WO2010143337A1 - 有機el表示装置およびその製造方法 - Google Patents

有機el表示装置およびその製造方法 Download PDF

Info

Publication number
WO2010143337A1
WO2010143337A1 PCT/JP2010/001465 JP2010001465W WO2010143337A1 WO 2010143337 A1 WO2010143337 A1 WO 2010143337A1 JP 2010001465 W JP2010001465 W JP 2010001465W WO 2010143337 A1 WO2010143337 A1 WO 2010143337A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
organic
substrate
resin
display device
Prior art date
Application number
PCT/JP2010/001465
Other languages
English (en)
French (fr)
Inventor
二星学
平瀬剛
小林勇毅
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to RU2011147916/07A priority Critical patent/RU2011147916A/ru
Priority to US13/322,783 priority patent/US8710492B2/en
Priority to EP10785869.8A priority patent/EP2442621A4/en
Priority to BRPI1010627A priority patent/BRPI1010627A2/pt
Priority to CN2010800229716A priority patent/CN102450098A/zh
Priority to JP2011518214A priority patent/JPWO2010143337A1/ja
Publication of WO2010143337A1 publication Critical patent/WO2010143337A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8723Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8428Vertical spacers, e.g. arranged between the sealing arrangement and the OLED

Definitions

  • the present invention relates to an organic EL display device including an organic electroluminescence element (organic electroluminescence element: hereinafter referred to as “organic EL element”) and a method for manufacturing the same.
  • organic electroluminescence element organic electroluminescence element: hereinafter referred to as “organic EL element”
  • organic EL display devices have attracted attention as next-generation flat panel display devices.
  • This organic EL display device is a self-luminous display device, has excellent viewing angle characteristics, high visibility, low power consumption, and can be reduced in thickness, so that demand is increasing.
  • the organic EL display device includes a plurality of organic EL elements arranged in a predetermined arrangement, and each of the plurality of organic EL elements includes a first electrode (anode) formed on an insulating substrate, a first electrode An organic layer having a light emitting layer formed on one electrode and a second electrode (cathode) formed on the organic layer are provided.
  • the organic layer is sensitive to moisture, it is necessary to block moisture from the outside air. Therefore, conventionally, the organic layer is sealed from moisture by sealing the organic layer between the first substrate on which the organic layer is formed and the second substrate provided to face the first substrate.
  • a method has been proposed. More specifically, an organic EL display device including a resinous adhesive that bonds a first substrate and a second substrate so as to seal an organic layer has been proposed.
  • the adhesive is formed of a resin, it transmits moisture in the outside air, and as a result, it is difficult to completely block the moisture.
  • the resin adhesive also transmits oxygen in the outside air, the second electrode formed on the organic layer is oxidized, and the performance of the second electrode is degraded. there were.
  • an organic EL display device using a sealing material made of frit glass (low melting point glass) instead of a resin adhesive has been proposed.
  • a sealing material made of frit glass (low melting point glass) instead of a resin adhesive.
  • the sealing material is formed so as to go around the organic layer, and a space is formed inside the sealing material (that is, between the organic layer formed on the first substrate and the second substrate). become. Accordingly, in particular, in a large organic EL display device using glass substrates as the first and second substrates, the weight of the glass substrate is large, so that the glass substrate bends in the space and the first and second substrates. There is a problem that the mechanical strength of the organic EL display device is lowered.
  • a technique for improving the mechanical strength of an organic EL display device using a sealing material made of frit glass is disclosed. More specifically, there is disclosed a structure in which a resin member made of urethane acrylic resin is provided in a space formed between an organic layer formed on a first substrate and a second substrate. This resin member is formed into a film by filling urethane acrylic resin inside a sealing material made of frit glass formed so as to circulate around the organic layer, and then photocuring or thermosetting the urethane acrylic resin. (For example, see Patent Document 1).
  • the resin material is photocured or thermally cured to form the resin member in a film shape. Therefore, the following inconvenience occurs. That is, since the thickness of the film-like resin member becomes large (30 ⁇ m or more), the large organic EL display device has a problem that the volume of the resin member becomes large, resulting in an increase in cost. Moreover, in order to ensure sealing performance, the thickness of the sealing material made of frit glass needs to be set to be equal to or greater than the thickness of the resin member. However, as the thickness of the resin member increases, the thickness of the sealing material necessarily increases. There is a need to.
  • An object of the present invention is to provide an organic EL display device and a manufacturing method thereof.
  • an organic EL display device is formed on a first substrate, a second substrate provided to face the first substrate, the first substrate, and the first substrate.
  • An organic EL element provided between the first substrate and the second substrate, and a frit glass.
  • the first substrate is provided between the first substrate and the second substrate so as to seal the organic EL element.
  • a second sealing material provided between the substrate and the second substrate is provided.
  • the second sealing material formed of resin is provided between the first substrate and the second substrate. Therefore, since the second sealing material formed of a flexible resin functions as a pressure partition for maintaining the vacuum state inside the bonded substrate board by the first substrate and the second substrate, the resin member is dropped and injected. It can be formed by the method. As a result, a resin member having a small thickness can be formed, and the resin member can be thinned. Therefore, even in a large organic EL display device, the amount of resin material used to form the resin member is reduced. be able to. As a result, an increase in cost can be suppressed.
  • the thickness of the resin member is reduced, the thickness of the first sealing material made of frit glass can be reduced. As a result, for example, it is possible to reduce heating energy when performing welding with the first sealing material made of frit glass using a laser, and as a result, it is possible to suppress an increase in cost. .
  • the thickness of the resin member can be prevented from becoming larger than the thickness of the first sealing material, for example, when the first sealing material is formed on the second substrate side, the first sealing material and the first substrate It is possible to prevent a gap from being generated. Accordingly, since the moisture and oxygen in the outside air can be reliably blocked by the first sealing material, it is possible to reliably prevent the sealing performance from being deteriorated by the first sealing material.
  • the resin member is formed by the dropping injection method, the positional accuracy when forming the resin member can be improved. Therefore, the manufacturing process of the resin member can be simplified, the productivity of the organic EL display device can be improved, and the yield can be improved.
  • a spacer for regulating the thickness of the resin member may be mixed in the second sealing material.
  • the spacer for regulating the thickness of the resin member is mixed in the second sealing material, the thickness of the resin member is accurate even when the resin member is formed by the dropping injection method. It becomes possible to regulate well.
  • the organic EL display device of the present invention may be configured such that the relationship of H 1 ⁇ D 1 is established when the height of the first sealing material is H 1 and the diameter of the spacer is D 1 .
  • the first sealing material and the second sealing material are bonded to each other when the first substrate and the second substrate are bonded together via the first sealing material. It is possible to reliably prevent the gap between the first sealing material and the second substrate from being brought into contact with the substrate.
  • the second sealing material may be disposed inside the first sealing material in the surface direction of the organic EL display device.
  • the resin member is isolated from the first sealing material by the second sealing material. be able to. Therefore, heat propagation to the organic EL element when the first sealing material is heated to weld the first substrate and the second substrate can be suppressed. Further, it is possible to prevent the resin member from being deteriorated due to heat generated when the first sealing material is welded.
  • the second sealing material may be disposed outside the first sealing material in the surface direction of the organic EL display device.
  • the second sealing material is disposed outside the first sealing material in the surface direction of the organic EL display device, when the second sealing material is formed after the first sealing material is formed. In addition, the formation of the second seal material is facilitated.
  • the first sealing material and the second sealing material may be arranged apart from each other in the surface direction of the organic EL display device.
  • the first sealing material and the second sealing material are spaced apart from each other in the surface direction of the organic EL display device, the first sealing material made of frit glass is heated to form the first substrate. It is possible to prevent the heat at the time of welding the second substrate from propagating to the second sealing material. Therefore, it is possible to prevent the second sealing material made of resin from being deteriorated by heat.
  • the resin may be an acrylic resin or an epoxy resin.
  • the second sealing material can be formed from an inexpensive and versatile resin material.
  • a light shielding member having visible light transparency and ultraviolet light shielding properties may be provided on the surface of the organic EL element.
  • the organic EL display device since the light shielding member has visible light transmissivity, the organic EL display device includes a bottom emission type in which light is extracted from the first substrate side, a top emission type in which light is extracted from the second substrate side, and the first substrate side and the first substrate side. It becomes possible to apply to any light emission type of the double-sided light emission type which takes out light from the 2 board
  • the organic EL display device of the present invention can form a resin member having a small thickness, the amount of resin material used to form the resin member can be reduced even in a large organic EL display device. It has excellent characteristics that can suppress cost increase. Therefore, the present invention can be suitably used for an organic EL display device in which the thickness of the resin member is 3 ⁇ m or more and 20 ⁇ m or less.
  • an organic EL element forming step for forming an organic EL element on a first substrate, and a first sealing material made of frit glass on a second substrate are formed in a frame shape.
  • the first substrate via the first sealing material and the second sealing material in a vacuum atmosphere, and a dropping injection step of dropping and injecting a resin material for forming the resin member inside the second sealing material Affixing the second substrate and a bonding body forming step of uniformly diffusing the resin material inside the second sealing material, curing the resin material to form a resin member, and forming a second sealing material Resin curing process to cure resin ,
  • a resin material for forming the resin member inside the second sealing material Affixing the second substrate and a bonding body forming step of uniformly diffusing the resin material inside the second sealing material, curing the resin material to form a resin member, and forming a second sealing material Resin curing process to cure resin ,
  • the second sealing material formed of resin is provided between the first substrate and the second substrate. Therefore, in the bonded body forming step, the second sealing material formed of a flexible resin functions as a pressure partition for maintaining the vacuum state inside the bonded substrate board by the first substrate and the second substrate. In addition, it is possible to maintain the vacuum state inside the bonded substrate in which the dropped and injected resin material forming the resin member exists. Therefore, even when a resin material that is a high-viscosity material is dropped and injected, when the first substrate and the second substrate are bonded together in a vacuum atmosphere, the injected resin material is diffused by pressurization. Is possible. As a result, a resin member having a small thickness can be formed, and the resin member can be thinned. Therefore, even in a large organic EL display device, the amount of resin material used to form the resin member is reduced. be able to. As a result, an increase in cost can be suppressed.
  • the thickness of the first sealing material made of frit glass can be reduced. As a result, for example, it is possible to reduce heating energy when performing welding with the first sealing material made of frit glass using a laser, and as a result, it is possible to suppress an increase in cost. .
  • the thickness of the resin member can be prevented from becoming larger than the thickness of the first sealing material, it is possible to prevent a gap from being generated between the first sealing material and the element substrate. Accordingly, since the moisture and oxygen in the outside air can be reliably blocked by the first sealing material, it is possible to reliably prevent the sealing performance from being deteriorated by the first sealing material.
  • the resin member is formed by the dropping injection method, the positional accuracy when forming the resin member can be improved. Therefore, the manufacturing process of the resin member can be simplified, the productivity of the organic EL display device can be improved, and the yield can be improved.
  • the method for manufacturing the organic EL display device of the present invention only a part of the first sealing material in the width direction may be heated in the welding step.
  • the heat capacity of the first sealing material is increased, and an increase in temperature inside the first sealing material can be avoided. Therefore, for example, when the laser is used to weld the first sealing material made of frit glass, the temperature increase of the first sealing material accompanying the laser light irradiation is physically propagated to the organic EL element. Can be effectively suppressed. As a result, it is possible to reduce damage to the organic EL element due to heat propagation.
  • an increase in cost can be suppressed, and a decrease in sealing performance due to the first sealing material can be reliably prevented.
  • the productivity of the organic EL display device can be improved and the yield can be improved.
  • FIG. 1 is a plan view of an organic EL display device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is sectional drawing for demonstrating the organic layer which comprises the organic EL element with which the organic EL display apparatus which concerns on the 1st Embodiment of this invention is provided. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention.
  • FIG. 1 is a plan view of an organic EL display device according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is sectional drawing for demonstrating the organic layer which comprises the organic EL element with which the organic EL display apparatus which concerns on the 1st Embodiment of this invention is provided.
  • the organic EL display device 1 is formed on an element substrate 30 that is a first substrate, a sealing substrate 20 that is a second substrate facing the element substrate 30, and the element substrate 30.
  • an organic EL element 4 provided between the element substrate 30 and the sealing substrate 20 is provided.
  • the organic EL display device 1 includes a first sealing material 5 that bonds (or welds) the element substrate 30 and the sealing substrate 20 so as to seal the organic EL element 4.
  • the first sealing material 5 is formed in a frame shape so as to go around the organic EL element 4, and the element substrate 30 and the sealing substrate 20 are bonded to each other via the first sealing material 5. .
  • the element substrate 30 and the sealing substrate 20 are formed of an insulating material such as glass or plastic, for example.
