WO2019123649A1 - 封止構造体、有機el表示装置、表示装置及び表示装置の製造方法 - Google Patents

封止構造体、有機el表示装置、表示装置及び表示装置の製造方法 Download PDF

Info

Publication number
WO2019123649A1
WO2019123649A1 PCT/JP2017/046191 JP2017046191W WO2019123649A1 WO 2019123649 A1 WO2019123649 A1 WO 2019123649A1 JP 2017046191 W JP2017046191 W JP 2017046191W WO 2019123649 A1 WO2019123649 A1 WO 2019123649A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sealing agent
melting point
low melting
display device
Prior art date
Application number
PCT/JP2017/046191
Other languages
English (en)
French (fr)
Inventor
克彦 岸本
勇毅 小林
Original Assignee
堺ディスプレイプロダクト株式会社
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社, シャープ株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to US16/771,590 priority Critical patent/US20200303482A1/en
Priority to PCT/JP2017/046191 priority patent/WO2019123649A1/ja
Publication of WO2019123649A1 publication Critical patent/WO2019123649A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/46Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character is selected from a number of characters arranged one behind the other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/361Temperature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing

Definitions

  • the present invention relates to a sealing structure including an electronic device, an organic EL display device, a composite (hybrid) display device in which a reflective liquid crystal display device and an organic EL light emitting device are combined, and a method of manufacturing the display device.
  • the space between the element substrate and the sealing substrate opposed to each other with the pixel portion containing the organic compound is made of epoxy resin or the like around the pixel portion. It is doubly sealed using the first sealing agent and the second sealing agent.
  • a sealant portion is formed on a sealing substrate as a partition wall of the inner filler, and a sealing agent made of glass frit is formed on the outer periphery of the sealant portion.
  • the sealing agent seals between the sealing substrate and the substrate on which the element is formed.
  • JP 2004-103337 A JP, 2010-103112, A
  • a double seal using an epoxy resin or the like to seal a light emitting element including an organic compound and the like sandwiched between two substrates, or The sealing agent etc. which consist of glass are formed.
  • the distance between the two substrates depends on the height of the first sealing agent in the image display device of Patent Document 1 and the height of the sealant portion in the organic electroluminescent display device of Patent Document 2. Therefore, in these sealing structures, if their heights vary in the formation of the first sealing agent or sealant portion, the spacing between the two substrates, and hence the thickness of the display device, will vary.
  • the present invention can protect an electronic element formed between two substrates from moisture and oxygen, and further, a sealing structure capable of precisely controlling the gap between the two substrates.
  • an organic EL display device capable of protecting the organic EL light emitting element by controlling the gap between the two substrates in such a manner, and capable of protecting the electronic element from moisture and oxygen as such; It is an object of the present invention to provide a method of manufacturing a display device in which the gap between two substrates is accurately controlled.
  • Another object of the present invention is to provide a composite type display device including both a liquid crystal display element and an organic EL light emitting element, which can protect the organic EL light emitting element from the infiltration of moisture and oxygen, and further the image quality in the liquid crystal display element. It is an object of the present invention to provide a display device that can suppress the decrease of
  • a sealing structure includes a first substrate and a second substrate disposed opposite to each other, an electronic element formed between the first substrate and the second substrate, and the electron A sealing agent for closing a gap between the first substrate and the second substrate at an outer periphery of the element, the sealing agent including a low melting point glass material and a plurality of spacers, and the plurality of spacers The melting point is higher than the softening point of the melting point glass material.
  • the organic EL display device includes the sealing structure according to the first embodiment, and the electronic device is an organic EL light emitting device.
  • a display device including: a TFT element having a drive element formed for each pixel of a display screen; and a first insulating layer having a flat upper surface of the driver element; A reflective electrode for a liquid crystal display element formed above the first insulating layer in a first region of the pixel, and one pixel adjacent to the first region on the first insulating layer of the TFT substrate An organic EL light emitting element formed in the second region and having a first electrode, an organic layer, a second electrode, and a covering layer, and an opposing electrode facing the reflective electrode, and disposed to face the TFT substrate An opposing substrate, a liquid crystal layer filled between the TFT substrate and the opposing substrate, and a sealing agent which seals a gap between the TFT substrate and the opposing substrate around the liquid crystal layer,
  • the sealing agent is a low melting point glass material and plural ones Includes a spacer, the plurality of spacers have a melting point higher than the softening point of the low melting
  • the electronic device when the first substrate and the second substrate are overlapped in the arrangement of the sealing material using a material having a plurality of particles mixed and mixed with the low melting point glass material The above-mentioned seal agent in the part which should surround the formation area of Charge was placed, bonding said sealing material and said first substrate and said second substrate by laser irradiation.
  • the electronic element formed between the two substrates can be protected from moisture and oxygen, and furthermore, the distance between the two substrates can be controlled with high accuracy.
  • the gap between the two substrates can be controlled, and the organic EL light emitting element can be protected.
  • the organic EL light emitting element in a composite type display device including both a liquid crystal display element and an organic EL light emitting element, can be protected from the penetration of moisture and oxygen, It is possible to suppress the deterioration of the image quality and the like in the liquid crystal display element.
  • FIG. 1B is a cross-sectional view taken along line IB-IB of FIG. 1A. It is a figure which shows typically an example of a structure of the sealing compound material used for the sealing structure of 1st embodiment. It is a figure which shows typically the other example of a structure of the sealing compound material used for the sealing structure of 1st embodiment.
  • manufacture of the sealing structure of 1st embodiment it is a top view which shows the state which formed the sealing agent material by printing. It is a top view which shows an example of the state which fixed the glass ribbon as sealing agent material in manufacture of the sealing structure of 1st embodiment.
  • the sealant material a material such as glass that hardly allows moisture and oxygen to permeate.
  • the height of the sealing agent is determined by the supply amount of the sealing agent, the viscosity and tension at the time of softening, and the sealing agent.
  • the distance between the two substrates included in the flat display is often thin and accurate. It is desirable to be controlled.
  • accurate control of the distance between the two substrates tightly sealed is good image quality due to the uniformity of the cell gap, It is considered to be extremely important in order to obtain good reliability of the organic EL light emitting device with less deterioration due to moisture and the like.
  • the present inventors have found such a subject, repeated extensive studies, and mixed low melting point glass material and low melting point glass material having a melting point higher than the softening point of this low melting point glass material. It has been found that this problem can be solved by using a sealing agent containing a spacer.
  • sealing structure an organic EL display device, a display device, and a method of manufacturing the display device according to each embodiment of the present invention will be described.
  • material of each component in the embodiment described below, a shape, their relative positional relationship, etc. are only an illustration to the last.
  • the sealing structure, the organic EL display device, the display device, and the method of manufacturing the display device of the present invention are not to be interpreted in a limited manner by these.
  • FIG. 1A is a cross-sectional view taken along line IB-IB of FIG. 1A.
  • FIG. 1B the cross section taken along line IB-IB in FIG. 1A is shown enlarged, and the central portion in line IB-IB is omitted.
  • the sealing structure 100 is formed between the first substrate 10 and the second substrate 20 disposed opposite to each other, and the first substrate 10 and the second substrate 20.
  • the electronic device 30 and the sealing agent 50 closing the gap between the first substrate 10 and the second substrate 20 on the outer periphery of the electronic device 30 are provided.
  • the electronic element 30 is substantially airtightly sealed between the first substrate 10 and the second substrate 20 by closing the gap between the first substrate 10 and the second substrate 20 with the sealing agent 50.
  • the sealing agent 50 includes a low melting point glass material 50a and a plurality of spacers 50b, and the plurality of spacers 50b have a melting point higher than the softening point of the low melting point glass material 50a. Therefore, as described later, the gap between the first substrate 10 and the second substrate 20 can be strictly controlled.
  • the “melting point” of the spacer 50 b is a temperature at which the solid state spacer 50 b starts to deform when the material used for the spacer 50 b does not have a clear melting point.
  • the “sealing structure” is a generic name of an electronic device in which the electronic element 30 or the like is disposed between two substrates and the periphery is sealed. Further, the electronic element 30 means one or a plurality of electronic elements constituting an electronic device collectively referred to as a “sealing structure”. For example, if the sealing structure is a lighting device using an organic EL light emitting element (hereinafter, also simply referred to as an OLED), the electronic element 30 means one or more OLEDs constituting the lighting device. If the sealing structure is a display device, the electronic element 30 means a group of electronic elements such as a plurality of OLEDs constituting each pixel. In the case where a plurality of electronic devices are manufactured in the pair of first substrate 10 and second substrate 20, the sealing agent 50 is formed around the electronic element 30 for each electronic device.
  • OLED organic EL light emitting element
  • the first substrate 10 and the second substrate 20 are not particularly limited as long as they have airtightness. It may be an insulating substrate, a semiconductor substrate, or a conductive substrate. Even when the insulating substrate is preferable in the case where the electronic element 30 (including the electrode which is the component thereof) is formed on the surface of one substrate, the semiconductor substrate or the conductive substrate forms the insulating film on the surface It may be used after being done.
  • the first substrate 10 and the second substrate 20 may be a rigid substrate or a flexible substrate. Furthermore, the first substrate 10 and the second substrate 20 may be different substrates, for example, a semiconductor substrate and an insulating substrate.
  • first substrate 10 and the second substrate 20 are shown in a single-layer structure, even if drive elements and the like (not shown) are formed on the first and second substrates 10 and 20. Good.
  • the electronic device 30 is not particularly limited, but the sealing structure 100 of the present embodiment is particularly effective when the electronic device 30 is an OLED including a material that is easily degraded by moisture, oxygen, or the like.
  • the electronic element 30 may be an electronic element in which a liquid crystal or the like is sealed, such as a liquid crystal display element (hereinafter, also simply referred to as an LCD) and a dye-sensitized solar cell.
  • the sealing structure 100 may include two or more and two or more types of electronic elements 30 as in a hybrid display including an LCD and an OLED described later.
  • the organic EL light emitting element 30 a is formed as the electronic element 30 on the first substrate 10 made of glass. That is, FIG. 1A also shows the organic EL display device of the second embodiment.
  • the organic EL display device of the second embodiment includes a sealing structure 100, and includes an organic EL light emitting element 30a as the electronic element 30.
  • the organic EL light emitting element 30 a includes at least a first electrode 31, an organic layer 33 stacked in an insulating bank 32 formed to surround the first electrode 31, and a second electrode 34 formed on the organic layer 33. It contains.
  • the organic EL light emitting element 30a is simplified in FIG.
  • the organic EL display device of the second embodiment includes, for example, a plurality of driving elements 13 formed on the first substrate 10 (see FIG. 5), And at least a plurality of organic EL light emitting elements 30 a formed on each of the plurality of driving elements 13.
  • the sealing material 50 surrounds the electronic element 30 and closes the gap between the first substrate 10 and the second substrate 20 around the electronic element 30.
  • the sealing agent 50 hermetically seals the electronic element 30 formed between the first substrate 10 and the second substrate 20 so that the electronic element 30 is not deteriorated by moisture, oxygen or the like. Therefore, glass material is used for the sealing agent 50 instead of resin such as epoxy resin.
  • the width (thickness) x of the sealing agent 50 is, for example, 0.5 mm or more and 2.0 mm or less, and if the sealing agent 50 has a width of this degree, no major problems occur with respect to hermetic sealing. Conceivable.
  • the sealing agent 50 includes the low melting point glass material 50 a having a low softening point (temperature to be in a so-called rubber state).
  • the low melting point glass has a softening point lowered by mixing a low melting point oxide into the composition of the glass, and generally has a softening point of about 350 to 600 ° C. or more.
  • low melting glass having a low softening point is preferable.
  • the crystallization start temperature is preferably high. That is, it is preferable to lower the softening point by mixing a low melting point oxide to such an extent that the crystallization start temperature does not become lower than the temperature reached by heating at the time of connection of the sealing agent 50 and each substrate. Furthermore, in consideration of the fact that a film agent or the like formed of a polyimide resin or the like may be used for the first substrate 10 etc., the softening point of the low melting point glass material 50a used for the sealing agent 50 is 400 ° C. or more and 500 ° C. It is preferable that it is the following.
  • V 2 O 5 vanadium-based low melting glass
  • P 2 O 5 phosphate-based low melting glass
  • V 2 O 5 vanadium-based low melting glass
  • P 2 O 5 phosphate-based low melting glass
  • a low melting glass having a softening point of about 450 ° C. can be obtained. That is, in the case of the sealing agent 50 containing the low melting point glass of such a material system and the additive, the sealing agent 50 is heated to a temperature of about 450 ° C. to 500 ° C. in a state of being in contact with each substrate. The sealing agent 50 can be softened once and firmly adhered to each substrate.
  • vanadium-based low melting point glass has high light absorption in the visible to infrared region, and as described later, can be softened by local heating using a laser beam or the like. Therefore, the sealing agent 50 can be softened relatively easily without excessively raising the immediate surrounding ambient of the electronic element 30.
  • the low melting glass material 50a contained in the sealing agent 50 is not limited to the vanadium-based and phosphate-based low melting glass exemplified here and the mixture thereof.
  • the low melting point glass material 50a may be a borate based or telluride low melting point glass or a mixture thereof.
  • the softening point of the low melting point glass material 50 a may be a temperature outside the range of 400 ° C. or more and 500 ° C.
  • the low melting point glass material 50a is in a rubbery or paste state that can be bonded to the first substrate 10 and the second substrate 20 without giving a significant influence on the light emission performance and the life and the like to the electronic element 30. It only needs to have a temperature that starts changing.
  • the sealing agent 50 includes the low melting glass member 50a and the spacer 50b formed using a material having a melting point higher than the softening point of the low melting glass member 50a. It is.
  • the spacer 50 b is dispersed in the sealing agent 50, and is interposed between the first substrate 10 and the second substrate 20 to define the length Lg of the gap between both substrates. That is, the length Lg of the gap between the first substrate 10 and the second substrate 20 can be determined by the size (width or length) of the spacer 50b in the direction of the length Lg. Therefore, in order to suppress the variation in the length Lg in the sealing structure 100, it is preferable that the width, the length, the diameter, or the like in the direction of the length Lg in the plurality of spacers 50b be uniform.
  • the spacers 50 b be evenly dispersed in the sealing agent 50.
  • the spacer 50b is a granular material dispersed in the low melting point glass material 50a.
  • the length Lg of the gap between the first substrate 10 and the second substrate 20 may be limited by the particle size of the spacer 50b.
  • “Particles” include not only spherical particles (see FIG. 2A) but also ellipsoidal, columnar (see FIG. 2B), or fibrous particles.
  • the spacers 50b may be particulates generally referred to as bead spacers or fiber spacers.
  • particle diameter is the diameter of the particles
  • particle diameter is a cross section orthogonal to the longitudinal direction of the particles Or the minor axis or the length of one side.
  • variation width of the “particle diameter” in the granular material used for the plurality of spacers 50 b is preferably about 0.1 ⁇ m or less.
  • the liquid crystal display device is also required to strictly control the length of the gap between the substrate (for example, the first substrate) provided with the pixel electrode and the substrate (for example, the second substrate) provided with the counter electrode if the variation is in this range. It can be realized by the sealing structure 100 of the embodiment.
  • the spacer 50 b may be contained in the sealing agent 50 at an arbitrary content rate.
  • the content rate of the spacer 50b in the sealing agent 50 is preferably large in that the gap between the first substrate 10 and the second substrate 20 can be uniformly held in the bonding portion by the sealing agent 50.
  • the sealing agent 50 needs to have a sufficient amount of the low melting point glass material 50a so that it can adhere to the first substrate 10 and the second substrate 20 with the required strength. Therefore, the content of the spacer 50b in the sealing agent 50 is preferably 5% by mass or more and 30% by mass or less, and more preferably 15% by mass or more and 25% by mass or less.
  • the sealing agent 50 can be bonded to the first and second substrates 10, 20 with sufficient strength, and furthermore, the first substrate 10 and the second substrate It is considered that unevenness and variation of the gap with 20 can be suppressed to a practically acceptable range.
  • the material of the spacer 50b is not particularly limited as long as it has a melting point higher than the softening point of the low melting glass member 50a.
  • the spacer 50b is preferably made of an inorganic material in that it should have a melting point higher than the softening point of the low melting point glass material 50a reaching about 400 ° C.
  • the spacer 50 b is made of silicon dioxide (silica: SiO 2 ) having a melting point of 1600 ° C. or more or quartz which is a crystallized product thereof, aluminum oxide having a melting point of 2000 ° C. or more (alumina: Al 2 O 3 ), or 800 It is composed of calcium carbonate (CaCO 3 ) having a melting point of ° C. or higher.
  • the sealing structure 100 of the present embodiment such a request can be met. That is, even when the low melting point glass material 50a is softened at the time of bonding the first substrate 10 and the second substrate 20, the spacer 50b is present, so the length Lg of the gap between both substrates is equal to or less than the particle diameter of the spacer 50b. It will never be. Further, the length Lg of the gap can be easily prevented from becoming longer than the particle diameter of the spacer 50b by appropriately pressing the two substrates toward each other at the time of bonding.
  • the length Lg of the gap between the first substrate 10 and the second substrate 20 can be strictly controlled.
  • the particulate material constituting the spacer 50b for example, when it is formed by SiO 2, it can be formed from those of the particle size of submicron level and particle size of about several 100 ⁇ m by growing the seed particles It can be formed up to
  • the length Lg of the gap between the first substrate 10 and the second substrate 20 in the organic EL display device of the second embodiment including the sealing structure 100 of the first embodiment is, for example, 5 ⁇ m or more and 50 ⁇ m or less. It is also good.
  • the gap between the substrate including the driving element and the organic light emitting element and the sealing substrate or the protective substrate is not set as narrow as described above.
  • the spacer 50b in the sealing agent 50 as in the present embodiment, the gap between both substrates can be strictly controlled in such a narrowness (shortness). As a result, it can contribute to the further thickness reduction and / or the flexibility improvement of the organic EL display device.
  • the low melting point glass material 50a is prepared, for example, as a glass frit in the form of a fine powder of several tens of ⁇ m3 and, as described above, softens by heating using a laser beam or the like and solidifies with temperature decrease. That is, the low melting point glass material 50 a in the sealing agent 50 in the sealing structure 100 may be a solidified material of the glass frit which has been softened once.
  • FIGS. 2A and 2B show an example of the configuration of the sealing agent material 51 that should be the sealing agent 50 by solidification after being softened, including the low melting point glass material 50a thus prepared as a glass frit. There is. As shown in FIGS. 2A and 2B, the sealant material 51 is a plurality of spacers which are particles composed of a low melting point glass material 50a in the form of a plurality of glass frits and an inorganic substance such as quartz described above. And 50b.
  • the sealant material 51 further includes a binder 51a containing an organic solvent, and is made into a paste by mixing the glass frit low melting point glass material 50a, the spacer 50b, and the binder 51a. It is prepared.
  • the spacer 50b has a substantially spherical shape.
  • the spacer 50b has a substantially cylindrical shape.
  • the spacer 50b of the granular material is not limited to the example of FIGS. 2A and 2B, and may be an ellipsoidal or fibrous granular material.
  • the length of the portion sandwiched between the first substrate 10 and the second substrate 20 in the spacer 50b which is a granular material be uniform among the plurality of spacers 50b.
  • the variation width is preferably 2% or less, more preferably 1% or less of the length of the portion to be held.
  • the “length of the portion held by the first and second substrates 10 and 20 in the spacer 50b” may be, for example, a diameter of the substantially spherical spacer 50b and a cross section orthogonal to the length direction of the cylindrical spacer 50b. Or the diameter or the minor axis length of a cross section orthogonal to the length direction of the elliptical spacer 50b.
  • the arrangement of the sealant material 51 on the first substrate 10 or the second substrate 20 will be described with reference to FIGS. 3A to 3C.
