WO2015129617A1 - 燃料噴射管用鋼管およびそれを用いた燃料噴射管 - Google Patents
燃料噴射管用鋼管およびそれを用いた燃料噴射管 Download PDFInfo
- Publication number
- WO2015129617A1 WO2015129617A1 PCT/JP2015/055018 JP2015055018W WO2015129617A1 WO 2015129617 A1 WO2015129617 A1 WO 2015129617A1 JP 2015055018 W JP2015055018 W JP 2015055018W WO 2015129617 A1 WO2015129617 A1 WO 2015129617A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel injection
- steel pipe
- less
- internal pressure
- pipe
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 131
- 239000010959 steel Substances 0.000 title claims abstract description 131
- 239000000446 fuel Substances 0.000 title claims abstract description 64
- 238000002347 injection Methods 0.000 title claims abstract description 64
- 239000007924 injection Substances 0.000 title claims abstract description 64
- 239000000126 substance Substances 0.000 claims abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 6
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 abstract description 2
- 229910052804 chromium Inorganic materials 0.000 abstract 1
- 229910052802 copper Inorganic materials 0.000 abstract 1
- 229910052748 manganese Inorganic materials 0.000 abstract 1
- 229910052750 molybdenum Inorganic materials 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 abstract 1
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- 229910052720 vanadium Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 25
- 230000000694 effects Effects 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 20
- 238000009661 fatigue test Methods 0.000 description 19
- 239000002131 composite material Substances 0.000 description 15
- 238000005496 tempering Methods 0.000 description 15
- 229910004349 Ti-Al Inorganic materials 0.000 description 13
- 229910004692 Ti—Al Inorganic materials 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 238000005266 casting Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000010791 quenching Methods 0.000 description 12
- 230000000171 quenching effect Effects 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 238000009749 continuous casting Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 238000010622 cold drawing Methods 0.000 description 6
- 239000000779 smoke Substances 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 239000010720 hydraulic oil Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/02—Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/14—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/10—Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/90—Selection of particular materials
- F02M2200/9053—Metals
- F02M2200/9061—Special treatments for modifying the properties of metals used for fuel injection apparatus, e.g. modifying mechanical or electromagnetic properties
Definitions
- the present invention relates to a steel pipe for a fuel injection pipe and a fuel injection pipe using the same, and in particular, a steel pipe for a fuel injection pipe having a tensile strength of 800 MPa or more, preferably 900 MPa or more and excellent in internal pressure fatigue resistance, and the same.
- the present invention relates to a fuel injection pipe.
- An example of an internal combustion engine that emits less CO 2 is a diesel engine used in automobiles.
- the diesel engine has a problem that black smoke is generated while CO 2 emission is small. Black smoke is generated when oxygen is insufficient for the injected fuel. That is, the fuel is partially thermally decomposed to cause a dehydrogenation reaction, and a black smoke precursor is generated. This precursor is again thermally decomposed and agglomerated and coalesced into black smoke. The black smoke generated in this way causes air pollution and is feared to have a negative effect on the human body.
- the amount of generated black smoke can be reduced by increasing the fuel injection pressure into the combustion chamber of the diesel engine.
- high fatigue strength is required for the steel pipe used for fuel injection.
- the following technologies are disclosed for such fuel injection pipes or steel pipes for fuel injection pipes.
- Patent Document 1 discloses a method of manufacturing a steel pipe used for fuel injection of a diesel engine that performs cold drawing after the inner surface of a hot-rolled seamless steel pipe material is ground and polished by shot blasting. Yes. If this manufacturing method is adopted, the depth of wrinkles (irregularities, shavings, fine cracks, etc.) on the inner surface of the steel pipe can be reduced to 0.10 mm or less, so that the strength of the steel pipe used for fuel injection can be increased.
- Patent Document 2 discloses a steel pipe for a fuel injection pipe in which the maximum diameter of nonmetallic inclusions existing at a depth of at least 20 ⁇ m from the inner surface of the steel pipe is 20 ⁇ m or less and the tensile strength is 500 MPa or more.
- Patent Document 3 discloses a steel pipe for a fuel injection pipe having a tensile strength of 900 N / mm 2 or more and a maximum diameter of nonmetallic inclusions existing at a depth of at least 20 ⁇ m from the inner surface of the steel pipe is 20 ⁇ m or less. Has been.
- Patent Document 3 manufactures a hollow steel pipe by using a steel material from which coarse inclusions of A-, B- and C-systems are eliminated by reducing S, devising a casting method, reducing Ca, etc.
- the tensile strength of 900 MPa or more is realized by quenching and tempering after adjusting to the target diameter by the above.
- the limit internal pressure of 260 to 285 MPa is realized.
- the steel pipe used for fuel injection manufactured by the method disclosed in Patent Document 1 has high strength, it cannot obtain a fatigue life commensurate with the strength of the steel pipe material. If the strength of the steel pipe material is increased, naturally, the pressure applied to the inside of the steel pipe can be increased. However, when pressure is applied to the inside of the steel pipe, the internal pressure that is the limit at which fatigue damage does not occur on the inner surface of the steel pipe (hereinafter referred to as “limit internal pressure”) does not depend only on the strength of the steel pipe material. . That is, even if the strength of the steel pipe material is increased, a limit internal pressure that is not expected cannot be obtained. Taking the reliability of the final product into consideration, it is preferable that the fatigue life is long. However, if the above-mentioned limit internal pressure is low, the fatigue life is also shortened because the steel pipe is easily fatigued by use with a high internal pressure.
- the steel pipes for fuel injection pipes disclosed in Patent Documents 2 and 3 have the features of a long fatigue life and high reliability.
- the limit internal pressure of the steel pipe disclosed in Patent Document 2 is 255 MPa or less, and in Patent Document 3, it is 260 to 285 MPa.
- fuel injection pipes having a tensile strength of 800 MPa or more and a critical internal pressure of more than 270 MPa, particularly preferably, tensile strength of 900 MPa or more Therefore, development of a fuel injection pipe having a critical internal pressure exceeding 300 MPa is desired.
- the limit internal pressure generally tends to slightly increase depending on the tensile strength of the fuel injection pipe, it is considered that various factors are involved, and particularly in a high-strength fuel injection pipe of 800 MPa or more, it is stably high. It is not always easy to ensure the limit internal pressure.
- the present invention provides a highly reliable steel pipe for a fuel injection pipe having a tensile strength (TS) of 800 MPa or more, preferably 900 MPa or more and having a high limit internal pressure characteristic of a limit internal pressure of 0.3 ⁇ TS ⁇ ⁇ or more, and It aims at providing the used fuel injection pipe.
- TS tensile strength
- ⁇ is a coefficient for correcting that the relationship between the internal pressure and the stress generated on the inner surface of the tube changes depending on the tube inner diameter ratio as described later, and the ratio D / d of the outer diameter D of the tube to the inner diameter d is 2 to In the range of 2.2, ⁇ is 0.97 to 1.02, that is, approximately 1.
- the present inventors made a prototype of a steel pipe for a fuel injection pipe using a high-strength steel pipe under various heat treatment conditions, and as a result of investigating its limit internal pressure and failure mode, the following knowledge was obtained.
- a flat fracture surface form called a faceted fracture surface is observed there.
- This is a crack formed in a crystal grain unit, which is formed by extending in a shear type called mode II over several crystal grains around it.
- mode II a shear type
- the form of progress changes to an open type called mode I, leading to breakage.
