 MPa or more, preferably 861 MPa or less.
  • Patent Document 1 in mass%, C: 0.20 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.05 to 0.6 %, Mo: 0.8 to 3.0%, V: 0.05 to 0.25%, B: 0.0001 to 0.005%, and adjusted to 12V + 1 ⁇ Mo ⁇ 0.
  • SSC resistance Low alloy oil well pipe steel excellent in crack resistance
  • Cr when Cr is further contained, it is preferable to adjust Mn and Mo amounts so as to satisfy Mo ⁇ (Mn + Cr) ⁇ 0 according to the Cr content. As a result, sulfide stress cracking resistance (SSC resistance) is improved.
  • Patent Document 2 describes, in mass%, C: 0.05 to 0.35%, Si: 0.02 to 0.50%, Mn: 0.30 to 2.00%. , Ca: 0.0005 to 0.0080%, Al: 0.005 to 0.100%, Mo: 0.1 to 2.0%, Nb: 0.01 to 0.15%, V: 0.0.
  • sour resistance is improved by addition of Ca, and further, by adjusting so as to satisfy (% Ca) / (% O) ⁇ 0.55,
  • the molecular ratio of CaO) m ⁇ (Al 2 O 3 ) n can be controlled to m / n ⁇ 1, and it is possible to avoid stretching of the complex inclusions at the electro-welded welds and to prevent plate-like inclusions.
  • the generation of inclusions can be prevented, and the deterioration of SSC resistance caused by hydrogen induced blister cracking starting from plate-like inclusions can be prevented.
  • Patent Document 3 C: 0.15 to 0.3%, Cr: 0.2 to 1.5%, Mo: 0.1 to 1%, V: 0.05 to 0. 3%, low alloy steel containing Nb: 0.003 to 0.1%, the total amount of precipitated carbide is 1.5 to 4%, MC type carbide to the total amount of carbide (MC type carbide) The toughness and the resistance are 5 to 45%, and the proportion of M 23 C 6 type carbide (M 23 C 6 type carbide) is (200 / t)% or less (where t (mm) is the thickness of the product).
  • Oil well steels with excellent sulfide stress corrosion cracking properties are described. Such oil well steel can be manufactured by simply performing at least two quenching and tempering treatments.
  • Patent Document 4 C: 0.2 to 0.35%, Cr: 0.2 to 0.7%, Mo: 0.1 to 0.5%, and V: 0.1 to mass%.
  • the total amount of precipitated carbide is 2-5%, and the ratio of MC type carbide to the total amount of carbide is 8-40%.
  • Oil well steel is described. It is said that such oil well steel can be produced simply by performing quenching and tempering treatment.
  • Patent Document 5 discloses that C: 0.15 to 0.30%, Cr: 0.1 to 1.5%, Mo: 0.1 to 1.0%, and Ca + O (oxygen): 0% by mass. 0.008% or less, and further containing one or more of Nb: 0.05% or less, Zr: 0.05% or less, V: 0.30% or less, and the inclusion property in steel is the maximum length.
  • An oil well steel pipe excellent in sulfide stress corrosion cracking resistance having a particle size of 80 ⁇ m or less and a particle size of 20 ⁇ m or more of 10 pieces / 100 mm 2 or less is described. It is said that such oil well steel can be produced simply by directly quenching and tempering.
  • JP 2007-16291 A Japanese Patent Laid-Open No. 06-235045 JP 2000-297344 A JP 2000-178682 A JP 2001-172739 A
  • the object of the present invention is to solve the problems of the prior art and to provide a high-strength seamless steel pipe excellent in sulfide stress cracking resistance (SSC resistance) suitable for oil wells.
  • excellent in resistance to sulfide stress cracking (SSC resistance) means 0.5 wt% acetic acid (acetic acid: CH) saturated with H 2 S in accordance with NACE TM0177 Method A. 3 COOH) +5.0 wt% sodium chloride (test temperature: 24 ° C.) and a constant load testing was performed, and 85% of the yield strength was The applied stress is applied when the test duration exceeds 720 hours and no cracks occur.
  • the present inventors diligently studied various factors affecting the strength and sulfide stress cracking resistance of a seamless steel pipe.
  • Mo is reduced to about 1.1% or less, and appropriate amounts of Cr, V , Nb, and B essential, (1) ensuring a predetermined amount or more of solid solution Mo (solute Mo), and (2) refining the prior ⁇ grain size (Priority-Austenite Grain Sizes) to a predetermined value or less, (3)
  • the desired high strength can be stably secured, and the desired high strength and excellent resistance to sulfide stress cracking are combined.
  • Dislocation density It was found that the resistance to sulfide stress cracking of a steel pipe is remarkably improved by adopting a structure of 6.0 ⁇ 10 14 / m 2 or less. And by adjusting the tempering temperature (tempering temperature) and the holding time (soaking time) in the tempering treatment (tempering treatment) so as to satisfy an appropriate relational expression based on the diffusion distance of iron (diffusion distance) The inventors have found that dislocations can be reduced stably up to the above dislocation density.
  • the present invention has been completed on the basis of such findings and further studies. That is, the gist of the present invention is as follows. (1) In mass%, C: 0.15-0.50%, Si: 0.1-1.0%, Mn: 0.3-1.0%, P: 0.015% or less, S: 0.005% or less, Al: 0.01 to 0.1%, N: 0.01% or less, Cr: 0.1 to 1.7%, Mo: 0.4 to 1.1%, V: 0 0.01 to 0.12%, Nb: 0.01 to 0.08%, B: 0.0005 to 0.003%, and among the Mo, 0.40% or more as solute Mo,
  • the composition consisting of the balance Fe and inevitable impurities and the tempered martensite phase as the main phase, the prior austenite grains having a grain number of 8.5 or more, approximately in the form of particles organization and the M 2 C-type precipitates are dispersed over 0.06 mass% of Excellent seamless steel oil country tubular goods in sulfide stress cracking resistance, characterized in that it comprises.
  • the amount ⁇ of the solid solution Mo and the amount ⁇ of the substantially particulate M 2 C type precipitate are expressed by the following formula (1): 0.7 ⁇ ⁇ + 3 ⁇ ⁇ 1.2 (1) (Where ⁇ : solid solution Mo amount (mass%), ⁇ : amount of substantially particulate M 2 C type precipitate (mass%))
  • the seamless steel pipe for oil wells characterized by satisfying
  • the composition further comprises mass: Ni: 1.0% or less.
  • any one of (1) to (6) in addition to the above-mentioned composition, in addition to mass%, one selected from Ti: 0.03% or less and W: 2.0% or less
  • a seamless steel pipe for oil wells characterized by having a composition containing two kinds.
  • the steel pipe material After reheating to a temperature in the range, the steel pipe material is hot worked to form a seamless steel pipe having a predetermined shape, then cooled to room temperature at a cooling rate higher than air cooling, and at a temperature in the range of 665 to 740 °
  • the composition further contains, in mass%, Ni: 1.0% or less.
  • in any one of (9) to (14), in addition to the above-described composition in addition to mass%, one selected from Ti: 0.03% or less and W: 2.0% or less
  • the manufacturing method of the seamless steel pipe for oil wells characterized by setting it as the composition containing 2 types.
  • the present invention it is possible to easily and inexpensively manufacture a high-strength seamless steel pipe having both high strength of 110 ksi class and excellent resistance to sulfide stress cracking in severe corrosive environments containing hydrogen sulfide, There are remarkable effects in the industry.
  • Cu is contained in the range of 0.03% to 1.0% of the present invention, a remarkable and unexpected effect is obtained that the load stress, which is a severe corrosive environment, does not break even if the yield strength is 95%. It was.
  • C 0.15-0.50%
  • C is an element that has an action of increasing the strength of steel and is important for ensuring a desired high strength.
  • C is an element that improves hardenability and contributes to formation of a structure having a tempered martensite phase as a main phase. In order to obtain such an effect, the content of 0.15% or more is required.
  • a content exceeding 0.50% causes a large amount of carbides acting as hydrogen trap sites to be precipitated during tempering, preventing the invasion of excessive diffusible hydrogen into the steel, and cracking during quenching. Can not be suppressed. Therefore, C is limited to 0.15 to 0.50%. Note that the content is preferably 0.20 to 0.30%.
  • Si 0.1 to 1.0%
  • Si is an element that acts as a deoxidizer and has a function of increasing the strength of the steel by dissolving in steel and suppressing rapid softening during tempering. In order to obtain such an effect, the content of 0.1% or more is required. On the other hand, the content exceeding 1.0% forms coarse oxide inclusions, acts as a strong hydrogen trap site, and causes a decrease in the solid solution amount of the effective element. For this reason, Si was limited to the range of 0.1 to 1.0%. Note that the content is preferably 0.20 to 0.30%.
  • Mn 0.3 to 1.0%
  • Mn is an element that has the effect of increasing the strength of steel through improvement of hardenability and binding to S to fix S as MnS to prevent intergranular embrittlement due to S.
  • a content of 0.3% or more is required.
  • the content exceeds 1.0%, cementite precipitated at the grain boundaries is coarsened and the resistance to sulfide stress cracking is lowered. For this reason, Mn was limited to the range of 0.3 to 1.0%. Note that the content is preferably 0.4 to 0.8%.
  • P 0.015% or less
  • P has a tendency to segregate at grain boundaries in a solid solution state and cause intergranular cracking and the like, and in the present invention, it is desirable to reduce it as much as possible, but 0.015% Is acceptable. Therefore, P is limited to 0.015% or less. In addition, Preferably it is 0.013% or less.
  • S 0.005% or less S is present in steel as sulfide system inclusion, and has corrosion resistance such as ductility, toughness, and resistance to sulfide stress cracking. descend. Some of them may exist in a solid solution state, but in that case, they segregate at grain boundaries and tend to cause grain boundary embrittlement cracks. For this reason, although it is desirable to reduce as much as possible in this invention, excessive reduction raises refining cost (refining cost). For this reason, in the present invention, S is limited to 0.005% or less where the adverse effect is acceptable.
  • Al acts as a deoxidizing agent and combines with N to form AlN and contribute to the refinement of austenite grains. In order to acquire such an effect, Al needs to contain 0.01% or more. On the other hand, if the content exceeds 0.1%, oxide system inclusion increases and the toughness decreases. For this reason, Al was limited to the range of 0.01 to 0.1%.
  • the content is preferably 0.02 to 0.07%.
  • N 0.01% or less N is combined with nitride-forming elements such as Mo, Ti, Nb, and Al to form MN precipitates.
  • nitride-forming elements such as Mo, Ti, Nb, and Al
  • MN precipitates reduce SSC resistance, reduce the solid solution amount of elements effective for improving SSC resistance such as Mo, and further reduce the amount of MC and M 2 C precipitated during tempering. The desired increase in strength cannot be expected. For this reason, it is preferable to reduce N as much as possible, and N was limited to 0.01% or less.
  • MN type precipitate has the effect which suppresses the coarsening of a crystal grain at the time of heating a steel raw material etc., it is preferable to contain N about 0.003% or more.
  • Cr 0.1 to 1.7% Cr is an element that contributes to an increase in strength of steel through an increase in hardenability and improves corrosion resistance.
  • Cr combines with C during tempering to form carbides such as M 3 C, M 7 C 3 and M 23 C 6 systems.
  • the M 3 C-based carbide improves resistance to temper softening, reduces strength change due to tempering temperature, and facilitates strength adjustment.
  • the content of 0.1% or more is required.
  • the content exceeds 1.7%, a large amount of M 7 C 3 -based carbides and M 23 C 6 -based carbides are formed, acting as hydrogen trap sites, and reducing the resistance to sulfide stress cracking.
  • Cr was limited to the range of 0.1 to 1.7%.
  • the content is 0.5 to 1.5%. More preferably, it is 0.9 to 1.5%.
  • Mo 0.40 to 1.1% Mo forms carbides and contributes to an increase in strength by precipitation hardening, and also forms a solid solution and segregates at the prior austenite grain boundaries, thereby further improving the resistance to sulfide stress cracking. Further, Mo has a function of densifying the corrosion product and further suppressing generation / growth of pits or the like that are the starting points of cracks. In order to obtain such an effect, the content of 0.40% or more is required. On the other hand, if the content exceeds 1.1%, needle-like M 2 C type precipitates and, in some cases, a Laves phase (Fe 2 Mo) are formed, and the resistance to sulfide stress cracking is lowered.
  • Mo was limited to the range of 0.40 to 1.1%. In addition, Preferably it is 0.6 to 1.1%. If the Mo content is within this range, the M 2 C type precipitates also have a substantially particulate shape.
  • substantially particulate refers to a spherical shape or a spheroid.
  • the aspect ratio ratio of major axis / minor axis or ratio of maximum diameter to minimum diameter is 5 or less. When the particulate precipitates are continuous, the entire aggregate is regarded as the shape of the precipitate, and the aspect ratio is used.
  • a concentrated region preferably having a width of 1 nm or more and less than 2 nm can be formed at grain boundaries such as prior austenite ( ⁇ ) grain boundaries.
  • the grain boundary is strengthened by the micro segregation of the solid solution Mo to the former ⁇ grain boundary, and the resistance to sulfide stress cracking is remarkably improved.
  • the tempering performed after quenching treatment is performed at an appropriate temperature in consideration of the amount of Mo consumed as MN-type precipitates when the steel material is heated. Is achieved.
  • the amount of solid solution Mo is the value obtained by subtracting the amount of precipitated Mo from the total amount of Mo after obtaining the amount of precipitated Mo (Precipitated Mo) after tempering treatment by quantitative analysis of the electrolytic residue. To do.
  • V 0.01 to 0.12%
  • V is an element that forms carbides or nitrides and contributes to strengthening of the steel. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, even if the content exceeds 0.12%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, V is limited to a range of 0.01 to 0.12%. Note that the content is preferably 0.02 to 0.08%.
  • Nb 0.01 to 0.08% Nb delays recrystallization in the austenite ( ⁇ ) temperature range, contributes to refinement of ⁇ grains, and martensite substructure (eg, packet, block, lath) Is an element that has an effect of strengthening steel by forming carbides and extremely effectively. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, the content exceeding 0.08% promotes the precipitation of coarse precipitates (NbN), leading to a decrease in resistance to sulfide stress cracking. For this reason, Nb was limited to the range of 0.01 to 0.08%. Note that the content is preferably 0.02 to 0.06%.
  • a packet is defined as a region composed of a group of laths having the same habit plane arranged in parallel
  • a block is composed of a group of laths in parallel and in the same orientation.
  • B 0.0005 to 0.003%
  • B is an element that contributes to improving the hardenability when contained in a very small amount.
  • the effect is saturated or the formation of Fe-B boride makes it impossible to expect the desired effect, which is economically disadvantageous.
  • Mo 2 B to promote the formation of coarse borides such as Fe 2 B (boride)
  • B is limited to the range of 0.0005 to 0.003%.
  • the content is 0.001 to 0.003%.
  • Cu 0.03% to 1.0%
  • Cu is an element having an effect of increasing the strength of steel and improving toughness and corrosion resistance, and is an extremely important element particularly when severe sulfide stress cracking resistance is required. Can be added as necessary. When added, a dense corrosion product is formed, and the formation and growth of pits that are the starting point of cracking is suppressed, and the resistance to sulfide stress cracking is remarkably improved. 0.03% or more is desirable. On the other hand, even if the content exceeds 1.0%, the effect is saturated and the cost is increased. For this reason, when it contains, it is desirable to set it as 0.03%-1.0%. Preferably, the content is 0.03% to 0.10%.
  • the above components are basic, but in addition to the basic composition, if necessary, Ni: 1.0% or less and / or Ti: 0.03% or less, W: 2.0% or less One or two kinds selected from among them may be selected and contained.
  • Ni 1.0% or less
  • Ni is an element having an action of increasing the strength of steel and improving toughness and corrosion resistance, and can be contained as necessary. In order to obtain such an effect, it is desirable to contain Ni: 0.03% or more, but even if Ni is contained in excess of 1.0%, the effect is saturated and the cost is increased. For this reason, when it contains, it is preferable to limit to Ni: 1.0% or less.
  • Ti and W are elements that form carbides and contribute to strengthening of steel. It can be selected according to the content.
  • Ti is an element that forms carbides or nitrides and contributes to strengthening of steel. In order to acquire such an effect, it is desirable to contain 0.01% or more.