  • the organic EL element 4 includes a first electrode 6 (anode) provided on the surface of the element substrate 30, an organic layer 7 provided on the surface of the first electrode 6, And a second electrode 8 (cathode) provided on the surface of the organic layer 7.
  • a plurality of first electrodes 6 are formed in a matrix at predetermined intervals on the surface of the element substrate 30, and each of the plurality of first electrodes 6 constitutes each pixel region of the organic EL display device 1. .
  • the first electrode 6 is formed of, for example, Au, Ni, Pt, ITO (indium-tin oxide), or a laminated film of ITO and Ag.
  • the organic layer 7 is formed on the surface of each first electrode 6 partitioned in a matrix. As shown in FIG. 3, the organic layer 7 is formed on the hole injection layer 9, the hole transport layer 10 formed on the surface of the hole injection layer 9, and the surface of the hole transport layer 10. , A light emitting layer 11 that emits one of red light, green light, and blue light, an electron transport layer 12 formed on the surface of the light emitting layer 11, and an electron injection layer formed on the surface of the electron transport layer 12 13. And the organic layer 7 is comprised by laminating
  • the hole injection layer 9 is for increasing the efficiency of hole injection into the light emitting layer 11.
  • Examples of the material for forming the hole injection layer 9 include benzine, styrylamine, triphenylamine, porphyrin, triazole, imidazole, oxadiazole, polyarylalkane, phenylenediamine, arylamine, oxazole, anthracene, fluorenone, Examples include hydrazone, stilbene, triphenylene, azatriphenylene, or derivatives thereof, or heterocyclic conjugated monomers, oligomers, or polymers such as polysilane compounds, vinylcarbazole compounds, thiophene compounds, or aniline compounds. .
  • the hole transport layer 10 is for increasing the efficiency of hole injection into the light emitting layer 11, as with the hole injection layer 9 described above.
  • the thing similar to the hole injection layer 9 can be used.
  • the light emitting layer 11 is a region in which holes and electrons are injected from each of the two electrodes when a voltage is applied by the first electrode 6 and the second electrode 8, and the holes and electrons are recombined.
  • the light emitting layer 11 is formed of a material having high luminous efficiency, and is formed of, for example, an organic material such as a low molecular fluorescent dye, a fluorescent polymer, or a metal complex.
  • tris (8-quinolinolato) aluminum complex, bis (benzoquinolinolato) beryllium complex, tri (dibenzoylmethyl) phenanthroline europium complex ditoluyl vinyl biphenyl are mentioned.
  • the electron transport layer 12 is for transporting electrons injected from the second electrode 8 to the light emitting layer 11.
  • Examples of the material forming the electron transport layer 12 include quinoline, perylene, phenanthroline, bisstyryl, pyrazine, triazole, oxazole, oxadiazole, fluorenone, and derivatives or metal complexes thereof. More specifically, tris (8-hydroxyquinoline) aluminum, anthracene, naphthalene, phenanthrene, pyrene, anthracene, perylene, butadiene, coumarin, acridine, stilbene, 1,10-phenanthroline, or a derivative or metal complex thereof may be mentioned. .
  • the electron injection layer 13 is for transporting electrons injected from the second electrode 8 to the light emitting layer 11, similarly to the electron transport layer 12 described above, and the material for forming the electron injection layer 13 is described above.
  • the same material as the electron transport layer 12 can be used.
  • the second electrode 8 has a function of injecting electrons into the organic layer 7.
  • the second electrode 8 is made of, for example, a magnesium alloy (such as MgAg), an aluminum alloy (such as AlLi, AlCa, or AlMg), metallic calcium, or a metal having a small work function.
  • the first sealing material 5 is made of frit glass (low melting point glass) and has a function of blocking moisture and oxygen in the outside air.
  • frit glass include SiO 2 (silicon oxide), B 2 O 3 (boron oxide), Al 2 O 3 (aluminum oxide), V 2 O 5 (vanadium oxide), and CuO (copper oxide).
  • An oxide mixed glass obtained by pulverization can be used.
  • the organic EL display device 1 includes a resin member 14 formed of a resin.
  • This resin member 14 is for improving the mechanical strength of the organic EL display device 1 using the first sealing material 5 formed of frit glass.
  • resin which forms the resin member 14 it is set as the structure which uses ultraviolet curable resins and thermosetting resins, such as an acrylic resin and an epoxy resin, for example.
  • the protective film 15 for protecting the organic EL element 4 by preventing the contact between the organic EL element 4 and the resin member 14 is provided on the organic EL element 4.
  • the material for forming the protective film 15 include inorganic materials such as SiO 2 and SiON.
  • the second sealing material 16 made of resin is provided between the element substrate 30 and the sealing substrate 20. There is a feature.
  • the second sealing material 16 is formed in a frame shape so as to go around the organic EL element 4 in the same manner as the first sealing material 5 formed of the above-mentioned frit glass.
  • the second sealing material 16 is a surface direction X of the organic EL display device 1 (that is, a direction orthogonal to the thickness direction Y of the organic EL display device 1). In the direction of arrow X shown in FIGS. 1 and 2, it is arranged inside the first sealing material 5. More specifically, the second sealing material 16 is disposed between the organic EL element 4 (or the resin member 14) and the first sealing material 5 in the surface direction X of the organic EL display device 1 (that is, the surface direction X).
  • the first sealing material 5 is provided on the organic EL element 4 (or the resin member 14 side).
  • the resin material forming the second sealing material 16 is not particularly limited, and an inexpensive and versatile resin material can be used.
  • an epoxy resin or an acrylic resin can be used.
  • the use of an acrylic resin is preferable because the second sealing material 16 can be formed at a lower cost.
  • the second sealing material 16 is mixed with a spacer 17 (see FIG. 2) for regulating the thickness of the resin member 14.
  • the spacer 17 is made of, for example, SiO 2 (silicon oxide).
  • the resin member 14 can be formed by the dropping injection method adopted as the liquid crystal material injection method.
  • a vacuum injection method and a drop injection method as a method for injecting a liquid crystal material sealed between a pair of substrates.
  • a sealing material is formed in a frame shape around the TFT substrate, and in a vacuum atmosphere, the liquid crystal material is dropped on the TFT substrate in the frame of the sealing material, and the liquid crystal material The TFT substrate and the CF substrate onto which the liquid crystal is dropped are bonded together.
  • the substrate is returned to the atmosphere, and the liquid crystal material between the bonded TFT substrate and the CF substrate is diffused by atmospheric pressure.
  • the liquid crystal display panel is manufactured by irradiating the sealing material with ultraviolet light and curing the sealing material.
  • This dripping injection method can reduce the thickness of the liquid crystal layer, greatly reduce the amount of liquid crystal material used, and shorten the injection time of the liquid crystal material, compared with the conventionally widely used vacuum injection method.
  • the manufacturing cost of the liquid crystal display panel can be reduced and the mass productivity can be improved.
  • a liquid crystal material that is a low-viscosity material is dropped and injected, but in the dropping injection method of the resin material forming the resin member 14 in the present embodiment, compared to the liquid crystal material, Since the resin material that is a high-viscosity material is dropped and injected, there is a problem that when the element substrate 30 and the sealing substrate 20 are bonded together in a vacuum atmosphere, the injected resin material does not diffuse unless pressure is applied.
  • the inside of the bonded substrate where the resin material sealed by the first sealing material 5 exists is present. It is necessary to maintain a vacuum state.
  • the first sealing material 5 is formed by applying a paste material in which frit glass is added to an organic solvent and then heating and firing, when the element substrate 30 and the sealing substrate 20 are bonded together, The organic solvent has been completely removed. Therefore, the first sealing material 5 is not flexible, and the first sealing material 5 cannot be used as a pressure partition for maintaining the vacuum state inside the bonded substrate.
  • the second sealing material 16 formed of resin is provided between the element substrate 30 and the sealing substrate 20.
  • the second sealing material 16 formed of a flexible resin functions as a pressure partition for maintaining the vacuum state inside the bonded substrate described above, and thus the resin member 14 is formed. It becomes possible to maintain the vacuum state inside the bonded substrate where the dropped and injected resin material exists. Therefore, even when a resin material that is a high-viscosity material is dropped and injected as compared with a liquid crystal material, the element substrate 30 and the sealing substrate 20 are dropped and injected by pressurization in a vacuum atmosphere. It is possible to diffuse the resin material.
  • the resin member 14 formed of the resin can be formed by a dropping injection method.
  • the resin member 14 having a small thickness T (see FIG. 2) (for example, 3 ⁇ m or more and 20 ⁇ m or less) can be formed, and the resin member 14 can be thinned. Therefore, even in a large organic EL display device (for example, an organic EL display device having a width of 265 mm or more, a length of 200 mm or more, and a thickness of 0.3 mm to 0.7 mm), the resin material for forming the resin member 14 The amount of use can be reduced. As a result, an increase in cost can be suppressed.
  • a large organic EL display device for example, an organic EL display device having a width of 265 mm or more, a length of 200 mm or more, and a thickness of 0.3 mm to 0.7 mm
  • the thickness T of the resin member 14 is preferably 5 ⁇ m or more and 15 ⁇ m or less, and more preferably 6 ⁇ m or more and 8 ⁇ m or less.
  • the thickness of the first sealing material 5 made of frit glass can be reduced.
  • the thickness T of the resin member 14 is 3 ⁇ m or more and 20 ⁇ m or less
  • the thickness of the first sealing material 5 can be set to 3 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the resin member 14 can be prevented from becoming larger than the thickness of the first sealing material 5, it is possible to prevent a gap from being generated between the first sealing material 5 and the element substrate 30. Accordingly, since the moisture and oxygen in the outside air can be surely blocked by the first sealing material 5, it is possible to reliably prevent the sealing performance of the first sealing material 5 from being deteriorated.
  • the resin member 14 is formed by the dropping injection method, the positional accuracy when forming the resin member 14 can be improved. Therefore, the manufacturing process of the resin member 14 can be simplified, the productivity of the organic EL display device 1 can be improved, and the yield can be improved.
  • 4 to 15 are views for explaining a method of manufacturing the organic EL display device according to the first embodiment of the present invention.
  • an ITO film is patterned by a sputtering method on an element substrate 30 such as a glass substrate having a substrate size of 300 ⁇ 400 mm and a thickness of 0.7 mm, and the first electrode 6 is formed.
  • the film thickness of the first electrode 6 is, for example, about 150 nm.
  • the organic layer 7 including the light emitting layer 11 and the second electrode 8 are formed on the first electrode 6 by vapor deposition using a metal mask.
  • the element substrate 30 provided with the first electrode 6 is placed in the chamber of the vapor deposition apparatus.
  • the inside of the chamber of the vapor deposition apparatus is maintained at a vacuum degree of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 4 (Pa) by a vacuum pump.
  • the element substrate 30 provided with the first electrode 6 is installed in a state where two sides are fixed by a pair of substrate receivers attached in the chamber.
  • the vapor deposition materials of the hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13 are sequentially evaporated from the vapor deposition source, so that the hole injection layer 9, the hole
  • the organic layer 7 is formed in the pixel region as shown in FIG.
  • Element 4 is formed.
  • a crucible charged with each evaporation material can be used as the evaporation source.
  • the crucible is installed in the lower part of the chamber, and the crucible is equipped with a heater, and the crucible is heated by the heater. And when the internal temperature of a crucible reaches the evaporation temperature of various vapor deposition materials by the heating by a heater, the various vapor deposition materials prepared in the crucible become evaporation molecules and jump out upward in the chamber.
  • m-MTDATA common to all RGB pixels
  • a hole injection layer 9 made of 4,4,4-tris (3-methylphenylphenylamino) triphenylamine) is formed with a film thickness of, for example, 25 nm through a mask.
  • a hole transport layer 10 made of ⁇ -NPD (4,4-bis (N-1-naphthyl-N-phenylamino) biphenyl) is provided on the hole injection layer 9 in common to all the RGB pixels.
  • the film is formed with a film thickness of 30 nm through the mask.
  • red light emitting layer 11 30 weight of 2,6-bis ((4'-methoxydiphenylamino) styryl) -1,5-dicyanonaphthalene (BSN) is added to di (2-naphthyl) anthracene (ADN).
  • BSN 2,6-bis ((4'-methoxydiphenylamino) styryl) -1,5-dicyanonaphthalene
  • ADN di (2-naphthyl) anthracene
  • % Mixed material is formed with a film thickness of, for example, 30 nm on the hole transport layer 10 formed in the pixel region through a mask.
  • green light-emitting layer 11 a mixture of 5% by weight of coumarin 6 in ADN is formed on the hole transport layer 10 formed in the pixel region through a mask with a film thickness of, for example, 30 nm. .
  • the blue light-emitting layer 11 is obtained by mixing 2.5% by weight of AND with 4,4′-bis (2- ⁇ 4- (N, N-diphenylamino) phenyl ⁇ vinyl) biphenyl (DPAVBi).
  • DPAVBi 4,4′-bis (2- ⁇ 4- (N, N-diphenylamino) phenyl ⁇ vinyl) biphenyl
  • a film having a thickness of 30 nm is formed on the hole transport layer 10 formed in the pixel region through the mask.
  • 8-hydroxyquinoline aluminum (Alq3) is formed as an electron transport layer 12 with a film thickness of, for example, 20 nm through a mask, common to all RGB pixels.
  • lithium fluoride (LiF) is formed as an electron injection layer 13 on the electron transport layer 12 with a film thickness of, for example, 0.3 nm through a mask.
  • a cathode made of magnesium silver (MgAg) is formed as the second electrode 8 with a film thickness of 10 nm, for example.
  • a protective film 15 for protecting the organic EL element 4 is formed on the surface of the formed organic EL element 4.
  • the protective film 15 can be formed, for example, by laminating an inorganic material such as SiO 2 or SiON on the surface of the organic EL element 4 by vapor deposition, sputtering, chemical vapor deposition, or the like.
  • a paste material in which frit glass is added to the organic solvent described above on a sealing substrate 20 such as a glass substrate having a substrate size of 95 ⁇ 95 mm and a thickness of 0.7 mm. Is applied by a dispenser, a screen printing method or the like, and then heated and temporarily fired to form the first sealing material 5 made of frit glass in a frame shape.
  • the heating temperature at the time of temporary baking has more preferable 250 to 400 degreeC. This is because if the organic solvent in the paste material is not completely removed in the pre-baking, it becomes a cause of outgassing in the main baking and hinders welding by the first sealing material 5 made of glass frit described later.
  • ⁇ Second sealing material forming step> Next, as shown in FIGS. 9 and 11, for example, using a dispenser, an ultraviolet curable resin such as an acrylic resin or an epoxy resin or a thermosetting resin is applied to the sealing substrate 20 on which the first sealing material 5 is formed.
  • the second sealing material 16 constituted by the above is drawn and formed in a frame shape.
  • the second sealing material 16 is drawn in a frame shape inside the first sealing material 5.
  • the second sealing material 16 is formed with a high viscosity (100 to 1000 Pa ⁇ s).
  • the second sealing material is used from the viewpoint of maintaining confidentiality (vacuum) for performing vacuum pressurization when the element substrate 30 and the sealing substrate 20 are vacuum-bonded.