- the growth of the faceted fracture surface depends on the prior austenite grain size (hereinafter referred to as “old ⁇ grain size”), which is a dimensional unit of initial crack initiation, and the old ⁇ grain size is large, that is, the old ⁇ It is promoted when the grain size number is small. This means that the fatigue strength of the base structure decreases if the old ⁇ grain size is coarse, even if the inclusion does not become the starting point.
- (C) Specifically, by setting the particle size number of the old ⁇ grains to 10.0 or more, in the internal pressure fatigue test in which an internal pressure of up to 300 MPa can be applied, no damage occurs even if the number of repetitions is 10 7 times. It was. On the other hand, in a steel pipe with a grain size number of less than 10.0 and insufficiently refined, the fatigue strength of the structure is reduced, so that a situation in which the critical internal pressure is reduced even if the inclusion does not become the starting point was observed.
- the normalizing treatment was performed under the condition of air cooling after holding at 980 ° C. for 60 minutes. And it cut
- the tensile strength of steel A was 718 MPa
- steel B was 685 MPa
- steel C was 723 MPa.
- the dimensions of the sample are an outer diameter of 6.35 mm, an inner diameter of 3.00 mm, and a length of 200 mm.
- Each of these samples was subjected to an internal pressure fatigue test by 30 samples. Fatigue test conditions are to seal one end face of the sample, seal the working oil as a pressure medium inside the sample from the other end face, and repeatedly change the internal pressure of the sealed part in the range of maximum 300 MPa to minimum 18 MPa. The frequency was 8 Hz.
- the surface where all the damaged samples had leaked was broken out, the starting point was observed with an SEM, and the presence of inclusions and their dimensions were measured.
- the inclusion size was calculated by measuring the area area and the maximum width c in the depth direction (tube radial direction) from the inner surface by image processing, and calculating ⁇ area. For ⁇ area, the smaller one of the square root of area area and ( ⁇ 10) ⁇ c was adopted. This definition is based on the concept described in Non-Patent Document 1.
- the tip of the pipe was squeezed and a lubricant was applied. Subsequently, drawing was performed using a die and a plug, and soft annealing was performed as necessary.
- the tube diameter was gradually reduced to finish a steel pipe having an outer diameter of 6.35 mm and an inner diameter of 3.0 mm. And after performing the quenching process which water-cools after carrying out high frequency heating to 1000 degreeC, the tempering process which cools after hold
- each sample was cut to a length of 200 mm, subjected to pipe end processing, and an internal pressure fatigue test was performed as an injection pipe test piece for an internal pressure fatigue test.
- an internal pressure fatigue test was performed as an injection pipe test piece for an internal pressure fatigue test.
- one end face of the sample is sealed, and hydraulic oil is sealed as a pressure medium inside the sample from the other end face, and a sine wave is taken with respect to time in the range of maximum internal pressure of 340 MPa to minimum 18 MPa. It is made to fluctuate repeatedly.
- the frequency of internal pressure fluctuation was 8 Hz.
- Table 3 The results are shown in Table 3.
- the present invention has been completed on the basis of the above findings, and the gist thereof is the following steel pipe for fuel injection pipe and fuel injection pipe using the same.
- the chemical composition is mass%, C: 0.12 to 0.27%, Si: 0.05 to 0.40%, Mn: 0.3 to 2.0%, Al: 0.005 to 0.060%, N: 0.0020 to 0.0080%, Ti: 0.005 to 0.015%, Nb: 0.015 to 0.045%, Cr: 0 to 1.0%, Mo: 0 to 1.0%, Cu: 0 to 0.5%, Ni: 0 to 0.5%, V: 0 to 0.15%, B: 0 to 0.005%, Balance Fe and impurities, Ca, P, S and O in the impurity are Ca: 0.001% or less, P: 0.02% or less, S: 0.01% or less, O: 0.0040% or less,
- the metal structure consists of a tempered martensite structure or a mixed structure of tempered martensite and tempered bainite, and the prior austenite grain size number is 10.0 or more,
- IP in the above formula (i) means the critical internal pressure (MPa)
- TS means the tensile strength (MPa)
- ⁇ is a value expressed by the above formula (ii).
- D is the outer diameter (mm) of the steel pipe for fuel injection pipe
- d is the inner diameter (mm).
- the chemical composition is mass%, Cr: 0.2 to 1.0%, Mo: 0.03-1.0%, Cu: 0.03-0.5%, Ni: 0.03-0.5%, V: 0.02 to 0.15%, and B: 0.0003 to 0.005%
- the steel pipe for fuel injection pipes according to the present invention can be suitably used particularly as a fuel injection pipe for automobiles.
- C 0.12 to 0.27%
- C is an element effective for increasing the strength of steel at a low cost. In order to ensure the desired tensile strength, the C content needs to be 0.12% or more. However, if the C content exceeds 0.27%, workability is reduced. Therefore, the C content is 0.12 to 0.27%.
- the C content is preferably 0.13% or more, and more preferably 0.14% or more. Further, the C content is preferably 0.25% or less, and more preferably 0.23% or less.
- Si 0.05 to 0.40%
- Si is an element that not only has a deoxidizing action but also has an action of improving the hardenability of the steel and improving the strength.
- the Si content needs to be 0.05% or more.
- the Si content is set to 0.05 to 0.40%.
- the Si content is preferably 0.15% or more, and preferably 0.35% or less.
- Mn 0.3 to 2.0% Mn not only has a deoxidizing action, but is an element effective for improving the hardenability of steel and improving strength and toughness. However, if the content is less than 0.3%, sufficient strength cannot be obtained. On the other hand, if it exceeds 2.0%, MnS coarsens, and expands during hot rolling, and the toughness decreases. . Therefore, the Mn content is set to 0.3 to 2.0%.
- the Mn content is preferably 0.4% or more, and more preferably 0.5% or more. Further, the Mn content is preferably 1.7% or less, and more preferably 1.5% or less.
- Al 0.005 to 0.060%
- Al is an element effective in deoxidizing steel, and is an element having an effect of improving the toughness and workability of steel. In order to obtain these effects, it is necessary to contain 0.005% or more of Al.
- the Al content is set to 0.005 to 0.060%.
- the Al content is preferably 0.008% or more, and more preferably 0.010% or more.
- Al content is 0.050% or less, and it is more preferable that it is 0.040% or less.
- the Al content means the content of acid-soluble Al (sol. Al).
- N 0.0020 to 0.0080%
- N is an element unavoidably present in steel as an impurity.
- 0.0020% or more of N needs to be left for the purpose of preventing grain coarsening due to the pinning effect of TiN.
- the N content is set to 0.0020 to 0.0080%.
- the N content is preferably 0.0025% or more, and more preferably 0.0027% or more. Further, the N content is preferably 0.0065% or less, and more preferably 0.0050% or less.
- Ti 0.005 to 0.015%
- Ti is an essential element in the present invention because it contributes to preventing coarsening of crystal grains by being finely precipitated in the form of TiN or the like. In order to acquire the effect, it is necessary to make Ti content 0.005% or more. On the other hand, when the Ti content exceeds 0.015%, the grain refinement effect tends to be saturated, and in some cases, a large Ti—Al composite inclusion may be generated. Large Ti-Al composite inclusions may lead to a decrease in the failure life under very high internal pressure conditions. In particular, the tensile strength is 900 MPa or more, and the limit internal pressure is 0.3 ⁇ TS ⁇ ⁇ or more.
- the Ti content is set to 0.005 to 0.015%.