  • the sealant material 51 prepared in paste form as described above is applied to a predetermined portion of a substrate (for example, the first substrate 10) by screen printing or a dispenser as shown in, for example, FIG. 3A.
  • the "predetermined portion” is a portion that should surround the formation region A of the electronic element.
  • the sealant material 51 may be applied to either the first substrate 10 or the second substrate 20. In other words, the sealant material 51 may be applied to the substrate on which the electronic element 30 (see FIG.
  • the substrate bonded to the substrate on which the electronic element 30 is formed (for example, the electronic element 30 It may be formed on the second substrate 20 in the case of being formed on one substrate 10. Therefore, “the part to surround the formation area A of the electronic element” encloses the formation area A of the electronic element together with the application of the seal material 51 when the sealant material 51 is disposed on the substrate on which the electronic element 30 is formed. It is a site.
  • the “portion that should surround the formation region A of the electronic element” is the substrate on which the sealant material 51 is disposed and the electronic element
  • the substrate on which the T.30 is formed is a portion surrounding the electronic element 30 when they are superposed in a later step.
  • the sealant material 51 is heated to a temperature equal to or higher than the softening point of the low melting point glass material 50a, and the sealant material 51 adheres to each substrate and the sealant 50 is formed.
  • Various laser beams may be used for the irradiation of the laser beams, as described later.
  • the sealant material 51 may not be a paste of a low melting point glass and may not be applied.
  • a glass ribbon 51b may be used as the sealant material 51 (in FIGS. 3B and 3C, a partition material 61 described later is shown together with the sealant material) . That is, the sealing material 51 may be disposed by attaching the glass ribbon 51 b to a predetermined portion of one of the first and second substrates 10 and 20. Also in this case, the glass ribbon 51b includes the low melting point glass material 50a described above, the granular material forming the spacer 50b, and the like.
  • the glass ribbon 51b is formed by pouring the low melting point glass material 50a in a molten state into a mold or the like, or forming and solidifying a glass frit prepared in a paste form, and in this case, the spacer 50b is formed. Particulates such as quartz are mixed into the low melting point glass material 50a.
  • the glass ribbon 51b which does not contain air bubbles or gas, and eventually, the sealing agent 50 which does not contain air bubbles or gas You can get it.
  • the glass ribbon 51b is used, for example, one of the two substrates, for example, a predetermined region on the first substrate 10 where the sealing agent 50 is to be formed
  • the glass ribbon 51b is pasted with an adhesive or the like.
  • the sealant 50 is formed and bonded to each substrate by the irradiation of the laser light.
  • the adhesive may be attached not to the entire surface of the glass ribbon 51b but to a part (adhesion part B).
  • the adhesion site by the sealant material 51 is divided into a plurality of regions (for example, each side of a rectangular substrate), and the divided regions are respectively A glass ribbon 51b of a short length is prepared. Then, an adhesive (not shown) is applied only to the bonding portions B at one end (the example of FIG. 3B) or both ends (the example of FIG. 3C) of the glass ribbon 51b, and division of the bonding portion of the first substrate 10 or the second substrate 20 is performed.
  • Each glass ribbon 51b is arrange
  • the adhesion part B is arrange
  • the adhesive (not shown) attached to the bonding portion B releases gas (moisture and oxygen) when the temperature rises due to the laser light irradiation, the sealing agent 50 formed with the temperature rise (see FIG. 1), it is possible to prevent the entry of gas or the like into the formation region A of the electronic element. Therefore, it is considered that the deterioration of the electronic element 30 can be prevented.
  • the adhesive is attached only to one end of the glass ribbon 51b, and the other end of the glass ribbon 51b is in abutment with the other glass ribbon 51b and is bonded. Is integrated with other glass ribbons. As a result, even if the temperature of the glass ribbon 51b rises during adhesion to the substrate, the gas generated from the adhesive due to the temperature rise is released to the outside of the sealing agent 50.
  • the slightly elongated ends of the glass ribbon 51b are bent by 90 °.
  • the glass ribbon 51b is disposed such that the bent portion is located outside the bonding site. Therefore, as in the example of FIG. 3B, the bonding part B is on the outside of the sealing agent material 51, and even when gas is generated from the adhesive at the time of bonding by laser light, it is enclosed in the formation area A of the electronic element It will not be done. And since it adhere
  • the sealant material 51 contains the low melting point glass material 50a as described above, and can be softened at a relatively low temperature and bonded to the first and second substrates 10, 20.
  • a heat insulating means is provided between the electronic element 30 and the sealing agent 50. Is preferred.
  • the liquid crystal display device is configured by the sealing structure 100, the liquid crystal is filled between the two substrates before bonding the first substrate 10 and the second substrate 20 via the sealing agent 50. Ru.
  • a partition wall 60 which is separated from the sealing agent 50 and surrounds the electronic element 30 is formed between the sealing agent 50 and the electronic element 30.
  • the partition wall 60 is formed so as to surround the electronic element 30 in the same manner as the sealing agent 50. Therefore, even when the electronic element 30 contains a liquid such as liquid crystal, the liquid can be retained inside the partition wall 60, and the liquid can be prevented from being in direct contact with the sealing agent 50. Moreover, the conduction of heat to the electronic element 30 can be suppressed at the time of heating for adhesion of the sealing agent 50. Therefore, the deterioration of the electronic element 30 can be further suppressed.
  • the thickness y of the partition wall 60 is, for example, 0.1 mm or more and 1.0 mm or less.
  • the distance z between the sealing agent 50 and the partition 60 is preferably 0.5 mm or more and 1.0 mm or less. It has been ascertained that the heat conduction can be substantially blocked by leaving a space of at least 0.5 mm, while no significant change in the heat conduction suppressing effect is seen even if the space is 1 mm or more. is there.
  • the partition wall 60 since the partition wall 60 is not intended to seal the electronic element 30, the partition wall 60 is not necessarily bonded to the first substrate 10 and the second substrate 20.
  • partition material 61 examples include, for example, inorganic materials such as glass, ceramics, metal oxides, metals, or semiconductors.
  • inorganic materials such as glass, ceramics, metal oxides, metals, or semiconductors.
  • glass the glass frit or glass ribbon of low melting glass used as the above-mentioned sealing agent 50 may be used, for example.
  • the partition walls 60 can be formed by pulverizing them as in the case of the glass frit and mixing them with an organic solvent, an adhesive or the like.
  • the partition wall 60 does not have to have a sealing function, for example, even if the partition wall material 61 is a fine powder and is finally porous, its fine pores are very small, and electrons such as liquid crystal It may be anything that can block the flow of the liquid substance that is a part of the element 30. Rather, the porous partition 60 may be preferable because heat conduction in the partition 60 is suppressed. Therefore, the partition 60 which has many micropores may be formed by making the fine powder of an inorganic material into a paste form with a binder and heat-hardening after printing. Even if the binder does not completely disappear, it is considered that there is no generation of a gas that degrades the characteristics of the electronic element 30 if the amount is 10% or less of the entire volume.
  • the partition wall 60 adheres to only one of the first and second substrates 10 and 20, even if a thermosetting resin or the like is used for the partition wall material 61, the first and second substrates 10 and 20 are overlapped. If the barrier rib material 61 cures before mating, the gas generated during curing is not enclosed between the two substrates. Therefore, the partition 60 is not limited to the inorganic material. In this case, when heating the sealing agent material 51, the distance z between the sealing agent 50 and the partition 60 is sufficiently enlarged so that the partition wall 60 is not heated by the generated heat, for example, 0.7 mm or more and 1 mm or less It is preferable to make it to an extent.
  • a bonding resin used to seal two substrates in manufacturing a conventional liquid crystal display device such as epoxy resin, epoxy acrylate, urethane acrylate, silicone resin, etc.
  • a bonding resin used to seal two substrates in manufacturing a conventional liquid crystal display device such as epoxy resin, epoxy acrylate, urethane acrylate, silicone resin, etc.
  • These materials can be made into an ultraviolet curable resin, a thermosetting resin, etc. by the polymerization initiator added.
  • the thermosetting resin can be a delayed curing resin. In that case, by performing the heat treatment at a place away from the electronic element 30 (for example, a substrate on which the electronic element 30 is not formed), it is possible to prevent the temperature rise and the gas generation in the vicinity of the electronic element 30.
  • the partition wall material 61 can be cured without temperature rise or gas generation.
  • the partition wall 60 may be bonded to both the first and second substrates 10 and 20.
  • the gap between the first substrate 10 and the second substrate 20 is controlled by the spacer 50b, so the height of the partition 60 is the particle diameter of the spacer 50b described above. It is preferable to be smaller (lower), and in this case, the shortage of the height of the partition 60 is preferably compensated by increasing the amount of adhesive or the like.
  • the driving TFT 13 formed for each pixel of the display screen and the first insulating layer (so-called planarization film) 19 in which the upper surface of the driving TFT 13 is flattened.
  • the reflective electrode 41 for the LCD 30b formed above the first insulating layer 19 in the first region R of one pixel of the TFT substrate (first substrate) 10, and the first insulation of the TFT substrate 10 It is formed in the second region T of one pixel adjacent to the first region R on the layer 19 and faces the OLED 30 a having the first electrode 31, the organic layer 33, the second electrode 34 and the covering layer 35, and the reflective electrode 41.
  • the sealing agent 50 includes a low melting point glass material 50a and a plurality of spacers 50b, and the plurality of spacers 50b is a low melting point glass The melting point is higher than the softening point of the material 50a.
  • a partition 60 separating the sealing agent 50 and the liquid crystal layer 42 is provided between the TFT substrate 10 and the counter substrate 20, and the sealing agent 50 and the partition 60 are separated.
  • the partition wall 60 and the sealing agent 50 are formed around one LCD 30 b and one OLED 30 a, but in practice, the sub-pixel consisting of the combination of the LCD 30 b and the OLED 30 a is red (R) , Green (G), and blue (B), and a plurality of pixels formed of sub-pixels consisting of R, G, and B are formed in a matrix.
  • the entire elements formed in a matrix form become the electronic elements 30, and the sealing agent 50 and the partition wall 60 are formed so as to surround them.
  • the thickness directions of the TFT substrate 10 and the counter substrate 20 are emphasized so that each component is shown in an easy-to-understand manner.
  • the spacer 50b in the example of FIG. 5 has a spherical granular shape having a circular cross section similar to FIG. 1B. It is a body.
  • a reflective LCD 30b is formed in a first region R of one pixel, and a light emitting element such as an OLED 30a is formed in a second region T adjacent to the first region R of one pixel.
  • the reflective LCD 30 b includes a liquid crystal alignment film formed on the surface of the reflective electrode 41, the liquid crystal layer 42, the transparent electrode 43 (counter electrode), the color filter (CF) 44, and the reflective electrode 41 and the transparent electrode 43. 45 and 46, and a polarizing plate 47.
  • the liquid crystal layer 42, the transparent electrode 43, and the polarizing plate 47 extend to the second region T and are formed on the entire display device 200.
  • the OLED 30a also includes a second insulating layer 32, also called a so-called insulating bank, which defines a first electrode 31 and a light emitting region, an organic layer 33, a second electrode 34, and a covering layer 35 covering the periphery thereof. It is.
  • the second insulating layer 32 is formed of the same material on the first insulating layer 19 of the first region R and has substantially the same thickness, but between the first region R and the second region T , And the second insulating layer in the first region R is referred to as a third insulating layer 32a.
  • TFTs such as driving TFTs (thin film transistors) 13 and current supplying TFTs 12 and wirings such as bus lines (not shown) are formed on one surface of an insulating substrate 11 made of a glass substrate or resin film such as polyimide.
  • a first insulating layer 19 called a so-called planarization film is formed to flatten the surface.
  • Each TFT is formed of a semiconductor layer 14 such as polysilicon or an amorphous semiconductor, a gate insulating film 15, gate electrodes 13g and 12g, a passivation film 16 and the like, but the detailed description thereof is omitted.
  • the auxiliary capacitance electrode 17 connected in parallel to the liquid crystal layer 42 of the LCD 30b is formed.
  • the source 12s of the current supply TFT 12 is connected to the anode electrode 31 of the OLED 30a.
  • the cathode electrode 34 of the OLED 30 a is connected to the cathode bus line 18 by via contacts 18 c 1 and 18 c 2.
  • the first insulating layer 19 may be formed of an organic material such as polyimide or an inorganic material such as SiO y or SiN x by a CVD method or the like.
  • the drain 13d of the driving TFT 13 or the like is connected to the reflective electrode 41 via the contacts 13d1 to 13d3, and the source 12s of the current supply TFT 12 is connected to the first electrode 31 for the OLED 30a.
  • the structure of the element is conceptually shown, and not all of the elements are accurately described.
  • a color filter 44, a counter electrode 43, and a liquid crystal alignment film 46 are formed on an insulating substrate 21 such as glass or a transparent (light transmitting) film.
  • a certain gap is maintained such that the reflective electrode 41 and the counter electrode 43 face each other with the counter substrate 20 and the TFT substrate 10 on which the OLED 30a and the like are formed, and bonding is performed by the sealing agent 50 around the OLED 30a and the LCD 30b. It is done.
  • a liquid crystal layer 42 is formed by sealing a liquid crystal material which is a part of the electronic element 30 between the two substrates 10 and 20, and a polarizing plate 47 is provided on the opposite surface of the opposite substrate 20 to the liquid crystal layer 42. ing.
  • the adhesion between the sealing agent 50 and the TFT substrate 10 and the counter substrate 20 is performed by the same method as the method described above in the description of the sealing structure 100 according to the first embodiment. Since the sealing agent 50 includes the spacer 50b, the length of the gap between the TFT substrate 10 and the counter substrate 20 can be strictly controlled even if the low melting point glass material 50a is softened at the time of bonding.
  • the sealing agent 50 is bonded to the area on the opposite substrate 20 where the opposite electrode 43, the color filter 44 and the liquid crystal alignment film 46 are not formed, and the respective TFTs and the first insulating layer of the TFT substrate 10 19 adheres to the area not formed. Therefore, in the example of FIG.
  • the length of the gap between the insulating substrate 11 and the insulating substrate 21 in the TFT substrate 10 and the counter substrate 20 can be controlled most strictly. However, along with that, for example, the distance between the reflective electrode 41 and the counter electrode 43 can also be very accurately controlled.
  • the sealing agent 50 may be bonded to the remote substrates 11 and 21 through the first insulating layer 19 or the color filter 44 or the like.
  • the OLED 30a is formed in the second region T of one pixel, and as shown in FIG. 5, the first electrode 31 formed on the surface of the second region T of the first insulating layer 19, and the first electrode 31 around it. 31 formed on the second insulating layer 32, the organic layer 33 formed on the first electrode 31 surrounded by the second insulating layer 32, and the substantially entire surface of the OLED 30a thereon It is formed by the 2nd electrode 34 and the enveloping layer 35 which covers the circumference.
  • the first electrode 31 is formed, for example, as an anode electrode.
  • the first electrode 31 since the display screen is viewed from the upper side of FIG. 5, the first electrode 31 is formed as a reflective electrode and has a structure in which all emitted light is emitted upward. Therefore, the first electrode 31 is formed of a light reflective material selected based on the work function relationship with the organic layer 33 or the like, for example, a laminated film of ITO / APC / ITO.
  • the second insulating layer 32 is formed to define the light emitting region of the OLED 30 a and to prevent the first electrode 31 and the second electrode 34 from contacting and conducting.
  • the organic layer 33 is stacked on the first electrode 31 surrounded by the second insulating layer 32.
  • the second insulating layer 32 is formed of, for example, a resin such as polyimide or acrylic resin.
  • the second insulating layer 32 is also formed in the first region R in which the LCD 30 b is formed, in order to match the heights of the first region R and the second region T.
  • the organic layer 33 is laminated on the first electrode 31 surrounded by the second insulating layer 32 by a vapor deposition method or a coating method such as inkjet. Although this organic layer 33 is shown by one layer in FIG. 5, various materials are laminated
  • the second electrode 34 is formed on the surface of the organic layer 33.
  • the second electrode (eg, cathode electrode) 34 is formed on substantially the entire surface of the OLED 30a.
  • the second electrode 34 is formed of a translucent material, for example, a thin film Mg—Ag eutectic film.
  • a covering layer (TFE) 35 made of an inorganic insulating film such as Si 3 N 4 or SiO 2 is formed on the surface of the second electrode 34 by a single layer or a laminated film of two or more layers.
  • the covering layer 35 includes the second electrode 34 and the organic layer 33.
  • the liquid crystal layer 42 and the counter electrode 43 are also formed on the OLED 30a.
  • the LCD 30 b is a reflective type with a reflective electrode 41, a liquid crystal layer 42, an opposing electrode 43 and a polarizing plate (circularly polarizing plate) 47 formed on the entire surface of the first region R of about half of one pixel. It is formed as an LCD.
  • the liquid crystal layer 42 is formed on the entire surface including the second region T.
  • the reflective electrode 41 is a so-called pixel electrode, and is formed on almost the entire surface of the first region R.
  • the reflective electrode 41 is formed on the third insulating layer 32a which is simultaneously formed of the same material as the second insulating layer 32 of the OLED 30a described above.
  • the reflective electrode 41 is formed of, for example, a laminated film of Al (aluminum) of 0.05 ⁇ m or more and 0.2 ⁇ m or less and IZO (indium-zinc oxide) of 0.05 ⁇ m or more.
  • the third insulating layer 32 a is formed of the same material as the second insulating layer 32 when the second insulating layer 32 of the OLED 30 a is formed. Thus, by forming the third insulating layer 32 a in the first region R, the height of the lower layer of the liquid crystal layer 42 can be made closer between the two regions R and T.
  • the liquid crystal layer 42 includes a liquid crystal composition, and various display modes such as an ECB (Electrically Controlled Birefringence) mode may be used.
  • the liquid crystal layer 42 blocks or passes incident light for each pixel in response to application and stoppage of voltage between the reflective electrode 41 and the counter electrode 43 in cooperation with the polarizing plate 47.
  • the liquid crystal layer 42 is preferably formed to a thickness that produces a phase difference of 1 ⁇ 4 wavelength when the voltage is on until light passes through the liquid crystal layer 42 and reaches the reflective electrode 41. .
  • the sealing agent 50 since the sealing agent 50 includes the spacer 50 b, the gap between the counter substrate 20 and the TFT substrate 10 can be strictly controlled. As a result, the thickness of the liquid crystal layer 42 can also be accurately controlled.
  • the alignment of the liquid crystal alignment film 45 formed on the TFT substrate 10 and the alignment of the liquid crystal alignment film 46 formed on the counter substrate 20 are, for example, formed to be different at an angle of 90 °.
  • the threshold value is set between the reflective electrode 41 and the counter electrode 43.
  • the reflected light of the external light does not go out, resulting in a black display, that is, normally black.
  • a circularly polarizing plate is used.
  • the circularly polarizing plate is formed of, for example, a combination of a linear polarizing plate and a 1 ⁇ 4 wavelength retardation plate.
  • a half-wave plate may be used in combination to show quarter-wave conditions for a wide range of wavelengths. If the liquid crystal layer 42 is in the vertical alignment when a voltage higher than the threshold voltage is not applied between the reflective electrode 41 and the counter electrode 43, external light passes through the liquid crystal layer 42 as it is and is reflected by the reflective electrode 41. Reverses the right circularly polarized light to the left circularly polarized light.
  • the external light returned to the polarizing plate 47 can not pass through the polarizing plate 47 and a black display can be obtained.
  • the phase of the outside light is further shifted by 1 ⁇ 4 wavelength in the liquid crystal layer 42.
  • the light can be transmitted through the polarizing plate 47, and a white display can be obtained.
  • the polarizing plate 47 is not limited to the circularly polarizing plate, and may be a linear polarizing plate according to the display mode.
  • the sealing agent 50 is the same as the sealing agent 50 used in the sealing structure 100 of the first embodiment and the organic EL display device of the second embodiment described above, and the softening of the low melting point glass material 50a and the low melting point glass material 50a A spacer 50b having a melting point higher than that of the point is included. Therefore, as described above, the length of the gap between the TFT substrate 10 and the counter substrate 20 can be strictly controlled.
  • the hybrid type display device 200 including the OLED 30a and the LCD 30b illustrated in FIG. 5 a high degree of sealing property is required for the OLED 30a, and at the same time, in order to maintain and improve the image quality of the LCD 30b, Strict control of the gap between the substrates 10, 20 is required.
  • the present embodiment is provided with the sealing agent 50 including the spacer 50b which is made of a glass material (low melting point glass material 50a) having a sealing property higher than that of the resin and the like and further having a melting point higher than the softening point of the glass material.
  • the display device 200 is particularly suitable as such a hybrid display device.
  • the sealing agent 50 is formed of the paste of glass frit, glass ribbon or the like around the OLED 30 a and the LCD 30 b of the TFT substrate 10 or the counter substrate 20 as shown in FIG. Formed and bonded after these substrates are stacked.
  • the low melting point glass material 50a of the whole of the glass frit or the bonding portion of the glass ribbon to at least the substrates 10 and 20 of the glass ribbon is softened by the laser light irradiation, whereby the sealing agent 50 becomes the TFT substrate 10 and the counter substrate 20. Glued to.