  • the second sealing material 16 is formed so that the height of 16 is higher than the height of the first sealing material 5. That is, when the height of the first sealing material 5 is H 1 and the height of the second sealing material 16 is H 2 , the second sealing material 16 is formed so that the relationship of H 1 ⁇ H 2 is established. To do.
  • the second sealing material 16 is mixed with the spacer 17 for regulating the thickness of the resin member 14, but the spacer 17 having a diameter equal to or smaller than the height of the first sealing material 5 is added.
  • the diameter of the spacer 17 (major axis of the spacer 17 in the thickness direction Y of the organic EL display device 1) in the case of the D 1, so that the relationship of H 1 ⁇ D 1 is satisfied, the spacer 17 Set the diameter.
  • the element substrate 30 is sealed through the first sealing material 5.
  • the first sealing material 5 cannot come into contact with the element substrate 30, so that a gap is generated between the first sealing material 5 and the element substrate 30, and the first sealing material This is to avoid such inconvenience because it becomes difficult to block moisture and oxygen in the outside air due to 5.
  • a resin material 14 a for forming the resin member 14 is dropped and injected into the inside of the second sealing material 16 formed on the sealing substrate 20.
  • an ultraviolet curable resin such as an acrylic resin or an epoxy resin is used as the resin material 14a.
  • the dropping of the resin material 14a is performed, for example, by dropping the resin material 14a while a dropping device having a function of dropping the resin material 14a moves over the entire substrate surface.
  • the sealing substrate 20 on which the first sealing material 5 and the second sealing material 16 are formed and the element substrate 30 on which the organic EL element 4 is formed are combined with the organic EL element 4 and the resin material 14a.
  • the sealing substrate 20 is overlaid on the element substrate 30 so as to overlap, and the surface 16a of the second sealing material 16 formed on the sealing substrate 20 is placed on the element substrate 30 as shown in FIG.
  • a vacuum airtight state inside the second sealing material 16 is maintained in a vacuum atmosphere under a predetermined condition (for example, a pressure of 100 Pa or less). Then, while maintaining this vacuum hermetic state, nitrogen leakage is performed, purge is performed to atmospheric pressure, and pressure treatment is performed with a differential pressure, so that the first sealing material 5 and the second sealing material 16 are interposed. Then, the element substrate 30 and the sealing substrate 20 are bonded together to form a bonded body in which the element substrate 30 and the sealing substrate 20 are bonded together.
  • a predetermined condition for example, a pressure of 100 Pa or less.
  • the second sealing material 16 made of resin since the second sealing material 16 made of resin is formed, the second sealing material 16 maintains the vacuum state inside the bonded substrate described above. To function as a pressure partition. Accordingly, it is possible to maintain the vacuum state inside the bonded substrate in which the dropped and injected resin material 14a forming the resin member 14 exists. As a result, even when the resin material 14a is dropped and injected, when the element substrate 30 and the sealing substrate 20 are bonded to each other in a vacuum atmosphere, the resin material 14a dropped and injected by the pressurization is secondly added. It becomes possible to diffuse uniformly inside the sealing material 16.
  • the ultraviolet ray to be irradiated is preferably 0.5 to 10 J, and more preferably 1 to 6 J.
  • heat treatment 70 ° C. to 120 ° C., 10 minutes to 2 hours is performed in the air after the ultraviolet irradiation.
  • the first sealing material 5 made of frit glass is selected by irradiating laser light (arrow in FIG. 15) using a laser light source such as a YAG laser from the sealing substrate 20 side.
  • a laser light source such as a YAG laser from the sealing substrate 20 side.
  • the element substrate 30 and the sealing substrate 20 are welded by the first sealing material 5.
  • the first sealing material 5 made of frit glass is not heated in the entire width direction of the first sealing material 5 but only in a part of the width direction. It is set as the structure which heats by irradiating and provides a non-irradiation area. With such a configuration, damage to the organic EL element 4 due to heat propagation can be reduced.
  • the width of the first sealing material 5 is W and the irradiation width of the laser beam L to be irradiated is r
  • the relationship r ⁇ 0.5W may be established.
  • the width W of the first sealing material 5 is 1 mm
  • the irradiation width r of the laser light L can be set to 0.4 mm.
  • the irradiation width r (that is, the welding width) of the laser beam L to be irradiated is preferably 0.1 mm to 1 mm, and more preferably 0.1 mm to 0.5 mm. This is because, when the irradiation width r is larger than 1 mm, the irradiation area of the laser light L approaches the organic EL element 4, so that it may be difficult to sufficiently avoid the influence of heat on the organic EL element 4. For this reason, when the irradiation width r is smaller than 0.1 mm, the first sealing material 5 is not sufficiently welded, and the function of blocking moisture and oxygen in the outside air by the first sealing material 5 is sufficient. This is because there is a case where it is not exhibited in the case.
  • FIG. 17 shows the characteristics (luminance with respect to voltage) of the organic EL element 4 when laser irradiation is not performed (that is, when there is no influence of heat).
  • the frit glass functions as a heat reservoir, and by selectively heating a part rather than heating the entire area of the first sealing material 5, the influence of heat on the organic EL element 4 can be reduced. It can be seen that it can be avoided.
  • the second sealing material 16 made of resin is provided between the element substrate 30 and the sealing substrate 20. Therefore, since the second sealing material 16 formed of a flexible resin functions as a pressure partition for maintaining the vacuum state inside the bonded substrate by the element substrate 30 and the sealing substrate 20, the resin member 14 Can be formed by a dropping injection method. As a result, it becomes possible to form the resin member 14 having a small thickness, and the resin member 14 can be thinned. Therefore, the amount of the resin material that forms the resin member 14 is also used in a large organic EL display device. Can be reduced. As a result, an increase in cost can be suppressed.
  • the thickness of the resin member 14 is reduced, the thickness of the first sealing material 5 made of frit glass can be reduced. As a result, it becomes possible to reduce the heating energy when performing welding with the first sealing material 5 made of frit glass using a laser, and as a result, it is possible to suppress an increase in cost.
  • the thickness of the resin member 14 can be prevented from becoming larger than the thickness of the first sealing material 5, it is possible to prevent a gap from being generated between the first sealing material 5 and the element substrate 30. Accordingly, since the moisture and oxygen in the outside air can be surely blocked by the first sealing material 5, it is possible to reliably prevent the sealing performance from being deteriorated by the first sealing material 5.
  • the resin member 14 is formed by the dropping injection method, the positional accuracy when forming the resin member 14 can be improved. Therefore, the manufacturing process of the resin member 14 can be simplified, the productivity of the organic EL display device 1 can be improved, and the yield can be improved.
  • the second sealing material 16 is mixed with a spacer 17 for regulating the thickness of the resin member 14. Therefore, even when the resin member 14 is formed by the dropping injection method, the thickness of the resin member 14 can be regulated with high accuracy.
  • the height of the first sealing member 5 H 1, when the diameter of the spacers 17 was D 1, has a configuration in which the relationship of H 1 ⁇ D 1 is satisfied. Therefore, when the first sealing material 5 is provided on the sealing substrate 20, the first sealing material 5 and the element substrate 30 are bonded together when the element substrate 30 and the sealing substrate 20 are bonded together via the first sealing material 5. Can be reliably brought into contact with each other, and the generation of a gap between the first sealing material 5 and the element substrate 30 can be reliably prevented.
  • the second sealing material 16 is arranged inside the first sealing material 5 in the surface direction X of the organic EL display device 1. Therefore, since the resin member 14 can be isolated from the first sealing material 5 by the second sealing material 16, the organic EL when the first sealing material 5 is heated and the element substrate 30 and the sealing substrate 20 are welded. Heat propagation to the element 4 can be suppressed. Moreover, it can prevent that the resin member 14 changes in quality due to the heat
  • the second sealing material 16 can be formed from a cheap and versatile resin material.
  • a configuration is provided in which a protective film 15 for protecting the organic EL element 4 is provided on the surface of the organic EL element 4 to prevent contact between the organic EL element 4 and the resin member 14. Yes. Therefore, even when the resin member 14 that covers the surface of the organic EL display element 4 is provided, the organic EL element 4 can be reliably protected.
  • FIG. 18 is a plan view of an organic EL display device according to the second embodiment of the present invention
  • FIG. 19 is a cross-sectional view taken along the line BB of FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Further, the manufacturing method of the organic EL display device is the same as that described in the first embodiment, and thus detailed description thereof is omitted here.
  • the arrangement of the first sealing material 5 and the second sealing material 16 described in the first embodiment is switched. There is a feature.
  • the second sealing material 16 is provided outside the first sealing material 5 in the surface direction X of the organic EL display device 1.
  • the first sealing material 5 is disposed between the organic EL element 4 (or the resin member 14) and the second sealing material 16 in the surface direction X of the organic EL display device 1 (that is, in the surface direction X, the first sealing material 5 2 is provided on the organic EL element 4 (or the resin member 14 side) of the sealing material 16.
  • the 1st sealing material 5 which consists of frit glass arrange
  • the spacer 17 having a diameter equal to or smaller than the height of the first seal material 5 is added to the second seal material 16.
  • the spacer 17 regulates the thickness of the resin member 14.
  • the second sealing material 16 is disposed outside the first sealing material 5 in the surface direction X of the organic EL display device 1. Accordingly, when the second sealing material 16 is formed after the first sealing material 5 is formed, the second sealing material 16 can be easily formed.
  • FIG. 20 is a plan view of an organic EL display device according to the third embodiment of the present invention
  • FIG. 21 is a cross-sectional view taken along the line CC of FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Further, the manufacturing method of the organic EL display device is the same as that described in the first embodiment, and thus detailed description thereof is omitted here.
  • the first sealing material 5 and the second sealing material 16 are arranged apart from each other in the surface direction X of the organic EL display device 1. (That is, a space S is formed between the first sealing material 5 and the second sealing material 16).
  • the distance between the first sealing material 5 and the second sealing material 16 is not particularly limited, and may be a distance that can prevent the heat during heat welding from propagating to the second sealing material 16. It ’s fine.
  • the first sealing material 5 and the second sealing material 16 are arranged separately from each other in the surface direction X of the organic EL display device 1. Accordingly, it is possible to prevent the heat generated when the element substrate 30 and the sealing substrate 20 are welded by heating the first sealing material 5 made of frit glass from being propagated to the second sealing material 16. As a result, it is possible to prevent the second sealing material 16 made of resin from being deteriorated by heat.
  • the first seal material 5 and the second seal material 16 are arranged apart from each other (that is, the first seal The space S may be formed between the first sealing material 5 and the second sealing material 16).
  • a light shielding member 35 having visible light transparency and ultraviolet light shielding properties is provided on the surface of the organic EL element 4 (that is, the surface of the second electrode 8 of the organic EL element 4). It is good also as a structure.
  • the resin member 14 and the second sealing material 16 are formed by irradiating ultraviolet rays from the sealing substrate 20 side in the above-described resin curing step, it is ensured that ultraviolet rays enter the organic EL element 4. It becomes possible to prevent.
  • it is possible to prevent deterioration of the organic EL element 4 due to ultraviolet irradiation that is, various functional layers constituting the organic layer 7 are chemically changed to be unable to perform their original functions). Become.
  • the organic EL display device 1 includes a bottom emission type in which light is extracted from the element substrate 30 side, a top emission type in which light is extracted from the sealing substrate 30 side, and a double-sided surface in which light is extracted from the element substrate 30 side and the sealing substrate 20 side.
  • the present invention can be applied to any light emitting type.
  • the surface of the organic EL element 4 (that is, the surface of the second electrode 8 of the organic EL element 4) is used.
  • the light shielding member 35 having visible light transparency and ultraviolet light shielding properties may be provided.
  • the light shielding member 35 is not particularly limited, and for example, a film made of a material having an ultraviolet absorbing property, a film coated with a coating agent containing an ultraviolet absorbing agent, or the like can be used.
  • a coating film made of a coating agent containing an ultraviolet absorber may be formed directly on the surface of the second electrode 8 and used as the light shielding member 35.
  • the ultraviolet absorber may be directly deposited on the surface of the second electrode 8 by a deposition method or the like, and the obtained deposited film may be used as the light shielding member 35.
  • Examples of the material for forming a film having ultraviolet absorptivity include a resin binder and an ultraviolet absorber contained therein.
  • an ultraviolet absorber for example, an inorganic ultraviolet absorber such as ultrafine particles made of zinc oxide, titanium oxide, or the like, or an organic ultraviolet absorber such as benzotriazole, triazine, or benzophenone is used. be able to.
  • an ultraviolet absorber for example, an acrylic emulsion or a coating solution comprising a low molecular weight thermosetting urethane acrylate and a catalyst, and an ultraviolet absorber are mixed by a wet dispersion mixing method. Can be used.
  • the ultraviolet light shielding rate is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more. This is because, when the ultraviolet light shielding rate is less than 90%, it is difficult to provide the light shielding member 35 with a sufficient ultraviolet light shielding function, and the functions of various functional layers constituting the organic layer 7 may be deteriorated. Because there is.
  • the light shielding member 35 is formed by providing a benzotriazole-based derivative layer on the second electrode 8 by, for example, vacuum deposition after forming the second electrode 8 in the organic EL element forming step described above. Can do.
  • the vapor deposition rate can be set to 0.5 ⁇ / s, and the film thickness is adjusted so that the ultraviolet light shielding rate is 95% or more.
  • the present invention is suitable for an organic EL display device including an organic EL element and a manufacturing method thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 有機EL表示装置(1)は、素子基板(30)と、素子基板(30)に対向して設けられた封止基板(20)と、素子基板(30)上に設けられるとともに、素子基板(30)と封止基板(20)との間に設けられた有機EL素子(4)と、フリットガラスにより形成されるとともに、素子基板(30)と封止基板(20)との間に設けられ、有機EL素子(4)を封止するように素子基板(30)と封止基板(20)との間を溶着する第1シール材(5)と、封止基板(20)と有機EL素子(4)との間に設けられ、有機EL素子(4)の表面を覆う樹脂部材(14)と、樹脂により形成されるとともに、素子基板(30)と封止基板(20)との間に設けられた第2シール材(16)とを備えている。