  • the content exceeds 0.03%, formation of coarse MC-type nitride (TiN) is promoted at the time of casting, and since it does not form a solid solution even with subsequent heating, the toughness and resistance to sulfide stress cracking are reduced. For this reason, Ti is preferably limited to a range of 0.03% or less. More preferably, the content is 0.01 to 0.02%.
  • W like Mo, forms carbides and contributes to the increase in strength by precipitation hardening, and also dissolves and segregates in the prior austenite grain boundaries to contribute to the improvement of resistance to sulfide stress cracking.
  • Ca 0.001 to 0.005%
  • Ca has an action of controlling the form of so-called inclusions in which the expanded sulfide-based inclusions are granular inclusions, and through this form control of the inclusions, ductility, toughness and sulfide stress resistance It is an element that has the effect of improving crackability. It can be added as necessary. Such an effect becomes remarkable when the content is 0.001% or more. However, when the content exceeds 0.005%, non-metallic inclusions increase, and ductility, toughness, and resistance to sulfides. Stress cracking is reduced. For this reason, when contained, Ca is limited to a range of 0.001 to 0.005%.
  • the steel pipe of the present invention has the above-described composition
  • the main phase is the tempered martensite phase
  • the prior austenite grains have a particle size number of 8.5 or more
  • the substantially spherical M 2 C type precipitate is 0. 0.06 mass% or more of the dispersed structure.
  • the steel pipe of the present invention has a martensite phase.
  • the structure is made to have a tempered martensite phase obtained by tempering these martensite phases as a main phase from the viewpoint of ensuring desired toughness, ductility, and resistance to sulfide stress cracking.
  • the term “main phase” as used herein refers to a structure containing a tempered martensite phase single phase or a tempered martensite phase and a second phase of less than 5% by volume that does not affect the properties.
  • the structure having the tempered martensite phase as the main phase means a structure containing 95% or more of the tempered martensite phase by volume.
  • the second phase having a volume percentage of less than 5% include bainite, pearlite, ferrite, and a mixed phase thereof.
  • the prior austenite ( ⁇ ) grains have a grain size number of 8.5 or more.
  • regulation of JISG0551 shall be used for the particle size number of an old gamma grain. If the former ⁇ grains have a particle size number of less than 8.5, the substructure of the martensite phase produced by transformation from the ⁇ phase becomes coarse, and the desired sulfide stress cracking resistance cannot be ensured.
  • the steel pipe of the present invention has the above-mentioned old ⁇ grain size number and a structure in which substantially particulate M 2 C type precipitates are dispersed.
  • the M 2 C type precipitate to be dispersed is substantially particulate.
  • the increase in strength becomes remarkable, and a desired high strength can be secured without impairing the resistance to sulfide stress cracking.
  • the needle-like M 2 C-type precipitates is increased, and decreased resistance to sulfide stress cracking resistance, it can not be ensured the desired resistance to sulfide stress cracking.
  • approximately particulate M 2 C type precipitates are dispersed in an amount of 0.06 mass% or more. If the amount of dispersion is less than 0.06 mass%, the desired high strength cannot be ensured. In addition, Preferably it is 0.08 mass% or more and 0.13 mass% or less.
  • This M 2 C type precipitate can achieve a desired precipitation amount by optimizing the addition amount of Mo, Cr, Nb, and V and the temperature and time of quenching and tempering treatment.
  • the amount ⁇ of the solid solution Mo and the amount ⁇ of the dispersed substantially particulate M 2 C type precipitate are expressed by the following formula (1): 0.7 ⁇ ⁇ + 3 ⁇ ⁇ 1.2 (1 ) (Here, ⁇ : amount of solid solution Mo (mass%), ⁇ : amount of substantially particulate M 2 C type precipitate (mass%)) It is preferable to adjust so as to satisfy the above. When the amount of the solid solution Mo and the amount of the substantially particulate M 2 C type precipitate do not satisfy the formula (1), the resistance to sulfide stress cracking is lowered.
  • the structure of the steel pipe of the present invention has the old ⁇ grain size number and has a Mo enriched region having a width of 1 nm or more and less than 2 nm on the old ⁇ grain boundary.
  • concentrating (segregating) Mo in a solid solution state on at least the former ⁇ grain boundary typical as an embrittlement region trapping on the former ⁇ grain boundary of hydrogen entering from the environment is suppressed, SSC resistance is further improved.
  • the Mo enriched region only needs to have a width of 1 nm or more and less than about 2 nm on the old ⁇ grain boundary.
  • solute Mo is also present in various crystal defects that are easily trapped by hydrogen, such as dislocations, packet boundaries, block boundaries, lath boundaries, and the like. It is preferable to thicken.
  • the structure of the steel pipe of the present invention is preferably a structure having a dislocation density of 6.0 ⁇ 10 14 / m 2 or less.
  • the dislocation functions as a hydrogen trap site and occludes a large amount of hydrogen. Therefore, when the dislocation density is high, the SSC resistance tends to decrease.
  • FIG. 2 shows the influence of dislocations existing in the structure on the SSC resistance in relation to the dislocation density and the rupture time of the sulfide stress cracking resistance test.
  • the dislocation density was determined by the following method. After the surface of a test piece (size: thickness 1 mm ⁇ width 10 mm ⁇ length 10 mm) collected from the steel pipe was mirror polished, the surface strain was removed using hydrofluoric acid. The half width of the peak of the (110), (211), (220) planes of tempered martensite (bcc crystal structure) by X-ray diffraction on the test piece from which this strain was removed. Asked. Using these half widths, in accordance with the Williamson-Hall method (see Nakajima et al .: CAMP-ISIJ, vol.
  • test piece size: parallel part diameter 6.35 mm ⁇ ⁇ length 25.4 mm
  • test piece collected from a steel pipe
  • the dislocation density is 6.0 ⁇ 10 14 / m 2 or less, which is an appropriate range, while maintaining the desired high strength of 110 ksi class. Can be adjusted.
  • a steel pipe material having the above-described composition is used as a starting material, the steel pipe material is heated to a temperature within a predetermined range, and then a hot-worked seamless steel pipe having a predetermined size is formed. Then, the seamless steel pipe is tempered or quenched. And tempering. Furthermore, a straightening process may be performed as necessary to correct a defective steel pipe shape.
  • the manufacturing method of the steel pipe material having the above-described composition is not particularly limited.
  • the molten steel having the above-described composition can be converted into a steel converter, an electric furnace, a vacuum melting furnace (vacuum). It is melted by a generally known melting method such as melting furnace, and billet is formed by a conventional method such as continuous casting process, ingot casting-blowing process, etc. It is preferable to use a steel pipe material such as.
  • These steel pipe materials are preferably heated to a temperature in the range of 1000 to 1350 ° C. If heating temperature is less than 1000 degreeC, melt
  • the holding time at the above-described temperature is within 4 hours.
  • the heated steel pipe material is then hot-processed and piped using a normal Mannesmann-plug mill process or Mannesmann-mandrel mill process.
  • a seamless steel pipe having a predetermined dimension is preferable.
  • the seamless steel pipe is cooled to room temperature at a cooling rate of air cooling or higher.
  • the martensite structure is 95 volume% or more, there is no need for a quenching process for reheating and rapid cooling (water cooling), but a quenching process for reheating and rapid cooling (water cooling) is necessary to stabilize the material. It is desirable to apply.
  • the seamless steel pipe after hot rolling is subjected to a quenching process of reheating and quenching (water cooling).
  • Quenching treatment in the present invention Ac 3 transformation point (Ac 3 transformation temperature) or more, then preferably reheated to a quenching temperature of 850 ⁇ 1050 ° C., Ms transformation point from ⁇ insertion temperature (martensitic transformation temperature) or less, preferably A process of rapid cooling (water cooling) to a temperature range of 100 ° C. or lower.
  • tissue The structure
  • the quenching heating temperature is less than the Ac 3 transformation point (less than 850 ° C.), it cannot be heated to an austenite single phase zone, and a sufficient martensite structure cannot be obtained by subsequent cooling. The desired strength cannot be ensured. For this reason, it is preferable to limit the heating temperature of the quenching treatment to the Ac 3 transformation point or higher.
  • the cooling from the quenching heating temperature is preferably water cooling of 2 ° C./s or more, and is performed up to a temperature range of not more than the Ms transformation point, preferably not more than 100 ° C. Thereby, sufficient hardening structure (95 volume% or more martensitic structure) can be obtained.
  • the soaking time at the quenching temperature is preferably 3 min or more from the viewpoint of soaking.
  • the seamless steel pipe that has been subjected to the quenching process is subsequently subjected to a tempering process.
  • the tempering treatment reduces the number of dislocations and stabilizes the structure, promotes the precipitation of fine substantially particulate M 2 C type precipitates, and further dissolves solid solution Mo into crystal grain boundaries and the like. This is performed in order to cause segregation of crystal defects and to combine desired high strength and excellent sulfide stress cracking resistance.
  • the tempering temperature is preferably a temperature in the temperature range of 665 to 740 ° C. If the tempering temperature is out of the above range, hydrogen trap sites such as dislocations increase and the resistance to sulfide stress cracking decreases.
  • the tempering treatment is preferably a treatment in which the temperature is kept within the above-mentioned range, preferably 20 minutes or more, and then cooled to a room temperature, preferably at a cooling rate of air cooling or more.
  • the holding at the tempering temperature is preferably within 100 min.
  • the tempering treatment is adjusted, and the dislocation density is preferably reduced to 6.0 ⁇ 10 14 / m 2 or less.
  • D of (2) Formula is a self-diffusion coefficient of the iron atom in a martensite
  • the value of (2) Formula is the iron atom when hold
  • the dislocation density cannot be 6.0 ⁇ 10 14 / m 2 or less.
  • the value of the formula (2) exceeds 150 nm, the yield strength YS becomes less than the target value of 110 ksi. Therefore, by selecting the tempering temperature and the holding time so as to satisfy the range defined in the formula (2) and performing the tempering treatment, excellent SCC resistance and desired high strength (YS: 110 ksi) And the like).
  • Molten steel having the composition shown in Table 1 was melted in a vacuum melting furnace, further subjected to degassing treatment, and then cast into a steel ingot. These steel ingots (steel pipe materials) were heated at 1250 ° C. (retention: 3 h) and made into seamless steel pipes (outer diameter 178 mm ⁇ ⁇ thickness 22 mm) by a seamless mill (seamless mill).
  • a test material was collected from the obtained seamless steel pipe, and the test material (steel pipe) was quenched and tempered under the conditions shown in Table 2.
  • the seamless steel pipe (outer diameter 178 mm ⁇ ⁇ wall thickness 22 mm) used in this example, a 95% by volume or more martensite structure is obtained after cooling to room temperature at a cooling rate of air cooling or higher. Since there was no tempering, all were tempered before tempering.
  • a specimen was collected from the obtained test material (steel pipe) and subjected to a structure observation test, a tensile test, a corrosion test, a precipitate amount, and a quantitative analysis test for the amount of solute Mo.
  • the test method was as follows.
  • the appearance of the former ⁇ grain boundary is corroded using picral corrosive liquid (picral), and the obtained structure is observed with 3 optical fields each using an optical microscope (magnification: 400 times), in accordance with the provisions of JIS G 0551. Then, the particle size number of the old ⁇ grain was determined using a cutting method. Moreover, observation and identification of the deposit were performed using a transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy (EDS (Energy Dispersive X-ray Spectroscopy)). Specifically, using a replica extracted from a specimen for tissue observation, observation was performed at a magnification of 5000 times, and a composition analysis by EDS was performed on precipitates included in the visual field.
  • TEM transmission electron microscope
  • EDS Energy dispersive X-ray spectroscopy
  • Precipitates whose Mo content as metal element (M) in the precipitates is less than 10% by atomic concentration are M 3 C, M 7 C 3 and M 23 C 6 type precipitates, and Mo content is more than 30% a precipitate was judged and Mo 2 C-type precipitate, to evaluate its shape for more than 50 Mo 2 C-type precipitates.
  • the element concentration modulation at the old ⁇ grain boundary was evaluated by a scanning transmission electron microscope (STEM) function and EDS for the thin film produced by the electrolytic polishing method.
  • the diameter of the used electron beam was about 0.5 nm, and a 20 nm straight line was analyzed with a 0.5 nm pitch across the old ⁇ grain boundary. From the quantification result of the obtained EDS spectrum at each point, the half width was determined as the Mo enriched region width at the old ⁇ grain boundary.
  • FIG. 1 shows an example of the Mo concentration state at the old ⁇ grain boundary as a result of the line analysis.
  • API arc-shaped tensile test specimens are collected from test materials (steel pipes) in accordance with the provisions of API 5CT, tensile tests are performed, and tensile properties (yield strength YS, tensile strength TS) are obtained. Asked.
  • tensile properties yield strength YS, tensile strength TS
  • Corrosion test In addition, a corrosion test piece was taken from a test material (steel pipe), and a 0.5 wt% acetic acid + 5.0 wt% saline aqueous solution (liquid) saturated with H 2 S in accordance with NACE TM0177 Method A regulations.
  • a test piece for electrolytic extraction was collected from a test material (steel pipe). Using the collected specimen for electrolytic extraction, 0.5 g as an electric extraction method (electrolytic solution: 10% AA-based electrolytic solution) with a current density of 20 mA / cm 2 is used. Only by constant-current electrolysis, the electrolytic solution containing the extracted electrolytic residue is filtered using a filter having a filter pore size of 0.2 nm, and the electrolytic residue on the filtered filter is filtered.
  • the 10 wt% AA-based electrolyte is 10 wt% acetylacetone and 1 wt% tetramethylammonium chloride-methanol solution. Further, a value obtained by subtracting the obtained precipitated Mo amount (mass%) from the total Mo amount (mass%) was defined as a solid solution Mo amount (mass%).
  • the dispersion amount of the M 2 C type precipitate was obtained by calculation from the quantitative values of the metal elements Cr and Mo in the electrolytic residue obtained by ICP emission analysis of the electrolytic residue.
  • the main tempered precipitates (precipitates) in the steel type used are M 3 C type and M 2 C type
  • the average composition of each of the M 3 C type precipitates and M 2 C type precipitates obtained from the results of EDS analysis (Energy Dispersive X-ray Spectrometer) of the precipitates using the above-mentioned extraction replica (extraction replica) most precipitation Cr is have been found to have been dissolved in M 3 C type precipitate, from ICP emission analysis of the electrolyte residue with the average composition of the resulting M 3 C type precipitate from EDS analysis From the quantitative value of Cr in the obtained electrolytic residue, the amount of Mo dissolved in the M 3 C type precipitate can be calculated.
  • All of the examples of the present invention are steel pipes having desired high strength (yield strength: 758 MPa or more, 110 ksi or more) and desired sulfide stress cracking resistance.
  • the comparative example out of the scope of the present invention cannot secure a desired structure and a desired amount of solid solution Mo, and has a desired high strength and / or a desired excellent sulfide stress cracking resistance. It is not secured.
  • the dislocation density is 6.0 ⁇ 10 14 / m 2 or less, and the fracture does not occur even when the load stress is 90% of the yield strength. Excellent resistance to sulfide stress cracking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