- the Ti content is preferably 0.006% or more, and more preferably 0.007% or more. Further, the Ti content is preferably 0.013% or less, and more preferably 0.012% or less.
- Nb 0.015 to 0.045%
- Nb is an essential element in the present invention for obtaining a desired fine grain structure because Nb is finely dispersed as carbide or carbonitride in steel and has an effect of strongly pinning the grain boundaries. Further, the strength and toughness of the steel are improved by the fine dispersion of Nb carbide or carbonitride. For these purposes, it is necessary to contain 0.015% or more of Nb. On the other hand, if the Nb content exceeds 0.045%, the carbides and carbonitrides are coarsened and the toughness is reduced. Therefore, the Nb content is set to 0.015 to 0.045%.
- the Nb content is preferably 0.018% or more, and more preferably 0.020% or more. Moreover, it is preferable that Nb content is 0.040% or less, and it is more preferable that it is 0.035% or less.
- Cr 0 to 1.0% Since Cr is an element having an effect of improving hardenability and wear resistance, it may be contained as necessary. However, if the Cr content exceeds 1.0%, the toughness and cold workability deteriorate, so the Cr content in the case of inclusion is 1.0% or less. The Cr content is preferably 0.8% or less. In addition, when obtaining said effect, it is preferable to make Cr content into 0.2% or more, and it is more preferable to set it as 0.3% or more.
- Mo 0 to 1.0%
- Mo is an element that contributes to securing high strength in order to improve hardenability and increase temper softening resistance. Therefore, you may contain Mo as needed. However, even if the Mo content exceeds 1.0%, the effect is saturated and the alloy cost increases. Therefore, the Mo content when contained is 1.0% or less.
- the Mo content is preferably 0.45% or less.
- Cu 0 to 0.5%
- Cu is an element having an effect of improving strength and toughness by increasing the hardenability of steel. Therefore, you may contain Cu as needed. However, even if the Cu content exceeds 0.5%, the effect is saturated and the alloy cost is increased. Therefore, the Cu content when contained is 0.5% or less.
- the Cu content is preferably 0.40% or less, and more preferably 0.35% or less.
- Ni 0 to 0.5%
- Ni is an element having an effect of improving strength and toughness by increasing the hardenability of steel. Therefore, you may contain Ni as needed. However, even if the Ni content exceeds 0.5%, the effect is saturated and the alloy cost is increased. Therefore, when Ni is included, the Ni content is 0.5% or less.
- the Ni content is preferably 0.40% or less, and more preferably 0.35% or less. In order to obtain the above effect, the Ni content is preferably 0.03% or more, and more preferably 0.08% or more.
- V 0 to 0.15%
- V is an element that precipitates as fine carbide (VC) during tempering, increases temper softening resistance, enables high temperature tempering, and contributes to increasing the strength and toughness of steel. Therefore, you may contain V as needed. However, when the V content exceeds 0.15%, the toughness is lowered, so that the V content in the case of being included is 0.15% or less.
- the V content is preferably 0.12% or less, and more preferably 0.10% or less.
- B 0 to 0.005%
- B is an element having an effect of improving hardenability. Therefore, you may contain B as needed. However, if the B content exceeds 0.005%, the toughness decreases. Therefore, when B is included, the B content is 0.005% or less.
- the B content is preferably 0.002% or less.
- the effect of improving hardenability by containing B can be obtained even at the impurity level, but to obtain the effect more remarkably, the B content is preferably 0.0003% or more.
- N in the steel is fixed by Ti.
- the steel pipe for a fuel injection pipe of the present invention has a chemical composition composed of the above elements C to B, the remaining Fe and impurities.
- impurities are components that are mixed due to various factors of raw materials such as ores and scraps and manufacturing processes when steel is industrially manufactured, and are allowed within a range that does not adversely affect the present invention. Means something.
- Ca 0.001% or less
- Ca has an action of aggregating silicate inclusions (Group G of JIS G 0555), and if the Ca content exceeds 0.001%, it is limited due to generation of coarse C inclusions. The internal pressure decreases. Therefore, the Ca content is 0.001% or less.
- the Ca content is preferably 0.0007% or less, and more preferably 0.0003% or less.
- the Ca content in the steel can be made substantially 0%.
- P 0.02% or less
- P is an element unavoidably present in steel as an impurity.
- the content exceeds 0.02%, not only the hot workability is lowered, but also the toughness is remarkably lowered due to grain boundary segregation. Therefore, the P content needs to be 0.02% or less.
- the P content is preferably as low as possible, preferably 0.015% or less, and more preferably 0.012% or less. However, excessive reduction leads to an increase in manufacturing cost, so the lower limit is preferably 0.005%.
- S 0.01% or less S, like P, is an element unavoidably present in steel as an impurity.
- the S content needs to be 0.01% or less.
- the S content is preferably as low as possible, preferably 0.005% or less, and more preferably 0.0035% or less.
- the lower limit is preferably 0.0005%.
- O forms a coarse oxide and tends to cause a decrease in the limit internal pressure due to it. From such a viewpoint, the O content needs to be 0.0040% or less.
- the O content is preferably as low as possible, preferably 0.0035% or less, more preferably 0.0025% or less, and even more preferably 0.0015% or less.
- the lower limit is preferably 0.0005%.
- the metal structure of the steel pipe for fuel injection pipes according to the present invention is composed of a tempered martensite structure or a mixed structure of tempered martensite and tempered bainite. If a ferrite pearlite structure exists in the structure, even if the breakage of the inclusion origin is resolved, the breakage occurs starting from the ferrite phase that is locally low in hardness, which is expected from the macroscopic hardness and tensile strength. The limit internal pressure is not obtained. In addition, it is difficult to ensure a tensile strength of 800 MPa or more, particularly a tensile strength of 900 MPa or more in a structure that does not contain tempered martensite or a ferrite / pearlite structure.
- the prior austenite grain size number needs to be 10.0 or more. This is because in a steel pipe having a grain size number less than 10.0 and insufficiently refined, the fatigue strength of the structure is lowered, so that the limit internal pressure is lowered even if the inclusion does not become the starting point.
- the granularity number is based on the provisions of ASTM E112.
- the steel pipe for a fuel injection pipe according to the present invention has a tensile strength of 800 MPa or more and a critical internal pressure that satisfies the following formula (i).
- IP ⁇ 0.3 ⁇ TS ⁇ ⁇ (i) ⁇ [(D / d) 2 ⁇ 1] / [0.776 ⁇ (D / d) 2 ] (ii)
- IP in the above formula (i) means the critical internal pressure (MPa)
- TS means the tensile strength (MPa)
- ⁇ is a value expressed by the above formula (ii).
- D is the outer diameter (mm) of the steel pipe for fuel injection pipe
- d is the inner diameter (mm).
- ⁇ is a coefficient for correcting that the relationship between the internal pressure and the stress generated on the inner surface of the tube changes depending on the tube inner diameter ratio.
- the tensile strength is set to 800 MPa or more.
- the limit internal pressure means that the minimum internal pressure is 18 MPa in the internal pressure fatigue test, the internal pressure is repeatedly changed with a sine wave with respect to time, and breakage (leakage) occurs even when the number of repetitions reaches 10 7 times. It means the maximum internal pressure (MPa) that does not occur.
- the tensile strength is 900 MPa or more.
- the inner diameter of the steel pipe for a fuel injection pipe according to the present invention is preferably 2.5 mm or more, and more preferably 3 mm or more.
- the thickness of the steel pipe is preferably 1.5 mm or more, and more preferably 2 mm or more.