  • the partition 60 is also the same as the partition 60 which may be provided in the sealing structure 100 of 1st embodiment mentioned above, and it seals in the same method using the material similar to the case of the sealing structure 100. It may be formed separately from the agent 50.
  • the partition wall 60 and the LCD 30 b or the OLED 30 a are in contact with each other, but the partition wall 60 and these electronic elements may be in contact with or separated from each other.
  • the sealing agent material 51 includes the low melting point glass material 50 a and a plurality of particles having a melting point higher than the softening point of the low melting point glass material 50 a and mixed with the low melting point glass material 50 a. Materials are used. Further, in the arrangement of the sealing agent material 51, when the first substrate 10 and the second substrate 20 are superimposed, the sealing agent material 51 is disposed at a portion that should surround the formation area A (see FIG. 3A) of the electronic element. Ru. Then, the sealant material 51 is adhered to the first substrate 10 and the second substrate 20 by the laser light irradiation. A plurality of granular objects constitute spacer 50b in sealing structure 100 etc. of a 1st embodiment mentioned above.
  • step S3 may be performed first.
  • Step S4 is performed on either the first substrate 10 or the second substrate 20. That is, as described above, the sealant material 51 may be disposed on either the first substrate 10 or the second substrate 20, and may be applied to the substrate on which the electronic element 30 is formed, and the electronic element 30 is It may be formed on a substrate to be bonded to the formed substrate. Therefore, “a portion to surround the formation region A of the electronic device” is a portion surrounding the electronic device 30 in the first substrate 10 when the sealant material 51 is disposed on the first substrate 10 on which the electronic device 30 is formed. In the case where the first substrate 10 and the second substrate 20 are placed on the second substrate 20, the first substrate 10 and the second substrate 20 surround the electronic element 30 when they are superimposed in step S5.
  • the manufacturing method of the display device of the present embodiment will be described by taking the manufacturing of the display device 200 of the third embodiment including the OLED 30a and the LCD 30b as the electronic element 30 as an example.
  • a display device provided with only one of the OLED 30a and the LCD 30b may be manufactured using the manufacturing method of the present embodiment, for example. Therefore, among the formation of each component in the following description, the formation of any of the elements constituting only the OLED 30a and the elements constituting only the LCD 30b in the display device 200 is omitted according to the type of display device to be manufactured. It may be done.
  • each element which comprises OLED30a, and the 3rd insulating layer 32a may be abbreviate
  • the formation of the liquid crystal layer 42, the liquid crystal alignment films 45 and 46, and the respective components constituting the LCD 30b such as the reflective electrode 41 and the counter electrode 43 may be omitted.
  • the first substrate (TFT substrate) 10 is prepared (S1). Specifically, the semiconductor layer 14 and a bus line (not shown) are formed on the insulating substrate 11 using a general TFT forming method, and further, the gate insulating film 15, the drain 13 d of the driving TFT 13 and the gate electrode 13 g, a source 12 s and a gate electrode 12 g of the current supply TFT 12, and an auxiliary capacitance electrode 14 are formed. Further, a passivation film 16 made of SiN x or the like, a contact 13 d 1 and the like are formed on the surface, and the first insulating layer 19 is formed of an inorganic film such as polyimide resin or SiO 2 .
  • the reflective electrode 41 for the LCD 30b and the OLED 30a are formed on or above the TFT substrate 10 (S2).
  • the first electrode (anode electrode) 31 for the OLED 30a is formed of a laminated film of ITO / APC (Ag-Pd-Cu alloy) / ITO.
  • a contact 13 d 2 connected to the drain 13 d of the driving TFT 13 is also formed in the first insulating layer 19.
  • the second insulating layer 32 is formed of a polyimide resin, an acrylic resin, or the like so as to surround the first electrode 31 and have a convex portion.
  • a resin film is formed on the entire surface in a liquid state, and then the second insulating layer 32 is formed in a desired shape at a desired position by patterning. At the time of patterning the second insulating layer 32, a contact hole connected to the contact 13d2 of the first region R is formed, and a third contact 13d3 is formed.
  • a trench may be formed in the first insulating layer 19 which is divided and exposed to the second insulating layer 32 and the third insulating layer 32a.
  • the organic layer 33 is formed by vapor deposition or printing such as an inkjet method, and the second electrode 34 serving as a cathode electrode is formed on substantially the entire surface of the OLED 30a including the organic layer 33 and the projections of the second insulating layer 32. It is formed by vapor deposition using a vapor deposition mask or the like.
  • the covering layer 35 is formed of an inorganic film such as SiN x or SiO y .
  • the covering layer 35 is formed of a multilayer film having at least two layers.
  • the covering layer 35 is formed by a CVD method, an ALD (atomic layer deposition) method, or the like.
  • the covering layer 35 may be formed to extend to the first region R.
  • the material of the covering layer 35 is also embedded in the trench formed in the first insulating layer 19, and the covering layer 35 is a passivation film 16 or the like under the first insulating layer 19. Bonded to the inorganic film of This covering layer 35 may be formed on the entire surface and then patterned by etching, or may be deposited only at desired locations using a mask.
  • the reflective electrode (pixel electrode) 41 for the LCD 30 b is formed on the surface of the third insulating layer 32 a in the first region R.
  • the reflective electrode 41 is also electrically connected to the contact 13d3.
  • the reflective electrode 41 is formed of, for example, Al and IZO.
  • the reflective electrode 41 is formed on approximately half of one pixel excluding the entire surface of the OLED 30a, and thus may be formed by patterning a reflective film formed on the entire surface by vapor deposition or the like.
  • the liquid crystal alignment film 45 is stacked on the reflective electrode 41. Thus, preparation of the first substrate 10 is completed.
  • the second substrate (opposite substrate) 20 may be prepared separately from the first substrate 10 (S3).
  • the second substrate 20 is prepared by laminating a translucent counter electrode 43 and, if necessary, a color filter 44 and a liquid crystal alignment film 46 on an insulating substrate 21 such as a glass plate or a resin film.
  • the counter electrode 43 and the like are formed. However, as described above, when the organic EL display device is manufactured, the formation of the counter electrode 43 and the like may be omitted.
  • the sealant material 51 (see FIG. 3A) is disposed on either the first substrate 10 or the second substrate 20 (S4).
  • the sealant material 51 is disposed at a portion that should surround the formation area A (see FIG. 3A) of the electronic device when the first substrate 10 and the second substrate 20 are superimposed.
  • the sealant material 51 contains a low melting point glass material 50a.
  • the low melting point glass material 50a has a melting point higher than the softening point of the low melting point glass material 50a, and when sandwiched between the first substrate 10 and the second substrate 20, the gap between these substrates is A plurality of particulates to be a plurality of limiting spacers 50b are mixed.
  • the sealing material 51 is used in which the content of the plurality of particles in the entire plurality of particles to be the low melting point glass material 50a and the spacer 50b is 5% by mass or more and 30% by mass or less.
  • a sealing agent material 51 sufficient adhesive strength between the first substrate 10 and the second substrate 20 and the sealing agent 50 can be obtained, and the gap between the first substrate 10 and the second substrate 20 can be made strict. Can be controlled.
  • the sealant material 51 may be prepared and applied as a paste, as described above. That is, as shown in FIGS. 2A and 2B referred to above, using a glass frit as the low melting point glass material 50a and using a spherical body or a columnar body made of an inorganic substance as a granular body to be the spacer 50b. It is also good. Then, the sealant material 51 prepared in paste form using the binder 51a is prepared, and the glass frit (low melting point glass material 50a) and the granular material are applied to the first substrate 10 or the second substrate 20 using printing or dispensing. The sealant material 51 may be disposed by application.
  • the sealant material 51 may be prepared in the form of a glass ribbon, and may be disposed by fixing one end or both ends thereof to the first substrate 10 or the second substrate 20 using an adhesive. That is, a glass ribbon 51b (see FIG. 3B and FIG. 3C) including the low melting point glass material 50a and a plurality of particles to be the spacer 50b may be used as the sealant material 51. Then, the sealing material 51 may be disposed by attaching the glass ribbon 51 b to a predetermined portion of the first substrate 10 or the second substrate 20. In this case, preferably, the arrangement and pasting of the glass ribbon 51b may be performed as described with reference to FIGS. 3B and 3C.
  • the bonding site bonded by the sealant material 51 is divided into a plurality of portions, and the glass ribbon 51b is disposed in each of the divided regions. Then, one end or both ends of the glass ribbon 51b is bonded to the first substrate 10 or the second substrate 20 at a site opposite to the formation area A (see FIGS. 3B and 3C) of the bonding site.
  • the sealing agent material 51 is directly bonded to the insulating substrates 11 and 21 with the insulating substrates 11 and 21 exposed, as shown in FIG. It is because it is thought that sufficient adhesion is easy to be obtained.
  • the barrier rib material 61 (see FIGS. 3B and 3C) is disposed on the periphery of the formation area A of the electronic element before or after the disposition of the sealing agent material 51. Be done.
  • the partition material 61 may also be disposed on any of the first substrate 10 and the second substrate 20.
  • the barrier rib material 61 is formed such that the reflective electrode 41 of the LCD 30 b and the OLED 30 a are accommodated in the area surrounded by the barrier rib material 61 when the first substrate 10 and the second substrate 20 are combined.
  • the partition material 61 is preferably an inorganic material as described above, but a resin material such as an epoxy resin may be used.
  • the partition wall material 61 may be disposed by applying in a paste form, or may be prepared and adhered in the form of a ribbon or the like.
  • the paste-like barrier rib material 61 is applied, it is cured by subsequent heating, ultraviolet irradiation or the like, and the barrier rib 60 is formed.
  • the height of the barrier rib material 61 can be selected in accordance with the distance between the two substrates to be bonded. However, as described above, it is preferable that it be smaller (lower) than the particle diameter of the granular material to be the spacer 50b in that it does not interfere with the control of the gap between the first substrate 10 and the second substrate 20 by the spacer 50b.
  • the partition wall material 61 When the partition wall material 61 is disposed, it is disposed apart from the sealant material 51. Preferably, the sealant material 51 and the partition material 61 are separated by a distance of 0.5 mm or more and 1.0 mm or less. This is because, as described above, it is considered that the heat conduction is effectively suppressed and the remarkable increase in the size of the display device 200 is hardly caused by the separation by this distance.
  • the partition wall material 61 and the sealant material 51 may be disposed on different substrates.
  • liquid crystal material liquid crystal composition
  • the dropping of the liquid crystal composition is preferably performed in a vacuum atmosphere. This is because air bubbles caught in the liquid crystal material are likely to be released at the time of dropping.
  • the first substrate 10 and the second substrate 20 are overlapped with the sealant material 51 interposed therebetween (S5).
  • the pressure it is preferable to set the pressure to atmospheric pressure or higher because the two substrates can be uniformly pressurized.
  • the dry air is particularly preferably dry air having a dew point of -50 ° C. or less.
  • the sealant material 51 is adhered to the first substrate 10 and the second substrate 20 by the irradiation of the laser beam (S6).
  • the low melting point glass material 50 a contained in the sealing agent material 51 is softened by the irradiation of the laser light, and is bonded to the first substrate 10 and the second substrate 20.
  • laser light is irradiated so that the sealant material 51 reaches a temperature of about 450 ° C. to 500 ° C.
  • a light source of laser light an excimer laser having a wavelength of about 190 nm to 350 nm, a YAG laser having a wavelength of 1064 nm, a CO 2 laser having a wavelength of 10.6 ⁇ m, or the like can be used.
  • the various laser beams may be converted in wavelength in accordance with a wavelength band in which the low melting point glass material 50 a contained in the sealing agent material 51 exhibits good absorption characteristics.
  • the sealant material 51 includes the granular material to be the spacer 50b
  • the laser light is generated in a state where the first substrate 10 and the second substrate 20 are pressed toward each other. It is preferable to perform the irradiation of That is, it is preferable that the compressive force in the thickness direction of the first substrate 10 and the second substrate 20 be applied to the sealant material 51 to irradiate the laser light. By applying the force in this manner, the length of the gap between the first substrate 10 and the second substrate 20 can be controlled to a length substantially equal to the particle diameter of the spacer 50b.
  • a force applied to the first substrate 10 or the second substrate 20 at this time a force of about 0.1 N / cm 2 or more and 15 N / cm 2 or less is preferable. It is considered that with this level of force, the first substrate 10 and the second substrate 20 can be brought into contact with the spacer 50b, and moreover, these substrates will not be excessively damaged.
  • a laser is used by using a pressing jig that can press the first substrate 10 and the second substrate 20 on their entire surfaces. It is preferable to irradiate light. By doing so, even when the first substrate 10 or the second substrate 20 is warped or the like, the gap between both substrates can be made uniform on the entire surface of the first and second substrates 10 and 20.
  • the example of the irradiation process of a laser beam which uses such a holding jig P is shown by FIG.
  • the plate-like pressing jig P is placed on the first substrate 10 and the second substrate 20 that are combined, and a force F is applied through the pressing jig P.
  • the light source S irradiates the sealing agent material 51 with the laser light L having a predetermined wavelength on the pressing jig P via the pressing jig P.
  • the light source S is moved along the placement site of the sealant material 51. For example, laser light with an output of 25 W is applied to the sealant material 51 while moving at a speed of 5 mm / sec. Accordingly, the sealant material 51 is heated all around the formation region A of the electronic element, and the low melting point glass material 50a is once solidified after being softened.
  • the sealing agent material 51 adheres to the first and second substrates 10 and 20, and the sealing agent 50 closes the gap between the first substrate 10 and the second substrate 20 around the formation area A of the electronic element. It is formed.
  • the output and moving speed of the laser light are not limited to the above output and speed.
  • a force F may be applied to the pressing jig P by an optional load mechanism (not shown).
  • the holding jig P is formed by using a material which has a good heat resistance to the irradiated laser light and a suitable heat resistance and rigidity.
  • quartz or the like having high transmittance to light in the ultraviolet region is used as the material of the pressing jig P, but is not limited thereto.
  • the wavelength of the laser light L may be selected according to the wavelength band in which the material of the pressing jig P exhibits good transparency. For example, in the case where a pressing jig P formed using quartz is used, it is preferable to use laser light L having a wavelength of 300 nm or more and 2000 nm or less.
  • the above-mentioned excimer laser or YAG laser is used.
  • a YAG laser When a YAG laser is used, laser light L converted from the fundamental wave to a half wavelength or a 1/3 wavelength may be emitted.
  • the pressing jig P may have a light shielding property except for the portion to which the laser light L is irradiated.
  • the polarizing plate 47 is formed on the opposite surface of the second substrate 20 to the counter electrode 43. Is pasted. As a result, a hybrid display device 200 in which the reflective LCD 30 b is formed in the first region R and the OLED 30 a is formed in the second region T is obtained.
  • a sealing structure includes a first substrate and a second substrate disposed opposite to each other, and an electronic device formed between the first substrate and the second substrate.
  • the electronic element formed between the two substrates can be protected from moisture and oxygen, and furthermore, the distance between the two substrates can be controlled with high accuracy.
  • the low melting point glass material is a solidified product of a glass frit which has been softened once
  • the spacer is made of an inorganic substance, and the particulate material mixed with the glass frit It may be In that case, a sealing agent containing a spacer can be easily provided.
  • the softening point of the low melting point glass material may be 400 ° C. or more and 500 ° C. or less, and the spacer may be formed using quartz. . In that case, the thermal stress to the electronic device can be suppressed, and furthermore, since the spacer is hardly softened at the time of bonding of the two substrates, the gap between the two substrates can be controlled more strictly.
  • the content of the spacer in the sealing agent may be 5% by mass or more and 30% by mass or less.
  • the sealing agent can be adhered to the first and second substrates with sufficient strength, and furthermore, unevenness and variation of the gap between the first substrate and the second substrate can be suppressed.
  • a partition which is separated from the sealing agent and which surrounds the electronic element is formed between the sealing agent and the electronic element It may be done. By doing so, the transfer of heat to the formation region of the electronic element can be suppressed.
  • the organic EL display device includes the sealing structure of any one of the above (1) to (5), and the electronic device is an organic EL light emitting device. According to this configuration, in the organic EL display device, the gap between the two substrates can be controlled, and the organic EL light emitting element can be protected against moisture and the like.
  • a display device includes: a driving element formed for each pixel of a display screen; and a TFT substrate having a first insulating layer in which the upper surface of the driving element is flat.
  • a reflective electrode for a liquid crystal display element formed above the first insulating layer in a first region of one pixel of the substrate, and the first electrode adjacent to the first region on the first insulating layer of the TFT substrate
  • An organic EL light emitting element formed in a second region of one pixel and having a first electrode, an organic layer, a second electrode, and a covering layer, and a counter electrode facing the reflective electrode, and facing the TFT substrate
  • a counter substrate disposed, a liquid crystal layer filled between the TFT substrate and the counter substrate, and a sealing agent for closing the gap between the TFT substrate and the counter substrate on the outer periphery of the liquid crystal layer
  • the sealing agent comprises a low melting point glass material and Wherein the number of the spacers, the plurality of spacers have a melting point higher than the
  • the organic EL light emitting element can be protected from the intrusion of moisture and oxygen, and further, in the liquid crystal display element It is possible to suppress the deterioration of the image quality and the like.
  • a partition separating the sealing agent and the liquid crystal layer is provided between the TFT substrate and the counter substrate, and the sealing agent and the partition are separated It may be done. In that case, the conduction of heat to the formation region of the electronic element can be suppressed.
  • a method of manufacturing a display device includes a step of preparing a first substrate, and a step of forming an electronic element to constitute a pixel above or on the surface of the first substrate. Preparing a second substrate, and arranging a sealant material on either the first substrate or the second substrate, and overlapping the first substrate and the second substrate with the sealant material interposed therebetween.
  • the sealant material includes a low melting point glass material and a softening point of the low melting point glass material
  • the sealant material includes a low melting point glass material and a softening point of the low melting point glass material
  • the electronic device can be protected from moisture and oxygen, and furthermore, a display device in which the gap between the two substrates is accurately controlled can be manufactured.
  • the content of the plurality of granular bodies in the low melting point glass material and the plurality of granular bodies is 5% by mass to 30% by mass.
  • a sealant material may be used. By doing so, the sealant material can be bonded to the first and second substrates with sufficient strength, and furthermore, unevenness and variation of the gap between the first substrate and the second substrate can be suppressed.
  • the compressive force in the thickness direction of the first substrate and the second substrate is applied to the sealing agent material to irradiate the laser light. May be By doing so, the gap between the first substrate and the second substrate can be strictly controlled.
  • a pressing jig formed using quartz is placed on the first substrate and the second substrate that are combined, and the pressing and curing process is performed.
  • the sealing material may be irradiated with a laser beam having a wavelength of 300 nm or more and 2000 nm or less on the pressing jig while applying the force via a tool. By doing so, the gap between the first substrate and the second substrate can be uniformly controlled over the entire surface of those substrates, and also.
  • the sealant material can be sufficiently irradiated with laser light.
  • a glass frit is used as the low melting point glass material, and a spherical body or a columnar body made of an inorganic substance is used as the granular body.
  • the sealant material may be disposed by applying the glass frit and the granules to the first substrate or the second substrate using printing or dispensing. In that case, the sealant material can be easily disposed.
  • a glass ribbon containing the low melting point glass material and the plurality of particles is used as the sealant material.
  • the sealant material may be disposed by being attached to a predetermined portion of the first substrate or the second substrate. By doing so, the first substrate and the second substrate can be bonded with a sealing agent with a small amount of air bubbles and the like.
  • the glass ribbon in bonding the glass ribbon, is disposed in each of a plurality of divided regions into which a bonding portion bonded by the sealant material is divided.
  • the one end or both ends of the glass ribbon may be bonded to the first substrate or the second substrate at a site opposite to the formation area of the electronic element with respect to the bonding site.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本実施形態の封止構造体は、対向して配置された第一基板及び第二基板と、第一基板及び第二基板の間に形成された電子素子と、電子素子の外周において第一基板と第二基板との間隙を塞いでいるシール剤と、を備え、シール剤は低融点ガラス材及び複数のスペーサを含み、複数のスペーサは、低融点ガラス材の軟化点よりも高い融点を有している。