耐硫化物応力割れ性(耐SSC性)に優れた油井用高強度継目無鋼管を提供する。具体的には、mass%で、C:0.15~0.50%、Si:0.1~1.0%、Mn:0.3~1.0%、P:0.015%以下、S:0.005%以下、Al:0.01~0.1%以下、N:0.01%以下、Cr:0.1~1.7%、Mo:0.40~1.1%、V:0.01~0.08%、Nb:0.01~0.08%、B:0.0005~0.003%、あるいはさらに、Cu:0.03%~1.0%を含み、かつ前記Moのうち、固溶Moとして0.40%以上含有する組成と、焼戻マルテンサイト相を主相とし、旧オーステナイト粒が粒度番号で8.5以上で、かつ略粒子状のMC型析出物が0.06mass%以上分散してなる組織とを有する継目無鋼管とする。

Description

耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法
 本発明は、油井用として好適な高強度継目無鋼管(high strength seamless steel tube)に係り、とくに硫化水素を含むサワー環境下における耐硫化物応力割れ性(Resistance to Sulfide Stress Cracking:以下、耐SSC性と称する)の改善に関する。なお、ここでいう「高強度」とは、110ksi級の強度、すなわち降伏強さが758MPa以上、好ましくは861MPa以下の強度を有する場合をいうものとする。
 近年、原油価格(crude oil price)の高騰や、近い将来に予想される石油資源(oil resource)の枯渇という観点から、従来、省みられなかったような深度が深い油田(oil field)や、硫化水素等を含む、いわゆるサワー環境(sour environment)下にある厳しい腐食環境(corrosion environment)の油田やガス田(gas field)等の開発が盛んになっている。このような環境下で使用される油井用鋼管(Oil Country Tubular Good(OCTG))には、高強度で、かつ優れた耐食性(耐サワー性)を兼ね備えた材質を有することが要求される。
 このような要求に対して、例えば、特許文献1には、質量%でC:0.20~0.35%、Si:0.05~0.5%、Mn:0.05~0.6%、Mo:0.8~3.0%、V:0.05~0.25%、B:0.0001~0.005%を含み、12V+1−Mo≧0に調整した、耐硫化物応力割れ性(耐SSC性)に優れた低合金油井管用鋼が記載されている。また、特許文献1に記載された技術では、さらにCrを含有する場合には、Cr含有量に応じてMn、Mo量を、Mo−(Mn+Cr)≧0を満足するように調整することが好ましく、これにより、耐硫化物応力割れ性(耐SSC性)が向上するとしている。
 また、継目無鋼管ではないが、特許文献2には、質量%でC:0.05~0.35%、Si:0.02~0.50%、Mn:0.30~2.00%、Ca:0.0005~0.0080%、Al:0.005~0.100%、さらにMo:0.1~2.0%、Nb:0.01~0.15%、V:0.05~0.30%、Ti:0.001~0.050%、B:0.0003~0.0040%のうち1種または2種以上を含み、S、O、Caの含有量が、1.0≦(%Ca){1−72(%O)}/1.25(%S)≦ 2.5の関係式を満足し、さらにCa、O含有量が、(%Ca)/(%O)≦0.55の関係式を満足する、耐硫化物応力腐食割れ性に優れた電縫鋼管(electric resistance welded steel pipe)が記載されている。特許文献2に記載された技術では、Ca添加により耐サワー性が改善し、さらに(%Ca)/(%O)≦0.55を満足するように調整することにより、脱酸生成物の(CaO)・(Alの分子比をm/n<1に制御でき、複合介在物(complex inclusion)の電縫溶接部での延伸を回避し板状介在物(plate−like inclusion)の生成を防止して、板状介在物を起点とした水素ふくれ割れ(hydrogen induced blister cracking)に起因する耐SSC性の劣化を防止できるとしている。
 また、特許文献3には、質量%でC:0.15~0.3%、Cr:0.2~1.5%、Mo:0.1~1%、V:0.05~0.3%、Nb:0.003~0.1%を含む低合金鋼からなり、析出している炭化物の総量が1.5~4%であり、炭化物の総量に対するMC型炭化物(MC type carbide)の割合が5~45%、M23型炭化物(M23 type carbide)の割合が(200/t)%以下(なお、t(mm)は製品の肉厚)である靭性と耐硫化物応力腐食割れ性に優れる油井用鋼が記載されている。そして、このような油井用鋼は、少なくとも2回の焼入れ焼戻処理を施すだけで製造できるとしている。
 また、特許文献4には、質量%でC:0.2~0.35%、Cr:0.2~0.7%、Mo:0.1~0.5%、V:0.1~0.3%を含む低合金鋼からなり、析出している炭化物の総量が2~5%であり、炭化物の総量に対するMC型炭化物の割合が8~40%である耐硫化物応力腐食割れ性に優れる油井用鋼が記載されている。このような油井用鋼は、焼入れ焼戻処理を施すだけで製造できるとしている。
 また、特許文献5には、質量%でC:0.15~0.30%、Cr:0.1~1.5%、Mo:0.1~1.0%、Ca+O(酸素):0.008%以下を含み、さらにNb:0.05%以下、Zr:0.05%以下、V:0.30%以下のうちの1種以上を含有し、鋼中の介在物性状が最大長さ80μm以下で、粒径20μm以上の個数が10個/100mm以下である耐硫化物応力腐食割れ性に優れた油井用鋼管が記載されている。このような油井用鋼は、直接焼入れ焼戻処理を施すだけで製造できるとしている。
特開2007−16291号公報 特開平06−235045号公報 特開2000−297344号公報 特開2000−178682号公報 特開2001−172739号公報
 しかしながら、耐SSC性に及ぼす各種要因は極めて複雑であり、110ksi級の高強度鋼管において安定して、耐SSC性を確保するための条件は明確になっておらず、特許文献1、特許文献3、特許文献4、特許文献5に記載された技術によってもなお、厳しい腐食環境下で油井管として使用できる、耐SSC性に優れた油井用鋼管を安定して製造できるまでに至っていないのが実情である。また、特許文献2に記載された技術は、電縫鋼管に関するものであり、厳しい腐食環境では電縫溶接部での耐食性が問題となる場合が多く、特許文献2に記載された鋼管では厳しい腐食環境下で使用される油井用としては問題を残していた。
 本発明は、かかる従来技術の問題を解決し、油井用として好適な、耐硫化物応力割れ性(耐SSC性)に優れた高強度継目無鋼管を提供することを目的とする。なお、ここでいう「耐硫化物応力割れ性(耐SSC性)に優れた」とは、NACE TM0177 Method Aの規定に準拠した、HSが飽和した0.5wt%酢酸(acetic acid:CHCOOH)+5.0wt%食塩水溶液(sodium chloride)(液温(test temperature):24℃)中での定荷重試験(constant load testing)を実施し、降伏強さ(yield strength)の85%の負荷応力(applied stress)で負荷時間(test duration):720時間を超えて、割れが生じない場合をいうものとする。
 本発明者らは、上記した目的を達成するために、継目無鋼管の強度および耐硫化物応力割れ性におよぼす各種要因について鋭意研究した。その結果、油井用の継目無鋼管として、所望の高強度と優れた耐硫化物応力割れ性とを両立させるには、Moを1.1%以下程度まで低減し、さらに適正量のCr、V、Nb、Bを必須含有したうえで、さらに、
(1)所定量以上の固溶Mo(solute Mo)を確保し、さらに
(2)旧γ粒径(Prior−Austenite Grain Sizes)を所定値以下に微細化すること、
(3)略粒子状のMC型析出物を所定量以上分散させること
により、所望の高強度を安定して確保でき、所望の高強度と優れた耐硫化物応力割れ性とを兼備させることができるという知見を得た。更なる耐硫化物応力割れ性の向上のためには、
(4)旧γ粒界上にMoが1nm以上2nm未満程度の幅で濃化して存在すること、
が重要であることも新たに見出した。
 またさらに、本発明者らは、転位(dislocations)が水素のトラップサイト(trap site)になることに鑑み、
(5)転位密度(dislocation density):6.0×1014/m以下の組織とすること、により、鋼管の耐硫化物応力割れ性が顕著に向上することを見出した。そして、鉄の拡散距離(diffusion distance)に基づく適正な関係式を満足するように、焼戻処理(tempering treatment)における焼戻温度(temper temperature)と保持時間(soaking time)とを調整することにより、上記した転位密度まで安定して転位を減少することができることを見出した。
 本発明は、かかる知見に基づいて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)mass%で、C:0.15~0.50%、Si:0.1~1.0%、Mn:0.3~1.0%、P:0.015%以下、S:0.005%以下、Al:0.01~0.1%、N:0.01%以下、Cr:0.1~1.7%、Mo:0.4~1.1%、V:0.01~0.12%、Nb:0.01~0.08%、B:0.0005~0.003%を含み、かつ前記Moのうち、固溶Moとして0.40%以上含有し、残部Feおよび不可避的不純物からなる組成と、焼戻マルテンサイト相(tempered martensite)を主相とし、旧オーステナイト粒(prior austenite grain)が粒度番号(grain number)で8.5以上で、略粒子状のMC型析出物が0.06mass%以上分散してなる組織とを有することを特徴とする耐硫化物応力割れ性に優れた油井用継目無鋼管。
(2)(1)において、前記組成に加えてさらに、mass%で、Cu:0.03%~1.0%を含有する油井用継目無鋼管。
(3)(1)または(2)において、前記組織が、さらに前記旧オーステナイト粒界に幅1nm以上2nm未満のMo濃化領域を有することを特徴とする油井用継目無鋼管。
(4)(1)ないし(3)のいずれかにおいて、前記固溶Moの量αと、前記略粒子状のMC型析出物の量βが次(1)式
 0.7 ≦ α+3β ≦ 1.2   ‥‥(1)
(ここで、α:固溶Mo量(mass%)、β:略粒子状のMC型析出物の量(mass%))
を満足することを特徴とする油井用継目無鋼管。
(5)(1)ないし(4)のいずれかにおいて、前記組織の転位密度が、6.0×1014/m以下であることを特徴とする油井用継目無鋼管。
(6)(1)ないし(5)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ni:1.0%以下を含有する組成とすることを特徴とする油井用継目無鋼管。
(7)(1)ないし(6)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ti:0.03%以下、W:2.0%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする油井用継目無鋼管。
(8)(1)ないし(7)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ca:0.001~0.005%を含有する油井用継目無鋼管。
(9)mass%で、C:0.15~0.50%、Si:0.1~1.0%、Mn:0.3~1.0%、P:0.015%以下、S:0.005%以下、Al:0.01~0.1%、N:0.01%以下、Cr:0.1~1.7%、Mo:0.4~1.1%、V:0.01~0.12%、Nb:0.01~0.08%、B:0.0005~0.003%を含み、残部Feおよび不可避的不純物からなる組成の鋼管素材を、1000~1350℃の範囲の温度に再加熱したのち、該鋼管素材に熱間加工を施し、所定形状の継目無鋼管とし、ついで、空冷以上の冷却速度で室温まで冷却し、665~740℃の範囲の温度で焼戻処理を施すことを特徴とする耐硫化物応力割れ性に優れた油井用継目無鋼管の製造方法。
(10)(9)において、前記焼戻処理前に、再加熱し急冷する焼入れ処理を施す耐硫化物応力割れ性に優れた油井用継目無鋼管の製造方法。
(11)(10)において、前記焼入れ処理の焼入れ温度が、Ac変態点~1050℃である油井用継目無鋼管の製造方法。
(12)(9)ないし(11)において、前記組成に加えてさらに、mass%で、Cu:0.03%~1.0%を含有する油井用継目無鋼管の製造方法。
(13)(9)ないし(12)において、前記焼戻処理を、焼戻温度T:665~740℃が前記温度の範囲内で、かつ該焼戻温度T(℃)と保持時間t(min)との関係が次(2)式
 70nm ≦ 10000000√(60Dt) ≦ 150nm    ‥‥(2)
(ここで、D(cm/s)=4.8exp(−(63×4184)/(8.31(273+T))、T:焼戻温度(℃)、t:焼戻保持時間(min))
を満足する処理とすることを特徴とする油井用継目無鋼管の製造方法。
(14)(9)ないし(13)において、前記組成に加えてさらに、mass%で、Ni:1.0%以下を含有する組成とすることを特徴とする油井用継目無鋼管の製造方法。
(15)(9)ないし(14)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ti:0.03%以下、W:2.0%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする油井用継目無鋼管の製造方法。
(16)(9)ないし(15)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ca:0.001~0.005%を含有する組成とすることを特徴とする油井用継目無鋼管の製造方法。
 本発明によれば、110ksi級の高強度と、さらに硫化水素を含む厳しい腐食環境下における優れた耐硫化物応力割れ性とを兼備する高強度継目無鋼管を容易に、しかも安価に製造でき、産業上格段の効果を奏する。特に、Cuを本発明の範囲0.03%~1.0%に含有させた場合は、厳しい腐食環境である負荷応力が降伏強さの95%でも破断しないという予測できない格段の効果が得られた。
線分析の結果として、旧γ粒界におけるMoの濃化状況の一例を示すグラフである。 転位密度と耐硫化物応力割れ試験での破断時間との関係を示すグラフである。
 まず、本発明鋼管の組成限定理由について説明する。以下、とくに断わらないかぎりmass%は単に%で記す。
 C:0.15~0.50%
 Cは、鋼の強度を増加させる作用を有し所望の高強度を確保するために重要な元素である。また、Cは、焼入れ性を向上させる元素であり、焼戻マルテンサイト相を主相とする組織の形成に寄与する。このような効果を得るためには、0.15%以上の含有を必要とする。一方、0.50%を超える含有は、焼戻時に、水素のトラップサイトとして作用する炭化物を多量に析出させ、鋼中への過剰な拡散性水素の侵入を阻止できなくなるとともに、焼入れ時の割れを抑制できなくなる。このため、Cは0.15~0.50%に限定した。なお、好ましくは0.20~0.30%である。
 Si:0.1~1.0%
 Siは、脱酸剤として作用するとともに、鋼中に固溶して鋼の強度を増加させ、焼戻時の急激な軟化を抑制する作用を有する元素である。このような効果を得るためには、0.1%以上の含有を必要とする。一方、1.0%を超える含有は、粗大な酸化物系介在物を形成し、強い水素トラップサイトとして作用するとともに、有効元素の固溶量低下を招く。このため、Siは0.1~1.0%の範囲に限定した。なお、好ましくは0.20~0.30%である。
 Mn:0.3~1.0%
 Mnは、焼入れ性の向上を介して、鋼の強度を増加させるとともに、Sと結合しMnSとしてSを固定して、Sによる粒界脆化(intergranular embrittlement)を防止する作用を有する元素であり、本発明では0.3%以上の含有を必要とする。一方、1.0%を超える含有は、粒界に析出するセメンタイト(cementite)が粗大化し耐硫化物応力割れ性を低下させる。このため、Mnは0.3~1.0%の範囲に限定した。なお、好ましくは0.4~0.8%である。
 P:0.015%以下
 Pは、固溶状態では粒界等に偏析し、粒界割れ(intergranular cracking)等を引き起こす傾向を示し、本発明ではできるだけ低減することが望ましいが、0.015%までは許容できる。このようなことから、Pは0.015%以下に限定した。なお、好ましくは0.013%以下である。
 S:0.005%以下
 Sは、鋼中ではほとんどが硫化物系介在物(sulfide system inclusion)として存在し、延性(ductility)、靭性(toughness)や、耐硫化物応力割れ性等の耐食性を低下する。一部は固溶状態で存在する場合があるが、その場合には粒界等に偏析し、粒界脆化割れ等を引き起こす傾向を示す。このため、本発明ではできるだけ低減することが望ましいが、過剰な低減は精錬コスト(refining cost)を高騰させる。このようなことから、本発明では、Sは、その悪影響が許容できる0.005%以下に限定した。
 Al:0.01~0.1%
 Alは、脱酸剤(deoxidizing agent)として作用するとともに、Nと結合しAlNを形成してオーステナイト結晶粒(austenite grain)の微細化に寄与する。このような効果を得るために、Alは0.01%以上の含有を必要とする。一方、0.1%を超えて含有すると、酸化物系介在物(oxide system inclusion)が増加し靭性が低下する。このため、Alは0.01~0.1%の範囲に限定した。なお、好ましくは0.02~0.07%である。
 N:0.01%以下
 Nは、Mo、Ti、Nb、Al等の窒化物形成元素(nitride formation elements)と結合しMNの析出物(precipitates)を形成する。しかし、これらの析出物は耐SSC性を低下させるとともに、Mo等の耐SSC性向上に有効な元素の固溶量を少なくするとともに、さらに焼戻時に析出するMC、MCの析出量を低減し、所望の高強度化が期待できなくなる。このため、Nはできるだけ低減することが好ましく、Nは0.01%以下に限定した。なお、MN型析出物は、鋼素材等の加熱時に、結晶粒の粗大化を抑制する効果を有するため、Nは0.003%程度以上含有することが好ましい。
 Cr:0.1~1.7%
 Crは、焼入れ性(hardenability)の増加を介して、鋼の強度の増加に寄与するとともに、耐食性を向上させる元素である。また、Crは、焼戻時にCと結合し、MC系、M系、M23系等の炭化物を形成する。このうち、MC系炭化物は、焼戻軟化抵抗(resistance to temper softening)を向上させ、焼戻温度による強度変化を少なくして、強度調整を容易にする。このような効果を得るためには、0.1%以上の含有を必要とする。一方、1.7%を超えて含有すると、多量のM系炭化物、M23系炭化物を形成し、水素のトラップサイトとして作用し耐硫化物応力割れ性が低下する。このため、Crは0.1~1.7%の範囲に限定した。なお、好ましくは0.5~1.5%である。さらに好ましくは0.9~1.5%である。
 Mo:0.40~1.1%
 Moは、炭化物を形成し析出硬化(precipitation hardening)により強度の増加に寄与するとともに、固溶して、旧オーステナイト粒界に偏析して更なる耐硫化物応力割れ性の向上に寄与する。また、Moは、腐食生成物を緻密化し、さらに割れの起点となるピット(pit)等の生成・成長を抑制する作用を有する。このような効果を得るためには、0.40%以上の含有を必要とする。一方、1.1%を超える含有は、針状(needle−like)のMC型析出物や、場合によってはLaves相(FeMo)を形成し耐硫化物応力割れ性を低下させる。このため、Moは0.40~1.1%の範囲に限定した。なお、好ましくは0.6~1.1%である。この範囲のMo含有であれば、MC型析出物も略粒子状を呈している。ここで言う「略粒子状」とは、球状(spherical shape)または、回転楕円体(spheroid)をいうものとする。なお、針状の析出物を含めないので、アスペクト比(長軸/短軸の比あるいは、最大径と最小径の比)が、5以下のものを言う。また粒子状の析出物が連なった場合は、集合体全体を析出物の形状として捉え、そのアスペクト比を用いる。
 なお、本発明では、Moを上記した範囲内で含有するとともに、固溶状態のMo(固溶Mo)を0.40%以上含有する。固溶Moを0.40%以上含有することにより、旧オーステナイト(γ)粒界等の粒界に、好ましくは幅1nm以上、2nm未満の濃化領域(偏析)を形成することができる。この固溶Moの旧γ粒界へのミクロ偏析(micro segregation)により粒界が強化され、耐硫化物応力割れ性が顕著に向上する。また、上記した固溶Moの存在により、緻密な腐食生成物(corrosion product)が形成され、さらに割れの起点となるピットの生成や成長が抑制されて、耐硫化物応力割れ性が顕著に向上する。上記した所望量の固溶Moの確保は、鋼素材の加熱時にMN型析出物として消費されるMo量を勘案して、焼入れ処理(quenching treatment)後に行う焼戻処理を、適正温度で行うことにより達成される。なお、固溶Mo量は、電解残渣(electrolytic residue)の定量分析(quantitative analysis)により、焼戻処理後の析出Mo(Precipitated Mo)量を求め、全Mo量から析出Mo量を差し引いた値とする。
 V:0.01~0.12%
 Vは、炭化物あるいは窒化物(nitride)を形成し、鋼の強化に寄与する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.12%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Vは0.01~0.12%の範囲に限定した。なお、好ましくは0.02~0.08%である。
 Nb:0.01~0.08%
Nbは、オーステナイト(γ)温度域での再結晶(recrystallization)を遅延させ、γ粒の微細化に寄与し、マルテンサイトの下部組織(例えばパケット(packet)、ブロック(block)、ラス(lath)等を言う)の微細化に極めて有効に作用するとともに、炭化物を形成し鋼を強化する作用を有する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.08%を超える含有は、粗大な析出物(NbN)の析出を促進し、耐硫化物応力割れ性の低下を招く。このため、Nbは0.01~0.08%の範囲に限定した。なお、好ましくは0.02~0.06%である。ここで、パケットとは、平行に並んだ同じ晶癖面(habit plane)を持つラスの集団から成る領域と定義され、ブロックは、平行でかつ同じ方位のラスの集団から成る。
 B:0.0005~0.003%