Description

有機EL表示装置およびその製造方法
 本発明は、有機電界発光素子(有機エレクトロルミネッセンス素子:以下、「有機EL素子」と記載する)を備えた有機EL表示装置およびその製造方法に関する。
 近年、次世代フラットパネル表示装置として有機EL表示装置が注目されている。この有機EL表示装置は、自己発光型の表示装置であり、視野角特性に優れ、視認性が高く、低消費電力であり、かつ薄型化が可能であるため、需要が高まってきている。
 この有機EL表示装置は、所定の配列で配列された複数の有機EL素子を有し、複数の有機EL素子の各々は、絶縁性の基板上に形成された第1電極(陽極)と、第1電極上に形成された発光層を有する有機層と、有機層上に形成された第2電極(陰極)とを備えている。
 ここで、有機層は水分に弱いため、外気からの水分を遮断する必要ある。そこで、従来、有機層が形成された第1基板と当該第1基板に対向して設けられた第2基板との間に、有機層を封止することにより、当該有機層を水分から遮断する方法が提案されている。より具体的には、有機層を封止するように第1基板と第2基板とを接着する樹脂性の接着材を備えた有機EL表示装置が提案されている。
 しかし、この有機EL表示装置では、接着材が樹脂により形成されているため、外気中の水分を透過してしまい、結果として水分を完全に遮断することが困難であった。また、樹脂製の接着材は、外気中の酸素も透過してしまうため、有機層上に形成された第2電極が酸化されてしまい、当該第2電極の性能が低下してしまうという問題があった。
 そこで、樹脂製の接着材の代わりに、フリットガラス(低融点ガラス)からなるシール材を使用した有機EL表示装置が提案されている。そして、このようフリットガラスからなるシール材を使用して有機層を封止することにより、樹脂製の接着材を使用する場合に比し、外気中の水分や酸素を遮断することが可能になり、シール材による封止性能が向上する。
 しかし、シール材は、有機層を周回するように形成されており、シール材の内部(即ち、第1基板に形成された有機層と第2基板との間)には空間が形成されることになる。従って、特に、第1及び第2基板としてガラス基板を使用する大型の有機EL表示装置においては、当該ガラス基板の重量が大きいため、上記空間において、ガラス基板が撓んで、第1及び第2基板が接触してしまい、有機EL表示装置の機械的強度が低下するという問題があった。
 そこで、フリットガラスからなるシール材を使用した有機EL表示装置の機械的強度を向上するための技術が開示されている。より具体的には、第1基板に形成された有機層と第2基板との間に形成された空間に、ウレタンアクリル樹脂からなる樹脂部材を設けたものが開示されている。この樹脂部材は、有機層を周回するように形成されたフリットガラスからなるシール材の内側にウレタンアクリル樹脂を充填した後、当該ウレタンアクリル樹脂を光硬化または熱硬化させることによりフィルム状に形成される(例えば、特許文献1参照)。
特開2007-115692号公報
 しかし、上記特許文献1に記載の構造では、上述のごとく、シール材の内側に樹脂材料を充填した後、樹脂材料を光硬化または熱硬化させることにより、樹脂部材をフィルム状に形成する構成としているため、次のような不都合が生じる。即ち、フィルム状の樹脂部材の厚みが大きく(30μm以上)なるため、大型の有機EL表示装置においては、樹脂部材の容積が大きくなってしまい、結果として、コストアップになるという問題があった。また、封止性能を確保するために、フリットガラスからなるシール材の厚みを樹脂部材の厚み以上に設定する必要があるが、樹脂部材の厚みが大きくなると、必然的にシール材の厚みも大きくする必要がある。その結果、例えば、レーザーを使用してフリットガラスからなるシール材による溶着を行う場合に、大量の加熱エネルギーが必要になり、結果として、コストアップになるという問題があった。また、仮に、樹脂部材の厚みが、シール材の厚みよりも大きくなると、シール材と第1または第2基板との間に隙間が生じてしまい、結果として、シール材による外気中の水分や酸素の遮断が不十分になり、シール材による封止性能が低下するという問題があった。
 そこで、本発明は、上述の問題に鑑みてなされたものであり、樹脂部材の厚みを小さくして、コストダウンを図ることができるとともに、シール材による封止性能の低下を防止することができる有機EL表示装置およびその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の有機EL表示装置は、第1基板と、第1基板に対向して設けられた第2基板と、第1基板上に形成されるとともに、第1基板と第2基板との間に設けられた有機EL素子と、フリットガラスにより形成されるとともに、第1基板と第2基板との間に設けられ、有機EL素子を封止するように第1基板と第2基板との間を溶着する第1シール材と、第2基板と有機EL素子との間に設けられ、有機EL素子の表面を覆う樹脂部材と、樹脂により形成されるとともに、第1基板と第2基板との間に設けられた第2シール材とを備えることを特徴とする。
 同構成によれば、第1基板と第2基板との間に、樹脂により形成された第2シール材を設ける構成としている。従って、柔軟性のある樹脂により形成された第2シール材が、第1基板と第2基板による貼り合わせ基板の内部の真空状態を保持するための圧力隔壁として機能するため、樹脂部材を滴下注入方式により形成することが可能になる。その結果、厚みの小さいの樹脂部材を形成することが可能になり、樹脂部材を薄くすることができるため、大型の有機EL表示装置においても、樹脂部材を形成する樹脂材料の使用量を減少させることができる。その結果、コストアップを抑制することが可能になる。
 また、樹脂部材の厚みが小さくなるため、フリットガラスからなる第1シール材の厚みも小さくすることが可能になる。その結果、例えば、レーザーを使用してフリットガラスからなる第1シール材による溶着を行う際の、加熱エネルギーを小さくすることが可能になるため、結果として、コストアップを抑制することが可能になる。
 また、樹脂部材の厚みが、第1シール材の厚みよりも大きくなることを防止できるため、例えば、第1シール材を第2基板側に形成した場合に、第1シール材と第1基板との間に隙間が生じることを防止できる。従って、第1シール材による外気中の水分や酸素の遮断を確実に行えることになるため、第1シール材による封止性能の低下を確実に防止することができる。
 更に、樹脂部材を滴下注入方式により形成するため、樹脂部材を形成する際の位置精度を向上させることができる。従って、樹脂部材の製造工程が簡素化でき、有機EL表示装置の生産性が向上して、歩留まりを向上することができる。
 また、本発明の有機EL表示装置においては、第2シール材に、樹脂部材の厚みを規制するためのスペーサが混入されている構成としても良い。
 同構成によれば、第2シール材に、樹脂部材の厚みを規制するためのスペーサを混入しているため、樹脂部材を滴下注入方式により形成する場合であっても、樹脂部材の厚みを精度良く規制することが可能になる。
 また、本発明の有機EL表示装置においては、第1シール材の高さをH、スペーサの径をDとした場合に、H≧Dの関係が成立する構成としても良い。
 同構成によれば、例えば、第1シール材を第2基板に設けた場合、第1シール材を介して、第1基板と第2基板とを貼り合わせる際に、第1シール材と第2基板とを確実に接触させて、第1シール材と第2基板との間における隙間の発生を確実に防止することが可能になる。
 また、本発明の有機EL表示装置においては、第2シール材は、有機EL表示装置の面方向において、第1シール材の内側に配置されていても良い。
 同構成によれば、有機EL表示装置の面方向において、第2シール材を前記第1シール材の内側に配置しているため、第2シール材により、樹脂部材を第1シール材から隔離することができる。従って、第1シール材を加熱して第1基板と第2基板を溶着する際の有機EL素子への熱伝搬を抑制することができる。また、第1シール材を溶着する際の熱に起因して、樹脂部材が変質することを防止することができる。
 また、本発明の有機EL表示装置においては、第2シール材は、有機EL表示装置の面方向において、第1シール材の外側に配置されていても良い。。
 同構成によれば、有機EL表示装置の面方向において、第2シール材を第1シール材の外側に配置しているため、第1シール材を形成した後に、第2シール材を形成する際に、第2シール材の形成が容易になる。
 また、本発明の有機EL表示装置においては、有機EL表示装置の面方向において、第1シール材と第2シール材とを離間して配置しても良い。
 同構成によれば、有機EL表示装置の面方向において、第1シール材と第2シール材とを離間して配置しているため、フリットガラスからなる第1シール材を加熱して第1基板と第2基板を溶着する際の熱が第2シール材に伝搬することを防止することが可能になる。従って、樹脂により形成された第2シール材の熱による変質を防止することが可能になる。
 また、本発明の有機EL表示装置においては、樹脂が、アクリル樹脂またはエポキシ樹脂であっても良い。
 同構成によれば、安価かつ汎用性にある樹脂材料により第2シール材を形成することができる。
 また、本発明の有機EL表示装置においては、有機EL素子の表面上に、可視光透過性を有するとともに紫外線遮光性を有する遮光部材が設けられていても良い。
 同構成によれば、例えば、紫外線照射による硬化により、樹脂部材及び第2シール材を形成する際に、有機EL素子への紫外線の進入を確実に防止することが可能になる。その結果、紫外線照射による有機EL素子の劣化を防止することが可能になる。また、遮光部材は可視光透過性を有するため、有機EL表示装置を、第1基板側から光を取り出すボトムエミッション型、第2基板側から光を取り出すトップエミッション型、及び第1基板側と第2基板側から光を取り出す両面発光型ののいずれの発光タイプにも適用することが可能になる。
 また、本発明の有機EL表示装置は、厚みの小さいの樹脂部材を形成することが可能になるため、大型の有機EL表示装置においても、樹脂部材を形成する樹脂材料の使用量を減少させることができ、コストアップを抑制することができる優れた特性を備えている。従って、本発明は、樹脂部材の厚みが3μm以上20μm以下である有機EL表示装置に好適に使用できる。
 本発明の有機EL表示装置の製造方法は、第1基板上に有機EL素子を形成する有機EL素子形成工程と、第2基板上に、フリットガラスからなる第1シール材を枠状に形成する第1シール材形成工程と、第1シール材が形成された第2基板に、樹脂により形成された第2シール材を枠状に形成する第2シール材形成工程と、第2基板に形成された第2シール材の内側に、樹脂部材を形成するための樹脂材料を滴下して注入する滴下注入工程と、真空雰囲気で、第1シール材と第2シール材とを介して、第1基板第2基板とを貼り合わせるとともに、第2シール材の内側において、樹脂材料を均一に拡散させる貼合体形成工程と、樹脂材料を硬化させて樹脂部材を形成するとともに、第2シール材を形成する樹脂を硬化させる樹脂硬化工程と、フリットガラスからなる第1シール材を加熱して、第1シール材により第1基板と第2基板との間を溶着する溶着工程とを少なくとも備えることを特徴とする。
 同構成によれば、第1基板と第2基板との間に、樹脂により形成された第2シール材を設ける構成としている。従って、貼合体形成工程において、柔軟性のある樹脂により形成された第2シール材が、第1基板と第2基板による貼り合わせ基板の内部の真空状態を保持するための圧力隔壁として機能するため、樹脂部材を形成する滴下注入された樹脂材料が存在する貼り合わせ基板の内部の真空状態を保持することが可能になる。従って、高粘度材料である樹脂材料を滴下注入した場合であっても、真空雰囲気下において、第1基板と第2基板を貼り合わせる際に、加圧により滴下注入された樹脂材料を拡散させることが可能になる。その結果、厚みの小さいの樹脂部材を形成することが可能になり、樹脂部材を薄くすることができるため、大型の有機EL表示装置においても、樹脂部材を形成する樹脂材料の使用量を減少させることができる。その結果、コストアップを抑制することが可能になる。
 また、厚みの小さい樹脂部材を形成できるため、フリットガラスからなる第1シール材の厚みも小さくすることが可能になる。その結果、例えば、レーザーを使用してフリットガラスからなる第1シール材による溶着を行う際の、加熱エネルギーを小さくすることが可能になるため、結果として、コストアップを抑制することが可能になる。
 また、樹脂部材の厚みが、第1シール材の厚みよりも大きくなることを防止できるため、第1シール材と素子基板との間に隙間が生じることを防止できる。従って、第1シール材による外気中の水分や酸素の遮断を確実に行えることになるため、第1シール材による封止性能の低下を確実に防止することができる。
 更に、樹脂部材を滴下注入方式により形成するため、樹脂部材を形成する際の位置精度を向上させることができる。従って、樹脂部材の製造工程が簡素化でき、有機EL表示装置の生産性が向上して、歩留まりを向上することができる。
 また、本発明の有機EL表示装置の製造方法においては、溶着工程において、第1シール材の幅方向の一部のみを加熱しても良い。
 同構成によれば、第1シール材において、加熱しない領域が存在することになるため、第1シール材の熱容量が増加し、第1シール材の内部における温度上昇が回避できる。従って、例えば、レーザーを使用してフリットガラスからなる第1シール材による溶着を行う際の、レーザ光の照射に伴う第1シール材の温度上昇が、有機EL素子に物理的に伝搬されることを効果的に抑制することが可能になる。その結果、熱伝搬による有機EL素子へのダメージを低減することが可能になる。
 本発明によれば、コストアップを抑制することが可能になるとともに、第1シール材による封止性能の低下を確実に防止することができる。また、有機EL表示装置の生産性を向上させて、歩留まりを向上させることができる。
本発明の第1の実施形態に係る有機EL表示装置の平面図である。 図1のA-A断面図である。 本発明の第1の実施形態に係る有機EL表示装置が備える有機EL素子を構成する有機層を説明するための断面図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 本発明の第1の実施形態に係る有機EL表示装置における溶着工程を説明するための図である。 レーザ光の照射幅に対する有機EL素子の特性を説明するための図である。 本発明の第2の実施形態に係る有機EL表示装置の平面図である。 図18のB-B断面図である。 本発明の第3の実施形態に係る有機EL表示装置の平面図である。 図20のC-C断面図である。 本発明の有機EL表示装置の変形例を説明するための断面図である。 本発明の有機EL表示装置の変形例を説明するための断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る有機EL表示装置の平面図であり、図2は、図1のA-A断面図である。また、図3は、本発明の第1の実施形態に係る有機EL表示装置が備える有機EL素子を構成する有機層を説明するための断面図である。
 図1、図2に示す様に、有機EL表示装置1は、第1基板である素子基板30と、素子基板30に対向する第2基板である封止基板20と、素子基板30上に形成されるとともに、素子基板30及び封止基板20の間に設けられた有機EL素子4とを備えている。また、有機EL表示装置1は、有機EL素子4を封止するように素子基板30と封止基板20とを結合(または、溶着)する第1シール材5を備えている。この第1シール材5は、有機EL素子4を周回するように枠状に形成されており、素子基板30と封止基板20は、この第1シール材5を介して相互に貼り合わされている。
 素子基板30及び封止基板20は、例えば、ガラス、またはプラスチック等の絶縁性材料により形成されている。
 また、図2に示すように、有機EL素子4は、素子基板30の表面上に設けられた第1電極6(陽極)と、第1電極6の表面上に設けられた有機層7と、有機層7の表面上に設けられた第2電極8(陰極)とを備えている。
 第1電極6は、素子基板30の表面上に所定の間隔でマトリクス状に複数形成されており、複数の第1電極6の各々が、有機EL表示装置1の各画素領域を構成している。なお、第1電極6は、例えば、Au、Ni、Pt、ITO(インジウム-スズ酸化物)、またはITOとAgの積層膜等により形成されている。
 有機層7は、マトリクス状に区画された各第1電極6の表面上に形成されている。この有機層7は、図3に示すように、正孔注入層9と、正孔注入層9の表面上に形成された正孔輸送層10と、正孔輸送層10の表面上に形成され、赤色光、緑色光、および青色光のいずれかを発する発光層11と、発光層11の表面上に形成された電子輸送層12と、電子輸送層12の表面上に形成された電子注入層13とを備えている。そして、これらの正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13が順次積層されることにより、有機層7が構成されている。