- the outer diameter of the steel pipe is desirably 20 mm or less, and more desirably 10 mm or less.
- D / d which is the ratio of the outer diameter and the inner diameter of the steel pipe is 2.0 or more.
- the upper limit of D / d is not particularly set, but if the value is excessively large, bending work becomes difficult, so that it is preferably 3.0 or less, and more preferably 2.8 or less.
- the steel ingot which suppressed the inclusion beforehand with the following method is prepared, From the steel ingot
- the raw tube can be manufactured by a technique such as Mannesmann tube, etc., and can be manufactured by heat treatment after making it into a desired size and shape by cold working.
- the chemical composition as described above In order to suppress the formation of inclusions, it is preferable to adjust the chemical composition as described above and increase the cross-sectional area of the slab during casting. This is because large inclusions float after casting until they solidify.
- the cross-sectional area of the slab during casting is desirably 200,000 mm 2 or more.
- by slowing the casting speed light non-metallic inclusions can be levitated as slag and non-metallic inclusions in the steel itself can be reduced.
- continuous casting can be performed at a casting speed of 0.5 m / min.
- Ti-Al composite inclusions may be formed depending on the Ti content in the steel. This Ti—Al composite inclusion is presumed to be formed during the solidification process. In the present invention, it is possible to prevent the formation of coarse composite inclusions by appropriately controlling the Ti content.
- a billet for pipe making is prepared by a method such as block rolling. Then, for example, piercing and rolling are performed by a Mannesmann-mandrel mill pipe manufacturing method, and a predetermined hot pipe manufacturing dimension is finished by constant diameter rolling using a stretch reducer or the like. Next, the cold drawing process is repeated several times to obtain a predetermined cold finish size. In cold drawing, cold drawing can be facilitated by performing stress relief annealing before or in the middle thereof. It is also possible to use other pipe making methods such as a plug mill pipe making method.
- a tensile strength of 800 MPa or more, preferably 900 MPa or more is obtained by performing a heat treatment of quenching and tempering. Can be secured.
- the heating temperature is preferably 1050 ° C. or lower. This is because if the heating temperature exceeds 1050 ° C., the ⁇ grains are likely to be coarsened.
- the heating temperature is more preferably set to Ac 3 transformation point + 30 ° C. or higher.
- the heating method at the time of quenching is not particularly limited, but heating at a high temperature for a long time increases the scale generated on the surface of the steel pipe when it is not in a protective atmosphere, leading to a decrease in dimensional accuracy and surface properties.
- furnace heating such as a walking beam furnace
- a short holding time of about 10 to 20 minutes is preferable.
- an atmosphere having a low oxygen potential or a non-oxidizing reducing atmosphere is preferable as the heating atmosphere.
- the heating rate is preferably 25 ° C./s or more, more preferably 50 ° C./s or more, and further preferably 100 ° C./s or more.
- the cooling rate in the temperature range of 500 to 800 ° C. is preferably 50 ° C./s or more, More preferably, it is 100 ° C./s or more, and further preferably 125 ° C./s or more.
- a quenching process such as water quenching.
- the steel pipe that has been quenched and cooled to room temperature is hard and brittle as it is, it is preferably tempered at a temperature below the Ac 1 transformation point.
- the tempering temperature exceeds the Ac 1 transformation point, reverse transformation occurs, making it difficult to obtain desired characteristics stably and reliably.
- the tempering temperature is less than 450 ° C., tempering tends to be insufficient, and the toughness and workability may be insufficient.
- a preferred tempering temperature is 600 to 650 ° C.
- the holding time at the tempering temperature is not particularly limited, but is usually about 10 to 120 minutes. In addition, you may correct
- the self-tightening process is a process in which an excessive internal pressure is applied to partially plastically deform the vicinity of the inner surface to generate a compressive residual stress. This suppresses the growth of fatigue cracks, and a higher limit internal pressure is obtained. It is recommended that the self-tightening pressure is lower than the burst pressure and higher than the lower limit value 0.3 ⁇ TS ⁇ ⁇ of the limit internal pressure.
- the steel pipe for a fuel injection pipe of the present invention can be made into a high-pressure fuel injection pipe by forming connection heads at both end portions, for example.
- a billet for pipe making is manufactured from the above steel material, pierced and rolled by the Mannesmann-Mandrel pipe manufacturing method, and hot-rolled to a dimension having an outer diameter of 34 mm and a wall thickness of 4.5 mm by stretch reducer constant diameter rolling. .
- the tip of the pipe was squeezed and a lubricant was applied.
- drawing was performed using a die and a plug, and softening annealing was performed as necessary.
- the tube diameter was gradually reduced to a predetermined size. At this time, test no.
- the obtained steel pipe was subjected to a tensile test using a No. 11 test piece specified in JIS Z 2241 (2011) to obtain a tensile strength.
- Samples for observing the structure were taken from each steel pipe, and the cross section perpendicular to the pipe axis direction was mechanically polished. After polishing with emery paper and buff, it was confirmed that it was a tempered martensite or a mixed structure of tempered martensite and tempered bainite using a nital corrosive solution. Then, after buffing again, the old ⁇ grain boundaries in the observation plane were exposed using a picral corrosion liquid. Thereafter, the prior austenite grain size number of the observation surface was determined in accordance with ASTM E112.
- each steel pipe was cut into a length of 200 mm, subjected to pipe end processing, and used as an injection pipe test piece for internal pressure fatigue test.
- one end face of the sample is sealed, and hydraulic oil is sealed as a pressure medium inside the sample from the other end face, and a sine wave is taken with respect to time in the range of the internal pressure from the maximum internal pressure to the minimum 18 MPa. It is made to fluctuate repeatedly.
- the frequency of internal pressure fluctuation was 8 Hz. Even if the repetition rate is 10 7 times as a result of the internal pressure fatigue test to evaluate the maximum pressure damage (leakage) it does not occur as a critical internal pressure.
- Table 5 shows the evaluation results of old ⁇ grain size, tensile strength, limit internal pressure, and calculated value of 0.3 ⁇ TS ⁇ ⁇ .
- test no. Examples 1 to 4 and 6 to 8 are examples of the present invention that satisfy the provisions of the present invention.
- test no. Although 5 is a comparative example, the chemical composition of steel satisfies the provisions of the present invention, but the prior austenite grain size number is outside the scope of the present invention.
- Test No. Reference numerals 9 to 13 are reference examples or comparative examples in which the chemical composition of the steel is outside the specified range of the present invention.
- test no. 1 to 4, 6 to 8 and Test No. as a reference example. None of 9 was broken by 10 7 repetitions at a maximum pressure of 300 MPa, and the maximum pressure was 300 MPa or more. This is a level greater than 0.3 ⁇ times the tensile strength.