 Bは、微量の含有で焼入れ性向上に寄与する元素であり、本発明では0.0005%以上の含有を必要とする。一方、0.003%を超えて多量に含有しても、効果が飽和するかあるいはFe−B硼化物の形成により、逆に所望の効果が期待できなくなり、経済的に不利となる。なお、0.003%を超えて含有すると、MoB、FeB等の粗大な硼化物(boride)の形成を促進し、熱延時に割れを発生しやすくする。このため、Bは0.0005~0.003%の範囲に限定した。なお、好ましくは0.001~0.003%である。
 Cu:0.03%~1.0%
 Cuは、鋼の強度を増加させるとともに、靭性、耐食性(corrosion resistance)を向上させる作用を有する元素であり、特に、厳しい耐硫化物応力割れ性が求められる場合には、極めて重要な元素であり、必要に応じて添加できる。添加した場合、緻密な腐食生成物(corrosion product)が形成され、さらに割れの起点となるピットの生成・成長が抑制されて、耐硫化物応力割れ性が顕著に向上するため、本発明では0.03%以上の含有が望ましい。一方で、1.0%を超えて含有しても効果が飽和するうえ、コストの高騰を招く。このため、含有する場合には0.03%~1.0%とすることが望ましい。なお、好ましくは、0.03%~0.10%である。
 以上の成分が基本であるが、基本の組成に加えてさらに、必要に応じて、Ni:1.0%以下、および/または、Ti:0.03%以下、W:2.0%以下のうちから選ばれた1種または2種を選択して含有してもよい。
 Ni:1.0%以下
 Niは、鋼の強度を増加させるとともに、靭性、耐食性(corrosion resistance)を向上させる作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには、Ni:0.03%以上を含有することが望ましいが、Ni:1.0%を超えて含有しても効果が飽和するうえ、コストの高騰を招く。このため、含有する場合には、Ni:1.0%以下に限定することが好ましい。
 Ti:0.03%以下、W:2.0%以下のうちから選ばれた1種または2種
 Ti、Wはいずれも、炭化物を形成し、鋼の強化に寄与する元素であり、必要に応じて選択して含有できる。
 Tiは、炭化物あるいは窒化物を形成し、鋼の強化に寄与する元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.03%を超える含有は、鋳造時に粗大なMC型窒化物(TiN)の形成が促進され、その後の加熱でも固溶しないため、靭性や耐硫化物応力割れ性の低下を招く。このため、Tiは0.03%以下の範囲に限定することが好ましい。なお、より好ましくは0.01~0.02%である。
 Wは、Moと同様に、炭化物を形成し析出硬化により強度の増加に寄与するとともに、固溶して、旧オーステナイト粒界に偏析して耐硫化物応力割れ性の向上に寄与する。このような効果を得るためには、0.03%以上含有することが望ましいが、2.0%を超える含有は、耐硫化物応力割れ性を低下させる。このため、Wは2.0%以下に限定することが好ましい。なお、より好ましくは0.05~0.50%である。
 Ca:0.001~0.005%
 Caは、展伸した硫化物系介在物を粒状の介在物とする、いわゆる介在物の形態を制御する作用を有し、この介在物の形態制御を介して、延性、靭性や耐硫化物応力割れ性を向上させる効果を有する元素である。必要に応じて添加できる。このような効果は、0.001%以上の含有で顕著となるが、0.005%を超える含有は、非金属介在物(non−metallic inclusion)が増加し、かえって延性、靭性や耐硫化物応力割れ性が低下する。このため、含有する場合には、Caは0.001~0.005%の範囲に限定した。
 上記した成分以外の残部は、Feおよび不可避的不純物である。
 つぎに本発明鋼管は、上記した組成を有し、かつ焼戻マルテンサイト相を主相とし、旧オーステナイト粒が粒度番号で8.5以上で、かつ略球状のMC型析出物が0.06mass%以上分散した組織を有する。なお、旧オーステナイト粒界上に幅1nm以上2nm未満のMo濃化領域を有することが好ましい。
 多量の合金元素を含有することなく、比較的少ない合金元素含有量で、110ksi級(1ksi=1klb/in=6.89MPa)の高強度を確保するために、本発明鋼管では、マルテンサイト相組織とするが、所望の靭性、延性さらには耐硫化物応力割れ性の確保の観点から、これらマルテンサイト相を焼戻した焼戻マルテンサイト相を主相とする組織とする。ここでいう「主相」とは、焼戻マルテンサイト相単相、あるいは、焼戻マルテンサイト相に加えて、特性に影響しない範囲である、体積%で5%未満の第二相を含む組織とする。第二相が、5%以上となると、強度、さらには靭性、延性等の特性が低下する。したがって、焼戻マルテンサイト相を主相とする組織とは、体積%で95%以上の焼戻マルテンサイト相を含む組織であることを意味する。なお、体積%で5%未満の第二相としては、ベイナイト(bainite)、パーライト(pearlite)、フェライト(ferrite)あるいは、これらの混合相等が例示できる。
 また、本発明鋼管では、旧オーステナイト(γ)粒が粒度番号で8.5以上の組織とする。なお、旧γ粒の粒度番号は、JIS G 0551の規定に準拠して測定した値を用いるものとする。旧γ粒が粒度番号で8.5未満では、γ相から変態で生成するマルテンサイト相の下部組織が粗大化し、所望の耐硫化物応力割れ性を確保できなくなる。
 またさらに、本発明鋼管では、上記した旧γ粒度番号を有し、さらに略粒子状のMC型析出物が分散した組織を有する。分散するMC型析出物は、略粒子状とする。略粒子状のMC型析出物を分散させることにより、強度の増加が顕著となり、耐硫化物応力割れ性を損なうことなく、所望の高強度を確保できるようになる。なお、針状のMC型析出物が多くなると、耐硫化物応力割れ性が低下し、所望の耐硫化物応力割れ性を確保できなくなる。
 また、本発明では、略粒子状のMC型析出物を0.06mass%以上分散させる。分散量が、0.06mass%未満では、所望の高強度を確保できなくなる。なお、好ましくは0.08mass%以上0.13mass%以下である。このMC型析出物は、Mo、Cr、Nb、Vの添加量、焼入れ焼戻し処理の温度・時間を最適化することで、所望の析出量を達成できる。
 さらに、本発明では、固溶Moの量αと、分散した略粒子状のMC型析出物の量βとが、次(1)式
 0.7 ≦ α+3β ≦ 1.2   ‥‥(1)
(ここで、α:固溶Moの量(mass%)、β:略粒子状のMC型析出物の量(mass%))
を満足するように調整することが好ましい。固溶Moの量と略粒子状のMC型析出物の量が、(1)式を満足しない場合には、耐硫化物応力割れ性が低下する。
またさらに、本発明鋼管の組織は、上記した旧γ粒度番号を有し、かつ旧γ粒界上に幅1nm以上2nm未満のMo濃化領域を有することが好ましい。固溶状態のMoを、少なくとも脆化領域として代表的な旧γ粒界上に濃化(偏析)させることにより、環境から侵入してくる水素の旧γ粒界上でのトラップが抑制され、耐SSC性が更に向上する。このような効果を得るためには、Mo濃化領域が、旧γ粒界上に幅1nm以上2nm程度未満あればよい。なお、旧γ粒界以外にも、固溶Moは、水素がトラップされ易い各種結晶欠陥、例えば転位、パケット境界(packet boundary)、ブロック境界(block boundary)、ラス境界(lath boundary)等にも、濃化させることが好ましい。
 またさらに、本発明鋼管の組織は、転位密度:6.0×1014/m以下の組織とすることが好ましい。転位は、水素のトラップサイトとして機能し、多量の水素を吸蔵するため、転位密度が高い場合には、耐SSC性が低下する傾向となる。図2に、耐SSC性に及ぼす組織中に存在する転位の影響を、転位密度と耐硫化物応力割れ試験の破断時間との関係で示す。
 なお、転位密度は、つぎのような方法で求めた。
 鋼管から採取した試験片(大きさ:厚さ1mm×幅10mm×長さ10mm)の表面を鏡面研磨(mirror polishing)したのち、さらにフッ酸(hydrofluoric acid)を用いて表層の歪を除去した。この歪を除去した試験片に対し、X線回折により、焼戻しマルテンサイト(b.c.c.結晶構造)の(110)、(211)、(220)面のピークの半値幅(half bandwidth)を求めた。これら半値幅を用いて、Williamson−Hall法(中島ら:CAMP−ISIJ,vol.17(2004),396参照)にしたがい、試験片の不均一歪(inhomogeneous strain)εを求め、次式
 ρ=14.4ε/b
により、転位密度ρを求めた。なお、bは、焼戻しマルテンサイト(b.c.c.結晶構造)のバーガースベクトル(burgers vector)(=0.248nm)である。
 また、耐硫化物応力割れ試験は、つぎのような条件で行った。
 鋼管から採取した試験片(大きさ:平行部直径6.35mmφ×長さ25.4mm)を、NACE TM0177 Method Aの規定に準拠して、HSが飽和した0.5(wt%)%酢酸+5.0(wt%)%食塩水溶液(液温:24℃)中に浸漬し、鋼管の降伏強さの90%の負荷応力で、720時間までの定荷重試験を実施し、破断までの時間を測定した。
 図2から、転位密度を6.0×1014/m以下とすることにより、鋼管の降伏強さの90%の負荷応力でも720時間までに破断しないという、良好な耐SCC性を確保できることがわかる。
 なお、焼戻処理の焼戻温度、保持時間を適正に調整することにより、所望の110ksi級の高強度を維持しつつ、転位密度を、適正範囲である6.0×1014/m以下に調整できる。
 つぎに、本発明鋼管の好ましい製造方法について説明する。
 上記した組成を有する鋼管素材を出発素材として、該鋼管素材を所定範囲の温度に加熱したのち、熱間加工により所定寸法の継目無鋼管とし、ついで該継目無鋼管に焼戻処理、または焼入れ処理と焼戻処理とを施す。さらに、必要に応じて、鋼管形状の不良を矯正するために矯正処理(straightening)を施してもよい。
 本発明では、上記した組成を有する鋼管素材の製造方法はとくに限定する必要はないが、上記した組成を有する溶鋼を、転炉(steel converter)、電気炉(electric furnace)、真空溶解炉(vacuum melting furnace)等の通常公知の溶製方法で溶製し、連続鋳造法(continuous casting process)、造塊(ingot casting)−分塊圧延法(blooming process)等、通常の方法でビレット(billet)等の鋼管素材とすることが好ましい。
 これら鋼管素材を、好ましくは1000~1350℃の範囲の温度に加熱する。加熱温度が1000℃未満では、炭化物の溶解が不十分となる。一方、1350℃を超えると、結晶粒が粗大化しすぎて、旧γ粒界上のセメンタイトが粗大化するとともに、P,S等の不純物元素の粒界上への濃化(偏析)が顕著となり、粒界が脆弱となり、粒界破壊(intergranular fracture)を生じやすくなる。なお、上記した温度での保持時間は4h以内とすることが生産性の観点から好ましい。
 加熱された鋼管素材は、ついで、通常のマンネスマン−プラグミル方式(Mannesmann−plug mill process)、あるいはマンネスマン−マンドレルミル方式(Mannesmann−mandrel mill process)の製造工程を用いて熱間加工し造管して、所定寸法の継目無鋼管とすることが好ましい。なお、プレス方式(press process)による熱間押出(hot extrusion process)で継目無鋼管を製造してもよい。また、造管後、継目無鋼管は、好ましくは空冷以上の冷却速度で室温まで冷却することが好ましい。ここで、95体積%以上のマルテンサイト組織となれば、再加熱し急冷(水冷)する焼入れ処理は必要はないが、材質安定化のためには、再加熱し、急冷(水冷)する焼入れ処理を施すことが望ましい。95体積%以上のマルテンサイト組織が得られない場合には、熱間圧延後の継目無鋼管に、再加熱し、急冷(水冷)する焼入れ処理を施す。
 本発明における焼入れ処理は、Ac変態点(Ac transformation temperature)以上、好ましくは850~1050℃の焼入れ温度に再加熱したのち、該焼入れ温度からMs変態点(martensitic transformation temperature)以下、好ましくは100℃以下の温度域まで急冷(水冷)する処理とする。これにより、微細なγ相から変態した微細な下部組織を有するマルテンサイト相を主相とする組織(95体積%以上のマルテンサイト相の組織)とすることができる。焼入れ加熱温度が、Ac変態点未満(850℃未満)では、オーステナイト単相域(austenite single phase zone)に加熱することができず、その後の冷却で十分なマルテンサイト組織とすることができないため、所望の強度を確保できなくなる。このため、焼入れ処理の加熱温度はAc変態点以上に限定することが好ましい。
 また、焼入れ加熱温度からの冷却は、好ましくは2℃/s以上の水冷とし、Ms変態点以下、好ましくは100℃以下の温度域まで行う。これにより、十分な焼入れ組織(95体積%以上のマルテンサイト組織)を得ることができる。また、焼入れ温度における均熱時間は、3min以上とすることが均熱の観点から好ましい。
 焼入れ処理を施された継目無鋼管は、引続き、焼戻処理を施される。
 本発明では焼戻処理は、過剰な転位を減少させ組織の安定化を図るとともに、微細な略粒子状のMC型析出物の析出を促進し、さらには固溶Moを結晶粒界等の結晶欠陥(crystal defects)に偏析させ、所望の高強度と優れた耐硫化物応力割れ性とを兼備させるために行う。
 焼戻温度は、665~740℃の温度域の温度とすることが好ましい。焼戻温度が上記した範囲を低く外れると、転位等の水素トラップサイトが増加し、耐硫化物応力割れ性が低下する。一方、焼戻温度が上記した範囲を高く外れると、組織の軟化が著しくなり、所望の高強度を確保できなくなるうえ、針状のMC型析出物が増加し、耐硫化物応力割れ性が低下する。なお、焼戻処理は、上記した範囲内の温度で、好ましくは20min以上保持したのち、好ましくは空冷以上の冷却速度で、好ましくは室温まで冷却する処理とすることが好ましい。なお、焼戻温度での保持は、100min以内とすることが好ましい。焼戻保持時間が長すぎると、Laves相(FeMo)が析出し、実質的に固溶状態のMo量が低下する。
 なお、本発明では、更なる耐硫化物応力割れ性向上のために、焼戻処理を調整し、好ましくは転位密度を6.0×1014/m以下に低減する。転位密度を6.0×1014/m以下に低減するには、焼戻温度T(℃)と該焼戻温度における保持時間t(min)とを、次(2)式
 70nm ≦ 10000000√(60Dt) ≦ 150nm    ‥‥(2)
(ここで、D(cm/s)=4.8exp(−(63×4184)/(8.31(273+T))、T:焼戻温度(℃)、t:焼戻保持時間(min))
を満足するように調整する。なお、(2)式のDは、マルテンサイト中の鉄原子の自己拡散係数であり、また、(2)式の値は、温度Tで時間tだけ保持(焼戻)した場合の、鉄原子の拡散距離を表す。
 (2)式の値(鉄原子の拡散距離)が、70nm未満では、転位密度を6.0×1014/m以下とすることができない。一方、(2)式の値(鉄原子の拡散距離)が、150nmを超えて大きくなると、降伏強さYSが目標値である110ksi未満となる。したがって、(2)式に規定された範囲を満足するように、焼戻温度と保持時間を選択して焼戻処理を施すことにより、優れた耐SCC性と、所望の高強度(YS:110ksi以上)とを兼備させることができる。
 以下、実施例に基づいてさらに本発明を詳細に説明する。
 表1に示す組成の溶鋼を真空溶解炉で溶製し、さらに脱ガス処理(degassing treatment)を施した後、鋼塊に鋳造した。これら鋼塊(鋼管素材)を1250℃(保持:3h)で加熱し、シームレス圧延機(seamless mill)により継目無鋼管(外径178mmφ×肉厚22mm)とした。
 得られた継目無鋼管から、試験材(鋼管)を採取し、該試験材(鋼管)に表2に示す条件で焼入れ処理、焼戻処理を施した。なお、本実施例に用いた継目無鋼管(外径178mmφ×肉厚22mm)では、造管後、空冷以上の冷却速度で室温まで冷却したままでは、95体積%以上のマルテンサイト組織が得られなかったので、全て焼戻し処理の前に焼入れ処理を行った。
 得られた試験材(鋼管)から、試験片を採取し、組織観察試験、引張試験、腐食試験、析出物量および固溶Mo量の定量分析試験を実施した。試験方法は次のとおりとした。
(1)組織観察試験
 得られた試験材(鋼管)から、組織観察用試験片を採取し、管長手方向に直交する断面(C断面)を研磨、腐食(腐食液:ナイタール液(nital))して、光学顕微鏡(optical microscope)(倍率(magnification ratio):1000倍)および走査型電子顕微鏡(scanning electron microscope)(倍率:2000倍)で組織を観察し、撮像して、画像解析装置(image analyzer)を用い、組織の種類およびその分率を測定した。
 なお、旧γ粒界の現出は、ピクラール腐食液(picral)を用いて腐食し、得られた組織を光学顕微鏡(倍率:400倍)で各3視野観察し、JIS G 0551の規定に準拠して、切断法(intercept method)を用いて旧γ粒の粒度番号を求めた。
 また、析出物の観察、同定は、透過型電子顕微鏡(TEM)、およびエネルギー分散型X線分光法(EDS(Energy Dispersive X−ray Spectroscopy))を用いて行った。具体的には、組織観察用試験片から抽出したレプリカを用いて、倍率:5000倍で観察し、視野内に含まれる析出物についてEDSによる組成分析を実施した。析出物中の金属元素(M)としてのMo含有量が原子濃度で10%未満の析出物をMC、M、M23型析出物と、Mo含有量が30%超の析出物をMoC型析出物と判別し、50個以上のMoC型析出物についてその形状を評価した。
 また、電解研磨法によって作製した薄膜について、走査透過電子顕微鏡(Scanning transmission electron microscope)(STEM)機能とEDSにより、旧γ粒界における元素濃度変調を評価した。なお、使用した電子ビームの径は約0.5nmとし、旧γ粒界を挟んで20nmの直線上を0.5nmピッチで分析した。得られた各点でのEDSスペクトルの定量結果から、半値幅を旧γ粒界におけるMoの濃化領域幅として求めた。図1に、線分析の結果として、旧γ粒界におけるMoの濃化状況の一例を示す。
 なお、得られた試験材(鋼管)から、転位密度測定用試験片(大きさ:厚さ1mm×幅10mm×長さ10mm)を採取し、上記したと同様の方法で転位密度を測定した。
 すなわち、試験片の表面を鏡面研磨したのち、さらにフッ酸を用いて表層の歪を除去した。この歪を除去した試験片に対し、X線回折により、焼戻しマルテンサイト(b.c.c.結晶構造)の(110)、(211)、(220)面のピークの半値幅を求めた。これら半値幅を用いて、Williamson−Hall法(中島ら:CAMP−ISIJ,vol.17(2004),396参照)にしたがい、試験片の不均一歪εを求め、次式
 ρ=14.4ε/b
により、転位密度ρを求めた。
(2)引張試験
 また、試験材(鋼管)から、API 5CTの規定に準拠してAPI弧状引張試験片を採取し、引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。
(3)腐食試験
 また、試験材(鋼管)から、腐食試験片を採取し、NACE TM0177 Method Aの規定に準拠した、HSが飽和した0.5wt%酢酸+5.0wt%食塩水溶液(液温:24℃)中での定荷重試験を実施し、降伏強さの85%または90%または95%の負荷応力で、720時間、負荷したのち、試験片の割れの有無を観察し、耐硫化物応力割れ性を評価した。なお、割れ観察は、倍率:10倍の投影機を使用した。
(4)析出物量、固溶Mo量の定量分析試験
 試験材(鋼管)から、電解抽出用試験片を採取した。採取した電解抽出用試験片を用いて、電解抽出法(electrolytic extraction method)(電解液(electrolytic solution):10%AA系電解液)で、電流密度(current density)20mA/cmとして0.5gだけ定電流電解(constant−current electrolysis)し、抽出された電解残渣(electrolytic residue)を含む電解液をフィルター孔径0.2nmのフィルター(filter)を用いて濾過し、濾過後のフィルター上の電解残渣をICP発光分析装置(Inductively Coupled Plasma Atomic Emission Spectroscopy)を用いて分析し、析出物中のMo量を求め、試料中に含まれる析出Mo量(mass%)を算出した。なお、10wt%AA系電解液とは、10wt%アセチルアセトン(acetylacetone)−1wt%塩化テトラメチルアンモニウム(tetramethylammonium chloride)−メタノール液(methanol solution)である。また、全Mo量(mass%)から、得られた析出Mo量(mass%)を差し引いた値を固溶Mo量(mass%)とした。
 なお、MC型析出物の分散量は、電解残渣のICP発光分析により得られた、電解残渣中の金属元素CrおよびMoの定量値から計算によって求めた。別途行った電解残渣のX線解析(X−ray diffraction)により、用いた鋼種における主要な焼戻析出物(precipitates)は、MC型とMC型であることが判明しており、また、上記した抽出レプリカ(extraction replica)を用いた析出物のEDS分析(Energy Dispersive X‐ray Spectrometer)結果から得られたMC型析出物、MC型析出物のそれぞれの平均組成から、析出Crの殆どが、MC型析出物に固溶されていることが判明しており、EDS分析結果から得られたMC型析出物の平均組成と電解残渣のICP発光分析から得られた電解残渣中のCrの定量値とから、MC型析出物に固溶されているMo量を計算することができる。電解残渣中のMoの定量値と、上記計算で得られたMC型析出物に固溶されているMo量との差分から、MC型析出物に固溶されているMo量を求め、その値から、鋼管中に分散したMC型析出物の分散量βに換算した。
 得られた結果を表3に示す。
 本発明例はいずれも、所望の高強度(降伏強さ:758MPa以上、110ksi以上)と、所望の耐硫化物応力割れ性を兼備する鋼管となっている。一方、本発明の範囲を外れる比較例は、所望の組織、所望の固溶Mo量を確保することができず、所望の高強度、および/または、所望の優れた耐硫化物応力割れ性を確保できていない。
 なお、焼戻条件が(2)式を満足する本発明例はいずれも、転位密度が6.0×1014/m以下であり、負荷応力が降伏強さの90%でも破断しないという、優れた耐硫化物応力割れ性を有している。
 特に、Cuを本発明の範囲0.03%~1.0%に含有させた場合(鋼管No.6~9、19、および20)は、厳しい腐食環境である負荷応力が降伏強さの95%でも破断しないという予測できない格段の効果が得られた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (16)