 正孔注入層9は、発光層11への正孔注入効率を高めるためのものである。この正孔注入層9を形成する材料としては、例えば、ベンジン、スチリルアミン、トリフェニルアミン、ポルフィリン、トリアゾール、イミダゾール、オキサジアゾール、ポリアリールアルカン、フェニレンジアミン、アリールアミン、オキザゾール、アントラセン、フルオレノン、ヒドラゾン、スチルベン、トリフェニレン、アザトリフェニレン、あるいはこれらの誘導体、または、ポリシラン系化合物、ビニルカルバゾール系化合物、チオフェン系化合物あるいはアニリン系化合物等の複素環式共役系のモノマー、オリゴマーあるいはポリマーを挙げることができる。
 正孔輸送層10は、上述の正孔注入層9と同様に、発光層11への正孔注入効率を高めるためのものであり、正孔輸送層10を形成する材料としては、上述の正孔注入層9と同様のものが使用できる。
 発光層11は、第1電極6、及び第2電極8による電圧印加の際に、両電極の各々から正孔および電子が注入されるとともに、正孔と電子が再結合する領域である。この発光層11は、発光効率が高い材料により形成され、例えば、低分子蛍光色素、蛍光性の高分子、金属錯体等の有機材料により形成されている。より具体的には、例えば、アントラセン、ナフタレン、インデン、フェナントレン、ピレン、ナフタセン、トリフェニレン、アントラセン、ペリレン、ピセン、フルオランテン、アセフェナントリレン、ペンタフェン、ペンタセン、コロネン、ブタジエン、クマリン、アクリジン、スチルベン、あるいはこれらの誘導体、トリス(8-キノリノラト)アルミニウム錯体、ビス(ベンゾキノリノラト)ベリリウム錯体、トリ(ジベンゾイルメチル)フェナントロリンユーロピウム錯体ジトルイルビニルビフェニルが挙げられる。
 電子輸送層12は、第2電極8から注入される電子を発光層11に輸送するためのものである。この電子輸送層12を形成する材料としては、例えば、キノリン、ペリレン、フェナントロリン、ビススチリル、ピラジン、トリアゾール、オキサゾール、オキサジアゾール、フルオレノン、またはこれらの誘導体や金属錯体が挙げられる。より具体的には、トリス(8-ヒドロキシキノリン)アルミニウム、アントラセン、ナフタレン、フェナントレン、ピレン、アントラセン、ペリレン、ブタジエン、クマリン、アクリジン、スチルベン、1,10-フェナントロリンまたはこれらの誘導体や金属錯体が挙げられる。
 電子注入層13は、上述の電子輸送層12と同様に、第2電極8から注入される電子を発光層11に輸送するためのものであり、電子注入層13を形成する材料としては、上述の電子輸送層12と同様のものが使用できる。
 第2電極8は、有機層7に電子を注入する機能を有するものである。この第2電極8は、例えば、マグネシウム合金(MgAg等)、アルミニウム合金(AlLi、AlCa、AlMg等)、金属カルシウム、または仕事関数の小さい金属等により形成されている。
 第1シール材5は、フリットガラス(低融点ガラス)からなり、外気中の水分や酸素を遮断する機能を有するものである。また、フリットガラスとしては、例えば、SiO(酸化シリコン)、B(酸化ホウ素)、Al(酸化アルミニウム)、V(酸化バナジウム)、CuO(酸化銅)等からなる酸化物の混合ガラスを粉砕して微粉化したものが使用できる。
 また、有機EL表示装置1は、図2に示すように、樹脂により形成された樹脂部材14を備えている。この樹脂部材14は、フリットガラスにより形成された第1シール材5を使用した有機EL表示装置1の機械的強度を向上させるためのものである。樹脂部材14を形成する樹脂としては、例えば、アクリル樹脂、エポキシ樹脂等の紫外線硬化性樹脂や熱硬化性樹脂を使用する構成としている。
 なお、本実施形態においては、図2に示すように、有機EL素子4と樹脂部材14との接触を防止して、有機EL素子4を保護するための保護膜15が、有機EL素子4の表面上に設けられている。この保護膜15を形成する材料としては、例えば、SiO、SiON等の無機材料が挙げられる。
 ここで、本実施形態における有機EL表示装置においては、図2に示すように、素子基板30と封止基板20との間に、樹脂により形成された第2シール材16が設けられている点に特徴がある。
 この第2シール材16は、図1に示すように、上述のフリットガラスにより形成された第1シール材5と同様に、有機EL素子4を周回するように枠状に形成されている。また、図1、図2に示すように、本実施形態においては、第2シール材16は、有機EL表示装置1の面方向X(即ち、有機EL表示装置1の厚み方向Yに直交する方向であって、図1、図2に示す矢印Xの方向)において、第1シール材5の内側に配置されている。より具体的には、第2シール材16は、有機EL表示装置1の面方向Xにおいて、有機EL素子4(または、樹脂部材14)と第1シール材5との間(即ち、面方向Xにおいて、第1シール材5の有機EL素子4(または、樹脂部材14)側)に設けられている。
 第2シール材16を形成する樹脂材料としては、特に限定されず、安価かつ汎用性のある樹脂材料を使用することができ、例えば、エポキシ樹脂やアクリル樹脂等を使用することができる。なお、これらの樹脂のうち、アクリル樹脂を使用することにより、より一層安価に第2シール材16を形成することができるため、好ましい。
 また、第2シール材16には、樹脂部材14の厚みを規制するためのスペーサ17(図2参照)が混入されている。このスペーサ17は、例えば、SiO(酸化シリコン)により形成されている。
 そして、このような樹脂により形成された第2シール材16を設けることにより、樹脂部材14を、液晶材料の注入方式として採用されている滴下注入方式により形成することが可能になる。
 一般に、液晶表示パネルにおいては、一対の基板の間に封入される液晶材料を注入する方法として、真空注入方式と滴下注入方式がある。このうち、滴下注入方式においては、例えば、TFT基板の周囲において、シール材を枠状に形成し、真空雰囲気において、このシール材の枠内のTFT基板上に液晶材料を滴下するとともに、液晶材料が滴下されたTFT基板とCF基板とを貼り合わせる。次いで、基板を大気中に戻し、貼り合わされたTFT基板とCF基板間の液晶材料を大気圧により拡散させる。そして、紫外光をシール材に照射し、シール材を硬化させて、液晶表示パネルを製造する。
 この滴下注入方式は、従来、広く使用されてきた真空注入方式に比し、液晶層の厚みを小さく形成でき、液晶材料の使用量を大幅に低減できるとともに、液晶材料の注入時間を短縮できるため、液晶表示パネルの製造コストを低減させるとともに量産性を向上させることができる。
 ここで、液晶材料の滴下注入方式においては、低粘度材料である液晶材料を滴下注入するが、本実施形態における樹脂部材14を形成する樹脂材料の滴下注入方式においては、液晶材料に比し、高粘度材料である樹脂材料を滴下注入するため、真空雰囲気下において、素子基板30と封止基板20を貼り合わせる際に、加圧しなければ滴下注入された樹脂材料が拡散しないという問題が生じる。
 そして、そのためには、第1シール材5を介して素子基板30と封止基板20を貼り合わせた状態で、第1シール材5により封止された樹脂材料が存在する貼り合わせ基板の内部の真空状態を保持する必要がある。しかし、第1シール材5は、有機溶媒にフリットガラスを加えたペースト材料を塗布した後、加熱焼成することにより形成されるため、素子基板30と封止基板20を貼り合わせる際には、当該有機溶媒は完全に除去されている。従って、第1シール材5には柔軟性がなく、当該第1シール材5を貼り合わせ基板の内部の真空状態を保持するための圧力隔壁として利用することができない。
 そこで、上述のごとく、素子基板30と封止基板20との間に、樹脂により形成された第2シール材16を設ける構成としている。このような構成により、柔軟性のある樹脂により形成された第2シール材16が、上述の貼り合わせ基板の内部の真空状態を保持するための圧力隔壁として機能するため、樹脂部材14を形成する滴下注入された樹脂材料が存在する貼り合わせ基板の内部の真空状態を保持することが可能になる。従って、液晶材料に比し、高粘度材料である樹脂材料を滴下注入した場合であっても、真空雰囲気下において、素子基板30と封止基板20を貼り合わせる際に、加圧により滴下注入された樹脂材料を拡散させることが可能になる。
 即ち、このような樹脂により形成された第2シール材16を設けることにより、樹脂により形成された樹脂部材14を滴下注入方式により形成することが可能になる。
 そうすると、厚みT(図2参照)の小さい(例えば、3μm以上20μm以下)樹脂部材14を形成することが可能になり、樹脂部材14を薄くすることができる。従って、大型の有機EL表示装置(例えば、幅が265mm以上、長さが200mm以上、厚みが0.3mm以上~0.7mm以下の有機EL表示装置)においても、樹脂部材14を形成する樹脂材料の使用量を減少させることができる。その結果、コストアップを抑制することが可能になる。
 なお、樹脂部材14の厚みTは、5μm以上15μm以下が好ましく、6μm以上8μm以下がより好ましい。
 また、樹脂部材14の厚みが小さくなるため、フリットガラスからなる第1シール材5の厚みも小さくすることが可能になる。例えば、樹脂部材14の厚みTが3μm以上20μm以下の場合は、第1シール材5の厚みを3μm以上20μm以下に設定することが可能になる。その結果、例えば、レーザーを使用してフリットガラスからなる第1シール材5による溶着を行う際の、加熱エネルギーを小さくすることが可能になるため、結果として、コストアップを抑制することが可能になる。
 また、樹脂部材14の厚みが、第1シール材5の厚みよりも大きくなることを防止できるため、第1シール材5と素子基板30との間に隙間が生じることを防止できる。従って、第1シール材5による外気中の水分や酸素の遮断を確実に行えることになるため、第1シール材5の封止性能の低下を確実に防止することができる。
 更に、樹脂部材14を滴下注入方式により形成するため、樹脂部材14を形成する際の位置精度を向上させることができる。従って、樹脂部材14の製造工程が簡素化でき、有機EL表示装置1の生産性が向上して、歩留まりを向上することができる。
 次に、本実施形態の有機EL表示装置の製造方法の一例について説明する。図4~図15は、本発明の第1の実施形態に係る有機EL表示装置の製造方法を説明するための図である。
 <有機EL素子形成工程>
 まず、図4に示すように、基板サイズが300×400mmで、厚さが0.7mmのガラス基板等の素子基板30上に、スパッタ法によりITO膜をパターン形成して、第1電極6を形成する。このとき、第1電極6の膜厚は、例えば、150nm程度に形成する。
 次に、第1電極6上に、発光層11を含む有機層7、及び第2電極8を金属製のマスクを使用して、蒸着法により形成する。
 より具体的には、まず、第1電極6を備えた素子基板30を蒸着装置のチャンバー内に設置する。なお、蒸着装置のチャンバー内は、真空ポンプにより、1×10-6~1×10-4(Pa)の真空度に保たれている。また、第1電極6を備えた素子基板30は、チャンバー内に取り付けられた1対の基板受けによって2辺を固定した状態で設置する。
 そして、蒸着源から、正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13の各蒸着材料を順次蒸発させて、正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13を積層することにより、図5に示すように、画素領域に有機層7を形成する。
 そして、図6に示すように、有機層7上に、第2電極8を形成することにより、素子基板30上に、第1電極6、有機層7、及び第2電極8を備えた有機EL素子4を形成する。
 なお、蒸発源としては、例えば、各蒸発材料が仕込まれた坩堝を使用することができる。坩堝は、チャンバー内の下部に設置されるとともに、坩堝にはヒーターが備え付けられており、このヒーターにより、坩堝は加熱される。そして、ヒーターによる加熱により、坩堝の内部温度が各種蒸着材料の蒸発温度に到達することで、坩堝内に仕込まれた各種蒸着材料が蒸発分子となってチャンバー内の上方向へ飛び出す。
 また、有機層7、及び第2電極8の形成方法の具体例としては、まず、素子基板30上にパターニングされた第1電極6上に、RGB全ての画素に共通して、m-MTDATA(4,4,4-tris(3-methylphenylphenylamino)triphenylamine)からなる正孔注入層9を、マスクを介して、例えば、25nmの膜厚で形成する。続いて、正孔注入層9上に、RGB全ての画素に共通して、α-NPD(4,4-bis(N-1-naphthyl-N-phenylamino)biphenyl)からなる正孔輸送層10を、マスクを介して、例えば、30nmの膜厚で形成する。次に、赤色の発光層11として、ジ(2-ナフチル)アントラセン(ADN)に2,6-ビス((4’-メトキシジフェニルアミノ)スチリル)-1,5-ジシアノナフタレン(BSN)を30重量%混合したものを、マスクを介して、画素領域に形成された正孔輸送層10上に、例えば、30nmの膜厚で形成する。次いで、緑色の発光層11として、ADNにクマリン6を5重量%混合したものを、マスクを介して、画素領域に形成された正孔輸送層10上に、例えば、30nmの膜厚で形成する。次に、青色の発光層11として、ANDに4,4’-ビス(2-{4-(N,N-ジフェニルアミノ)フェニル}ビニル)ビフェニル(DPAVBi)を2.5重量%混合したものを、マスクを介して、画素領域に形成された正孔輸送層10上に、例えば、30nmの膜厚で形成する。次いで、各発光層11上に、RGB全ての画素に共通して、8-ヒドロキシキノリンアルミニウム(Alq3)を電子輸送層12として、マスクを介して、例えば、20nmの膜厚で形成する。次いで、電子輸送層12上に、フッ化リチウム(LiF)を電子注入層13として、マスクを介して、例えば、0.3nmの膜厚で形成する。そして、第2電極8として、マグネシウム銀(MgAg)からなる陰極を、例えば、10nmの膜厚で形成する。
 次いで、図7に示すように、形成された有機EL素子4の表面上に、当該有機EL素子4を保護するための保護膜15を形成する。この保護膜15は、例えば、SiO、SiON等の無機材料を、蒸着法、スパッタ法、化学気相成長法等により、有機EL素子4の表面上に積層することにより形成することができる。
 <第1シール材形成工程>
 まず、図8、図11に示すように、基板サイズが95×95mmで、厚さが0.7mmのガラス基板等の封止基板20上に、上述した有機溶媒にフリットガラスを加えたペースト材料を、ディスペンサやスクリーン印刷法等により塗布した後、加熱して仮焼成することにより、フリットガラスからなる第1シール材5を枠状に形成する。
 なお、仮焼成する際の加熱温度は、200℃以上500℃以下が好ましく、250℃以上400℃以下がより好ましい。これは、仮焼成において、ペースト材料における有機溶媒を完全に除去しなければ、本焼成において、アウトガスの要因となり、後述するガラスフリットからなる第1シール材5による溶着の妨げとなるためである。
 <第2シール材形成工程>
 次いで、図9、図11に示すように、例えば、ディスペンサを用いて、第1シール材5が形成された封止基板20に、アクリル樹脂、エポキシ樹脂等の紫外線硬化性樹脂や熱硬化性樹脂により構成された第2シール材16を枠状に描画して形成する。
 この際、図9、図11に示すように、第2シール材16は、第1シール材5の内側に枠状に描画される。また、第2シール材16として、高粘度(100~1000Pa・s)を有するものを形成する。
 また、図9に示すように、素子基板30と封止基板20との真空貼り合せを行う際の真空加圧を行うための機密性(真空性)を保持するとの観点から、第2シール材16の高さが、第1シール材5の高さよりも高くなるように第2シール材16を形成する。即ち、第1シール材5の高さをH、第2シール材16の高さをHとした場合に、H<Hの関係が成立するように、第2シール材16を形成する。
 また、上述のごとく、第2シール材16には、樹脂部材14の厚みを規制するためのスペーサ17が混入されているが、第1シール材5の高さ以下の径を有するスペーサ17を添加する。より具体的には、スペーサ17の径(有機EL表示装置1の厚み方向Yにおけるスペーサ17の長径)をDとした場合に、H≧Dの関係が成立するように、スペーサ17の径を設定する。
 これは、第1シール材5の高さHがスペーサ17の径Dよりも小さい(即ち、H<D)場合は、第1シール材5を介して、素子基板30と封止基板20とを貼り合わせる際に、第1シール材5が素子基板30と接触することができなくなるため、第1シール材5と素子基板30との間に隙間が生じてしまい、第1シール材5による外気中の水分や酸素の遮断を行うことが困難になるため、このような不都合を回避するためである。
 <滴下注入工程>