- the steel pipe for fuel injection pipes according to the present invention can be suitably used particularly as a fuel injection pipe for automobiles.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
まず、予備的に比較的強度の低い鋼を用いて、内圧疲労試験を行った。表1に示す化学成分を有する3種の素材A、BおよびCを転炉、連続鋳造によって製作した。連続鋳造では鋳込み時の鋳造速度を0.5m/minとし、鋳片の断面積を200,000mm2以上とした。得られた鋼片を分塊圧延して製管用ビレットに加工し、マンネスマン-マンドレル製管法で穿孔圧延、延伸圧延を行い、ストレッチレデューサー定径圧延で素管を製造した。そして、焼鈍と冷間引抜きとを複数回繰返し所定の仕上げ寸法まで縮径した後、焼準処理を行った。この時、焼準処理は980℃×60min保持後空冷の条件で行った。そして所定の長さに切断し、管端加工を施し、内圧疲労試験用噴射管製品試料とした。引張強度は鋼Aが718MPa、鋼Bが685MPa、鋼Cが723MPaであった。
次に、900MPa以上の引張強度を有する鋼を用いて、最大340MPaの内圧による疲労試験を行った。上述の表1に示す化学成分を有する素材BおよびCを3試料ずつ転炉、連続鋳造によって製作した。連続鋳造では鋳込み時の鋳造速度を0.5m/minとし、鋳片の断面積を200,000mm2以上とした。上記鋼素材から製管用ビレットを製造し、マンネスマン-マンドレル製管法で穿孔圧延、延伸圧延を行い、ストレッチレデューサー定径圧延により、外径34mm、肉厚4.5mmの寸法に熱間製管した。この熱間仕上げされた素管を抽伸するために、まず素管先端を口絞りし、潤滑剤を塗布した。続いて、ダイスおよびプラグを用いて引抜加工を行い、必要に応じて軟化焼鈍を行い、徐々に管径を縮小し、外径6.35mm、内径3.0mmの鋼管に仕上げた。そして、1000℃まで高周波加熱してから水冷する焼入れ処理を施した後、640℃で10min保持してから放冷する焼戻し処理を行い、外内表面のスケール除去・平滑化処理を行った。
C:0.12~0.27%、
Si:0.05~0.40%、
Mn:0.3~2.0%、
Al:0.005~0.060%、
N:0.0020~0.0080%、
Ti:0.005~0.015%、
Nb:0.015~0.045%、
Cr:0~1.0%、
Mo:0~1.0%、
Cu:0~0.5%、
Ni:0~0.5%、
V:0~0.15%、
B:0~0.005%、
残部Feおよび不純物であり、
不純物中のCa、P、SおよびOは、
Ca:0.001%以下、
P:0.02%以下、
S:0.01%以下、
O:0.0040%以下であり、
金属組織が焼戻しマルテンサイト組織または焼戻しマルテンサイトと焼戻しベイナイトとの混合組織からなり、旧オーステナイト粒度番号が10.0以上であって、
800MPa以上、好ましくは900MPa以上の引張強度を有すると共に、限界内圧が下記(i)式を満足する、燃料噴射管用鋼管。
IP≧0.3×TS×α ・・・(i)
α=[(D/d)2-1]/[0.776×(D/d)2] ・・・(ii)
但し、上記(i)式中のIPは限界内圧(MPa)、TSは引張強度(MPa)を意味し、αは上記(ii)式で表される値である。また、上記(ii)式中のDは燃料噴射管用鋼管の外径(mm)、dは内径(mm)である。
Cr:0.2~1.0%、
Mo:0.03~1.0%、
Cu:0.03~0.5%、
Ni:0.03~0.5%、
V:0.02~0.15%、および
B:0.0003~0.005%
から選択される1種以上を含有する、上記(1)に記載の燃料噴射管用鋼管。
D/d≧1.5 ・・・(iii)
但し、上記(iii)式中のDは燃料噴射管用鋼管の外径(mm)、dは内径(mm)である。
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
Cは、安価に鋼の強度を高めるのに有効な元素である。所望の引張強度を確保するためにはC含有量を0.12%以上とすることが必要である。しかし、C含有量が0.27%を超えると、加工性の低下を招く。したがって、C含有量は0.12~0.27%とする。C含有量は0.13%以上であるのが好ましく、0.14%以上であるのがより好ましい。また、C含有量は0.25%以下であるのが好ましく、0.23%以下であるのがより好ましい。
Siは、脱酸作用を有するだけでなく、鋼の焼入れ性を高めて強度を向上させる作用を有する元素である。これらの効果を確実にするためには、Si含有量を0.05%以上とすることが必要である。しかし、Si含有量が0.40%を超えると、靭性の低下を招く。したがって、Si含有量は0.05~0.40%とする。Si含有量は0.15%以上であるのが好ましく、0.35%以下であるのが好ましい。
Mnは、脱酸作用を有するだけでなく、鋼の焼入れ性を高めて強度と靭性とを向上させるのに有効な元素である。しかし、その含有量が0.3%未満では十分な強度が得られず、一方、2.0%を超えるとMnSの粗大化が生じて、熱間圧延時に展伸し、かえって靭性が低下する。このため、Mn含有量は0.3~2.0%とする。Mn含有量は0.4%以上であるのが好ましく、0.5%以上であるのがより好ましい。また、Mn含有量は1.7%以下であるのが好ましく、1.5%以下であるのがより好ましい。
Alは、鋼の脱酸を行う上で有効な元素であり、また鋼の靭性および加工性を高める作用を有する元素である。これらの効果を得るには0.005%以上のAlを含有する必要がある。一方、Al含有量が0.060%を超えると、介在物が発生しやすくなり、特にTiを含有する鋼においては、Ti-Al複合介在物が生じるおそれが高くなる。したがって、Al含有量は0.005~0.060%とする。Al含有量は0.008%以上であるのが好ましく、0.010%以上であるのがより好ましい。また、Al含有量は0.050%以下であるのが好ましく、0.040%以下であるのがより好ましい。なお、本発明において、Al含有量は、酸可溶性Al(sol.Al)の含有量を意味する。
Nは、不純物として鋼中に不可避的に存在する元素である。しかしながら本発明では、TiNのピニング効果(pinning effect)による結晶粒粗大化防止を目的として、0.0020%以上のNを残存させる必要がある。一方、N含有量が0.0080%を超えると大型のTi-Al複合介在物が生じるおそれが高くなる。したがって、N含有量は0.0020~0.0080%とする。N含有量は0.0025%以上であるのが好ましく、0.0027%以上であるのがより好ましい。また、N含有量は0.0065%以下であるのが好ましく、0.0050%以下であるのがより好ましい。
Tiは、TiN等の形で微細に析出することで、結晶粒の粗大化防止に貢献するため、本発明では必須の元素である。その効果を得るためには、Ti含有量を0.005%以上とする必要がある。一方、Ti含有量が0.015%を超えると、結晶粒の細粒化効果は飽和する傾向が生じるとともに、場合によっては大型のTi-Al複合介在物が生じるおそれがある。大型のTi-Al複合介在物は、非常に高い内圧条件下での破損寿命の低下を招くおそれがあり、その抑制は、特に、引張強度900MPa以上、限界内圧が0.3×TS×α以上の高い限界内圧特性を有する燃料噴射管においては重要であると考えられる。したがって、Ti含有量は0.005~0.015%とする。Ti含有量は0.006%以上であるのが好ましく、0.007%以上であるのがより好ましい。また、Ti含有量は0.013%以下であるのが好ましく、0.012%以下であるのがより好ましい。
Nbは、鋼中で炭化物または炭窒化物として微細に分散し、結晶粒界を強くピン止めする効果を有するため、所望の細粒組織を得る上で本発明においては必須の元素である。また、Nbの炭化物または炭窒化物の微細分散により、鋼の強度および靭性が向上する。これらの目的のため、0.015%以上のNbを含有させる必要がある。一方、Nb含有量が0.045%を超えると、炭化物、炭窒化物が粗大化し、かえって靭性が低下する。したがって、Nbの含有量は0.015~0.045%とする。Nb含有量は0.018%以上であるのが好ましく、0.020%以上であるのがより好ましい。また、Nb含有量は0.040%以下であるのが好ましく、0.035%以下であるのがより好ましい。
Crは、焼入れ性および耐摩耗性を向上させる効果を有する元素であるので、必要に応じて含有させても良い。しかし、Cr含有量が1.0%を超えると靭性および冷間加工性が低下するため、含有させる場合のCr含有量は1.0%以下とする。Cr含有量は0.8%以下であるのが好ましい。なお、上記の効果を得たい場合は、Cr含有量を0.2%以上とすることが好ましく、0.3%以上とすることがより好ましい。
Moは、焼入れ性を向上させ、焼戻し軟化抵抗を高めるため、高強度確保に寄与する元素である。そのため、必要に応じてMoを含有させても良い。しかし、Mo含有量が1.0%を超えてもその効果は飽和する上に、合金コストが嵩む結果となる。したがって、含有させる場合のMo含有量は1.0%以下とする。Mo含有量は0.45%以下であるのが好ましい。なお、上記の効果を得たい場合は、Mo含有量を0.03%以上とすることが好ましく、0.08%以上とすることがより好ましい。
Cuは、鋼の焼入れ性を高めることで強度および靭性を向上させる効果を有する元素である。そのため、必要に応じてCuを含有させても良い。しかし、Cu含有量が0.5%を超えてもその効果は飽和する上に、合金コストの上昇を招く結果となる。したがって、含有させる場合のCu含有量は0.5%以下とする。Cu含有量は0.40%以下とするのが好ましく、0.35%以下とするのがより好ましい。なお、上記の効果を得たい場合は、Cu含有量を0.03%以上とすることが好ましく、0.05%以上とすることがより好ましい。