  1.  mass%で、
     C:0.15~0.50%、         Si:0.1~1.0%、
    Mn:0.3~1.0%、            P:0.015%以下、
     S:0.005%以下、           Al:0.01~0.1%、
     N:0.01%以下、            Cr:0.1~1.7%、
    Mo:0.4~1.1%、            V:0.01~0.12%、
    Nb:0.01~0.08%、          B:0.0005~0.003%、
    を含み、かつ前記Moのうち、固溶Moとして0.40%以上含有し、残部Feおよび不可避的不純物からなる組成と、焼戻マルテンサイト相を主相とし、旧オーステナイト粒が粒度番号で8.5以上で、略粒子状のMC型析出物が0.06mass%以上分散してなる組織とを有する油井用継目無鋼管。
  2. 請求項1において、前記組成に加えてさらに、mass%で、Cu:0.03%~1.0%を含有する油井用継目無鋼管。
  3.  前記組織が、さらに前記旧オーステナイト粒界に幅1nm以上2nm未満のMo濃化領域を有する請求項1または請求項2に記載の油井用継目無鋼管。
  4.  前記固溶Moの量αと、前記略粒子状のMC型析出物の量βが下記(1)式を満足する請求項1ないし3のいずれか1項に記載の油井用継目無鋼管。
              記
     0.7 ≦ α+3β ≦ 1.2   ‥‥(1)
     ここで、α:固溶Mo量(mass%)、β:略粒子状のMC型析出物の量(mass%)
  5.  前記組織の転位密度が、6.0×1014/m以下である請求項1ないし4のいずれか1項に記載の油井用継目無鋼管。
  6.  前記組成に加えてさらに、mass%で、Ni:1.0%以下を含有する請求項1ないし5のいずれか1項に記載の油井用継目無鋼管。
  7.  前記組成に加えてさらに、mass%で、Ti:0.03%以下、W:2.0%以下のうちから選ばれた1種または2種を含有する組成とする請求項1ないし6のいずれか1項に記載の油井用継目無鋼管。
  8.  前記組成に加えてさらに、mass%で、Ca:0.001~0.005%を含有する組成とする請求項1ないし7のいずれか1項に記載の油井用継目無鋼管。
  9.  mass%で、
     C:0.15~0.50%、         Si:0.1~1.0%、
    Mn:0.3~1.0%、            P:0.015%以下、
     S:0.005%以下、           Al:0.01~0.1%、
     N:0.01%以下、            Cr:0.1~1.7%、
    Mo:0.4~1.1%、            V:0.01~0.12%、
    Nb:0.01~0.08%、          B:0.0005~0.003%、
     を含み、残部Feおよび不可避的不純物からなる組成の鋼管素材を、1000~1350℃の範囲の温度に再加熱したのち、該鋼管素材に熱間加工を施し、所定形状の継目無鋼管とし、ついで、空冷以上の冷却速度で室温まで冷却し、665~740℃の範囲の温度で焼戻処理を施す油井用継目無鋼管の製造方法。
  10.  請求項9において、前記焼戻処理前に、再加熱し急冷する焼入れ処理を施す油井用継目無鋼管の製造方法。
  11.  前記焼入れ処理の焼入れ温度が、Ac変態点~1050℃である請求項10に記載の油井用継目無鋼管の製造方法。
  12.  前記組成に加えてさらに、mass%で、Cu:0.03%~1.0%を含有する請求項9ないし11のいずれか1項に記載の油井用継目無鋼管の製造方法。
  13.  前記焼戻処理を、焼戻温度T(℃)が前記温度の範囲内で、かつ該焼戻温度T:665~740℃と保持時間t(min)との関係が下記(2)式を満足する処理とする請求項9ないし請求項12のいずれか1項に記載の油井用継目無鋼管の製造方法。
                      記
     70nm ≦ 10000000√(60Dt) ≦ 150nm    ‥‥(2)
     ここで、D(cm/s)=4.8exp(−(63×4184)/(8.31(273+T))
     T:焼戻温度(℃)、t:焼戻保持時間(min)
  14.  前記組成に加えてさらに、mass%で、Ni:1.0%以下を含有する組成とする請求項9ないし13のいずれか1項に記載の油井用継目無鋼管の製造方法。
  15.  前記組成に加えてさらに、mass%で、Ti:0.03%以下、W:2.0%以下のうちから選ばれた1種または2種を含有する組成とする請求項9ないし14のいずれか1項に記載の油井用継目無鋼管の製造方法。
  16.  前記組成に加えてさらに、mass%で、Ca:0.001~0.005%を含有する組成とする請求項9ないし15のいずれか1項に記載の油井用継目無鋼管の製造方法。
PCT/JP2010/061093 2009-06-24 2010-06-23 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法 WO2010150915A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201080028634.8A CN102459677B (zh) 2009-06-24 2010-06-23 耐硫化物应力破裂性优良的油井用高强度无缝钢管及其制造方法
CA2766028A CA2766028C (en) 2009-06-24 2010-06-23 High-strength seamless steel tube, having excellent resistance to sulfide stress cracking, for oil wells and method for manufacturing the same
RU2012102294/02A RU2493268C1 (ru) 2009-06-24 2010-06-23 Высокопрочная бесшовная стальная труба, обладающая очень высокой стойкостью к сульфидному растрескиванию под напряжением для нефтяных скважин и способ ее изготовления
US13/379,723 US9234254B2 (en) 2009-06-24 2010-06-23 High-strength seamless steel tube, having excellent resistance to sulfide stress cracking, for oil wells and method for manufacturing the same
EP10792232.0A EP2447386B1 (en) 2009-06-24 2010-06-23 High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
BRPI1011755-5A BRPI1011755B1 (pt) 2009-06-24 2010-06-23 Tubo de aço de alta resistência sem costura, com excelente resistência à fragilização causada por sulfeto, para poços de petróleo e processo para produção do mesmo
MX2011013872A MX2011013872A (es) 2009-06-24 2010-06-23 Tubo de acero sin costuras de alta resistencia para usarse en pozos de petroleo, el cual tiene excelente resistencia a las fisuras por esfuerzo y metodos de produccion del mismo.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009150255 2009-06-24
JP2009-150255 2009-06-24
JP2010-104827 2010-04-30
JP2010104827 2010-04-30