Description

封止構造体、有機EL表示装置、表示装置及び表示装置の製造方法
 本発明は、電子素子を備える封止構造体、有機EL表示装置、反射型液晶表示素子と有機EL発光素子とを組み合せた複合型(ハイブリッド型)の表示装置、及び表示装置の製造方法に関する。
 水分によって劣化しやすい有機化合物や、酸化によって性能が低下しやすい電極が用いられている有機EL発光素子のように、外気と遮断される必要のある電子素子では、水分や酸素の浸入を阻止することで、素子の性能劣化を防止する必要がある。そのため、例えば特許文献1の画像表示装置では、有機化合物を含む画素部を挟んで対向する素子基板と封止基板との間が、画素部の周囲において、エポキシ系の樹脂などによって構成された第1シール剤及び第2シール剤を用いて二重に封止されている。また、特許文献2の有機電界発光表示装置では、内部充填剤の仕切り壁として封止基板にシーラント部が形成され、そのシーラント部の外周に、ガラスフリットからなるシール剤が形成されると共に、発光素子が形成された基板と封止基板との間がこのシール剤によって封止されている。
特開2004-103337号公報 特開2010-103112号公報
 前述のように、従来の有機化合物を含む表示装置などでは、二つの基板に挟まれた、有機化合物を含む発光素子などを封止するために、エポキシ樹脂などを用いた二重シール、又は、ガラスからなるシール剤などが形成されている。二つの基板の間隔は、特許文献1の画像表示装置においては第1シール剤の高さに依存し、特許文献2の有機電界発光表示装置ではシーラント部の高さに依存する。従って、これらの封止構造では、第1シール剤又はシーラント部の形成においてそれらの高さがばらつくと、二つの基板の間隔、延いては表示装置などの厚さにばらつきが生じることとなる。
 そこで、本発明は、2枚の基板の間に形成される電子素子を水分や酸素から保護することができ、しかも、その2枚の基板の間隙が精度良く制御することができる封止構造体、及び、そのように2枚の基板の間隙が制御され、有機EL発光素子を保護し得る有機EL表示装置、並びに、そのように電子素子を水分や酸素から保護することができ、しかも、2枚の基板の間隙が精度良く制御された表示装置の製造方法を提供することを目的とする。
 本発明の他の目的は、液晶表示素子と有機EL発光素子の両方を含む複合型の表示装置において、水分や酸素の浸入から有機EL発光素子を保護することができ、しかも液晶表示素子における画質の低下などを抑制し得る表示装置を提供することにある。
 本発明の第一実施形態の封止構造体は、対向して配置された第一基板及び第二基板と、前記第一基板及び前記第二基板の間に形成された電子素子と、前記電子素子の外周において前記第一基板と前記第二基板との間隙を塞いでいるシール剤と、を備え、前記シール剤は低融点ガラス材及び複数のスペーサを含み、前記複数のスペーサは、前記低融点ガラス材の軟化点よりも高い融点を有している。
 本発明の第二実施形態の有機EL表示装置は、第一実施形態の封止構造体を含み、前記電子素子が有機EL発光素子である、
 本発明の第三実施形態の表示装置は、表示画面の画素ごとに形成された駆動素子及び前記駆動素子の上の表面を平坦にした第一絶縁層を有するTFT基板と、前記TFT基板の一画素の第一領域で、前記第一絶縁層の上方に形成された液晶表示素子用の反射電極と、前記TFT基板の前記第一絶縁層の上の前記第一領域と隣接する前記一画素の第二領域に形成され、第一電極、有機層、第二電極及び被覆層を有する有機EL発光素子と、前記反射電極と対向する対向電極を有し、前記TFT基板と対向して配置された対向基板と、前記TFT基板と前記対向基板との間に充填された液晶層と、前記液晶層の外周において前記TFT基板と前記対向基板との間隙を塞いでいるシール剤と、を具備し、前記シール剤は、低融点ガラス材及び複数のスペーサを含み、前記複数のスペーサは、前記低融点ガラス材の軟化点よりも高い融点を有している。
 本発明の第四実施形態の表示装置の製造方法は、第一基板を用意する工程と、前記第一基板の上方又は表面上に、画素を構成すべき電子素子を形成する工程と、第二基板を用意し、前記第一基板又は前記第二基板のいずれかにシール剤材料を配置する工程と、前記第一基板と前記第二基板とを前記シール剤材料を挟んで重ね合せる工程と、前記シール剤材料によって前記第一基板と前記第二基板とを接着する工程と、具備し、前記シール剤材料に、低融点ガラス材、及び、前記低融点ガラス材の軟化点よりも高い融点を有していて前記低融点ガラス材に混ぜられた複数の粒状体を含む材料を用い、前記シール剤材料の配置において、前記第一基板と前記第二基板とを重ね合せたときに前記電子素子の形成領域を囲むべき部位に前記シール剤材料を配置し、レーザ光の照射によって前記シール剤材料を前記第一基板及び前記第二基板と接着する。
 本発明の実施形態によれば、2枚の基板の間に形成される電子素子を水分や酸素から保護することができ、しかも、その2枚の基板の間隔を精度良く制御することができる。また、有機EL表示装置において、2枚の基板の間隙を制御することができ、有機EL発光素子を保護することができる。また、そのように電子素子を水分や酸素から保護することができ、しかも、2枚の基板の間隙が精度良く制御された表示装置を製造することができる。また、本発明の他の実施形態によれば、液晶表示素子と有機EL発光素子の両方を含む複合型の表示装置において、水分や酸素の浸入から有機EL発光素子を保護することができ、しかも液晶表示素子における画質の低下などを抑制することができる。
本発明の第一実施形態の封止構造体の一例を示す平面図である。 図1AのIB-IB線での断面図である。 第一実施形態の封止構造体に用いられるシール剤材料の構成の一例を模式的に示す図である。 第一実施形態の封止構造体に用いられるシール剤材料の構成の他の例を模式的に示す図である。 第一実施形態の封止構造体の製造において、シール剤材料を印刷で形成した状態を示す平面図である。 第一実施形態の封止構造体の製造において、シール剤材料としてガラスリボンを固定した状態の一例を示す平面図である。 第一実施形態の封止構造体の製造において、シール剤材料としてガラスリボンを固定した状態の他の例を示す平面図である。 本発明の第一実施形態の封止構造体の他の例を示す断面図である。 本発明の第三実施形態の表示装置の断面図である。 本発明の第四実施形態の表示装置の製造方法を示すフローチャートである。 本発明の第四実施形態の表示装置の製造方法におけるレーザ光の照射の一例を示す図である。
 2枚の基板の間に形成される電子素子を水分及び酸素などから確実に保護するためには、電子素子の周囲において、2枚の基板の間を厳密に封止することが求められる。そのため、そのシール剤材料には、ガラスなどのように水分及び酸素を略透過させない材料を用いることが好ましい。しかし、ガラスからなるシール剤と2つの基板とを接着する際にはガラスを軟化させるため、シール剤の高さは、シール剤の供給量、その軟化時の粘度及び張力、並びにシール剤の上に置かれている基板の重量などの影響を受ける。そのため、シール剤の高さ、すなわち、2枚の基板の間隔を厳密に制御するのは極めて困難であり、結果として、その電子素子によって構成される表示装置などの電子機器の厚さを厳密に制御するのも困難である。
 しかし、そのように2枚の基板の間隔を厳密に制御できないことは、電子機器の薄型(小型)化を進めるに当たって好ましくない。中でも、絶えず薄型化が求められ、さらに、薄型化の進展に伴うフレキシブル性の具備が望まれる平面ディスプレイでは、その平面ディスプレイに含まれる2枚の基板の間隔が、多くの場合薄く、そして正確に制御されていることが望まれる。特に、後述する液晶表示素子と有機EL発光素子とを含むハイブリッド型のディスプレイでは、厳密に封止された2枚の基板の間隔の正確な制御が、セルギャップの均一性による良好な画質と、水分などによる劣化の少ない有機EL発光素子の良好な信頼性とを得るうえで、極めて重要であると考えられる。本発明者らは、このような課題を見出し、鋭意検討を重ね、低融点ガラス材と、この低融点ガラス材の軟化点よりも高い融点を有していて低融点ガラス材中に混ぜられたスペーサとを含むシール剤を用いることによって、この課題を解決し得ることを見出したのである。
 以下、図面を参照し、本発明における各実施形態の封止構造、有機EL表示装置、表示装置、及び、表示装置の製造方法を説明する。なお、以下に説明される実施形態における各構成要素の材質、形状、及び、それらの相対的な位置関係などは、あくまで例示に過ぎない。本発明の封止構造体、有機EL表示装置、表示装置、及び、表示装置の製造方法は、これらによって限定的に解釈されるものではない。
(封止構造体及び有機EL表示装置)
 図1A及び図1Bには、第一実施形態の封止構造体の一例である封止構造体100が示されている。図1Bは、図1AのIB-IB線での断面図である。なお、図1Bでは、図1AのIB-IB線での断面が拡大して示されており、さらに、IB-IB線における中央部分は省略されている。図1A及び図1Bに示されるように、封止構造体100は、対向して配置された第一基板10及び第二基板20と、第一基板10及び第二基板20の間に形成された電子素子30と、電子素子30の外周において第一基板10と第二基板20との間隙を塞いでいるシール剤50と、を備えている。電子素子30は、第一基板10と第二基板20との間隙がシール剤50で塞がれることによって、第一基板10と第二基板20との間に略気密に封止されている。シール剤50は低融点ガラス材50a及び複数のスペーサ50bを含み、複数のスペーサ50bは、低融点ガラス材50aの軟化点よりも高い融点を有している。そのため、後述するように、第一基板10と第二基板20との間隙が厳密に制御され得る。なお、スペーサ50bの「融点」は、スペーサ50bに用いられている材料が明確な融点を有さない場合、固体状態のスペーサ50bが変形を始める温度である。
 「封止構造体」は、2枚の基板の間に電子素子30などが配置されてその周囲が封止された電子デバイスの総称である。また、電子素子30は、「封止構造体」と総称される電子デバイスを構成する一つ又は複数個の電子素子を意味している。例えば封止構造体が有機EL発光素子(以下、単にOLEDとも称される)を用いた照明装置であれば、電子素子30は、その照明装置を構成する1個、又は複数個のOLEDを意味し、封止構造体が表示装置であれば、電子素子30は、各画素を構成する複数のOLEDなどの一群の電子素子を意味する。一対の第一基板10及び第二基板20において、複数個の電子デバイスが製造される場合には、1個の電子デバイスごとに、電子素子30の周囲にシール剤50が形成される。
 第一基板10及び第二基板20は、気密性があるものであれば特に限定されない。絶縁性基板、半導体基板、導電性基板でも構わない。一方の基板の表面に電子素子30(その部品である電極などを含む)が形成される場合などにおいて絶縁性の基板が好ましい場合でも、半導体基板又は導電性基板が、その表面に絶縁膜を形成されたうえで用いられてもよい。また、第一基板10及び第2基板20は、剛性を有する基板でも、可撓性を有する基板でもよい。さらに、第一基板10と第二基板20とが異種の基板、例えば半導体基板と絶縁性基板であってもよい。表示装置又は発光装置(照明装置)などの場合には、ガラス基板、又はポリイミドなどの樹脂フィルムなどが使用され得る。なお、図1Bでは、第一基板10及び第二基板20が単層構造で示されているが、第一及び第二の基板10、20には、図示しない駆動素子などが形成されていてもよい。
 電子素子30は特に限定されないが、電子素子30が、水分や酸素などで劣化しやすい材料を含むOLEDなどである場合に、本実施形態の封止構造体100は特に有効である。しかし、電子素子30は、液晶表示素子(以下、単にLCDとも称される)及び色素増感型太陽電池のように液晶などが封入される電子素子であってもよい。また、封止構造体100は、後述される、LCDとOLEDとを含むハイブリッド型の表示装置のように、二つ以上及び二種以上の電子素子30を含んでいてもよい。
 図1Aに示される例では、ガラスからなる第一基板10上に有機EL発光素子30aが電子素子30として形成されている。すなわち、図1Aは、第二実施形態の有機EL表示装置も示している。第二実施形態の有機EL表示装置は、封止構造体100を含み、電子素子30として有機EL発光素子30aを備えている。有機EL発光素子30aは、第一電極31、第一電極31を囲むように形成された絶縁バンク32内に積層された有機層33、及び有機層33上に形成された第二電極34を少なくとも含んでいる。なお、図1Aでは、有機EL発光素子30aが簡略化されているが、第二実施形態の有機EL表示装置は、例えば第一基板10に形成された複数の駆動素子13(図5参照)、及び、複数の駆動素子13それぞれの上に形成された複数の有機EL発光素子30aを少なくとも備え得る。
 シール材50は、電子素子30を囲み、電子素子30の周囲において、第1基板10と第2基板20との間隙を塞いでいる。シール剤50は、第一基板10と第二基板20との間に形成された電子素子30を気密に封止して、電子素子30が水分や酸素などによって劣化しないようにするものである。そのため、エポキシ樹脂などの樹脂類ではなくガラス材がシール剤50に用いられている。シール剤50の幅(厚さ)xは、例えば0.5mm以上、2.0mm以下であり、シール剤50がこの程度の幅を有していれば、気密封止に関して大きな問題は生じないと考えられる。
 第一基板10と第二基板20との間には電子素子30が封入されるので、シール剤50が第一及び第二の基板10、20と接着される際に、電子素子30にダメージを与えない程度にしか温度を上げることができない。そのため、シール剤50は、軟化点(いわゆるゴム状態になる温度)の低い低融点ガラス材50aを含んでいる。低融点ガラスは、ガラスの組成に低融点酸化物を混入することによって軟化点を下げられたもので、一般的には350~600℃程度又はそれ以上の軟化点を有している。本実施形態では、電子素子30が形成された基板を接合するため、低い軟化点を有する低融点ガラスが好ましい。一方、低融点ガラスが結晶化してしまうと、シール剤50と第一基板10及び第二基板20との接着強度が低下するおそれがあるため、その結晶化開始温度は高い方が好ましい。すなわち、シール剤50と各基板との接続時の加熱によって到達する温度よりも結晶化開始温度が低くならない程度に、低融点酸化物を混入して軟化点を下げることが好ましい。さらに、第一基板10などにポリイミド樹脂などで形成されるフィルム剤などが用いられ得ることにも配慮すると、シール剤50に用いられる低融点ガラス材50aの軟化点は、400℃以上、500℃以下であることが好ましい。
 例えば、バナジウム系低融点ガラス(V25)と燐酸塩系低融点ガラス(P25)とを、略2.5程度の重量比(V25/P25)で混合し、さらに、酸化バリウムを15質量%程度添加することによって、450℃程度の軟化点を有する低融点ガラスを得ることができる。すなわち、このような材料系の低融点ガラス及び添加材を含むシール剤50の場合、シール剤50を各基板と接触させた状態で450℃~500℃程度の温度になるように加熱することによって、シール剤50を一旦軟化させて各基板としっかりと接着させることができる。特に、バナジウム系低融点ガラスは、可視から赤外領域に高い光吸収性を有しており、後述するように、レーザ光などを用いた局所的な加熱によって軟化させることが可能である。そのため、比較的容易に、電子素子30の直近の周囲過度を過度に上昇させることなくシール剤50を軟化させることができる。なお、シール剤50に含まれる低融点ガラス材50aは、ここで例示されたバナジウム系及び燐酸塩系の低融点ガラスならびにそれらの混合物に限定されない。例えば、低融点ガラス材50aは、硼酸塩系もしくはテルライド系の低融点ガラス又はそれらの混合物であってもよい。また、低融点ガラス材50aの軟化点は、400℃以上、500℃以下の範囲外の温度であってもよい。要は、低融点ガラス材50aが、発光性能及び寿命などへの顕著な影響を電子素子30に与えることなく第一基板10及び第二基板20と接着し得るゴム状もしくはペースト状などの状態に変わり始める温度を有していればよい。
 本実施形態では、シール剤50は、図1Bに示されるように、低融点ガラス材50aと共に、低融点ガラス材50aの軟化点よりも高い融点を有する材料を用いて形成されたスペーサ50bを含んでいる。スペーサ50bは、シール剤50の中に散らばっており、第一基板10と第二基板20との間に介在することによって両基板の間隙の長さLgを規定している。すなわち、第一基板10と第二基板20との間隙の長さLgは、スペーサ50bにおける、この長さLgの方向の大きさ(幅もしくは長さ)によって定まり得る。従って、封止構造体100における長さLgのばらつきの抑制のためには、複数のスペーサ50bにおける、この長さLgの方向の幅、長さ、若しくは直径などが均一であることが好ましい。
 また、スペーサ50bはシール剤50中に均等に散らばっていることが好ましい。例えば、スペーサ50bは低融点ガラス材50a中に分散された粒状体である。その場合、第一基板10と第二基板20との間隙の長さLgは、スペーサ50bの粒径によって制限され得る。換言すると、スペーサ50bとして適切な粒径を有する粒状体を選択することによって、第一基板10と第二基板20との間隙において所望の長さLgを得ることができる。「粒状体」には、単に真球状(図2A参照)の粒だけが含まれるのではなく、楕円体状、柱状(図2B参照)、又は繊維状の粒状物も含まれる。すなわち、スペーサ50bは、一般的にビーズスペーサ又はファイバスペーサと称される粒状物であってもよい。例えば、球状の粒状体の場合、「粒径」は粒状体の直径であり、楕円体状、柱状又は繊維状の粒状体の場合、「粒径」は、粒状体の長手方向に直交する断面における直径、又は短軸もしくは一辺の長さである。例えば、複数のスペーサ50bに用いられる粒状体における「粒径」のばらつき幅は、0.1μm程度以下であることが好ましい。ばらつきがこの程度であれば、画素電極を備える基板(例えば第一基板)と対向電極を備える基板(例えば第二基板)との間隙の長さについて厳密な制御が求められる液晶表示装置も、本実施形態の封止構造体100で実現することができる。