Niは、鋼の焼入れ性を高めることで強度および靭性を向上させる効果を有する元素である。そのため、必要に応じてNiを含有させても良い。しかし、Ni含有量が0.5%を超えてもその効果は飽和する上に、合金コストの上昇を招く結果となる。したがって、含有させる場合のNi含有量は0.5%以下とする。Ni含有量は0.40%以下とするのが好ましく、0.35%以下とするのがより好ましい。なお、上記の効果を得たい場合は、Ni含有量を0.03%以上とすることが好ましく、0.08%以上とすることがより好ましい。
Vは、焼戻し時に微細な炭化物(VC)として析出して、焼戻し軟化抵抗を高め、高温焼戻しを可能とし、鋼の高強度化および高靭性化に寄与する元素である。そのため、必要に応じてVを含有させても良い。しかし、V含有量が0.15%を超えるとかえって靭性の低下を招くため含有させる場合のV含有量は0.15%以下とする。V含有量は0.12%以下とするのが好ましく、0.10%以下とするのがより好ましい。なお、上記の効果を得たい場合は、V含有量を0.02%以上とすることが好ましく、0.04%以上とすることがより好ましい。
Bは焼入れ性を高める作用を有する元素である。そのため、必要に応じてBを含有させても良い。しかし、Bの含有量が0.005%を超えると靭性が低下する。したがって、含有させる場合のBの含有量は0.005%以下とする。B含有量は0.002%以下とするのが好ましい。Bを含有させることによる焼入れ性向上作用は、不純物レベルの含有量であっても得られるが、より顕著にその効果を得るには、B含有量を0.0003%以上とすることが好ましい。なお、Bの効果を有効に活用するためには、鋼中のNがTiにより固定されていることが好ましい。
Caは、シリケート系介在物(JIS G 0555のグループC)を凝集させる作用があり、Ca含有量が0.001%を超えると粗大なC系介在物の生成により限界内圧が低下する。したがってCa含有量は0.001%以下とする。Ca含有量は0.0007%以下とすることが好ましく、0.0003%以下とすることがより好ましい。なお、製鋼精錬に係る設備で長期にわたり全くCa処理を行わなければ、設備のCa汚染を解消することができるため、鋼中のCa含有量を実質的に0%とすることが可能である。
Pは、不純物として鋼中に不可避的に存在する元素である。その含有量が0.02%を超えると、熱間加工性の低下を招くだけでなく、粒界偏析により靭性を著しく低下させる。したがって、P含有量は、0.02%以下とする必要がある。なお、Pの含有量は、低ければ低いほど望ましく、0.015%以下とするのが好ましく、0.012%以下とするのがより好ましい。しかし、過度の低下は、製造コスト上昇を招くため、その下限は、0.005%とするのが好ましい。
Sは、Pと同様に不純物として鋼中に不可避的に存在する元素である。その含有量が0.01%を超えると粒界に偏析するとともに、硫化物系の介在物を生成して疲労強度の低下を招きやすい。したがって、S含有量は、0.01%以下とする必要がある。なお、Sの含有量は、低ければ低いほど望ましく、0.005%以下とするのが好ましく、0.0035%以下とするのがより好ましい。しかし、過度の低下は、製造コスト上昇を招くため、その下限は、0.0005%とするのが好ましい。
Oは、粗大な酸化物を形成し、それに起因する限界内圧の低下を生じやすくする。このような観点からO含有量は0.0040%以下とする必要がある。なお、Oの含有量は、低ければ低いほど望ましく、0.0035%以下とするのが好ましく、0.0025%以下とするのがより好ましく、0.0015%以下とするのがさらに好ましい。しかし、過度の低下は、製造コスト上昇を招くため、その下限は、0.0005%とするのが好ましい。
本発明に係る燃料噴射管用鋼管の金属組織は、焼戻しマルテンサイト組織または焼戻しマルテンサイトと焼戻しベイナイトとの混合組織からなるものである。組織中にフェライト・パーライト組織が存在すると、介在物起点の破損が解消されたとしても、局所的に硬さの低いフェライト相を起点として破損が生じるため、巨視的な硬さおよび引張強度から期待される限界内圧が得られない。また、焼戻しマルテンサイトを含まない組織またはフェライト・パーライト組織では800MPa以上の引張強度、特に900MPa以上の引張強度を確保することが困難になる。
本発明に係る燃料噴射管用鋼管は、800MPa以上の引張強度を有すると共に、限界内圧が下記(i)式を満足するものである。
IP≧0.3×TS×α ・・・(i)
α=[(D/d)2-1]/[0.776×(D/d)2] ・・・(ii)
但し、上記(i)式中のIPは限界内圧(MPa)、TSは引張強度(MPa)を意味し、αは上記(ii)式で表される値である。また、上記(ii)式中のDは燃料噴射管用鋼管の外径(mm)、dは内径(mm)である。αは管内径比によって内圧と管内面の発生応力との関係が変化することを補正する係数である。
本発明に係る燃料噴射管用鋼管の寸法については特に制限は設けない。しかしながら、一般的に燃料噴射管は使用時における内部の圧力変動を少なくするために、ある程度の容量が必要となる。そのため、本発明に係る燃料噴射管用鋼管の内径は2.5mm以上であることが望ましく、3mm以上であることがより望ましい。また、燃料噴射管は高い内圧に耐える必要があるため、鋼管の肉厚は1.5mm以上であることが望ましく、2mm以上であることがより望ましい。一方、鋼管の外径が大きすぎる場合、曲げ加工等が困難になる。そのため、鋼管の外径は20mm以下であることが望ましく、10mm以下であることがより望ましい。
D/d≧1.5 ・・・(iii)
但し、上記(iii)式中のDは燃料噴射管用鋼管の外径(mm)、dは内径(mm)である。
本発明に係る燃料噴射管用鋼管の製造方法について特に制限はないが、例えば、継目無鋼管から製造する場合、以下の方法で予め介在物を抑制した鋼塊を準備し、その鋼塊からマンネスマン製管等の手法で素管を製造し、冷間加工により所望の寸法形状にした後、熱処理をすることによって、製造することができる。
Claims (4)
- 化学組成が、質量%で、
C:0.12~0.27%、
Si:0.05~0.40%、
Mn:0.3~2.0%、
Al:0.005~0.060%、
N:0.0020~0.0080%、
Ti:0.005~0.015%、
Nb:0.015~0.045%、
Cr:0~1.0%、
Mo:0~1.0%、
Cu:0~0.5%、
Ni:0~0.5%、
V:0~0.15%、
B:0~0.005%、
残部Feおよび不純物であり、
不純物中のCa、P、SおよびOは、
Ca:0.001%以下、
P:0.02%以下、
S:0.01%以下、
O:0.0040%以下であり、
金属組織が焼戻しマルテンサイト組織または焼戻しマルテンサイトと焼戻しベイナイトとの混合組織からなり、旧オーステナイト粒度番号が10.0以上であって、
800MPa以上の引張強度を有すると共に、限界内圧が下記(i)式を満足する、燃料噴射管用鋼管。
IP≧0.3×TS×α ・・・(i)
α=[(D/d)2-1]/[0.776×(D/d)2] ・・・(ii)
但し、上記(i)式中のIPは限界内圧(MPa)、TSは引張強度(MPa)を意味し、αは上記(ii)式で表される値である。また、上記(ii)式中のDは燃料噴射管用鋼管の外径(mm)、dは内径(mm)である。 - 前記化学組成が、質量%で、
Cr:0.2~1.0%、
Mo:0.03~1.0%、
Cu:0.03~0.5%、
Ni:0.03~0.5%、
V:0.02~0.15%、および
B:0.0003~0.005%
から選択される1種以上を含有する、請求項1に記載の燃料噴射管用鋼管。 - 前記鋼管の外径および内径が下記(iii)式を満足する、請求項1または請求項2に記載の燃料噴射管用鋼管。
D/d≧1.5 ・・・(iii)
但し、上記(iii)式中のDは燃料噴射管用鋼管の外径(mm)、dは内径(mm)である。 - 請求項1から請求項3までのいずれかに記載の燃料噴射管用鋼管を素材として用いる、燃料噴射管。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/121,058 US12000364B2 (en) | 2014-02-25 | 2015-02-23 | Steel pipe for fuel injection pipe and fuel injection pipe using the same |
KR1020167026373A KR101846766B1 (ko) | 2014-02-25 | 2015-02-23 | 연료 분사관용 강관 및 그것을 이용한 연료 분사관 |
ES15755540T ES2723498T3 (es) | 2014-02-25 | 2015-02-23 | Tubo de acero para tubería de inyección de combustible, y tubería de inyección de combustible que emplea el mismo |
BR112016019313-0A BR112016019313B1 (pt) | 2014-02-25 | 2015-02-23 | tubo de aço para tubulação de injeção de combustível e tubulação de injeção de combustível usando o mesmo |
CN201580010459.2A CN106029927B (zh) | 2014-02-25 | 2015-02-23 | 燃料喷射管用钢管和使用其的燃料喷射管 |
MX2016011092A MX2016011092A (es) | 2014-02-25 | 2015-02-23 | Tubo de acero para tuberia de inyeccion de combustible y tuberia de inyeccion de combustible utilizando el mismo. |