Publications (1)

Publication Number Publication Date
WO2010150915A1 true WO2010150915A1 (ja) 2010-12-29

Family

ID=43386682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061093 WO2010150915A1 (ja) 2009-06-24 2010-06-23 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法

Country Status (9)

Country Link
US (1) US9234254B2 (ja)
EP (1) EP2447386B1 (ja)
JP (2) JP5728836B2 (ja)
CN (1) CN102459677B (ja)
BR (1) BRPI1011755B1 (ja)
CA (1) CA2766028C (ja)
MX (1) MX2011013872A (ja)
RU (1) RU2493268C1 (ja)
WO (1) WO2010150915A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094179A1 (ja) * 2011-12-22 2013-06-27 Jfeスチール株式会社 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法
WO2013133076A1 (ja) * 2012-03-07 2013-09-12 新日鐵住金株式会社 耐硫化物応力割れ性に優れた高強度鋼材の製造方法
WO2013191131A1 (ja) * 2012-06-20 2013-12-27 新日鐵住金株式会社 油井管用鋼及びその製造方法
CN104662193A (zh) * 2012-09-19 2015-05-27 杰富意钢铁株式会社 低温韧性和耐腐蚀磨损性优异的耐磨损钢板
WO2015129617A1 (ja) * 2014-02-25 2015-09-03 臼井国際産業株式会社 燃料噴射管用鋼管およびそれを用いた燃料噴射管
WO2016013205A1 (ja) * 2014-07-25 2016-01-28 新日鐵住金株式会社 低合金油井用鋼管
WO2016038810A1 (ja) * 2014-09-08 2016-03-17 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
WO2016038809A1 (ja) * 2014-09-08 2016-03-17 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
WO2016079908A1 (ja) * 2014-11-18 2016-05-26 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
JP6128297B1 (ja) * 2015-12-22 2017-05-17 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
WO2017110027A1 (ja) * 2015-12-22 2017-06-29 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
US10233520B2 (en) 2014-06-09 2019-03-19 Nippon Steel & Sumitomo Metal Corporation Low-alloy steel pipe for an oil well
WO2019167945A1 (ja) 2018-02-28 2019-09-06 日本製鉄株式会社 サワー環境での使用に適した鋼材
WO2019188869A1 (ja) * 2018-03-27 2019-10-03 日本製鉄株式会社 サワー環境での使用に適した鋼材
WO2020071217A1 (ja) 2018-10-04 2020-04-09 日本製鉄株式会社 サワー環境での使用に適した鋼材
WO2020071219A1 (ja) 2018-10-01 2020-04-09 日本製鉄株式会社 サワー環境での使用に適した継目無鋼管
WO2024185411A1 (ja) * 2023-03-09 2024-09-12 日本製鉄株式会社 サワー環境での使用に適した鋼材