 次いで、図10、図11に示すように、封止基板20に形成された第2シール材16の内側に、樹脂部材14を形成するための樹脂材料14aを滴下して注入する。なお、樹脂材料14aとしては、例えば、アクリル樹脂、エポキシ樹脂等の紫外線硬化性樹脂が使用される。また、樹脂材料14aの滴下は、例えば、樹脂材料14aを滴下する機能を有した滴下装置が基板面全体に亘って移動しながら樹脂材料14aを滴下することにより行われる。
 <貼合体形成工程>
 次いで、真空雰囲気で、第1シール材5及び第2シール材16が形成された封止基板20と、有機EL素子4が形成された素子基板30とを、有機EL素子4と樹脂材料14aが重なり合うように、素子基板30上に封止基板20を重ね合わせて、図12に示すように、素子基板30上に、封止基板20に形成された第2シール材16の表面16aを載置させる。
 次いで、図13に示すように、真空雰囲気で、所定の条件下(例えば、100Pa以下の圧力)において、第2シール材16の内側における真空気密状態を保持する。そして、この真空気密状態を保持した状態で、窒素リークを行うとともに、大気圧までパージを行って差圧で加圧処理を行うことにより、第1シール材5、及び第2シール材16を介して、素子基板30と封止基板20とを貼り合わせ、素子基板30と封止基板20とが貼り合わされた貼合体を形成する。
 なお、加圧処理を行う際に、第1シール材5と第2シール材16の高さが同一となるように制御する。
 この際、本実施形態においては、上述のごとく、樹脂により形成された第2シール材16が形成されているため、第2シール材16が、上述の貼り合わせ基板の内部の真空状態を保持するための圧力隔壁として機能する。従って、樹脂部材14を形成する滴下注入された樹脂材料14aが存在する貼り合わせ基板の内部の真空状態を保持することが可能になる。その結果、樹脂材料14aを滴下注入した場合であっても、真空雰囲気下において、素子基板30と封止基板20を貼り合わせる際に、加圧により、滴下注入された樹脂材料14aを、第2シール材16の内側において、均一に拡散させることが可能になる。
 <樹脂硬化工程>
 次いで、図14に示すように、封止基板20側から紫外線(図14における矢印)を照射することにより、均一に拡散した樹脂材料14aを硬化させて、樹脂部材14を形成するとともに、第2シール材16を形成する樹脂を硬化させる。
 なお、照射する紫外線は、0.5~10Jが好ましく、1~6Jがより好ましい。また、紫外線照射後、大気中にて加熱処理(70℃以上120℃以下、10分以上2時間以下)を行う。
 <溶着工程>
 次いで、図15に示すように、封止基板20側からYAGレーザ等のレーザ光源を用いてレーザ光(図15における矢印)を照射することにより、フリットガラスからなる第1シール材5のみを選択的に加熱して、当該第1シール材5により素子基板30と封止基板20との間を溶着する。
 より具体的には、例えば、YAGレーザー(λ=1.06μm)を50~200Wの出力で使用し、ファイバーレーザで口径を0.1~1mm径に絞り込み、ガラスを通して、フリットガラスの塗布部分にレーザを照射する。そして、レーザ光源であるYAGレーザ、または加工対象である第1シール材5を駆動させて、第1シール材5を形成するフリットガラスを加熱、溶融して、素子基板30と封止基板20との間の溶着を行う。
 ここで、本実施形態においては、フリットガラスからなる第1シール材5に対して、当該第1シール材5の幅方向の全域を加熱するのではなく、当該幅方向の一部にのみレーザ光を照射することにより加熱して、非照射領域を設ける構成としている。このような構成により、熱伝搬による有機EL素子4へのダメージを低減することが可能になる。
 より具体的には、図16に示すように、第1シール材5の幅をW、照射するレーザ光Lの照射幅をrとした場合に、r<0.5Wの関係が成立することが好ましい。例えば、第1シール材5の幅Wが1mmの場合、レーザ光Lの照射幅rを0.4mmに設定することができる。
 このような構成により、第1シール材5において、加熱しない領域が存在することになるため、第1シール材5の熱容量が増加し、第1シール材5の内部における温度上昇が回避できる。従って、レーザ光Lの照射に伴う第1シール材5の温度上昇が、有機EL素子4に物理的に伝搬されることを効果的に抑制することが可能になる。
 なお、照射するレーザ光Lの照射幅r(即ち、溶着幅)は、0.1mm以上1mm以下が好ましく、0.1mm以上0.5mm以下がより好ましい。これは、照射幅rが1mmよりも大きい場合は、レーザー光Lの照射エリアが有機EL素子4に近づくため、有機EL素子4における熱の影響を十分に回避することが困難になる場合があるためであり、また、照射幅rが0.1mmよりも小さい場合は、第1シール材5による溶着が十分に行われず、第1シール材5による外気中の水分や酸素を遮断する機能が十分に発揮されない場合があるためである。
 フリットガラスからなる第1シール材5(幅W=1mm)と有機EL素子4との距離を5mmに設定した状態で、レーザ光Lの照射幅rを0.2mm、0.5mmに設定した場合、及びレーザ照射を行わなかった場合(即ち、熱による影響がない場合)の有機EL素子4の特性(電圧に対する輝度)を図17に示す。
 図17に示すように、レーザ光の照射幅rが大きい(r=0.5mm)場合に比し、レーザ光の照射幅rが小さい(r=0.2mm)場合の方が、より低電圧で、高輝度が得られており、有機EL素子4の特性が優れていることが判る。
 以上の結果から、フリットガラスが熱だめとして機能しており、第1シール材5の全域を加熱するよりも、選択的に一部を加熱することにより、有機EL素子4への熱の影響を回避できることが判る。
 以上に説明した本実施形態によれば、以下の効果を得ることができる。
 (1)本実施形態においては、素子基板30と封止基板20との間に、樹脂により形成された第2シール材16を設ける構成としている。従って、柔軟性のある樹脂により形成された第2シール材16が、素子基板30と封止基板20による貼り合わせ基板の内部の真空状態を保持するための圧力隔壁として機能するため、樹脂部材14を滴下注入方式により形成することが可能になる。その結果、厚みの小さいの樹脂部材14を形成することが可能になり、樹脂部材14を薄くすることができるため、大型の有機EL表示装置においても、樹脂部材14を形成する樹脂材料の使用量を減少させることができる。その結果、コストアップを抑制することが可能になる。
 (2)また、樹脂部材14の厚みが小さくなるため、フリットガラスからなる第1シール材5の厚みも小さくすることが可能になる。その結果、レーザーを使用してフリットガラスからなる第1シール材5による溶着を行う際の、加熱エネルギーを小さくすることが可能になるため、結果として、コストアップを抑制することが可能になる。
 (3)また、樹脂部材14の厚みが、第1シール材5の厚みよりも大きくなることを防止できるため、第1シール材5と素子基板30との間に隙間が生じることを防止できる。従って、第1シール材5による外気中の水分や酸素の遮断を確実に行えることになるため、第1シール材5による封止性能の低下を確実に防止することができる。
 (4)更に、樹脂部材14を滴下注入方式により形成するため、樹脂部材14を形成する際の位置精度を向上させることができる。従って、樹脂部材14の製造工程を簡素化でき、有機EL表示装置1の生産性が向上して、歩留まりを向上することができる。
 (5)本実施形態においては、第2シール材16に、樹脂部材14の厚みを規制するためのスペーサ17を混入する構成としている。従って、樹脂部材14を滴下注入方式により形成する場合であっても、樹脂部材14の厚みを精度良く規制することが可能になる。
 (6)本実施形態においては、第1シール材5の高さをH、スペーサ17の径をDとした場合に、H≧Dの関係が成立する構成としている。従って、第1シール材5を封止基板20に設けた場合、第1シール材5を介して、素子基板30と封止基板20とを貼り合わせる際に、第1シール材5と素子基板30とを確実に接触させて、第1シール材5と素子基板30との間における隙間の発生を確実に防止することが可能になる。
 (7)本実施形態においては、有機EL表示装置1の面方向Xにおいて、第2シール材16を第1シール材5の内側に配置する構成としている。従って、第2シール材16により、樹脂部材14を第1シール材5から隔離することができるため、第1シール材5を加熱して素子基板30と封止基板20を溶着する際の有機EL素子4への熱伝搬を抑制することができる。また、第1シール材を溶着する際の熱に起因して、樹脂部材14が変質することを防ぐことができる。即ち、加熱に起因する樹脂部材14の炭化や黄変等の変質を防止して、樹脂部材14の視覚上の変化を防止することができる。
 (8)本実施形態においては、第2シール材16を形成する樹脂として、アクリル樹脂またはエポキシ樹脂を使用する構成としている。従って、安価かつ汎用性にある樹脂材料により第2シール材16を形成することができる。
 (9)本実施形態においては、有機EL素子4の表面上に、有機EL素子4と樹脂部材14との接触を防止して、有機EL素子4を保護するための保護膜15を設ける構成としている。従って、有機EL表示素子4の表面を覆う樹脂部材14を設けた場合であっても、有機EL素子4を確実に保護することが可能になる。
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。図18は、本発明の第2の実施形態に係る有機EL表示装置の平面図であり、図19は、図1のB-B断面図である。なお、上記第1の実施形態と同様の構成部分については同一の符号を付してその説明を省略する。また、有機EL表示装置の製造方法については、上述の第1の実施形態において説明したものと同様であるため、ここでは詳しい説明を省略する。
 本実施形態の有機EL表示装置40においては、図18、図19に示すように、上述の第1の実施形態において説明した第1シール材5と第2シール材16の配置が入れ替わっている点に特徴がある。
 より具体的には、図18、図19に示すように、本実施形態においては、有機EL表示装置1の面方向Xにおいて、第2シール材16は、第1シール材5の外側に設けられており、第1シール材5は、有機EL表示装置1の面方向Xにおいて、有機EL素子4(または、樹脂部材14)と第2シール材16との間(即ち、面方向Xにおいて、第2シール材16の有機EL素子4(または、樹脂部材14)側)に設けられている。
 そして、本実施形態においては、第2シール材16の内側に配置されたフリットガラスからなる第1シール材5が、樹脂部材14を封止するためのシール材として機能する。
 また、本実施形態においても、上述の第1の実施形態の場合と同様に、第2シール材16に、第1シール材5の高さ以下の径を有するスペーサ17が添加されており、当該スペーサ17により、樹脂部材14の厚みを規制する。
 以上に説明した本実施形態によれば、上述の(1)~(9)の効果に加えて、以下の効果を得ることができる。
 (10)本実施形態においては、有機EL表示装置1の面方向Xにおいて、第2シール材16を、第1シール材5の外側に配置する構成としている。従って、第1シール材5を形成した後に、第2シール材16を形成する際に、第2シール材16の形成が容易になる。
 (第3の実施形態)
 次に、本発明の第3の実施形態について説明する。図20は、本発明の第3の実施形態に係る有機EL表示装置の平面図であり、図21は、図1のC-C断面図である。なお、上記第1の実施形態と同様の構成部分については同一の符号を付してその説明を省略する。また、有機EL表示装置の製造方法については、上述の第1の実施形態において説明したものと同様であるため、ここでは詳しい説明を省略する。
 本実施形態の有機EL表示装置50においては、図20、図21に示すように、有機EL表示装置1の面方向Xにおいて、第1シール材5と第2シール材16とが離間して配置されている(即ち、第1シール材5と第2シール材16との間にスペースSが形成されている)点に特徴がある。
 このような構成により、上述のごとく、フリットガラスからなる第1シール材5を加熱溶着した場合であっても、加熱溶着の際の熱が第2シール材16に伝搬することを防止することが可能になる。
 なお、第1シール材5と第2シール材16との間の距離は、特に限定されず、加熱溶着の際の熱が第2シール材16に伝搬することを防止することができる距離であれば良い。
 以上に説明した本実施形態によれば、上述の(1)~(9)の効果に加えて、以下の効果を得ることができる。
 (11)本実施形態においては、有機EL表示装置1の面方向Xにおいて、第1シール材5と第2シール材16とを離間して配置する構成としている。従って、フリットガラスからなる第1シール材5を加熱して素子基板30と封止基板20を溶着する際の熱が第2シール材16に伝搬することを防止することが可能になる。その結果、樹脂により形成された第2シール材16の熱による変質を防止することが可能になる。
 なお、上記実施形態は以下のように変更しても良い。
 図22に示すように、上記第2の実施形態においても、上記第3の実施形態の場合と同様に、第1シール材5と第2シール材16とを離間して配置する(即ち、第1シール材5と第2シール材16との間にスペースSが形成されている)構成としても良い。
 また、図23に示すように、有機EL素子4の表面(即ち、有機EL素子4の第2電極8の表面)上に、可視光透過性を有するとともに紫外線遮光性を有する遮光部材35を設ける構成としても良い。このような構成により、上述の樹脂硬化工程において、封止基板20側から紫外線を照射して樹脂部材14及び第2シール材16を形成する際に、有機EL素子4への紫外線の進入を確実に防止することが可能になる。その結果、紫外線照射による有機EL素子4の劣化(即ち、有機層7を構成する各種機能層が化学的に変化して、本来の機能を発揮できない状態になること)を防止することが可能になる。また、遮光部材35は可視光透過性を有するため、有機EL素子4からの発光を封止基板20側から取り出すことが可能になる。従って、有機EL表示装置1を、素子基板30側から光を取り出すボトムエミッション型、封止基板30側から光を取り出すトップエミッション型、及び素子基板30側と封止基板20側から光を取り出す両面発光型のいずれの発光タイプにも適用することが可能になる。
 なお、上記第2の実施形態、及び第3の実施形態においても、図23に示す場合と同様に、有機EL素子4の表面(即ち、有機EL素子4の第2電極8の表面)上に、可視光透過性を有するとともに紫外線遮光性を有する遮光部材35を設ける構成としても良い。
 また、遮光部材35は、特に限定されるものではなく、例えば、紫外線吸収性を有する材料よりなるフィルム、紫外線吸収剤を含有するコーティング剤がコートされてなるフィルム等を用いることができる。また、第2電極8の表面に、直接、紫外線吸収剤を含有するコーティング剤よりなるコーティング膜を形成し、これを遮光部材35とすることもできる。また、第2電極8の表面に、直接、紫外線吸収剤を蒸着法等によって蒸着し、得られた蒸着膜を遮光部材35とすることもできる。
 紫外線吸収性を有するフィルムを形成する材料としては、例えば、樹脂バインダーと、これに含有された紫外線吸収剤からなるものが挙げられる。また、紫外線吸収剤としては、例えば、酸化亜鉛、酸化チタン等からなる超微粒子等の無機系の紫外線吸収剤、あるいはベンゾトリアゾール系、トリアジン系、ベンゾフェノン系等の有機系の紫外線吸収剤等を用いることができる。
 また、紫外線吸収剤を含有するコーティング剤としては、例えば、アクリルエマルジョン、あるいは低分子量の熱硬化型のウレタンアクリレートおよび触媒等からなるコーティング液と、紫外線吸収剤とを湿式分散混合法によって混合したものを用いることができる。
 なお、遮光部材35においては、紫外線遮光率が90%以上であることが好ましく、95%以上であることが一層好ましく、98%以上であることがより一層好ましい。これは、紫外線遮光率が90%未満である場合には、遮光部材35に十分な紫外線遮光機能を付与することが困難になり、有機層7を構成する各種機能層の機能が低下する場合ががあるためである。
 また、この遮光部材35は、上述の有機EL素子形成工程において、第2電極8を形成した後、例えば、真空蒸着法により第2電極8上にベンゾトリアゾール系誘導体層を設けることにより形成することができる。なお、蒸着レートとしては、0.5Å/sとすることができ、膜厚は紫外線遮光率が95%以上になるように調整する。
 以上説明したように、本発明は、有機EL素子を備えた有機EL表示装置およびその製造方法に適している。
 1  有機EL表示装置
 4  有機EL素子
 5  第1シール材
 6  第1電極
 7  有機層
 8  第2電極
 14  樹脂部材
 15  保護膜
 16  第2シール材
 17  スペーサ
 20  封止基板(第2基板)
 30  素子基板(第1基板)
 35  遮光部材
 40  有機EL表示装置
 50  有機EL表示装置
 60  有機EL表示装置
 70  有機EL表示装置