 スペーサ50bは、シール剤50中に任意の含有率で含まれ得る。シール剤50におけるスペーサ50bの含有率は、第一基板10と第二基板20との間隙が、シール剤50による接着部位においてムラなく保持され得る点で大きい方が好ましい。一方、シール剤50は、必要とされる強度で第一基板10及び第二基板20と接着し得るように、十分な量の低融点ガラス材50aも有している必要がある。従って、シール剤50におけるスペーサ50bの含有率は、5質量%以上、30質量%以下であることが好ましく、15質量%以上、25質量%以下であることがより好ましい。この範囲の含有率でスペーサ50bが含まれていると、シール剤50を第一及び第二の基板10、20に十分な強度で接着することができ、そのうえ、第一基板10と第二基板20との間隙のムラ及びばらつきも実用上許容され得る範囲に抑えることができると考えられる。
 スペーサ50bの材料は、低融点ガラス材50aの軟化点よりも高い融点を有するものであれば特に限定されない。しかし、前述したように400℃程度に達する低融点ガラス材50aの軟化点よりも高い融点を有すべき点で、スペーサ50bは無機物で構成されていることが好ましい。例えば、スペーサ50bは、1600℃以上の融点を有する二酸化ケイ素(シリカ:SiO2)もしくはその結晶化物である石英、2000℃以上の融点を有する酸化アルミニウム(アルミナ:Al23)、又は、800℃以上の融点を有する炭酸カルシウム(CaCO3)などで構成される。
 前述したように、電子機器では恒常的に小型化及び薄型化が希求されている。特に平面ディスプレイの分野ではその傾向が顕著であるが、市場からの要求だけではなく、その性能の向上の面においても、ディスプレイを構成する2枚の基板間の長さの正確な制御が求められる。例えば液晶表示装置においては、画素電極を備える基板と対向電極を備える基板との間隔を厳密に制御することによってセルギャップのムラに起因する表示ムラを抑制することができる。また、有機EL表示装置においても、薄型化、可撓性の向上、及び、材料費の削減などの点で、駆動素子及び有機発光素子を備える基板(例えば第一基板)と保護基板もしくは封止基板(例えば第二基板)との間の間隙の狭小化と、狭小化に伴う間隙の長さの厳密な制御に対する要求が強まるものと考えられる。本実施形態の封止構造体100によれば、そのような要求に応えることができる。すなわち、第一基板10と第二基板20との接合時における低融点ガラス材50aの軟化時においても、スペーサ50bが存在するため、両基板の間隙の長さLgがスペーサ50bの粒径以下になることはない。また、その接合時に両基板を互いに向って適度に押しつけることによって、この間隙の長さLgが、スペーサ50bの粒径よりも長くなることを容易に防ぐことができる。従って、第一基板10と第二基板20の間隙の長さLgを厳密に制御することができる。なお、スペーサ50bを構成する粒状体としては、例えばSiO2によって形成される場合は、サブミクロンレベルの粒径のものから形成可能で、また、シード粒子を成長させることによって数100μm程度の粒径のものまで形成され得る。
 第一実施形態の封止構造体100を含む第二実施形態の有機EL表示装置における第一基板10と第二基板20との間隙の長さLgは、例えば、5μm以上、50μm以下であってもよい。従来の有機EL表示装置では、駆動素子及び有機発光素子を備える基板と封止基板もしくは保護基板との間隙は、このように狭く設定されていない。しかし、本実施形態のようにスペーサ50bをシール剤50に含ませることによって、両基板の間隙をこのような狭さ(短さ)において厳密に制御することができる。その結果、有機EL表示装置のいっそうの薄型化、及び/又は可撓性の向上に寄与することができる。
 低融点ガラス材50aは、例えば、数十μm立方の微細粉末にしたガラスフリットとして用意され、前述したように、レーザ光などを用いた加熱によって軟化し、降温に伴って固化する。すなわち、封止構造体100におけるシール剤50中の低融点ガラス材50aは、一旦軟化したガラスフリットの固化物であってもよい。図2A及び図2Bには、そのようにガラスフリットとして用意された低融点ガラス材50aを含み、一旦軟化した後の固化によってシール剤50となるべきシール剤材料51の構成の例が示されている。図2A及び図2Bに示されるように、シール剤材料51は、複数個のガラスフリットの状態である低融点ガラス材50aと、前述した石英などの無機物によって構成された粒状体である複数のスペーサ50bとを含んでいる。
 図2A及び図2Bの例では、シール剤材料51は、有機溶媒を含むバインダ51aをさらに含み、ガラスフリット状の低融点ガラス材50a、スペーサ50b、及び、バインダ51aを混ぜ合わせることによってペースト状に調製されている。図2Aでは、スペーサ50bは略真球状の形状を有している。一方、図2Bでは、スペーサ50bは略円柱状の形状を有している。前述したように、粒状体のスペーサ50bは、図2A及び図2Bの例に限らず、楕円体状又は繊維状の粒状物であってもよい。しかし、粒状体であるスペーサ50bにおいて第一基板10と第二基板20とに挟まれたときに挟持される部分の長さは、前述したように、複数のスペーサ50bにおいて均一であることが好ましく、例えば、そのばらつき幅は、挟持される部分の長さの2%以下、より好ましくは1%以下であることが好ましい。なお、スペーサ50bにおける第一及び第二の基板10、20に「挟持される部分の長さ」は、例えば、略球形のスペーサ50bにおける直径、円柱状のスペーサ50bにおける長さ方向と直交する断面の直径、又は、楕円体状のスペーサ50bにおける長さ方向と直交する断面の直径もしくは短軸の長さである。
 図3A~図3Cを用いて、シール剤材料51の第一基板10又は第二基板20への配置について説明する。前述したようにペースト状に調製されたシール剤材料51は、例えば図3Aに示されるように、基板(例えば第一基板10)の所定の部位に、スクリーン印刷又はディスペンサなどによって塗布される。「所定の部位」は、電子素子の形成領域Aを囲むべき部位である。シール剤材料51は、第一基板10又は第二基板20のどちらに塗布されてもよい。換言すると、シール剤材料51は、電子素子30(図1A参照)が形成される基板に塗布されてもよく、電子素子30が形成された基板と接着される基板(例えば、電子素子30が第一基板10に形成される場合における第二基板20)に形成されてもよい。従って「電子素子の形成領域Aを囲むべき部位」は、電子素子30が形成された基板にシール剤材料51が配置される場合は、シール剤材料51の塗布と共に電子素子の形成領域Aを囲む部位である。一方、電子素子30が形成されない方の基板にシール剤材料51が配置される場合は、「電子素子の形成領域Aを囲むべき部位」は、そのシール剤材料51が配置された基板と電子素子30が形成された基板とが、後工程で重ね合されたときに電子素子30を囲む部位である。後述する隔壁材料61(図3B参照)が配置される場合は、その隔壁材料61の外周に、隔壁材料61と離間してシール剤材料51が配置される。そして、他方の基板(例えば第二基板20)が、シール剤材料51を挟んで重ね合わされ、レーザ光が照射される。その結果、低融点ガラス材50aの軟化点以上の温度までシール剤材料51が加熱され、シール剤材料51が各基板と接着すると共にシール剤50が形成される。このレーザ光の照射には、後述するように、種々のレーザ光が用いられ得る。
 シール剤材料51は、低融点ガラスをペースト状にして塗付したものでなくてもよい。例えば、図3B及び図3Cに示されるように、ガラスリボン51bをシール剤材料51として用いてもよい(図3B及び図3Cには、後述する隔壁材料61がシール剤材料と共に示されている)。すなわち、第一又は第二の基板10、20の一方の所定の部位にガラスリボン51bを貼り付けることによってシール剤材料51を配置されてもよい。この場合も、ガラスリボン51bには、前述された低融点ガラス材50aと、スペーサ50bを構成する粒状体などとが含まれている。すなわち、ガラスリボン51bは、溶融状態の低融点ガラス材50aを鋳型などに流し込んだり、ペースト状に調整されたガラスフリットを成形して固化させたりして形成され、この形成の際に、スペーサ50bとして石英などの粒状体が低融点ガラス材50aの中に混入される。ペーストからガラスリボン51bを形成する場合、その形成時にバインダ51a(図2A参照)を蒸発させることによって、気泡やガスを内包しないガラスリボン51b、延いては、気泡やガスを内包しないシール剤50を得ることができる。
 ガラスリボン51bが用いられる場合、例えば、2枚の基板の一方、例えば第一基板10においてシール剤50を形成する所定の部位(各基板においてシール剤材料51によって相手方の基板に接着される接着部位)にガラスリボン51bが接着剤などで貼り付けられる。そして、第二基板20を重ね合せた後に、レーザ光の照射によって、シール剤50が形成されると共に各基板と接着される。この場合、図3B及び図3Cに示されるように、ガラスリボン51bの全面ではなく一部(接着部B)に接着剤が付着されていればよい。
 具体的には、図3B及び図3Cに示されるように、シール剤材料51による接着部位が複数個の領域(例えば矩形状の基板の各辺)に分割され、その分割された領域それぞれに応じた長さのガラスリボン51bが用意される。そしてガラスリボン51bの一端部(図3Bの例)又は両端部(図3Cの例)の接着部Bだけに図示しない接着剤が付けられ、第一基板10又は第二基板20の接着部位における分割された領域それぞれに各ガラスリボン51bが配置され、接着される。この場合、ガラスリボン51bは、接着部位が分割された各領域の長さよりも接着部Bの分だけ長く形成される。そして、図3B及び図3Cに示されるように、接着部Bは、接着部位に関して電子素子の形成領域Aと反対の部位に配置される。すなわち、第一基板10と第二基板20とが重ね合された後にレーザ光で接着される部位の外側に接着部Bが位置付けられる。こうすることによって、接着部Bに付けられた図示されない接着剤がレーザ光の照射による温度上昇時にガス(水分や酸素)などを放出する場合でも、その温度上昇と共に形成されるシール剤50(図1参照)によって、電子素子の形成領域A内へのガスなどの浸入を防ぐことができる。従って、電子素子30の劣化を防ぐことができると考えられる。
 図3Bに示される例は、ガラスリボン51bの一端部のみに接着剤が付着されており、ガラスリボン51bの他端部は、他のガラスリボン51bと突き当てになっていて、接着した場合には他のガラスリボンと接合して一体化される。その結果、基板との接着の際にガラスリボン51bの温度が上昇しても、その温度上昇によって接着剤から発生するガスはシール剤50の外側に放出されることになる。
 図3Cに示される例では、ガラスリボン51bにおいて若干長くされた両端部が90°折り曲げられている。その折り曲げられた部分が、接着部位の外側に位置するようにガラスリボン51bが配置されている。そのため、図3Bの例と同様に、接着部Bはシール剤材料51の外側になり、レーザ光による接着の際に、接着剤からガスが発生しても、電子素子の形成領域A内に封入されることはない。しかも、ガラスリボン51bの両端部で接着されるので、非常に安定してガラスリボン51bを接着することができる。
 シール剤材料51は、前述したように低融点ガラス材50aを含んでおり、比較的低い温度で軟化し、第一及び第二の基板10、20と接着し得る。しかし、電子素子30の熱による劣化を確実に防ぐべく、及び、低融点ガラス剤50aを十分に高い温度で十分に軟化させるべく、電子素子30とシール剤50との間に、断熱手段が設けられていることが好ましい。また、封止構造体100によって液晶表示装置が構成される場合、第一基板10と第二基板20とをシール剤50を介して接着する前に、この二つの基板の間に液晶が充填される。従って、少なくともシール剤50によって電子素子30の周囲において二つの基板の間隙が塞がれるまでの間、充填された液晶の流出を堰き止める堤防(隔壁)を設ける必要がある。図4には、そのような隔壁60を備える、本実施形態の封止構造体100の他の例が示されている。
 図4に示されるように、シール剤50から離間し、かつ、電子素子30を取り囲む隔壁60が、シール剤50と電子素子30との間に形成されている。隔壁60は、シール剤50と同様に、電子素子30を取り囲むように形成されている。従って、電子素子30が液晶のような液状物を含む場合でも、その液状物を隔壁60の内側に留めることができると共に、液状物がシール剤50に直接接触することを防ぐことができる。また、シール剤50の接着のための加熱時における電子素子30への熱の伝導を抑制することができる。従って、電子素子30の劣化をさらに抑制することができる。隔壁60の厚さyは、例えば0.1mm以上、1.0mm以下である。隔壁60が、この程度の厚さを有していれば、熱伝導が効果的に抑制され、しかも、封止構造体100を含む表示装置などの顕著な大型化を招くおそれも少ないと考えられる。これと同様の理由から、シール剤50と隔壁60との間隔zは0.5mm以上、1.0mm以下であることが好ましい。少なくとも0.5mmの間隔を空けることによって熱伝導をほぼ阻止し得ることが確かめられており、一方、1mm以上の間隔を空けても、熱伝導の抑制効果に有意な変化が見られないからである。なお、隔壁60は、電子素子30の封止を目的とはしていないので、第一基板10及び第二基板20と必ずしも接着する必要はない。
 隔壁60として使用し得る隔壁材料61(図3B及び図3C参照)としては、例えばガラス、セラミックス、金属酸化物、金属、又は半導体などの無機材料が例示される。ガラスとしては、例えば前述のシール剤50として用いた低融点ガラスのガラスフリット又はガラスリボンが用いられてもよい。セラミックスや金属酸化物などの他の無機材料を用いる場合も、ガラスフリットと同様に微粉末にして有機溶媒や接着剤などと混ぜることによって、隔壁60を形成することができる。
 隔壁60は、前述したように、シール機能を有しなくてもよいため、例えば隔壁材料61が微粉末で最終的にポーラスであっても、その微細孔が非常に小さく、液晶のような電子素子30の一部である液状物質の流れを阻止できるものであればよい。むしろ、ポーラスな隔壁60は、隔壁60中での熱伝導が抑制されるため好ましいこともある。従って、無機材料の微粉末をバインダでペースト状にして印刷後に加熱硬化することよって、多数の微細孔を有する隔壁60が形成されてもよい。なお、バインダが完全に消失しなくても、その量が全体の体積の10%以下の量であれば、電子素子30の特性を劣化させるようなガスの発生は無いと考えられる。
 隔壁60が第一又は第二の基板10、20の一方のみと接着する構造の場合、隔壁材料61に熱硬化性樹脂などを使用しても、第一及び第二の基板10、20を重ね合せる前に隔壁材料61が硬化すれば、硬化の際に発生するガスは2枚の基板間に封入されない。従って、隔壁60は無機材料に限定されない。この場合、シール剤材料51を加熱する際に、発生する熱で隔壁60が加熱されないように、シール剤50と隔壁60との間隔zを充分に大きくする、例えば0.7mm以上で、1mm以下程度にすることが好ましい。
 隔壁材料61に有機材料が用いられる場合、従来の液晶表示装置を製造する際に2枚の基板をシールするために用いられている接合樹脂、例えばエポキシ樹脂、エポキシアクリレート、ウレタンアクリレート、シリコーン樹脂などを用いることもできる。これらの材料は、添加される重合開始剤によって、紫外線硬化樹脂、熱硬化性樹脂などになり得る。さらに、熱硬化性樹脂は、遅延硬化性樹脂になり得る。その場合、電子素子30から離れた場所(例えば電子素子30が形成されない基板)で熱処理をしておくことによって、電子素子30の近傍における温度の上昇及びガスの発生を防ぐことができる。さらに、紫外線硬化樹脂又は可視光硬化樹脂を用いる場合も、温度上昇やガスの発生を伴わずに隔壁材料61を硬化させることができる。なお、隔壁60は、第一及び第二の基板10、20の両方と接着していてもよい。しかしその場合も、本実施形態の封止構造体100では第一基板10と第二基板20との間隙がスペーサ50bによって制御されるため、隔壁60の高さは、前述したスペーサ50bの粒径よりも小さい(低い)ことが好ましく、その場合の隔壁60の高さの不足分は、接着剤などの量を多くすることによって補われていることが好ましい。
(表示装置)
 次に、電子素子30としてOLED30aとLCD30bとを有する複合型の表示装置200が、図5を参照しながら説明される。
 本発明の第三実施形態である表示装置200は、表示画面の画素ごとに形成された駆動用TFT13及び駆動用TFT13の上の表面を平坦にした第一絶縁層(いわゆる平坦化膜)19を有するTFT基板10と、TFT基板(第一基板)10の一画素の第一領域Rで、第一絶縁層19の上方に形成されたLCD30b用の反射電極41と、TFT基板10の第一絶縁層19の上の第一領域Rと隣接する一画素の第二領域Tに形成され、第一電極31、有機層33、第二電極34及び被覆層35を有するOLED30aと、反射電極41と対向する対向電極(透明電極)43を有し、TFT基板10と対向して配置された対向基板(第二基板)20と、TFT基板10と対向基板20との間に充填された液晶層42と、液晶層42の外周においてTFT基板10と対向基板20との間隙を塞いでいるシール剤50と、を具備し、シール剤50は低融点ガラス材50a及び複数のスペーサ50bを含み、複数のスペーサ50bは、低融点ガラス材50aの軟化点よりも高い融点を有している。
 また、図5の例では、シール剤50と液晶層42とを隔てる隔壁60が、TFT基板10と対向基板20との間に設けられており、シール剤50と隔壁60とが離間している。
 なお、図5では、1個のLCD30bと1個のOLED30aの周囲に隔壁60及びシール剤50が形成されているが、実際には、このLCD30bとOLED30aの組からなるサブ画素が赤(R)、緑(G)、青(B)のそれぞれに形成され、さらにそのR、G、Bからなるサブ画素で構成される一画素がマトリクス状に複数個形成される。本実施形態では、このマトリクス状に形成される全体の素子が電子素子30になり、それらを取り囲むようにシール剤50及び隔壁60が形成されている。なお、図5では、各構成要素が解りやすく示されるように、TFT基板10及び対向基板20の厚さ方向が強調されている。そのため、スペーサ50bの断面が、短軸に対して長軸が遥かに長い楕円形で描かれているが、図5の例のスペーサ50bは、図1Bと同様の円形の断面を有する球状の粒状体である。