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960883B1 (fr) * 2010-06-04 2012-07-13 Vallourec Mannesmann Oil & Gas Acier faiblement allie a limite d'elasticite elevee et haute resistance a la fissuration sous contrainte par les sulfures
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
AR088424A1 (es) 2011-08-22 2014-06-11 Nippon Steel & Sumitomo Metal Corp Tubo de acero para pozo de petroleo con excelente resistencia a la corrosion bajo tension por presencia de sulfuros
JP5662920B2 (ja) * 2011-11-11 2015-02-04 株式会社神戸製鋼所 耐遅れ破壊性に優れた高強度鋼板およびその製造方法
JP5522194B2 (ja) * 2012-04-25 2014-06-18 Jfeスチール株式会社 耐ssc性に優れた高強度鋼材
JP6107437B2 (ja) * 2012-06-08 2017-04-05 Jfeスチール株式会社 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法
BR112015007331A2 (pt) 2012-10-04 2017-07-04 Jfe Steel Corp método para fabricar tubo de aço de parede espessa
JP5958450B2 (ja) * 2012-11-27 2016-08-02 Jfeスチール株式会社 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管およびその製造方法
JP5807630B2 (ja) * 2012-12-12 2015-11-10 Jfeスチール株式会社 継目無鋼管の熱処理設備列および高強度ステンレス鋼管の製造方法
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
CN103147017A (zh) * 2013-03-21 2013-06-12 宝山钢铁股份有限公司 一种高强度优良低温韧性钢板及其制造方法
AR096965A1 (es) 2013-07-26 2016-02-10 Nippon Steel & Sumitomo Metal Corp Tubo de acero de baja aleación para pozo petrolero y método para la manufactura del mismo
CN103627972B (zh) * 2013-11-07 2015-05-20 中冶陕压重工设备有限公司 一种ZG25MnSY3铸件材料及铸件制备方法
RU2541255C1 (ru) * 2013-11-26 2015-02-10 Закрытое акционерное общество "Омутнинский металлургический завод" Конструкционная легированная сталь с повышенной прочностью и способ термоупрочнения горячекатаного проката
CN103741063B (zh) * 2013-12-23 2016-01-20 马鞍山市盈天钢业有限公司 一种地质钻探用无缝钢管材料及其制备方法
RU2647403C2 (ru) * 2014-01-17 2018-03-15 Ниппон Стил Энд Сумитомо Метал Корпорейшн Мартенситная хромсодержащая сталь и трубы, применяемые в нефтяной промышленности
JP6070617B2 (ja) * 2014-04-03 2017-02-01 Jfeスチール株式会社 耐内圧疲労特性に優れた燃料噴射管用継目無鋼管
KR101611697B1 (ko) * 2014-06-17 2016-04-14 주식회사 포스코 확관성과 컬렙스 저항성이 우수한 고강도 확관용 강재 및 확관된 강관과 이들의 제조방법
AR101683A1 (es) * 2014-09-04 2017-01-04 Nippon Steel & Sumitomo Metal Corp Tubo de acero de pared gruesa para pozo de petróleo y método de producción del mismo
BR112017006937B1 (pt) * 2014-10-17 2021-05-04 Nippon Steel Corporation tubo de aço de baixa liga para poço de óleo
CN104532132A (zh) * 2014-12-11 2015-04-22 宝山钢铁股份有限公司 一种高强度低合金抗硫化氢应力腐蚀用油井管及其制造方法
US11060160B2 (en) * 2014-12-12 2021-07-13 Nippon Steel Corporation Low-alloy steel for oil well pipe and method of manufacturing low-alloy steel oil well pipe
MX2017008361A (es) * 2014-12-24 2017-10-24 Jfe Steel Corp Tubo de acero sin costura de alta resistencia para productos tubulares para paises productores de petroleo y metodo para producir el mismo.
JP5943165B1 (ja) * 2014-12-24 2016-06-29 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
EP3279353B1 (en) * 2015-04-01 2019-03-27 JFE Steel Corporation Hot-rolled steel sheet and method for producing same
RU2594769C1 (ru) * 2015-05-18 2016-08-20 Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") Коррозионно-стойкая сталь для бесшовных горячекатаных насосно-компрессорных и обсадных труб повышенной эксплуатационной надежности и трубы, выполненные из нее
MX2017016594A (es) * 2015-06-17 2018-11-09 Usui Co Ltd Tuberia de acero para tuberia de inyeccion de combustible y metodo para su produccion.
CN105586529B (zh) * 2016-02-25 2017-10-31 宝山钢铁股份有限公司 一种890MPa级高强度钢、钢管及其制造方法
EP3425075B1 (en) * 2016-02-29 2021-11-03 JFE Steel Corporation Low alloy high strength thick-walled seamless steel pipe for oil country tubular goods
US10975450B2 (en) 2016-02-29 2021-04-13 Jfe Steel Corporation Low alloy high strength thick-walled seamless steel pipe for oil country tubular goods
JP6152928B1 (ja) * 2016-02-29 2017-06-28 Jfeスチール株式会社 油井用低合金高強度継目無鋼管
CN108699656B (zh) * 2016-03-04 2020-08-18 日本制铁株式会社 钢材和油井用钢管
JP6635194B2 (ja) * 2016-05-20 2020-01-22 日本製鉄株式会社 継目無鋼管及びその製造方法
WO2017203313A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Method for the manufacture of a recovered steel sheet having an austenitic matrix
CN106086642B (zh) * 2016-06-23 2018-02-23 江阴兴澄特种钢铁有限公司 一种200mm厚抗氢致开裂压力容器钢板及其制造方法
CN106011657A (zh) * 2016-06-28 2016-10-12 邯郸新兴特种管材有限公司 一种110Ksi钢级的抗硫化氢应力腐蚀的油井用钢管及其生产方法
CN106048412B (zh) * 2016-06-29 2018-04-27 宝山钢铁股份有限公司 一种相变强化冷加工高强度钢、钢管及钢管的制造方法
CN107557661B (zh) * 2016-06-30 2019-06-28 鞍钢股份有限公司 一种经济型具有耐腐蚀性能j55无缝管及其制造方法
WO2018066689A1 (ja) * 2016-10-06 2018-04-12 新日鐵住金株式会社 鋼材、油井用鋼管、及び、鋼材の製造方法
BR112019004836B1 (pt) * 2016-10-17 2022-10-11 Jfe Steel Corporation Tubo de aço contínuo de alta resistibilidade para poço de petróleo, e método para produção do mesmo
US10434554B2 (en) 2017-01-17 2019-10-08 Forum Us, Inc. Method of manufacturing a coiled tubing string
MX2019008642A (es) * 2017-01-24 2019-09-23 Nippon Steel Corp Material de acero y metodo para la produccion del material de acero.
MX2019008766A (es) * 2017-01-25 2019-09-18 Jfe Steel Corp Lamina de acero laminada en caliente para tuberia de serpentin.
JP6384637B1 (ja) * 2017-01-25 2018-09-05 Jfeスチール株式会社 コイルドチュービング用電縫鋼管およびその製造方法
RU2656189C1 (ru) * 2017-02-13 2018-05-31 Открытое акционерное общество "Российский научно-исследовательский институт трубной промышленности" (ОАО "РосНИТИ") Труба с повышенной деформационной способностью и высокой вязкостью сварного соединения и способ ее изготовления
CN107377620B (zh) * 2017-06-20 2019-03-08 衡阳华菱钢管有限公司 热轧态无缝钢管及其制备方法
CN107829040A (zh) * 2017-10-24 2018-03-23 潍坊友容实业有限公司 高强度抗盐碱金属管材及其制备方法
JP6705484B2 (ja) * 2017-11-24 2020-06-03 Jfeスチール株式会社 鋼材
MX2020006772A (es) 2017-12-26 2020-08-24 Jfe Steel Corp Tubo de acero sin costura de alta resistencia y baja aleacion para productos tubulares de region petrolifera.
MX2020006770A (es) 2017-12-26 2020-08-24 Jfe Steel Corp Tubo de acero sin costura de alta resistencia y baja aleacion para productos tubulares de region petrolifera.
ES2922300T3 (es) 2018-02-23 2022-09-13 Vallourec Deutschland Gmbh Aceros de alta resistencia y alta tenacidad
AR114708A1 (es) * 2018-03-26 2020-10-07 Nippon Steel & Sumitomo Metal Corp Material de acero adecuado para uso en entorno agrio
CN109881083A (zh) * 2018-06-08 2019-06-14 江苏沙钢集团有限公司 一种薄带铸轧700MPa级耐候钢及其生产方法
CN108950380A (zh) * 2018-06-11 2018-12-07 南京钢铁股份有限公司 一种q690gj建筑钢板及其制备方法
CN110616366B (zh) * 2018-06-20 2021-07-16 宝山钢铁股份有限公司 一种125ksi钢级抗硫油井管及其制造方法
JP7176877B2 (ja) * 2018-07-23 2022-11-22 山陽特殊製鋼株式会社 耐衝撃性に優れた機械構造用合金鋼
EP4230759A1 (en) * 2018-10-05 2023-08-23 Proterial, Ltd. Hot work tool steel and hot work tool
AR118071A1 (es) * 2019-02-15 2021-09-15 Nippon Steel Corp Material de acero adecuado para uso en ambiente agrio
RU2719212C1 (ru) * 2019-12-04 2020-04-17 Акционерное общество "Первоуральский новотрубный завод" (АО "ПНТЗ") Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения
CN111945069B (zh) * 2020-08-18 2021-10-08 达力普石油专用管有限公司 一种高合金耐腐蚀油套管材料及其制备方法
CN114086083B (zh) * 2020-08-25 2023-01-20 宝山钢铁股份有限公司 一种1100MPa级抗硫高压气瓶钢、高压气瓶及其制造方法
CN116377324A (zh) * 2023-03-28 2023-07-04 鞍钢股份有限公司 一种960MPa级超高强高韧性起重机臂架用无缝钢管及制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116635A (ja) * 1992-10-02 1994-04-26 Kawasaki Steel Corp 耐硫化物応力腐食割れ性に優れた高強度低合金油井用鋼の製造方法
JPH06220536A (ja) * 1993-01-22 1994-08-09 Nkk Corp 耐硫化物応力腐食割れ性に優れた高強度鋼管の製造法
JPH06235045A (ja) 1993-02-10 1994-08-23 Nippon Steel Corp 耐硫化物応力腐食割れ性に優れた電縫鋼管
JPH07197125A (ja) * 1994-01-10 1995-08-01 Nkk Corp 耐硫化物応力腐食割れ性に優れた高強度鋼管の製造法
JP2000178682A (ja) 1998-12-09 2000-06-27 Sumitomo Metal Ind Ltd 耐硫化物応力腐食割れ性に優れる油井用鋼
JP2000297344A (ja) 1999-04-09 2000-10-24 Sumitomo Metal Ind Ltd 靭性と耐硫化物応力腐食割れ性に優れる油井用鋼およびその製造方法
JP2001073086A (ja) * 1999-09-06 2001-03-21 Sumitomo Metal Ind Ltd 高靱性・高耐食性継目無鋼管
JP2001172739A (ja) 1999-12-15 2001-06-26 Sumitomo Metal Ind Ltd 耐硫化物応力腐食割れ性に優れた油井用鋼材およびそれを用いた油井用鋼管の製造方法
JP2003041341A (ja) * 2001-08-02 2003-02-13 Sumitomo Metal Ind Ltd 高靱性を有する鋼材およびそれを用いた鋼管の製造方法
WO2005073421A1 (ja) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. 耐硫化物応力割れ性に優れた油井用継目無鋼管およびその製造方法
JP2007016291A (ja) 2005-07-08 2007-01-25 Sumitomo Metal Ind Ltd 耐硫化物応力割れ性に優れた低合金油井管用鋼