Claims (11)

  1.  第1基板と、
     前記第1基板に対向して設けられた第2基板と、
     前記第1基板上に形成されるとともに、前記第1基板と前記第2基板との間に設けられた有機EL素子と、
     フリットガラスにより形成されるとともに、前記第1基板と前記第2基板との間に設けられ、前記有機EL素子を封止するように前記第1基板と前記第2基板との間を溶着する第1シール材と、
     前記第2基板と前記有機EL素子との間に設けられ、前記有機EL素子の表面を覆う樹脂部材と、
     樹脂により形成されるとともに、前記第1基板と前記第2基板との間に設けられた第2シール材と
     を備えることを特徴とする有機EL表示装置。
  2.  前記第2シール材には、前記樹脂部材の厚みを規制するためのスペーサが混入されていることを特徴とする請求項1に記載の有機EL表示装置。
  3.  前記第1シール材の高さをH、前記スペーサの径をDとした場合に、H≧Dの関係が成立することを特徴とする請求項2に記載の有機EL表示装置。
  4.  前記第2シール材は、前記有機EL表示装置の面方向において、前記第1シール材の内側に配置されていることを特徴とする請求項1~請求項3のいずれか1項に記載の有機EL表示装置。
  5.  前記第2シール材は、前記有機EL表示装置の面方向において、前記第1シール材の外側に配置されていることを特徴とする請求項1~請求項3のいずれか1項に記載の有機EL表示装置。
  6.  前記有機EL表示装置1の面方向において、前記第1シール材と前記第2シール材とを離間して配置することを特徴とする請求項1~請求項5のいずれか1項に記載の有機EL表示装置。
  7.  前記樹脂が、アクリル樹脂またはエポキシ樹脂であることを特徴とする請求項1~請求項6のいずれか1項に記載の有機EL表示装置。
  8.  前記有機EL素子の表面上に、可視光透過性を有するとともに紫外線遮光性を有する遮光部材が設けられていることを特徴とする請求項1~請求項7のいずれか1項に記載の有機EL表示装置。
  9.  前記樹脂部材の厚みが3μm以上20μm以下であることを特徴とする請求項1~請求項8のいずれか1項に記載の有機EL表示装置。
  10.  第1基板上に有機EL素子を形成する有機EL素子形成工程と、
     第2基板上に、フリットガラスからなる第1シール材を枠状に形成する第1シール材形成工程と、
     前記第1シール材が形成された前記第2基板に、樹脂により形成された第2シール材を枠状に形成する第2シール材形成工程と、
     前記第2基板に形成された前記第2シール材の内側に、樹脂部材を形成するための樹脂材料を滴下して注入する滴下注入工程と、
     真空雰囲気で、前記第1シール材と前記第2シール材とを介して、前記第1基板と前記第2基板とを貼り合わせるとともに、前記第2シール材の内側において、前記樹脂材料を均一に拡散させる貼合体形成工程と、
     前記樹脂材料を硬化させて前記樹脂部材を形成するとともに、前記第2シール材を形成する前記樹脂を硬化させる樹脂硬化工程と、
     前記フリットガラスからなる第1シール材を加熱して、該第1シール材により前記第1基板と前記第2基板との間を溶着する溶着工程と
     を少なくとも備えることを特徴とする有機EL表示装置の製造方法。
  11.  前記溶着工程において、前記第1シール材の幅方向の一部のみを加熱することを特徴とする請求項10に記載の有機EL表示装置の製造方法。
PCT/JP2010/001465 2009-06-11 2010-03-03 有機el表示装置およびその製造方法 WO2010143337A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2011147916/07A RU2011147916A (ru) 2009-06-11 2010-03-03 Органическое электролюминесцентное дисплейное устройство и способ его изготовления
US13/322,783 US8710492B2 (en) 2009-06-11 2010-03-03 Organic EL display device and method for manufacturing the same
EP10785869.8A EP2442621A4 (en) 2009-06-11 2010-03-03 ORGANIC EL DISPLAY DEVICE AND MANUFACTURING METHOD THEREFOR
BRPI1010627A BRPI1010627A2 (pt) 2009-06-11 2010-03-03 "dispositivo de vídeo el e método para a fabricação do mesmo"
CN2010800229716A CN102450098A (zh) 2009-06-11 2010-03-03 有机el显示装置及其制造方法
JP2011518214A JPWO2010143337A1 (ja) 2009-06-11 2010-03-03 有機el表示装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-140069 2009-06-11
JP2009140069 2009-06-11

Publications (1)

Publication Number Publication Date
WO2010143337A1 true WO2010143337A1 (ja) 2010-12-16

Family

ID=43308600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001465 WO2010143337A1 (ja) 2009-06-11 2010-03-03 有機el表示装置およびその製造方法

Country Status (8)

Country Link
US (1) US8710492B2 (ja)
EP (1) EP2442621A4 (ja)
JP (1) JPWO2010143337A1 (ja)
KR (1) KR20120024658A (ja)
CN (1) CN102450098A (ja)
BR (1) BRPI1010627A2 (ja)
RU (1) RU2011147916A (ja)
WO (1) WO2010143337A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011268A1 (ja) * 2010-07-23 2012-01-26 パナソニック株式会社 表示パネル及びその製造方法
CN102385186A (zh) * 2011-11-18 2012-03-21 深圳市华星光电技术有限公司 液晶面板、液晶面板的制作方法及制作设备
WO2012114685A1 (ja) * 2011-02-24 2012-08-30 シャープ株式会社 有機el表示装置の製造方法およびその方法により製造された有機el表示装置
WO2013031509A1 (en) * 2011-08-26 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, lighting device, and method for manufacturing the light-emitting device
CN103165821A (zh) * 2011-12-08 2013-06-19 上海天马微电子有限公司 Oled显示模组封装结构
JP2013125718A (ja) * 2011-12-16 2013-06-24 Sharp Corp 表示装置及びその製造方法
US20140090685A1 (en) * 2011-03-22 2014-04-03 Efacec Engenharia E Sistemas, S.A. Substrate and electrode for solar cells and the corresponding manufacturing process
JP2014063147A (ja) * 2012-08-28 2014-04-10 Semiconductor Energy Lab Co Ltd 表示装置
CN104600204A (zh) * 2014-12-26 2015-05-06 深圳市华星光电技术有限公司 Oled封装结构及封装方法
US9257668B2 (en) 2013-09-23 2016-02-09 Samsung Display Co., Ltd. Organic light-emitting diode (OLED) display and method for manufacturing the same
JP2019071285A (ja) * 2019-01-04 2019-05-09 シャープ株式会社 基板の封止構造体、及び表示装置とその製造方法
WO2019123649A1 (ja) * 2017-12-22 2019-06-27 堺ディスプレイプロダクト株式会社 封止構造体、有機el表示装置、表示装置及び表示装置の製造方法
JP2020537814A (ja) * 2017-11-01 2020-12-24 深▲セン▼市▲華▼星光▲電▼半▲導▼体▲顕▼示技▲術▼有限公司 Oledパッケージ方法およびoledパッケージ構造
US11211579B2 (en) 2017-09-27 2021-12-28 Sharp Kabushiki Kaisha Substrate sealing structure body, and, display device and production method therefor

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595421B2 (ja) * 2009-12-14 2014-09-24 シャープ株式会社 防湿フィルム及びその製造方法、並びにそれを備えた有機電子デバイス
KR101924526B1 (ko) * 2012-08-22 2018-12-04 삼성디스플레이 주식회사 유기 발광 표시장치 및 그 제조방법
US8883527B2 (en) * 2012-09-06 2014-11-11 Shenzhen China Star Optoelectronics Technology Co., Ltd. Organic light-emitting diode display panel and manufacturing method for the same
WO2014069362A1 (ja) 2012-11-05 2014-05-08 ソニー株式会社 光学装置およびその製造方法、ならびに電子機器
CN104064674A (zh) * 2013-03-21 2014-09-24 海洋王照明科技股份有限公司 有机电致发光器件
JP6127637B2 (ja) * 2013-03-26 2017-05-17 セイコーエプソン株式会社 電気光学装置、電気光学装置の製造方法、及び電子機器
US20140301088A1 (en) * 2013-04-08 2014-10-09 Radiant Opto-Elec Technology Co., Ltd. Led display screen
CN103258971B (zh) 2013-04-27 2016-02-03 上海和辉光电有限公司 显示元件的封装方法及其装置
KR102114154B1 (ko) * 2013-07-02 2020-05-25 삼성디스플레이 주식회사 표시 장치
KR102092706B1 (ko) * 2013-09-02 2020-04-16 삼성디스플레이 주식회사 조성물, 상기 조성물을 포함하는 유기 발광 표시 장치 및 상기 유기 발광 표시 장치의 제조 방법
JP2015115185A (ja) * 2013-12-11 2015-06-22 東京エレクトロン株式会社 有機elモジュールおよびその製造方法
CN103730603A (zh) * 2013-12-26 2014-04-16 京东方科技集团股份有限公司 有机电致发光器件的封装方法以及有机电致发光体
JP2015129822A (ja) * 2014-01-07 2015-07-16 株式会社ジャパンディスプレイ 表示装置
KR20150098258A (ko) * 2014-02-19 2015-08-28 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
CN103915573B (zh) * 2014-03-05 2017-05-17 厦门天马微电子有限公司 一种封装盖板及制作方法、显示装置
KR20150108463A (ko) * 2014-03-17 2015-09-30 삼성디스플레이 주식회사 유기발광 표시장치 및 그의 제조방법
KR20160019589A (ko) * 2014-08-11 2016-02-22 삼성디스플레이 주식회사 플렉서블 디스플레이 장치와, 이의 제조 방법
CN104299981B (zh) * 2014-09-22 2017-02-08 京东方科技集团股份有限公司 Oled显示面板及其封装方法和oled显示装置
KR101640076B1 (ko) * 2014-11-05 2016-07-15 앰코 테크놀로지 코리아 주식회사 웨이퍼 레벨의 칩 적층형 패키지 및 이의 제조 방법
WO2016084256A1 (ja) * 2014-11-28 2016-06-02 パイオニア株式会社 発光装置
KR102304722B1 (ko) 2014-12-05 2021-09-27 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN104821376A (zh) * 2015-04-24 2015-08-05 京东方科技集团股份有限公司 一种oled面板及其制造方法、显示装置
CN104882556B (zh) * 2015-06-08 2017-06-27 京东方科技集团股份有限公司 一种封装件及其封装方法、oled装置
US10401689B2 (en) 2016-01-08 2019-09-03 Apple Inc. Electronic device displays with laser-welded edges
CN105609660B (zh) * 2016-03-22 2017-11-24 京东方科技集团股份有限公司 一种oled显示面板及其封装方法、显示装置
CN107329303A (zh) * 2017-06-30 2017-11-07 联想(北京)有限公司 一种显示屏、电子设备及显示屏的制备方法
CN107170906B (zh) * 2017-07-19 2020-03-24 京东方科技集团股份有限公司 一种封框胶结构、显示面板及显示装置
KR102560099B1 (ko) * 2018-03-30 2023-07-26 삼성디스플레이 주식회사 표시 장치
CN108962963B (zh) * 2018-08-01 2021-01-22 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
KR102582465B1 (ko) * 2018-09-19 2023-09-25 삼성디스플레이 주식회사 표시 장치
WO2020129134A1 (ja) * 2018-12-17 2020-06-25 シャープ株式会社 電界発光素子および表示デバイス
KR102089351B1 (ko) * 2018-12-21 2020-03-16 세메스 주식회사 디스플레이 소자 및 디스플레이 소자의 제조 방법
CN110112323B (zh) * 2019-06-14 2022-05-13 京东方科技集团股份有限公司 一种oled封装结构、封装方法及显示器件
CN110828704A (zh) * 2019-10-28 2020-02-21 深圳市华星光电半导体显示技术有限公司 显示面板的封装方法及封装结构
KR20210137330A (ko) * 2020-05-08 2021-11-17 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125463A (ja) * 1995-12-28 1998-05-15 Matsushita Electric Ind Co Ltd 有機エレクトロルミネセンス素子、液晶照明装置、表示デバイス装置、および、有機エレクトロルミネセンス素子の製造方法
JP2002280169A (ja) * 2001-03-19 2002-09-27 Futaba Corp 有機el装置
JP2005285354A (ja) * 2004-03-26 2005-10-13 Optrex Corp 表示装置及びその製造方法
JP2007115692A (ja) * 2005-10-21 2007-05-10 Samsung Sdi Co Ltd 有機電界発光表示装置及びその製造方法
JP2007194184A (ja) * 2006-01-20 2007-08-02 Samsung Sdi Co Ltd 有機電界発光表示装置及びその製造方法
JP2007200846A (ja) * 2006-01-27 2007-08-09 Samsung Sdi Co Ltd 有機電界発光表示装置及びその製造方法
JP2008117767A (ja) * 2006-11-07 2008-05-22 Corning Inc 発光ディスプレイ装置のためのシール、方法、および装置
JP2008243379A (ja) * 2007-03-23 2008-10-09 Sharp Corp 有機エレクトロルミネセンス装置及びその製造方法
JP2009004351A (ja) * 2006-12-07 2009-01-08 Mitsubishi Chemicals Corp 有機蛍光体、有機蛍光体材料、発光装置およびその発光方法
JP2009030058A (ja) * 2007-07-27 2009-02-12 Dongjin Semichem Co Ltd ディスプレイ素子のシーリング方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195142B1 (en) * 1995-12-28 2001-02-27 Matsushita Electrical Industrial Company, Ltd. Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element
US20060194698A1 (en) 2003-01-03 2006-08-31 Gwinn Kimberly D Use of herbs as a delivery system for bioactive phytochemicals
TWI272867B (en) * 2004-06-08 2007-02-01 Au Optronics Corp Organic light-emitting display and fabricating method thereof
JP2007035322A (ja) * 2005-07-22 2007-02-08 Optrex Corp 有機ledディスプレイの製造方法および有機ledディスプレイ
JP4227134B2 (ja) * 2005-11-17 2009-02-18 三星エスディアイ株式会社 平板表示装置の製造方法、平板表示装置、及び平板表示装置のパネル
US8258696B2 (en) 2007-06-28 2012-09-04 Samsung Mobile Display Co., Ltd. Light emitting display and method of manufacturing the same
KR100879864B1 (ko) * 2007-06-28 2009-01-22 삼성모바일디스플레이주식회사 발광 표시 장치 및 그의 제조 방법
US8330339B2 (en) 2007-06-28 2012-12-11 Samsung Display Co., Ltd. Light emitting display and method of manufacturing the same
KR101457362B1 (ko) * 2007-09-10 2014-11-03 주식회사 동진쎄미켐 유리 프릿 및 이를 이용한 전기소자의 밀봉방법
JP2010080087A (ja) 2008-09-24 2010-04-08 Toshiba Corp 平面表示装置の製造方法、平面表示装置の製造装置及び平面表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125463A (ja) * 1995-12-28 1998-05-15 Matsushita Electric Ind Co Ltd 有機エレクトロルミネセンス素子、液晶照明装置、表示デバイス装置、および、有機エレクトロルミネセンス素子の製造方法
JP2002280169A (ja) * 2001-03-19 2002-09-27 Futaba Corp 有機el装置
JP2005285354A (ja) * 2004-03-26 2005-10-13 Optrex Corp 表示装置及びその製造方法
JP2007115692A (ja) * 2005-10-21 2007-05-10 Samsung Sdi Co Ltd 有機電界発光表示装置及びその製造方法
JP2007194184A (ja) * 2006-01-20 2007-08-02 Samsung Sdi Co Ltd 有機電界発光表示装置及びその製造方法
JP2007200846A (ja) * 2006-01-27 2007-08-09 Samsung Sdi Co Ltd 有機電界発光表示装置及びその製造方法
JP2008117767A (ja) * 2006-11-07 2008-05-22 Corning Inc 発光ディスプレイ装置のためのシール、方法、および装置
JP2009004351A (ja) * 2006-12-07 2009-01-08 Mitsubishi Chemicals Corp 有機蛍光体、有機蛍光体材料、発光装置およびその発光方法
JP2008243379A (ja) * 2007-03-23 2008-10-09 Sharp Corp 有機エレクトロルミネセンス装置及びその製造方法
JP2009030058A (ja) * 2007-07-27 2009-02-12 Dongjin Semichem Co Ltd ディスプレイ素子のシーリング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2442621A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011268A1 (ja) * 2010-07-23 2012-01-26 パナソニック株式会社 表示パネル及びその製造方法
US8884849B2 (en) 2010-07-23 2014-11-11 Panasonic Corporation Display panel and production method thereof
WO2012114685A1 (ja) * 2011-02-24 2012-08-30 シャープ株式会社 有機el表示装置の製造方法およびその方法により製造された有機el表示装置
US20140090685A1 (en) * 2011-03-22 2014-04-03 Efacec Engenharia E Sistemas, S.A. Substrate and electrode for solar cells and the corresponding manufacturing process
US10629386B2 (en) * 2011-03-22 2020-04-21 Efacec Engenharia E Sistemas, S.A. Substrate and electrode for solar cells and the corresponding manufacturing process
TWI569489B (zh) * 2011-08-26 2017-02-01 半導體能源研究所股份有限公司 發光裝置,電子裝置,照明設備及發光裝置的製造方法
WO2013031509A1 (en) * 2011-08-26 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, lighting device, and method for manufacturing the light-emitting device
US9595697B2 (en) 2011-08-26 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, lighting device, and method for manufacturing the light-emitting device
US9258853B2 (en) 2011-08-26 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, lighting device, and method for manufacturing the light-emitting device
CN102385186A (zh) * 2011-11-18 2012-03-21 深圳市华星光电技术有限公司 液晶面板、液晶面板的制作方法及制作设备
CN103165821A (zh) * 2011-12-08 2013-06-19 上海天马微电子有限公司 Oled显示模组封装结构
JP2013125718A (ja) * 2011-12-16 2013-06-24 Sharp Corp 表示装置及びその製造方法
JP2014063147A (ja) * 2012-08-28 2014-04-10 Semiconductor Energy Lab Co Ltd 表示装置
US9257668B2 (en) 2013-09-23 2016-02-09 Samsung Display Co., Ltd. Organic light-emitting diode (OLED) display and method for manufacturing the same
CN104600204A (zh) * 2014-12-26 2015-05-06 深圳市华星光电技术有限公司 Oled封装结构及封装方法
US11211579B2 (en) 2017-09-27 2021-12-28 Sharp Kabushiki Kaisha Substrate sealing structure body, and, display device and production method therefor
US11437600B2 (en) 2017-09-27 2022-09-06 Sharp Kabushiki Kaisha Substrate sealing structure body, and, display device and production method therefor
JP2020537814A (ja) * 2017-11-01 2020-12-24 深▲セン▼市▲華▼星光▲電▼半▲導▼体▲顕▼示技▲術▼有限公司 Oledパッケージ方法およびoledパッケージ構造
WO2019123649A1 (ja) * 2017-12-22 2019-06-27 堺ディスプレイプロダクト株式会社 封止構造体、有機el表示装置、表示装置及び表示装置の製造方法
JP2019071285A (ja) * 2019-01-04 2019-05-09 シャープ株式会社 基板の封止構造体、及び表示装置とその製造方法

Also Published As

Publication number Publication date
BRPI1010627A2 (pt) 2016-03-15
KR20120024658A (ko) 2012-03-14
US20120080671A1 (en) 2012-04-05
JPWO2010143337A1 (ja) 2012-11-22
CN102450098A (zh) 2012-05-09
RU2011147916A (ru) 2013-10-27
EP2442621A4 (en) 2013-10-09
US8710492B2 (en) 2014-04-29
EP2442621A1 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2010143337A1 (ja) 有機el表示装置およびその製造方法
WO2011001573A1 (ja) 有機el表示装置およびその製造方法
KR102126588B1 (ko) 가요성 유기 전자 장치를 제조하는 방법
WO2010113357A1 (ja) ドナー基板、転写膜の製造方法、及び、有機電界発光素子の製造方法
US9478766B2 (en) Manufacturing method for organic EL display device, and organic EL display device manufactured by such method
WO2013171966A1 (ja) 有機el表示装置
JP4059968B2 (ja) 有機el素子の製造方法
JP3288242B2 (ja) 有機エレクトロルミネッセンス表示装置およびその製造方法
US20090161216A1 (en) Display device and method for manufacturing the same
WO2012063445A1 (ja) 有機el表示装置およびその製造方法
CN104347665B (zh) 制造有机发光显示设备的方法
JP2002170664A (ja) 有機電界発光素子
JP2013187019A (ja) 有機el表示装置およびその製造方法
JPH10241858A (ja) 有機エレクトロルミネッセンス表示装置の製造方法および製造装置
JPH11121170A (ja) 有機el素子およびその製造方法
JP2011054477A (ja) 有機エレクトロルミネッセンス表示装置、および有機エレクトロルミネッセンス表示装置の製造方法
JPH11176571A (ja) 有機el素子の製造方法
WO2013150713A1 (ja) 有機el表示装置およびその製造方法
WO2010007656A1 (ja) 有機elパネル及びその製造方法
WO2009142427A2 (ko) 유기발광소자 및 이의 제작 방법
JP2005353287A (ja) 有機el素子及びその製造方法
WO2012093467A1 (ja) 有機el表示装置およびその製造方法
KR20100035312A (ko) 유기전계발광소자 및 그 제조방법
WO2009099009A1 (ja) 有機elディスプレイおよびその製造方法
KR100627298B1 (ko) 유기 발광 표시장치의 인캡 글라스 접합장치 및 접합 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022971.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117028242

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011518214

Country of ref document: JP

Ref document number: 8731/CHENP/2011

Country of ref document: IN

Ref document number: 2010785869

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13322783

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011147916

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010627

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1010627

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111124