 本実施形態の表示装置200は、一画素の第一領域Rに反射型のLCD30bが形成され、一画素の第一領域Rと隣接する第二領域Tに例えばOLED30aなどの発光素子が形成されている。反射型のLCD30bは、反射電極41と、液晶層42と、透明電極43(対向電極)と、カラーフィルタ(CF)44と、反射電極41及び透明電極43の表面にそれぞれ形成される液晶配向膜45、46と、偏光板47とで構成されている。この液晶層42、透明電極43、及び偏光板47は、第二領域Tの方まで延びて、表示装置200の全体に形成されている。また、OLED30aは、第一電極31と発光領域を画定する、いわゆる絶縁バンクとも呼ばれる第二絶縁層32と、有機層33と、第二電極34と、その周囲を被覆する被覆層35とを含んでいる。第二絶縁層32は、第一領域Rの第一絶縁層19の上にも同じ材料で、かつ、ほぼ同じ厚さに形成されているが、第一領域Rと第二領域Tとの間で分離されているので、第一領域Rにおける第二絶縁層は第三絶縁層32aと称される。
 TFT基板10は、例えばガラス基板又はポリイミドなどの樹脂フィルムなどからなる絶縁基板11の一面に駆動用TFT(薄膜トランジスタ)13、電流供給用TFT12などのTFTや、図示しないバスラインなどの配線が形成され、その表面を平坦にする、いわゆる平坦化膜と呼ばれる第一絶縁層19が形成されている。なお、各TFTはポリシリコン又はアモルファス半導体などの半導体層14、ゲート絶縁膜15、ゲート電極13g、12g、パシベーション膜16などにより形成されているが、その詳細の説明は省略される。図5では、LCD30bの液晶層42と並列に接続される補助容量電極17が形成されている。
 また、図5においては、電流供給用TFT12のソース12sはOLED30aのアノード電極31に接続されている。OLED30aのカソード電極34は、ビアコンタクト18c1、18c2でカソードバスライン18に接続されている。第一絶縁層19は、ポリイミドなどの有機材料、又は、SiOyやSiNxなどの無機材料でCVD法などによって形成され得る。駆動用TFT13などのドレイン13dは、コンタクト13d1~13d3を介して反射電極41と接続され、電流供給用TFT12のソース12sは、OLED30a用の第一電極31と接続されている。なお、図5では、素子の構造が概念的に示され、各素子の全てが、正確には記載されていない。
 対向基板20では、例えばガラス又は透明(透光性)フィルムなどの絶縁基板21に、カラーフィルタ44と対向電極43と液晶配向膜46とが形成されている。
 対向基板20と、OLED30aなどが形成されたTFT基板10とが、反射電極41と対向電極43とが対向するように一定の間隙を確保して、OLED30a及びLCD30bの周囲で、シール剤50によって接着されている。両基板10、20の間に電子素子30の一部となる液晶材料が封入されることによって、液晶層42が形成され、対向基板20の液晶層42と反対の面に偏光板47が設けられている。
 シール剤50とTFT基板10及び対向基板20との接着は、第一実施形態の封止構造体100の説明において前述した方法と同様の方法で行われる。シール剤50は、スペーサ50bを含んでいるため、接着時に低融点ガラス材50aが軟化しても、TFT基板10と対向基板20との間隙の長さが厳密に制御され得る。なお、シール剤50は、対向基板20のうちの対向電極43、カラーフィルタ44及び液晶配向膜46が形成されていない領域と接着し、また、TFT基板10のうちの各TFT及び第一絶縁層19が形成されていない領域と接着している。従って、図5の例では、具体的には、TFT基板10及び対向基板20における絶縁基板11と絶縁基板21との間隙の長さが最も厳密に制御され得る。しかし、それに伴って、例えば反射電極41と対向電極43との間の間隔も極めて正確に制御され得る。なお、シール剤50は、第一絶縁層19又はカラーフィルタ44などを介して絶遠基板11、21と接着していてもよい。
 OLED30aは、一画素の第二領域Tに形成され、図5に示されるように、第一絶縁層19の第二領域Tの表面に形成される第一電極31と、その周囲に第一電極31を取り囲むように形成される第二絶縁層32と、その第二絶縁層32で囲まれる第一電極31の上に形成される有機層33と、その上のOLED30aのほぼ全面に形成される第二電極34と、その周囲を被覆する被覆層35とで形成されている。
 第一電極31は、例えばアノード電極として形成される。本実施形態の場合、図5の上側から表示画面を見ることになるため、第一電極31は反射電極として形成され、発光した光を全て上方に放射する構造になっている。そのため、第一電極31は、有機層33などとの仕事関数の関係などに基づいて選定された光反射性の材料、例えば、ITO/APC/ITOの積層膜などによって形成される。
 第二絶縁層32は、OLED30aの発光領域を画定すると共に、第一電極31と第二電極34とが接触して導通することを防ぐために形成されている。この第二絶縁層32で囲まれた第一電極31の上に有機層33が積層される。この第二絶縁層32は、例えばポリイミドやアクリル樹脂などの樹脂で形成される。この第二絶縁層32は、第一領域Rと第二領域Tの高さを合せる意味からも、LCD30bが形成される第一領域Rにも形成される。
 有機層33は、第二絶縁層32に囲まれた第一電極31の上に、蒸着法又はインクジェットなどによる塗布法で積層される。この有機層33は、図5では一層で示されているが、種々の材料が積層されて複数層で形成される。具体的には、例えば第一電極31上に順に、正孔注入層、正孔輸送層が形成される。さらに、その上に発光波長に応じて選択される発光層が、例えば赤色、緑色に対しては、Alq3に赤色又は緑色の有機物蛍光材料がドーピングされて形成される。また、青色系の材料としては、DSA系の有機材料が用いられる。発光層の上には、さらに電子輸送層が形成される。さらに、電子注入層が設けられてもよい。これらの各層がそれぞれ数十nm程度ずつ積層され得る。
 有機層33の表面に第二電極34が形成される。第二電極(例えばカソード電極)34はOLED30aのほぼ全面の上に形成される。第二電極34は透光性の材料、例えば、薄膜のMg-Ag共晶膜により形成される。第二電極34の表面に、例えばSi34、SiO2など無機絶縁膜からなる被覆層(TFE)35が一層、又は二層以上の積層膜によって形成されている。被覆層35は、第二電極34及び有機層33を包含している。
 図5に示されるように、OLED30aの上にも液晶層42及び対向電極43が形成されている。しかし、OLED30aの領域には、対向電極43に対応する反射電極41は無い。そのため、後述する液晶層42の両面に印加される電圧がオフの場合と同じ状況になる。すなわち、外光に対してはノーマリブラックになるが、OLED30aで発光する光は、液晶層42は垂直配向のため、液晶層42がないのと同じであり、何の変化もなく円偏光板47を通過する。従って、OLED30aの発光により表示される画像は、そのまま正面側から視認される。
 LCD30bは、一画素のうち、半分程度の第一領域Rの全面に形成された反射電極41と、液晶層42と、対向電極43と、偏光板(円偏光板)47とで、反射型のLCDとして形成されている。液晶層42は、第二領域Tも含めた全面に形成されている。反射電極41は、いわゆる画素電極であり、第一領域Rのほぼ全面に形成されている。反射電極41は、前述したOLED30aの第二絶縁層32と同じ材料で同時に形成される第三絶縁層32aの上に形成されている。反射電極41は、例えば0.05μm以上で、0.2μm以下のAl(アルミニウム)と0.005μm以上で、0.05μm以下のIZO(インジウム・ジンク・オキサイド)との積層膜で形成される。第三絶縁層32aは、OLED30aの第二絶縁層32が形成される際に第二絶縁層32と同じ材料で形成される。このように、第一領域Rに第三絶縁層32aが形成されることによって、液晶層42の下層の高さを二つの領域R、T間で近づけることができる。
 液晶層42は、液晶組成物を含み、例えばECB(Electrically Controlled Birefringence)モードなどの種々の表示モードが用いられ得る。液晶層42は、偏光板47との協働で、反射電極41と対向電極43間への電圧の印加と停止とに応じて入射光を画素ごとに遮断又は通過させる。液晶層42は、ECBモードであれば、光が液晶層42を透過して反射電極41に到達するまでに、電圧オン時に1/4波長の位相差を生じる厚さに形成されることが好ましい。本実施形態の表示装置200では、シール剤50がスペーサ50bを含むため、対向基板20とTFT基板10との間隙が厳密に制御され得る。その結果、液晶層42の厚さも精度良く制御することができる。
 TFT基板10に形成される液晶配向膜45と対向基板20に形成される液晶配向膜46の配向は、例えば90°の角度で相違するように形成される。例えば液晶層42の両面に電圧が印加されない状態で液晶分子が垂直に配列されるように液晶配向膜45、46が形成されると、反射電極41と対向電極43との間にしきい値以上の電圧が印加されない状態では外光の反射光は外に出ず、黒色表示すなわちノーマリブラックになる。
 偏光板47には、例えば円偏光板が用いられる。円偏光板は、例えば直線偏光板と1/4波長の位相差板との組み合せで形成される。さらに、幅広い波長に対して1/4波長条件を示すように、1/2波長板が併用されてもよい。反射電極41と対向電極43との間にしきい値以上の電圧が印加されていないときに液晶層42が垂直配向であれば、外光はそのまま液晶層42を通過して、反射電極41で反射することによって右円偏光から左円偏光に逆転する。このため、偏光板47に戻った外光は偏光板47を通ることができずに黒色表示が得られる。一方、液晶層42にしきい値以上の電圧が印加されることによって液晶分子が水平配向になると、外光は液晶層42でさらに1/4波長の位相がずれるため、反射電極41で反射した外光は偏光板47を透過できるようになり、白色表示が得られる。なお、偏光板47は、円偏光板に限定されるものではなく、表示モードに応じた直線偏光板であってもよい。
 シール剤50は、前述した第一実施形態の封止構造体100及び第二実施形態の有機EL表示装置に用いられるシール剤50と同じで、低融点ガラス材50a及び低融点ガラス材50aの軟化点よりも高い融点を有するスペーサ50bを含んでいる。従って、前述したように、TFT基板10と対向基板20の間隙の長さを厳密に制御することができる。特に、図5に例示されるOLED30aとLCD30bとを含むハイブリッド型の表示装置200では、OLED30aに対して高度のシール性が求められ、同時に、LCD30bの画質の維持及び向上のためには、二つの基板10、20間の間隙を厳密に制御することが求められる。従って、樹脂などと比べてシール性の高いガラス材(低融点ガラス材50a)によって構成され、さらに、このガラス材の軟化点よりも高い融点を有するスペーサ50bを含むシール剤50を備える本実施形態の表示装置200は、このようなハイブリッド型の表示装置として特に好適である。なお、表示装置200においても、シール剤50は、ガラスフリットのペースト、ガラスリボンなどによって、TFT基板10又は対向基板20のOLED30a及びLCD30bの周囲に、先に参照した図3Aなどに示されるように形成され、これらの基板が重ねられた後に接着される。そして、レーザ光の照射によってガラスフリットの全体又はガラスリボンの少なくとも基板10、20との接合部の低融点ガラス材50aが軟化状態にされることによって、シール剤50がTFT基板10及び対向基板20に接着されている。
 なお、隔壁60も、前述した第一実施形態の封止構造体100において設けられ得る隔壁60と同じであり、封止構造体100の場合と同様の材料を用いて、同様の方法で、シール剤50と離間して形成され得る。図5に示される例では、隔壁60とLCD30b又はOLED30aとが接触しているが、隔壁60とこれらの電子素子とは接触していても、離間していても構わない。
(表示装置の製造方法)
 次に、本発明の第四実施形態の表示装置の製造方法が、引き続き図5を参照すると共に、図6及び図7を参照しながら説明される。本実施形態の表示装置の製造方法は、第一基板10を用意する工程(図6のS1)と、第一基板10の上方又は表面上に、画素を構成すべき電子素子30(図1B参照)を形成する工程(S2)と、第二基板20を用意し(S3)、第一基板10又は第二基板20のいずれかにシール剤材料51(図3A参照)を配置する工程(S4)と、第一基板10と第二基板20とをシール剤材料51を挟んで重ね合せる工程(S5)と、シール剤材料51によって第一基板10と第二基板20とを接着する工程(S6)と、を具備している。ここで、シール剤材料51には、低融点ガラス材50a、及び、低融点ガラス材50aの軟化点よりも高い融点を有していて低融点ガラス材50aに混ぜられた複数の粒状体を含む材料が用いられる。また、シール剤材料51の配置では、第一基板10と第二基板20とを重ね合せたときに、電子素子の形成領域A(図3A参照)を囲むべき部位にシール剤材料51が配置される。そして、レーザ光の照射によってシール剤材料51が第一基板10及び第二基板20に接着される。なお、複数の粒状体は、前述した第一実施形態の封止構造体100などにおけるスペーサ50bを構成する。
 なお、上記各工程は、この順でなければならないというものではなく、例えばステップS3が最初に行われてもよい。また、ステップS4は、第一基板10又は第二基板20のいずれかにおいて実行される。すなわち、前述したように、シール剤材料51は、第一基板10又は第二基板20のどちらに配置されてもよく、電子素子30が形成される基板に塗布されてもよく、電子素子30が形成された基板と接着される基板に形成されてもよい。従って、「電子素子の形成領域Aを囲むべき部位」は、電子素子30が形成された第一基板10にシール剤材料51が配置される場合は第一基板10において電子素子30を囲む部位であり、第二基板20に配置される場合は第一基板10と第二基板20とがステップS5で重ね合されたときに電子素子30を囲む部位である。
 以下では、図5を主に参照して、電子素子30として、OLED30a及びLCD30bを含む第三実施形態の表示装置200の製造を例に、本実施形態の表示装置の製造方法が説明される。しかし、本実施形態の製造方法を用いて、例えば、OLED30a又はLCD30bのいずれか一方だけを備える表示装置が製造されてもよい。従って、以下の説明における各構成要素の形成のうち、表示装置200においてOLED30aだけを構成する要素、及びLCD30bだけを構成する要素のいずれかの形成は、製造される表示装置の種類に応じて省略されてもよい。例えば、液晶表示装置が製造される場合は、OLED30aを構成する各要素及び第三絶縁層32aの形成は省略されてもよい。また、有機EL表示装置が製造される場合は、液晶層42、液晶配向膜45、46、ならびに反射電極41及び対向電極43などのLCD30bを構成する各要素の形成は省略されてもよい。
 まず、第一基板(TFT基板)10が用意される(S1)。具体的には絶縁基板11の上に、一般的なTFTの形成方法を用いて、半導体層14及び図示しないバスラインが形成され、さらに、ゲート絶縁膜15、駆動用TFT13のドレイン13d及びゲート電極13g、電流供給用TFT12のソース12s及びゲート電極12g、ならびに、補助容量用電極14が形成される。さらに、その表面にSiNxなどからなるパシベーション膜16、及び、コンタクト13d1などが形成され、第一絶縁層19が、例えばポリイミド樹脂、又は、SiO2などの無機膜によって形成される。
 そして、TFT基板10の上方又は表面上にLCD30b用の反射電極41及びOLED30aが形成される(S2)。具体的には、OLED30a用の第一電極(アノード電極)31が、ITO/APC(Ag-Pd-Cu合金)/ITOの積層膜によって形成される。駆動用TFT13のドレイン13dと接続するコンタクト13d2も第一絶縁層19に形成される。そして、ポリイミド樹脂又はアクリル樹脂などによって第二絶縁層32が、第一電極31を取り囲み、かつ、凸部を有するように形成される。第二絶縁層32は、例えば、液状の状態で全面に樹脂膜が形成され、その後パターニングすることによって所望の位置に所望の形状で形成される。第二絶縁層32のパターニングの際に、第一領域Rのコンタクト13d2と接続するコンタクト孔が形成され、第三のコンタクト13d3が形成される。また、第二絶縁層32と第三絶縁層32aとに分断されて露出する第一絶縁層19にもトレンチが形成されてもよい。
 その後、有機層33が、蒸着、又はインクジェット法などの印刷によって形成され、カソード電極となる第二電極34が、有機層33及び第二絶縁層32の凸部を含めたOLED30aのほぼ全面に、蒸着マスクを用いた蒸着などによって形成される。
 その後、被覆層35が、SiNxやSiOyなどの無機膜で形成される。好ましくは、被覆層35は、少なくとも二層を有する多層膜で形成される。この被覆層35は、CVD法、又はALD(Atomic Layer Deposition)法などによって形成される。被覆層35は、第一領域Rまで及ぶように形成されていてもよい。被覆層35の形成の際に、好ましくは、第一絶縁層19に形成されたトレンチ内にも被覆層35の材料が埋め込まれ、被覆層35が第一絶縁層19の下層のパシベーション膜16などの無機膜と接合される。この被覆層35は、全面に形成されてから、エッチングによりパターニングされてもよく、マスクを用いて所望の場所のみに堆積されてもよい。
 そして、第一領域Rの第三絶縁層32aの表面にLCD30b用の反射電極(画素電極)41が形成される。反射電極41は、コンタクト13d3とも電気的に接続される。反射電極41は、例えばAlとIZOで形成される。反射電極41は、OLED30aの全面を除いた一画素のほぼ半分に形成されるため、全面に蒸着などによって形成された反射膜のパターニングによって形成されてもよい。さらに、反射電極41上に液晶配向膜45が積層される。以上で、第一基板10の用意が終了する。