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940220B2 (ja) * 1978-11-20 1984-09-28 新日本製鐵株式会社 耐硫化物腐食割れ性の優れた低合金鋼
JPS5996216A (ja) * 1982-11-24 1984-06-02 Sumitomo Metal Ind Ltd 耐硫化物割れ性の優れた高強度鋼の製造方法
JPS59232220A (ja) 1983-06-14 1984-12-27 Sumitomo Metal Ind Ltd 耐硫化物腐食割れ性に優れた高強度鋼の製法
JPS6160822A (ja) * 1984-08-30 1986-03-28 Sumitomo Metal Ind Ltd 耐遅れ破壊性の優れた高強度鋼の製造法
JPS6164815A (ja) * 1984-09-03 1986-04-03 Sumitomo Metal Ind Ltd 耐遅れ破壊性の優れた高強度鋼の製造法
JPS61223164A (ja) * 1985-03-29 1986-10-03 Sumitomo Metal Ind Ltd 耐硫化物応力腐食割れ性に優れた油井用高強度鋼
JPH0668129B2 (ja) * 1988-07-13 1994-08-31 川崎製鉄株式会社 深絞り性に優れた熱延鋼板の製造方法
JPH0267624A (ja) * 1988-09-01 1990-03-07 Nec Corp 数字表示方式
RU2070585C1 (ru) * 1994-12-02 1996-12-20 Товарищество с ограниченной ответственностью "ТопКом" Способ изготовления высокопрочных труб
JP3362565B2 (ja) * 1995-07-07 2003-01-07 住友金属工業株式会社 高強度高耐食継目無鋼管の製造方法
JPH0967624A (ja) * 1995-08-25 1997-03-11 Sumitomo Metal Ind Ltd 耐sscc性に優れた高強度油井用鋼管の製造方法
JPH10280037A (ja) * 1997-04-08 1998-10-20 Sumitomo Metal Ind Ltd 高強度高耐食性継目無し鋼管の製造方法
JP4367588B2 (ja) * 1999-10-28 2009-11-18 住友金属工業株式会社 耐硫化物応力割れ性に優れた鋼管
JP3666372B2 (ja) * 2000-08-18 2005-06-29 住友金属工業株式会社 耐硫化物応力腐食割れ性に優れた油井用鋼とその製造方法
JP4617602B2 (ja) * 2001-05-18 2011-01-26 Jfeスチール株式会社 破壊靭性および耐硫化物応力腐食割れ性に優れた低合金高強度鋼およびこの鋼からなる鋼管の製造方法
RU2210604C2 (ru) * 2001-10-11 2003-08-20 Открытое акционерное общество "Волжский трубный завод" Способ производства бесшовных труб из малоуглеродистой стали
JP3931640B2 (ja) * 2001-11-27 2007-06-20 住友金属工業株式会社 継目無鋼管とその製造方法
CN100451153C (zh) * 2003-08-19 2009-01-14 杰富意钢铁株式会社 耐腐蚀性优良的油井用高强度不锈钢管及其制造方法
JP4513496B2 (ja) * 2003-10-20 2010-07-28 Jfeスチール株式会社 拡管用継目無油井鋼管およびその製造方法
WO2005038067A1 (ja) * 2003-10-20 2005-04-28 Jfe Steel Corporation 拡管用継目無油井鋼管およびその製造方法
JP4135691B2 (ja) * 2004-07-20 2008-08-20 住友金属工業株式会社 窒化物系介在物形態制御鋼
JP4701874B2 (ja) * 2005-06-29 2011-06-15 住友金属工業株式会社 耐硫化物応力割れ性に優れた油井用鋼管の製造方法
JP2007260705A (ja) * 2006-03-27 2007-10-11 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
JP2008057007A (ja) * 2006-08-31 2008-03-13 Sumitomo Metal Ind Ltd 低合金鋼材およびその製造方法
EP2000555B1 (en) * 2007-03-30 2013-10-16 Nippon Steel & Sumitomo Metal Corporation Expandable oil well pipe to be expanded in well and process for production of the pipe

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116635A (ja) * 1992-10-02 1994-04-26 Kawasaki Steel Corp 耐硫化物応力腐食割れ性に優れた高強度低合金油井用鋼の製造方法
JPH06220536A (ja) * 1993-01-22 1994-08-09 Nkk Corp 耐硫化物応力腐食割れ性に優れた高強度鋼管の製造法
JPH06235045A (ja) 1993-02-10 1994-08-23 Nippon Steel Corp 耐硫化物応力腐食割れ性に優れた電縫鋼管
JPH07197125A (ja) * 1994-01-10 1995-08-01 Nkk Corp 耐硫化物応力腐食割れ性に優れた高強度鋼管の製造法
JP2000178682A (ja) 1998-12-09 2000-06-27 Sumitomo Metal Ind Ltd 耐硫化物応力腐食割れ性に優れる油井用鋼
JP2000297344A (ja) 1999-04-09 2000-10-24 Sumitomo Metal Ind Ltd 靭性と耐硫化物応力腐食割れ性に優れる油井用鋼およびその製造方法
JP2001073086A (ja) * 1999-09-06 2001-03-21 Sumitomo Metal Ind Ltd 高靱性・高耐食性継目無鋼管
JP2001172739A (ja) 1999-12-15 2001-06-26 Sumitomo Metal Ind Ltd 耐硫化物応力腐食割れ性に優れた油井用鋼材およびそれを用いた油井用鋼管の製造方法
JP2003041341A (ja) * 2001-08-02 2003-02-13 Sumitomo Metal Ind Ltd 高靱性を有する鋼材およびそれを用いた鋼管の製造方法
WO2005073421A1 (ja) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. 耐硫化物応力割れ性に優れた油井用継目無鋼管およびその製造方法
JP2007016291A (ja) 2005-07-08 2007-01-25 Sumitomo Metal Ind Ltd 耐硫化物応力割れ性に優れた低合金油井管用鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAJIMA ET AL., CAMP-ISIJ, vol. 17, 2004, pages 396

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129879A (ja) * 2011-12-22 2013-07-04 Jfe Steel Corp 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法
RU2607503C2 (ru) * 2011-12-22 2017-01-10 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочная бесшовная стальная труба для применения в нефтяной скважине, обладающая высокой стойкостью к растрескиванию под действием напряжений в сульфидсодержащей среде
US9708681B2 (en) 2011-12-22 2017-07-18 Jfe Steel Corporation High-strength seamless steel pipe for oil well use having excellent resistance to sulfide stress cracking
WO2013094179A1 (ja) * 2011-12-22 2013-06-27 Jfeスチール株式会社 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法
US10287645B2 (en) 2012-03-07 2019-05-14 Nippon Steel & Sumitomo Metal Corporation Method for producing high-strength steel material excellent in sulfide stress cracking resistance
WO2013133076A1 (ja) * 2012-03-07 2013-09-12 新日鐵住金株式会社 耐硫化物応力割れ性に優れた高強度鋼材の製造方法
EA025503B1 (ru) * 2012-03-07 2016-12-30 Ниппон Стил Энд Сумитомо Метал Корпорейшн Способ изготовления высокопрочных стальных изделий с улучшенной стойкостью к сульфидному растрескиванию под напряжением
AU2013228617B2 (en) * 2012-03-07 2015-07-30 Nippon Steel Corporation Method for producing high-strength steel material having excellent sulfide stress cracking resistance
CN104395489A (zh) * 2012-06-20 2015-03-04 新日铁住金株式会社 油井管用钢及其制造方法
US10407758B2 (en) 2012-06-20 2019-09-10 Nippon Steel Corporation Steel for oil country tubular goods and method of producing the same
WO2013191131A1 (ja) * 2012-06-20 2013-12-27 新日鐵住金株式会社 油井管用鋼及びその製造方法
EA025937B1 (ru) * 2012-06-20 2017-02-28 Ниппон Стил Энд Сумитомо Метал Корпорейшн Сталь для трубных изделий нефтепромыслового сортамента и способ ее производства
US9982331B2 (en) 2012-09-19 2018-05-29 Jfe Steel Corporation Abrasion resistant steel plate having excellent low-temperature toughness and excellent corrosive wear resistance
CN104662193A (zh) * 2012-09-19 2015-05-27 杰富意钢铁株式会社 低温韧性和耐腐蚀磨损性优异的耐磨损钢板
WO2015129617A1 (ja) * 2014-02-25 2015-09-03 臼井国際産業株式会社 燃料噴射管用鋼管およびそれを用いた燃料噴射管
US12000364B2 (en) 2014-02-25 2024-06-04 Usui Co., Ltd. Steel pipe for fuel injection pipe and fuel injection pipe using the same
JP6051335B2 (ja) * 2014-02-25 2016-12-27 臼井国際産業株式会社 燃料噴射管用鋼管およびそれを用いた燃料噴射管
JPWO2015129617A1 (ja) * 2014-02-25 2017-03-30 臼井国際産業株式会社 燃料噴射管用鋼管およびそれを用いた燃料噴射管
US10233520B2 (en) 2014-06-09 2019-03-19 Nippon Steel & Sumitomo Metal Corporation Low-alloy steel pipe for an oil well
JPWO2016013205A1 (ja) * 2014-07-25 2017-06-01 新日鐵住金株式会社 低合金油井用鋼管
US10563793B2 (en) 2014-07-25 2020-02-18 Nippon Steel Corporation Low alloy oil-well steel pipe
RU2656900C1 (ru) * 2014-07-25 2018-06-07 Ниппон Стил Энд Сумитомо Метал Корпорейшн Стальная труба из низколегированного сплава для нефтяных скважин
AU2015291875B2 (en) * 2014-07-25 2018-12-20 Nippon Steel Corporation Low alloy oil-well steel pipe
WO2016013205A1 (ja) * 2014-07-25 2016-01-28 新日鐵住金株式会社 低合金油井用鋼管
US10640856B2 (en) 2014-09-08 2020-05-05 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods and method of producing the same
JP5971436B1 (ja) * 2014-09-08 2016-08-17 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
JP5971435B1 (ja) * 2014-09-08 2016-08-17 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
WO2016038809A1 (ja) * 2014-09-08 2016-03-17 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
WO2016038810A1 (ja) * 2014-09-08 2016-03-17 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
US10472690B2 (en) 2014-09-08 2019-11-12 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods and method of producing the same
WO2016079908A1 (ja) * 2014-11-18 2016-05-26 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
JP5930140B1 (ja) * 2014-11-18 2016-06-08 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
US10920297B2 (en) 2014-11-18 2021-02-16 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods and method of producing the same
WO2017110027A1 (ja) * 2015-12-22 2017-06-29 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
JP6128297B1 (ja) * 2015-12-22 2017-05-17 Jfeスチール株式会社 油井用高強度継目無鋼管およびその製造方法
US11186885B2 (en) 2015-12-22 2021-11-30 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods, and production method for high-strength seamless steel pipe for oil country tubular goods
US11473177B2 (en) 2018-02-28 2022-10-18 Nippon Steel Corporation Steel material suitable for use in sour environment
WO2019167945A1 (ja) 2018-02-28 2019-09-06 日本製鉄株式会社 サワー環境での使用に適した鋼材
JPWO2019167945A1 (ja) * 2018-02-28 2021-02-04 日本製鉄株式会社 サワー環境での使用に適した鋼材
WO2019188869A1 (ja) * 2018-03-27 2019-10-03 日本製鉄株式会社 サワー環境での使用に適した鋼材
JPWO2019188869A1 (ja) * 2018-03-27 2021-02-25 日本製鉄株式会社 サワー環境での使用に適した鋼材
JP7078106B2 (ja) 2018-03-27 2022-05-31 日本製鉄株式会社 サワー環境での使用に適した鋼材
WO2020071219A1 (ja) 2018-10-01 2020-04-09 日本製鉄株式会社 サワー環境での使用に適した継目無鋼管
US11905580B2 (en) 2018-10-01 2024-02-20 Nippon Steel Corporation Seamless steel pipe suitable for use in sour environment
US11492688B2 (en) 2018-10-04 2022-11-08 Nippon Steel Corporation Steel material suitable for use in sour environment
WO2020071217A1 (ja) 2018-10-04 2020-04-09 日本製鉄株式会社 サワー環境での使用に適した鋼材
WO2024185411A1 (ja) * 2023-03-09 2024-09-12 日本製鉄株式会社 サワー環境での使用に適した鋼材

Also Published As

Publication number Publication date
JP5728836B2 (ja) 2015-06-03
CN102459677A (zh) 2012-05-16
CN102459677B (zh) 2016-08-31
EP2447386A1 (en) 2012-05-02
CA2766028C (en) 2014-04-08
JP2011246798A (ja) 2011-12-08
EP2447386A4 (en) 2016-06-15
CA2766028A1 (en) 2010-12-29
US20120186704A1 (en) 2012-07-26
RU2012102294A (ru) 2013-07-27
JP6064955B2 (ja) 2017-01-25
EP2447386B1 (en) 2019-10-16
JP2015038247A (ja) 2015-02-26
US9234254B2 (en) 2016-01-12
BRPI1011755B1 (pt) 2018-01-30
MX2011013872A (es) 2012-02-01
BRPI1011755A2 (pt) 2016-03-22
RU2493268C1 (ru) 2013-09-20

Similar Documents

Publication Publication Date Title
JP6064955B2 (ja) 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管の製造方法
EP3192890B1 (en) High strength seamless steel pipe for use in oil wells and manufacturing method thereof
JP6107437B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法
EP2392682B1 (en) Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP5776398B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5779984B2 (ja) 耐硫化物応力割れ性に優れた油井用鋼管及びその製造方法
EP3395991B1 (en) High strength seamless stainless steel pipe for oil wells and manufacturing method therefor
JP5958450B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管およびその製造方法
JP5266791B2 (ja) 耐sr特性および変形性能に優れたx100グレード以上の高強度鋼板およびその製造方法
JP5679114B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5522194B2 (ja) 耐ssc性に優れた高強度鋼材
JP5846080B2 (ja) 耐遅れ破壊特性に優れた高強度鋼材
WO2006100891A1 (ja) 耐硫化物応力割れ性に優れた油井管用鋼および油井用継目無鋼管の製造方法
EP3202943A1 (en) High-strength seamless steel pipe for oil wells, and production method for high-strength seamless steel pipe for oil wells
JP2001271134A (ja) 耐硫化物応力割れ性と靱性に優れた低合金鋼材
EP3192889B1 (en) High strength seamless steel pipe for use in oil wells and manufacturing method thereof
JP2008150656A (ja) 耐応力除去焼鈍特性と溶接性に優れた高強度鋼板
JP2005060840A (ja) 耐歪時効特性に優れた低降伏比高強度高靱性鋼管及びその製造方法
WO2016186033A1 (ja) ばね鋼
JP6237681B2 (ja) 溶接熱影響部靭性に優れた低降伏比高張力鋼板
CN100523259C (zh) 耐滞后破坏特性优良的高张力钢材及其制造方法
JP6519025B2 (ja) 油井用低合金高強度継目無鋼管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028634.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792232

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/013872

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2766028

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012102294

Country of ref document: RU

Ref document number: 2010792232

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13379723

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1011755

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1011755

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111222