EP15755540.0A EP3112490B1 (en) | 2014-02-25 | 2015-02-23 | Steel pipe for fuel injection line, and fuel injection line employing same |
RU2016137919A RU2650466C2 (ru) | 2014-02-25 | 2015-02-23 | Стальная труба для топливопровода высокого давления и использующий ее топливопровод высокого давления |
JP2016505198A JP6051335B2 (ja) | 2014-02-25 | 2015-02-23 | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014034416 | 2014-02-25 | ||
JP2014-034416 | 2014-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015129617A1 true WO2015129617A1 (ja) | 2015-09-03 |
Family
ID=54008936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/055018 WO2015129617A1 (ja) | 2014-02-25 | 2015-02-23 | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 |
Country Status (10)
Country | Link |
---|---|
US (1) | US12000364B2 (ja) |
EP (1) | EP3112490B1 (ja) |
JP (1) | JP6051335B2 (ja) |
KR (1) | KR101846766B1 (ja) |
CN (1) | CN106029927B (ja) |
BR (1) | BR112016019313B1 (ja) |
ES (1) | ES2723498T3 (ja) |
MX (1) | MX2016011092A (ja) |
RU (1) | RU2650466C2 (ja) |
WO (1) | WO2015129617A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016203924A1 (ja) * | 2015-06-17 | 2016-12-22 | 臼井国際産業株式会社 | 燃料噴射管用鋼管およびその製造方法 |
EP3418410A4 (en) * | 2016-02-16 | 2019-01-09 | Nippon Steel & Sumitomo Metal Corporation | SEAMLESS STEEL TUBE AND MANUFACTURING METHOD THEREFOR |
JP2019059980A (ja) * | 2017-09-26 | 2019-04-18 | 新日鐵住金株式会社 | トーションビーム用鋼管、トーションビーム用鋼管の製造方法 |
US10746147B2 (en) | 2016-05-11 | 2020-08-18 | Peter Fuchs Technology Group Ag | High-pressure line |
WO2020166638A1 (ja) | 2019-02-13 | 2020-08-20 | 日本製鉄株式会社 | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 |
WO2020166637A1 (ja) | 2019-02-13 | 2020-08-20 | 日本製鉄株式会社 | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 |
WO2021206034A1 (ja) | 2020-04-07 | 2021-10-14 | 日本製鉄株式会社 | 圧力配管用鋼管 |
JPWO2020196019A1 (ja) * | 2019-03-22 | 2021-12-09 | 日本製鉄株式会社 | サワー環境での使用に適した継目無鋼管 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6656266B2 (ja) * | 2015-12-24 | 2020-03-04 | 日立オートモティブシステムズ株式会社 | 電磁弁及びその製造方法 |
KR101917454B1 (ko) * | 2016-12-22 | 2018-11-09 | 주식회사 포스코 | 고강도 고인성 후강판 및 이의 제조방법 |
DE102019216523A1 (de) * | 2019-10-28 | 2021-04-29 | Robert Bosch Gmbh | Komponente, insbesondere Brennstoffleitung oder Brennstoffverteiler, und Brennstoffeinspritzanlage |
WO2022092316A1 (ja) * | 2020-11-02 | 2022-05-05 | 臼井国際産業株式会社 | 高圧水素配管用鋼管およびそれを用いた高圧水素配管 |
KR102437909B1 (ko) * | 2020-11-06 | 2022-08-30 | 주식회사 삼원강재 | 냉간 압조용 강재 및 그 제조 방법 |
DE102020133779A1 (de) * | 2020-12-16 | 2022-06-23 | Sandvik Materials Technology Deutschland Gmbh | Hochdruckrohr und Verfahren zu dessen Herstellung |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007119734A1 (ja) * | 2006-04-13 | 2007-10-25 | Usui Kokusai Sangyo Kaisha, Ltd. | 燃料噴射管用鋼管 |
WO2009008281A1 (ja) * | 2007-07-10 | 2009-01-15 | Usui Kokusai Sangyo Kaisha, Ltd. | 燃料噴射管用鋼管およびその製造方法 |
WO2010150915A1 (ja) * | 2009-06-24 | 2010-12-29 | Jfeスチール株式会社 | 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法 |
WO2013094179A1 (ja) * | 2011-12-22 | 2013-06-27 | Jfeスチール株式会社 | 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0957329A (ja) | 1995-08-28 | 1997-03-04 | Nkk Corp | ディーゼルエンジン燃料噴射管用鋼管の製造方法 |
JP2006000897A (ja) * | 2004-06-17 | 2006-01-05 | Usui Kokusai Sangyo Kaisha Ltd | 高圧燃料噴射管 |
JP5483859B2 (ja) * | 2008-10-31 | 2014-05-07 | 臼井国際産業株式会社 | 焼入性に優れた高強度鋼製加工品及びその製造方法、並びに高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管及びコモンレールの製造方法 |
RU2420600C1 (ru) * | 2009-09-24 | 2011-06-10 | Открытое акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" | Особотонкостенная труба из аустенитной боросодержащей стали для оболочки твэла и способ ее получения |
IT1403689B1 (it) * | 2011-02-07 | 2013-10-31 | Dalmine Spa | Tubi in acciaio ad alta resistenza con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensioni da solfuri. |
US11203793B2 (en) * | 2015-06-17 | 2021-12-21 | Usui Co., Ltd. | Steel pipe for fuel injection pipe and method for producing the same |
-
2015
- 2015-02-23 JP JP2016505198A patent/JP6051335B2/ja active Active
- 2015-02-23 KR KR1020167026373A patent/KR101846766B1/ko active IP Right Grant
- 2015-02-23 BR BR112016019313-0A patent/BR112016019313B1/pt active IP Right Grant
- 2015-02-23 CN CN201580010459.2A patent/CN106029927B/zh active Active
- 2015-02-23 WO PCT/JP2015/055018 patent/WO2015129617A1/ja active Application Filing
- 2015-02-23 ES ES15755540T patent/ES2723498T3/es active Active
- 2015-02-23 RU RU2016137919A patent/RU2650466C2/ru active
- 2015-02-23 MX MX2016011092A patent/MX2016011092A/es unknown
- 2015-02-23 EP EP15755540.0A patent/EP3112490B1/en active Active
- 2015-02-23 US US15/121,058 patent/US12000364B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007119734A1 (ja) * | 2006-04-13 | 2007-10-25 | Usui Kokusai Sangyo Kaisha, Ltd. | 燃料噴射管用鋼管 |
WO2009008281A1 (ja) * | 2007-07-10 | 2009-01-15 | Usui Kokusai Sangyo Kaisha, Ltd. | 燃料噴射管用鋼管およびその製造方法 |
WO2010150915A1 (ja) * | 2009-06-24 | 2010-12-29 | Jfeスチール株式会社 | 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法 |
WO2013094179A1 (ja) * | 2011-12-22 | 2013-06-27 | Jfeスチール株式会社 | 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016203924A1 (ja) * | 2015-06-17 | 2016-12-22 | 臼井国際産業株式会社 | 燃料噴射管用鋼管およびその製造方法 |
JPWO2016203924A1 (ja) * | 2015-06-17 | 2018-05-31 | 臼井国際産業株式会社 | 燃料噴射管用鋼管およびその製造方法 |
US11203793B2 (en) | 2015-06-17 | 2021-12-21 | Usui Co., Ltd. | Steel pipe for fuel injection pipe and method for producing the same |
EP3418410A4 (en) * | 2016-02-16 | 2019-01-09 | Nippon Steel & Sumitomo Metal Corporation | SEAMLESS STEEL TUBE AND MANUFACTURING METHOD THEREFOR |
US10746147B2 (en) | 2016-05-11 | 2020-08-18 | Peter Fuchs Technology Group Ag | High-pressure line |
JP2019059980A (ja) * | 2017-09-26 | 2019-04-18 | 新日鐵住金株式会社 | トーションビーム用鋼管、トーションビーム用鋼管の製造方法 |
WO2020166638A1 (ja) | 2019-02-13 | 2020-08-20 | 日本製鉄株式会社 | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 |
WO2020166637A1 (ja) | 2019-02-13 | 2020-08-20 | 日本製鉄株式会社 | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 |
CN113423516A (zh) * | 2019-02-13 | 2021-09-21 | 日本制铁株式会社 | 燃料喷射管用钢管及使用其的燃料喷射管 |
JPWO2020166637A1 (ja) * | 2019-02-13 | 2021-12-09 | 日本製鉄株式会社 | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 |
JPWO2020166638A1 (ja) * | 2019-02-13 | 2021-12-09 | 日本製鉄株式会社 | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 |
JP7149352B2 (ja) | 2019-02-13 | 2022-10-06 | 日本製鉄株式会社 | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 |
JP7189238B2 (ja) | 2019-02-13 | 2022-12-13 | 日本製鉄株式会社 | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 |
JPWO2020196019A1 (ja) * | 2019-03-22 | 2021-12-09 | 日本製鉄株式会社 | サワー環境での使用に適した継目無鋼管 |
JP7428918B2 (ja) | 2019-03-22 | 2024-02-07 | 日本製鉄株式会社 | サワー環境での使用に適した継目無鋼管 |
WO2021206034A1 (ja) | 2020-04-07 | 2021-10-14 | 日本製鉄株式会社 | 圧力配管用鋼管 |
KR20220157504A (ko) | 2020-04-07 | 2022-11-29 | 닛폰세이테츠 가부시키가이샤 | 압력 배관용 강관 |
Also Published As
Publication number | Publication date |
---|---|
US20160369759A1 (en) | 2016-12-22 |
CN106029927B (zh) | 2017-10-17 |
EP3112490A4 (en) | 2017-09-06 |
RU2016137919A (ru) | 2018-03-29 |
ES2723498T3 (es) | 2019-08-28 |
RU2016137919A3 (ja) | 2018-03-29 |
EP3112490B1 (en) | 2019-01-02 |
EP3112490A1 (en) | 2017-01-04 |
MX2016011092A (es) | 2017-04-06 |
JP6051335B2 (ja) | 2016-12-27 |
CN106029927A (zh) | 2016-10-12 |
US12000364B2 (en) | 2024-06-04 |
BR112016019313B1 (pt) | 2021-05-04 |
KR20160125489A (ko) | 2016-10-31 |
JPWO2015129617A1 (ja) | 2017-03-30 |
RU2650466C2 (ru) | 2018-04-13 |
KR101846766B1 (ko) | 2018-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6051335B2 (ja) | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 | |
US11203793B2 (en) | Steel pipe for fuel injection pipe and method for producing the same | |
JP5387799B1 (ja) | 耐硫化物応力割れ性に優れた高強度鋼材の製造方法 | |
JP6172391B2 (ja) | 低合金油井用鋼管 | |
CN108699644B (zh) | 无缝钢管及其制造方法 | |
JP5065781B2 (ja) | 燃料噴射管用鋼管およびその製造方法 | |
JP2017078212A (ja) | 低降伏比鋼板およびその製造方法 | |
JP7149352B2 (ja) | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 | |
JP2019210530A (ja) | 燃料噴射部品の製造方法 | |
JP7189238B2 (ja) | 燃料噴射管用鋼管およびそれを用いた燃料噴射管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15755540 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016505198 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15121058 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/011092 Country of ref document: MX |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016019313 Country of ref document: BR |
|
REEP | Request for entry into the european phase |
Ref document number: 2015755540 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201606302 Country of ref document: ID Ref document number: 2015755540 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167026373 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016137919 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016019313 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160823 |