 一方、第一基板10と別に、第二基板(対向基板)20が用意され得る(S3)。第二基板20は、ガラス板又は樹脂フィルムなどの絶縁基板21に透光性の対向電極43及び必要な場合には、カラーフィルタ44や液晶配向膜46を積層することによって用意される。なお、ここではLCD30b及びOLED30aの両方を含む表示装置200の製造を例に説明がなされているため、対向電極43などが形成される。しかし、前述した通り、有機EL表示装置が製造される場合は、対向電極43などの形成は省略され得る。
 その後、第一基板10又は第二基板20のいずれかにシール剤材料51(図3A参照)が配置される(S4)。シール剤材料51は、第一基板10と第二基板20とを重ね合せたときに、電子素子の形成領域A(図3A参照)を囲むべき部位に配置される。シール剤材料51は、低融点ガラス材50aを含んでいる。低融点ガラス材50aには、低融点ガラス材50aの軟化点よりも高い融点を有していて、第一基板10と第二基板20とに挟まれたときに、これらの基板間の間隙を制限する複数のスペーサ50bとなるべき複数の粒状体が混ぜられている。好ましくは、低融点ガラス材50a及びスペーサ50bとなるべき複数の粒状体全体における複数の粒状体の含有率が、5質量%以上、30質量%以下であるシール剤材料51が用いられる。このようなシール剤材料51を用いることによって、第一基板10及び第二基板20とシール剤50との十分な接着強度が得られると共に、第一基板10と第二基板20との間隙を厳密に制御することができる。
 シール剤材料51は、前述したように、ペースト状に調製されて塗布されてもよい。すなわち、先に参照した図2A及び図2Bに示されるように、低融点ガラス材50aとしてガラスフリットを用いると共に、スペーサ50bとなるべき粒状体として無機物によって構成された球状体もしくは柱状体を用いてもよい。そして、バインダ51aを用いてペースト状に調製されたシール剤材料51が用意され、印刷又はディスペンスを用いてガラスフリット(低融点ガラス材50a)及び粒状体を第一基板10又は第二基板20に塗布することによってシール剤材料51が配置されてもよい。
 また、シール剤材料51は、ガラスリボンの形態で用意され、その一端部又は両端部を、接着剤を用いて第一基板10又は第二基板20に固定することによって配置されてもよい。すなわち、低融点ガラス材50a及びスペーサ50bとなるべき複数の粒状体を含むガラスリボン51b(図3B及び図3C参照)がシール剤材料51として用いられてもよい。そして、ガラスリボン51bを第一基板10又は第二基板20の所定の部位に貼り付けることによってシール剤材料51が配置されてもよい。この場合、好ましくは、図3B及び図3Cを参照して説明したようにガラスリボン51bの配置及び貼り付けが行われてもよい。すなわち、シール剤材料51によって接着される接着部位が複数個に分割され、その分割された領域のそれぞれにガラスリボン51bが配置される。そして、ガラスリボン51bの一端部又は両端部が、接着部位に関して電子素子の形成領域A(図3B及び図3C参照)と反対の部位において第一基板10又は第二基板20に接着される。こうすることによって、電子素子の形成領域A内へのガスなどの浸入を防ぐことができ、電子素子30の劣化を防ぐことができると考えられる。なお、シール剤材料51は、好ましくは、図5に示されるように、絶縁基板11、21を露出させて、これらの基板と直接接合されることが好ましい。十分な接着が得られ易いと考えられるからである。
 図5に示される表示装置200が製造される場合は、シール剤材料51の配置の前又は後に、電子素子の形成領域Aの周縁部に、隔壁材料61(図3B及び図3C参照)が配置される。隔壁材料61も、第一基板10及び第二基板20のいずれに配置されてもよい。隔壁材料61は、第一基板10と第二基板20とが重ね合されたときに、隔壁材料61で囲まれる領域内にLCD30bの反射電極41及びOLED30aが収容されるように形成される。隔壁材料61は前述したように無機材料が好ましいが、エポキシ樹脂などの樹脂材料が用いられてもよい。また、隔壁材料61は、ペースト状にして塗布することによって配置され得るし、リボンなどの形態で用意されて接着されてもよい。ペースト状の隔壁材料61が塗布される場合は、その後の加熱また紫外線照射などによって硬化され、隔壁60が形成される。隔壁材料61の高さは、貼り合される2枚の基板の間隔に合せて選択され得る。しかし、前述したように、スペーサ50bとなる粒状体の粒径よりも小さい(低い)ことが、スペーサ50bによる第一基板10と第二基板20の間隙の制御に干渉しない点で好ましい。
 なお、隔壁材料61が配置される場合は、シール剤材料51と離間して配置される。好ましくは、シール剤材料51と隔壁材料61とは、0.5mm以上、1.0mm以下の距離だけ離される。この程度の距離だけ離間させることによって、前述したように、熱伝導が効果的に抑制され、しかも、表示装置200の顕著な大型化を招くことも少ないと考えられるからである。なお、隔壁材料61とシール剤材料51は、別々の基板に配置されてもよい。
 図5に示される表示装置200が製造される場合は、隔壁60で囲まれるLCD30b及びOLED30aの形成領域に液晶材料(液晶組成物)が滴下される。この液晶組成物の滴下は、真空雰囲気下で行われることが好ましい。滴下の際に液晶材料の中に巻き込まれた気泡を放出しやすいからである。
 そして、第一基板10と第二基板20とがシール剤材料51を挟んで重ね合される(S5)。重ね合せた後は、大気圧、又はそれより高い圧力にすることが2枚の基板に均一に圧力をかけられるので好ましい。この場合、窒素中(100%のN2雰囲気)又は乾燥空気中であることが、さらに好ましい。この時点ではシール剤50によるシールはまだ行われていないので、シール剤50から内部に窒素又は乾燥空気を浸入させることができるからである。従って、乾燥空気は露点-50℃以下の乾燥空気であることが特に好ましい。
 そして、レーザ光の照射によってシール剤材料51が第一基板10及び第二基板20に接着される(S6)。レーザ光の照射によって、シール剤材料51に含まれる低融点ガラス材50aが軟化し、第一基板10及び第二基板20と接着する。例えば、シール剤材料51が、450℃~500℃程度の温度に達するようにレーザ光が照射される。レーザ光の光源としては、190nm~350nm程度の波長を有するエキシマレーザ、1064nmの波長を有するYAGレーザ、又は、10.6μmの波長を有するCO2レーザなどを用いることができる。各種のレーザ光は、シール剤材料51に含まれる低融点ガラス材50aが良好な吸収特性を示す波長帯に応じて波長を変換されてもよい。
 本実施形態の表示装置の製造方法では、シール剤材料51がスペーサ50bとなる粒状体を含んでいるため、第一基板10と第二基板20とが互いに向かって押し付けられた状態で、レーザ光の照射を行うことが好ましい。すなわち、シール剤材料51に、第一基板10及び第二基板20の厚さ方向の圧縮力を加えてレーザ光の照射を行うことが好ましい。このように力を加えることで、第一基板10と第二基板20との間隙の長さを、スペーサ50bの粒径に略等しい長さに制御することができる。なお、この際に第一基板10又は第二基板20に加えられる力としては、0.1N/cm2以上、15N/cm2以下程度の力が好ましい。この程度の力であれば、第一基板10及び第二基板20をスペーサ50bに接触させることができ、しかも、これらの基板に過度なダメージも与えないと考えられる。
 さらに、第一基板10及び第二基板20には、薄い板材又はフィルムが用いられることが多いため、第一基板10及び第二基板20をそれらの全面において押し付け得る押え治具を用いて、レーザ光を照射することが好ましい。そうすることによって、第一基板10又は第二基板20に反りなどが生じている場合でも、第一及び第二の基板10、20の全面において、両基板の間隙を均一にすることができる。図7には、そのような押え治具Pを用いる、レーザ光の照射工程の例が示されている。
 図7に示される例では、重ね合された第一基板10と第二基板20の上に、板状の押え治具Pが載置され、押え治具Pを介して力Fが加えられている。そして、光源Sから、押え治具P上において所定の波長を有するレーザ光Lが、押え治具Pを介してシール剤材料51に照射される。光源Sは、シール剤材料51の配置部位に沿って動かされる。例えば、25Wの出力のレーザ光が、5mm/秒の速度で移動しながらシール剤材料51に照射される。従って、電子素子の形成領域Aの周囲全周においてシール剤材料51が過熱され、低融点ガラス材50aが一旦軟化後に固化する。その結果、シール剤材料51が第一及び第二の基板10、20と接着すると共に、電子素子の形成領域Aの周囲で第一基板10と第二基板20との間隙を塞ぐシール剤50が形成される。なお、レーザ光の出力及び移動速度は、上記の出力及び速度に限定されない。
 押え治具Pには、図示されていない任意の荷重機構によって力Fが加えられてもよい。押え治具Pは、照射されるレーザ光に対する透過性が良好で、適度な耐熱性及び剛性を有する材料を用いて形成される。例えば、紫外線領域の光に対して高い透過率を有する石英などが、押え治具Pの材料として用いられるが、これに限定される訳ではない。また、レーザ光Lの波長は、押え治具Pの材料が良好な透過性を示す波長帯に応じて選択されてもよい。例えば、石英を用いて形成された押え治具Pが用いられる場合、300nm以上、2000nm以下の波長のレーザ光Lが用いられることが好ましい。例えば、前述したエキシマレーザ又はYAGレーザが用いられる。YAGレーザを用いる場合、基本波から1/2波長又は1/3波長に変換したレーザ光Lが照射されてもよい。なお、押え治具Pは、レーザ光Lが照射される部位を除いて遮光性を有していてもよい。しかし、少なくとも電子素子の形成領域Aを覆う部分が透光性を有していることが、レーザ光の照射中におけるOLED30a及びLCD30bの状態が確認され得る点で好ましい。
 図5に示される表示装置200が製造される場合は、シール剤材料51による第一基板10と第二基板20との接着後、第二基板20の対向電極43と反対面に、偏光板47が貼り付けられる。その結果、第一領域Rに反射型のLCD30bが形成され、第二領域TにOLED30aが形成されたハイブリッド型の表示装置200が得られる。
(まとめ)
(1)本発明の第一実施形態の封止構造体は、対向して配置された第一基板及び第二基板と、前記第一基板及び前記第二基板の間に形成された電子素子と、前記電子素子の外周において前記第一基板と前記第二基板との間隙を塞いでいるシール剤と、を備え、前記シール剤は低融点ガラス材及び複数のスペーサを含み、前記複数のスペーサは、前記低融点ガラス材の軟化点よりも高い融点を有している。
 (1)の構成によれば、2枚の基板の間に形成される電子素子を水分や酸素から保護することができ、しかも、その2枚の基板の間隔を精度良く制御することができる。
(2)上記(1)の封止構造体において、前記低融点ガラス材は、一旦軟化したガラスフリットの固化物であり、前記スペーサは、無機物によって構成され、前記ガラスフリットに混ぜられた粒状体であってもよい。その場合、スペーザを含むシール剤を容易に設けることができる。
(3)上記(1)又は(2)の封止構造体において、前記低融点ガラス材の軟化点は400℃以上、500℃以下であり、前記スペーサは石英を用いて形成されていてもよい。その場合、電子素子への熱ストレスを抑制でき、しかも、2枚の基板の接着時のスペーサの軟化も略無いので、いっそう厳密に2枚の基板の間隙を制御することができる。
(4)上記(1)~(3)のいずれかの封止構造体において、前記シール剤における前記スペーサの含有率は、5質量%以上、30質量%以下であってもよい。その場合、シール剤を第一及び第二の基板に十分な強度で接着することができ、そのうえ、第一基板と第二基板との間隙のムラ及びばらつきも抑制することができる。
(5)上記(1)~(4)のいずれかの封止構造体において、前記シール剤から離間し、かつ、前記電子素子を取り囲む隔壁が、前記シール剤と前記電子素子との間に形成されていてもよい。そうすることによって、電子素子の形成領域への熱の伝達を抑制することができる。
(6)本発明の第二実施形態の有機EL表示装置は、上記(1)~(5)のいずれかの封止構造体を含み、前記電子素子が有機EL発光素子である。この構成によれば、有機EL表示装置において、2枚の基板の間隙を制御することができ、有機EL発光素子を水分などに対して保護することができる。
(7)本発明の第三実施形態の表示装置は、表示画面の画素ごとに形成された駆動素子及び前記駆動素子の上の表面を平坦にした第一絶縁層を有するTFT基板と、前記TFT基板の一画素の第一領域で、前記第一絶縁層の上方に形成された液晶表示素子用の反射電極と、前記TFT基板の前記第一絶縁層の上の前記第一領域と隣接する前記一画素の第二領域に形成され、第一電極、有機層、第二電極及び被覆層を有する有機EL発光素子と、前記反射電極と対向する対向電極を有し、前記TFT基板と対向して配置された対向基板と、前記TFT基板と前記対向基板との間に充填された液晶層と、前記液晶層の外周において前記TFT基板と前記対向基板との間隙を塞いでいるシール剤と、を具備し、前記シール剤は、低融点ガラス材及び複数のスペーサを含み、前記複数のスペーサは、前記低融点ガラス材の軟化点よりも高い融点を有している。
 (7)の構成によれば、液晶表示素子と有機EL発光素子の両方を含む複合型の表示装置において、水分や酸素の浸入から有機EL発光素子を保護することができ、しかも液晶表示素子における画質の低下などを抑制することができる。
(8)上記(7)の表示装置において、前記シール剤と前記液晶層とを隔てる隔壁が、前記TFT基板と前記対向基板との間に設けられており、前記シール剤と前記隔壁とが離間していてもよい。その場合、電子素子の形成領域への熱の伝導を抑制することができる。
(9)本発明の第四実施形態の表示装置の製造方法は、第一基板を用意する工程と、前記第一基板の上方又は表面上に、画素を構成すべき電子素子を形成する工程と、第二基板を用意し、前記第一基板又は前記第二基板のいずれかにシール剤材料を配置する工程と、前記第一基板と前記第二基板とを前記シール剤材料を挟んで重ね合せる工程と、前記シール剤材料によって前記第一基板と前記第二基板とを接着する工程と、を具備し、前記シール剤材料に、低融点ガラス材、及び、前記低融点ガラス材の軟化点よりも高い融点を有していて前記低融点ガラス材に混ぜられた複数の粒状体を含む材料を用い、前記シール剤材料の配置において、前記第一基板と前記第二基板とを重ね合せたときに前記電子素子の形成領域を囲むべき部位に前記シール剤材料を配置し、レーザ光の照射によって前記シール剤材料を前記第一基板及び前記第二基板と接着する。
 (9)の構成によれば、電子素子を水分や酸素から保護することができ、しかも、2枚の基板の間隙が精度良く制御された表示装置を製造することができる。
(10)上記(9)の表示装置の製造方法において、前記低融点ガラス材及び前記複数の粒状体全体における前記複数の粒状体の含有率が、5質量%以上、30質量%以下である前記シール剤材料を用いてもよい。そうすることによって、シール剤材料を第一及び第二の基板に十分な強度で接着することができ、そのうえ、第一基板と第二基板との間隙のムラ及びばらつきも抑制することができる。
(11)上記(9)又は(10)の表示装置の製造方法において、前記シール剤材料に前記第一基板及び前記第二基板の厚さ方向の圧縮力を加えて前記レーザ光の照射を行ってもよい。そうすることによって、第一基板と第二基板との間隙を厳密に制御することができる。
(12)上記(11)の表示装置の製造方法において、重ね合された前記第一基板と前記第二基板の上に、石英を用いて形成された押え治具を載置し、前記押え治具を介して前記力を加えると共に、前記押え治具上において300nm以上、2000nm以下の波長を有するレーザ光を前記押え治具を介して前記シール剤材料に照射してもよい。そうすることによって、第一基板と第二基板との間隙をそれらの基板の全面において均一に制御することができ、また。シール剤材料にレーザ光を十分に照射することができる。
(13)上記(9)~(12)のいずれかの表示装置の製造方法において、前記低融点ガラス材としてガラスフリットを用いると共に、前記粒状体として無機物によって構成された球状体もしくは柱状体を用い、印刷又はディスペンスを用いて前記ガラスフリット及び前記粒状体を前記第一基板又は前記第二基板に塗布することによって前記シール剤材料を配置してもよい。その場合、シール剤材料を容易に配置することができる。
(14)上記(9)~(12)のいずれかの表示装置の製造方法において、前記シール剤材料に、前記低融点ガラス材及び前記複数の粒状体を含むガラスリボンを用い、前記ガラスリボンを前記第一基板又は前記第二基板の所定の部位に貼り付けることによって前記シール剤材料を配置してもよい。そうすることによって、気泡などの少ないシール剤で第一基板と第二基板とを接着することができる。
(15)上記(14)の表示装置の製造方法において、前記ガラスリボンの貼り付けにおいて、前記ガラスリボンを、前記シール剤材料によって接着される接着部位を複数個に分割した領域のそれぞれに配置し、前記ガラスリボンの一端部又は両端部を、前記接着部位に関して前記電子素子の形成領域と反対の部位において前記第一基板又は前記第二基板に接着してもよい。そうすることによって、電子素子の形成領域へのガスなどの浸入を少なくすることができる。
10 第一基板(TFT基板)
13  駆動用TFT
19  第一絶縁層
20 第二基板(対向基板)
30 電子素子
30a 有機EL発光素子(OLED)
30b 液晶表示素子(LCD)
31  第一電極(アノード電極)
32  第二絶縁層(絶縁バンク)
32a 第三絶縁層
33  有機層
34  第二電極(カソード電極)
35  被覆層(TFE)
41  反射電極(画素電極)
42  液晶層
43  対向電極
50  シール剤
50a 低融点ガラス材
50b スペーサ
51  シール剤材料
51b ガラスリボン
60  隔壁
61  隔壁材料
100 封止構造体
200 表示装置
A   電子素子の形成領域
B   接着部
P   押え治具
R   第一領域
T   第二領域

Claims (15)

  1.  対向して配置された第一基板及び第二基板と、
     前記第一基板及び前記第二基板の間に形成された電子素子と、
     前記電子素子の外周において前記第一基板と前記第二基板との間隙を塞いでいるシール剤と、を備え、
     前記シール剤は低融点ガラス材及び複数のスペーサを含み、
     前記複数のスペーサは、前記低融点ガラス材の軟化点よりも高い融点を有している、封止構造体。
  2.  前記低融点ガラス材は、一旦軟化したガラスフリットの固化物であり、
     前記スペーサは、無機物によって構成され、前記ガラスフリットに混ぜられた粒状体である、請求項1に記載の封止構造体。
  3.  前記低融点ガラス材の軟化点は400℃以上、500℃以下であり、前記スペーサは石英を用いて形成されている、請求項1又は2に記載の封止構造体。
  4.  前記シール剤における前記スペーサの含有率は、5質量%以上、30質量%以下である、請求項1~3のいずれか1項に記載の封止構造体。
  5.  前記シール剤から離間し、かつ、前記電子素子を取り囲む隔壁が、前記シール剤と前記電子素子との間に形成されている、請求項1~4のいずれか1項に記載の封止構造体。
  6.  請求項1~5のいずれか1項に記載の封止構造体を含み、
     前記電子素子が有機EL発光素子である、有機EL表示装置。
  7.  表示画面の画素ごとに形成された駆動素子及び前記駆動素子の上の表面を平坦にした第一絶縁層を有するTFT基板と、
     前記TFT基板の一画素の第一領域で、前記第一絶縁層の上方に形成された液晶表示素子用の反射電極と、
     前記TFT基板の前記第一絶縁層の上の前記第一領域と隣接する前記一画素の第二領域に形成され、第一電極、有機層、第二電極及び被覆層を有する有機EL発光素子と、
     前記反射電極と対向する対向電極を有し、前記TFT基板と対向して配置された対向基板と、
     前記TFT基板と前記対向基板との間に充填された液晶層と、
     前記液晶層の外周において前記TFT基板と前記対向基板との間隙を塞いでいるシール剤と、
    を具備し、
     前記シール剤は、低融点ガラス材及び複数のスペーサを含み、
     前記複数のスペーサは、前記低融点ガラス材の軟化点よりも高い融点を有している、表示装置。
  8.  前記シール剤と前記液晶層とを隔てる隔壁が、前記TFT基板と前記対向基板との間に設けられており、
     前記シール剤と前記隔壁とが離間している、請求項7に記載の表示装置。
  9.  第一基板を用意する工程と、
     前記第一基板の上方又は表面上に、画素を構成すべき電子素子を形成する工程と、
     第二基板を用意し、前記第一基板又は前記第二基板のいずれかにシール剤材料を配置する工程と、
     前記第一基板と前記第二基板とを前記シール剤材料を挟んで重ね合せる工程と、
     前記シール剤材料によって前記第一基板と前記第二基板とを接着する工程と、
    を具備し、
     前記シール剤材料に、低融点ガラス材、及び、前記低融点ガラス材の軟化点よりも高い融点を有していて前記低融点ガラス材に混ぜられた複数の粒状体を含む材料を用い、
     前記シール剤材料の配置において、前記第一基板と前記第二基板とを重ね合せたときに前記電子素子の形成領域を囲むべき部位に前記シール剤材料を配置し、
     レーザ光の照射によって前記シール剤材料を前記第一基板及び前記第二基板と接着する、表示装置の製造方法。
  10.  前記低融点ガラス材及び前記複数の粒状体全体における前記複数の粒状体の含有率が、5質量%以上、30質量%以下である前記シール剤材料を用いる、請求項9に記載の表示装置の製造方法。
  11.  前記シール剤材料に前記第一基板及び前記第二基板の厚さ方向の圧縮力を加えて前記レーザ光の照射を行う、請求項9又は10に記載の表示装置の製造方法。
  12.  重ね合された前記第一基板と前記第二基板の上に、石英を用いて形成された押え治具を載置し、
     前記押え治具を介して前記力を加えると共に、前記押え治具上において300nm以上、2000nm以下の波長を有するレーザ光を前記押え治具を介して前記シール剤材料に照射する、請求項11に記載の表示装置の製造方法。
  13.  前記低融点ガラス材としてガラスフリットを用いると共に、前記粒状体として無機物によって構成された球状体もしくは柱状体を用い、
     印刷又はディスペンスを用いて前記ガラスフリット及び前記粒状体を前記第一基板又は前記第二基板に塗布することによって前記シール剤材料を配置する、請求項9~12のいずれか1項に記載の表示装置の製造方法。
  14.  前記シール剤材料に、前記低融点ガラス材及び前記複数の粒状体を含むガラスリボンを用い、
     前記ガラスリボンを前記第一基板又は前記第二基板の所定の部位に貼り付けることによって前記シール剤材料を配置する、請求項9~12のいずれか1項に記載の製造方法。
  15.  前記ガラスリボンの貼り付けにおいて、前記ガラスリボンを、前記シール剤材料によって接着される接着部位を複数個に分割した領域のそれぞれに配置し、前記ガラスリボンの一端部又は両端部を、前記接着部位に関して前記電子素子の形成領域と反対の部位において前記第一基板又は前記第二基板に接着する、請求項14に記載の製造方法。
PCT/JP2017/046191 2017-12-22 2017-12-22 封止構造体、有機el表示装置、表示装置及び表示装置の製造方法 WO2019123649A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/771,590 US20200303482A1 (en) 2017-12-22 2017-12-22 Sealing structure, organic el display device, display device, and method for manufacturing display device
PCT/JP2017/046191 WO2019123649A1 (ja) 2017-12-22 2017-12-22 封止構造体、有機el表示装置、表示装置及び表示装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046191 WO2019123649A1 (ja) 2017-12-22 2017-12-22 封止構造体、有機el表示装置、表示装置及び表示装置の製造方法

Publications (1)

Publication Number Publication Date
WO2019123649A1 true WO2019123649A1 (ja) 2019-06-27

Family

ID=66993338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046191 WO2019123649A1 (ja) 2017-12-22 2017-12-22 封止構造体、有機el表示装置、表示装置及び表示装置の製造方法

Country Status (2)

Country Link
US (1) US20200303482A1 (ja)
WO (1) WO2019123649A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014379A1 (ja) * 2022-07-12 2024-01-18 ソニーセミコンダクタソリューションズ株式会社 発光装置、電子機器および封止デバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803928B (zh) * 2018-06-05 2020-06-19 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
US11143927B2 (en) * 2018-06-11 2021-10-12 Sakai Display Products Corporation Display device
KR20210027666A (ko) * 2019-08-30 2021-03-11 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
US11342316B2 (en) * 2020-01-16 2022-05-24 Mediatek Inc. Semiconductor package
KR20220000440A (ko) * 2020-06-25 2022-01-04 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108905A (ja) * 2008-10-29 2010-05-13 Samsung Mobile Display Co Ltd 発光表示装置及びその製造方法
JP2010228998A (ja) * 2009-03-27 2010-10-14 Asahi Glass Co Ltd 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
WO2010143337A1 (ja) * 2009-06-11 2010-12-16 シャープ株式会社 有機el表示装置およびその製造方法
JP2011222449A (ja) * 2010-04-14 2011-11-04 Panasonic Electric Works Co Ltd 発光装置
JP2013137998A (ja) * 2011-11-29 2013-07-11 Semiconductor Energy Lab Co Ltd 封止体、発光装置、電子機器及び照明装置
JP2016050135A (ja) * 2014-08-29 2016-04-11 日立化成株式会社 無鉛低融点ガラス組成物並びにこれを含む低温封止用ガラスフリット、低温封止用ガラスペースト、導電性材料及び導電性ガラスペースト並びにこれらを利用したガラス封止部品及び電気電子部品
JP2017068263A (ja) * 2015-10-01 2017-04-06 株式会社半導体エネルギー研究所 表示装置およびその作製方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108905A (ja) * 2008-10-29 2010-05-13 Samsung Mobile Display Co Ltd 発光表示装置及びその製造方法
JP2010228998A (ja) * 2009-03-27 2010-10-14 Asahi Glass Co Ltd 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
WO2010143337A1 (ja) * 2009-06-11 2010-12-16 シャープ株式会社 有機el表示装置およびその製造方法
JP2011222449A (ja) * 2010-04-14 2011-11-04 Panasonic Electric Works Co Ltd 発光装置
JP2013137998A (ja) * 2011-11-29 2013-07-11 Semiconductor Energy Lab Co Ltd 封止体、発光装置、電子機器及び照明装置
JP2016050135A (ja) * 2014-08-29 2016-04-11 日立化成株式会社 無鉛低融点ガラス組成物並びにこれを含む低温封止用ガラスフリット、低温封止用ガラスペースト、導電性材料及び導電性ガラスペースト並びにこれらを利用したガラス封止部品及び電気電子部品
JP2017068263A (ja) * 2015-10-01 2017-04-06 株式会社半導体エネルギー研究所 表示装置およびその作製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014379A1 (ja) * 2022-07-12 2024-01-18 ソニーセミコンダクタソリューションズ株式会社 発光装置、電子機器および封止デバイス

Also Published As

Publication number Publication date
US20200303482A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
WO2019123649A1 (ja) 封止構造体、有機el表示装置、表示装置及び表示装置の製造方法
JP4633674B2 (ja) 有機電界発光表示装置及びその製造方法
US8357929B2 (en) Organic light emitting display device
US8629614B2 (en) Organic EL display and method for manufacturing same
US9196804B2 (en) Display apparatus
EP2182565B1 (en) Light emitting display and method of manufacturing the same
KR101056197B1 (ko) 발광 표시 장치 및 그의 제조 방법
US7999467B2 (en) Display device and manufacturing method thereof for minimizing inflow of oxygen and moisture from the outside
WO2011004567A1 (ja) 有機エレクトロルミネッセンス表示装置及びその製造方法
JP6463876B1 (ja) 基板の封止構造体、及び表示装置とその製造方法
KR101421168B1 (ko) 유기전계발광 표시소자 및 그 제조방법
JP4204781B2 (ja) 電界発光素子
CN103904098B (zh) 有机发光二极管显示器
JP2006049308A (ja) 表示装置、その製造方法、及びその製造装置
KR102002767B1 (ko) 유기전계발광 표시소자
KR20110047654A (ko) 유기전계발광소자의 제조방법
KR102369369B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
WO2020199551A1 (zh) 显示器封装结构及其制造方法
WO2019128032A1 (zh) 封装结构及其制备方法与有机电致发光装置
JP2011028887A (ja) 有機el表示装置
JP2012109030A (ja) 有機el表示装置
KR101853446B1 (ko) 유기 발광 표시 장치 및 그 실링 방법
KR20080112793A (ko) 표시 장치 및 그 제조 방법
JP2019071285A (ja) 基板の封止構造体、及び表示装置とその製造方法
KR100815761B1 (ko) 유기 전계 발광표시장치의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP